xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision 9768746b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 #include <sys/wmsum.h>
47 
48 /*
49  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
50  * calls that change the file system. Each itx has enough information to
51  * be able to replay them after a system crash, power loss, or
52  * equivalent failure mode. These are stored in memory until either:
53  *
54  *   1. they are committed to the pool by the DMU transaction group
55  *      (txg), at which point they can be discarded; or
56  *   2. they are committed to the on-disk ZIL for the dataset being
57  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
58  *      requirement).
59  *
60  * In the event of a crash or power loss, the itxs contained by each
61  * dataset's on-disk ZIL will be replayed when that dataset is first
62  * instantiated (e.g. if the dataset is a normal filesystem, when it is
63  * first mounted).
64  *
65  * As hinted at above, there is one ZIL per dataset (both the in-memory
66  * representation, and the on-disk representation). The on-disk format
67  * consists of 3 parts:
68  *
69  * 	- a single, per-dataset, ZIL header; which points to a chain of
70  * 	- zero or more ZIL blocks; each of which contains
71  * 	- zero or more ZIL records
72  *
73  * A ZIL record holds the information necessary to replay a single
74  * system call transaction. A ZIL block can hold many ZIL records, and
75  * the blocks are chained together, similarly to a singly linked list.
76  *
77  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
78  * block in the chain, and the ZIL header points to the first block in
79  * the chain.
80  *
81  * Note, there is not a fixed place in the pool to hold these ZIL
82  * blocks; they are dynamically allocated and freed as needed from the
83  * blocks available on the pool, though they can be preferentially
84  * allocated from a dedicated "log" vdev.
85  */
86 
87 /*
88  * This controls the amount of time that a ZIL block (lwb) will remain
89  * "open" when it isn't "full", and it has a thread waiting for it to be
90  * committed to stable storage. Please refer to the zil_commit_waiter()
91  * function (and the comments within it) for more details.
92  */
93 static uint_t zfs_commit_timeout_pct = 5;
94 
95 /*
96  * Minimal time we care to delay commit waiting for more ZIL records.
97  * At least FreeBSD kernel can't sleep for less than 2us at its best.
98  * So requests to sleep for less then 5us is a waste of CPU time with
99  * a risk of significant log latency increase due to oversleep.
100  */
101 static uint64_t zil_min_commit_timeout = 5000;
102 
103 /*
104  * See zil.h for more information about these fields.
105  */
106 static zil_kstat_values_t zil_stats = {
107 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
108 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
109 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
110 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
111 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
112 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
113 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
114 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
115 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
116 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
117 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
118 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
119 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
120 };
121 
122 static zil_sums_t zil_sums_global;
123 static kstat_t *zil_kstats_global;
124 
125 /*
126  * Disable intent logging replay.  This global ZIL switch affects all pools.
127  */
128 int zil_replay_disable = 0;
129 
130 /*
131  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
132  * the disk(s) by the ZIL after an LWB write has completed. Setting this
133  * will cause ZIL corruption on power loss if a volatile out-of-order
134  * write cache is enabled.
135  */
136 static int zil_nocacheflush = 0;
137 
138 /*
139  * Limit SLOG write size per commit executed with synchronous priority.
140  * Any writes above that will be executed with lower (asynchronous) priority
141  * to limit potential SLOG device abuse by single active ZIL writer.
142  */
143 static uint64_t zil_slog_bulk = 768 * 1024;
144 
145 static kmem_cache_t *zil_lwb_cache;
146 static kmem_cache_t *zil_zcw_cache;
147 
148 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
149     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
150 
151 static int
152 zil_bp_compare(const void *x1, const void *x2)
153 {
154 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
155 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
156 
157 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
158 	if (likely(cmp))
159 		return (cmp);
160 
161 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
162 }
163 
164 static void
165 zil_bp_tree_init(zilog_t *zilog)
166 {
167 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
168 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
169 }
170 
171 static void
172 zil_bp_tree_fini(zilog_t *zilog)
173 {
174 	avl_tree_t *t = &zilog->zl_bp_tree;
175 	zil_bp_node_t *zn;
176 	void *cookie = NULL;
177 
178 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
179 		kmem_free(zn, sizeof (zil_bp_node_t));
180 
181 	avl_destroy(t);
182 }
183 
184 int
185 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
186 {
187 	avl_tree_t *t = &zilog->zl_bp_tree;
188 	const dva_t *dva;
189 	zil_bp_node_t *zn;
190 	avl_index_t where;
191 
192 	if (BP_IS_EMBEDDED(bp))
193 		return (0);
194 
195 	dva = BP_IDENTITY(bp);
196 
197 	if (avl_find(t, dva, &where) != NULL)
198 		return (SET_ERROR(EEXIST));
199 
200 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
201 	zn->zn_dva = *dva;
202 	avl_insert(t, zn, where);
203 
204 	return (0);
205 }
206 
207 static zil_header_t *
208 zil_header_in_syncing_context(zilog_t *zilog)
209 {
210 	return ((zil_header_t *)zilog->zl_header);
211 }
212 
213 static void
214 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
215 {
216 	zio_cksum_t *zc = &bp->blk_cksum;
217 
218 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
219 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
220 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
221 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
222 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
223 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
224 }
225 
226 static int
227 zil_kstats_global_update(kstat_t *ksp, int rw)
228 {
229 	zil_kstat_values_t *zs = ksp->ks_data;
230 	ASSERT3P(&zil_stats, ==, zs);
231 
232 	if (rw == KSTAT_WRITE) {
233 		return (SET_ERROR(EACCES));
234 	}
235 
236 	zil_kstat_values_update(zs, &zil_sums_global);
237 
238 	return (0);
239 }
240 
241 /*
242  * Read a log block and make sure it's valid.
243  */
244 static int
245 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
246     blkptr_t *nbp, void *dst, char **end)
247 {
248 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
249 	arc_flags_t aflags = ARC_FLAG_WAIT;
250 	arc_buf_t *abuf = NULL;
251 	zbookmark_phys_t zb;
252 	int error;
253 
254 	if (zilog->zl_header->zh_claim_txg == 0)
255 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
256 
257 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
258 		zio_flags |= ZIO_FLAG_SPECULATIVE;
259 
260 	if (!decrypt)
261 		zio_flags |= ZIO_FLAG_RAW;
262 
263 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
264 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
265 
266 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
267 	    &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
268 
269 	if (error == 0) {
270 		zio_cksum_t cksum = bp->blk_cksum;
271 
272 		/*
273 		 * Validate the checksummed log block.
274 		 *
275 		 * Sequence numbers should be... sequential.  The checksum
276 		 * verifier for the next block should be bp's checksum plus 1.
277 		 *
278 		 * Also check the log chain linkage and size used.
279 		 */
280 		cksum.zc_word[ZIL_ZC_SEQ]++;
281 
282 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
283 			zil_chain_t *zilc = abuf->b_data;
284 			char *lr = (char *)(zilc + 1);
285 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
286 
287 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
288 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
289 				error = SET_ERROR(ECKSUM);
290 			} else {
291 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
292 				memcpy(dst, lr, len);
293 				*end = (char *)dst + len;
294 				*nbp = zilc->zc_next_blk;
295 			}
296 		} else {
297 			char *lr = abuf->b_data;
298 			uint64_t size = BP_GET_LSIZE(bp);
299 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
300 
301 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
302 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
303 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
304 				error = SET_ERROR(ECKSUM);
305 			} else {
306 				ASSERT3U(zilc->zc_nused, <=,
307 				    SPA_OLD_MAXBLOCKSIZE);
308 				memcpy(dst, lr, zilc->zc_nused);
309 				*end = (char *)dst + zilc->zc_nused;
310 				*nbp = zilc->zc_next_blk;
311 			}
312 		}
313 
314 		arc_buf_destroy(abuf, &abuf);
315 	}
316 
317 	return (error);
318 }
319 
320 /*
321  * Read a TX_WRITE log data block.
322  */
323 static int
324 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
325 {
326 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
327 	const blkptr_t *bp = &lr->lr_blkptr;
328 	arc_flags_t aflags = ARC_FLAG_WAIT;
329 	arc_buf_t *abuf = NULL;
330 	zbookmark_phys_t zb;
331 	int error;
332 
333 	if (BP_IS_HOLE(bp)) {
334 		if (wbuf != NULL)
335 			memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
336 		return (0);
337 	}
338 
339 	if (zilog->zl_header->zh_claim_txg == 0)
340 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
341 
342 	/*
343 	 * If we are not using the resulting data, we are just checking that
344 	 * it hasn't been corrupted so we don't need to waste CPU time
345 	 * decompressing and decrypting it.
346 	 */
347 	if (wbuf == NULL)
348 		zio_flags |= ZIO_FLAG_RAW;
349 
350 	ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
351 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
352 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
353 
354 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
355 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
356 
357 	if (error == 0) {
358 		if (wbuf != NULL)
359 			memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
360 		arc_buf_destroy(abuf, &abuf);
361 	}
362 
363 	return (error);
364 }
365 
366 void
367 zil_sums_init(zil_sums_t *zs)
368 {
369 	wmsum_init(&zs->zil_commit_count, 0);
370 	wmsum_init(&zs->zil_commit_writer_count, 0);
371 	wmsum_init(&zs->zil_itx_count, 0);
372 	wmsum_init(&zs->zil_itx_indirect_count, 0);
373 	wmsum_init(&zs->zil_itx_indirect_bytes, 0);
374 	wmsum_init(&zs->zil_itx_copied_count, 0);
375 	wmsum_init(&zs->zil_itx_copied_bytes, 0);
376 	wmsum_init(&zs->zil_itx_needcopy_count, 0);
377 	wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
378 	wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
379 	wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
380 	wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
381 	wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
382 }
383 
384 void
385 zil_sums_fini(zil_sums_t *zs)
386 {
387 	wmsum_fini(&zs->zil_commit_count);
388 	wmsum_fini(&zs->zil_commit_writer_count);
389 	wmsum_fini(&zs->zil_itx_count);
390 	wmsum_fini(&zs->zil_itx_indirect_count);
391 	wmsum_fini(&zs->zil_itx_indirect_bytes);
392 	wmsum_fini(&zs->zil_itx_copied_count);
393 	wmsum_fini(&zs->zil_itx_copied_bytes);
394 	wmsum_fini(&zs->zil_itx_needcopy_count);
395 	wmsum_fini(&zs->zil_itx_needcopy_bytes);
396 	wmsum_fini(&zs->zil_itx_metaslab_normal_count);
397 	wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
398 	wmsum_fini(&zs->zil_itx_metaslab_slog_count);
399 	wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
400 }
401 
402 void
403 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
404 {
405 	zs->zil_commit_count.value.ui64 =
406 	    wmsum_value(&zil_sums->zil_commit_count);
407 	zs->zil_commit_writer_count.value.ui64 =
408 	    wmsum_value(&zil_sums->zil_commit_writer_count);
409 	zs->zil_itx_count.value.ui64 =
410 	    wmsum_value(&zil_sums->zil_itx_count);
411 	zs->zil_itx_indirect_count.value.ui64 =
412 	    wmsum_value(&zil_sums->zil_itx_indirect_count);
413 	zs->zil_itx_indirect_bytes.value.ui64 =
414 	    wmsum_value(&zil_sums->zil_itx_indirect_bytes);
415 	zs->zil_itx_copied_count.value.ui64 =
416 	    wmsum_value(&zil_sums->zil_itx_copied_count);
417 	zs->zil_itx_copied_bytes.value.ui64 =
418 	    wmsum_value(&zil_sums->zil_itx_copied_bytes);
419 	zs->zil_itx_needcopy_count.value.ui64 =
420 	    wmsum_value(&zil_sums->zil_itx_needcopy_count);
421 	zs->zil_itx_needcopy_bytes.value.ui64 =
422 	    wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
423 	zs->zil_itx_metaslab_normal_count.value.ui64 =
424 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
425 	zs->zil_itx_metaslab_normal_bytes.value.ui64 =
426 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
427 	zs->zil_itx_metaslab_slog_count.value.ui64 =
428 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
429 	zs->zil_itx_metaslab_slog_bytes.value.ui64 =
430 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
431 }
432 
433 /*
434  * Parse the intent log, and call parse_func for each valid record within.
435  */
436 int
437 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
438     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
439     boolean_t decrypt)
440 {
441 	const zil_header_t *zh = zilog->zl_header;
442 	boolean_t claimed = !!zh->zh_claim_txg;
443 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
444 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
445 	uint64_t max_blk_seq = 0;
446 	uint64_t max_lr_seq = 0;
447 	uint64_t blk_count = 0;
448 	uint64_t lr_count = 0;
449 	blkptr_t blk, next_blk = {{{{0}}}};
450 	char *lrbuf, *lrp;
451 	int error = 0;
452 
453 	/*
454 	 * Old logs didn't record the maximum zh_claim_lr_seq.
455 	 */
456 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
457 		claim_lr_seq = UINT64_MAX;
458 
459 	/*
460 	 * Starting at the block pointed to by zh_log we read the log chain.
461 	 * For each block in the chain we strongly check that block to
462 	 * ensure its validity.  We stop when an invalid block is found.
463 	 * For each block pointer in the chain we call parse_blk_func().
464 	 * For each record in each valid block we call parse_lr_func().
465 	 * If the log has been claimed, stop if we encounter a sequence
466 	 * number greater than the highest claimed sequence number.
467 	 */
468 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
469 	zil_bp_tree_init(zilog);
470 
471 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
472 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
473 		int reclen;
474 		char *end = NULL;
475 
476 		if (blk_seq > claim_blk_seq)
477 			break;
478 
479 		error = parse_blk_func(zilog, &blk, arg, txg);
480 		if (error != 0)
481 			break;
482 		ASSERT3U(max_blk_seq, <, blk_seq);
483 		max_blk_seq = blk_seq;
484 		blk_count++;
485 
486 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
487 			break;
488 
489 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
490 		    lrbuf, &end);
491 		if (error != 0) {
492 			if (claimed) {
493 				char name[ZFS_MAX_DATASET_NAME_LEN];
494 
495 				dmu_objset_name(zilog->zl_os, name);
496 
497 				cmn_err(CE_WARN, "ZFS read log block error %d, "
498 				    "dataset %s, seq 0x%llx\n", error, name,
499 				    (u_longlong_t)blk_seq);
500 			}
501 			break;
502 		}
503 
504 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
505 			lr_t *lr = (lr_t *)lrp;
506 			reclen = lr->lrc_reclen;
507 			ASSERT3U(reclen, >=, sizeof (lr_t));
508 			if (lr->lrc_seq > claim_lr_seq)
509 				goto done;
510 
511 			error = parse_lr_func(zilog, lr, arg, txg);
512 			if (error != 0)
513 				goto done;
514 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
515 			max_lr_seq = lr->lrc_seq;
516 			lr_count++;
517 		}
518 	}
519 done:
520 	zilog->zl_parse_error = error;
521 	zilog->zl_parse_blk_seq = max_blk_seq;
522 	zilog->zl_parse_lr_seq = max_lr_seq;
523 	zilog->zl_parse_blk_count = blk_count;
524 	zilog->zl_parse_lr_count = lr_count;
525 
526 	zil_bp_tree_fini(zilog);
527 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
528 
529 	return (error);
530 }
531 
532 static int
533 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
534     uint64_t first_txg)
535 {
536 	(void) tx;
537 	ASSERT(!BP_IS_HOLE(bp));
538 
539 	/*
540 	 * As we call this function from the context of a rewind to a
541 	 * checkpoint, each ZIL block whose txg is later than the txg
542 	 * that we rewind to is invalid. Thus, we return -1 so
543 	 * zil_parse() doesn't attempt to read it.
544 	 */
545 	if (bp->blk_birth >= first_txg)
546 		return (-1);
547 
548 	if (zil_bp_tree_add(zilog, bp) != 0)
549 		return (0);
550 
551 	zio_free(zilog->zl_spa, first_txg, bp);
552 	return (0);
553 }
554 
555 static int
556 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
557     uint64_t first_txg)
558 {
559 	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
560 	return (0);
561 }
562 
563 static int
564 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
565     uint64_t first_txg)
566 {
567 	/*
568 	 * Claim log block if not already committed and not already claimed.
569 	 * If tx == NULL, just verify that the block is claimable.
570 	 */
571 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
572 	    zil_bp_tree_add(zilog, bp) != 0)
573 		return (0);
574 
575 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
576 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
577 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
578 }
579 
580 static int
581 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
582     uint64_t first_txg)
583 {
584 	lr_write_t *lr = (lr_write_t *)lrc;
585 	int error;
586 
587 	if (lrc->lrc_txtype != TX_WRITE)
588 		return (0);
589 
590 	/*
591 	 * If the block is not readable, don't claim it.  This can happen
592 	 * in normal operation when a log block is written to disk before
593 	 * some of the dmu_sync() blocks it points to.  In this case, the
594 	 * transaction cannot have been committed to anyone (we would have
595 	 * waited for all writes to be stable first), so it is semantically
596 	 * correct to declare this the end of the log.
597 	 */
598 	if (lr->lr_blkptr.blk_birth >= first_txg) {
599 		error = zil_read_log_data(zilog, lr, NULL);
600 		if (error != 0)
601 			return (error);
602 	}
603 
604 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
605 }
606 
607 static int
608 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
609     uint64_t claim_txg)
610 {
611 	(void) claim_txg;
612 
613 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
614 
615 	return (0);
616 }
617 
618 static int
619 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
620     uint64_t claim_txg)
621 {
622 	lr_write_t *lr = (lr_write_t *)lrc;
623 	blkptr_t *bp = &lr->lr_blkptr;
624 
625 	/*
626 	 * If we previously claimed it, we need to free it.
627 	 */
628 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
629 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
630 	    !BP_IS_HOLE(bp))
631 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
632 
633 	return (0);
634 }
635 
636 static int
637 zil_lwb_vdev_compare(const void *x1, const void *x2)
638 {
639 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
640 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
641 
642 	return (TREE_CMP(v1, v2));
643 }
644 
645 static lwb_t *
646 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
647     boolean_t fastwrite)
648 {
649 	lwb_t *lwb;
650 
651 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
652 	lwb->lwb_zilog = zilog;
653 	lwb->lwb_blk = *bp;
654 	lwb->lwb_fastwrite = fastwrite;
655 	lwb->lwb_slog = slog;
656 	lwb->lwb_state = LWB_STATE_CLOSED;
657 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
658 	lwb->lwb_max_txg = txg;
659 	lwb->lwb_write_zio = NULL;
660 	lwb->lwb_root_zio = NULL;
661 	lwb->lwb_issued_timestamp = 0;
662 	lwb->lwb_issued_txg = 0;
663 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
664 		lwb->lwb_nused = sizeof (zil_chain_t);
665 		lwb->lwb_sz = BP_GET_LSIZE(bp);
666 	} else {
667 		lwb->lwb_nused = 0;
668 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
669 	}
670 
671 	mutex_enter(&zilog->zl_lock);
672 	list_insert_tail(&zilog->zl_lwb_list, lwb);
673 	mutex_exit(&zilog->zl_lock);
674 
675 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
676 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
677 	VERIFY(list_is_empty(&lwb->lwb_waiters));
678 	VERIFY(list_is_empty(&lwb->lwb_itxs));
679 
680 	return (lwb);
681 }
682 
683 static void
684 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
685 {
686 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
687 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
688 	VERIFY(list_is_empty(&lwb->lwb_waiters));
689 	VERIFY(list_is_empty(&lwb->lwb_itxs));
690 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
691 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
692 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
693 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
694 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
695 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
696 
697 	/*
698 	 * Clear the zilog's field to indicate this lwb is no longer
699 	 * valid, and prevent use-after-free errors.
700 	 */
701 	if (zilog->zl_last_lwb_opened == lwb)
702 		zilog->zl_last_lwb_opened = NULL;
703 
704 	kmem_cache_free(zil_lwb_cache, lwb);
705 }
706 
707 /*
708  * Called when we create in-memory log transactions so that we know
709  * to cleanup the itxs at the end of spa_sync().
710  */
711 static void
712 zilog_dirty(zilog_t *zilog, uint64_t txg)
713 {
714 	dsl_pool_t *dp = zilog->zl_dmu_pool;
715 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
716 
717 	ASSERT(spa_writeable(zilog->zl_spa));
718 
719 	if (ds->ds_is_snapshot)
720 		panic("dirtying snapshot!");
721 
722 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
723 		/* up the hold count until we can be written out */
724 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
725 
726 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
727 	}
728 }
729 
730 /*
731  * Determine if the zil is dirty in the specified txg. Callers wanting to
732  * ensure that the dirty state does not change must hold the itxg_lock for
733  * the specified txg. Holding the lock will ensure that the zil cannot be
734  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
735  * state.
736  */
737 static boolean_t __maybe_unused
738 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
739 {
740 	dsl_pool_t *dp = zilog->zl_dmu_pool;
741 
742 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
743 		return (B_TRUE);
744 	return (B_FALSE);
745 }
746 
747 /*
748  * Determine if the zil is dirty. The zil is considered dirty if it has
749  * any pending itx records that have not been cleaned by zil_clean().
750  */
751 static boolean_t
752 zilog_is_dirty(zilog_t *zilog)
753 {
754 	dsl_pool_t *dp = zilog->zl_dmu_pool;
755 
756 	for (int t = 0; t < TXG_SIZE; t++) {
757 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
758 			return (B_TRUE);
759 	}
760 	return (B_FALSE);
761 }
762 
763 /*
764  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
765  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
766  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
767  * zil_commit.
768  */
769 static void
770 zil_commit_activate_saxattr_feature(zilog_t *zilog)
771 {
772 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
773 	uint64_t txg = 0;
774 	dmu_tx_t *tx = NULL;
775 
776 	if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
777 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
778 	    !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
779 		tx = dmu_tx_create(zilog->zl_os);
780 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
781 		dsl_dataset_dirty(ds, tx);
782 		txg = dmu_tx_get_txg(tx);
783 
784 		mutex_enter(&ds->ds_lock);
785 		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
786 		    (void *)B_TRUE;
787 		mutex_exit(&ds->ds_lock);
788 		dmu_tx_commit(tx);
789 		txg_wait_synced(zilog->zl_dmu_pool, txg);
790 	}
791 }
792 
793 /*
794  * Create an on-disk intent log.
795  */
796 static lwb_t *
797 zil_create(zilog_t *zilog)
798 {
799 	const zil_header_t *zh = zilog->zl_header;
800 	lwb_t *lwb = NULL;
801 	uint64_t txg = 0;
802 	dmu_tx_t *tx = NULL;
803 	blkptr_t blk;
804 	int error = 0;
805 	boolean_t fastwrite = FALSE;
806 	boolean_t slog = FALSE;
807 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
808 
809 
810 	/*
811 	 * Wait for any previous destroy to complete.
812 	 */
813 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
814 
815 	ASSERT(zh->zh_claim_txg == 0);
816 	ASSERT(zh->zh_replay_seq == 0);
817 
818 	blk = zh->zh_log;
819 
820 	/*
821 	 * Allocate an initial log block if:
822 	 *    - there isn't one already
823 	 *    - the existing block is the wrong endianness
824 	 */
825 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
826 		tx = dmu_tx_create(zilog->zl_os);
827 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
828 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
829 		txg = dmu_tx_get_txg(tx);
830 
831 		if (!BP_IS_HOLE(&blk)) {
832 			zio_free(zilog->zl_spa, txg, &blk);
833 			BP_ZERO(&blk);
834 		}
835 
836 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
837 		    ZIL_MIN_BLKSZ, &slog);
838 		fastwrite = TRUE;
839 
840 		if (error == 0)
841 			zil_init_log_chain(zilog, &blk);
842 	}
843 
844 	/*
845 	 * Allocate a log write block (lwb) for the first log block.
846 	 */
847 	if (error == 0)
848 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
849 
850 	/*
851 	 * If we just allocated the first log block, commit our transaction
852 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
853 	 * (zh is part of the MOS, so we cannot modify it in open context.)
854 	 */
855 	if (tx != NULL) {
856 		/*
857 		 * If "zilsaxattr" feature is enabled on zpool, then activate
858 		 * it now when we're creating the ZIL chain. We can't wait with
859 		 * this until we write the first xattr log record because we
860 		 * need to wait for the feature activation to sync out.
861 		 */
862 		if (spa_feature_is_enabled(zilog->zl_spa,
863 		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
864 		    DMU_OST_ZVOL) {
865 			mutex_enter(&ds->ds_lock);
866 			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
867 			    (void *)B_TRUE;
868 			mutex_exit(&ds->ds_lock);
869 		}
870 
871 		dmu_tx_commit(tx);
872 		txg_wait_synced(zilog->zl_dmu_pool, txg);
873 	} else {
874 		/*
875 		 * This branch covers the case where we enable the feature on a
876 		 * zpool that has existing ZIL headers.
877 		 */
878 		zil_commit_activate_saxattr_feature(zilog);
879 	}
880 	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
881 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
882 	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
883 
884 	ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
885 	IMPLY(error == 0, lwb != NULL);
886 
887 	return (lwb);
888 }
889 
890 /*
891  * In one tx, free all log blocks and clear the log header. If keep_first
892  * is set, then we're replaying a log with no content. We want to keep the
893  * first block, however, so that the first synchronous transaction doesn't
894  * require a txg_wait_synced() in zil_create(). We don't need to
895  * txg_wait_synced() here either when keep_first is set, because both
896  * zil_create() and zil_destroy() will wait for any in-progress destroys
897  * to complete.
898  * Return B_TRUE if there were any entries to replay.
899  */
900 boolean_t
901 zil_destroy(zilog_t *zilog, boolean_t keep_first)
902 {
903 	const zil_header_t *zh = zilog->zl_header;
904 	lwb_t *lwb;
905 	dmu_tx_t *tx;
906 	uint64_t txg;
907 
908 	/*
909 	 * Wait for any previous destroy to complete.
910 	 */
911 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
912 
913 	zilog->zl_old_header = *zh;		/* debugging aid */
914 
915 	if (BP_IS_HOLE(&zh->zh_log))
916 		return (B_FALSE);
917 
918 	tx = dmu_tx_create(zilog->zl_os);
919 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
920 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
921 	txg = dmu_tx_get_txg(tx);
922 
923 	mutex_enter(&zilog->zl_lock);
924 
925 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
926 	zilog->zl_destroy_txg = txg;
927 	zilog->zl_keep_first = keep_first;
928 
929 	if (!list_is_empty(&zilog->zl_lwb_list)) {
930 		ASSERT(zh->zh_claim_txg == 0);
931 		VERIFY(!keep_first);
932 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
933 			if (lwb->lwb_fastwrite)
934 				metaslab_fastwrite_unmark(zilog->zl_spa,
935 				    &lwb->lwb_blk);
936 
937 			list_remove(&zilog->zl_lwb_list, lwb);
938 			if (lwb->lwb_buf != NULL)
939 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
940 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
941 			zil_free_lwb(zilog, lwb);
942 		}
943 	} else if (!keep_first) {
944 		zil_destroy_sync(zilog, tx);
945 	}
946 	mutex_exit(&zilog->zl_lock);
947 
948 	dmu_tx_commit(tx);
949 
950 	return (B_TRUE);
951 }
952 
953 void
954 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
955 {
956 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
957 	(void) zil_parse(zilog, zil_free_log_block,
958 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
959 }
960 
961 int
962 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
963 {
964 	dmu_tx_t *tx = txarg;
965 	zilog_t *zilog;
966 	uint64_t first_txg;
967 	zil_header_t *zh;
968 	objset_t *os;
969 	int error;
970 
971 	error = dmu_objset_own_obj(dp, ds->ds_object,
972 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
973 	if (error != 0) {
974 		/*
975 		 * EBUSY indicates that the objset is inconsistent, in which
976 		 * case it can not have a ZIL.
977 		 */
978 		if (error != EBUSY) {
979 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
980 			    (unsigned long long)ds->ds_object, error);
981 		}
982 
983 		return (0);
984 	}
985 
986 	zilog = dmu_objset_zil(os);
987 	zh = zil_header_in_syncing_context(zilog);
988 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
989 	first_txg = spa_min_claim_txg(zilog->zl_spa);
990 
991 	/*
992 	 * If the spa_log_state is not set to be cleared, check whether
993 	 * the current uberblock is a checkpoint one and if the current
994 	 * header has been claimed before moving on.
995 	 *
996 	 * If the current uberblock is a checkpointed uberblock then
997 	 * one of the following scenarios took place:
998 	 *
999 	 * 1] We are currently rewinding to the checkpoint of the pool.
1000 	 * 2] We crashed in the middle of a checkpoint rewind but we
1001 	 *    did manage to write the checkpointed uberblock to the
1002 	 *    vdev labels, so when we tried to import the pool again
1003 	 *    the checkpointed uberblock was selected from the import
1004 	 *    procedure.
1005 	 *
1006 	 * In both cases we want to zero out all the ZIL blocks, except
1007 	 * the ones that have been claimed at the time of the checkpoint
1008 	 * (their zh_claim_txg != 0). The reason is that these blocks
1009 	 * may be corrupted since we may have reused their locations on
1010 	 * disk after we took the checkpoint.
1011 	 *
1012 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1013 	 * when we first figure out whether the current uberblock is
1014 	 * checkpointed or not. Unfortunately, that would discard all
1015 	 * the logs, including the ones that are claimed, and we would
1016 	 * leak space.
1017 	 */
1018 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1019 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1020 	    zh->zh_claim_txg == 0)) {
1021 		if (!BP_IS_HOLE(&zh->zh_log)) {
1022 			(void) zil_parse(zilog, zil_clear_log_block,
1023 			    zil_noop_log_record, tx, first_txg, B_FALSE);
1024 		}
1025 		BP_ZERO(&zh->zh_log);
1026 		if (os->os_encrypted)
1027 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1028 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1029 		dmu_objset_disown(os, B_FALSE, FTAG);
1030 		return (0);
1031 	}
1032 
1033 	/*
1034 	 * If we are not rewinding and opening the pool normally, then
1035 	 * the min_claim_txg should be equal to the first txg of the pool.
1036 	 */
1037 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1038 
1039 	/*
1040 	 * Claim all log blocks if we haven't already done so, and remember
1041 	 * the highest claimed sequence number.  This ensures that if we can
1042 	 * read only part of the log now (e.g. due to a missing device),
1043 	 * but we can read the entire log later, we will not try to replay
1044 	 * or destroy beyond the last block we successfully claimed.
1045 	 */
1046 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1047 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1048 		(void) zil_parse(zilog, zil_claim_log_block,
1049 		    zil_claim_log_record, tx, first_txg, B_FALSE);
1050 		zh->zh_claim_txg = first_txg;
1051 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1052 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1053 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1054 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
1055 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1056 		if (os->os_encrypted)
1057 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1058 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1059 	}
1060 
1061 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1062 	dmu_objset_disown(os, B_FALSE, FTAG);
1063 	return (0);
1064 }
1065 
1066 /*
1067  * Check the log by walking the log chain.
1068  * Checksum errors are ok as they indicate the end of the chain.
1069  * Any other error (no device or read failure) returns an error.
1070  */
1071 int
1072 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1073 {
1074 	(void) dp;
1075 	zilog_t *zilog;
1076 	objset_t *os;
1077 	blkptr_t *bp;
1078 	int error;
1079 
1080 	ASSERT(tx == NULL);
1081 
1082 	error = dmu_objset_from_ds(ds, &os);
1083 	if (error != 0) {
1084 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
1085 		    (unsigned long long)ds->ds_object, error);
1086 		return (0);
1087 	}
1088 
1089 	zilog = dmu_objset_zil(os);
1090 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
1091 
1092 	if (!BP_IS_HOLE(bp)) {
1093 		vdev_t *vd;
1094 		boolean_t valid = B_TRUE;
1095 
1096 		/*
1097 		 * Check the first block and determine if it's on a log device
1098 		 * which may have been removed or faulted prior to loading this
1099 		 * pool.  If so, there's no point in checking the rest of the
1100 		 * log as its content should have already been synced to the
1101 		 * pool.
1102 		 */
1103 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1104 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1105 		if (vd->vdev_islog && vdev_is_dead(vd))
1106 			valid = vdev_log_state_valid(vd);
1107 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1108 
1109 		if (!valid)
1110 			return (0);
1111 
1112 		/*
1113 		 * Check whether the current uberblock is checkpointed (e.g.
1114 		 * we are rewinding) and whether the current header has been
1115 		 * claimed or not. If it hasn't then skip verifying it. We
1116 		 * do this because its ZIL blocks may be part of the pool's
1117 		 * state before the rewind, which is no longer valid.
1118 		 */
1119 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
1120 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1121 		    zh->zh_claim_txg == 0)
1122 			return (0);
1123 	}
1124 
1125 	/*
1126 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
1127 	 * any blocks, but just determine whether it is possible to do so.
1128 	 * In addition to checking the log chain, zil_claim_log_block()
1129 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
1130 	 * which will update spa_max_claim_txg.  See spa_load() for details.
1131 	 */
1132 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1133 	    zilog->zl_header->zh_claim_txg ? -1ULL :
1134 	    spa_min_claim_txg(os->os_spa), B_FALSE);
1135 
1136 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1137 }
1138 
1139 /*
1140  * When an itx is "skipped", this function is used to properly mark the
1141  * waiter as "done, and signal any thread(s) waiting on it. An itx can
1142  * be skipped (and not committed to an lwb) for a variety of reasons,
1143  * one of them being that the itx was committed via spa_sync(), prior to
1144  * it being committed to an lwb; this can happen if a thread calling
1145  * zil_commit() is racing with spa_sync().
1146  */
1147 static void
1148 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1149 {
1150 	mutex_enter(&zcw->zcw_lock);
1151 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1152 	zcw->zcw_done = B_TRUE;
1153 	cv_broadcast(&zcw->zcw_cv);
1154 	mutex_exit(&zcw->zcw_lock);
1155 }
1156 
1157 /*
1158  * This function is used when the given waiter is to be linked into an
1159  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1160  * At this point, the waiter will no longer be referenced by the itx,
1161  * and instead, will be referenced by the lwb.
1162  */
1163 static void
1164 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1165 {
1166 	/*
1167 	 * The lwb_waiters field of the lwb is protected by the zilog's
1168 	 * zl_lock, thus it must be held when calling this function.
1169 	 */
1170 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1171 
1172 	mutex_enter(&zcw->zcw_lock);
1173 	ASSERT(!list_link_active(&zcw->zcw_node));
1174 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1175 	ASSERT3P(lwb, !=, NULL);
1176 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1177 	    lwb->lwb_state == LWB_STATE_ISSUED ||
1178 	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
1179 
1180 	list_insert_tail(&lwb->lwb_waiters, zcw);
1181 	zcw->zcw_lwb = lwb;
1182 	mutex_exit(&zcw->zcw_lock);
1183 }
1184 
1185 /*
1186  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1187  * block, and the given waiter must be linked to the "nolwb waiters"
1188  * list inside of zil_process_commit_list().
1189  */
1190 static void
1191 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1192 {
1193 	mutex_enter(&zcw->zcw_lock);
1194 	ASSERT(!list_link_active(&zcw->zcw_node));
1195 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1196 	list_insert_tail(nolwb, zcw);
1197 	mutex_exit(&zcw->zcw_lock);
1198 }
1199 
1200 void
1201 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1202 {
1203 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1204 	avl_index_t where;
1205 	zil_vdev_node_t *zv, zvsearch;
1206 	int ndvas = BP_GET_NDVAS(bp);
1207 	int i;
1208 
1209 	if (zil_nocacheflush)
1210 		return;
1211 
1212 	mutex_enter(&lwb->lwb_vdev_lock);
1213 	for (i = 0; i < ndvas; i++) {
1214 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1215 		if (avl_find(t, &zvsearch, &where) == NULL) {
1216 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1217 			zv->zv_vdev = zvsearch.zv_vdev;
1218 			avl_insert(t, zv, where);
1219 		}
1220 	}
1221 	mutex_exit(&lwb->lwb_vdev_lock);
1222 }
1223 
1224 static void
1225 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1226 {
1227 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1228 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1229 	void *cookie = NULL;
1230 	zil_vdev_node_t *zv;
1231 
1232 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1233 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1234 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1235 
1236 	/*
1237 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1238 	 * not need the protection of lwb_vdev_lock (it will only be modified
1239 	 * while holding zilog->zl_lock) as its writes and those of its
1240 	 * children have all completed.  The younger 'nlwb' may be waiting on
1241 	 * future writes to additional vdevs.
1242 	 */
1243 	mutex_enter(&nlwb->lwb_vdev_lock);
1244 	/*
1245 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1246 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1247 	 */
1248 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1249 		avl_index_t where;
1250 
1251 		if (avl_find(dst, zv, &where) == NULL) {
1252 			avl_insert(dst, zv, where);
1253 		} else {
1254 			kmem_free(zv, sizeof (*zv));
1255 		}
1256 	}
1257 	mutex_exit(&nlwb->lwb_vdev_lock);
1258 }
1259 
1260 void
1261 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1262 {
1263 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1264 }
1265 
1266 /*
1267  * This function is a called after all vdevs associated with a given lwb
1268  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1269  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1270  * all "previous" lwb's will have completed before this function is
1271  * called; i.e. this function is called for all previous lwbs before
1272  * it's called for "this" lwb (enforced via zio the dependencies
1273  * configured in zil_lwb_set_zio_dependency()).
1274  *
1275  * The intention is for this function to be called as soon as the
1276  * contents of an lwb are considered "stable" on disk, and will survive
1277  * any sudden loss of power. At this point, any threads waiting for the
1278  * lwb to reach this state are signalled, and the "waiter" structures
1279  * are marked "done".
1280  */
1281 static void
1282 zil_lwb_flush_vdevs_done(zio_t *zio)
1283 {
1284 	lwb_t *lwb = zio->io_private;
1285 	zilog_t *zilog = lwb->lwb_zilog;
1286 	zil_commit_waiter_t *zcw;
1287 	itx_t *itx;
1288 	uint64_t txg;
1289 
1290 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1291 
1292 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1293 
1294 	mutex_enter(&zilog->zl_lock);
1295 
1296 	/*
1297 	 * If we have had an allocation failure and the txg is
1298 	 * waiting to sync then we want zil_sync() to remove the lwb so
1299 	 * that it's not picked up as the next new one in
1300 	 * zil_process_commit_list(). zil_sync() will only remove the
1301 	 * lwb if lwb_buf is null.
1302 	 */
1303 	lwb->lwb_buf = NULL;
1304 
1305 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1306 	zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 3 +
1307 	    gethrtime() - lwb->lwb_issued_timestamp) / 4;
1308 
1309 	lwb->lwb_root_zio = NULL;
1310 
1311 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1312 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1313 
1314 	if (zilog->zl_last_lwb_opened == lwb) {
1315 		/*
1316 		 * Remember the highest committed log sequence number
1317 		 * for ztest. We only update this value when all the log
1318 		 * writes succeeded, because ztest wants to ASSERT that
1319 		 * it got the whole log chain.
1320 		 */
1321 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1322 	}
1323 
1324 	while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1325 		list_remove(&lwb->lwb_itxs, itx);
1326 		zil_itx_destroy(itx);
1327 	}
1328 
1329 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1330 		mutex_enter(&zcw->zcw_lock);
1331 
1332 		ASSERT(list_link_active(&zcw->zcw_node));
1333 		list_remove(&lwb->lwb_waiters, zcw);
1334 
1335 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1336 		zcw->zcw_lwb = NULL;
1337 		/*
1338 		 * We expect any ZIO errors from child ZIOs to have been
1339 		 * propagated "up" to this specific LWB's root ZIO, in
1340 		 * order for this error handling to work correctly. This
1341 		 * includes ZIO errors from either this LWB's write or
1342 		 * flush, as well as any errors from other dependent LWBs
1343 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1344 		 *
1345 		 * With that said, it's important to note that LWB flush
1346 		 * errors are not propagated up to the LWB root ZIO.
1347 		 * This is incorrect behavior, and results in VDEV flush
1348 		 * errors not being handled correctly here. See the
1349 		 * comment above the call to "zio_flush" for details.
1350 		 */
1351 
1352 		zcw->zcw_zio_error = zio->io_error;
1353 
1354 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1355 		zcw->zcw_done = B_TRUE;
1356 		cv_broadcast(&zcw->zcw_cv);
1357 
1358 		mutex_exit(&zcw->zcw_lock);
1359 	}
1360 
1361 	mutex_exit(&zilog->zl_lock);
1362 
1363 	mutex_enter(&zilog->zl_lwb_io_lock);
1364 	txg = lwb->lwb_issued_txg;
1365 	ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1366 	zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1367 	if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1368 		cv_broadcast(&zilog->zl_lwb_io_cv);
1369 	mutex_exit(&zilog->zl_lwb_io_lock);
1370 }
1371 
1372 /*
1373  * Wait for the completion of all issued write/flush of that txg provided.
1374  * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1375  */
1376 static void
1377 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1378 {
1379 	ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1380 
1381 	mutex_enter(&zilog->zl_lwb_io_lock);
1382 	while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1383 		cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1384 	mutex_exit(&zilog->zl_lwb_io_lock);
1385 
1386 #ifdef ZFS_DEBUG
1387 	mutex_enter(&zilog->zl_lock);
1388 	mutex_enter(&zilog->zl_lwb_io_lock);
1389 	lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1390 	while (lwb != NULL && lwb->lwb_max_txg <= txg) {
1391 		if (lwb->lwb_issued_txg <= txg) {
1392 			ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1393 			ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1394 			IMPLY(lwb->lwb_issued_txg > 0,
1395 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1396 		}
1397 		IMPLY(lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1398 		    lwb->lwb_buf == NULL);
1399 		lwb = list_next(&zilog->zl_lwb_list, lwb);
1400 	}
1401 	mutex_exit(&zilog->zl_lwb_io_lock);
1402 	mutex_exit(&zilog->zl_lock);
1403 #endif
1404 }
1405 
1406 /*
1407  * This is called when an lwb's write zio completes. The callback's
1408  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1409  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1410  * in writing out this specific lwb's data, and in the case that cache
1411  * flushes have been deferred, vdevs involved in writing the data for
1412  * previous lwbs. The writes corresponding to all the vdevs in the
1413  * lwb_vdev_tree will have completed by the time this is called, due to
1414  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1415  * which takes deferred flushes into account. The lwb will be "done"
1416  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1417  * completion callback for the lwb's root zio.
1418  */
1419 static void
1420 zil_lwb_write_done(zio_t *zio)
1421 {
1422 	lwb_t *lwb = zio->io_private;
1423 	spa_t *spa = zio->io_spa;
1424 	zilog_t *zilog = lwb->lwb_zilog;
1425 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1426 	void *cookie = NULL;
1427 	zil_vdev_node_t *zv;
1428 	lwb_t *nlwb;
1429 
1430 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1431 
1432 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1433 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1434 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1435 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1436 	ASSERT(!BP_IS_GANG(zio->io_bp));
1437 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1438 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1439 
1440 	abd_free(zio->io_abd);
1441 
1442 	mutex_enter(&zilog->zl_lock);
1443 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1444 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1445 	lwb->lwb_write_zio = NULL;
1446 	lwb->lwb_fastwrite = FALSE;
1447 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1448 	mutex_exit(&zilog->zl_lock);
1449 
1450 	if (avl_numnodes(t) == 0)
1451 		return;
1452 
1453 	/*
1454 	 * If there was an IO error, we're not going to call zio_flush()
1455 	 * on these vdevs, so we simply empty the tree and free the
1456 	 * nodes. We avoid calling zio_flush() since there isn't any
1457 	 * good reason for doing so, after the lwb block failed to be
1458 	 * written out.
1459 	 *
1460 	 * Additionally, we don't perform any further error handling at
1461 	 * this point (e.g. setting "zcw_zio_error" appropriately), as
1462 	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1463 	 * we expect any error seen here, to have been propagated to
1464 	 * that function).
1465 	 */
1466 	if (zio->io_error != 0) {
1467 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1468 			kmem_free(zv, sizeof (*zv));
1469 		return;
1470 	}
1471 
1472 	/*
1473 	 * If this lwb does not have any threads waiting for it to
1474 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1475 	 * command to the vdevs written to by "this" lwb, and instead
1476 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1477 	 * command for those vdevs. Thus, we merge the vdev tree of
1478 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1479 	 * and assume the "next" lwb will handle flushing the vdevs (or
1480 	 * deferring the flush(s) again).
1481 	 *
1482 	 * This is a useful performance optimization, especially for
1483 	 * workloads with lots of async write activity and few sync
1484 	 * write and/or fsync activity, as it has the potential to
1485 	 * coalesce multiple flush commands to a vdev into one.
1486 	 */
1487 	if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1488 		zil_lwb_flush_defer(lwb, nlwb);
1489 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1490 		return;
1491 	}
1492 
1493 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1494 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1495 		if (vd != NULL) {
1496 			/*
1497 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1498 			 * always used within "zio_flush". This means,
1499 			 * any errors when flushing the vdev(s), will
1500 			 * (unfortunately) not be handled correctly,
1501 			 * since these "zio_flush" errors will not be
1502 			 * propagated up to "zil_lwb_flush_vdevs_done".
1503 			 */
1504 			zio_flush(lwb->lwb_root_zio, vd);
1505 		}
1506 		kmem_free(zv, sizeof (*zv));
1507 	}
1508 }
1509 
1510 static void
1511 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1512 {
1513 	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1514 
1515 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1516 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1517 
1518 	/*
1519 	 * The zilog's "zl_last_lwb_opened" field is used to build the
1520 	 * lwb/zio dependency chain, which is used to preserve the
1521 	 * ordering of lwb completions that is required by the semantics
1522 	 * of the ZIL. Each new lwb zio becomes a parent of the
1523 	 * "previous" lwb zio, such that the new lwb's zio cannot
1524 	 * complete until the "previous" lwb's zio completes.
1525 	 *
1526 	 * This is required by the semantics of zil_commit(); the commit
1527 	 * waiters attached to the lwbs will be woken in the lwb zio's
1528 	 * completion callback, so this zio dependency graph ensures the
1529 	 * waiters are woken in the correct order (the same order the
1530 	 * lwbs were created).
1531 	 */
1532 	if (last_lwb_opened != NULL &&
1533 	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1534 		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1535 		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1536 		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1537 
1538 		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1539 		zio_add_child(lwb->lwb_root_zio,
1540 		    last_lwb_opened->lwb_root_zio);
1541 
1542 		/*
1543 		 * If the previous lwb's write hasn't already completed,
1544 		 * we also want to order the completion of the lwb write
1545 		 * zios (above, we only order the completion of the lwb
1546 		 * root zios). This is required because of how we can
1547 		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1548 		 *
1549 		 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1550 		 * the previous lwb will rely on this lwb to flush the
1551 		 * vdevs written to by that previous lwb. Thus, we need
1552 		 * to ensure this lwb doesn't issue the flush until
1553 		 * after the previous lwb's write completes. We ensure
1554 		 * this ordering by setting the zio parent/child
1555 		 * relationship here.
1556 		 *
1557 		 * Without this relationship on the lwb's write zio,
1558 		 * it's possible for this lwb's write to complete prior
1559 		 * to the previous lwb's write completing; and thus, the
1560 		 * vdevs for the previous lwb would be flushed prior to
1561 		 * that lwb's data being written to those vdevs (the
1562 		 * vdevs are flushed in the lwb write zio's completion
1563 		 * handler, zil_lwb_write_done()).
1564 		 */
1565 		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1566 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1567 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1568 
1569 			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1570 			zio_add_child(lwb->lwb_write_zio,
1571 			    last_lwb_opened->lwb_write_zio);
1572 		}
1573 	}
1574 }
1575 
1576 
1577 /*
1578  * This function's purpose is to "open" an lwb such that it is ready to
1579  * accept new itxs being committed to it. To do this, the lwb's zio
1580  * structures are created, and linked to the lwb. This function is
1581  * idempotent; if the passed in lwb has already been opened, this
1582  * function is essentially a no-op.
1583  */
1584 static void
1585 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1586 {
1587 	zbookmark_phys_t zb;
1588 	zio_priority_t prio;
1589 
1590 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1591 	ASSERT3P(lwb, !=, NULL);
1592 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1593 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1594 
1595 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1596 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1597 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1598 
1599 	/* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1600 	mutex_enter(&zilog->zl_lock);
1601 	if (lwb->lwb_root_zio == NULL) {
1602 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1603 		    BP_GET_LSIZE(&lwb->lwb_blk));
1604 
1605 		if (!lwb->lwb_fastwrite) {
1606 			metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1607 			lwb->lwb_fastwrite = 1;
1608 		}
1609 
1610 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1611 			prio = ZIO_PRIORITY_SYNC_WRITE;
1612 		else
1613 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1614 
1615 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1616 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1617 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1618 
1619 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1620 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1621 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1622 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb);
1623 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1624 
1625 		lwb->lwb_state = LWB_STATE_OPENED;
1626 
1627 		zil_lwb_set_zio_dependency(zilog, lwb);
1628 		zilog->zl_last_lwb_opened = lwb;
1629 	}
1630 	mutex_exit(&zilog->zl_lock);
1631 
1632 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1633 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1634 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1635 }
1636 
1637 /*
1638  * Define a limited set of intent log block sizes.
1639  *
1640  * These must be a multiple of 4KB. Note only the amount used (again
1641  * aligned to 4KB) actually gets written. However, we can't always just
1642  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1643  */
1644 static const struct {
1645 	uint64_t	limit;
1646 	uint64_t	blksz;
1647 } zil_block_buckets[] = {
1648 	{ 4096,		4096 },			/* non TX_WRITE */
1649 	{ 8192 + 4096,	8192 + 4096 },		/* database */
1650 	{ 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1651 	{ 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1652 	{ 131072,	131072 },		/* < 128KB writes */
1653 	{ 131072 +4096,	65536 + 4096 },		/* 128KB writes */
1654 	{ UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1655 };
1656 
1657 /*
1658  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1659  * initialized.  Otherwise this should not be used directly; see
1660  * zl_max_block_size instead.
1661  */
1662 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1663 
1664 /*
1665  * Start a log block write and advance to the next log block.
1666  * Calls are serialized.
1667  */
1668 static lwb_t *
1669 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1670 {
1671 	lwb_t *nlwb = NULL;
1672 	zil_chain_t *zilc;
1673 	spa_t *spa = zilog->zl_spa;
1674 	blkptr_t *bp;
1675 	dmu_tx_t *tx;
1676 	uint64_t txg;
1677 	uint64_t zil_blksz, wsz;
1678 	int i, error;
1679 	boolean_t slog;
1680 
1681 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1682 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1683 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1684 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1685 
1686 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1687 		zilc = (zil_chain_t *)lwb->lwb_buf;
1688 		bp = &zilc->zc_next_blk;
1689 	} else {
1690 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1691 		bp = &zilc->zc_next_blk;
1692 	}
1693 
1694 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1695 
1696 	/*
1697 	 * Allocate the next block and save its address in this block
1698 	 * before writing it in order to establish the log chain.
1699 	 */
1700 
1701 	tx = dmu_tx_create(zilog->zl_os);
1702 
1703 	/*
1704 	 * Since we are not going to create any new dirty data, and we
1705 	 * can even help with clearing the existing dirty data, we
1706 	 * should not be subject to the dirty data based delays. We
1707 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1708 	 */
1709 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1710 
1711 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1712 	txg = dmu_tx_get_txg(tx);
1713 
1714 	mutex_enter(&zilog->zl_lwb_io_lock);
1715 	lwb->lwb_issued_txg = txg;
1716 	zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1717 	zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1718 	mutex_exit(&zilog->zl_lwb_io_lock);
1719 
1720 	/*
1721 	 * Log blocks are pre-allocated. Here we select the size of the next
1722 	 * block, based on size used in the last block.
1723 	 * - first find the smallest bucket that will fit the block from a
1724 	 *   limited set of block sizes. This is because it's faster to write
1725 	 *   blocks allocated from the same metaslab as they are adjacent or
1726 	 *   close.
1727 	 * - next find the maximum from the new suggested size and an array of
1728 	 *   previous sizes. This lessens a picket fence effect of wrongly
1729 	 *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1730 	 *   requests.
1731 	 *
1732 	 * Note we only write what is used, but we can't just allocate
1733 	 * the maximum block size because we can exhaust the available
1734 	 * pool log space.
1735 	 */
1736 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1737 	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1738 		continue;
1739 	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1740 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1741 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1742 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1743 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1744 
1745 	BP_ZERO(bp);
1746 	error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1747 	if (slog) {
1748 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
1749 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
1750 		    lwb->lwb_nused);
1751 	} else {
1752 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
1753 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
1754 		    lwb->lwb_nused);
1755 	}
1756 	if (error == 0) {
1757 		ASSERT3U(bp->blk_birth, ==, txg);
1758 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1759 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1760 
1761 		/*
1762 		 * Allocate a new log write block (lwb).
1763 		 */
1764 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1765 	}
1766 
1767 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1768 		/* For Slim ZIL only write what is used. */
1769 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1770 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1771 		zio_shrink(lwb->lwb_write_zio, wsz);
1772 
1773 	} else {
1774 		wsz = lwb->lwb_sz;
1775 	}
1776 
1777 	zilc->zc_pad = 0;
1778 	zilc->zc_nused = lwb->lwb_nused;
1779 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1780 
1781 	/*
1782 	 * clear unused data for security
1783 	 */
1784 	memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1785 
1786 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1787 
1788 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1789 	lwb->lwb_issued_timestamp = gethrtime();
1790 	lwb->lwb_state = LWB_STATE_ISSUED;
1791 
1792 	zio_nowait(lwb->lwb_root_zio);
1793 	zio_nowait(lwb->lwb_write_zio);
1794 
1795 	dmu_tx_commit(tx);
1796 
1797 	/*
1798 	 * If there was an allocation failure then nlwb will be null which
1799 	 * forces a txg_wait_synced().
1800 	 */
1801 	return (nlwb);
1802 }
1803 
1804 /*
1805  * Maximum amount of write data that can be put into single log block.
1806  */
1807 uint64_t
1808 zil_max_log_data(zilog_t *zilog)
1809 {
1810 	return (zilog->zl_max_block_size -
1811 	    sizeof (zil_chain_t) - sizeof (lr_write_t));
1812 }
1813 
1814 /*
1815  * Maximum amount of log space we agree to waste to reduce number of
1816  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1817  */
1818 static inline uint64_t
1819 zil_max_waste_space(zilog_t *zilog)
1820 {
1821 	return (zil_max_log_data(zilog) / 8);
1822 }
1823 
1824 /*
1825  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1826  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1827  * maximum sized log block, because each WR_COPIED record must fit in a
1828  * single log block.  For space efficiency, we want to fit two records into a
1829  * max-sized log block.
1830  */
1831 uint64_t
1832 zil_max_copied_data(zilog_t *zilog)
1833 {
1834 	return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1835 	    sizeof (lr_write_t));
1836 }
1837 
1838 static lwb_t *
1839 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1840 {
1841 	lr_t *lrcb, *lrc;
1842 	lr_write_t *lrwb, *lrw;
1843 	char *lr_buf;
1844 	uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data;
1845 
1846 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1847 	ASSERT3P(lwb, !=, NULL);
1848 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1849 
1850 	zil_lwb_write_open(zilog, lwb);
1851 
1852 	lrc = &itx->itx_lr;
1853 	lrw = (lr_write_t *)lrc;
1854 
1855 	/*
1856 	 * A commit itx doesn't represent any on-disk state; instead
1857 	 * it's simply used as a place holder on the commit list, and
1858 	 * provides a mechanism for attaching a "commit waiter" onto the
1859 	 * correct lwb (such that the waiter can be signalled upon
1860 	 * completion of that lwb). Thus, we don't process this itx's
1861 	 * log record if it's a commit itx (these itx's don't have log
1862 	 * records), and instead link the itx's waiter onto the lwb's
1863 	 * list of waiters.
1864 	 *
1865 	 * For more details, see the comment above zil_commit().
1866 	 */
1867 	if (lrc->lrc_txtype == TX_COMMIT) {
1868 		mutex_enter(&zilog->zl_lock);
1869 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1870 		itx->itx_private = NULL;
1871 		mutex_exit(&zilog->zl_lock);
1872 		return (lwb);
1873 	}
1874 
1875 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1876 		dlen = P2ROUNDUP_TYPED(
1877 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1878 		dpad = dlen - lrw->lr_length;
1879 	} else {
1880 		dlen = dpad = 0;
1881 	}
1882 	reclen = lrc->lrc_reclen;
1883 	zilog->zl_cur_used += (reclen + dlen);
1884 	txg = lrc->lrc_txg;
1885 
1886 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1887 
1888 cont:
1889 	/*
1890 	 * If this record won't fit in the current log block, start a new one.
1891 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1892 	 */
1893 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1894 	max_log_data = zil_max_log_data(zilog);
1895 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1896 	    lwb_sp < zil_max_waste_space(zilog) &&
1897 	    (dlen % max_log_data == 0 ||
1898 	    lwb_sp < reclen + dlen % max_log_data))) {
1899 		lwb = zil_lwb_write_issue(zilog, lwb);
1900 		if (lwb == NULL)
1901 			return (NULL);
1902 		zil_lwb_write_open(zilog, lwb);
1903 		ASSERT(LWB_EMPTY(lwb));
1904 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1905 
1906 		/*
1907 		 * There must be enough space in the new, empty log block to
1908 		 * hold reclen.  For WR_COPIED, we need to fit the whole
1909 		 * record in one block, and reclen is the header size + the
1910 		 * data size. For WR_NEED_COPY, we can create multiple
1911 		 * records, splitting the data into multiple blocks, so we
1912 		 * only need to fit one word of data per block; in this case
1913 		 * reclen is just the header size (no data).
1914 		 */
1915 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1916 	}
1917 
1918 	dnow = MIN(dlen, lwb_sp - reclen);
1919 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1920 	memcpy(lr_buf, lrc, reclen);
1921 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1922 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1923 
1924 	ZIL_STAT_BUMP(zilog, zil_itx_count);
1925 
1926 	/*
1927 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1928 	 */
1929 	if (lrc->lrc_txtype == TX_WRITE) {
1930 		if (txg > spa_freeze_txg(zilog->zl_spa))
1931 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1932 		if (itx->itx_wr_state == WR_COPIED) {
1933 			ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
1934 			ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
1935 			    lrw->lr_length);
1936 		} else {
1937 			char *dbuf;
1938 			int error;
1939 
1940 			if (itx->itx_wr_state == WR_NEED_COPY) {
1941 				dbuf = lr_buf + reclen;
1942 				lrcb->lrc_reclen += dnow;
1943 				if (lrwb->lr_length > dnow)
1944 					lrwb->lr_length = dnow;
1945 				lrw->lr_offset += dnow;
1946 				lrw->lr_length -= dnow;
1947 				ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
1948 				ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
1949 				    dnow);
1950 			} else {
1951 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
1952 				dbuf = NULL;
1953 				ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
1954 				ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
1955 				    lrw->lr_length);
1956 			}
1957 
1958 			/*
1959 			 * We pass in the "lwb_write_zio" rather than
1960 			 * "lwb_root_zio" so that the "lwb_write_zio"
1961 			 * becomes the parent of any zio's created by
1962 			 * the "zl_get_data" callback. The vdevs are
1963 			 * flushed after the "lwb_write_zio" completes,
1964 			 * so we want to make sure that completion
1965 			 * callback waits for these additional zio's,
1966 			 * such that the vdevs used by those zio's will
1967 			 * be included in the lwb's vdev tree, and those
1968 			 * vdevs will be properly flushed. If we passed
1969 			 * in "lwb_root_zio" here, then these additional
1970 			 * vdevs may not be flushed; e.g. if these zio's
1971 			 * completed after "lwb_write_zio" completed.
1972 			 */
1973 			error = zilog->zl_get_data(itx->itx_private,
1974 			    itx->itx_gen, lrwb, dbuf, lwb,
1975 			    lwb->lwb_write_zio);
1976 			if (dbuf != NULL && error == 0 && dnow == dlen)
1977 				/* Zero any padding bytes in the last block. */
1978 				memset((char *)dbuf + lrwb->lr_length, 0, dpad);
1979 
1980 			if (error == EIO) {
1981 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1982 				return (lwb);
1983 			}
1984 			if (error != 0) {
1985 				ASSERT(error == ENOENT || error == EEXIST ||
1986 				    error == EALREADY);
1987 				return (lwb);
1988 			}
1989 		}
1990 	}
1991 
1992 	/*
1993 	 * We're actually making an entry, so update lrc_seq to be the
1994 	 * log record sequence number.  Note that this is generally not
1995 	 * equal to the itx sequence number because not all transactions
1996 	 * are synchronous, and sometimes spa_sync() gets there first.
1997 	 */
1998 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1999 	lwb->lwb_nused += reclen + dnow;
2000 
2001 	zil_lwb_add_txg(lwb, txg);
2002 
2003 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
2004 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2005 
2006 	dlen -= dnow;
2007 	if (dlen > 0) {
2008 		zilog->zl_cur_used += reclen;
2009 		goto cont;
2010 	}
2011 
2012 	return (lwb);
2013 }
2014 
2015 itx_t *
2016 zil_itx_create(uint64_t txtype, size_t olrsize)
2017 {
2018 	size_t itxsize, lrsize;
2019 	itx_t *itx;
2020 
2021 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2022 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
2023 
2024 	itx = zio_data_buf_alloc(itxsize);
2025 	itx->itx_lr.lrc_txtype = txtype;
2026 	itx->itx_lr.lrc_reclen = lrsize;
2027 	itx->itx_lr.lrc_seq = 0;	/* defensive */
2028 	memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2029 	itx->itx_sync = B_TRUE;		/* default is synchronous */
2030 	itx->itx_callback = NULL;
2031 	itx->itx_callback_data = NULL;
2032 	itx->itx_size = itxsize;
2033 
2034 	return (itx);
2035 }
2036 
2037 void
2038 zil_itx_destroy(itx_t *itx)
2039 {
2040 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2041 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2042 
2043 	if (itx->itx_callback != NULL)
2044 		itx->itx_callback(itx->itx_callback_data);
2045 
2046 	zio_data_buf_free(itx, itx->itx_size);
2047 }
2048 
2049 /*
2050  * Free up the sync and async itxs. The itxs_t has already been detached
2051  * so no locks are needed.
2052  */
2053 static void
2054 zil_itxg_clean(void *arg)
2055 {
2056 	itx_t *itx;
2057 	list_t *list;
2058 	avl_tree_t *t;
2059 	void *cookie;
2060 	itxs_t *itxs = arg;
2061 	itx_async_node_t *ian;
2062 
2063 	list = &itxs->i_sync_list;
2064 	while ((itx = list_head(list)) != NULL) {
2065 		/*
2066 		 * In the general case, commit itxs will not be found
2067 		 * here, as they'll be committed to an lwb via
2068 		 * zil_lwb_commit(), and free'd in that function. Having
2069 		 * said that, it is still possible for commit itxs to be
2070 		 * found here, due to the following race:
2071 		 *
2072 		 *	- a thread calls zil_commit() which assigns the
2073 		 *	  commit itx to a per-txg i_sync_list
2074 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
2075 		 *	  while the waiter is still on the i_sync_list
2076 		 *
2077 		 * There's nothing to prevent syncing the txg while the
2078 		 * waiter is on the i_sync_list. This normally doesn't
2079 		 * happen because spa_sync() is slower than zil_commit(),
2080 		 * but if zil_commit() calls txg_wait_synced() (e.g.
2081 		 * because zil_create() or zil_commit_writer_stall() is
2082 		 * called) we will hit this case.
2083 		 */
2084 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2085 			zil_commit_waiter_skip(itx->itx_private);
2086 
2087 		list_remove(list, itx);
2088 		zil_itx_destroy(itx);
2089 	}
2090 
2091 	cookie = NULL;
2092 	t = &itxs->i_async_tree;
2093 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2094 		list = &ian->ia_list;
2095 		while ((itx = list_head(list)) != NULL) {
2096 			list_remove(list, itx);
2097 			/* commit itxs should never be on the async lists. */
2098 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2099 			zil_itx_destroy(itx);
2100 		}
2101 		list_destroy(list);
2102 		kmem_free(ian, sizeof (itx_async_node_t));
2103 	}
2104 	avl_destroy(t);
2105 
2106 	kmem_free(itxs, sizeof (itxs_t));
2107 }
2108 
2109 static int
2110 zil_aitx_compare(const void *x1, const void *x2)
2111 {
2112 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2113 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2114 
2115 	return (TREE_CMP(o1, o2));
2116 }
2117 
2118 /*
2119  * Remove all async itx with the given oid.
2120  */
2121 void
2122 zil_remove_async(zilog_t *zilog, uint64_t oid)
2123 {
2124 	uint64_t otxg, txg;
2125 	itx_async_node_t *ian;
2126 	avl_tree_t *t;
2127 	avl_index_t where;
2128 	list_t clean_list;
2129 	itx_t *itx;
2130 
2131 	ASSERT(oid != 0);
2132 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2133 
2134 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2135 		otxg = ZILTEST_TXG;
2136 	else
2137 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2138 
2139 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2140 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2141 
2142 		mutex_enter(&itxg->itxg_lock);
2143 		if (itxg->itxg_txg != txg) {
2144 			mutex_exit(&itxg->itxg_lock);
2145 			continue;
2146 		}
2147 
2148 		/*
2149 		 * Locate the object node and append its list.
2150 		 */
2151 		t = &itxg->itxg_itxs->i_async_tree;
2152 		ian = avl_find(t, &oid, &where);
2153 		if (ian != NULL)
2154 			list_move_tail(&clean_list, &ian->ia_list);
2155 		mutex_exit(&itxg->itxg_lock);
2156 	}
2157 	while ((itx = list_head(&clean_list)) != NULL) {
2158 		list_remove(&clean_list, itx);
2159 		/* commit itxs should never be on the async lists. */
2160 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2161 		zil_itx_destroy(itx);
2162 	}
2163 	list_destroy(&clean_list);
2164 }
2165 
2166 void
2167 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2168 {
2169 	uint64_t txg;
2170 	itxg_t *itxg;
2171 	itxs_t *itxs, *clean = NULL;
2172 
2173 	/*
2174 	 * Ensure the data of a renamed file is committed before the rename.
2175 	 */
2176 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2177 		zil_async_to_sync(zilog, itx->itx_oid);
2178 
2179 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2180 		txg = ZILTEST_TXG;
2181 	else
2182 		txg = dmu_tx_get_txg(tx);
2183 
2184 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
2185 	mutex_enter(&itxg->itxg_lock);
2186 	itxs = itxg->itxg_itxs;
2187 	if (itxg->itxg_txg != txg) {
2188 		if (itxs != NULL) {
2189 			/*
2190 			 * The zil_clean callback hasn't got around to cleaning
2191 			 * this itxg. Save the itxs for release below.
2192 			 * This should be rare.
2193 			 */
2194 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2195 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2196 			clean = itxg->itxg_itxs;
2197 		}
2198 		itxg->itxg_txg = txg;
2199 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2200 		    KM_SLEEP);
2201 
2202 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2203 		    offsetof(itx_t, itx_node));
2204 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2205 		    sizeof (itx_async_node_t),
2206 		    offsetof(itx_async_node_t, ia_node));
2207 	}
2208 	if (itx->itx_sync) {
2209 		list_insert_tail(&itxs->i_sync_list, itx);
2210 	} else {
2211 		avl_tree_t *t = &itxs->i_async_tree;
2212 		uint64_t foid =
2213 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2214 		itx_async_node_t *ian;
2215 		avl_index_t where;
2216 
2217 		ian = avl_find(t, &foid, &where);
2218 		if (ian == NULL) {
2219 			ian = kmem_alloc(sizeof (itx_async_node_t),
2220 			    KM_SLEEP);
2221 			list_create(&ian->ia_list, sizeof (itx_t),
2222 			    offsetof(itx_t, itx_node));
2223 			ian->ia_foid = foid;
2224 			avl_insert(t, ian, where);
2225 		}
2226 		list_insert_tail(&ian->ia_list, itx);
2227 	}
2228 
2229 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2230 
2231 	/*
2232 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2233 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2234 	 * need to be careful to always dirty the ZIL using the "real"
2235 	 * TXG (not itxg_txg) even when the SPA is frozen.
2236 	 */
2237 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2238 	mutex_exit(&itxg->itxg_lock);
2239 
2240 	/* Release the old itxs now we've dropped the lock */
2241 	if (clean != NULL)
2242 		zil_itxg_clean(clean);
2243 }
2244 
2245 /*
2246  * If there are any in-memory intent log transactions which have now been
2247  * synced then start up a taskq to free them. We should only do this after we
2248  * have written out the uberblocks (i.e. txg has been committed) so that
2249  * don't inadvertently clean out in-memory log records that would be required
2250  * by zil_commit().
2251  */
2252 void
2253 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2254 {
2255 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2256 	itxs_t *clean_me;
2257 
2258 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2259 
2260 	mutex_enter(&itxg->itxg_lock);
2261 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2262 		mutex_exit(&itxg->itxg_lock);
2263 		return;
2264 	}
2265 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2266 	ASSERT3U(itxg->itxg_txg, !=, 0);
2267 	clean_me = itxg->itxg_itxs;
2268 	itxg->itxg_itxs = NULL;
2269 	itxg->itxg_txg = 0;
2270 	mutex_exit(&itxg->itxg_lock);
2271 	/*
2272 	 * Preferably start a task queue to free up the old itxs but
2273 	 * if taskq_dispatch can't allocate resources to do that then
2274 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2275 	 * created a bad performance problem.
2276 	 */
2277 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2278 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2279 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2280 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2281 	if (id == TASKQID_INVALID)
2282 		zil_itxg_clean(clean_me);
2283 }
2284 
2285 /*
2286  * This function will traverse the queue of itxs that need to be
2287  * committed, and move them onto the ZIL's zl_itx_commit_list.
2288  */
2289 static void
2290 zil_get_commit_list(zilog_t *zilog)
2291 {
2292 	uint64_t otxg, txg;
2293 	list_t *commit_list = &zilog->zl_itx_commit_list;
2294 
2295 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2296 
2297 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2298 		otxg = ZILTEST_TXG;
2299 	else
2300 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2301 
2302 	/*
2303 	 * This is inherently racy, since there is nothing to prevent
2304 	 * the last synced txg from changing. That's okay since we'll
2305 	 * only commit things in the future.
2306 	 */
2307 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2308 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2309 
2310 		mutex_enter(&itxg->itxg_lock);
2311 		if (itxg->itxg_txg != txg) {
2312 			mutex_exit(&itxg->itxg_lock);
2313 			continue;
2314 		}
2315 
2316 		/*
2317 		 * If we're adding itx records to the zl_itx_commit_list,
2318 		 * then the zil better be dirty in this "txg". We can assert
2319 		 * that here since we're holding the itxg_lock which will
2320 		 * prevent spa_sync from cleaning it. Once we add the itxs
2321 		 * to the zl_itx_commit_list we must commit it to disk even
2322 		 * if it's unnecessary (i.e. the txg was synced).
2323 		 */
2324 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2325 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2326 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2327 
2328 		mutex_exit(&itxg->itxg_lock);
2329 	}
2330 }
2331 
2332 /*
2333  * Move the async itxs for a specified object to commit into sync lists.
2334  */
2335 void
2336 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2337 {
2338 	uint64_t otxg, txg;
2339 	itx_async_node_t *ian;
2340 	avl_tree_t *t;
2341 	avl_index_t where;
2342 
2343 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2344 		otxg = ZILTEST_TXG;
2345 	else
2346 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2347 
2348 	/*
2349 	 * This is inherently racy, since there is nothing to prevent
2350 	 * the last synced txg from changing.
2351 	 */
2352 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2353 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2354 
2355 		mutex_enter(&itxg->itxg_lock);
2356 		if (itxg->itxg_txg != txg) {
2357 			mutex_exit(&itxg->itxg_lock);
2358 			continue;
2359 		}
2360 
2361 		/*
2362 		 * If a foid is specified then find that node and append its
2363 		 * list. Otherwise walk the tree appending all the lists
2364 		 * to the sync list. We add to the end rather than the
2365 		 * beginning to ensure the create has happened.
2366 		 */
2367 		t = &itxg->itxg_itxs->i_async_tree;
2368 		if (foid != 0) {
2369 			ian = avl_find(t, &foid, &where);
2370 			if (ian != NULL) {
2371 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2372 				    &ian->ia_list);
2373 			}
2374 		} else {
2375 			void *cookie = NULL;
2376 
2377 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2378 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2379 				    &ian->ia_list);
2380 				list_destroy(&ian->ia_list);
2381 				kmem_free(ian, sizeof (itx_async_node_t));
2382 			}
2383 		}
2384 		mutex_exit(&itxg->itxg_lock);
2385 	}
2386 }
2387 
2388 /*
2389  * This function will prune commit itxs that are at the head of the
2390  * commit list (it won't prune past the first non-commit itx), and
2391  * either: a) attach them to the last lwb that's still pending
2392  * completion, or b) skip them altogether.
2393  *
2394  * This is used as a performance optimization to prevent commit itxs
2395  * from generating new lwbs when it's unnecessary to do so.
2396  */
2397 static void
2398 zil_prune_commit_list(zilog_t *zilog)
2399 {
2400 	itx_t *itx;
2401 
2402 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2403 
2404 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2405 		lr_t *lrc = &itx->itx_lr;
2406 		if (lrc->lrc_txtype != TX_COMMIT)
2407 			break;
2408 
2409 		mutex_enter(&zilog->zl_lock);
2410 
2411 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2412 		if (last_lwb == NULL ||
2413 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2414 			/*
2415 			 * All of the itxs this waiter was waiting on
2416 			 * must have already completed (or there were
2417 			 * never any itx's for it to wait on), so it's
2418 			 * safe to skip this waiter and mark it done.
2419 			 */
2420 			zil_commit_waiter_skip(itx->itx_private);
2421 		} else {
2422 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2423 			itx->itx_private = NULL;
2424 		}
2425 
2426 		mutex_exit(&zilog->zl_lock);
2427 
2428 		list_remove(&zilog->zl_itx_commit_list, itx);
2429 		zil_itx_destroy(itx);
2430 	}
2431 
2432 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2433 }
2434 
2435 static void
2436 zil_commit_writer_stall(zilog_t *zilog)
2437 {
2438 	/*
2439 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2440 	 * disk, we must call txg_wait_synced() to ensure all of the
2441 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2442 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2443 	 * to zil_process_commit_list()) will have to call zil_create(),
2444 	 * and start a new ZIL chain.
2445 	 *
2446 	 * Since zil_alloc_zil() failed, the lwb that was previously
2447 	 * issued does not have a pointer to the "next" lwb on disk.
2448 	 * Thus, if another ZIL writer thread was to allocate the "next"
2449 	 * on-disk lwb, that block could be leaked in the event of a
2450 	 * crash (because the previous lwb on-disk would not point to
2451 	 * it).
2452 	 *
2453 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2454 	 * ensure no new threads enter zil_process_commit_list() until
2455 	 * all lwb's in the zl_lwb_list have been synced and freed
2456 	 * (which is achieved via the txg_wait_synced() call).
2457 	 */
2458 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2459 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2460 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2461 }
2462 
2463 /*
2464  * This function will traverse the commit list, creating new lwbs as
2465  * needed, and committing the itxs from the commit list to these newly
2466  * created lwbs. Additionally, as a new lwb is created, the previous
2467  * lwb will be issued to the zio layer to be written to disk.
2468  */
2469 static void
2470 zil_process_commit_list(zilog_t *zilog)
2471 {
2472 	spa_t *spa = zilog->zl_spa;
2473 	list_t nolwb_itxs;
2474 	list_t nolwb_waiters;
2475 	lwb_t *lwb, *plwb;
2476 	itx_t *itx;
2477 	boolean_t first = B_TRUE;
2478 
2479 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2480 
2481 	/*
2482 	 * Return if there's nothing to commit before we dirty the fs by
2483 	 * calling zil_create().
2484 	 */
2485 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2486 		return;
2487 
2488 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2489 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2490 	    offsetof(zil_commit_waiter_t, zcw_node));
2491 
2492 	lwb = list_tail(&zilog->zl_lwb_list);
2493 	if (lwb == NULL) {
2494 		lwb = zil_create(zilog);
2495 	} else {
2496 		/*
2497 		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2498 		 * have already been created (zl_lwb_list not empty).
2499 		 */
2500 		zil_commit_activate_saxattr_feature(zilog);
2501 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2502 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2503 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2504 		first = (lwb->lwb_state != LWB_STATE_OPENED) &&
2505 		    ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) == NULL ||
2506 		    plwb->lwb_state == LWB_STATE_FLUSH_DONE);
2507 	}
2508 
2509 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2510 		lr_t *lrc = &itx->itx_lr;
2511 		uint64_t txg = lrc->lrc_txg;
2512 
2513 		ASSERT3U(txg, !=, 0);
2514 
2515 		if (lrc->lrc_txtype == TX_COMMIT) {
2516 			DTRACE_PROBE2(zil__process__commit__itx,
2517 			    zilog_t *, zilog, itx_t *, itx);
2518 		} else {
2519 			DTRACE_PROBE2(zil__process__normal__itx,
2520 			    zilog_t *, zilog, itx_t *, itx);
2521 		}
2522 
2523 		list_remove(&zilog->zl_itx_commit_list, itx);
2524 
2525 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2526 		boolean_t frozen = txg > spa_freeze_txg(spa);
2527 
2528 		/*
2529 		 * If the txg of this itx has already been synced out, then
2530 		 * we don't need to commit this itx to an lwb. This is
2531 		 * because the data of this itx will have already been
2532 		 * written to the main pool. This is inherently racy, and
2533 		 * it's still ok to commit an itx whose txg has already
2534 		 * been synced; this will result in a write that's
2535 		 * unnecessary, but will do no harm.
2536 		 *
2537 		 * With that said, we always want to commit TX_COMMIT itxs
2538 		 * to an lwb, regardless of whether or not that itx's txg
2539 		 * has been synced out. We do this to ensure any OPENED lwb
2540 		 * will always have at least one zil_commit_waiter_t linked
2541 		 * to the lwb.
2542 		 *
2543 		 * As a counter-example, if we skipped TX_COMMIT itx's
2544 		 * whose txg had already been synced, the following
2545 		 * situation could occur if we happened to be racing with
2546 		 * spa_sync:
2547 		 *
2548 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2549 		 *    itx's txg is 10 and the last synced txg is 9.
2550 		 * 2. spa_sync finishes syncing out txg 10.
2551 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2552 		 *    whose txg is 10, so we skip it rather than committing
2553 		 *    it to the lwb used in (1).
2554 		 *
2555 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2556 		 * itx in the commit list, than it's possible for the lwb
2557 		 * used in (1) to remain in the OPENED state indefinitely.
2558 		 *
2559 		 * To prevent the above scenario from occurring, ensuring
2560 		 * that once an lwb is OPENED it will transition to ISSUED
2561 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2562 		 * an lwb here, even if that itx's txg has already been
2563 		 * synced.
2564 		 *
2565 		 * Finally, if the pool is frozen, we _always_ commit the
2566 		 * itx.  The point of freezing the pool is to prevent data
2567 		 * from being written to the main pool via spa_sync, and
2568 		 * instead rely solely on the ZIL to persistently store the
2569 		 * data; i.e.  when the pool is frozen, the last synced txg
2570 		 * value can't be trusted.
2571 		 */
2572 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2573 			if (lwb != NULL) {
2574 				lwb = zil_lwb_commit(zilog, itx, lwb);
2575 
2576 				if (lwb == NULL)
2577 					list_insert_tail(&nolwb_itxs, itx);
2578 				else
2579 					list_insert_tail(&lwb->lwb_itxs, itx);
2580 			} else {
2581 				if (lrc->lrc_txtype == TX_COMMIT) {
2582 					zil_commit_waiter_link_nolwb(
2583 					    itx->itx_private, &nolwb_waiters);
2584 				}
2585 
2586 				list_insert_tail(&nolwb_itxs, itx);
2587 			}
2588 		} else {
2589 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2590 			zil_itx_destroy(itx);
2591 		}
2592 	}
2593 
2594 	if (lwb == NULL) {
2595 		/*
2596 		 * This indicates zio_alloc_zil() failed to allocate the
2597 		 * "next" lwb on-disk. When this happens, we must stall
2598 		 * the ZIL write pipeline; see the comment within
2599 		 * zil_commit_writer_stall() for more details.
2600 		 */
2601 		zil_commit_writer_stall(zilog);
2602 
2603 		/*
2604 		 * Additionally, we have to signal and mark the "nolwb"
2605 		 * waiters as "done" here, since without an lwb, we
2606 		 * can't do this via zil_lwb_flush_vdevs_done() like
2607 		 * normal.
2608 		 */
2609 		zil_commit_waiter_t *zcw;
2610 		while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2611 			zil_commit_waiter_skip(zcw);
2612 			list_remove(&nolwb_waiters, zcw);
2613 		}
2614 
2615 		/*
2616 		 * And finally, we have to destroy the itx's that
2617 		 * couldn't be committed to an lwb; this will also call
2618 		 * the itx's callback if one exists for the itx.
2619 		 */
2620 		while ((itx = list_head(&nolwb_itxs)) != NULL) {
2621 			list_remove(&nolwb_itxs, itx);
2622 			zil_itx_destroy(itx);
2623 		}
2624 	} else {
2625 		ASSERT(list_is_empty(&nolwb_waiters));
2626 		ASSERT3P(lwb, !=, NULL);
2627 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2628 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2629 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2630 
2631 		/*
2632 		 * At this point, the ZIL block pointed at by the "lwb"
2633 		 * variable is in one of the following states: "closed"
2634 		 * or "open".
2635 		 *
2636 		 * If it's "closed", then no itxs have been committed to
2637 		 * it, so there's no point in issuing its zio (i.e. it's
2638 		 * "empty").
2639 		 *
2640 		 * If it's "open", then it contains one or more itxs that
2641 		 * eventually need to be committed to stable storage. In
2642 		 * this case we intentionally do not issue the lwb's zio
2643 		 * to disk yet, and instead rely on one of the following
2644 		 * two mechanisms for issuing the zio:
2645 		 *
2646 		 * 1. Ideally, there will be more ZIL activity occurring
2647 		 * on the system, such that this function will be
2648 		 * immediately called again (not necessarily by the same
2649 		 * thread) and this lwb's zio will be issued via
2650 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2651 		 * be "full" when it is issued to disk, and we'll make
2652 		 * use of the lwb's size the best we can.
2653 		 *
2654 		 * 2. If there isn't sufficient ZIL activity occurring on
2655 		 * the system, such that this lwb's zio isn't issued via
2656 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2657 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2658 		 * to be "full" by the time its zio is issued, and means
2659 		 * the size of the lwb was "too large" given the amount
2660 		 * of ZIL activity occurring on the system at that time.
2661 		 *
2662 		 * We do this for a couple of reasons:
2663 		 *
2664 		 * 1. To try and reduce the number of IOPs needed to
2665 		 * write the same number of itxs. If an lwb has space
2666 		 * available in its buffer for more itxs, and more itxs
2667 		 * will be committed relatively soon (relative to the
2668 		 * latency of performing a write), then it's beneficial
2669 		 * to wait for these "next" itxs. This way, more itxs
2670 		 * can be committed to stable storage with fewer writes.
2671 		 *
2672 		 * 2. To try and use the largest lwb block size that the
2673 		 * incoming rate of itxs can support. Again, this is to
2674 		 * try and pack as many itxs into as few lwbs as
2675 		 * possible, without significantly impacting the latency
2676 		 * of each individual itx.
2677 		 *
2678 		 * If we had no already running or open LWBs, it can be
2679 		 * the workload is single-threaded.  And if the ZIL write
2680 		 * latency is very small or if the LWB is almost full, it
2681 		 * may be cheaper to bypass the delay.
2682 		 */
2683 		if (lwb->lwb_state == LWB_STATE_OPENED && first) {
2684 			hrtime_t sleep = zilog->zl_last_lwb_latency *
2685 			    zfs_commit_timeout_pct / 100;
2686 			if (sleep < zil_min_commit_timeout ||
2687 			    lwb->lwb_sz - lwb->lwb_nused < lwb->lwb_sz / 8) {
2688 				lwb = zil_lwb_write_issue(zilog, lwb);
2689 				zilog->zl_cur_used = 0;
2690 				if (lwb == NULL)
2691 					zil_commit_writer_stall(zilog);
2692 			}
2693 		}
2694 	}
2695 }
2696 
2697 /*
2698  * This function is responsible for ensuring the passed in commit waiter
2699  * (and associated commit itx) is committed to an lwb. If the waiter is
2700  * not already committed to an lwb, all itxs in the zilog's queue of
2701  * itxs will be processed. The assumption is the passed in waiter's
2702  * commit itx will found in the queue just like the other non-commit
2703  * itxs, such that when the entire queue is processed, the waiter will
2704  * have been committed to an lwb.
2705  *
2706  * The lwb associated with the passed in waiter is not guaranteed to
2707  * have been issued by the time this function completes. If the lwb is
2708  * not issued, we rely on future calls to zil_commit_writer() to issue
2709  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2710  */
2711 static void
2712 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2713 {
2714 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2715 	ASSERT(spa_writeable(zilog->zl_spa));
2716 
2717 	mutex_enter(&zilog->zl_issuer_lock);
2718 
2719 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2720 		/*
2721 		 * It's possible that, while we were waiting to acquire
2722 		 * the "zl_issuer_lock", another thread committed this
2723 		 * waiter to an lwb. If that occurs, we bail out early,
2724 		 * without processing any of the zilog's queue of itxs.
2725 		 *
2726 		 * On certain workloads and system configurations, the
2727 		 * "zl_issuer_lock" can become highly contended. In an
2728 		 * attempt to reduce this contention, we immediately drop
2729 		 * the lock if the waiter has already been processed.
2730 		 *
2731 		 * We've measured this optimization to reduce CPU spent
2732 		 * contending on this lock by up to 5%, using a system
2733 		 * with 32 CPUs, low latency storage (~50 usec writes),
2734 		 * and 1024 threads performing sync writes.
2735 		 */
2736 		goto out;
2737 	}
2738 
2739 	ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
2740 
2741 	zil_get_commit_list(zilog);
2742 	zil_prune_commit_list(zilog);
2743 	zil_process_commit_list(zilog);
2744 
2745 out:
2746 	mutex_exit(&zilog->zl_issuer_lock);
2747 }
2748 
2749 static void
2750 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2751 {
2752 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2753 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2754 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2755 
2756 	lwb_t *lwb = zcw->zcw_lwb;
2757 	ASSERT3P(lwb, !=, NULL);
2758 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2759 
2760 	/*
2761 	 * If the lwb has already been issued by another thread, we can
2762 	 * immediately return since there's no work to be done (the
2763 	 * point of this function is to issue the lwb). Additionally, we
2764 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2765 	 * acquiring it when it's not necessary to do so.
2766 	 */
2767 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2768 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2769 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2770 		return;
2771 
2772 	/*
2773 	 * In order to call zil_lwb_write_issue() we must hold the
2774 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2775 	 * since we're already holding the commit waiter's "zcw_lock",
2776 	 * and those two locks are acquired in the opposite order
2777 	 * elsewhere.
2778 	 */
2779 	mutex_exit(&zcw->zcw_lock);
2780 	mutex_enter(&zilog->zl_issuer_lock);
2781 	mutex_enter(&zcw->zcw_lock);
2782 
2783 	/*
2784 	 * Since we just dropped and re-acquired the commit waiter's
2785 	 * lock, we have to re-check to see if the waiter was marked
2786 	 * "done" during that process. If the waiter was marked "done",
2787 	 * the "lwb" pointer is no longer valid (it can be free'd after
2788 	 * the waiter is marked "done"), so without this check we could
2789 	 * wind up with a use-after-free error below.
2790 	 */
2791 	if (zcw->zcw_done)
2792 		goto out;
2793 
2794 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2795 
2796 	/*
2797 	 * We've already checked this above, but since we hadn't acquired
2798 	 * the zilog's zl_issuer_lock, we have to perform this check a
2799 	 * second time while holding the lock.
2800 	 *
2801 	 * We don't need to hold the zl_lock since the lwb cannot transition
2802 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2803 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2804 	 * that transition since we treat the lwb the same, whether it's in
2805 	 * the ISSUED or DONE states.
2806 	 *
2807 	 * The important thing, is we treat the lwb differently depending on
2808 	 * if it's ISSUED or OPENED, and block any other threads that might
2809 	 * attempt to issue this lwb. For that reason we hold the
2810 	 * zl_issuer_lock when checking the lwb_state; we must not call
2811 	 * zil_lwb_write_issue() if the lwb had already been issued.
2812 	 *
2813 	 * See the comment above the lwb_state_t structure definition for
2814 	 * more details on the lwb states, and locking requirements.
2815 	 */
2816 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2817 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2818 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2819 		goto out;
2820 
2821 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2822 
2823 	/*
2824 	 * As described in the comments above zil_commit_waiter() and
2825 	 * zil_process_commit_list(), we need to issue this lwb's zio
2826 	 * since we've reached the commit waiter's timeout and it still
2827 	 * hasn't been issued.
2828 	 */
2829 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2830 
2831 	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2832 
2833 	/*
2834 	 * Since the lwb's zio hadn't been issued by the time this thread
2835 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2836 	 * to influence the zil block size selection algorithm.
2837 	 *
2838 	 * By having to issue the lwb's zio here, it means the size of the
2839 	 * lwb was too large, given the incoming throughput of itxs.  By
2840 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2841 	 * block size selection algorithm, so it can take this information
2842 	 * into account, and potentially select a smaller size for the
2843 	 * next lwb block that is allocated.
2844 	 */
2845 	zilog->zl_cur_used = 0;
2846 
2847 	if (nlwb == NULL) {
2848 		/*
2849 		 * When zil_lwb_write_issue() returns NULL, this
2850 		 * indicates zio_alloc_zil() failed to allocate the
2851 		 * "next" lwb on-disk. When this occurs, the ZIL write
2852 		 * pipeline must be stalled; see the comment within the
2853 		 * zil_commit_writer_stall() function for more details.
2854 		 *
2855 		 * We must drop the commit waiter's lock prior to
2856 		 * calling zil_commit_writer_stall() or else we can wind
2857 		 * up with the following deadlock:
2858 		 *
2859 		 * - This thread is waiting for the txg to sync while
2860 		 *   holding the waiter's lock; txg_wait_synced() is
2861 		 *   used within txg_commit_writer_stall().
2862 		 *
2863 		 * - The txg can't sync because it is waiting for this
2864 		 *   lwb's zio callback to call dmu_tx_commit().
2865 		 *
2866 		 * - The lwb's zio callback can't call dmu_tx_commit()
2867 		 *   because it's blocked trying to acquire the waiter's
2868 		 *   lock, which occurs prior to calling dmu_tx_commit()
2869 		 */
2870 		mutex_exit(&zcw->zcw_lock);
2871 		zil_commit_writer_stall(zilog);
2872 		mutex_enter(&zcw->zcw_lock);
2873 	}
2874 
2875 out:
2876 	mutex_exit(&zilog->zl_issuer_lock);
2877 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2878 }
2879 
2880 /*
2881  * This function is responsible for performing the following two tasks:
2882  *
2883  * 1. its primary responsibility is to block until the given "commit
2884  *    waiter" is considered "done".
2885  *
2886  * 2. its secondary responsibility is to issue the zio for the lwb that
2887  *    the given "commit waiter" is waiting on, if this function has
2888  *    waited "long enough" and the lwb is still in the "open" state.
2889  *
2890  * Given a sufficient amount of itxs being generated and written using
2891  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2892  * function. If this does not occur, this secondary responsibility will
2893  * ensure the lwb is issued even if there is not other synchronous
2894  * activity on the system.
2895  *
2896  * For more details, see zil_process_commit_list(); more specifically,
2897  * the comment at the bottom of that function.
2898  */
2899 static void
2900 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2901 {
2902 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2903 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2904 	ASSERT(spa_writeable(zilog->zl_spa));
2905 
2906 	mutex_enter(&zcw->zcw_lock);
2907 
2908 	/*
2909 	 * The timeout is scaled based on the lwb latency to avoid
2910 	 * significantly impacting the latency of each individual itx.
2911 	 * For more details, see the comment at the bottom of the
2912 	 * zil_process_commit_list() function.
2913 	 */
2914 	int pct = MAX(zfs_commit_timeout_pct, 1);
2915 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2916 	hrtime_t wakeup = gethrtime() + sleep;
2917 	boolean_t timedout = B_FALSE;
2918 
2919 	while (!zcw->zcw_done) {
2920 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2921 
2922 		lwb_t *lwb = zcw->zcw_lwb;
2923 
2924 		/*
2925 		 * Usually, the waiter will have a non-NULL lwb field here,
2926 		 * but it's possible for it to be NULL as a result of
2927 		 * zil_commit() racing with spa_sync().
2928 		 *
2929 		 * When zil_clean() is called, it's possible for the itxg
2930 		 * list (which may be cleaned via a taskq) to contain
2931 		 * commit itxs. When this occurs, the commit waiters linked
2932 		 * off of these commit itxs will not be committed to an
2933 		 * lwb.  Additionally, these commit waiters will not be
2934 		 * marked done until zil_commit_waiter_skip() is called via
2935 		 * zil_itxg_clean().
2936 		 *
2937 		 * Thus, it's possible for this commit waiter (i.e. the
2938 		 * "zcw" variable) to be found in this "in between" state;
2939 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2940 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2941 		 */
2942 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2943 
2944 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2945 			ASSERT3B(timedout, ==, B_FALSE);
2946 
2947 			/*
2948 			 * If the lwb hasn't been issued yet, then we
2949 			 * need to wait with a timeout, in case this
2950 			 * function needs to issue the lwb after the
2951 			 * timeout is reached; responsibility (2) from
2952 			 * the comment above this function.
2953 			 */
2954 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
2955 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2956 			    CALLOUT_FLAG_ABSOLUTE);
2957 
2958 			if (rc != -1 || zcw->zcw_done)
2959 				continue;
2960 
2961 			timedout = B_TRUE;
2962 			zil_commit_waiter_timeout(zilog, zcw);
2963 
2964 			if (!zcw->zcw_done) {
2965 				/*
2966 				 * If the commit waiter has already been
2967 				 * marked "done", it's possible for the
2968 				 * waiter's lwb structure to have already
2969 				 * been freed.  Thus, we can only reliably
2970 				 * make these assertions if the waiter
2971 				 * isn't done.
2972 				 */
2973 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2974 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2975 			}
2976 		} else {
2977 			/*
2978 			 * If the lwb isn't open, then it must have already
2979 			 * been issued. In that case, there's no need to
2980 			 * use a timeout when waiting for the lwb to
2981 			 * complete.
2982 			 *
2983 			 * Additionally, if the lwb is NULL, the waiter
2984 			 * will soon be signaled and marked done via
2985 			 * zil_clean() and zil_itxg_clean(), so no timeout
2986 			 * is required.
2987 			 */
2988 
2989 			IMPLY(lwb != NULL,
2990 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2991 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2992 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2993 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2994 		}
2995 	}
2996 
2997 	mutex_exit(&zcw->zcw_lock);
2998 }
2999 
3000 static zil_commit_waiter_t *
3001 zil_alloc_commit_waiter(void)
3002 {
3003 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3004 
3005 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3006 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3007 	list_link_init(&zcw->zcw_node);
3008 	zcw->zcw_lwb = NULL;
3009 	zcw->zcw_done = B_FALSE;
3010 	zcw->zcw_zio_error = 0;
3011 
3012 	return (zcw);
3013 }
3014 
3015 static void
3016 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3017 {
3018 	ASSERT(!list_link_active(&zcw->zcw_node));
3019 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
3020 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3021 	mutex_destroy(&zcw->zcw_lock);
3022 	cv_destroy(&zcw->zcw_cv);
3023 	kmem_cache_free(zil_zcw_cache, zcw);
3024 }
3025 
3026 /*
3027  * This function is used to create a TX_COMMIT itx and assign it. This
3028  * way, it will be linked into the ZIL's list of synchronous itxs, and
3029  * then later committed to an lwb (or skipped) when
3030  * zil_process_commit_list() is called.
3031  */
3032 static void
3033 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3034 {
3035 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3036 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
3037 
3038 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3039 	itx->itx_sync = B_TRUE;
3040 	itx->itx_private = zcw;
3041 
3042 	zil_itx_assign(zilog, itx, tx);
3043 
3044 	dmu_tx_commit(tx);
3045 }
3046 
3047 /*
3048  * Commit ZFS Intent Log transactions (itxs) to stable storage.
3049  *
3050  * When writing ZIL transactions to the on-disk representation of the
3051  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3052  * itxs can be committed to a single lwb. Once a lwb is written and
3053  * committed to stable storage (i.e. the lwb is written, and vdevs have
3054  * been flushed), each itx that was committed to that lwb is also
3055  * considered to be committed to stable storage.
3056  *
3057  * When an itx is committed to an lwb, the log record (lr_t) contained
3058  * by the itx is copied into the lwb's zio buffer, and once this buffer
3059  * is written to disk, it becomes an on-disk ZIL block.
3060  *
3061  * As itxs are generated, they're inserted into the ZIL's queue of
3062  * uncommitted itxs. The semantics of zil_commit() are such that it will
3063  * block until all itxs that were in the queue when it was called, are
3064  * committed to stable storage.
3065  *
3066  * If "foid" is zero, this means all "synchronous" and "asynchronous"
3067  * itxs, for all objects in the dataset, will be committed to stable
3068  * storage prior to zil_commit() returning. If "foid" is non-zero, all
3069  * "synchronous" itxs for all objects, but only "asynchronous" itxs
3070  * that correspond to the foid passed in, will be committed to stable
3071  * storage prior to zil_commit() returning.
3072  *
3073  * Generally speaking, when zil_commit() is called, the consumer doesn't
3074  * actually care about _all_ of the uncommitted itxs. Instead, they're
3075  * simply trying to waiting for a specific itx to be committed to disk,
3076  * but the interface(s) for interacting with the ZIL don't allow such
3077  * fine-grained communication. A better interface would allow a consumer
3078  * to create and assign an itx, and then pass a reference to this itx to
3079  * zil_commit(); such that zil_commit() would return as soon as that
3080  * specific itx was committed to disk (instead of waiting for _all_
3081  * itxs to be committed).
3082  *
3083  * When a thread calls zil_commit() a special "commit itx" will be
3084  * generated, along with a corresponding "waiter" for this commit itx.
3085  * zil_commit() will wait on this waiter's CV, such that when the waiter
3086  * is marked done, and signaled, zil_commit() will return.
3087  *
3088  * This commit itx is inserted into the queue of uncommitted itxs. This
3089  * provides an easy mechanism for determining which itxs were in the
3090  * queue prior to zil_commit() having been called, and which itxs were
3091  * added after zil_commit() was called.
3092  *
3093  * The commit itx is special; it doesn't have any on-disk representation.
3094  * When a commit itx is "committed" to an lwb, the waiter associated
3095  * with it is linked onto the lwb's list of waiters. Then, when that lwb
3096  * completes, each waiter on the lwb's list is marked done and signaled
3097  * -- allowing the thread waiting on the waiter to return from zil_commit().
3098  *
3099  * It's important to point out a few critical factors that allow us
3100  * to make use of the commit itxs, commit waiters, per-lwb lists of
3101  * commit waiters, and zio completion callbacks like we're doing:
3102  *
3103  *   1. The list of waiters for each lwb is traversed, and each commit
3104  *      waiter is marked "done" and signaled, in the zio completion
3105  *      callback of the lwb's zio[*].
3106  *
3107  *      * Actually, the waiters are signaled in the zio completion
3108  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
3109  *        that are sent to the vdevs upon completion of the lwb zio.
3110  *
3111  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
3112  *      itxs, the order in which they are inserted is preserved[*]; as
3113  *      itxs are added to the queue, they are added to the tail of
3114  *      in-memory linked lists.
3115  *
3116  *      When committing the itxs to lwbs (to be written to disk), they
3117  *      are committed in the same order in which the itxs were added to
3118  *      the uncommitted queue's linked list(s); i.e. the linked list of
3119  *      itxs to commit is traversed from head to tail, and each itx is
3120  *      committed to an lwb in that order.
3121  *
3122  *      * To clarify:
3123  *
3124  *        - the order of "sync" itxs is preserved w.r.t. other
3125  *          "sync" itxs, regardless of the corresponding objects.
3126  *        - the order of "async" itxs is preserved w.r.t. other
3127  *          "async" itxs corresponding to the same object.
3128  *        - the order of "async" itxs is *not* preserved w.r.t. other
3129  *          "async" itxs corresponding to different objects.
3130  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
3131  *          versa) is *not* preserved, even for itxs that correspond
3132  *          to the same object.
3133  *
3134  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
3135  *      zil_get_commit_list(), and zil_process_commit_list().
3136  *
3137  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
3138  *      lwb cannot be considered committed to stable storage, until its
3139  *      "previous" lwb is also committed to stable storage. This fact,
3140  *      coupled with the fact described above, means that itxs are
3141  *      committed in (roughly) the order in which they were generated.
3142  *      This is essential because itxs are dependent on prior itxs.
3143  *      Thus, we *must not* deem an itx as being committed to stable
3144  *      storage, until *all* prior itxs have also been committed to
3145  *      stable storage.
3146  *
3147  *      To enforce this ordering of lwb zio's, while still leveraging as
3148  *      much of the underlying storage performance as possible, we rely
3149  *      on two fundamental concepts:
3150  *
3151  *          1. The creation and issuance of lwb zio's is protected by
3152  *             the zilog's "zl_issuer_lock", which ensures only a single
3153  *             thread is creating and/or issuing lwb's at a time
3154  *          2. The "previous" lwb is a child of the "current" lwb
3155  *             (leveraging the zio parent-child dependency graph)
3156  *
3157  *      By relying on this parent-child zio relationship, we can have
3158  *      many lwb zio's concurrently issued to the underlying storage,
3159  *      but the order in which they complete will be the same order in
3160  *      which they were created.
3161  */
3162 void
3163 zil_commit(zilog_t *zilog, uint64_t foid)
3164 {
3165 	/*
3166 	 * We should never attempt to call zil_commit on a snapshot for
3167 	 * a couple of reasons:
3168 	 *
3169 	 * 1. A snapshot may never be modified, thus it cannot have any
3170 	 *    in-flight itxs that would have modified the dataset.
3171 	 *
3172 	 * 2. By design, when zil_commit() is called, a commit itx will
3173 	 *    be assigned to this zilog; as a result, the zilog will be
3174 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
3175 	 *    checks in the code that enforce this invariant, and will
3176 	 *    cause a panic if it's not upheld.
3177 	 */
3178 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3179 
3180 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3181 		return;
3182 
3183 	if (!spa_writeable(zilog->zl_spa)) {
3184 		/*
3185 		 * If the SPA is not writable, there should never be any
3186 		 * pending itxs waiting to be committed to disk. If that
3187 		 * weren't true, we'd skip writing those itxs out, and
3188 		 * would break the semantics of zil_commit(); thus, we're
3189 		 * verifying that truth before we return to the caller.
3190 		 */
3191 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3192 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3193 		for (int i = 0; i < TXG_SIZE; i++)
3194 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3195 		return;
3196 	}
3197 
3198 	/*
3199 	 * If the ZIL is suspended, we don't want to dirty it by calling
3200 	 * zil_commit_itx_assign() below, nor can we write out
3201 	 * lwbs like would be done in zil_commit_write(). Thus, we
3202 	 * simply rely on txg_wait_synced() to maintain the necessary
3203 	 * semantics, and avoid calling those functions altogether.
3204 	 */
3205 	if (zilog->zl_suspend > 0) {
3206 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3207 		return;
3208 	}
3209 
3210 	zil_commit_impl(zilog, foid);
3211 }
3212 
3213 void
3214 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3215 {
3216 	ZIL_STAT_BUMP(zilog, zil_commit_count);
3217 
3218 	/*
3219 	 * Move the "async" itxs for the specified foid to the "sync"
3220 	 * queues, such that they will be later committed (or skipped)
3221 	 * to an lwb when zil_process_commit_list() is called.
3222 	 *
3223 	 * Since these "async" itxs must be committed prior to this
3224 	 * call to zil_commit returning, we must perform this operation
3225 	 * before we call zil_commit_itx_assign().
3226 	 */
3227 	zil_async_to_sync(zilog, foid);
3228 
3229 	/*
3230 	 * We allocate a new "waiter" structure which will initially be
3231 	 * linked to the commit itx using the itx's "itx_private" field.
3232 	 * Since the commit itx doesn't represent any on-disk state,
3233 	 * when it's committed to an lwb, rather than copying the its
3234 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3235 	 * added to the lwb's list of waiters. Then, when the lwb is
3236 	 * committed to stable storage, each waiter in the lwb's list of
3237 	 * waiters will be marked "done", and signalled.
3238 	 *
3239 	 * We must create the waiter and assign the commit itx prior to
3240 	 * calling zil_commit_writer(), or else our specific commit itx
3241 	 * is not guaranteed to be committed to an lwb prior to calling
3242 	 * zil_commit_waiter().
3243 	 */
3244 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3245 	zil_commit_itx_assign(zilog, zcw);
3246 
3247 	zil_commit_writer(zilog, zcw);
3248 	zil_commit_waiter(zilog, zcw);
3249 
3250 	if (zcw->zcw_zio_error != 0) {
3251 		/*
3252 		 * If there was an error writing out the ZIL blocks that
3253 		 * this thread is waiting on, then we fallback to
3254 		 * relying on spa_sync() to write out the data this
3255 		 * thread is waiting on. Obviously this has performance
3256 		 * implications, but the expectation is for this to be
3257 		 * an exceptional case, and shouldn't occur often.
3258 		 */
3259 		DTRACE_PROBE2(zil__commit__io__error,
3260 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3261 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3262 	}
3263 
3264 	zil_free_commit_waiter(zcw);
3265 }
3266 
3267 /*
3268  * Called in syncing context to free committed log blocks and update log header.
3269  */
3270 void
3271 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3272 {
3273 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3274 	uint64_t txg = dmu_tx_get_txg(tx);
3275 	spa_t *spa = zilog->zl_spa;
3276 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3277 	lwb_t *lwb;
3278 
3279 	/*
3280 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3281 	 * to destroy it twice.
3282 	 */
3283 	if (spa_sync_pass(spa) != 1)
3284 		return;
3285 
3286 	zil_lwb_flush_wait_all(zilog, txg);
3287 
3288 	mutex_enter(&zilog->zl_lock);
3289 
3290 	ASSERT(zilog->zl_stop_sync == 0);
3291 
3292 	if (*replayed_seq != 0) {
3293 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3294 		zh->zh_replay_seq = *replayed_seq;
3295 		*replayed_seq = 0;
3296 	}
3297 
3298 	if (zilog->zl_destroy_txg == txg) {
3299 		blkptr_t blk = zh->zh_log;
3300 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3301 
3302 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
3303 
3304 		memset(zh, 0, sizeof (zil_header_t));
3305 		memset(zilog->zl_replayed_seq, 0,
3306 		    sizeof (zilog->zl_replayed_seq));
3307 
3308 		if (zilog->zl_keep_first) {
3309 			/*
3310 			 * If this block was part of log chain that couldn't
3311 			 * be claimed because a device was missing during
3312 			 * zil_claim(), but that device later returns,
3313 			 * then this block could erroneously appear valid.
3314 			 * To guard against this, assign a new GUID to the new
3315 			 * log chain so it doesn't matter what blk points to.
3316 			 */
3317 			zil_init_log_chain(zilog, &blk);
3318 			zh->zh_log = blk;
3319 		} else {
3320 			/*
3321 			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3322 			 * records. So, deactivate the feature for this dataset.
3323 			 * We activate it again when we start a new ZIL chain.
3324 			 */
3325 			if (dsl_dataset_feature_is_active(ds,
3326 			    SPA_FEATURE_ZILSAXATTR))
3327 				dsl_dataset_deactivate_feature(ds,
3328 				    SPA_FEATURE_ZILSAXATTR, tx);
3329 		}
3330 	}
3331 
3332 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3333 		zh->zh_log = lwb->lwb_blk;
3334 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
3335 			break;
3336 		list_remove(&zilog->zl_lwb_list, lwb);
3337 		zio_free(spa, txg, &lwb->lwb_blk);
3338 		zil_free_lwb(zilog, lwb);
3339 
3340 		/*
3341 		 * If we don't have anything left in the lwb list then
3342 		 * we've had an allocation failure and we need to zero
3343 		 * out the zil_header blkptr so that we don't end
3344 		 * up freeing the same block twice.
3345 		 */
3346 		if (list_head(&zilog->zl_lwb_list) == NULL)
3347 			BP_ZERO(&zh->zh_log);
3348 	}
3349 
3350 	/*
3351 	 * Remove fastwrite on any blocks that have been pre-allocated for
3352 	 * the next commit. This prevents fastwrite counter pollution by
3353 	 * unused, long-lived LWBs.
3354 	 */
3355 	for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3356 		if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3357 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3358 			lwb->lwb_fastwrite = 0;
3359 		}
3360 	}
3361 
3362 	mutex_exit(&zilog->zl_lock);
3363 }
3364 
3365 static int
3366 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3367 {
3368 	(void) unused, (void) kmflag;
3369 	lwb_t *lwb = vbuf;
3370 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3371 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3372 	    offsetof(zil_commit_waiter_t, zcw_node));
3373 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3374 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3375 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3376 	return (0);
3377 }
3378 
3379 static void
3380 zil_lwb_dest(void *vbuf, void *unused)
3381 {
3382 	(void) unused;
3383 	lwb_t *lwb = vbuf;
3384 	mutex_destroy(&lwb->lwb_vdev_lock);
3385 	avl_destroy(&lwb->lwb_vdev_tree);
3386 	list_destroy(&lwb->lwb_waiters);
3387 	list_destroy(&lwb->lwb_itxs);
3388 }
3389 
3390 void
3391 zil_init(void)
3392 {
3393 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3394 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3395 
3396 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3397 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3398 
3399 	zil_sums_init(&zil_sums_global);
3400 	zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3401 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3402 	    KSTAT_FLAG_VIRTUAL);
3403 
3404 	if (zil_kstats_global != NULL) {
3405 		zil_kstats_global->ks_data = &zil_stats;
3406 		zil_kstats_global->ks_update = zil_kstats_global_update;
3407 		zil_kstats_global->ks_private = NULL;
3408 		kstat_install(zil_kstats_global);
3409 	}
3410 }
3411 
3412 void
3413 zil_fini(void)
3414 {
3415 	kmem_cache_destroy(zil_zcw_cache);
3416 	kmem_cache_destroy(zil_lwb_cache);
3417 
3418 	if (zil_kstats_global != NULL) {
3419 		kstat_delete(zil_kstats_global);
3420 		zil_kstats_global = NULL;
3421 	}
3422 
3423 	zil_sums_fini(&zil_sums_global);
3424 }
3425 
3426 void
3427 zil_set_sync(zilog_t *zilog, uint64_t sync)
3428 {
3429 	zilog->zl_sync = sync;
3430 }
3431 
3432 void
3433 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3434 {
3435 	zilog->zl_logbias = logbias;
3436 }
3437 
3438 zilog_t *
3439 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3440 {
3441 	zilog_t *zilog;
3442 
3443 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3444 
3445 	zilog->zl_header = zh_phys;
3446 	zilog->zl_os = os;
3447 	zilog->zl_spa = dmu_objset_spa(os);
3448 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3449 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3450 	zilog->zl_logbias = dmu_objset_logbias(os);
3451 	zilog->zl_sync = dmu_objset_syncprop(os);
3452 	zilog->zl_dirty_max_txg = 0;
3453 	zilog->zl_last_lwb_opened = NULL;
3454 	zilog->zl_last_lwb_latency = 0;
3455 	zilog->zl_max_block_size = zil_maxblocksize;
3456 
3457 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3458 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3459 	mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3460 
3461 	for (int i = 0; i < TXG_SIZE; i++) {
3462 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3463 		    MUTEX_DEFAULT, NULL);
3464 	}
3465 
3466 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3467 	    offsetof(lwb_t, lwb_node));
3468 
3469 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3470 	    offsetof(itx_t, itx_node));
3471 
3472 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3473 	cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3474 
3475 	return (zilog);
3476 }
3477 
3478 void
3479 zil_free(zilog_t *zilog)
3480 {
3481 	int i;
3482 
3483 	zilog->zl_stop_sync = 1;
3484 
3485 	ASSERT0(zilog->zl_suspend);
3486 	ASSERT0(zilog->zl_suspending);
3487 
3488 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3489 	list_destroy(&zilog->zl_lwb_list);
3490 
3491 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3492 	list_destroy(&zilog->zl_itx_commit_list);
3493 
3494 	for (i = 0; i < TXG_SIZE; i++) {
3495 		/*
3496 		 * It's possible for an itx to be generated that doesn't dirty
3497 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3498 		 * callback to remove the entry. We remove those here.
3499 		 *
3500 		 * Also free up the ziltest itxs.
3501 		 */
3502 		if (zilog->zl_itxg[i].itxg_itxs)
3503 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3504 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3505 	}
3506 
3507 	mutex_destroy(&zilog->zl_issuer_lock);
3508 	mutex_destroy(&zilog->zl_lock);
3509 	mutex_destroy(&zilog->zl_lwb_io_lock);
3510 
3511 	cv_destroy(&zilog->zl_cv_suspend);
3512 	cv_destroy(&zilog->zl_lwb_io_cv);
3513 
3514 	kmem_free(zilog, sizeof (zilog_t));
3515 }
3516 
3517 /*
3518  * Open an intent log.
3519  */
3520 zilog_t *
3521 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3522 {
3523 	zilog_t *zilog = dmu_objset_zil(os);
3524 
3525 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3526 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3527 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3528 
3529 	zilog->zl_get_data = get_data;
3530 	zilog->zl_sums = zil_sums;
3531 
3532 	return (zilog);
3533 }
3534 
3535 /*
3536  * Close an intent log.
3537  */
3538 void
3539 zil_close(zilog_t *zilog)
3540 {
3541 	lwb_t *lwb;
3542 	uint64_t txg;
3543 
3544 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3545 		zil_commit(zilog, 0);
3546 	} else {
3547 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3548 		ASSERT0(zilog->zl_dirty_max_txg);
3549 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3550 	}
3551 
3552 	mutex_enter(&zilog->zl_lock);
3553 	lwb = list_tail(&zilog->zl_lwb_list);
3554 	if (lwb == NULL)
3555 		txg = zilog->zl_dirty_max_txg;
3556 	else
3557 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3558 	mutex_exit(&zilog->zl_lock);
3559 
3560 	/*
3561 	 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3562 	 * on the time when the dmu_tx transaction is assigned in
3563 	 * zil_lwb_write_issue().
3564 	 */
3565 	mutex_enter(&zilog->zl_lwb_io_lock);
3566 	txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3567 	mutex_exit(&zilog->zl_lwb_io_lock);
3568 
3569 	/*
3570 	 * We need to use txg_wait_synced() to wait until that txg is synced.
3571 	 * zil_sync() will guarantee all lwbs up to that txg have been
3572 	 * written out, flushed, and cleaned.
3573 	 */
3574 	if (txg != 0)
3575 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3576 
3577 	if (zilog_is_dirty(zilog))
3578 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3579 		    (u_longlong_t)txg);
3580 	if (txg < spa_freeze_txg(zilog->zl_spa))
3581 		VERIFY(!zilog_is_dirty(zilog));
3582 
3583 	zilog->zl_get_data = NULL;
3584 
3585 	/*
3586 	 * We should have only one lwb left on the list; remove it now.
3587 	 */
3588 	mutex_enter(&zilog->zl_lock);
3589 	lwb = list_head(&zilog->zl_lwb_list);
3590 	if (lwb != NULL) {
3591 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3592 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3593 
3594 		if (lwb->lwb_fastwrite)
3595 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3596 
3597 		list_remove(&zilog->zl_lwb_list, lwb);
3598 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3599 		zil_free_lwb(zilog, lwb);
3600 	}
3601 	mutex_exit(&zilog->zl_lock);
3602 }
3603 
3604 static const char *suspend_tag = "zil suspending";
3605 
3606 /*
3607  * Suspend an intent log.  While in suspended mode, we still honor
3608  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3609  * On old version pools, we suspend the log briefly when taking a
3610  * snapshot so that it will have an empty intent log.
3611  *
3612  * Long holds are not really intended to be used the way we do here --
3613  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3614  * could fail.  Therefore we take pains to only put a long hold if it is
3615  * actually necessary.  Fortunately, it will only be necessary if the
3616  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3617  * will already have a long hold, so we are not really making things any worse.
3618  *
3619  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3620  * zvol_state_t), and use their mechanism to prevent their hold from being
3621  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3622  * very little gain.
3623  *
3624  * if cookiep == NULL, this does both the suspend & resume.
3625  * Otherwise, it returns with the dataset "long held", and the cookie
3626  * should be passed into zil_resume().
3627  */
3628 int
3629 zil_suspend(const char *osname, void **cookiep)
3630 {
3631 	objset_t *os;
3632 	zilog_t *zilog;
3633 	const zil_header_t *zh;
3634 	int error;
3635 
3636 	error = dmu_objset_hold(osname, suspend_tag, &os);
3637 	if (error != 0)
3638 		return (error);
3639 	zilog = dmu_objset_zil(os);
3640 
3641 	mutex_enter(&zilog->zl_lock);
3642 	zh = zilog->zl_header;
3643 
3644 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3645 		mutex_exit(&zilog->zl_lock);
3646 		dmu_objset_rele(os, suspend_tag);
3647 		return (SET_ERROR(EBUSY));
3648 	}
3649 
3650 	/*
3651 	 * Don't put a long hold in the cases where we can avoid it.  This
3652 	 * is when there is no cookie so we are doing a suspend & resume
3653 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3654 	 * for the suspend because it's already suspended, or there's no ZIL.
3655 	 */
3656 	if (cookiep == NULL && !zilog->zl_suspending &&
3657 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3658 		mutex_exit(&zilog->zl_lock);
3659 		dmu_objset_rele(os, suspend_tag);
3660 		return (0);
3661 	}
3662 
3663 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3664 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3665 
3666 	zilog->zl_suspend++;
3667 
3668 	if (zilog->zl_suspend > 1) {
3669 		/*
3670 		 * Someone else is already suspending it.
3671 		 * Just wait for them to finish.
3672 		 */
3673 
3674 		while (zilog->zl_suspending)
3675 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3676 		mutex_exit(&zilog->zl_lock);
3677 
3678 		if (cookiep == NULL)
3679 			zil_resume(os);
3680 		else
3681 			*cookiep = os;
3682 		return (0);
3683 	}
3684 
3685 	/*
3686 	 * If there is no pointer to an on-disk block, this ZIL must not
3687 	 * be active (e.g. filesystem not mounted), so there's nothing
3688 	 * to clean up.
3689 	 */
3690 	if (BP_IS_HOLE(&zh->zh_log)) {
3691 		ASSERT(cookiep != NULL); /* fast path already handled */
3692 
3693 		*cookiep = os;
3694 		mutex_exit(&zilog->zl_lock);
3695 		return (0);
3696 	}
3697 
3698 	/*
3699 	 * The ZIL has work to do. Ensure that the associated encryption
3700 	 * key will remain mapped while we are committing the log by
3701 	 * grabbing a reference to it. If the key isn't loaded we have no
3702 	 * choice but to return an error until the wrapping key is loaded.
3703 	 */
3704 	if (os->os_encrypted &&
3705 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3706 		zilog->zl_suspend--;
3707 		mutex_exit(&zilog->zl_lock);
3708 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3709 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3710 		return (SET_ERROR(EACCES));
3711 	}
3712 
3713 	zilog->zl_suspending = B_TRUE;
3714 	mutex_exit(&zilog->zl_lock);
3715 
3716 	/*
3717 	 * We need to use zil_commit_impl to ensure we wait for all
3718 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3719 	 * to disk before proceeding. If we used zil_commit instead, it
3720 	 * would just call txg_wait_synced(), because zl_suspend is set.
3721 	 * txg_wait_synced() doesn't wait for these lwb's to be
3722 	 * LWB_STATE_FLUSH_DONE before returning.
3723 	 */
3724 	zil_commit_impl(zilog, 0);
3725 
3726 	/*
3727 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3728 	 * use txg_wait_synced() to ensure the data from the zilog has
3729 	 * migrated to the main pool before calling zil_destroy().
3730 	 */
3731 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3732 
3733 	zil_destroy(zilog, B_FALSE);
3734 
3735 	mutex_enter(&zilog->zl_lock);
3736 	zilog->zl_suspending = B_FALSE;
3737 	cv_broadcast(&zilog->zl_cv_suspend);
3738 	mutex_exit(&zilog->zl_lock);
3739 
3740 	if (os->os_encrypted)
3741 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3742 
3743 	if (cookiep == NULL)
3744 		zil_resume(os);
3745 	else
3746 		*cookiep = os;
3747 	return (0);
3748 }
3749 
3750 void
3751 zil_resume(void *cookie)
3752 {
3753 	objset_t *os = cookie;
3754 	zilog_t *zilog = dmu_objset_zil(os);
3755 
3756 	mutex_enter(&zilog->zl_lock);
3757 	ASSERT(zilog->zl_suspend != 0);
3758 	zilog->zl_suspend--;
3759 	mutex_exit(&zilog->zl_lock);
3760 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3761 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3762 }
3763 
3764 typedef struct zil_replay_arg {
3765 	zil_replay_func_t *const *zr_replay;
3766 	void		*zr_arg;
3767 	boolean_t	zr_byteswap;
3768 	char		*zr_lr;
3769 } zil_replay_arg_t;
3770 
3771 static int
3772 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
3773 {
3774 	char name[ZFS_MAX_DATASET_NAME_LEN];
3775 
3776 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3777 
3778 	dmu_objset_name(zilog->zl_os, name);
3779 
3780 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3781 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3782 	    (u_longlong_t)lr->lrc_seq,
3783 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3784 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3785 
3786 	return (error);
3787 }
3788 
3789 static int
3790 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
3791     uint64_t claim_txg)
3792 {
3793 	zil_replay_arg_t *zr = zra;
3794 	const zil_header_t *zh = zilog->zl_header;
3795 	uint64_t reclen = lr->lrc_reclen;
3796 	uint64_t txtype = lr->lrc_txtype;
3797 	int error = 0;
3798 
3799 	zilog->zl_replaying_seq = lr->lrc_seq;
3800 
3801 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3802 		return (0);
3803 
3804 	if (lr->lrc_txg < claim_txg)		/* already committed */
3805 		return (0);
3806 
3807 	/* Strip case-insensitive bit, still present in log record */
3808 	txtype &= ~TX_CI;
3809 
3810 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3811 		return (zil_replay_error(zilog, lr, EINVAL));
3812 
3813 	/*
3814 	 * If this record type can be logged out of order, the object
3815 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3816 	 */
3817 	if (TX_OOO(txtype)) {
3818 		error = dmu_object_info(zilog->zl_os,
3819 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3820 		if (error == ENOENT || error == EEXIST)
3821 			return (0);
3822 	}
3823 
3824 	/*
3825 	 * Make a copy of the data so we can revise and extend it.
3826 	 */
3827 	memcpy(zr->zr_lr, lr, reclen);
3828 
3829 	/*
3830 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3831 	 */
3832 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3833 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3834 		    zr->zr_lr + reclen);
3835 		if (error != 0)
3836 			return (zil_replay_error(zilog, lr, error));
3837 	}
3838 
3839 	/*
3840 	 * The log block containing this lr may have been byteswapped
3841 	 * so that we can easily examine common fields like lrc_txtype.
3842 	 * However, the log is a mix of different record types, and only the
3843 	 * replay vectors know how to byteswap their records.  Therefore, if
3844 	 * the lr was byteswapped, undo it before invoking the replay vector.
3845 	 */
3846 	if (zr->zr_byteswap)
3847 		byteswap_uint64_array(zr->zr_lr, reclen);
3848 
3849 	/*
3850 	 * We must now do two things atomically: replay this log record,
3851 	 * and update the log header sequence number to reflect the fact that
3852 	 * we did so. At the end of each replay function the sequence number
3853 	 * is updated if we are in replay mode.
3854 	 */
3855 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3856 	if (error != 0) {
3857 		/*
3858 		 * The DMU's dnode layer doesn't see removes until the txg
3859 		 * commits, so a subsequent claim can spuriously fail with
3860 		 * EEXIST. So if we receive any error we try syncing out
3861 		 * any removes then retry the transaction.  Note that we
3862 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3863 		 */
3864 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3865 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3866 		if (error != 0)
3867 			return (zil_replay_error(zilog, lr, error));
3868 	}
3869 	return (0);
3870 }
3871 
3872 static int
3873 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
3874 {
3875 	(void) bp, (void) arg, (void) claim_txg;
3876 
3877 	zilog->zl_replay_blks++;
3878 
3879 	return (0);
3880 }
3881 
3882 /*
3883  * If this dataset has a non-empty intent log, replay it and destroy it.
3884  * Return B_TRUE if there were any entries to replay.
3885  */
3886 boolean_t
3887 zil_replay(objset_t *os, void *arg,
3888     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
3889 {
3890 	zilog_t *zilog = dmu_objset_zil(os);
3891 	const zil_header_t *zh = zilog->zl_header;
3892 	zil_replay_arg_t zr;
3893 
3894 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3895 		return (zil_destroy(zilog, B_TRUE));
3896 	}
3897 
3898 	zr.zr_replay = replay_func;
3899 	zr.zr_arg = arg;
3900 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3901 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3902 
3903 	/*
3904 	 * Wait for in-progress removes to sync before starting replay.
3905 	 */
3906 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3907 
3908 	zilog->zl_replay = B_TRUE;
3909 	zilog->zl_replay_time = ddi_get_lbolt();
3910 	ASSERT(zilog->zl_replay_blks == 0);
3911 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3912 	    zh->zh_claim_txg, B_TRUE);
3913 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3914 
3915 	zil_destroy(zilog, B_FALSE);
3916 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3917 	zilog->zl_replay = B_FALSE;
3918 
3919 	return (B_TRUE);
3920 }
3921 
3922 boolean_t
3923 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3924 {
3925 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3926 		return (B_TRUE);
3927 
3928 	if (zilog->zl_replay) {
3929 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3930 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3931 		    zilog->zl_replaying_seq;
3932 		return (B_TRUE);
3933 	}
3934 
3935 	return (B_FALSE);
3936 }
3937 
3938 int
3939 zil_reset(const char *osname, void *arg)
3940 {
3941 	(void) arg;
3942 
3943 	int error = zil_suspend(osname, NULL);
3944 	/* EACCES means crypto key not loaded */
3945 	if ((error == EACCES) || (error == EBUSY))
3946 		return (SET_ERROR(error));
3947 	if (error != 0)
3948 		return (SET_ERROR(EEXIST));
3949 	return (0);
3950 }
3951 
3952 EXPORT_SYMBOL(zil_alloc);
3953 EXPORT_SYMBOL(zil_free);
3954 EXPORT_SYMBOL(zil_open);
3955 EXPORT_SYMBOL(zil_close);
3956 EXPORT_SYMBOL(zil_replay);
3957 EXPORT_SYMBOL(zil_replaying);
3958 EXPORT_SYMBOL(zil_destroy);
3959 EXPORT_SYMBOL(zil_destroy_sync);
3960 EXPORT_SYMBOL(zil_itx_create);
3961 EXPORT_SYMBOL(zil_itx_destroy);
3962 EXPORT_SYMBOL(zil_itx_assign);
3963 EXPORT_SYMBOL(zil_commit);
3964 EXPORT_SYMBOL(zil_claim);
3965 EXPORT_SYMBOL(zil_check_log_chain);
3966 EXPORT_SYMBOL(zil_sync);
3967 EXPORT_SYMBOL(zil_clean);
3968 EXPORT_SYMBOL(zil_suspend);
3969 EXPORT_SYMBOL(zil_resume);
3970 EXPORT_SYMBOL(zil_lwb_add_block);
3971 EXPORT_SYMBOL(zil_bp_tree_add);
3972 EXPORT_SYMBOL(zil_set_sync);
3973 EXPORT_SYMBOL(zil_set_logbias);
3974 EXPORT_SYMBOL(zil_sums_init);
3975 EXPORT_SYMBOL(zil_sums_fini);
3976 EXPORT_SYMBOL(zil_kstat_values_update);
3977 
3978 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
3979 	"ZIL block open timeout percentage");
3980 
3981 ZFS_MODULE_PARAM(zfs_zil, zil_, min_commit_timeout, U64, ZMOD_RW,
3982 	"Minimum delay we care for ZIL block commit");
3983 
3984 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
3985 	"Disable intent logging replay");
3986 
3987 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
3988 	"Disable ZIL cache flushes");
3989 
3990 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
3991 	"Limit in bytes slog sync writes per commit");
3992 
3993 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
3994 	"Limit in bytes of ZIL log block size");
3995