xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision 7cc42f6d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 
47 /*
48  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
49  * calls that change the file system. Each itx has enough information to
50  * be able to replay them after a system crash, power loss, or
51  * equivalent failure mode. These are stored in memory until either:
52  *
53  *   1. they are committed to the pool by the DMU transaction group
54  *      (txg), at which point they can be discarded; or
55  *   2. they are committed to the on-disk ZIL for the dataset being
56  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
57  *      requirement).
58  *
59  * In the event of a crash or power loss, the itxs contained by each
60  * dataset's on-disk ZIL will be replayed when that dataset is first
61  * instantiated (e.g. if the dataset is a normal filesystem, when it is
62  * first mounted).
63  *
64  * As hinted at above, there is one ZIL per dataset (both the in-memory
65  * representation, and the on-disk representation). The on-disk format
66  * consists of 3 parts:
67  *
68  * 	- a single, per-dataset, ZIL header; which points to a chain of
69  * 	- zero or more ZIL blocks; each of which contains
70  * 	- zero or more ZIL records
71  *
72  * A ZIL record holds the information necessary to replay a single
73  * system call transaction. A ZIL block can hold many ZIL records, and
74  * the blocks are chained together, similarly to a singly linked list.
75  *
76  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
77  * block in the chain, and the ZIL header points to the first block in
78  * the chain.
79  *
80  * Note, there is not a fixed place in the pool to hold these ZIL
81  * blocks; they are dynamically allocated and freed as needed from the
82  * blocks available on the pool, though they can be preferentially
83  * allocated from a dedicated "log" vdev.
84  */
85 
86 /*
87  * This controls the amount of time that a ZIL block (lwb) will remain
88  * "open" when it isn't "full", and it has a thread waiting for it to be
89  * committed to stable storage. Please refer to the zil_commit_waiter()
90  * function (and the comments within it) for more details.
91  */
92 int zfs_commit_timeout_pct = 5;
93 
94 /*
95  * See zil.h for more information about these fields.
96  */
97 zil_stats_t zil_stats = {
98 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
99 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
100 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
101 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
102 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
103 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
104 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
105 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
106 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
107 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
108 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
109 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
110 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
111 };
112 
113 static kstat_t *zil_ksp;
114 
115 /*
116  * Disable intent logging replay.  This global ZIL switch affects all pools.
117  */
118 int zil_replay_disable = 0;
119 
120 /*
121  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
122  * the disk(s) by the ZIL after an LWB write has completed. Setting this
123  * will cause ZIL corruption on power loss if a volatile out-of-order
124  * write cache is enabled.
125  */
126 int zil_nocacheflush = 0;
127 
128 /*
129  * Limit SLOG write size per commit executed with synchronous priority.
130  * Any writes above that will be executed with lower (asynchronous) priority
131  * to limit potential SLOG device abuse by single active ZIL writer.
132  */
133 unsigned long zil_slog_bulk = 768 * 1024;
134 
135 static kmem_cache_t *zil_lwb_cache;
136 static kmem_cache_t *zil_zcw_cache;
137 
138 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
139     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
140 
141 static int
142 zil_bp_compare(const void *x1, const void *x2)
143 {
144 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
145 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
146 
147 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
148 	if (likely(cmp))
149 		return (cmp);
150 
151 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
152 }
153 
154 static void
155 zil_bp_tree_init(zilog_t *zilog)
156 {
157 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
158 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
159 }
160 
161 static void
162 zil_bp_tree_fini(zilog_t *zilog)
163 {
164 	avl_tree_t *t = &zilog->zl_bp_tree;
165 	zil_bp_node_t *zn;
166 	void *cookie = NULL;
167 
168 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
169 		kmem_free(zn, sizeof (zil_bp_node_t));
170 
171 	avl_destroy(t);
172 }
173 
174 int
175 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
176 {
177 	avl_tree_t *t = &zilog->zl_bp_tree;
178 	const dva_t *dva;
179 	zil_bp_node_t *zn;
180 	avl_index_t where;
181 
182 	if (BP_IS_EMBEDDED(bp))
183 		return (0);
184 
185 	dva = BP_IDENTITY(bp);
186 
187 	if (avl_find(t, dva, &where) != NULL)
188 		return (SET_ERROR(EEXIST));
189 
190 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
191 	zn->zn_dva = *dva;
192 	avl_insert(t, zn, where);
193 
194 	return (0);
195 }
196 
197 static zil_header_t *
198 zil_header_in_syncing_context(zilog_t *zilog)
199 {
200 	return ((zil_header_t *)zilog->zl_header);
201 }
202 
203 static void
204 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
205 {
206 	zio_cksum_t *zc = &bp->blk_cksum;
207 
208 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
209 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
210 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
211 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
212 }
213 
214 /*
215  * Read a log block and make sure it's valid.
216  */
217 static int
218 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
219     blkptr_t *nbp, void *dst, char **end)
220 {
221 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
222 	arc_flags_t aflags = ARC_FLAG_WAIT;
223 	arc_buf_t *abuf = NULL;
224 	zbookmark_phys_t zb;
225 	int error;
226 
227 	if (zilog->zl_header->zh_claim_txg == 0)
228 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
229 
230 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
231 		zio_flags |= ZIO_FLAG_SPECULATIVE;
232 
233 	if (!decrypt)
234 		zio_flags |= ZIO_FLAG_RAW;
235 
236 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
237 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
238 
239 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
240 	    &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
241 
242 	if (error == 0) {
243 		zio_cksum_t cksum = bp->blk_cksum;
244 
245 		/*
246 		 * Validate the checksummed log block.
247 		 *
248 		 * Sequence numbers should be... sequential.  The checksum
249 		 * verifier for the next block should be bp's checksum plus 1.
250 		 *
251 		 * Also check the log chain linkage and size used.
252 		 */
253 		cksum.zc_word[ZIL_ZC_SEQ]++;
254 
255 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
256 			zil_chain_t *zilc = abuf->b_data;
257 			char *lr = (char *)(zilc + 1);
258 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
259 
260 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
261 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
262 				error = SET_ERROR(ECKSUM);
263 			} else {
264 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
265 				bcopy(lr, dst, len);
266 				*end = (char *)dst + len;
267 				*nbp = zilc->zc_next_blk;
268 			}
269 		} else {
270 			char *lr = abuf->b_data;
271 			uint64_t size = BP_GET_LSIZE(bp);
272 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
273 
274 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
275 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
276 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
277 				error = SET_ERROR(ECKSUM);
278 			} else {
279 				ASSERT3U(zilc->zc_nused, <=,
280 				    SPA_OLD_MAXBLOCKSIZE);
281 				bcopy(lr, dst, zilc->zc_nused);
282 				*end = (char *)dst + zilc->zc_nused;
283 				*nbp = zilc->zc_next_blk;
284 			}
285 		}
286 
287 		arc_buf_destroy(abuf, &abuf);
288 	}
289 
290 	return (error);
291 }
292 
293 /*
294  * Read a TX_WRITE log data block.
295  */
296 static int
297 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
298 {
299 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
300 	const blkptr_t *bp = &lr->lr_blkptr;
301 	arc_flags_t aflags = ARC_FLAG_WAIT;
302 	arc_buf_t *abuf = NULL;
303 	zbookmark_phys_t zb;
304 	int error;
305 
306 	if (BP_IS_HOLE(bp)) {
307 		if (wbuf != NULL)
308 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
309 		return (0);
310 	}
311 
312 	if (zilog->zl_header->zh_claim_txg == 0)
313 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
314 
315 	/*
316 	 * If we are not using the resulting data, we are just checking that
317 	 * it hasn't been corrupted so we don't need to waste CPU time
318 	 * decompressing and decrypting it.
319 	 */
320 	if (wbuf == NULL)
321 		zio_flags |= ZIO_FLAG_RAW;
322 
323 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
324 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
325 
326 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
327 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
328 
329 	if (error == 0) {
330 		if (wbuf != NULL)
331 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
332 		arc_buf_destroy(abuf, &abuf);
333 	}
334 
335 	return (error);
336 }
337 
338 /*
339  * Parse the intent log, and call parse_func for each valid record within.
340  */
341 int
342 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
343     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
344     boolean_t decrypt)
345 {
346 	const zil_header_t *zh = zilog->zl_header;
347 	boolean_t claimed = !!zh->zh_claim_txg;
348 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
349 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
350 	uint64_t max_blk_seq = 0;
351 	uint64_t max_lr_seq = 0;
352 	uint64_t blk_count = 0;
353 	uint64_t lr_count = 0;
354 	blkptr_t blk, next_blk;
355 	char *lrbuf, *lrp;
356 	int error = 0;
357 
358 	bzero(&next_blk, sizeof (blkptr_t));
359 
360 	/*
361 	 * Old logs didn't record the maximum zh_claim_lr_seq.
362 	 */
363 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
364 		claim_lr_seq = UINT64_MAX;
365 
366 	/*
367 	 * Starting at the block pointed to by zh_log we read the log chain.
368 	 * For each block in the chain we strongly check that block to
369 	 * ensure its validity.  We stop when an invalid block is found.
370 	 * For each block pointer in the chain we call parse_blk_func().
371 	 * For each record in each valid block we call parse_lr_func().
372 	 * If the log has been claimed, stop if we encounter a sequence
373 	 * number greater than the highest claimed sequence number.
374 	 */
375 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
376 	zil_bp_tree_init(zilog);
377 
378 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
379 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
380 		int reclen;
381 		char *end = NULL;
382 
383 		if (blk_seq > claim_blk_seq)
384 			break;
385 
386 		error = parse_blk_func(zilog, &blk, arg, txg);
387 		if (error != 0)
388 			break;
389 		ASSERT3U(max_blk_seq, <, blk_seq);
390 		max_blk_seq = blk_seq;
391 		blk_count++;
392 
393 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
394 			break;
395 
396 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
397 		    lrbuf, &end);
398 		if (error != 0)
399 			break;
400 
401 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
402 			lr_t *lr = (lr_t *)lrp;
403 			reclen = lr->lrc_reclen;
404 			ASSERT3U(reclen, >=, sizeof (lr_t));
405 			if (lr->lrc_seq > claim_lr_seq)
406 				goto done;
407 
408 			error = parse_lr_func(zilog, lr, arg, txg);
409 			if (error != 0)
410 				goto done;
411 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
412 			max_lr_seq = lr->lrc_seq;
413 			lr_count++;
414 		}
415 	}
416 done:
417 	zilog->zl_parse_error = error;
418 	zilog->zl_parse_blk_seq = max_blk_seq;
419 	zilog->zl_parse_lr_seq = max_lr_seq;
420 	zilog->zl_parse_blk_count = blk_count;
421 	zilog->zl_parse_lr_count = lr_count;
422 
423 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
424 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
425 	    (decrypt && error == EIO));
426 
427 	zil_bp_tree_fini(zilog);
428 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
429 
430 	return (error);
431 }
432 
433 /* ARGSUSED */
434 static int
435 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
436 {
437 	ASSERT(!BP_IS_HOLE(bp));
438 
439 	/*
440 	 * As we call this function from the context of a rewind to a
441 	 * checkpoint, each ZIL block whose txg is later than the txg
442 	 * that we rewind to is invalid. Thus, we return -1 so
443 	 * zil_parse() doesn't attempt to read it.
444 	 */
445 	if (bp->blk_birth >= first_txg)
446 		return (-1);
447 
448 	if (zil_bp_tree_add(zilog, bp) != 0)
449 		return (0);
450 
451 	zio_free(zilog->zl_spa, first_txg, bp);
452 	return (0);
453 }
454 
455 /* ARGSUSED */
456 static int
457 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
458 {
459 	return (0);
460 }
461 
462 static int
463 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
464 {
465 	/*
466 	 * Claim log block if not already committed and not already claimed.
467 	 * If tx == NULL, just verify that the block is claimable.
468 	 */
469 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
470 	    zil_bp_tree_add(zilog, bp) != 0)
471 		return (0);
472 
473 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
474 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
475 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
476 }
477 
478 static int
479 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
480 {
481 	lr_write_t *lr = (lr_write_t *)lrc;
482 	int error;
483 
484 	if (lrc->lrc_txtype != TX_WRITE)
485 		return (0);
486 
487 	/*
488 	 * If the block is not readable, don't claim it.  This can happen
489 	 * in normal operation when a log block is written to disk before
490 	 * some of the dmu_sync() blocks it points to.  In this case, the
491 	 * transaction cannot have been committed to anyone (we would have
492 	 * waited for all writes to be stable first), so it is semantically
493 	 * correct to declare this the end of the log.
494 	 */
495 	if (lr->lr_blkptr.blk_birth >= first_txg) {
496 		error = zil_read_log_data(zilog, lr, NULL);
497 		if (error != 0)
498 			return (error);
499 	}
500 
501 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
502 }
503 
504 /* ARGSUSED */
505 static int
506 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
507 {
508 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
509 
510 	return (0);
511 }
512 
513 static int
514 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
515 {
516 	lr_write_t *lr = (lr_write_t *)lrc;
517 	blkptr_t *bp = &lr->lr_blkptr;
518 
519 	/*
520 	 * If we previously claimed it, we need to free it.
521 	 */
522 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
523 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
524 	    !BP_IS_HOLE(bp))
525 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
526 
527 	return (0);
528 }
529 
530 static int
531 zil_lwb_vdev_compare(const void *x1, const void *x2)
532 {
533 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
534 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
535 
536 	return (TREE_CMP(v1, v2));
537 }
538 
539 static lwb_t *
540 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
541     boolean_t fastwrite)
542 {
543 	lwb_t *lwb;
544 
545 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
546 	lwb->lwb_zilog = zilog;
547 	lwb->lwb_blk = *bp;
548 	lwb->lwb_fastwrite = fastwrite;
549 	lwb->lwb_slog = slog;
550 	lwb->lwb_state = LWB_STATE_CLOSED;
551 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
552 	lwb->lwb_max_txg = txg;
553 	lwb->lwb_write_zio = NULL;
554 	lwb->lwb_root_zio = NULL;
555 	lwb->lwb_tx = NULL;
556 	lwb->lwb_issued_timestamp = 0;
557 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
558 		lwb->lwb_nused = sizeof (zil_chain_t);
559 		lwb->lwb_sz = BP_GET_LSIZE(bp);
560 	} else {
561 		lwb->lwb_nused = 0;
562 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
563 	}
564 
565 	mutex_enter(&zilog->zl_lock);
566 	list_insert_tail(&zilog->zl_lwb_list, lwb);
567 	mutex_exit(&zilog->zl_lock);
568 
569 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
570 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
571 	VERIFY(list_is_empty(&lwb->lwb_waiters));
572 	VERIFY(list_is_empty(&lwb->lwb_itxs));
573 
574 	return (lwb);
575 }
576 
577 static void
578 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
579 {
580 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
581 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
582 	VERIFY(list_is_empty(&lwb->lwb_waiters));
583 	VERIFY(list_is_empty(&lwb->lwb_itxs));
584 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
585 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
586 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
587 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
588 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
589 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
590 
591 	/*
592 	 * Clear the zilog's field to indicate this lwb is no longer
593 	 * valid, and prevent use-after-free errors.
594 	 */
595 	if (zilog->zl_last_lwb_opened == lwb)
596 		zilog->zl_last_lwb_opened = NULL;
597 
598 	kmem_cache_free(zil_lwb_cache, lwb);
599 }
600 
601 /*
602  * Called when we create in-memory log transactions so that we know
603  * to cleanup the itxs at the end of spa_sync().
604  */
605 static void
606 zilog_dirty(zilog_t *zilog, uint64_t txg)
607 {
608 	dsl_pool_t *dp = zilog->zl_dmu_pool;
609 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
610 
611 	ASSERT(spa_writeable(zilog->zl_spa));
612 
613 	if (ds->ds_is_snapshot)
614 		panic("dirtying snapshot!");
615 
616 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
617 		/* up the hold count until we can be written out */
618 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
619 
620 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
621 	}
622 }
623 
624 /*
625  * Determine if the zil is dirty in the specified txg. Callers wanting to
626  * ensure that the dirty state does not change must hold the itxg_lock for
627  * the specified txg. Holding the lock will ensure that the zil cannot be
628  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
629  * state.
630  */
631 static boolean_t __maybe_unused
632 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
633 {
634 	dsl_pool_t *dp = zilog->zl_dmu_pool;
635 
636 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
637 		return (B_TRUE);
638 	return (B_FALSE);
639 }
640 
641 /*
642  * Determine if the zil is dirty. The zil is considered dirty if it has
643  * any pending itx records that have not been cleaned by zil_clean().
644  */
645 static boolean_t
646 zilog_is_dirty(zilog_t *zilog)
647 {
648 	dsl_pool_t *dp = zilog->zl_dmu_pool;
649 
650 	for (int t = 0; t < TXG_SIZE; t++) {
651 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
652 			return (B_TRUE);
653 	}
654 	return (B_FALSE);
655 }
656 
657 /*
658  * Create an on-disk intent log.
659  */
660 static lwb_t *
661 zil_create(zilog_t *zilog)
662 {
663 	const zil_header_t *zh = zilog->zl_header;
664 	lwb_t *lwb = NULL;
665 	uint64_t txg = 0;
666 	dmu_tx_t *tx = NULL;
667 	blkptr_t blk;
668 	int error = 0;
669 	boolean_t fastwrite = FALSE;
670 	boolean_t slog = FALSE;
671 
672 	/*
673 	 * Wait for any previous destroy to complete.
674 	 */
675 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
676 
677 	ASSERT(zh->zh_claim_txg == 0);
678 	ASSERT(zh->zh_replay_seq == 0);
679 
680 	blk = zh->zh_log;
681 
682 	/*
683 	 * Allocate an initial log block if:
684 	 *    - there isn't one already
685 	 *    - the existing block is the wrong endianness
686 	 */
687 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
688 		tx = dmu_tx_create(zilog->zl_os);
689 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
690 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
691 		txg = dmu_tx_get_txg(tx);
692 
693 		if (!BP_IS_HOLE(&blk)) {
694 			zio_free(zilog->zl_spa, txg, &blk);
695 			BP_ZERO(&blk);
696 		}
697 
698 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
699 		    ZIL_MIN_BLKSZ, &slog);
700 		fastwrite = TRUE;
701 
702 		if (error == 0)
703 			zil_init_log_chain(zilog, &blk);
704 	}
705 
706 	/*
707 	 * Allocate a log write block (lwb) for the first log block.
708 	 */
709 	if (error == 0)
710 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
711 
712 	/*
713 	 * If we just allocated the first log block, commit our transaction
714 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
715 	 * (zh is part of the MOS, so we cannot modify it in open context.)
716 	 */
717 	if (tx != NULL) {
718 		dmu_tx_commit(tx);
719 		txg_wait_synced(zilog->zl_dmu_pool, txg);
720 	}
721 
722 	ASSERT(error != 0 || bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
723 	IMPLY(error == 0, lwb != NULL);
724 
725 	return (lwb);
726 }
727 
728 /*
729  * In one tx, free all log blocks and clear the log header. If keep_first
730  * is set, then we're replaying a log with no content. We want to keep the
731  * first block, however, so that the first synchronous transaction doesn't
732  * require a txg_wait_synced() in zil_create(). We don't need to
733  * txg_wait_synced() here either when keep_first is set, because both
734  * zil_create() and zil_destroy() will wait for any in-progress destroys
735  * to complete.
736  */
737 void
738 zil_destroy(zilog_t *zilog, boolean_t keep_first)
739 {
740 	const zil_header_t *zh = zilog->zl_header;
741 	lwb_t *lwb;
742 	dmu_tx_t *tx;
743 	uint64_t txg;
744 
745 	/*
746 	 * Wait for any previous destroy to complete.
747 	 */
748 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
749 
750 	zilog->zl_old_header = *zh;		/* debugging aid */
751 
752 	if (BP_IS_HOLE(&zh->zh_log))
753 		return;
754 
755 	tx = dmu_tx_create(zilog->zl_os);
756 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
757 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
758 	txg = dmu_tx_get_txg(tx);
759 
760 	mutex_enter(&zilog->zl_lock);
761 
762 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
763 	zilog->zl_destroy_txg = txg;
764 	zilog->zl_keep_first = keep_first;
765 
766 	if (!list_is_empty(&zilog->zl_lwb_list)) {
767 		ASSERT(zh->zh_claim_txg == 0);
768 		VERIFY(!keep_first);
769 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
770 			if (lwb->lwb_fastwrite)
771 				metaslab_fastwrite_unmark(zilog->zl_spa,
772 				    &lwb->lwb_blk);
773 
774 			list_remove(&zilog->zl_lwb_list, lwb);
775 			if (lwb->lwb_buf != NULL)
776 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
777 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
778 			zil_free_lwb(zilog, lwb);
779 		}
780 	} else if (!keep_first) {
781 		zil_destroy_sync(zilog, tx);
782 	}
783 	mutex_exit(&zilog->zl_lock);
784 
785 	dmu_tx_commit(tx);
786 }
787 
788 void
789 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
790 {
791 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
792 	(void) zil_parse(zilog, zil_free_log_block,
793 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
794 }
795 
796 int
797 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
798 {
799 	dmu_tx_t *tx = txarg;
800 	zilog_t *zilog;
801 	uint64_t first_txg;
802 	zil_header_t *zh;
803 	objset_t *os;
804 	int error;
805 
806 	error = dmu_objset_own_obj(dp, ds->ds_object,
807 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
808 	if (error != 0) {
809 		/*
810 		 * EBUSY indicates that the objset is inconsistent, in which
811 		 * case it can not have a ZIL.
812 		 */
813 		if (error != EBUSY) {
814 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
815 			    (unsigned long long)ds->ds_object, error);
816 		}
817 
818 		return (0);
819 	}
820 
821 	zilog = dmu_objset_zil(os);
822 	zh = zil_header_in_syncing_context(zilog);
823 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
824 	first_txg = spa_min_claim_txg(zilog->zl_spa);
825 
826 	/*
827 	 * If the spa_log_state is not set to be cleared, check whether
828 	 * the current uberblock is a checkpoint one and if the current
829 	 * header has been claimed before moving on.
830 	 *
831 	 * If the current uberblock is a checkpointed uberblock then
832 	 * one of the following scenarios took place:
833 	 *
834 	 * 1] We are currently rewinding to the checkpoint of the pool.
835 	 * 2] We crashed in the middle of a checkpoint rewind but we
836 	 *    did manage to write the checkpointed uberblock to the
837 	 *    vdev labels, so when we tried to import the pool again
838 	 *    the checkpointed uberblock was selected from the import
839 	 *    procedure.
840 	 *
841 	 * In both cases we want to zero out all the ZIL blocks, except
842 	 * the ones that have been claimed at the time of the checkpoint
843 	 * (their zh_claim_txg != 0). The reason is that these blocks
844 	 * may be corrupted since we may have reused their locations on
845 	 * disk after we took the checkpoint.
846 	 *
847 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
848 	 * when we first figure out whether the current uberblock is
849 	 * checkpointed or not. Unfortunately, that would discard all
850 	 * the logs, including the ones that are claimed, and we would
851 	 * leak space.
852 	 */
853 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
854 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
855 	    zh->zh_claim_txg == 0)) {
856 		if (!BP_IS_HOLE(&zh->zh_log)) {
857 			(void) zil_parse(zilog, zil_clear_log_block,
858 			    zil_noop_log_record, tx, first_txg, B_FALSE);
859 		}
860 		BP_ZERO(&zh->zh_log);
861 		if (os->os_encrypted)
862 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
863 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
864 		dmu_objset_disown(os, B_FALSE, FTAG);
865 		return (0);
866 	}
867 
868 	/*
869 	 * If we are not rewinding and opening the pool normally, then
870 	 * the min_claim_txg should be equal to the first txg of the pool.
871 	 */
872 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
873 
874 	/*
875 	 * Claim all log blocks if we haven't already done so, and remember
876 	 * the highest claimed sequence number.  This ensures that if we can
877 	 * read only part of the log now (e.g. due to a missing device),
878 	 * but we can read the entire log later, we will not try to replay
879 	 * or destroy beyond the last block we successfully claimed.
880 	 */
881 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
882 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
883 		(void) zil_parse(zilog, zil_claim_log_block,
884 		    zil_claim_log_record, tx, first_txg, B_FALSE);
885 		zh->zh_claim_txg = first_txg;
886 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
887 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
888 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
889 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
890 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
891 		if (os->os_encrypted)
892 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
893 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
894 	}
895 
896 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
897 	dmu_objset_disown(os, B_FALSE, FTAG);
898 	return (0);
899 }
900 
901 /*
902  * Check the log by walking the log chain.
903  * Checksum errors are ok as they indicate the end of the chain.
904  * Any other error (no device or read failure) returns an error.
905  */
906 /* ARGSUSED */
907 int
908 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
909 {
910 	zilog_t *zilog;
911 	objset_t *os;
912 	blkptr_t *bp;
913 	int error;
914 
915 	ASSERT(tx == NULL);
916 
917 	error = dmu_objset_from_ds(ds, &os);
918 	if (error != 0) {
919 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
920 		    (unsigned long long)ds->ds_object, error);
921 		return (0);
922 	}
923 
924 	zilog = dmu_objset_zil(os);
925 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
926 
927 	if (!BP_IS_HOLE(bp)) {
928 		vdev_t *vd;
929 		boolean_t valid = B_TRUE;
930 
931 		/*
932 		 * Check the first block and determine if it's on a log device
933 		 * which may have been removed or faulted prior to loading this
934 		 * pool.  If so, there's no point in checking the rest of the
935 		 * log as its content should have already been synced to the
936 		 * pool.
937 		 */
938 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
939 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
940 		if (vd->vdev_islog && vdev_is_dead(vd))
941 			valid = vdev_log_state_valid(vd);
942 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
943 
944 		if (!valid)
945 			return (0);
946 
947 		/*
948 		 * Check whether the current uberblock is checkpointed (e.g.
949 		 * we are rewinding) and whether the current header has been
950 		 * claimed or not. If it hasn't then skip verifying it. We
951 		 * do this because its ZIL blocks may be part of the pool's
952 		 * state before the rewind, which is no longer valid.
953 		 */
954 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
955 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
956 		    zh->zh_claim_txg == 0)
957 			return (0);
958 	}
959 
960 	/*
961 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
962 	 * any blocks, but just determine whether it is possible to do so.
963 	 * In addition to checking the log chain, zil_claim_log_block()
964 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
965 	 * which will update spa_max_claim_txg.  See spa_load() for details.
966 	 */
967 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
968 	    zilog->zl_header->zh_claim_txg ? -1ULL :
969 	    spa_min_claim_txg(os->os_spa), B_FALSE);
970 
971 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
972 }
973 
974 /*
975  * When an itx is "skipped", this function is used to properly mark the
976  * waiter as "done, and signal any thread(s) waiting on it. An itx can
977  * be skipped (and not committed to an lwb) for a variety of reasons,
978  * one of them being that the itx was committed via spa_sync(), prior to
979  * it being committed to an lwb; this can happen if a thread calling
980  * zil_commit() is racing with spa_sync().
981  */
982 static void
983 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
984 {
985 	mutex_enter(&zcw->zcw_lock);
986 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
987 	zcw->zcw_done = B_TRUE;
988 	cv_broadcast(&zcw->zcw_cv);
989 	mutex_exit(&zcw->zcw_lock);
990 }
991 
992 /*
993  * This function is used when the given waiter is to be linked into an
994  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
995  * At this point, the waiter will no longer be referenced by the itx,
996  * and instead, will be referenced by the lwb.
997  */
998 static void
999 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1000 {
1001 	/*
1002 	 * The lwb_waiters field of the lwb is protected by the zilog's
1003 	 * zl_lock, thus it must be held when calling this function.
1004 	 */
1005 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1006 
1007 	mutex_enter(&zcw->zcw_lock);
1008 	ASSERT(!list_link_active(&zcw->zcw_node));
1009 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1010 	ASSERT3P(lwb, !=, NULL);
1011 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1012 	    lwb->lwb_state == LWB_STATE_ISSUED ||
1013 	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
1014 
1015 	list_insert_tail(&lwb->lwb_waiters, zcw);
1016 	zcw->zcw_lwb = lwb;
1017 	mutex_exit(&zcw->zcw_lock);
1018 }
1019 
1020 /*
1021  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1022  * block, and the given waiter must be linked to the "nolwb waiters"
1023  * list inside of zil_process_commit_list().
1024  */
1025 static void
1026 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1027 {
1028 	mutex_enter(&zcw->zcw_lock);
1029 	ASSERT(!list_link_active(&zcw->zcw_node));
1030 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1031 	list_insert_tail(nolwb, zcw);
1032 	mutex_exit(&zcw->zcw_lock);
1033 }
1034 
1035 void
1036 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1037 {
1038 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1039 	avl_index_t where;
1040 	zil_vdev_node_t *zv, zvsearch;
1041 	int ndvas = BP_GET_NDVAS(bp);
1042 	int i;
1043 
1044 	if (zil_nocacheflush)
1045 		return;
1046 
1047 	mutex_enter(&lwb->lwb_vdev_lock);
1048 	for (i = 0; i < ndvas; i++) {
1049 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1050 		if (avl_find(t, &zvsearch, &where) == NULL) {
1051 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1052 			zv->zv_vdev = zvsearch.zv_vdev;
1053 			avl_insert(t, zv, where);
1054 		}
1055 	}
1056 	mutex_exit(&lwb->lwb_vdev_lock);
1057 }
1058 
1059 static void
1060 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1061 {
1062 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1063 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1064 	void *cookie = NULL;
1065 	zil_vdev_node_t *zv;
1066 
1067 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1068 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1069 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1070 
1071 	/*
1072 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1073 	 * not need the protection of lwb_vdev_lock (it will only be modified
1074 	 * while holding zilog->zl_lock) as its writes and those of its
1075 	 * children have all completed.  The younger 'nlwb' may be waiting on
1076 	 * future writes to additional vdevs.
1077 	 */
1078 	mutex_enter(&nlwb->lwb_vdev_lock);
1079 	/*
1080 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1081 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1082 	 */
1083 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1084 		avl_index_t where;
1085 
1086 		if (avl_find(dst, zv, &where) == NULL) {
1087 			avl_insert(dst, zv, where);
1088 		} else {
1089 			kmem_free(zv, sizeof (*zv));
1090 		}
1091 	}
1092 	mutex_exit(&nlwb->lwb_vdev_lock);
1093 }
1094 
1095 void
1096 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1097 {
1098 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1099 }
1100 
1101 /*
1102  * This function is a called after all vdevs associated with a given lwb
1103  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1104  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1105  * all "previous" lwb's will have completed before this function is
1106  * called; i.e. this function is called for all previous lwbs before
1107  * it's called for "this" lwb (enforced via zio the dependencies
1108  * configured in zil_lwb_set_zio_dependency()).
1109  *
1110  * The intention is for this function to be called as soon as the
1111  * contents of an lwb are considered "stable" on disk, and will survive
1112  * any sudden loss of power. At this point, any threads waiting for the
1113  * lwb to reach this state are signalled, and the "waiter" structures
1114  * are marked "done".
1115  */
1116 static void
1117 zil_lwb_flush_vdevs_done(zio_t *zio)
1118 {
1119 	lwb_t *lwb = zio->io_private;
1120 	zilog_t *zilog = lwb->lwb_zilog;
1121 	dmu_tx_t *tx = lwb->lwb_tx;
1122 	zil_commit_waiter_t *zcw;
1123 	itx_t *itx;
1124 
1125 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1126 
1127 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1128 
1129 	mutex_enter(&zilog->zl_lock);
1130 
1131 	/*
1132 	 * Ensure the lwb buffer pointer is cleared before releasing the
1133 	 * txg. If we have had an allocation failure and the txg is
1134 	 * waiting to sync then we want zil_sync() to remove the lwb so
1135 	 * that it's not picked up as the next new one in
1136 	 * zil_process_commit_list(). zil_sync() will only remove the
1137 	 * lwb if lwb_buf is null.
1138 	 */
1139 	lwb->lwb_buf = NULL;
1140 	lwb->lwb_tx = NULL;
1141 
1142 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1143 	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1144 
1145 	lwb->lwb_root_zio = NULL;
1146 
1147 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1148 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1149 
1150 	if (zilog->zl_last_lwb_opened == lwb) {
1151 		/*
1152 		 * Remember the highest committed log sequence number
1153 		 * for ztest. We only update this value when all the log
1154 		 * writes succeeded, because ztest wants to ASSERT that
1155 		 * it got the whole log chain.
1156 		 */
1157 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1158 	}
1159 
1160 	while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1161 		list_remove(&lwb->lwb_itxs, itx);
1162 		zil_itx_destroy(itx);
1163 	}
1164 
1165 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1166 		mutex_enter(&zcw->zcw_lock);
1167 
1168 		ASSERT(list_link_active(&zcw->zcw_node));
1169 		list_remove(&lwb->lwb_waiters, zcw);
1170 
1171 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1172 		zcw->zcw_lwb = NULL;
1173 
1174 		zcw->zcw_zio_error = zio->io_error;
1175 
1176 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1177 		zcw->zcw_done = B_TRUE;
1178 		cv_broadcast(&zcw->zcw_cv);
1179 
1180 		mutex_exit(&zcw->zcw_lock);
1181 	}
1182 
1183 	mutex_exit(&zilog->zl_lock);
1184 
1185 	/*
1186 	 * Now that we've written this log block, we have a stable pointer
1187 	 * to the next block in the chain, so it's OK to let the txg in
1188 	 * which we allocated the next block sync.
1189 	 */
1190 	dmu_tx_commit(tx);
1191 }
1192 
1193 /*
1194  * This is called when an lwb's write zio completes. The callback's
1195  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1196  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1197  * in writing out this specific lwb's data, and in the case that cache
1198  * flushes have been deferred, vdevs involved in writing the data for
1199  * previous lwbs. The writes corresponding to all the vdevs in the
1200  * lwb_vdev_tree will have completed by the time this is called, due to
1201  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1202  * which takes deferred flushes into account. The lwb will be "done"
1203  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1204  * completion callback for the lwb's root zio.
1205  */
1206 static void
1207 zil_lwb_write_done(zio_t *zio)
1208 {
1209 	lwb_t *lwb = zio->io_private;
1210 	spa_t *spa = zio->io_spa;
1211 	zilog_t *zilog = lwb->lwb_zilog;
1212 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1213 	void *cookie = NULL;
1214 	zil_vdev_node_t *zv;
1215 	lwb_t *nlwb;
1216 
1217 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1218 
1219 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1220 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1221 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1222 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1223 	ASSERT(!BP_IS_GANG(zio->io_bp));
1224 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1225 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1226 
1227 	abd_put(zio->io_abd);
1228 
1229 	mutex_enter(&zilog->zl_lock);
1230 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1231 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1232 	lwb->lwb_write_zio = NULL;
1233 	lwb->lwb_fastwrite = FALSE;
1234 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1235 	mutex_exit(&zilog->zl_lock);
1236 
1237 	if (avl_numnodes(t) == 0)
1238 		return;
1239 
1240 	/*
1241 	 * If there was an IO error, we're not going to call zio_flush()
1242 	 * on these vdevs, so we simply empty the tree and free the
1243 	 * nodes. We avoid calling zio_flush() since there isn't any
1244 	 * good reason for doing so, after the lwb block failed to be
1245 	 * written out.
1246 	 */
1247 	if (zio->io_error != 0) {
1248 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1249 			kmem_free(zv, sizeof (*zv));
1250 		return;
1251 	}
1252 
1253 	/*
1254 	 * If this lwb does not have any threads waiting for it to
1255 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1256 	 * command to the vdevs written to by "this" lwb, and instead
1257 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1258 	 * command for those vdevs. Thus, we merge the vdev tree of
1259 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1260 	 * and assume the "next" lwb will handle flushing the vdevs (or
1261 	 * deferring the flush(s) again).
1262 	 *
1263 	 * This is a useful performance optimization, especially for
1264 	 * workloads with lots of async write activity and few sync
1265 	 * write and/or fsync activity, as it has the potential to
1266 	 * coalesce multiple flush commands to a vdev into one.
1267 	 */
1268 	if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1269 		zil_lwb_flush_defer(lwb, nlwb);
1270 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1271 		return;
1272 	}
1273 
1274 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1275 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1276 		if (vd != NULL)
1277 			zio_flush(lwb->lwb_root_zio, vd);
1278 		kmem_free(zv, sizeof (*zv));
1279 	}
1280 }
1281 
1282 static void
1283 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1284 {
1285 	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1286 
1287 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1288 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1289 
1290 	/*
1291 	 * The zilog's "zl_last_lwb_opened" field is used to build the
1292 	 * lwb/zio dependency chain, which is used to preserve the
1293 	 * ordering of lwb completions that is required by the semantics
1294 	 * of the ZIL. Each new lwb zio becomes a parent of the
1295 	 * "previous" lwb zio, such that the new lwb's zio cannot
1296 	 * complete until the "previous" lwb's zio completes.
1297 	 *
1298 	 * This is required by the semantics of zil_commit(); the commit
1299 	 * waiters attached to the lwbs will be woken in the lwb zio's
1300 	 * completion callback, so this zio dependency graph ensures the
1301 	 * waiters are woken in the correct order (the same order the
1302 	 * lwbs were created).
1303 	 */
1304 	if (last_lwb_opened != NULL &&
1305 	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1306 		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1307 		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1308 		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1309 
1310 		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1311 		zio_add_child(lwb->lwb_root_zio,
1312 		    last_lwb_opened->lwb_root_zio);
1313 
1314 		/*
1315 		 * If the previous lwb's write hasn't already completed,
1316 		 * we also want to order the completion of the lwb write
1317 		 * zios (above, we only order the completion of the lwb
1318 		 * root zios). This is required because of how we can
1319 		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1320 		 *
1321 		 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1322 		 * the previous lwb will rely on this lwb to flush the
1323 		 * vdevs written to by that previous lwb. Thus, we need
1324 		 * to ensure this lwb doesn't issue the flush until
1325 		 * after the previous lwb's write completes. We ensure
1326 		 * this ordering by setting the zio parent/child
1327 		 * relationship here.
1328 		 *
1329 		 * Without this relationship on the lwb's write zio,
1330 		 * it's possible for this lwb's write to complete prior
1331 		 * to the previous lwb's write completing; and thus, the
1332 		 * vdevs for the previous lwb would be flushed prior to
1333 		 * that lwb's data being written to those vdevs (the
1334 		 * vdevs are flushed in the lwb write zio's completion
1335 		 * handler, zil_lwb_write_done()).
1336 		 */
1337 		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1338 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1339 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1340 
1341 			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1342 			zio_add_child(lwb->lwb_write_zio,
1343 			    last_lwb_opened->lwb_write_zio);
1344 		}
1345 	}
1346 }
1347 
1348 
1349 /*
1350  * This function's purpose is to "open" an lwb such that it is ready to
1351  * accept new itxs being committed to it. To do this, the lwb's zio
1352  * structures are created, and linked to the lwb. This function is
1353  * idempotent; if the passed in lwb has already been opened, this
1354  * function is essentially a no-op.
1355  */
1356 static void
1357 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1358 {
1359 	zbookmark_phys_t zb;
1360 	zio_priority_t prio;
1361 
1362 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1363 	ASSERT3P(lwb, !=, NULL);
1364 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1365 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1366 
1367 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1368 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1369 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1370 
1371 	/* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1372 	mutex_enter(&zilog->zl_lock);
1373 	if (lwb->lwb_root_zio == NULL) {
1374 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1375 		    BP_GET_LSIZE(&lwb->lwb_blk));
1376 
1377 		if (!lwb->lwb_fastwrite) {
1378 			metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1379 			lwb->lwb_fastwrite = 1;
1380 		}
1381 
1382 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1383 			prio = ZIO_PRIORITY_SYNC_WRITE;
1384 		else
1385 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1386 
1387 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1388 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1389 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1390 
1391 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1392 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1393 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1394 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
1395 		    ZIO_FLAG_FASTWRITE, &zb);
1396 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1397 
1398 		lwb->lwb_state = LWB_STATE_OPENED;
1399 
1400 		zil_lwb_set_zio_dependency(zilog, lwb);
1401 		zilog->zl_last_lwb_opened = lwb;
1402 	}
1403 	mutex_exit(&zilog->zl_lock);
1404 
1405 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1406 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1407 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1408 }
1409 
1410 /*
1411  * Define a limited set of intent log block sizes.
1412  *
1413  * These must be a multiple of 4KB. Note only the amount used (again
1414  * aligned to 4KB) actually gets written. However, we can't always just
1415  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1416  */
1417 struct {
1418 	uint64_t	limit;
1419 	uint64_t	blksz;
1420 } zil_block_buckets[] = {
1421 	{ 4096,		4096 },			/* non TX_WRITE */
1422 	{ 8192 + 4096,	8192 + 4096 },		/* database */
1423 	{ 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1424 	{ 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1425 	{ 131072,	131072 },		/* < 128KB writes */
1426 	{ 131072 +4096,	65536 + 4096 },		/* 128KB writes */
1427 	{ UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1428 };
1429 
1430 /*
1431  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1432  * initialized.  Otherwise this should not be used directly; see
1433  * zl_max_block_size instead.
1434  */
1435 int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1436 
1437 /*
1438  * Start a log block write and advance to the next log block.
1439  * Calls are serialized.
1440  */
1441 static lwb_t *
1442 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1443 {
1444 	lwb_t *nlwb = NULL;
1445 	zil_chain_t *zilc;
1446 	spa_t *spa = zilog->zl_spa;
1447 	blkptr_t *bp;
1448 	dmu_tx_t *tx;
1449 	uint64_t txg;
1450 	uint64_t zil_blksz, wsz;
1451 	int i, error;
1452 	boolean_t slog;
1453 
1454 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1455 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1456 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1457 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1458 
1459 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1460 		zilc = (zil_chain_t *)lwb->lwb_buf;
1461 		bp = &zilc->zc_next_blk;
1462 	} else {
1463 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1464 		bp = &zilc->zc_next_blk;
1465 	}
1466 
1467 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1468 
1469 	/*
1470 	 * Allocate the next block and save its address in this block
1471 	 * before writing it in order to establish the log chain.
1472 	 * Note that if the allocation of nlwb synced before we wrote
1473 	 * the block that points at it (lwb), we'd leak it if we crashed.
1474 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1475 	 * We dirty the dataset to ensure that zil_sync() will be called
1476 	 * to clean up in the event of allocation failure or I/O failure.
1477 	 */
1478 
1479 	tx = dmu_tx_create(zilog->zl_os);
1480 
1481 	/*
1482 	 * Since we are not going to create any new dirty data, and we
1483 	 * can even help with clearing the existing dirty data, we
1484 	 * should not be subject to the dirty data based delays. We
1485 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1486 	 */
1487 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1488 
1489 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1490 	txg = dmu_tx_get_txg(tx);
1491 
1492 	lwb->lwb_tx = tx;
1493 
1494 	/*
1495 	 * Log blocks are pre-allocated. Here we select the size of the next
1496 	 * block, based on size used in the last block.
1497 	 * - first find the smallest bucket that will fit the block from a
1498 	 *   limited set of block sizes. This is because it's faster to write
1499 	 *   blocks allocated from the same metaslab as they are adjacent or
1500 	 *   close.
1501 	 * - next find the maximum from the new suggested size and an array of
1502 	 *   previous sizes. This lessens a picket fence effect of wrongly
1503 	 *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1504 	 *   requests.
1505 	 *
1506 	 * Note we only write what is used, but we can't just allocate
1507 	 * the maximum block size because we can exhaust the available
1508 	 * pool log space.
1509 	 */
1510 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1511 	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1512 		continue;
1513 	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1514 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1515 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1516 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1517 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1518 
1519 	BP_ZERO(bp);
1520 	error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1521 	if (slog) {
1522 		ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1523 		ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1524 	} else {
1525 		ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1526 		ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1527 	}
1528 	if (error == 0) {
1529 		ASSERT3U(bp->blk_birth, ==, txg);
1530 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1531 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1532 
1533 		/*
1534 		 * Allocate a new log write block (lwb).
1535 		 */
1536 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1537 	}
1538 
1539 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1540 		/* For Slim ZIL only write what is used. */
1541 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1542 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1543 		zio_shrink(lwb->lwb_write_zio, wsz);
1544 
1545 	} else {
1546 		wsz = lwb->lwb_sz;
1547 	}
1548 
1549 	zilc->zc_pad = 0;
1550 	zilc->zc_nused = lwb->lwb_nused;
1551 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1552 
1553 	/*
1554 	 * clear unused data for security
1555 	 */
1556 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1557 
1558 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1559 
1560 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1561 	lwb->lwb_issued_timestamp = gethrtime();
1562 	lwb->lwb_state = LWB_STATE_ISSUED;
1563 
1564 	zio_nowait(lwb->lwb_root_zio);
1565 	zio_nowait(lwb->lwb_write_zio);
1566 
1567 	/*
1568 	 * If there was an allocation failure then nlwb will be null which
1569 	 * forces a txg_wait_synced().
1570 	 */
1571 	return (nlwb);
1572 }
1573 
1574 /*
1575  * Maximum amount of write data that can be put into single log block.
1576  */
1577 uint64_t
1578 zil_max_log_data(zilog_t *zilog)
1579 {
1580 	return (zilog->zl_max_block_size -
1581 	    sizeof (zil_chain_t) - sizeof (lr_write_t));
1582 }
1583 
1584 /*
1585  * Maximum amount of log space we agree to waste to reduce number of
1586  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1587  */
1588 static inline uint64_t
1589 zil_max_waste_space(zilog_t *zilog)
1590 {
1591 	return (zil_max_log_data(zilog) / 8);
1592 }
1593 
1594 /*
1595  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1596  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1597  * maximum sized log block, because each WR_COPIED record must fit in a
1598  * single log block.  For space efficiency, we want to fit two records into a
1599  * max-sized log block.
1600  */
1601 uint64_t
1602 zil_max_copied_data(zilog_t *zilog)
1603 {
1604 	return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1605 	    sizeof (lr_write_t));
1606 }
1607 
1608 static lwb_t *
1609 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1610 {
1611 	lr_t *lrcb, *lrc;
1612 	lr_write_t *lrwb, *lrw;
1613 	char *lr_buf;
1614 	uint64_t dlen, dnow, lwb_sp, reclen, txg, max_log_data;
1615 
1616 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1617 	ASSERT3P(lwb, !=, NULL);
1618 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1619 
1620 	zil_lwb_write_open(zilog, lwb);
1621 
1622 	lrc = &itx->itx_lr;
1623 	lrw = (lr_write_t *)lrc;
1624 
1625 	/*
1626 	 * A commit itx doesn't represent any on-disk state; instead
1627 	 * it's simply used as a place holder on the commit list, and
1628 	 * provides a mechanism for attaching a "commit waiter" onto the
1629 	 * correct lwb (such that the waiter can be signalled upon
1630 	 * completion of that lwb). Thus, we don't process this itx's
1631 	 * log record if it's a commit itx (these itx's don't have log
1632 	 * records), and instead link the itx's waiter onto the lwb's
1633 	 * list of waiters.
1634 	 *
1635 	 * For more details, see the comment above zil_commit().
1636 	 */
1637 	if (lrc->lrc_txtype == TX_COMMIT) {
1638 		mutex_enter(&zilog->zl_lock);
1639 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1640 		itx->itx_private = NULL;
1641 		mutex_exit(&zilog->zl_lock);
1642 		return (lwb);
1643 	}
1644 
1645 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1646 		dlen = P2ROUNDUP_TYPED(
1647 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1648 	} else {
1649 		dlen = 0;
1650 	}
1651 	reclen = lrc->lrc_reclen;
1652 	zilog->zl_cur_used += (reclen + dlen);
1653 	txg = lrc->lrc_txg;
1654 
1655 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1656 
1657 cont:
1658 	/*
1659 	 * If this record won't fit in the current log block, start a new one.
1660 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1661 	 */
1662 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1663 	max_log_data = zil_max_log_data(zilog);
1664 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1665 	    lwb_sp < zil_max_waste_space(zilog) &&
1666 	    (dlen % max_log_data == 0 ||
1667 	    lwb_sp < reclen + dlen % max_log_data))) {
1668 		lwb = zil_lwb_write_issue(zilog, lwb);
1669 		if (lwb == NULL)
1670 			return (NULL);
1671 		zil_lwb_write_open(zilog, lwb);
1672 		ASSERT(LWB_EMPTY(lwb));
1673 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1674 
1675 		/*
1676 		 * There must be enough space in the new, empty log block to
1677 		 * hold reclen.  For WR_COPIED, we need to fit the whole
1678 		 * record in one block, and reclen is the header size + the
1679 		 * data size. For WR_NEED_COPY, we can create multiple
1680 		 * records, splitting the data into multiple blocks, so we
1681 		 * only need to fit one word of data per block; in this case
1682 		 * reclen is just the header size (no data).
1683 		 */
1684 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1685 	}
1686 
1687 	dnow = MIN(dlen, lwb_sp - reclen);
1688 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1689 	bcopy(lrc, lr_buf, reclen);
1690 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1691 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1692 
1693 	ZIL_STAT_BUMP(zil_itx_count);
1694 
1695 	/*
1696 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1697 	 */
1698 	if (lrc->lrc_txtype == TX_WRITE) {
1699 		if (txg > spa_freeze_txg(zilog->zl_spa))
1700 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1701 		if (itx->itx_wr_state == WR_COPIED) {
1702 			ZIL_STAT_BUMP(zil_itx_copied_count);
1703 			ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1704 		} else {
1705 			char *dbuf;
1706 			int error;
1707 
1708 			if (itx->itx_wr_state == WR_NEED_COPY) {
1709 				dbuf = lr_buf + reclen;
1710 				lrcb->lrc_reclen += dnow;
1711 				if (lrwb->lr_length > dnow)
1712 					lrwb->lr_length = dnow;
1713 				lrw->lr_offset += dnow;
1714 				lrw->lr_length -= dnow;
1715 				ZIL_STAT_BUMP(zil_itx_needcopy_count);
1716 				ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
1717 			} else {
1718 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
1719 				dbuf = NULL;
1720 				ZIL_STAT_BUMP(zil_itx_indirect_count);
1721 				ZIL_STAT_INCR(zil_itx_indirect_bytes,
1722 				    lrw->lr_length);
1723 			}
1724 
1725 			/*
1726 			 * We pass in the "lwb_write_zio" rather than
1727 			 * "lwb_root_zio" so that the "lwb_write_zio"
1728 			 * becomes the parent of any zio's created by
1729 			 * the "zl_get_data" callback. The vdevs are
1730 			 * flushed after the "lwb_write_zio" completes,
1731 			 * so we want to make sure that completion
1732 			 * callback waits for these additional zio's,
1733 			 * such that the vdevs used by those zio's will
1734 			 * be included in the lwb's vdev tree, and those
1735 			 * vdevs will be properly flushed. If we passed
1736 			 * in "lwb_root_zio" here, then these additional
1737 			 * vdevs may not be flushed; e.g. if these zio's
1738 			 * completed after "lwb_write_zio" completed.
1739 			 */
1740 			error = zilog->zl_get_data(itx->itx_private,
1741 			    lrwb, dbuf, lwb, lwb->lwb_write_zio);
1742 
1743 			if (error == EIO) {
1744 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1745 				return (lwb);
1746 			}
1747 			if (error != 0) {
1748 				ASSERT(error == ENOENT || error == EEXIST ||
1749 				    error == EALREADY);
1750 				return (lwb);
1751 			}
1752 		}
1753 	}
1754 
1755 	/*
1756 	 * We're actually making an entry, so update lrc_seq to be the
1757 	 * log record sequence number.  Note that this is generally not
1758 	 * equal to the itx sequence number because not all transactions
1759 	 * are synchronous, and sometimes spa_sync() gets there first.
1760 	 */
1761 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1762 	lwb->lwb_nused += reclen + dnow;
1763 
1764 	zil_lwb_add_txg(lwb, txg);
1765 
1766 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1767 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1768 
1769 	dlen -= dnow;
1770 	if (dlen > 0) {
1771 		zilog->zl_cur_used += reclen;
1772 		goto cont;
1773 	}
1774 
1775 	return (lwb);
1776 }
1777 
1778 itx_t *
1779 zil_itx_create(uint64_t txtype, size_t lrsize)
1780 {
1781 	size_t itxsize;
1782 	itx_t *itx;
1783 
1784 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1785 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
1786 
1787 	itx = zio_data_buf_alloc(itxsize);
1788 	itx->itx_lr.lrc_txtype = txtype;
1789 	itx->itx_lr.lrc_reclen = lrsize;
1790 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1791 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1792 	itx->itx_callback = NULL;
1793 	itx->itx_callback_data = NULL;
1794 	itx->itx_size = itxsize;
1795 
1796 	return (itx);
1797 }
1798 
1799 void
1800 zil_itx_destroy(itx_t *itx)
1801 {
1802 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
1803 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1804 
1805 	if (itx->itx_callback != NULL)
1806 		itx->itx_callback(itx->itx_callback_data);
1807 
1808 	zio_data_buf_free(itx, itx->itx_size);
1809 }
1810 
1811 /*
1812  * Free up the sync and async itxs. The itxs_t has already been detached
1813  * so no locks are needed.
1814  */
1815 static void
1816 zil_itxg_clean(itxs_t *itxs)
1817 {
1818 	itx_t *itx;
1819 	list_t *list;
1820 	avl_tree_t *t;
1821 	void *cookie;
1822 	itx_async_node_t *ian;
1823 
1824 	list = &itxs->i_sync_list;
1825 	while ((itx = list_head(list)) != NULL) {
1826 		/*
1827 		 * In the general case, commit itxs will not be found
1828 		 * here, as they'll be committed to an lwb via
1829 		 * zil_lwb_commit(), and free'd in that function. Having
1830 		 * said that, it is still possible for commit itxs to be
1831 		 * found here, due to the following race:
1832 		 *
1833 		 *	- a thread calls zil_commit() which assigns the
1834 		 *	  commit itx to a per-txg i_sync_list
1835 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1836 		 *	  while the waiter is still on the i_sync_list
1837 		 *
1838 		 * There's nothing to prevent syncing the txg while the
1839 		 * waiter is on the i_sync_list. This normally doesn't
1840 		 * happen because spa_sync() is slower than zil_commit(),
1841 		 * but if zil_commit() calls txg_wait_synced() (e.g.
1842 		 * because zil_create() or zil_commit_writer_stall() is
1843 		 * called) we will hit this case.
1844 		 */
1845 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1846 			zil_commit_waiter_skip(itx->itx_private);
1847 
1848 		list_remove(list, itx);
1849 		zil_itx_destroy(itx);
1850 	}
1851 
1852 	cookie = NULL;
1853 	t = &itxs->i_async_tree;
1854 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1855 		list = &ian->ia_list;
1856 		while ((itx = list_head(list)) != NULL) {
1857 			list_remove(list, itx);
1858 			/* commit itxs should never be on the async lists. */
1859 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1860 			zil_itx_destroy(itx);
1861 		}
1862 		list_destroy(list);
1863 		kmem_free(ian, sizeof (itx_async_node_t));
1864 	}
1865 	avl_destroy(t);
1866 
1867 	kmem_free(itxs, sizeof (itxs_t));
1868 }
1869 
1870 static int
1871 zil_aitx_compare(const void *x1, const void *x2)
1872 {
1873 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1874 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1875 
1876 	return (TREE_CMP(o1, o2));
1877 }
1878 
1879 /*
1880  * Remove all async itx with the given oid.
1881  */
1882 void
1883 zil_remove_async(zilog_t *zilog, uint64_t oid)
1884 {
1885 	uint64_t otxg, txg;
1886 	itx_async_node_t *ian;
1887 	avl_tree_t *t;
1888 	avl_index_t where;
1889 	list_t clean_list;
1890 	itx_t *itx;
1891 
1892 	ASSERT(oid != 0);
1893 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1894 
1895 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1896 		otxg = ZILTEST_TXG;
1897 	else
1898 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1899 
1900 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1901 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1902 
1903 		mutex_enter(&itxg->itxg_lock);
1904 		if (itxg->itxg_txg != txg) {
1905 			mutex_exit(&itxg->itxg_lock);
1906 			continue;
1907 		}
1908 
1909 		/*
1910 		 * Locate the object node and append its list.
1911 		 */
1912 		t = &itxg->itxg_itxs->i_async_tree;
1913 		ian = avl_find(t, &oid, &where);
1914 		if (ian != NULL)
1915 			list_move_tail(&clean_list, &ian->ia_list);
1916 		mutex_exit(&itxg->itxg_lock);
1917 	}
1918 	while ((itx = list_head(&clean_list)) != NULL) {
1919 		list_remove(&clean_list, itx);
1920 		/* commit itxs should never be on the async lists. */
1921 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1922 		zil_itx_destroy(itx);
1923 	}
1924 	list_destroy(&clean_list);
1925 }
1926 
1927 void
1928 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1929 {
1930 	uint64_t txg;
1931 	itxg_t *itxg;
1932 	itxs_t *itxs, *clean = NULL;
1933 
1934 	/*
1935 	 * Ensure the data of a renamed file is committed before the rename.
1936 	 */
1937 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1938 		zil_async_to_sync(zilog, itx->itx_oid);
1939 
1940 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1941 		txg = ZILTEST_TXG;
1942 	else
1943 		txg = dmu_tx_get_txg(tx);
1944 
1945 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1946 	mutex_enter(&itxg->itxg_lock);
1947 	itxs = itxg->itxg_itxs;
1948 	if (itxg->itxg_txg != txg) {
1949 		if (itxs != NULL) {
1950 			/*
1951 			 * The zil_clean callback hasn't got around to cleaning
1952 			 * this itxg. Save the itxs for release below.
1953 			 * This should be rare.
1954 			 */
1955 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1956 			    "txg %llu", itxg->itxg_txg);
1957 			clean = itxg->itxg_itxs;
1958 		}
1959 		itxg->itxg_txg = txg;
1960 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
1961 		    KM_SLEEP);
1962 
1963 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1964 		    offsetof(itx_t, itx_node));
1965 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1966 		    sizeof (itx_async_node_t),
1967 		    offsetof(itx_async_node_t, ia_node));
1968 	}
1969 	if (itx->itx_sync) {
1970 		list_insert_tail(&itxs->i_sync_list, itx);
1971 	} else {
1972 		avl_tree_t *t = &itxs->i_async_tree;
1973 		uint64_t foid =
1974 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
1975 		itx_async_node_t *ian;
1976 		avl_index_t where;
1977 
1978 		ian = avl_find(t, &foid, &where);
1979 		if (ian == NULL) {
1980 			ian = kmem_alloc(sizeof (itx_async_node_t),
1981 			    KM_SLEEP);
1982 			list_create(&ian->ia_list, sizeof (itx_t),
1983 			    offsetof(itx_t, itx_node));
1984 			ian->ia_foid = foid;
1985 			avl_insert(t, ian, where);
1986 		}
1987 		list_insert_tail(&ian->ia_list, itx);
1988 	}
1989 
1990 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1991 
1992 	/*
1993 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1994 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1995 	 * need to be careful to always dirty the ZIL using the "real"
1996 	 * TXG (not itxg_txg) even when the SPA is frozen.
1997 	 */
1998 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
1999 	mutex_exit(&itxg->itxg_lock);
2000 
2001 	/* Release the old itxs now we've dropped the lock */
2002 	if (clean != NULL)
2003 		zil_itxg_clean(clean);
2004 }
2005 
2006 /*
2007  * If there are any in-memory intent log transactions which have now been
2008  * synced then start up a taskq to free them. We should only do this after we
2009  * have written out the uberblocks (i.e. txg has been committed) so that
2010  * don't inadvertently clean out in-memory log records that would be required
2011  * by zil_commit().
2012  */
2013 void
2014 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2015 {
2016 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2017 	itxs_t *clean_me;
2018 
2019 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2020 
2021 	mutex_enter(&itxg->itxg_lock);
2022 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2023 		mutex_exit(&itxg->itxg_lock);
2024 		return;
2025 	}
2026 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2027 	ASSERT3U(itxg->itxg_txg, !=, 0);
2028 	clean_me = itxg->itxg_itxs;
2029 	itxg->itxg_itxs = NULL;
2030 	itxg->itxg_txg = 0;
2031 	mutex_exit(&itxg->itxg_lock);
2032 	/*
2033 	 * Preferably start a task queue to free up the old itxs but
2034 	 * if taskq_dispatch can't allocate resources to do that then
2035 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2036 	 * created a bad performance problem.
2037 	 */
2038 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2039 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2040 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2041 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP);
2042 	if (id == TASKQID_INVALID)
2043 		zil_itxg_clean(clean_me);
2044 }
2045 
2046 /*
2047  * This function will traverse the queue of itxs that need to be
2048  * committed, and move them onto the ZIL's zl_itx_commit_list.
2049  */
2050 static void
2051 zil_get_commit_list(zilog_t *zilog)
2052 {
2053 	uint64_t otxg, txg;
2054 	list_t *commit_list = &zilog->zl_itx_commit_list;
2055 
2056 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2057 
2058 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2059 		otxg = ZILTEST_TXG;
2060 	else
2061 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2062 
2063 	/*
2064 	 * This is inherently racy, since there is nothing to prevent
2065 	 * the last synced txg from changing. That's okay since we'll
2066 	 * only commit things in the future.
2067 	 */
2068 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2069 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2070 
2071 		mutex_enter(&itxg->itxg_lock);
2072 		if (itxg->itxg_txg != txg) {
2073 			mutex_exit(&itxg->itxg_lock);
2074 			continue;
2075 		}
2076 
2077 		/*
2078 		 * If we're adding itx records to the zl_itx_commit_list,
2079 		 * then the zil better be dirty in this "txg". We can assert
2080 		 * that here since we're holding the itxg_lock which will
2081 		 * prevent spa_sync from cleaning it. Once we add the itxs
2082 		 * to the zl_itx_commit_list we must commit it to disk even
2083 		 * if it's unnecessary (i.e. the txg was synced).
2084 		 */
2085 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2086 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2087 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2088 
2089 		mutex_exit(&itxg->itxg_lock);
2090 	}
2091 }
2092 
2093 /*
2094  * Move the async itxs for a specified object to commit into sync lists.
2095  */
2096 void
2097 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2098 {
2099 	uint64_t otxg, txg;
2100 	itx_async_node_t *ian;
2101 	avl_tree_t *t;
2102 	avl_index_t where;
2103 
2104 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2105 		otxg = ZILTEST_TXG;
2106 	else
2107 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2108 
2109 	/*
2110 	 * This is inherently racy, since there is nothing to prevent
2111 	 * the last synced txg from changing.
2112 	 */
2113 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2114 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2115 
2116 		mutex_enter(&itxg->itxg_lock);
2117 		if (itxg->itxg_txg != txg) {
2118 			mutex_exit(&itxg->itxg_lock);
2119 			continue;
2120 		}
2121 
2122 		/*
2123 		 * If a foid is specified then find that node and append its
2124 		 * list. Otherwise walk the tree appending all the lists
2125 		 * to the sync list. We add to the end rather than the
2126 		 * beginning to ensure the create has happened.
2127 		 */
2128 		t = &itxg->itxg_itxs->i_async_tree;
2129 		if (foid != 0) {
2130 			ian = avl_find(t, &foid, &where);
2131 			if (ian != NULL) {
2132 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2133 				    &ian->ia_list);
2134 			}
2135 		} else {
2136 			void *cookie = NULL;
2137 
2138 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2139 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2140 				    &ian->ia_list);
2141 				list_destroy(&ian->ia_list);
2142 				kmem_free(ian, sizeof (itx_async_node_t));
2143 			}
2144 		}
2145 		mutex_exit(&itxg->itxg_lock);
2146 	}
2147 }
2148 
2149 /*
2150  * This function will prune commit itxs that are at the head of the
2151  * commit list (it won't prune past the first non-commit itx), and
2152  * either: a) attach them to the last lwb that's still pending
2153  * completion, or b) skip them altogether.
2154  *
2155  * This is used as a performance optimization to prevent commit itxs
2156  * from generating new lwbs when it's unnecessary to do so.
2157  */
2158 static void
2159 zil_prune_commit_list(zilog_t *zilog)
2160 {
2161 	itx_t *itx;
2162 
2163 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2164 
2165 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2166 		lr_t *lrc = &itx->itx_lr;
2167 		if (lrc->lrc_txtype != TX_COMMIT)
2168 			break;
2169 
2170 		mutex_enter(&zilog->zl_lock);
2171 
2172 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2173 		if (last_lwb == NULL ||
2174 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2175 			/*
2176 			 * All of the itxs this waiter was waiting on
2177 			 * must have already completed (or there were
2178 			 * never any itx's for it to wait on), so it's
2179 			 * safe to skip this waiter and mark it done.
2180 			 */
2181 			zil_commit_waiter_skip(itx->itx_private);
2182 		} else {
2183 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2184 			itx->itx_private = NULL;
2185 		}
2186 
2187 		mutex_exit(&zilog->zl_lock);
2188 
2189 		list_remove(&zilog->zl_itx_commit_list, itx);
2190 		zil_itx_destroy(itx);
2191 	}
2192 
2193 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2194 }
2195 
2196 static void
2197 zil_commit_writer_stall(zilog_t *zilog)
2198 {
2199 	/*
2200 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2201 	 * disk, we must call txg_wait_synced() to ensure all of the
2202 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2203 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2204 	 * to zil_process_commit_list()) will have to call zil_create(),
2205 	 * and start a new ZIL chain.
2206 	 *
2207 	 * Since zil_alloc_zil() failed, the lwb that was previously
2208 	 * issued does not have a pointer to the "next" lwb on disk.
2209 	 * Thus, if another ZIL writer thread was to allocate the "next"
2210 	 * on-disk lwb, that block could be leaked in the event of a
2211 	 * crash (because the previous lwb on-disk would not point to
2212 	 * it).
2213 	 *
2214 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2215 	 * ensure no new threads enter zil_process_commit_list() until
2216 	 * all lwb's in the zl_lwb_list have been synced and freed
2217 	 * (which is achieved via the txg_wait_synced() call).
2218 	 */
2219 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2220 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2221 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2222 }
2223 
2224 /*
2225  * This function will traverse the commit list, creating new lwbs as
2226  * needed, and committing the itxs from the commit list to these newly
2227  * created lwbs. Additionally, as a new lwb is created, the previous
2228  * lwb will be issued to the zio layer to be written to disk.
2229  */
2230 static void
2231 zil_process_commit_list(zilog_t *zilog)
2232 {
2233 	spa_t *spa = zilog->zl_spa;
2234 	list_t nolwb_itxs;
2235 	list_t nolwb_waiters;
2236 	lwb_t *lwb;
2237 	itx_t *itx;
2238 
2239 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2240 
2241 	/*
2242 	 * Return if there's nothing to commit before we dirty the fs by
2243 	 * calling zil_create().
2244 	 */
2245 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2246 		return;
2247 
2248 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2249 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2250 	    offsetof(zil_commit_waiter_t, zcw_node));
2251 
2252 	lwb = list_tail(&zilog->zl_lwb_list);
2253 	if (lwb == NULL) {
2254 		lwb = zil_create(zilog);
2255 	} else {
2256 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2257 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2258 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2259 	}
2260 
2261 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2262 		lr_t *lrc = &itx->itx_lr;
2263 		uint64_t txg = lrc->lrc_txg;
2264 
2265 		ASSERT3U(txg, !=, 0);
2266 
2267 		if (lrc->lrc_txtype == TX_COMMIT) {
2268 			DTRACE_PROBE2(zil__process__commit__itx,
2269 			    zilog_t *, zilog, itx_t *, itx);
2270 		} else {
2271 			DTRACE_PROBE2(zil__process__normal__itx,
2272 			    zilog_t *, zilog, itx_t *, itx);
2273 		}
2274 
2275 		list_remove(&zilog->zl_itx_commit_list, itx);
2276 
2277 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2278 		boolean_t frozen = txg > spa_freeze_txg(spa);
2279 
2280 		/*
2281 		 * If the txg of this itx has already been synced out, then
2282 		 * we don't need to commit this itx to an lwb. This is
2283 		 * because the data of this itx will have already been
2284 		 * written to the main pool. This is inherently racy, and
2285 		 * it's still ok to commit an itx whose txg has already
2286 		 * been synced; this will result in a write that's
2287 		 * unnecessary, but will do no harm.
2288 		 *
2289 		 * With that said, we always want to commit TX_COMMIT itxs
2290 		 * to an lwb, regardless of whether or not that itx's txg
2291 		 * has been synced out. We do this to ensure any OPENED lwb
2292 		 * will always have at least one zil_commit_waiter_t linked
2293 		 * to the lwb.
2294 		 *
2295 		 * As a counter-example, if we skipped TX_COMMIT itx's
2296 		 * whose txg had already been synced, the following
2297 		 * situation could occur if we happened to be racing with
2298 		 * spa_sync:
2299 		 *
2300 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2301 		 *    itx's txg is 10 and the last synced txg is 9.
2302 		 * 2. spa_sync finishes syncing out txg 10.
2303 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2304 		 *    whose txg is 10, so we skip it rather than committing
2305 		 *    it to the lwb used in (1).
2306 		 *
2307 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2308 		 * itx in the commit list, than it's possible for the lwb
2309 		 * used in (1) to remain in the OPENED state indefinitely.
2310 		 *
2311 		 * To prevent the above scenario from occurring, ensuring
2312 		 * that once an lwb is OPENED it will transition to ISSUED
2313 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2314 		 * an lwb here, even if that itx's txg has already been
2315 		 * synced.
2316 		 *
2317 		 * Finally, if the pool is frozen, we _always_ commit the
2318 		 * itx.  The point of freezing the pool is to prevent data
2319 		 * from being written to the main pool via spa_sync, and
2320 		 * instead rely solely on the ZIL to persistently store the
2321 		 * data; i.e.  when the pool is frozen, the last synced txg
2322 		 * value can't be trusted.
2323 		 */
2324 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2325 			if (lwb != NULL) {
2326 				lwb = zil_lwb_commit(zilog, itx, lwb);
2327 
2328 				if (lwb == NULL)
2329 					list_insert_tail(&nolwb_itxs, itx);
2330 				else
2331 					list_insert_tail(&lwb->lwb_itxs, itx);
2332 			} else {
2333 				if (lrc->lrc_txtype == TX_COMMIT) {
2334 					zil_commit_waiter_link_nolwb(
2335 					    itx->itx_private, &nolwb_waiters);
2336 				}
2337 
2338 				list_insert_tail(&nolwb_itxs, itx);
2339 			}
2340 		} else {
2341 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2342 			zil_itx_destroy(itx);
2343 		}
2344 	}
2345 
2346 	if (lwb == NULL) {
2347 		/*
2348 		 * This indicates zio_alloc_zil() failed to allocate the
2349 		 * "next" lwb on-disk. When this happens, we must stall
2350 		 * the ZIL write pipeline; see the comment within
2351 		 * zil_commit_writer_stall() for more details.
2352 		 */
2353 		zil_commit_writer_stall(zilog);
2354 
2355 		/*
2356 		 * Additionally, we have to signal and mark the "nolwb"
2357 		 * waiters as "done" here, since without an lwb, we
2358 		 * can't do this via zil_lwb_flush_vdevs_done() like
2359 		 * normal.
2360 		 */
2361 		zil_commit_waiter_t *zcw;
2362 		while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2363 			zil_commit_waiter_skip(zcw);
2364 			list_remove(&nolwb_waiters, zcw);
2365 		}
2366 
2367 		/*
2368 		 * And finally, we have to destroy the itx's that
2369 		 * couldn't be committed to an lwb; this will also call
2370 		 * the itx's callback if one exists for the itx.
2371 		 */
2372 		while ((itx = list_head(&nolwb_itxs)) != NULL) {
2373 			list_remove(&nolwb_itxs, itx);
2374 			zil_itx_destroy(itx);
2375 		}
2376 	} else {
2377 		ASSERT(list_is_empty(&nolwb_waiters));
2378 		ASSERT3P(lwb, !=, NULL);
2379 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2380 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2381 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2382 
2383 		/*
2384 		 * At this point, the ZIL block pointed at by the "lwb"
2385 		 * variable is in one of the following states: "closed"
2386 		 * or "open".
2387 		 *
2388 		 * If it's "closed", then no itxs have been committed to
2389 		 * it, so there's no point in issuing its zio (i.e. it's
2390 		 * "empty").
2391 		 *
2392 		 * If it's "open", then it contains one or more itxs that
2393 		 * eventually need to be committed to stable storage. In
2394 		 * this case we intentionally do not issue the lwb's zio
2395 		 * to disk yet, and instead rely on one of the following
2396 		 * two mechanisms for issuing the zio:
2397 		 *
2398 		 * 1. Ideally, there will be more ZIL activity occurring
2399 		 * on the system, such that this function will be
2400 		 * immediately called again (not necessarily by the same
2401 		 * thread) and this lwb's zio will be issued via
2402 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2403 		 * be "full" when it is issued to disk, and we'll make
2404 		 * use of the lwb's size the best we can.
2405 		 *
2406 		 * 2. If there isn't sufficient ZIL activity occurring on
2407 		 * the system, such that this lwb's zio isn't issued via
2408 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2409 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2410 		 * to be "full" by the time its zio is issued, and means
2411 		 * the size of the lwb was "too large" given the amount
2412 		 * of ZIL activity occurring on the system at that time.
2413 		 *
2414 		 * We do this for a couple of reasons:
2415 		 *
2416 		 * 1. To try and reduce the number of IOPs needed to
2417 		 * write the same number of itxs. If an lwb has space
2418 		 * available in its buffer for more itxs, and more itxs
2419 		 * will be committed relatively soon (relative to the
2420 		 * latency of performing a write), then it's beneficial
2421 		 * to wait for these "next" itxs. This way, more itxs
2422 		 * can be committed to stable storage with fewer writes.
2423 		 *
2424 		 * 2. To try and use the largest lwb block size that the
2425 		 * incoming rate of itxs can support. Again, this is to
2426 		 * try and pack as many itxs into as few lwbs as
2427 		 * possible, without significantly impacting the latency
2428 		 * of each individual itx.
2429 		 */
2430 	}
2431 }
2432 
2433 /*
2434  * This function is responsible for ensuring the passed in commit waiter
2435  * (and associated commit itx) is committed to an lwb. If the waiter is
2436  * not already committed to an lwb, all itxs in the zilog's queue of
2437  * itxs will be processed. The assumption is the passed in waiter's
2438  * commit itx will found in the queue just like the other non-commit
2439  * itxs, such that when the entire queue is processed, the waiter will
2440  * have been committed to an lwb.
2441  *
2442  * The lwb associated with the passed in waiter is not guaranteed to
2443  * have been issued by the time this function completes. If the lwb is
2444  * not issued, we rely on future calls to zil_commit_writer() to issue
2445  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2446  */
2447 static void
2448 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2449 {
2450 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2451 	ASSERT(spa_writeable(zilog->zl_spa));
2452 
2453 	mutex_enter(&zilog->zl_issuer_lock);
2454 
2455 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2456 		/*
2457 		 * It's possible that, while we were waiting to acquire
2458 		 * the "zl_issuer_lock", another thread committed this
2459 		 * waiter to an lwb. If that occurs, we bail out early,
2460 		 * without processing any of the zilog's queue of itxs.
2461 		 *
2462 		 * On certain workloads and system configurations, the
2463 		 * "zl_issuer_lock" can become highly contended. In an
2464 		 * attempt to reduce this contention, we immediately drop
2465 		 * the lock if the waiter has already been processed.
2466 		 *
2467 		 * We've measured this optimization to reduce CPU spent
2468 		 * contending on this lock by up to 5%, using a system
2469 		 * with 32 CPUs, low latency storage (~50 usec writes),
2470 		 * and 1024 threads performing sync writes.
2471 		 */
2472 		goto out;
2473 	}
2474 
2475 	ZIL_STAT_BUMP(zil_commit_writer_count);
2476 
2477 	zil_get_commit_list(zilog);
2478 	zil_prune_commit_list(zilog);
2479 	zil_process_commit_list(zilog);
2480 
2481 out:
2482 	mutex_exit(&zilog->zl_issuer_lock);
2483 }
2484 
2485 static void
2486 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2487 {
2488 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2489 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2490 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2491 
2492 	lwb_t *lwb = zcw->zcw_lwb;
2493 	ASSERT3P(lwb, !=, NULL);
2494 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2495 
2496 	/*
2497 	 * If the lwb has already been issued by another thread, we can
2498 	 * immediately return since there's no work to be done (the
2499 	 * point of this function is to issue the lwb). Additionally, we
2500 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2501 	 * acquiring it when it's not necessary to do so.
2502 	 */
2503 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2504 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2505 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2506 		return;
2507 
2508 	/*
2509 	 * In order to call zil_lwb_write_issue() we must hold the
2510 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2511 	 * since we're already holding the commit waiter's "zcw_lock",
2512 	 * and those two locks are acquired in the opposite order
2513 	 * elsewhere.
2514 	 */
2515 	mutex_exit(&zcw->zcw_lock);
2516 	mutex_enter(&zilog->zl_issuer_lock);
2517 	mutex_enter(&zcw->zcw_lock);
2518 
2519 	/*
2520 	 * Since we just dropped and re-acquired the commit waiter's
2521 	 * lock, we have to re-check to see if the waiter was marked
2522 	 * "done" during that process. If the waiter was marked "done",
2523 	 * the "lwb" pointer is no longer valid (it can be free'd after
2524 	 * the waiter is marked "done"), so without this check we could
2525 	 * wind up with a use-after-free error below.
2526 	 */
2527 	if (zcw->zcw_done)
2528 		goto out;
2529 
2530 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2531 
2532 	/*
2533 	 * We've already checked this above, but since we hadn't acquired
2534 	 * the zilog's zl_issuer_lock, we have to perform this check a
2535 	 * second time while holding the lock.
2536 	 *
2537 	 * We don't need to hold the zl_lock since the lwb cannot transition
2538 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2539 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2540 	 * that transition since we treat the lwb the same, whether it's in
2541 	 * the ISSUED or DONE states.
2542 	 *
2543 	 * The important thing, is we treat the lwb differently depending on
2544 	 * if it's ISSUED or OPENED, and block any other threads that might
2545 	 * attempt to issue this lwb. For that reason we hold the
2546 	 * zl_issuer_lock when checking the lwb_state; we must not call
2547 	 * zil_lwb_write_issue() if the lwb had already been issued.
2548 	 *
2549 	 * See the comment above the lwb_state_t structure definition for
2550 	 * more details on the lwb states, and locking requirements.
2551 	 */
2552 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2553 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2554 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2555 		goto out;
2556 
2557 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2558 
2559 	/*
2560 	 * As described in the comments above zil_commit_waiter() and
2561 	 * zil_process_commit_list(), we need to issue this lwb's zio
2562 	 * since we've reached the commit waiter's timeout and it still
2563 	 * hasn't been issued.
2564 	 */
2565 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2566 
2567 	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2568 
2569 	/*
2570 	 * Since the lwb's zio hadn't been issued by the time this thread
2571 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2572 	 * to influence the zil block size selection algorithm.
2573 	 *
2574 	 * By having to issue the lwb's zio here, it means the size of the
2575 	 * lwb was too large, given the incoming throughput of itxs.  By
2576 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2577 	 * block size selection algorithm, so it can take this information
2578 	 * into account, and potentially select a smaller size for the
2579 	 * next lwb block that is allocated.
2580 	 */
2581 	zilog->zl_cur_used = 0;
2582 
2583 	if (nlwb == NULL) {
2584 		/*
2585 		 * When zil_lwb_write_issue() returns NULL, this
2586 		 * indicates zio_alloc_zil() failed to allocate the
2587 		 * "next" lwb on-disk. When this occurs, the ZIL write
2588 		 * pipeline must be stalled; see the comment within the
2589 		 * zil_commit_writer_stall() function for more details.
2590 		 *
2591 		 * We must drop the commit waiter's lock prior to
2592 		 * calling zil_commit_writer_stall() or else we can wind
2593 		 * up with the following deadlock:
2594 		 *
2595 		 * - This thread is waiting for the txg to sync while
2596 		 *   holding the waiter's lock; txg_wait_synced() is
2597 		 *   used within txg_commit_writer_stall().
2598 		 *
2599 		 * - The txg can't sync because it is waiting for this
2600 		 *   lwb's zio callback to call dmu_tx_commit().
2601 		 *
2602 		 * - The lwb's zio callback can't call dmu_tx_commit()
2603 		 *   because it's blocked trying to acquire the waiter's
2604 		 *   lock, which occurs prior to calling dmu_tx_commit()
2605 		 */
2606 		mutex_exit(&zcw->zcw_lock);
2607 		zil_commit_writer_stall(zilog);
2608 		mutex_enter(&zcw->zcw_lock);
2609 	}
2610 
2611 out:
2612 	mutex_exit(&zilog->zl_issuer_lock);
2613 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2614 }
2615 
2616 /*
2617  * This function is responsible for performing the following two tasks:
2618  *
2619  * 1. its primary responsibility is to block until the given "commit
2620  *    waiter" is considered "done".
2621  *
2622  * 2. its secondary responsibility is to issue the zio for the lwb that
2623  *    the given "commit waiter" is waiting on, if this function has
2624  *    waited "long enough" and the lwb is still in the "open" state.
2625  *
2626  * Given a sufficient amount of itxs being generated and written using
2627  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2628  * function. If this does not occur, this secondary responsibility will
2629  * ensure the lwb is issued even if there is not other synchronous
2630  * activity on the system.
2631  *
2632  * For more details, see zil_process_commit_list(); more specifically,
2633  * the comment at the bottom of that function.
2634  */
2635 static void
2636 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2637 {
2638 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2639 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2640 	ASSERT(spa_writeable(zilog->zl_spa));
2641 
2642 	mutex_enter(&zcw->zcw_lock);
2643 
2644 	/*
2645 	 * The timeout is scaled based on the lwb latency to avoid
2646 	 * significantly impacting the latency of each individual itx.
2647 	 * For more details, see the comment at the bottom of the
2648 	 * zil_process_commit_list() function.
2649 	 */
2650 	int pct = MAX(zfs_commit_timeout_pct, 1);
2651 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2652 	hrtime_t wakeup = gethrtime() + sleep;
2653 	boolean_t timedout = B_FALSE;
2654 
2655 	while (!zcw->zcw_done) {
2656 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2657 
2658 		lwb_t *lwb = zcw->zcw_lwb;
2659 
2660 		/*
2661 		 * Usually, the waiter will have a non-NULL lwb field here,
2662 		 * but it's possible for it to be NULL as a result of
2663 		 * zil_commit() racing with spa_sync().
2664 		 *
2665 		 * When zil_clean() is called, it's possible for the itxg
2666 		 * list (which may be cleaned via a taskq) to contain
2667 		 * commit itxs. When this occurs, the commit waiters linked
2668 		 * off of these commit itxs will not be committed to an
2669 		 * lwb.  Additionally, these commit waiters will not be
2670 		 * marked done until zil_commit_waiter_skip() is called via
2671 		 * zil_itxg_clean().
2672 		 *
2673 		 * Thus, it's possible for this commit waiter (i.e. the
2674 		 * "zcw" variable) to be found in this "in between" state;
2675 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2676 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2677 		 */
2678 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2679 
2680 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2681 			ASSERT3B(timedout, ==, B_FALSE);
2682 
2683 			/*
2684 			 * If the lwb hasn't been issued yet, then we
2685 			 * need to wait with a timeout, in case this
2686 			 * function needs to issue the lwb after the
2687 			 * timeout is reached; responsibility (2) from
2688 			 * the comment above this function.
2689 			 */
2690 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
2691 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2692 			    CALLOUT_FLAG_ABSOLUTE);
2693 
2694 			if (rc != -1 || zcw->zcw_done)
2695 				continue;
2696 
2697 			timedout = B_TRUE;
2698 			zil_commit_waiter_timeout(zilog, zcw);
2699 
2700 			if (!zcw->zcw_done) {
2701 				/*
2702 				 * If the commit waiter has already been
2703 				 * marked "done", it's possible for the
2704 				 * waiter's lwb structure to have already
2705 				 * been freed.  Thus, we can only reliably
2706 				 * make these assertions if the waiter
2707 				 * isn't done.
2708 				 */
2709 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2710 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2711 			}
2712 		} else {
2713 			/*
2714 			 * If the lwb isn't open, then it must have already
2715 			 * been issued. In that case, there's no need to
2716 			 * use a timeout when waiting for the lwb to
2717 			 * complete.
2718 			 *
2719 			 * Additionally, if the lwb is NULL, the waiter
2720 			 * will soon be signaled and marked done via
2721 			 * zil_clean() and zil_itxg_clean(), so no timeout
2722 			 * is required.
2723 			 */
2724 
2725 			IMPLY(lwb != NULL,
2726 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2727 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2728 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2729 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2730 		}
2731 	}
2732 
2733 	mutex_exit(&zcw->zcw_lock);
2734 }
2735 
2736 static zil_commit_waiter_t *
2737 zil_alloc_commit_waiter(void)
2738 {
2739 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2740 
2741 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2742 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2743 	list_link_init(&zcw->zcw_node);
2744 	zcw->zcw_lwb = NULL;
2745 	zcw->zcw_done = B_FALSE;
2746 	zcw->zcw_zio_error = 0;
2747 
2748 	return (zcw);
2749 }
2750 
2751 static void
2752 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2753 {
2754 	ASSERT(!list_link_active(&zcw->zcw_node));
2755 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2756 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2757 	mutex_destroy(&zcw->zcw_lock);
2758 	cv_destroy(&zcw->zcw_cv);
2759 	kmem_cache_free(zil_zcw_cache, zcw);
2760 }
2761 
2762 /*
2763  * This function is used to create a TX_COMMIT itx and assign it. This
2764  * way, it will be linked into the ZIL's list of synchronous itxs, and
2765  * then later committed to an lwb (or skipped) when
2766  * zil_process_commit_list() is called.
2767  */
2768 static void
2769 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2770 {
2771 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2772 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2773 
2774 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2775 	itx->itx_sync = B_TRUE;
2776 	itx->itx_private = zcw;
2777 
2778 	zil_itx_assign(zilog, itx, tx);
2779 
2780 	dmu_tx_commit(tx);
2781 }
2782 
2783 /*
2784  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2785  *
2786  * When writing ZIL transactions to the on-disk representation of the
2787  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2788  * itxs can be committed to a single lwb. Once a lwb is written and
2789  * committed to stable storage (i.e. the lwb is written, and vdevs have
2790  * been flushed), each itx that was committed to that lwb is also
2791  * considered to be committed to stable storage.
2792  *
2793  * When an itx is committed to an lwb, the log record (lr_t) contained
2794  * by the itx is copied into the lwb's zio buffer, and once this buffer
2795  * is written to disk, it becomes an on-disk ZIL block.
2796  *
2797  * As itxs are generated, they're inserted into the ZIL's queue of
2798  * uncommitted itxs. The semantics of zil_commit() are such that it will
2799  * block until all itxs that were in the queue when it was called, are
2800  * committed to stable storage.
2801  *
2802  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2803  * itxs, for all objects in the dataset, will be committed to stable
2804  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2805  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2806  * that correspond to the foid passed in, will be committed to stable
2807  * storage prior to zil_commit() returning.
2808  *
2809  * Generally speaking, when zil_commit() is called, the consumer doesn't
2810  * actually care about _all_ of the uncommitted itxs. Instead, they're
2811  * simply trying to waiting for a specific itx to be committed to disk,
2812  * but the interface(s) for interacting with the ZIL don't allow such
2813  * fine-grained communication. A better interface would allow a consumer
2814  * to create and assign an itx, and then pass a reference to this itx to
2815  * zil_commit(); such that zil_commit() would return as soon as that
2816  * specific itx was committed to disk (instead of waiting for _all_
2817  * itxs to be committed).
2818  *
2819  * When a thread calls zil_commit() a special "commit itx" will be
2820  * generated, along with a corresponding "waiter" for this commit itx.
2821  * zil_commit() will wait on this waiter's CV, such that when the waiter
2822  * is marked done, and signaled, zil_commit() will return.
2823  *
2824  * This commit itx is inserted into the queue of uncommitted itxs. This
2825  * provides an easy mechanism for determining which itxs were in the
2826  * queue prior to zil_commit() having been called, and which itxs were
2827  * added after zil_commit() was called.
2828  *
2829  * The commit it is special; it doesn't have any on-disk representation.
2830  * When a commit itx is "committed" to an lwb, the waiter associated
2831  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2832  * completes, each waiter on the lwb's list is marked done and signaled
2833  * -- allowing the thread waiting on the waiter to return from zil_commit().
2834  *
2835  * It's important to point out a few critical factors that allow us
2836  * to make use of the commit itxs, commit waiters, per-lwb lists of
2837  * commit waiters, and zio completion callbacks like we're doing:
2838  *
2839  *   1. The list of waiters for each lwb is traversed, and each commit
2840  *      waiter is marked "done" and signaled, in the zio completion
2841  *      callback of the lwb's zio[*].
2842  *
2843  *      * Actually, the waiters are signaled in the zio completion
2844  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2845  *        that are sent to the vdevs upon completion of the lwb zio.
2846  *
2847  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2848  *      itxs, the order in which they are inserted is preserved[*]; as
2849  *      itxs are added to the queue, they are added to the tail of
2850  *      in-memory linked lists.
2851  *
2852  *      When committing the itxs to lwbs (to be written to disk), they
2853  *      are committed in the same order in which the itxs were added to
2854  *      the uncommitted queue's linked list(s); i.e. the linked list of
2855  *      itxs to commit is traversed from head to tail, and each itx is
2856  *      committed to an lwb in that order.
2857  *
2858  *      * To clarify:
2859  *
2860  *        - the order of "sync" itxs is preserved w.r.t. other
2861  *          "sync" itxs, regardless of the corresponding objects.
2862  *        - the order of "async" itxs is preserved w.r.t. other
2863  *          "async" itxs corresponding to the same object.
2864  *        - the order of "async" itxs is *not* preserved w.r.t. other
2865  *          "async" itxs corresponding to different objects.
2866  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2867  *          versa) is *not* preserved, even for itxs that correspond
2868  *          to the same object.
2869  *
2870  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2871  *      zil_get_commit_list(), and zil_process_commit_list().
2872  *
2873  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2874  *      lwb cannot be considered committed to stable storage, until its
2875  *      "previous" lwb is also committed to stable storage. This fact,
2876  *      coupled with the fact described above, means that itxs are
2877  *      committed in (roughly) the order in which they were generated.
2878  *      This is essential because itxs are dependent on prior itxs.
2879  *      Thus, we *must not* deem an itx as being committed to stable
2880  *      storage, until *all* prior itxs have also been committed to
2881  *      stable storage.
2882  *
2883  *      To enforce this ordering of lwb zio's, while still leveraging as
2884  *      much of the underlying storage performance as possible, we rely
2885  *      on two fundamental concepts:
2886  *
2887  *          1. The creation and issuance of lwb zio's is protected by
2888  *             the zilog's "zl_issuer_lock", which ensures only a single
2889  *             thread is creating and/or issuing lwb's at a time
2890  *          2. The "previous" lwb is a child of the "current" lwb
2891  *             (leveraging the zio parent-child dependency graph)
2892  *
2893  *      By relying on this parent-child zio relationship, we can have
2894  *      many lwb zio's concurrently issued to the underlying storage,
2895  *      but the order in which they complete will be the same order in
2896  *      which they were created.
2897  */
2898 void
2899 zil_commit(zilog_t *zilog, uint64_t foid)
2900 {
2901 	/*
2902 	 * We should never attempt to call zil_commit on a snapshot for
2903 	 * a couple of reasons:
2904 	 *
2905 	 * 1. A snapshot may never be modified, thus it cannot have any
2906 	 *    in-flight itxs that would have modified the dataset.
2907 	 *
2908 	 * 2. By design, when zil_commit() is called, a commit itx will
2909 	 *    be assigned to this zilog; as a result, the zilog will be
2910 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2911 	 *    checks in the code that enforce this invariant, and will
2912 	 *    cause a panic if it's not upheld.
2913 	 */
2914 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2915 
2916 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2917 		return;
2918 
2919 	if (!spa_writeable(zilog->zl_spa)) {
2920 		/*
2921 		 * If the SPA is not writable, there should never be any
2922 		 * pending itxs waiting to be committed to disk. If that
2923 		 * weren't true, we'd skip writing those itxs out, and
2924 		 * would break the semantics of zil_commit(); thus, we're
2925 		 * verifying that truth before we return to the caller.
2926 		 */
2927 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2928 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2929 		for (int i = 0; i < TXG_SIZE; i++)
2930 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2931 		return;
2932 	}
2933 
2934 	/*
2935 	 * If the ZIL is suspended, we don't want to dirty it by calling
2936 	 * zil_commit_itx_assign() below, nor can we write out
2937 	 * lwbs like would be done in zil_commit_write(). Thus, we
2938 	 * simply rely on txg_wait_synced() to maintain the necessary
2939 	 * semantics, and avoid calling those functions altogether.
2940 	 */
2941 	if (zilog->zl_suspend > 0) {
2942 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2943 		return;
2944 	}
2945 
2946 	zil_commit_impl(zilog, foid);
2947 }
2948 
2949 void
2950 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2951 {
2952 	ZIL_STAT_BUMP(zil_commit_count);
2953 
2954 	/*
2955 	 * Move the "async" itxs for the specified foid to the "sync"
2956 	 * queues, such that they will be later committed (or skipped)
2957 	 * to an lwb when zil_process_commit_list() is called.
2958 	 *
2959 	 * Since these "async" itxs must be committed prior to this
2960 	 * call to zil_commit returning, we must perform this operation
2961 	 * before we call zil_commit_itx_assign().
2962 	 */
2963 	zil_async_to_sync(zilog, foid);
2964 
2965 	/*
2966 	 * We allocate a new "waiter" structure which will initially be
2967 	 * linked to the commit itx using the itx's "itx_private" field.
2968 	 * Since the commit itx doesn't represent any on-disk state,
2969 	 * when it's committed to an lwb, rather than copying the its
2970 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2971 	 * added to the lwb's list of waiters. Then, when the lwb is
2972 	 * committed to stable storage, each waiter in the lwb's list of
2973 	 * waiters will be marked "done", and signalled.
2974 	 *
2975 	 * We must create the waiter and assign the commit itx prior to
2976 	 * calling zil_commit_writer(), or else our specific commit itx
2977 	 * is not guaranteed to be committed to an lwb prior to calling
2978 	 * zil_commit_waiter().
2979 	 */
2980 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2981 	zil_commit_itx_assign(zilog, zcw);
2982 
2983 	zil_commit_writer(zilog, zcw);
2984 	zil_commit_waiter(zilog, zcw);
2985 
2986 	if (zcw->zcw_zio_error != 0) {
2987 		/*
2988 		 * If there was an error writing out the ZIL blocks that
2989 		 * this thread is waiting on, then we fallback to
2990 		 * relying on spa_sync() to write out the data this
2991 		 * thread is waiting on. Obviously this has performance
2992 		 * implications, but the expectation is for this to be
2993 		 * an exceptional case, and shouldn't occur often.
2994 		 */
2995 		DTRACE_PROBE2(zil__commit__io__error,
2996 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2997 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2998 	}
2999 
3000 	zil_free_commit_waiter(zcw);
3001 }
3002 
3003 /*
3004  * Called in syncing context to free committed log blocks and update log header.
3005  */
3006 void
3007 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3008 {
3009 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3010 	uint64_t txg = dmu_tx_get_txg(tx);
3011 	spa_t *spa = zilog->zl_spa;
3012 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3013 	lwb_t *lwb;
3014 
3015 	/*
3016 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3017 	 * to destroy it twice.
3018 	 */
3019 	if (spa_sync_pass(spa) != 1)
3020 		return;
3021 
3022 	mutex_enter(&zilog->zl_lock);
3023 
3024 	ASSERT(zilog->zl_stop_sync == 0);
3025 
3026 	if (*replayed_seq != 0) {
3027 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3028 		zh->zh_replay_seq = *replayed_seq;
3029 		*replayed_seq = 0;
3030 	}
3031 
3032 	if (zilog->zl_destroy_txg == txg) {
3033 		blkptr_t blk = zh->zh_log;
3034 
3035 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
3036 
3037 		bzero(zh, sizeof (zil_header_t));
3038 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
3039 
3040 		if (zilog->zl_keep_first) {
3041 			/*
3042 			 * If this block was part of log chain that couldn't
3043 			 * be claimed because a device was missing during
3044 			 * zil_claim(), but that device later returns,
3045 			 * then this block could erroneously appear valid.
3046 			 * To guard against this, assign a new GUID to the new
3047 			 * log chain so it doesn't matter what blk points to.
3048 			 */
3049 			zil_init_log_chain(zilog, &blk);
3050 			zh->zh_log = blk;
3051 		}
3052 	}
3053 
3054 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3055 		zh->zh_log = lwb->lwb_blk;
3056 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
3057 			break;
3058 		list_remove(&zilog->zl_lwb_list, lwb);
3059 		zio_free(spa, txg, &lwb->lwb_blk);
3060 		zil_free_lwb(zilog, lwb);
3061 
3062 		/*
3063 		 * If we don't have anything left in the lwb list then
3064 		 * we've had an allocation failure and we need to zero
3065 		 * out the zil_header blkptr so that we don't end
3066 		 * up freeing the same block twice.
3067 		 */
3068 		if (list_head(&zilog->zl_lwb_list) == NULL)
3069 			BP_ZERO(&zh->zh_log);
3070 	}
3071 
3072 	/*
3073 	 * Remove fastwrite on any blocks that have been pre-allocated for
3074 	 * the next commit. This prevents fastwrite counter pollution by
3075 	 * unused, long-lived LWBs.
3076 	 */
3077 	for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3078 		if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3079 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3080 			lwb->lwb_fastwrite = 0;
3081 		}
3082 	}
3083 
3084 	mutex_exit(&zilog->zl_lock);
3085 }
3086 
3087 /* ARGSUSED */
3088 static int
3089 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3090 {
3091 	lwb_t *lwb = vbuf;
3092 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3093 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3094 	    offsetof(zil_commit_waiter_t, zcw_node));
3095 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3096 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3097 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3098 	return (0);
3099 }
3100 
3101 /* ARGSUSED */
3102 static void
3103 zil_lwb_dest(void *vbuf, void *unused)
3104 {
3105 	lwb_t *lwb = vbuf;
3106 	mutex_destroy(&lwb->lwb_vdev_lock);
3107 	avl_destroy(&lwb->lwb_vdev_tree);
3108 	list_destroy(&lwb->lwb_waiters);
3109 	list_destroy(&lwb->lwb_itxs);
3110 }
3111 
3112 void
3113 zil_init(void)
3114 {
3115 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3116 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3117 
3118 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3119 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3120 
3121 	zil_ksp = kstat_create("zfs", 0, "zil", "misc",
3122 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3123 	    KSTAT_FLAG_VIRTUAL);
3124 
3125 	if (zil_ksp != NULL) {
3126 		zil_ksp->ks_data = &zil_stats;
3127 		kstat_install(zil_ksp);
3128 	}
3129 }
3130 
3131 void
3132 zil_fini(void)
3133 {
3134 	kmem_cache_destroy(zil_zcw_cache);
3135 	kmem_cache_destroy(zil_lwb_cache);
3136 
3137 	if (zil_ksp != NULL) {
3138 		kstat_delete(zil_ksp);
3139 		zil_ksp = NULL;
3140 	}
3141 }
3142 
3143 void
3144 zil_set_sync(zilog_t *zilog, uint64_t sync)
3145 {
3146 	zilog->zl_sync = sync;
3147 }
3148 
3149 void
3150 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3151 {
3152 	zilog->zl_logbias = logbias;
3153 }
3154 
3155 zilog_t *
3156 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3157 {
3158 	zilog_t *zilog;
3159 
3160 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3161 
3162 	zilog->zl_header = zh_phys;
3163 	zilog->zl_os = os;
3164 	zilog->zl_spa = dmu_objset_spa(os);
3165 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3166 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3167 	zilog->zl_logbias = dmu_objset_logbias(os);
3168 	zilog->zl_sync = dmu_objset_syncprop(os);
3169 	zilog->zl_dirty_max_txg = 0;
3170 	zilog->zl_last_lwb_opened = NULL;
3171 	zilog->zl_last_lwb_latency = 0;
3172 	zilog->zl_max_block_size = zil_maxblocksize;
3173 
3174 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3175 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3176 
3177 	for (int i = 0; i < TXG_SIZE; i++) {
3178 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3179 		    MUTEX_DEFAULT, NULL);
3180 	}
3181 
3182 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3183 	    offsetof(lwb_t, lwb_node));
3184 
3185 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3186 	    offsetof(itx_t, itx_node));
3187 
3188 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3189 
3190 	return (zilog);
3191 }
3192 
3193 void
3194 zil_free(zilog_t *zilog)
3195 {
3196 	int i;
3197 
3198 	zilog->zl_stop_sync = 1;
3199 
3200 	ASSERT0(zilog->zl_suspend);
3201 	ASSERT0(zilog->zl_suspending);
3202 
3203 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3204 	list_destroy(&zilog->zl_lwb_list);
3205 
3206 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3207 	list_destroy(&zilog->zl_itx_commit_list);
3208 
3209 	for (i = 0; i < TXG_SIZE; i++) {
3210 		/*
3211 		 * It's possible for an itx to be generated that doesn't dirty
3212 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3213 		 * callback to remove the entry. We remove those here.
3214 		 *
3215 		 * Also free up the ziltest itxs.
3216 		 */
3217 		if (zilog->zl_itxg[i].itxg_itxs)
3218 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3219 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3220 	}
3221 
3222 	mutex_destroy(&zilog->zl_issuer_lock);
3223 	mutex_destroy(&zilog->zl_lock);
3224 
3225 	cv_destroy(&zilog->zl_cv_suspend);
3226 
3227 	kmem_free(zilog, sizeof (zilog_t));
3228 }
3229 
3230 /*
3231  * Open an intent log.
3232  */
3233 zilog_t *
3234 zil_open(objset_t *os, zil_get_data_t *get_data)
3235 {
3236 	zilog_t *zilog = dmu_objset_zil(os);
3237 
3238 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3239 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3240 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3241 
3242 	zilog->zl_get_data = get_data;
3243 
3244 	return (zilog);
3245 }
3246 
3247 /*
3248  * Close an intent log.
3249  */
3250 void
3251 zil_close(zilog_t *zilog)
3252 {
3253 	lwb_t *lwb;
3254 	uint64_t txg;
3255 
3256 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3257 		zil_commit(zilog, 0);
3258 	} else {
3259 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3260 		ASSERT0(zilog->zl_dirty_max_txg);
3261 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3262 	}
3263 
3264 	mutex_enter(&zilog->zl_lock);
3265 	lwb = list_tail(&zilog->zl_lwb_list);
3266 	if (lwb == NULL)
3267 		txg = zilog->zl_dirty_max_txg;
3268 	else
3269 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3270 	mutex_exit(&zilog->zl_lock);
3271 
3272 	/*
3273 	 * We need to use txg_wait_synced() to wait long enough for the
3274 	 * ZIL to be clean, and to wait for all pending lwbs to be
3275 	 * written out.
3276 	 */
3277 	if (txg != 0)
3278 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3279 
3280 	if (zilog_is_dirty(zilog))
3281 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, txg);
3282 	if (txg < spa_freeze_txg(zilog->zl_spa))
3283 		VERIFY(!zilog_is_dirty(zilog));
3284 
3285 	zilog->zl_get_data = NULL;
3286 
3287 	/*
3288 	 * We should have only one lwb left on the list; remove it now.
3289 	 */
3290 	mutex_enter(&zilog->zl_lock);
3291 	lwb = list_head(&zilog->zl_lwb_list);
3292 	if (lwb != NULL) {
3293 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3294 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3295 
3296 		if (lwb->lwb_fastwrite)
3297 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3298 
3299 		list_remove(&zilog->zl_lwb_list, lwb);
3300 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3301 		zil_free_lwb(zilog, lwb);
3302 	}
3303 	mutex_exit(&zilog->zl_lock);
3304 }
3305 
3306 static char *suspend_tag = "zil suspending";
3307 
3308 /*
3309  * Suspend an intent log.  While in suspended mode, we still honor
3310  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3311  * On old version pools, we suspend the log briefly when taking a
3312  * snapshot so that it will have an empty intent log.
3313  *
3314  * Long holds are not really intended to be used the way we do here --
3315  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3316  * could fail.  Therefore we take pains to only put a long hold if it is
3317  * actually necessary.  Fortunately, it will only be necessary if the
3318  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3319  * will already have a long hold, so we are not really making things any worse.
3320  *
3321  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3322  * zvol_state_t), and use their mechanism to prevent their hold from being
3323  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3324  * very little gain.
3325  *
3326  * if cookiep == NULL, this does both the suspend & resume.
3327  * Otherwise, it returns with the dataset "long held", and the cookie
3328  * should be passed into zil_resume().
3329  */
3330 int
3331 zil_suspend(const char *osname, void **cookiep)
3332 {
3333 	objset_t *os;
3334 	zilog_t *zilog;
3335 	const zil_header_t *zh;
3336 	int error;
3337 
3338 	error = dmu_objset_hold(osname, suspend_tag, &os);
3339 	if (error != 0)
3340 		return (error);
3341 	zilog = dmu_objset_zil(os);
3342 
3343 	mutex_enter(&zilog->zl_lock);
3344 	zh = zilog->zl_header;
3345 
3346 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3347 		mutex_exit(&zilog->zl_lock);
3348 		dmu_objset_rele(os, suspend_tag);
3349 		return (SET_ERROR(EBUSY));
3350 	}
3351 
3352 	/*
3353 	 * Don't put a long hold in the cases where we can avoid it.  This
3354 	 * is when there is no cookie so we are doing a suspend & resume
3355 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3356 	 * for the suspend because it's already suspended, or there's no ZIL.
3357 	 */
3358 	if (cookiep == NULL && !zilog->zl_suspending &&
3359 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3360 		mutex_exit(&zilog->zl_lock);
3361 		dmu_objset_rele(os, suspend_tag);
3362 		return (0);
3363 	}
3364 
3365 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3366 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3367 
3368 	zilog->zl_suspend++;
3369 
3370 	if (zilog->zl_suspend > 1) {
3371 		/*
3372 		 * Someone else is already suspending it.
3373 		 * Just wait for them to finish.
3374 		 */
3375 
3376 		while (zilog->zl_suspending)
3377 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3378 		mutex_exit(&zilog->zl_lock);
3379 
3380 		if (cookiep == NULL)
3381 			zil_resume(os);
3382 		else
3383 			*cookiep = os;
3384 		return (0);
3385 	}
3386 
3387 	/*
3388 	 * If there is no pointer to an on-disk block, this ZIL must not
3389 	 * be active (e.g. filesystem not mounted), so there's nothing
3390 	 * to clean up.
3391 	 */
3392 	if (BP_IS_HOLE(&zh->zh_log)) {
3393 		ASSERT(cookiep != NULL); /* fast path already handled */
3394 
3395 		*cookiep = os;
3396 		mutex_exit(&zilog->zl_lock);
3397 		return (0);
3398 	}
3399 
3400 	/*
3401 	 * The ZIL has work to do. Ensure that the associated encryption
3402 	 * key will remain mapped while we are committing the log by
3403 	 * grabbing a reference to it. If the key isn't loaded we have no
3404 	 * choice but to return an error until the wrapping key is loaded.
3405 	 */
3406 	if (os->os_encrypted &&
3407 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3408 		zilog->zl_suspend--;
3409 		mutex_exit(&zilog->zl_lock);
3410 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3411 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3412 		return (SET_ERROR(EACCES));
3413 	}
3414 
3415 	zilog->zl_suspending = B_TRUE;
3416 	mutex_exit(&zilog->zl_lock);
3417 
3418 	/*
3419 	 * We need to use zil_commit_impl to ensure we wait for all
3420 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3421 	 * to disk before proceeding. If we used zil_commit instead, it
3422 	 * would just call txg_wait_synced(), because zl_suspend is set.
3423 	 * txg_wait_synced() doesn't wait for these lwb's to be
3424 	 * LWB_STATE_FLUSH_DONE before returning.
3425 	 */
3426 	zil_commit_impl(zilog, 0);
3427 
3428 	/*
3429 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3430 	 * use txg_wait_synced() to ensure the data from the zilog has
3431 	 * migrated to the main pool before calling zil_destroy().
3432 	 */
3433 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3434 
3435 	zil_destroy(zilog, B_FALSE);
3436 
3437 	mutex_enter(&zilog->zl_lock);
3438 	zilog->zl_suspending = B_FALSE;
3439 	cv_broadcast(&zilog->zl_cv_suspend);
3440 	mutex_exit(&zilog->zl_lock);
3441 
3442 	if (os->os_encrypted)
3443 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3444 
3445 	if (cookiep == NULL)
3446 		zil_resume(os);
3447 	else
3448 		*cookiep = os;
3449 	return (0);
3450 }
3451 
3452 void
3453 zil_resume(void *cookie)
3454 {
3455 	objset_t *os = cookie;
3456 	zilog_t *zilog = dmu_objset_zil(os);
3457 
3458 	mutex_enter(&zilog->zl_lock);
3459 	ASSERT(zilog->zl_suspend != 0);
3460 	zilog->zl_suspend--;
3461 	mutex_exit(&zilog->zl_lock);
3462 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3463 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3464 }
3465 
3466 typedef struct zil_replay_arg {
3467 	zil_replay_func_t **zr_replay;
3468 	void		*zr_arg;
3469 	boolean_t	zr_byteswap;
3470 	char		*zr_lr;
3471 } zil_replay_arg_t;
3472 
3473 static int
3474 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3475 {
3476 	char name[ZFS_MAX_DATASET_NAME_LEN];
3477 
3478 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3479 
3480 	dmu_objset_name(zilog->zl_os, name);
3481 
3482 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3483 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3484 	    (u_longlong_t)lr->lrc_seq,
3485 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3486 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3487 
3488 	return (error);
3489 }
3490 
3491 static int
3492 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3493 {
3494 	zil_replay_arg_t *zr = zra;
3495 	const zil_header_t *zh = zilog->zl_header;
3496 	uint64_t reclen = lr->lrc_reclen;
3497 	uint64_t txtype = lr->lrc_txtype;
3498 	int error = 0;
3499 
3500 	zilog->zl_replaying_seq = lr->lrc_seq;
3501 
3502 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3503 		return (0);
3504 
3505 	if (lr->lrc_txg < claim_txg)		/* already committed */
3506 		return (0);
3507 
3508 	/* Strip case-insensitive bit, still present in log record */
3509 	txtype &= ~TX_CI;
3510 
3511 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3512 		return (zil_replay_error(zilog, lr, EINVAL));
3513 
3514 	/*
3515 	 * If this record type can be logged out of order, the object
3516 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3517 	 */
3518 	if (TX_OOO(txtype)) {
3519 		error = dmu_object_info(zilog->zl_os,
3520 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3521 		if (error == ENOENT || error == EEXIST)
3522 			return (0);
3523 	}
3524 
3525 	/*
3526 	 * Make a copy of the data so we can revise and extend it.
3527 	 */
3528 	bcopy(lr, zr->zr_lr, reclen);
3529 
3530 	/*
3531 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3532 	 */
3533 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3534 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3535 		    zr->zr_lr + reclen);
3536 		if (error != 0)
3537 			return (zil_replay_error(zilog, lr, error));
3538 	}
3539 
3540 	/*
3541 	 * The log block containing this lr may have been byteswapped
3542 	 * so that we can easily examine common fields like lrc_txtype.
3543 	 * However, the log is a mix of different record types, and only the
3544 	 * replay vectors know how to byteswap their records.  Therefore, if
3545 	 * the lr was byteswapped, undo it before invoking the replay vector.
3546 	 */
3547 	if (zr->zr_byteswap)
3548 		byteswap_uint64_array(zr->zr_lr, reclen);
3549 
3550 	/*
3551 	 * We must now do two things atomically: replay this log record,
3552 	 * and update the log header sequence number to reflect the fact that
3553 	 * we did so. At the end of each replay function the sequence number
3554 	 * is updated if we are in replay mode.
3555 	 */
3556 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3557 	if (error != 0) {
3558 		/*
3559 		 * The DMU's dnode layer doesn't see removes until the txg
3560 		 * commits, so a subsequent claim can spuriously fail with
3561 		 * EEXIST. So if we receive any error we try syncing out
3562 		 * any removes then retry the transaction.  Note that we
3563 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3564 		 */
3565 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3566 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3567 		if (error != 0)
3568 			return (zil_replay_error(zilog, lr, error));
3569 	}
3570 	return (0);
3571 }
3572 
3573 /* ARGSUSED */
3574 static int
3575 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3576 {
3577 	zilog->zl_replay_blks++;
3578 
3579 	return (0);
3580 }
3581 
3582 /*
3583  * If this dataset has a non-empty intent log, replay it and destroy it.
3584  */
3585 void
3586 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3587 {
3588 	zilog_t *zilog = dmu_objset_zil(os);
3589 	const zil_header_t *zh = zilog->zl_header;
3590 	zil_replay_arg_t zr;
3591 
3592 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3593 		zil_destroy(zilog, B_TRUE);
3594 		return;
3595 	}
3596 
3597 	zr.zr_replay = replay_func;
3598 	zr.zr_arg = arg;
3599 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3600 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3601 
3602 	/*
3603 	 * Wait for in-progress removes to sync before starting replay.
3604 	 */
3605 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3606 
3607 	zilog->zl_replay = B_TRUE;
3608 	zilog->zl_replay_time = ddi_get_lbolt();
3609 	ASSERT(zilog->zl_replay_blks == 0);
3610 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3611 	    zh->zh_claim_txg, B_TRUE);
3612 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3613 
3614 	zil_destroy(zilog, B_FALSE);
3615 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3616 	zilog->zl_replay = B_FALSE;
3617 }
3618 
3619 boolean_t
3620 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3621 {
3622 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3623 		return (B_TRUE);
3624 
3625 	if (zilog->zl_replay) {
3626 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3627 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3628 		    zilog->zl_replaying_seq;
3629 		return (B_TRUE);
3630 	}
3631 
3632 	return (B_FALSE);
3633 }
3634 
3635 /* ARGSUSED */
3636 int
3637 zil_reset(const char *osname, void *arg)
3638 {
3639 	int error;
3640 
3641 	error = zil_suspend(osname, NULL);
3642 	/* EACCES means crypto key not loaded */
3643 	if ((error == EACCES) || (error == EBUSY))
3644 		return (SET_ERROR(error));
3645 	if (error != 0)
3646 		return (SET_ERROR(EEXIST));
3647 	return (0);
3648 }
3649 
3650 EXPORT_SYMBOL(zil_alloc);
3651 EXPORT_SYMBOL(zil_free);
3652 EXPORT_SYMBOL(zil_open);
3653 EXPORT_SYMBOL(zil_close);
3654 EXPORT_SYMBOL(zil_replay);
3655 EXPORT_SYMBOL(zil_replaying);
3656 EXPORT_SYMBOL(zil_destroy);
3657 EXPORT_SYMBOL(zil_destroy_sync);
3658 EXPORT_SYMBOL(zil_itx_create);
3659 EXPORT_SYMBOL(zil_itx_destroy);
3660 EXPORT_SYMBOL(zil_itx_assign);
3661 EXPORT_SYMBOL(zil_commit);
3662 EXPORT_SYMBOL(zil_claim);
3663 EXPORT_SYMBOL(zil_check_log_chain);
3664 EXPORT_SYMBOL(zil_sync);
3665 EXPORT_SYMBOL(zil_clean);
3666 EXPORT_SYMBOL(zil_suspend);
3667 EXPORT_SYMBOL(zil_resume);
3668 EXPORT_SYMBOL(zil_lwb_add_block);
3669 EXPORT_SYMBOL(zil_bp_tree_add);
3670 EXPORT_SYMBOL(zil_set_sync);
3671 EXPORT_SYMBOL(zil_set_logbias);
3672 
3673 /* BEGIN CSTYLED */
3674 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, INT, ZMOD_RW,
3675 	"ZIL block open timeout percentage");
3676 
3677 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
3678 	"Disable intent logging replay");
3679 
3680 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
3681 	"Disable ZIL cache flushes");
3682 
3683 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, ULONG, ZMOD_RW,
3684 	"Limit in bytes slog sync writes per commit");
3685 
3686 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, INT, ZMOD_RW,
3687 	"Limit in bytes of ZIL log block size");
3688 /* END CSTYLED */
3689