xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision be181ee2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  * Copyright (c) 2021, Datto, Inc.
29  */
30 
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/ddt.h>
45 #include <sys/blkptr.h>
46 #include <sys/zfeature.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/time.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/abd.h>
52 #include <sys/dsl_crypt.h>
53 #include <cityhash.h>
54 
55 /*
56  * ==========================================================================
57  * I/O type descriptions
58  * ==========================================================================
59  */
60 const char *const zio_type_name[ZIO_TYPES] = {
61 	/*
62 	 * Note: Linux kernel thread name length is limited
63 	 * so these names will differ from upstream open zfs.
64 	 */
65 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
66 };
67 
68 int zio_dva_throttle_enabled = B_TRUE;
69 static int zio_deadman_log_all = B_FALSE;
70 
71 /*
72  * ==========================================================================
73  * I/O kmem caches
74  * ==========================================================================
75  */
76 static kmem_cache_t *zio_cache;
77 static kmem_cache_t *zio_link_cache;
78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
81 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 #endif
84 
85 /* Mark IOs as "slow" if they take longer than 30 seconds */
86 static uint_t zio_slow_io_ms = (30 * MILLISEC);
87 
88 #define	BP_SPANB(indblkshift, level) \
89 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
90 #define	COMPARE_META_LEVEL	0x80000000ul
91 /*
92  * The following actions directly effect the spa's sync-to-convergence logic.
93  * The values below define the sync pass when we start performing the action.
94  * Care should be taken when changing these values as they directly impact
95  * spa_sync() performance. Tuning these values may introduce subtle performance
96  * pathologies and should only be done in the context of performance analysis.
97  * These tunables will eventually be removed and replaced with #defines once
98  * enough analysis has been done to determine optimal values.
99  *
100  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
101  * regular blocks are not deferred.
102  *
103  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
104  * compression (including of metadata).  In practice, we don't have this
105  * many sync passes, so this has no effect.
106  *
107  * The original intent was that disabling compression would help the sync
108  * passes to converge. However, in practice disabling compression increases
109  * the average number of sync passes, because when we turn compression off, a
110  * lot of block's size will change and thus we have to re-allocate (not
111  * overwrite) them. It also increases the number of 128KB allocations (e.g.
112  * for indirect blocks and spacemaps) because these will not be compressed.
113  * The 128K allocations are especially detrimental to performance on highly
114  * fragmented systems, which may have very few free segments of this size,
115  * and may need to load new metaslabs to satisfy 128K allocations.
116  */
117 
118 /* defer frees starting in this pass */
119 uint_t zfs_sync_pass_deferred_free = 2;
120 
121 /* don't compress starting in this pass */
122 static uint_t zfs_sync_pass_dont_compress = 8;
123 
124 /* rewrite new bps starting in this pass */
125 static uint_t zfs_sync_pass_rewrite = 2;
126 
127 /*
128  * An allocating zio is one that either currently has the DVA allocate
129  * stage set or will have it later in its lifetime.
130  */
131 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
132 
133 /*
134  * Enable smaller cores by excluding metadata
135  * allocations as well.
136  */
137 int zio_exclude_metadata = 0;
138 static int zio_requeue_io_start_cut_in_line = 1;
139 
140 #ifdef ZFS_DEBUG
141 static const int zio_buf_debug_limit = 16384;
142 #else
143 static const int zio_buf_debug_limit = 0;
144 #endif
145 
146 static inline void __zio_execute(zio_t *zio);
147 
148 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
149 
150 void
151 zio_init(void)
152 {
153 	size_t c;
154 
155 	zio_cache = kmem_cache_create("zio_cache",
156 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
157 	zio_link_cache = kmem_cache_create("zio_link_cache",
158 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
159 
160 	/*
161 	 * For small buffers, we want a cache for each multiple of
162 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
163 	 * for each quarter-power of 2.
164 	 */
165 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
166 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
167 		size_t p2 = size;
168 		size_t align = 0;
169 		size_t data_cflags, cflags;
170 
171 		data_cflags = KMC_NODEBUG;
172 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
173 		    KMC_NODEBUG : 0;
174 
175 		while (!ISP2(p2))
176 			p2 &= p2 - 1;
177 
178 #ifndef _KERNEL
179 		/*
180 		 * If we are using watchpoints, put each buffer on its own page,
181 		 * to eliminate the performance overhead of trapping to the
182 		 * kernel when modifying a non-watched buffer that shares the
183 		 * page with a watched buffer.
184 		 */
185 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
186 			continue;
187 		/*
188 		 * Here's the problem - on 4K native devices in userland on
189 		 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
190 		 * will fail with EINVAL, causing zdb (and others) to coredump.
191 		 * Since userland probably doesn't need optimized buffer caches,
192 		 * we just force 4K alignment on everything.
193 		 */
194 		align = 8 * SPA_MINBLOCKSIZE;
195 #else
196 		if (size < PAGESIZE) {
197 			align = SPA_MINBLOCKSIZE;
198 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
199 			align = PAGESIZE;
200 		}
201 #endif
202 
203 		if (align != 0) {
204 			char name[36];
205 			if (cflags == data_cflags) {
206 				/*
207 				 * Resulting kmem caches would be identical.
208 				 * Save memory by creating only one.
209 				 */
210 				(void) snprintf(name, sizeof (name),
211 				    "zio_buf_comb_%lu", (ulong_t)size);
212 				zio_buf_cache[c] = kmem_cache_create(name,
213 				    size, align, NULL, NULL, NULL, NULL, NULL,
214 				    cflags);
215 				zio_data_buf_cache[c] = zio_buf_cache[c];
216 				continue;
217 			}
218 			(void) snprintf(name, sizeof (name), "zio_buf_%lu",
219 			    (ulong_t)size);
220 			zio_buf_cache[c] = kmem_cache_create(name, size,
221 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
222 
223 			(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
224 			    (ulong_t)size);
225 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
226 			    align, NULL, NULL, NULL, NULL, NULL, data_cflags);
227 		}
228 	}
229 
230 	while (--c != 0) {
231 		ASSERT(zio_buf_cache[c] != NULL);
232 		if (zio_buf_cache[c - 1] == NULL)
233 			zio_buf_cache[c - 1] = zio_buf_cache[c];
234 
235 		ASSERT(zio_data_buf_cache[c] != NULL);
236 		if (zio_data_buf_cache[c - 1] == NULL)
237 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
238 	}
239 
240 	zio_inject_init();
241 
242 	lz4_init();
243 }
244 
245 void
246 zio_fini(void)
247 {
248 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
249 
250 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
251 	for (size_t i = 0; i < n; i++) {
252 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
253 			(void) printf("zio_fini: [%d] %llu != %llu\n",
254 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
255 			    (long long unsigned)zio_buf_cache_allocs[i],
256 			    (long long unsigned)zio_buf_cache_frees[i]);
257 	}
258 #endif
259 
260 	/*
261 	 * The same kmem cache can show up multiple times in both zio_buf_cache
262 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
263 	 * sort it out.
264 	 */
265 	for (size_t i = 0; i < n; i++) {
266 		kmem_cache_t *cache = zio_buf_cache[i];
267 		if (cache == NULL)
268 			continue;
269 		for (size_t j = i; j < n; j++) {
270 			if (cache == zio_buf_cache[j])
271 				zio_buf_cache[j] = NULL;
272 			if (cache == zio_data_buf_cache[j])
273 				zio_data_buf_cache[j] = NULL;
274 		}
275 		kmem_cache_destroy(cache);
276 	}
277 
278 	for (size_t i = 0; i < n; i++) {
279 		kmem_cache_t *cache = zio_data_buf_cache[i];
280 		if (cache == NULL)
281 			continue;
282 		for (size_t j = i; j < n; j++) {
283 			if (cache == zio_data_buf_cache[j])
284 				zio_data_buf_cache[j] = NULL;
285 		}
286 		kmem_cache_destroy(cache);
287 	}
288 
289 	for (size_t i = 0; i < n; i++) {
290 		VERIFY3P(zio_buf_cache[i], ==, NULL);
291 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
292 	}
293 
294 	kmem_cache_destroy(zio_link_cache);
295 	kmem_cache_destroy(zio_cache);
296 
297 	zio_inject_fini();
298 
299 	lz4_fini();
300 }
301 
302 /*
303  * ==========================================================================
304  * Allocate and free I/O buffers
305  * ==========================================================================
306  */
307 
308 /*
309  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
310  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
311  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
312  * excess / transient data in-core during a crashdump.
313  */
314 void *
315 zio_buf_alloc(size_t size)
316 {
317 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
318 
319 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
320 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
321 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
322 #endif
323 
324 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
325 }
326 
327 /*
328  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
329  * crashdump if the kernel panics.  This exists so that we will limit the amount
330  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
331  * of kernel heap dumped to disk when the kernel panics)
332  */
333 void *
334 zio_data_buf_alloc(size_t size)
335 {
336 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
337 
338 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
339 
340 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
341 }
342 
343 void
344 zio_buf_free(void *buf, size_t size)
345 {
346 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
347 
348 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
349 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
350 	atomic_add_64(&zio_buf_cache_frees[c], 1);
351 #endif
352 
353 	kmem_cache_free(zio_buf_cache[c], buf);
354 }
355 
356 void
357 zio_data_buf_free(void *buf, size_t size)
358 {
359 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
360 
361 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
362 
363 	kmem_cache_free(zio_data_buf_cache[c], buf);
364 }
365 
366 static void
367 zio_abd_free(void *abd, size_t size)
368 {
369 	(void) size;
370 	abd_free((abd_t *)abd);
371 }
372 
373 /*
374  * ==========================================================================
375  * Push and pop I/O transform buffers
376  * ==========================================================================
377  */
378 void
379 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
380     zio_transform_func_t *transform)
381 {
382 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
383 
384 	zt->zt_orig_abd = zio->io_abd;
385 	zt->zt_orig_size = zio->io_size;
386 	zt->zt_bufsize = bufsize;
387 	zt->zt_transform = transform;
388 
389 	zt->zt_next = zio->io_transform_stack;
390 	zio->io_transform_stack = zt;
391 
392 	zio->io_abd = data;
393 	zio->io_size = size;
394 }
395 
396 void
397 zio_pop_transforms(zio_t *zio)
398 {
399 	zio_transform_t *zt;
400 
401 	while ((zt = zio->io_transform_stack) != NULL) {
402 		if (zt->zt_transform != NULL)
403 			zt->zt_transform(zio,
404 			    zt->zt_orig_abd, zt->zt_orig_size);
405 
406 		if (zt->zt_bufsize != 0)
407 			abd_free(zio->io_abd);
408 
409 		zio->io_abd = zt->zt_orig_abd;
410 		zio->io_size = zt->zt_orig_size;
411 		zio->io_transform_stack = zt->zt_next;
412 
413 		kmem_free(zt, sizeof (zio_transform_t));
414 	}
415 }
416 
417 /*
418  * ==========================================================================
419  * I/O transform callbacks for subblocks, decompression, and decryption
420  * ==========================================================================
421  */
422 static void
423 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
424 {
425 	ASSERT(zio->io_size > size);
426 
427 	if (zio->io_type == ZIO_TYPE_READ)
428 		abd_copy(data, zio->io_abd, size);
429 }
430 
431 static void
432 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
433 {
434 	if (zio->io_error == 0) {
435 		void *tmp = abd_borrow_buf(data, size);
436 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
437 		    zio->io_abd, tmp, zio->io_size, size,
438 		    &zio->io_prop.zp_complevel);
439 		abd_return_buf_copy(data, tmp, size);
440 
441 		if (zio_injection_enabled && ret == 0)
442 			ret = zio_handle_fault_injection(zio, EINVAL);
443 
444 		if (ret != 0)
445 			zio->io_error = SET_ERROR(EIO);
446 	}
447 }
448 
449 static void
450 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
451 {
452 	int ret;
453 	void *tmp;
454 	blkptr_t *bp = zio->io_bp;
455 	spa_t *spa = zio->io_spa;
456 	uint64_t dsobj = zio->io_bookmark.zb_objset;
457 	uint64_t lsize = BP_GET_LSIZE(bp);
458 	dmu_object_type_t ot = BP_GET_TYPE(bp);
459 	uint8_t salt[ZIO_DATA_SALT_LEN];
460 	uint8_t iv[ZIO_DATA_IV_LEN];
461 	uint8_t mac[ZIO_DATA_MAC_LEN];
462 	boolean_t no_crypt = B_FALSE;
463 
464 	ASSERT(BP_USES_CRYPT(bp));
465 	ASSERT3U(size, !=, 0);
466 
467 	if (zio->io_error != 0)
468 		return;
469 
470 	/*
471 	 * Verify the cksum of MACs stored in an indirect bp. It will always
472 	 * be possible to verify this since it does not require an encryption
473 	 * key.
474 	 */
475 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
476 		zio_crypt_decode_mac_bp(bp, mac);
477 
478 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
479 			/*
480 			 * We haven't decompressed the data yet, but
481 			 * zio_crypt_do_indirect_mac_checksum() requires
482 			 * decompressed data to be able to parse out the MACs
483 			 * from the indirect block. We decompress it now and
484 			 * throw away the result after we are finished.
485 			 */
486 			tmp = zio_buf_alloc(lsize);
487 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
488 			    zio->io_abd, tmp, zio->io_size, lsize,
489 			    &zio->io_prop.zp_complevel);
490 			if (ret != 0) {
491 				ret = SET_ERROR(EIO);
492 				goto error;
493 			}
494 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
495 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
496 			zio_buf_free(tmp, lsize);
497 		} else {
498 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
499 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
500 		}
501 		abd_copy(data, zio->io_abd, size);
502 
503 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
504 			ret = zio_handle_decrypt_injection(spa,
505 			    &zio->io_bookmark, ot, ECKSUM);
506 		}
507 		if (ret != 0)
508 			goto error;
509 
510 		return;
511 	}
512 
513 	/*
514 	 * If this is an authenticated block, just check the MAC. It would be
515 	 * nice to separate this out into its own flag, but for the moment
516 	 * enum zio_flag is out of bits.
517 	 */
518 	if (BP_IS_AUTHENTICATED(bp)) {
519 		if (ot == DMU_OT_OBJSET) {
520 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
521 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
522 		} else {
523 			zio_crypt_decode_mac_bp(bp, mac);
524 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
525 			    zio->io_abd, size, mac);
526 			if (zio_injection_enabled && ret == 0) {
527 				ret = zio_handle_decrypt_injection(spa,
528 				    &zio->io_bookmark, ot, ECKSUM);
529 			}
530 		}
531 		abd_copy(data, zio->io_abd, size);
532 
533 		if (ret != 0)
534 			goto error;
535 
536 		return;
537 	}
538 
539 	zio_crypt_decode_params_bp(bp, salt, iv);
540 
541 	if (ot == DMU_OT_INTENT_LOG) {
542 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
543 		zio_crypt_decode_mac_zil(tmp, mac);
544 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
545 	} else {
546 		zio_crypt_decode_mac_bp(bp, mac);
547 	}
548 
549 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
550 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
551 	    zio->io_abd, &no_crypt);
552 	if (no_crypt)
553 		abd_copy(data, zio->io_abd, size);
554 
555 	if (ret != 0)
556 		goto error;
557 
558 	return;
559 
560 error:
561 	/* assert that the key was found unless this was speculative */
562 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
563 
564 	/*
565 	 * If there was a decryption / authentication error return EIO as
566 	 * the io_error. If this was not a speculative zio, create an ereport.
567 	 */
568 	if (ret == ECKSUM) {
569 		zio->io_error = SET_ERROR(EIO);
570 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
571 			spa_log_error(spa, &zio->io_bookmark);
572 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
573 			    spa, NULL, &zio->io_bookmark, zio, 0);
574 		}
575 	} else {
576 		zio->io_error = ret;
577 	}
578 }
579 
580 /*
581  * ==========================================================================
582  * I/O parent/child relationships and pipeline interlocks
583  * ==========================================================================
584  */
585 zio_t *
586 zio_walk_parents(zio_t *cio, zio_link_t **zl)
587 {
588 	list_t *pl = &cio->io_parent_list;
589 
590 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
591 	if (*zl == NULL)
592 		return (NULL);
593 
594 	ASSERT((*zl)->zl_child == cio);
595 	return ((*zl)->zl_parent);
596 }
597 
598 zio_t *
599 zio_walk_children(zio_t *pio, zio_link_t **zl)
600 {
601 	list_t *cl = &pio->io_child_list;
602 
603 	ASSERT(MUTEX_HELD(&pio->io_lock));
604 
605 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
606 	if (*zl == NULL)
607 		return (NULL);
608 
609 	ASSERT((*zl)->zl_parent == pio);
610 	return ((*zl)->zl_child);
611 }
612 
613 zio_t *
614 zio_unique_parent(zio_t *cio)
615 {
616 	zio_link_t *zl = NULL;
617 	zio_t *pio = zio_walk_parents(cio, &zl);
618 
619 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
620 	return (pio);
621 }
622 
623 void
624 zio_add_child(zio_t *pio, zio_t *cio)
625 {
626 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
627 
628 	/*
629 	 * Logical I/Os can have logical, gang, or vdev children.
630 	 * Gang I/Os can have gang or vdev children.
631 	 * Vdev I/Os can only have vdev children.
632 	 * The following ASSERT captures all of these constraints.
633 	 */
634 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
635 
636 	zl->zl_parent = pio;
637 	zl->zl_child = cio;
638 
639 	mutex_enter(&pio->io_lock);
640 	mutex_enter(&cio->io_lock);
641 
642 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
643 
644 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
645 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
646 
647 	list_insert_head(&pio->io_child_list, zl);
648 	list_insert_head(&cio->io_parent_list, zl);
649 
650 	pio->io_child_count++;
651 	cio->io_parent_count++;
652 
653 	mutex_exit(&cio->io_lock);
654 	mutex_exit(&pio->io_lock);
655 }
656 
657 static void
658 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
659 {
660 	ASSERT(zl->zl_parent == pio);
661 	ASSERT(zl->zl_child == cio);
662 
663 	mutex_enter(&pio->io_lock);
664 	mutex_enter(&cio->io_lock);
665 
666 	list_remove(&pio->io_child_list, zl);
667 	list_remove(&cio->io_parent_list, zl);
668 
669 	pio->io_child_count--;
670 	cio->io_parent_count--;
671 
672 	mutex_exit(&cio->io_lock);
673 	mutex_exit(&pio->io_lock);
674 	kmem_cache_free(zio_link_cache, zl);
675 }
676 
677 static boolean_t
678 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
679 {
680 	boolean_t waiting = B_FALSE;
681 
682 	mutex_enter(&zio->io_lock);
683 	ASSERT(zio->io_stall == NULL);
684 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
685 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
686 			continue;
687 
688 		uint64_t *countp = &zio->io_children[c][wait];
689 		if (*countp != 0) {
690 			zio->io_stage >>= 1;
691 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
692 			zio->io_stall = countp;
693 			waiting = B_TRUE;
694 			break;
695 		}
696 	}
697 	mutex_exit(&zio->io_lock);
698 	return (waiting);
699 }
700 
701 __attribute__((always_inline))
702 static inline void
703 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
704     zio_t **next_to_executep)
705 {
706 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
707 	int *errorp = &pio->io_child_error[zio->io_child_type];
708 
709 	mutex_enter(&pio->io_lock);
710 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
711 		*errorp = zio_worst_error(*errorp, zio->io_error);
712 	pio->io_reexecute |= zio->io_reexecute;
713 	ASSERT3U(*countp, >, 0);
714 
715 	(*countp)--;
716 
717 	if (*countp == 0 && pio->io_stall == countp) {
718 		zio_taskq_type_t type =
719 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
720 		    ZIO_TASKQ_INTERRUPT;
721 		pio->io_stall = NULL;
722 		mutex_exit(&pio->io_lock);
723 
724 		/*
725 		 * If we can tell the caller to execute this parent next, do
726 		 * so.  Otherwise dispatch the parent zio as its own task.
727 		 *
728 		 * Having the caller execute the parent when possible reduces
729 		 * locking on the zio taskq's, reduces context switch
730 		 * overhead, and has no recursion penalty.  Note that one
731 		 * read from disk typically causes at least 3 zio's: a
732 		 * zio_null(), the logical zio_read(), and then a physical
733 		 * zio.  When the physical ZIO completes, we are able to call
734 		 * zio_done() on all 3 of these zio's from one invocation of
735 		 * zio_execute() by returning the parent back to
736 		 * zio_execute().  Since the parent isn't executed until this
737 		 * thread returns back to zio_execute(), the caller should do
738 		 * so promptly.
739 		 *
740 		 * In other cases, dispatching the parent prevents
741 		 * overflowing the stack when we have deeply nested
742 		 * parent-child relationships, as we do with the "mega zio"
743 		 * of writes for spa_sync(), and the chain of ZIL blocks.
744 		 */
745 		if (next_to_executep != NULL && *next_to_executep == NULL) {
746 			*next_to_executep = pio;
747 		} else {
748 			zio_taskq_dispatch(pio, type, B_FALSE);
749 		}
750 	} else {
751 		mutex_exit(&pio->io_lock);
752 	}
753 }
754 
755 static void
756 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
757 {
758 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
759 		zio->io_error = zio->io_child_error[c];
760 }
761 
762 int
763 zio_bookmark_compare(const void *x1, const void *x2)
764 {
765 	const zio_t *z1 = x1;
766 	const zio_t *z2 = x2;
767 
768 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
769 		return (-1);
770 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
771 		return (1);
772 
773 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
774 		return (-1);
775 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
776 		return (1);
777 
778 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
779 		return (-1);
780 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
781 		return (1);
782 
783 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
784 		return (-1);
785 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
786 		return (1);
787 
788 	if (z1 < z2)
789 		return (-1);
790 	if (z1 > z2)
791 		return (1);
792 
793 	return (0);
794 }
795 
796 /*
797  * ==========================================================================
798  * Create the various types of I/O (read, write, free, etc)
799  * ==========================================================================
800  */
801 static zio_t *
802 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
803     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
804     void *private, zio_type_t type, zio_priority_t priority,
805     enum zio_flag flags, vdev_t *vd, uint64_t offset,
806     const zbookmark_phys_t *zb, enum zio_stage stage,
807     enum zio_stage pipeline)
808 {
809 	zio_t *zio;
810 
811 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
812 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
813 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
814 
815 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
816 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
817 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
818 
819 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
820 
821 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
822 	memset(zio, 0, sizeof (zio_t));
823 
824 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
825 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
826 
827 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
828 	    offsetof(zio_link_t, zl_parent_node));
829 	list_create(&zio->io_child_list, sizeof (zio_link_t),
830 	    offsetof(zio_link_t, zl_child_node));
831 	metaslab_trace_init(&zio->io_alloc_list);
832 
833 	if (vd != NULL)
834 		zio->io_child_type = ZIO_CHILD_VDEV;
835 	else if (flags & ZIO_FLAG_GANG_CHILD)
836 		zio->io_child_type = ZIO_CHILD_GANG;
837 	else if (flags & ZIO_FLAG_DDT_CHILD)
838 		zio->io_child_type = ZIO_CHILD_DDT;
839 	else
840 		zio->io_child_type = ZIO_CHILD_LOGICAL;
841 
842 	if (bp != NULL) {
843 		zio->io_bp = (blkptr_t *)bp;
844 		zio->io_bp_copy = *bp;
845 		zio->io_bp_orig = *bp;
846 		if (type != ZIO_TYPE_WRITE ||
847 		    zio->io_child_type == ZIO_CHILD_DDT)
848 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
849 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
850 			zio->io_logical = zio;
851 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
852 			pipeline |= ZIO_GANG_STAGES;
853 	}
854 
855 	zio->io_spa = spa;
856 	zio->io_txg = txg;
857 	zio->io_done = done;
858 	zio->io_private = private;
859 	zio->io_type = type;
860 	zio->io_priority = priority;
861 	zio->io_vd = vd;
862 	zio->io_offset = offset;
863 	zio->io_orig_abd = zio->io_abd = data;
864 	zio->io_orig_size = zio->io_size = psize;
865 	zio->io_lsize = lsize;
866 	zio->io_orig_flags = zio->io_flags = flags;
867 	zio->io_orig_stage = zio->io_stage = stage;
868 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
869 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
870 
871 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
872 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
873 
874 	if (zb != NULL)
875 		zio->io_bookmark = *zb;
876 
877 	if (pio != NULL) {
878 		zio->io_metaslab_class = pio->io_metaslab_class;
879 		if (zio->io_logical == NULL)
880 			zio->io_logical = pio->io_logical;
881 		if (zio->io_child_type == ZIO_CHILD_GANG)
882 			zio->io_gang_leader = pio->io_gang_leader;
883 		zio_add_child(pio, zio);
884 	}
885 
886 	taskq_init_ent(&zio->io_tqent);
887 
888 	return (zio);
889 }
890 
891 void
892 zio_destroy(zio_t *zio)
893 {
894 	metaslab_trace_fini(&zio->io_alloc_list);
895 	list_destroy(&zio->io_parent_list);
896 	list_destroy(&zio->io_child_list);
897 	mutex_destroy(&zio->io_lock);
898 	cv_destroy(&zio->io_cv);
899 	kmem_cache_free(zio_cache, zio);
900 }
901 
902 zio_t *
903 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
904     void *private, enum zio_flag flags)
905 {
906 	zio_t *zio;
907 
908 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
909 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
910 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
911 
912 	return (zio);
913 }
914 
915 zio_t *
916 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
917 {
918 	return (zio_null(NULL, spa, NULL, done, private, flags));
919 }
920 
921 static int
922 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
923     enum blk_verify_flag blk_verify, const char *fmt, ...)
924 {
925 	va_list adx;
926 	char buf[256];
927 
928 	va_start(adx, fmt);
929 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
930 	va_end(adx);
931 
932 	switch (blk_verify) {
933 	case BLK_VERIFY_HALT:
934 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
935 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
936 		break;
937 	case BLK_VERIFY_LOG:
938 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
939 		break;
940 	case BLK_VERIFY_ONLY:
941 		break;
942 	}
943 
944 	return (1);
945 }
946 
947 /*
948  * Verify the block pointer fields contain reasonable values.  This means
949  * it only contains known object types, checksum/compression identifiers,
950  * block sizes within the maximum allowed limits, valid DVAs, etc.
951  *
952  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
953  * argument controls the behavior when an invalid field is detected.
954  *
955  * Modes for zfs_blkptr_verify:
956  *   1) BLK_VERIFY_ONLY (evaluate the block)
957  *   2) BLK_VERIFY_LOG (evaluate the block and log problems)
958  *   3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
959  */
960 boolean_t
961 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
962     enum blk_verify_flag blk_verify)
963 {
964 	int errors = 0;
965 
966 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
967 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
968 		    "blkptr at %p has invalid TYPE %llu",
969 		    bp, (longlong_t)BP_GET_TYPE(bp));
970 	}
971 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
972 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
973 		    "blkptr at %p has invalid CHECKSUM %llu",
974 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
975 	}
976 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
977 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
978 		    "blkptr at %p has invalid COMPRESS %llu",
979 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
980 	}
981 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
982 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
983 		    "blkptr at %p has invalid LSIZE %llu",
984 		    bp, (longlong_t)BP_GET_LSIZE(bp));
985 	}
986 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
987 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
988 		    "blkptr at %p has invalid PSIZE %llu",
989 		    bp, (longlong_t)BP_GET_PSIZE(bp));
990 	}
991 
992 	if (BP_IS_EMBEDDED(bp)) {
993 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
994 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
995 			    "blkptr at %p has invalid ETYPE %llu",
996 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
997 		}
998 	}
999 
1000 	/*
1001 	 * Do not verify individual DVAs if the config is not trusted. This
1002 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1003 	 */
1004 	if (!spa->spa_trust_config)
1005 		return (errors == 0);
1006 
1007 	if (!config_held)
1008 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1009 	else
1010 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1011 	/*
1012 	 * Pool-specific checks.
1013 	 *
1014 	 * Note: it would be nice to verify that the blk_birth and
1015 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
1016 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1017 	 * that are in the log) to be arbitrarily large.
1018 	 */
1019 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1020 		const dva_t *dva = &bp->blk_dva[i];
1021 		uint64_t vdevid = DVA_GET_VDEV(dva);
1022 
1023 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1024 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1025 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1026 			    bp, i, (longlong_t)vdevid);
1027 			continue;
1028 		}
1029 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1030 		if (vd == NULL) {
1031 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1032 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1033 			    bp, i, (longlong_t)vdevid);
1034 			continue;
1035 		}
1036 		if (vd->vdev_ops == &vdev_hole_ops) {
1037 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1038 			    "blkptr at %p DVA %u has hole VDEV %llu",
1039 			    bp, i, (longlong_t)vdevid);
1040 			continue;
1041 		}
1042 		if (vd->vdev_ops == &vdev_missing_ops) {
1043 			/*
1044 			 * "missing" vdevs are valid during import, but we
1045 			 * don't have their detailed info (e.g. asize), so
1046 			 * we can't perform any more checks on them.
1047 			 */
1048 			continue;
1049 		}
1050 		uint64_t offset = DVA_GET_OFFSET(dva);
1051 		uint64_t asize = DVA_GET_ASIZE(dva);
1052 		if (DVA_GET_GANG(dva))
1053 			asize = vdev_gang_header_asize(vd);
1054 		if (offset + asize > vd->vdev_asize) {
1055 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1056 			    "blkptr at %p DVA %u has invalid OFFSET %llu",
1057 			    bp, i, (longlong_t)offset);
1058 		}
1059 	}
1060 	if (errors > 0)
1061 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1062 	if (!config_held)
1063 		spa_config_exit(spa, SCL_VDEV, bp);
1064 
1065 	return (errors == 0);
1066 }
1067 
1068 boolean_t
1069 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1070 {
1071 	(void) bp;
1072 	uint64_t vdevid = DVA_GET_VDEV(dva);
1073 
1074 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1075 		return (B_FALSE);
1076 
1077 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1078 	if (vd == NULL)
1079 		return (B_FALSE);
1080 
1081 	if (vd->vdev_ops == &vdev_hole_ops)
1082 		return (B_FALSE);
1083 
1084 	if (vd->vdev_ops == &vdev_missing_ops) {
1085 		return (B_FALSE);
1086 	}
1087 
1088 	uint64_t offset = DVA_GET_OFFSET(dva);
1089 	uint64_t asize = DVA_GET_ASIZE(dva);
1090 
1091 	if (DVA_GET_GANG(dva))
1092 		asize = vdev_gang_header_asize(vd);
1093 	if (offset + asize > vd->vdev_asize)
1094 		return (B_FALSE);
1095 
1096 	return (B_TRUE);
1097 }
1098 
1099 zio_t *
1100 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1101     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1102     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
1103 {
1104 	zio_t *zio;
1105 
1106 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1107 	    data, size, size, done, private,
1108 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1109 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1110 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1111 
1112 	return (zio);
1113 }
1114 
1115 zio_t *
1116 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1117     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1118     zio_done_func_t *ready, zio_done_func_t *children_ready,
1119     zio_done_func_t *physdone, zio_done_func_t *done,
1120     void *private, zio_priority_t priority, enum zio_flag flags,
1121     const zbookmark_phys_t *zb)
1122 {
1123 	zio_t *zio;
1124 
1125 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1126 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1127 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1128 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1129 	    DMU_OT_IS_VALID(zp->zp_type) &&
1130 	    zp->zp_level < 32 &&
1131 	    zp->zp_copies > 0 &&
1132 	    zp->zp_copies <= spa_max_replication(spa));
1133 
1134 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1135 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1136 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1137 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1138 
1139 	zio->io_ready = ready;
1140 	zio->io_children_ready = children_ready;
1141 	zio->io_physdone = physdone;
1142 	zio->io_prop = *zp;
1143 
1144 	/*
1145 	 * Data can be NULL if we are going to call zio_write_override() to
1146 	 * provide the already-allocated BP.  But we may need the data to
1147 	 * verify a dedup hit (if requested).  In this case, don't try to
1148 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1149 	 * dedup blocks need data as well so we also disable dedup in this
1150 	 * case.
1151 	 */
1152 	if (data == NULL &&
1153 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1154 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1155 	}
1156 
1157 	return (zio);
1158 }
1159 
1160 zio_t *
1161 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1162     uint64_t size, zio_done_func_t *done, void *private,
1163     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1164 {
1165 	zio_t *zio;
1166 
1167 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1168 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1169 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1170 
1171 	return (zio);
1172 }
1173 
1174 void
1175 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1176 {
1177 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1178 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1179 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1180 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1181 
1182 	/*
1183 	 * We must reset the io_prop to match the values that existed
1184 	 * when the bp was first written by dmu_sync() keeping in mind
1185 	 * that nopwrite and dedup are mutually exclusive.
1186 	 */
1187 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1188 	zio->io_prop.zp_nopwrite = nopwrite;
1189 	zio->io_prop.zp_copies = copies;
1190 	zio->io_bp_override = bp;
1191 }
1192 
1193 void
1194 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1195 {
1196 
1197 	(void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1198 
1199 	/*
1200 	 * The check for EMBEDDED is a performance optimization.  We
1201 	 * process the free here (by ignoring it) rather than
1202 	 * putting it on the list and then processing it in zio_free_sync().
1203 	 */
1204 	if (BP_IS_EMBEDDED(bp))
1205 		return;
1206 	metaslab_check_free(spa, bp);
1207 
1208 	/*
1209 	 * Frees that are for the currently-syncing txg, are not going to be
1210 	 * deferred, and which will not need to do a read (i.e. not GANG or
1211 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1212 	 * in-memory list for later processing.
1213 	 *
1214 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1215 	 * when the log space map feature is disabled. [see relevant comment
1216 	 * in spa_sync_iterate_to_convergence()]
1217 	 */
1218 	if (BP_IS_GANG(bp) ||
1219 	    BP_GET_DEDUP(bp) ||
1220 	    txg != spa->spa_syncing_txg ||
1221 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1222 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1223 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1224 	} else {
1225 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1226 	}
1227 }
1228 
1229 /*
1230  * To improve performance, this function may return NULL if we were able
1231  * to do the free immediately.  This avoids the cost of creating a zio
1232  * (and linking it to the parent, etc).
1233  */
1234 zio_t *
1235 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1236     enum zio_flag flags)
1237 {
1238 	ASSERT(!BP_IS_HOLE(bp));
1239 	ASSERT(spa_syncing_txg(spa) == txg);
1240 
1241 	if (BP_IS_EMBEDDED(bp))
1242 		return (NULL);
1243 
1244 	metaslab_check_free(spa, bp);
1245 	arc_freed(spa, bp);
1246 	dsl_scan_freed(spa, bp);
1247 
1248 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1249 		/*
1250 		 * GANG and DEDUP blocks can induce a read (for the gang block
1251 		 * header, or the DDT), so issue them asynchronously so that
1252 		 * this thread is not tied up.
1253 		 */
1254 		enum zio_stage stage =
1255 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1256 
1257 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1258 		    BP_GET_PSIZE(bp), NULL, NULL,
1259 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1260 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1261 	} else {
1262 		metaslab_free(spa, bp, txg, B_FALSE);
1263 		return (NULL);
1264 	}
1265 }
1266 
1267 zio_t *
1268 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1269     zio_done_func_t *done, void *private, enum zio_flag flags)
1270 {
1271 	zio_t *zio;
1272 
1273 	(void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1274 	    BLK_VERIFY_HALT);
1275 
1276 	if (BP_IS_EMBEDDED(bp))
1277 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1278 
1279 	/*
1280 	 * A claim is an allocation of a specific block.  Claims are needed
1281 	 * to support immediate writes in the intent log.  The issue is that
1282 	 * immediate writes contain committed data, but in a txg that was
1283 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1284 	 * the intent log claims all blocks that contain immediate write data
1285 	 * so that the SPA knows they're in use.
1286 	 *
1287 	 * All claims *must* be resolved in the first txg -- before the SPA
1288 	 * starts allocating blocks -- so that nothing is allocated twice.
1289 	 * If txg == 0 we just verify that the block is claimable.
1290 	 */
1291 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1292 	    spa_min_claim_txg(spa));
1293 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1294 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1295 
1296 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1297 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1298 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1299 	ASSERT0(zio->io_queued_timestamp);
1300 
1301 	return (zio);
1302 }
1303 
1304 zio_t *
1305 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1306     zio_done_func_t *done, void *private, enum zio_flag flags)
1307 {
1308 	zio_t *zio;
1309 	int c;
1310 
1311 	if (vd->vdev_children == 0) {
1312 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1313 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1314 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1315 
1316 		zio->io_cmd = cmd;
1317 	} else {
1318 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1319 
1320 		for (c = 0; c < vd->vdev_children; c++)
1321 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1322 			    done, private, flags));
1323 	}
1324 
1325 	return (zio);
1326 }
1327 
1328 zio_t *
1329 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1330     zio_done_func_t *done, void *private, zio_priority_t priority,
1331     enum zio_flag flags, enum trim_flag trim_flags)
1332 {
1333 	zio_t *zio;
1334 
1335 	ASSERT0(vd->vdev_children);
1336 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1337 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1338 	ASSERT3U(size, !=, 0);
1339 
1340 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1341 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1342 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1343 	zio->io_trim_flags = trim_flags;
1344 
1345 	return (zio);
1346 }
1347 
1348 zio_t *
1349 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1350     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1351     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1352 {
1353 	zio_t *zio;
1354 
1355 	ASSERT(vd->vdev_children == 0);
1356 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1357 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1358 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1359 
1360 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1361 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1362 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1363 
1364 	zio->io_prop.zp_checksum = checksum;
1365 
1366 	return (zio);
1367 }
1368 
1369 zio_t *
1370 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1371     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1372     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1373 {
1374 	zio_t *zio;
1375 
1376 	ASSERT(vd->vdev_children == 0);
1377 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1378 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1379 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1380 
1381 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1382 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1383 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1384 
1385 	zio->io_prop.zp_checksum = checksum;
1386 
1387 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1388 		/*
1389 		 * zec checksums are necessarily destructive -- they modify
1390 		 * the end of the write buffer to hold the verifier/checksum.
1391 		 * Therefore, we must make a local copy in case the data is
1392 		 * being written to multiple places in parallel.
1393 		 */
1394 		abd_t *wbuf = abd_alloc_sametype(data, size);
1395 		abd_copy(wbuf, data, size);
1396 
1397 		zio_push_transform(zio, wbuf, size, size, NULL);
1398 	}
1399 
1400 	return (zio);
1401 }
1402 
1403 /*
1404  * Create a child I/O to do some work for us.
1405  */
1406 zio_t *
1407 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1408     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1409     enum zio_flag flags, zio_done_func_t *done, void *private)
1410 {
1411 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1412 	zio_t *zio;
1413 
1414 	/*
1415 	 * vdev child I/Os do not propagate their error to the parent.
1416 	 * Therefore, for correct operation the caller *must* check for
1417 	 * and handle the error in the child i/o's done callback.
1418 	 * The only exceptions are i/os that we don't care about
1419 	 * (OPTIONAL or REPAIR).
1420 	 */
1421 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1422 	    done != NULL);
1423 
1424 	if (type == ZIO_TYPE_READ && bp != NULL) {
1425 		/*
1426 		 * If we have the bp, then the child should perform the
1427 		 * checksum and the parent need not.  This pushes error
1428 		 * detection as close to the leaves as possible and
1429 		 * eliminates redundant checksums in the interior nodes.
1430 		 */
1431 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1432 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1433 	}
1434 
1435 	if (vd->vdev_ops->vdev_op_leaf) {
1436 		ASSERT0(vd->vdev_children);
1437 		offset += VDEV_LABEL_START_SIZE;
1438 	}
1439 
1440 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1441 
1442 	/*
1443 	 * If we've decided to do a repair, the write is not speculative --
1444 	 * even if the original read was.
1445 	 */
1446 	if (flags & ZIO_FLAG_IO_REPAIR)
1447 		flags &= ~ZIO_FLAG_SPECULATIVE;
1448 
1449 	/*
1450 	 * If we're creating a child I/O that is not associated with a
1451 	 * top-level vdev, then the child zio is not an allocating I/O.
1452 	 * If this is a retried I/O then we ignore it since we will
1453 	 * have already processed the original allocating I/O.
1454 	 */
1455 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1456 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1457 		ASSERT(pio->io_metaslab_class != NULL);
1458 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1459 		ASSERT(type == ZIO_TYPE_WRITE);
1460 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1461 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1462 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1463 		    pio->io_child_type == ZIO_CHILD_GANG);
1464 
1465 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1466 	}
1467 
1468 
1469 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1470 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1471 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1472 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1473 
1474 	zio->io_physdone = pio->io_physdone;
1475 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1476 		zio->io_logical->io_phys_children++;
1477 
1478 	return (zio);
1479 }
1480 
1481 zio_t *
1482 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1483     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1484     zio_done_func_t *done, void *private)
1485 {
1486 	zio_t *zio;
1487 
1488 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1489 
1490 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1491 	    data, size, size, done, private, type, priority,
1492 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1493 	    vd, offset, NULL,
1494 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1495 
1496 	return (zio);
1497 }
1498 
1499 void
1500 zio_flush(zio_t *zio, vdev_t *vd)
1501 {
1502 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1503 	    NULL, NULL,
1504 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1505 }
1506 
1507 void
1508 zio_shrink(zio_t *zio, uint64_t size)
1509 {
1510 	ASSERT3P(zio->io_executor, ==, NULL);
1511 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1512 	ASSERT3U(size, <=, zio->io_size);
1513 
1514 	/*
1515 	 * We don't shrink for raidz because of problems with the
1516 	 * reconstruction when reading back less than the block size.
1517 	 * Note, BP_IS_RAIDZ() assumes no compression.
1518 	 */
1519 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1520 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1521 		/* we are not doing a raw write */
1522 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1523 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1524 	}
1525 }
1526 
1527 /*
1528  * ==========================================================================
1529  * Prepare to read and write logical blocks
1530  * ==========================================================================
1531  */
1532 
1533 static zio_t *
1534 zio_read_bp_init(zio_t *zio)
1535 {
1536 	blkptr_t *bp = zio->io_bp;
1537 	uint64_t psize =
1538 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1539 
1540 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1541 
1542 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1543 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1544 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1545 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1546 		    psize, psize, zio_decompress);
1547 	}
1548 
1549 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1550 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1551 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1552 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1553 		    psize, psize, zio_decrypt);
1554 	}
1555 
1556 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1557 		int psize = BPE_GET_PSIZE(bp);
1558 		void *data = abd_borrow_buf(zio->io_abd, psize);
1559 
1560 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1561 		decode_embedded_bp_compressed(bp, data);
1562 		abd_return_buf_copy(zio->io_abd, data, psize);
1563 	} else {
1564 		ASSERT(!BP_IS_EMBEDDED(bp));
1565 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1566 	}
1567 
1568 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1569 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1570 
1571 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1572 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1573 
1574 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1575 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1576 
1577 	return (zio);
1578 }
1579 
1580 static zio_t *
1581 zio_write_bp_init(zio_t *zio)
1582 {
1583 	if (!IO_IS_ALLOCATING(zio))
1584 		return (zio);
1585 
1586 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1587 
1588 	if (zio->io_bp_override) {
1589 		blkptr_t *bp = zio->io_bp;
1590 		zio_prop_t *zp = &zio->io_prop;
1591 
1592 		ASSERT(bp->blk_birth != zio->io_txg);
1593 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1594 
1595 		*bp = *zio->io_bp_override;
1596 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1597 
1598 		if (BP_IS_EMBEDDED(bp))
1599 			return (zio);
1600 
1601 		/*
1602 		 * If we've been overridden and nopwrite is set then
1603 		 * set the flag accordingly to indicate that a nopwrite
1604 		 * has already occurred.
1605 		 */
1606 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1607 			ASSERT(!zp->zp_dedup);
1608 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1609 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1610 			return (zio);
1611 		}
1612 
1613 		ASSERT(!zp->zp_nopwrite);
1614 
1615 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1616 			return (zio);
1617 
1618 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1619 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1620 
1621 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1622 		    !zp->zp_encrypt) {
1623 			BP_SET_DEDUP(bp, 1);
1624 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1625 			return (zio);
1626 		}
1627 
1628 		/*
1629 		 * We were unable to handle this as an override bp, treat
1630 		 * it as a regular write I/O.
1631 		 */
1632 		zio->io_bp_override = NULL;
1633 		*bp = zio->io_bp_orig;
1634 		zio->io_pipeline = zio->io_orig_pipeline;
1635 	}
1636 
1637 	return (zio);
1638 }
1639 
1640 static zio_t *
1641 zio_write_compress(zio_t *zio)
1642 {
1643 	spa_t *spa = zio->io_spa;
1644 	zio_prop_t *zp = &zio->io_prop;
1645 	enum zio_compress compress = zp->zp_compress;
1646 	blkptr_t *bp = zio->io_bp;
1647 	uint64_t lsize = zio->io_lsize;
1648 	uint64_t psize = zio->io_size;
1649 	uint32_t pass = 1;
1650 
1651 	/*
1652 	 * If our children haven't all reached the ready stage,
1653 	 * wait for them and then repeat this pipeline stage.
1654 	 */
1655 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1656 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1657 		return (NULL);
1658 	}
1659 
1660 	if (!IO_IS_ALLOCATING(zio))
1661 		return (zio);
1662 
1663 	if (zio->io_children_ready != NULL) {
1664 		/*
1665 		 * Now that all our children are ready, run the callback
1666 		 * associated with this zio in case it wants to modify the
1667 		 * data to be written.
1668 		 */
1669 		ASSERT3U(zp->zp_level, >, 0);
1670 		zio->io_children_ready(zio);
1671 	}
1672 
1673 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1674 	ASSERT(zio->io_bp_override == NULL);
1675 
1676 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1677 		/*
1678 		 * We're rewriting an existing block, which means we're
1679 		 * working on behalf of spa_sync().  For spa_sync() to
1680 		 * converge, it must eventually be the case that we don't
1681 		 * have to allocate new blocks.  But compression changes
1682 		 * the blocksize, which forces a reallocate, and makes
1683 		 * convergence take longer.  Therefore, after the first
1684 		 * few passes, stop compressing to ensure convergence.
1685 		 */
1686 		pass = spa_sync_pass(spa);
1687 
1688 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1689 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1690 		ASSERT(!BP_GET_DEDUP(bp));
1691 
1692 		if (pass >= zfs_sync_pass_dont_compress)
1693 			compress = ZIO_COMPRESS_OFF;
1694 
1695 		/* Make sure someone doesn't change their mind on overwrites */
1696 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1697 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1698 	}
1699 
1700 	/* If it's a compressed write that is not raw, compress the buffer. */
1701 	if (compress != ZIO_COMPRESS_OFF &&
1702 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1703 		void *cbuf = zio_buf_alloc(lsize);
1704 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1705 		    zp->zp_complevel);
1706 		if (psize == 0 || psize >= lsize) {
1707 			compress = ZIO_COMPRESS_OFF;
1708 			zio_buf_free(cbuf, lsize);
1709 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1710 		    psize <= BPE_PAYLOAD_SIZE &&
1711 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1712 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1713 			encode_embedded_bp_compressed(bp,
1714 			    cbuf, compress, lsize, psize);
1715 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1716 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1717 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1718 			zio_buf_free(cbuf, lsize);
1719 			bp->blk_birth = zio->io_txg;
1720 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1721 			ASSERT(spa_feature_is_active(spa,
1722 			    SPA_FEATURE_EMBEDDED_DATA));
1723 			return (zio);
1724 		} else {
1725 			/*
1726 			 * Round compressed size up to the minimum allocation
1727 			 * size of the smallest-ashift device, and zero the
1728 			 * tail. This ensures that the compressed size of the
1729 			 * BP (and thus compressratio property) are correct,
1730 			 * in that we charge for the padding used to fill out
1731 			 * the last sector.
1732 			 */
1733 			ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1734 			size_t rounded = (size_t)roundup(psize,
1735 			    spa->spa_min_alloc);
1736 			if (rounded >= lsize) {
1737 				compress = ZIO_COMPRESS_OFF;
1738 				zio_buf_free(cbuf, lsize);
1739 				psize = lsize;
1740 			} else {
1741 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1742 				abd_take_ownership_of_buf(cdata, B_TRUE);
1743 				abd_zero_off(cdata, psize, rounded - psize);
1744 				psize = rounded;
1745 				zio_push_transform(zio, cdata,
1746 				    psize, lsize, NULL);
1747 			}
1748 		}
1749 
1750 		/*
1751 		 * We were unable to handle this as an override bp, treat
1752 		 * it as a regular write I/O.
1753 		 */
1754 		zio->io_bp_override = NULL;
1755 		*bp = zio->io_bp_orig;
1756 		zio->io_pipeline = zio->io_orig_pipeline;
1757 
1758 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1759 	    zp->zp_type == DMU_OT_DNODE) {
1760 		/*
1761 		 * The DMU actually relies on the zio layer's compression
1762 		 * to free metadnode blocks that have had all contained
1763 		 * dnodes freed. As a result, even when doing a raw
1764 		 * receive, we must check whether the block can be compressed
1765 		 * to a hole.
1766 		 */
1767 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1768 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1769 		if (psize == 0 || psize >= lsize)
1770 			compress = ZIO_COMPRESS_OFF;
1771 	} else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1772 	    !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1773 		/*
1774 		 * If we are raw receiving an encrypted dataset we should not
1775 		 * take this codepath because it will change the on-disk block
1776 		 * and decryption will fail.
1777 		 */
1778 		size_t rounded = MIN((size_t)roundup(psize,
1779 		    spa->spa_min_alloc), lsize);
1780 
1781 		if (rounded != psize) {
1782 			abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1783 			abd_zero_off(cdata, psize, rounded - psize);
1784 			abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1785 			psize = rounded;
1786 			zio_push_transform(zio, cdata,
1787 			    psize, rounded, NULL);
1788 		}
1789 	} else {
1790 		ASSERT3U(psize, !=, 0);
1791 	}
1792 
1793 	/*
1794 	 * The final pass of spa_sync() must be all rewrites, but the first
1795 	 * few passes offer a trade-off: allocating blocks defers convergence,
1796 	 * but newly allocated blocks are sequential, so they can be written
1797 	 * to disk faster.  Therefore, we allow the first few passes of
1798 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1799 	 * There should only be a handful of blocks after pass 1 in any case.
1800 	 */
1801 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1802 	    BP_GET_PSIZE(bp) == psize &&
1803 	    pass >= zfs_sync_pass_rewrite) {
1804 		VERIFY3U(psize, !=, 0);
1805 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1806 
1807 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1808 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1809 	} else {
1810 		BP_ZERO(bp);
1811 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1812 	}
1813 
1814 	if (psize == 0) {
1815 		if (zio->io_bp_orig.blk_birth != 0 &&
1816 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1817 			BP_SET_LSIZE(bp, lsize);
1818 			BP_SET_TYPE(bp, zp->zp_type);
1819 			BP_SET_LEVEL(bp, zp->zp_level);
1820 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1821 		}
1822 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1823 	} else {
1824 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1825 		BP_SET_LSIZE(bp, lsize);
1826 		BP_SET_TYPE(bp, zp->zp_type);
1827 		BP_SET_LEVEL(bp, zp->zp_level);
1828 		BP_SET_PSIZE(bp, psize);
1829 		BP_SET_COMPRESS(bp, compress);
1830 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1831 		BP_SET_DEDUP(bp, zp->zp_dedup);
1832 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1833 		if (zp->zp_dedup) {
1834 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1835 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1836 			ASSERT(!zp->zp_encrypt ||
1837 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1838 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1839 		}
1840 		if (zp->zp_nopwrite) {
1841 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1842 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1843 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1844 		}
1845 	}
1846 	return (zio);
1847 }
1848 
1849 static zio_t *
1850 zio_free_bp_init(zio_t *zio)
1851 {
1852 	blkptr_t *bp = zio->io_bp;
1853 
1854 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1855 		if (BP_GET_DEDUP(bp))
1856 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1857 	}
1858 
1859 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1860 
1861 	return (zio);
1862 }
1863 
1864 /*
1865  * ==========================================================================
1866  * Execute the I/O pipeline
1867  * ==========================================================================
1868  */
1869 
1870 static void
1871 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1872 {
1873 	spa_t *spa = zio->io_spa;
1874 	zio_type_t t = zio->io_type;
1875 	int flags = (cutinline ? TQ_FRONT : 0);
1876 
1877 	/*
1878 	 * If we're a config writer or a probe, the normal issue and
1879 	 * interrupt threads may all be blocked waiting for the config lock.
1880 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1881 	 */
1882 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1883 		t = ZIO_TYPE_NULL;
1884 
1885 	/*
1886 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1887 	 */
1888 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1889 		t = ZIO_TYPE_NULL;
1890 
1891 	/*
1892 	 * If this is a high priority I/O, then use the high priority taskq if
1893 	 * available.
1894 	 */
1895 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1896 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1897 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1898 		q++;
1899 
1900 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1901 
1902 	/*
1903 	 * NB: We are assuming that the zio can only be dispatched
1904 	 * to a single taskq at a time.  It would be a grievous error
1905 	 * to dispatch the zio to another taskq at the same time.
1906 	 */
1907 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1908 	spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
1909 	    &zio->io_tqent);
1910 }
1911 
1912 static boolean_t
1913 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1914 {
1915 	spa_t *spa = zio->io_spa;
1916 
1917 	taskq_t *tq = taskq_of_curthread();
1918 
1919 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1920 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1921 		uint_t i;
1922 		for (i = 0; i < tqs->stqs_count; i++) {
1923 			if (tqs->stqs_taskq[i] == tq)
1924 				return (B_TRUE);
1925 		}
1926 	}
1927 
1928 	return (B_FALSE);
1929 }
1930 
1931 static zio_t *
1932 zio_issue_async(zio_t *zio)
1933 {
1934 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1935 
1936 	return (NULL);
1937 }
1938 
1939 void
1940 zio_interrupt(void *zio)
1941 {
1942 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1943 }
1944 
1945 void
1946 zio_delay_interrupt(zio_t *zio)
1947 {
1948 	/*
1949 	 * The timeout_generic() function isn't defined in userspace, so
1950 	 * rather than trying to implement the function, the zio delay
1951 	 * functionality has been disabled for userspace builds.
1952 	 */
1953 
1954 #ifdef _KERNEL
1955 	/*
1956 	 * If io_target_timestamp is zero, then no delay has been registered
1957 	 * for this IO, thus jump to the end of this function and "skip" the
1958 	 * delay; issuing it directly to the zio layer.
1959 	 */
1960 	if (zio->io_target_timestamp != 0) {
1961 		hrtime_t now = gethrtime();
1962 
1963 		if (now >= zio->io_target_timestamp) {
1964 			/*
1965 			 * This IO has already taken longer than the target
1966 			 * delay to complete, so we don't want to delay it
1967 			 * any longer; we "miss" the delay and issue it
1968 			 * directly to the zio layer. This is likely due to
1969 			 * the target latency being set to a value less than
1970 			 * the underlying hardware can satisfy (e.g. delay
1971 			 * set to 1ms, but the disks take 10ms to complete an
1972 			 * IO request).
1973 			 */
1974 
1975 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1976 			    hrtime_t, now);
1977 
1978 			zio_interrupt(zio);
1979 		} else {
1980 			taskqid_t tid;
1981 			hrtime_t diff = zio->io_target_timestamp - now;
1982 			clock_t expire_at_tick = ddi_get_lbolt() +
1983 			    NSEC_TO_TICK(diff);
1984 
1985 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1986 			    hrtime_t, now, hrtime_t, diff);
1987 
1988 			if (NSEC_TO_TICK(diff) == 0) {
1989 				/* Our delay is less than a jiffy - just spin */
1990 				zfs_sleep_until(zio->io_target_timestamp);
1991 				zio_interrupt(zio);
1992 			} else {
1993 				/*
1994 				 * Use taskq_dispatch_delay() in the place of
1995 				 * OpenZFS's timeout_generic().
1996 				 */
1997 				tid = taskq_dispatch_delay(system_taskq,
1998 				    zio_interrupt, zio, TQ_NOSLEEP,
1999 				    expire_at_tick);
2000 				if (tid == TASKQID_INVALID) {
2001 					/*
2002 					 * Couldn't allocate a task.  Just
2003 					 * finish the zio without a delay.
2004 					 */
2005 					zio_interrupt(zio);
2006 				}
2007 			}
2008 		}
2009 		return;
2010 	}
2011 #endif
2012 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2013 	zio_interrupt(zio);
2014 }
2015 
2016 static void
2017 zio_deadman_impl(zio_t *pio, int ziodepth)
2018 {
2019 	zio_t *cio, *cio_next;
2020 	zio_link_t *zl = NULL;
2021 	vdev_t *vd = pio->io_vd;
2022 
2023 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2024 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2025 		zbookmark_phys_t *zb = &pio->io_bookmark;
2026 		uint64_t delta = gethrtime() - pio->io_timestamp;
2027 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2028 
2029 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2030 		    "delta=%llu queued=%llu io=%llu "
2031 		    "path=%s "
2032 		    "last=%llu type=%d "
2033 		    "priority=%d flags=0x%x stage=0x%x "
2034 		    "pipeline=0x%x pipeline-trace=0x%x "
2035 		    "objset=%llu object=%llu "
2036 		    "level=%llu blkid=%llu "
2037 		    "offset=%llu size=%llu "
2038 		    "error=%d",
2039 		    ziodepth, pio, pio->io_timestamp,
2040 		    (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2041 		    vd ? vd->vdev_path : "NULL",
2042 		    vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2043 		    pio->io_priority, pio->io_flags, pio->io_stage,
2044 		    pio->io_pipeline, pio->io_pipeline_trace,
2045 		    (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2046 		    (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2047 		    (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2048 		    pio->io_error);
2049 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2050 		    pio->io_spa, vd, zb, pio, 0);
2051 
2052 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2053 		    taskq_empty_ent(&pio->io_tqent)) {
2054 			zio_interrupt(pio);
2055 		}
2056 	}
2057 
2058 	mutex_enter(&pio->io_lock);
2059 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2060 		cio_next = zio_walk_children(pio, &zl);
2061 		zio_deadman_impl(cio, ziodepth + 1);
2062 	}
2063 	mutex_exit(&pio->io_lock);
2064 }
2065 
2066 /*
2067  * Log the critical information describing this zio and all of its children
2068  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2069  */
2070 void
2071 zio_deadman(zio_t *pio, const char *tag)
2072 {
2073 	spa_t *spa = pio->io_spa;
2074 	char *name = spa_name(spa);
2075 
2076 	if (!zfs_deadman_enabled || spa_suspended(spa))
2077 		return;
2078 
2079 	zio_deadman_impl(pio, 0);
2080 
2081 	switch (spa_get_deadman_failmode(spa)) {
2082 	case ZIO_FAILURE_MODE_WAIT:
2083 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2084 		break;
2085 
2086 	case ZIO_FAILURE_MODE_CONTINUE:
2087 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2088 		break;
2089 
2090 	case ZIO_FAILURE_MODE_PANIC:
2091 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2092 		break;
2093 	}
2094 }
2095 
2096 /*
2097  * Execute the I/O pipeline until one of the following occurs:
2098  * (1) the I/O completes; (2) the pipeline stalls waiting for
2099  * dependent child I/Os; (3) the I/O issues, so we're waiting
2100  * for an I/O completion interrupt; (4) the I/O is delegated by
2101  * vdev-level caching or aggregation; (5) the I/O is deferred
2102  * due to vdev-level queueing; (6) the I/O is handed off to
2103  * another thread.  In all cases, the pipeline stops whenever
2104  * there's no CPU work; it never burns a thread in cv_wait_io().
2105  *
2106  * There's no locking on io_stage because there's no legitimate way
2107  * for multiple threads to be attempting to process the same I/O.
2108  */
2109 static zio_pipe_stage_t *zio_pipeline[];
2110 
2111 /*
2112  * zio_execute() is a wrapper around the static function
2113  * __zio_execute() so that we can force  __zio_execute() to be
2114  * inlined.  This reduces stack overhead which is important
2115  * because __zio_execute() is called recursively in several zio
2116  * code paths.  zio_execute() itself cannot be inlined because
2117  * it is externally visible.
2118  */
2119 void
2120 zio_execute(void *zio)
2121 {
2122 	fstrans_cookie_t cookie;
2123 
2124 	cookie = spl_fstrans_mark();
2125 	__zio_execute(zio);
2126 	spl_fstrans_unmark(cookie);
2127 }
2128 
2129 /*
2130  * Used to determine if in the current context the stack is sized large
2131  * enough to allow zio_execute() to be called recursively.  A minimum
2132  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2133  */
2134 static boolean_t
2135 zio_execute_stack_check(zio_t *zio)
2136 {
2137 #if !defined(HAVE_LARGE_STACKS)
2138 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2139 
2140 	/* Executing in txg_sync_thread() context. */
2141 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2142 		return (B_TRUE);
2143 
2144 	/* Pool initialization outside of zio_taskq context. */
2145 	if (dp && spa_is_initializing(dp->dp_spa) &&
2146 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2147 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2148 		return (B_TRUE);
2149 #else
2150 	(void) zio;
2151 #endif /* HAVE_LARGE_STACKS */
2152 
2153 	return (B_FALSE);
2154 }
2155 
2156 __attribute__((always_inline))
2157 static inline void
2158 __zio_execute(zio_t *zio)
2159 {
2160 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2161 
2162 	while (zio->io_stage < ZIO_STAGE_DONE) {
2163 		enum zio_stage pipeline = zio->io_pipeline;
2164 		enum zio_stage stage = zio->io_stage;
2165 
2166 		zio->io_executor = curthread;
2167 
2168 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2169 		ASSERT(ISP2(stage));
2170 		ASSERT(zio->io_stall == NULL);
2171 
2172 		do {
2173 			stage <<= 1;
2174 		} while ((stage & pipeline) == 0);
2175 
2176 		ASSERT(stage <= ZIO_STAGE_DONE);
2177 
2178 		/*
2179 		 * If we are in interrupt context and this pipeline stage
2180 		 * will grab a config lock that is held across I/O,
2181 		 * or may wait for an I/O that needs an interrupt thread
2182 		 * to complete, issue async to avoid deadlock.
2183 		 *
2184 		 * For VDEV_IO_START, we cut in line so that the io will
2185 		 * be sent to disk promptly.
2186 		 */
2187 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2188 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2189 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2190 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2191 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2192 			return;
2193 		}
2194 
2195 		/*
2196 		 * If the current context doesn't have large enough stacks
2197 		 * the zio must be issued asynchronously to prevent overflow.
2198 		 */
2199 		if (zio_execute_stack_check(zio)) {
2200 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2201 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2202 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2203 			return;
2204 		}
2205 
2206 		zio->io_stage = stage;
2207 		zio->io_pipeline_trace |= zio->io_stage;
2208 
2209 		/*
2210 		 * The zio pipeline stage returns the next zio to execute
2211 		 * (typically the same as this one), or NULL if we should
2212 		 * stop.
2213 		 */
2214 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2215 
2216 		if (zio == NULL)
2217 			return;
2218 	}
2219 }
2220 
2221 
2222 /*
2223  * ==========================================================================
2224  * Initiate I/O, either sync or async
2225  * ==========================================================================
2226  */
2227 int
2228 zio_wait(zio_t *zio)
2229 {
2230 	/*
2231 	 * Some routines, like zio_free_sync(), may return a NULL zio
2232 	 * to avoid the performance overhead of creating and then destroying
2233 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2234 	 * zio and ignore it.
2235 	 */
2236 	if (zio == NULL)
2237 		return (0);
2238 
2239 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2240 	int error;
2241 
2242 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2243 	ASSERT3P(zio->io_executor, ==, NULL);
2244 
2245 	zio->io_waiter = curthread;
2246 	ASSERT0(zio->io_queued_timestamp);
2247 	zio->io_queued_timestamp = gethrtime();
2248 
2249 	__zio_execute(zio);
2250 
2251 	mutex_enter(&zio->io_lock);
2252 	while (zio->io_executor != NULL) {
2253 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2254 		    ddi_get_lbolt() + timeout);
2255 
2256 		if (zfs_deadman_enabled && error == -1 &&
2257 		    gethrtime() - zio->io_queued_timestamp >
2258 		    spa_deadman_ziotime(zio->io_spa)) {
2259 			mutex_exit(&zio->io_lock);
2260 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2261 			zio_deadman(zio, FTAG);
2262 			mutex_enter(&zio->io_lock);
2263 		}
2264 	}
2265 	mutex_exit(&zio->io_lock);
2266 
2267 	error = zio->io_error;
2268 	zio_destroy(zio);
2269 
2270 	return (error);
2271 }
2272 
2273 void
2274 zio_nowait(zio_t *zio)
2275 {
2276 	/*
2277 	 * See comment in zio_wait().
2278 	 */
2279 	if (zio == NULL)
2280 		return;
2281 
2282 	ASSERT3P(zio->io_executor, ==, NULL);
2283 
2284 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2285 	    zio_unique_parent(zio) == NULL) {
2286 		zio_t *pio;
2287 
2288 		/*
2289 		 * This is a logical async I/O with no parent to wait for it.
2290 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2291 		 * will ensure they complete prior to unloading the pool.
2292 		 */
2293 		spa_t *spa = zio->io_spa;
2294 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2295 
2296 		zio_add_child(pio, zio);
2297 	}
2298 
2299 	ASSERT0(zio->io_queued_timestamp);
2300 	zio->io_queued_timestamp = gethrtime();
2301 	__zio_execute(zio);
2302 }
2303 
2304 /*
2305  * ==========================================================================
2306  * Reexecute, cancel, or suspend/resume failed I/O
2307  * ==========================================================================
2308  */
2309 
2310 static void
2311 zio_reexecute(void *arg)
2312 {
2313 	zio_t *pio = arg;
2314 	zio_t *cio, *cio_next;
2315 
2316 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2317 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2318 	ASSERT(pio->io_gang_leader == NULL);
2319 	ASSERT(pio->io_gang_tree == NULL);
2320 
2321 	pio->io_flags = pio->io_orig_flags;
2322 	pio->io_stage = pio->io_orig_stage;
2323 	pio->io_pipeline = pio->io_orig_pipeline;
2324 	pio->io_reexecute = 0;
2325 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2326 	pio->io_pipeline_trace = 0;
2327 	pio->io_error = 0;
2328 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2329 		pio->io_state[w] = 0;
2330 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2331 		pio->io_child_error[c] = 0;
2332 
2333 	if (IO_IS_ALLOCATING(pio))
2334 		BP_ZERO(pio->io_bp);
2335 
2336 	/*
2337 	 * As we reexecute pio's children, new children could be created.
2338 	 * New children go to the head of pio's io_child_list, however,
2339 	 * so we will (correctly) not reexecute them.  The key is that
2340 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2341 	 * cannot be affected by any side effects of reexecuting 'cio'.
2342 	 */
2343 	zio_link_t *zl = NULL;
2344 	mutex_enter(&pio->io_lock);
2345 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2346 		cio_next = zio_walk_children(pio, &zl);
2347 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2348 			pio->io_children[cio->io_child_type][w]++;
2349 		mutex_exit(&pio->io_lock);
2350 		zio_reexecute(cio);
2351 		mutex_enter(&pio->io_lock);
2352 	}
2353 	mutex_exit(&pio->io_lock);
2354 
2355 	/*
2356 	 * Now that all children have been reexecuted, execute the parent.
2357 	 * We don't reexecute "The Godfather" I/O here as it's the
2358 	 * responsibility of the caller to wait on it.
2359 	 */
2360 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2361 		pio->io_queued_timestamp = gethrtime();
2362 		__zio_execute(pio);
2363 	}
2364 }
2365 
2366 void
2367 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2368 {
2369 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2370 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2371 		    "failure and the failure mode property for this pool "
2372 		    "is set to panic.", spa_name(spa));
2373 
2374 	cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2375 	    "failure and has been suspended.\n", spa_name(spa));
2376 
2377 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2378 	    NULL, NULL, 0);
2379 
2380 	mutex_enter(&spa->spa_suspend_lock);
2381 
2382 	if (spa->spa_suspend_zio_root == NULL)
2383 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2384 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2385 		    ZIO_FLAG_GODFATHER);
2386 
2387 	spa->spa_suspended = reason;
2388 
2389 	if (zio != NULL) {
2390 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2391 		ASSERT(zio != spa->spa_suspend_zio_root);
2392 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2393 		ASSERT(zio_unique_parent(zio) == NULL);
2394 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2395 		zio_add_child(spa->spa_suspend_zio_root, zio);
2396 	}
2397 
2398 	mutex_exit(&spa->spa_suspend_lock);
2399 }
2400 
2401 int
2402 zio_resume(spa_t *spa)
2403 {
2404 	zio_t *pio;
2405 
2406 	/*
2407 	 * Reexecute all previously suspended i/o.
2408 	 */
2409 	mutex_enter(&spa->spa_suspend_lock);
2410 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2411 	cv_broadcast(&spa->spa_suspend_cv);
2412 	pio = spa->spa_suspend_zio_root;
2413 	spa->spa_suspend_zio_root = NULL;
2414 	mutex_exit(&spa->spa_suspend_lock);
2415 
2416 	if (pio == NULL)
2417 		return (0);
2418 
2419 	zio_reexecute(pio);
2420 	return (zio_wait(pio));
2421 }
2422 
2423 void
2424 zio_resume_wait(spa_t *spa)
2425 {
2426 	mutex_enter(&spa->spa_suspend_lock);
2427 	while (spa_suspended(spa))
2428 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2429 	mutex_exit(&spa->spa_suspend_lock);
2430 }
2431 
2432 /*
2433  * ==========================================================================
2434  * Gang blocks.
2435  *
2436  * A gang block is a collection of small blocks that looks to the DMU
2437  * like one large block.  When zio_dva_allocate() cannot find a block
2438  * of the requested size, due to either severe fragmentation or the pool
2439  * being nearly full, it calls zio_write_gang_block() to construct the
2440  * block from smaller fragments.
2441  *
2442  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2443  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2444  * an indirect block: it's an array of block pointers.  It consumes
2445  * only one sector and hence is allocatable regardless of fragmentation.
2446  * The gang header's bps point to its gang members, which hold the data.
2447  *
2448  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2449  * as the verifier to ensure uniqueness of the SHA256 checksum.
2450  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2451  * not the gang header.  This ensures that data block signatures (needed for
2452  * deduplication) are independent of how the block is physically stored.
2453  *
2454  * Gang blocks can be nested: a gang member may itself be a gang block.
2455  * Thus every gang block is a tree in which root and all interior nodes are
2456  * gang headers, and the leaves are normal blocks that contain user data.
2457  * The root of the gang tree is called the gang leader.
2458  *
2459  * To perform any operation (read, rewrite, free, claim) on a gang block,
2460  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2461  * in the io_gang_tree field of the original logical i/o by recursively
2462  * reading the gang leader and all gang headers below it.  This yields
2463  * an in-core tree containing the contents of every gang header and the
2464  * bps for every constituent of the gang block.
2465  *
2466  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2467  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2468  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2469  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2470  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2471  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2472  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2473  * of the gang header plus zio_checksum_compute() of the data to update the
2474  * gang header's blk_cksum as described above.
2475  *
2476  * The two-phase assemble/issue model solves the problem of partial failure --
2477  * what if you'd freed part of a gang block but then couldn't read the
2478  * gang header for another part?  Assembling the entire gang tree first
2479  * ensures that all the necessary gang header I/O has succeeded before
2480  * starting the actual work of free, claim, or write.  Once the gang tree
2481  * is assembled, free and claim are in-memory operations that cannot fail.
2482  *
2483  * In the event that a gang write fails, zio_dva_unallocate() walks the
2484  * gang tree to immediately free (i.e. insert back into the space map)
2485  * everything we've allocated.  This ensures that we don't get ENOSPC
2486  * errors during repeated suspend/resume cycles due to a flaky device.
2487  *
2488  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2489  * the gang tree, we won't modify the block, so we can safely defer the free
2490  * (knowing that the block is still intact).  If we *can* assemble the gang
2491  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2492  * each constituent bp and we can allocate a new block on the next sync pass.
2493  *
2494  * In all cases, the gang tree allows complete recovery from partial failure.
2495  * ==========================================================================
2496  */
2497 
2498 static void
2499 zio_gang_issue_func_done(zio_t *zio)
2500 {
2501 	abd_free(zio->io_abd);
2502 }
2503 
2504 static zio_t *
2505 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2506     uint64_t offset)
2507 {
2508 	if (gn != NULL)
2509 		return (pio);
2510 
2511 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2512 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2513 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2514 	    &pio->io_bookmark));
2515 }
2516 
2517 static zio_t *
2518 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2519     uint64_t offset)
2520 {
2521 	zio_t *zio;
2522 
2523 	if (gn != NULL) {
2524 		abd_t *gbh_abd =
2525 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2526 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2527 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2528 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2529 		    &pio->io_bookmark);
2530 		/*
2531 		 * As we rewrite each gang header, the pipeline will compute
2532 		 * a new gang block header checksum for it; but no one will
2533 		 * compute a new data checksum, so we do that here.  The one
2534 		 * exception is the gang leader: the pipeline already computed
2535 		 * its data checksum because that stage precedes gang assembly.
2536 		 * (Presently, nothing actually uses interior data checksums;
2537 		 * this is just good hygiene.)
2538 		 */
2539 		if (gn != pio->io_gang_leader->io_gang_tree) {
2540 			abd_t *buf = abd_get_offset(data, offset);
2541 
2542 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2543 			    buf, BP_GET_PSIZE(bp));
2544 
2545 			abd_free(buf);
2546 		}
2547 		/*
2548 		 * If we are here to damage data for testing purposes,
2549 		 * leave the GBH alone so that we can detect the damage.
2550 		 */
2551 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2552 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2553 	} else {
2554 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2555 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2556 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2557 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2558 	}
2559 
2560 	return (zio);
2561 }
2562 
2563 static zio_t *
2564 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2565     uint64_t offset)
2566 {
2567 	(void) gn, (void) data, (void) offset;
2568 
2569 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2570 	    ZIO_GANG_CHILD_FLAGS(pio));
2571 	if (zio == NULL) {
2572 		zio = zio_null(pio, pio->io_spa,
2573 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2574 	}
2575 	return (zio);
2576 }
2577 
2578 static zio_t *
2579 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2580     uint64_t offset)
2581 {
2582 	(void) gn, (void) data, (void) offset;
2583 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2584 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2585 }
2586 
2587 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2588 	NULL,
2589 	zio_read_gang,
2590 	zio_rewrite_gang,
2591 	zio_free_gang,
2592 	zio_claim_gang,
2593 	NULL
2594 };
2595 
2596 static void zio_gang_tree_assemble_done(zio_t *zio);
2597 
2598 static zio_gang_node_t *
2599 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2600 {
2601 	zio_gang_node_t *gn;
2602 
2603 	ASSERT(*gnpp == NULL);
2604 
2605 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2606 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2607 	*gnpp = gn;
2608 
2609 	return (gn);
2610 }
2611 
2612 static void
2613 zio_gang_node_free(zio_gang_node_t **gnpp)
2614 {
2615 	zio_gang_node_t *gn = *gnpp;
2616 
2617 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2618 		ASSERT(gn->gn_child[g] == NULL);
2619 
2620 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2621 	kmem_free(gn, sizeof (*gn));
2622 	*gnpp = NULL;
2623 }
2624 
2625 static void
2626 zio_gang_tree_free(zio_gang_node_t **gnpp)
2627 {
2628 	zio_gang_node_t *gn = *gnpp;
2629 
2630 	if (gn == NULL)
2631 		return;
2632 
2633 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2634 		zio_gang_tree_free(&gn->gn_child[g]);
2635 
2636 	zio_gang_node_free(gnpp);
2637 }
2638 
2639 static void
2640 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2641 {
2642 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2643 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2644 
2645 	ASSERT(gio->io_gang_leader == gio);
2646 	ASSERT(BP_IS_GANG(bp));
2647 
2648 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2649 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2650 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2651 }
2652 
2653 static void
2654 zio_gang_tree_assemble_done(zio_t *zio)
2655 {
2656 	zio_t *gio = zio->io_gang_leader;
2657 	zio_gang_node_t *gn = zio->io_private;
2658 	blkptr_t *bp = zio->io_bp;
2659 
2660 	ASSERT(gio == zio_unique_parent(zio));
2661 	ASSERT(zio->io_child_count == 0);
2662 
2663 	if (zio->io_error)
2664 		return;
2665 
2666 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2667 	if (BP_SHOULD_BYTESWAP(bp))
2668 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2669 
2670 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2671 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2672 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2673 
2674 	abd_free(zio->io_abd);
2675 
2676 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2677 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2678 		if (!BP_IS_GANG(gbp))
2679 			continue;
2680 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2681 	}
2682 }
2683 
2684 static void
2685 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2686     uint64_t offset)
2687 {
2688 	zio_t *gio = pio->io_gang_leader;
2689 	zio_t *zio;
2690 
2691 	ASSERT(BP_IS_GANG(bp) == !!gn);
2692 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2693 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2694 
2695 	/*
2696 	 * If you're a gang header, your data is in gn->gn_gbh.
2697 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2698 	 */
2699 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2700 
2701 	if (gn != NULL) {
2702 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2703 
2704 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2705 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2706 			if (BP_IS_HOLE(gbp))
2707 				continue;
2708 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2709 			    offset);
2710 			offset += BP_GET_PSIZE(gbp);
2711 		}
2712 	}
2713 
2714 	if (gn == gio->io_gang_tree)
2715 		ASSERT3U(gio->io_size, ==, offset);
2716 
2717 	if (zio != pio)
2718 		zio_nowait(zio);
2719 }
2720 
2721 static zio_t *
2722 zio_gang_assemble(zio_t *zio)
2723 {
2724 	blkptr_t *bp = zio->io_bp;
2725 
2726 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2727 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2728 
2729 	zio->io_gang_leader = zio;
2730 
2731 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2732 
2733 	return (zio);
2734 }
2735 
2736 static zio_t *
2737 zio_gang_issue(zio_t *zio)
2738 {
2739 	blkptr_t *bp = zio->io_bp;
2740 
2741 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2742 		return (NULL);
2743 	}
2744 
2745 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2746 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2747 
2748 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2749 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2750 		    0);
2751 	else
2752 		zio_gang_tree_free(&zio->io_gang_tree);
2753 
2754 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2755 
2756 	return (zio);
2757 }
2758 
2759 static void
2760 zio_write_gang_member_ready(zio_t *zio)
2761 {
2762 	zio_t *pio = zio_unique_parent(zio);
2763 	dva_t *cdva = zio->io_bp->blk_dva;
2764 	dva_t *pdva = pio->io_bp->blk_dva;
2765 	uint64_t asize;
2766 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2767 
2768 	if (BP_IS_HOLE(zio->io_bp))
2769 		return;
2770 
2771 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2772 
2773 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2774 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2775 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2776 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2777 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2778 
2779 	mutex_enter(&pio->io_lock);
2780 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2781 		ASSERT(DVA_GET_GANG(&pdva[d]));
2782 		asize = DVA_GET_ASIZE(&pdva[d]);
2783 		asize += DVA_GET_ASIZE(&cdva[d]);
2784 		DVA_SET_ASIZE(&pdva[d], asize);
2785 	}
2786 	mutex_exit(&pio->io_lock);
2787 }
2788 
2789 static void
2790 zio_write_gang_done(zio_t *zio)
2791 {
2792 	/*
2793 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2794 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2795 	 * check for it here as it is cleared in zio_ready.
2796 	 */
2797 	if (zio->io_abd != NULL)
2798 		abd_free(zio->io_abd);
2799 }
2800 
2801 static zio_t *
2802 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2803 {
2804 	spa_t *spa = pio->io_spa;
2805 	blkptr_t *bp = pio->io_bp;
2806 	zio_t *gio = pio->io_gang_leader;
2807 	zio_t *zio;
2808 	zio_gang_node_t *gn, **gnpp;
2809 	zio_gbh_phys_t *gbh;
2810 	abd_t *gbh_abd;
2811 	uint64_t txg = pio->io_txg;
2812 	uint64_t resid = pio->io_size;
2813 	uint64_t lsize;
2814 	int copies = gio->io_prop.zp_copies;
2815 	int gbh_copies;
2816 	zio_prop_t zp;
2817 	int error;
2818 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2819 
2820 	/*
2821 	 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2822 	 * have a third copy.
2823 	 */
2824 	gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2825 	if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2826 		gbh_copies = SPA_DVAS_PER_BP - 1;
2827 
2828 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2829 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2830 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2831 		ASSERT(has_data);
2832 
2833 		flags |= METASLAB_ASYNC_ALLOC;
2834 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2835 		    mca_alloc_slots, pio));
2836 
2837 		/*
2838 		 * The logical zio has already placed a reservation for
2839 		 * 'copies' allocation slots but gang blocks may require
2840 		 * additional copies. These additional copies
2841 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2842 		 * since metaslab_class_throttle_reserve() always allows
2843 		 * additional reservations for gang blocks.
2844 		 */
2845 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2846 		    pio->io_allocator, pio, flags));
2847 	}
2848 
2849 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2850 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2851 	    &pio->io_alloc_list, pio, pio->io_allocator);
2852 	if (error) {
2853 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2854 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2855 			ASSERT(has_data);
2856 
2857 			/*
2858 			 * If we failed to allocate the gang block header then
2859 			 * we remove any additional allocation reservations that
2860 			 * we placed here. The original reservation will
2861 			 * be removed when the logical I/O goes to the ready
2862 			 * stage.
2863 			 */
2864 			metaslab_class_throttle_unreserve(mc,
2865 			    gbh_copies - copies, pio->io_allocator, pio);
2866 		}
2867 
2868 		pio->io_error = error;
2869 		return (pio);
2870 	}
2871 
2872 	if (pio == gio) {
2873 		gnpp = &gio->io_gang_tree;
2874 	} else {
2875 		gnpp = pio->io_private;
2876 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2877 	}
2878 
2879 	gn = zio_gang_node_alloc(gnpp);
2880 	gbh = gn->gn_gbh;
2881 	memset(gbh, 0, SPA_GANGBLOCKSIZE);
2882 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2883 
2884 	/*
2885 	 * Create the gang header.
2886 	 */
2887 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2888 	    zio_write_gang_done, NULL, pio->io_priority,
2889 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2890 
2891 	/*
2892 	 * Create and nowait the gang children.
2893 	 */
2894 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2895 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2896 		    SPA_MINBLOCKSIZE);
2897 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2898 
2899 		zp.zp_checksum = gio->io_prop.zp_checksum;
2900 		zp.zp_compress = ZIO_COMPRESS_OFF;
2901 		zp.zp_complevel = gio->io_prop.zp_complevel;
2902 		zp.zp_type = DMU_OT_NONE;
2903 		zp.zp_level = 0;
2904 		zp.zp_copies = gio->io_prop.zp_copies;
2905 		zp.zp_dedup = B_FALSE;
2906 		zp.zp_dedup_verify = B_FALSE;
2907 		zp.zp_nopwrite = B_FALSE;
2908 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2909 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2910 		memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
2911 		memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
2912 		memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
2913 
2914 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2915 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2916 		    resid) : NULL, lsize, lsize, &zp,
2917 		    zio_write_gang_member_ready, NULL, NULL,
2918 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2919 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2920 
2921 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2922 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2923 			ASSERT(has_data);
2924 
2925 			/*
2926 			 * Gang children won't throttle but we should
2927 			 * account for their work, so reserve an allocation
2928 			 * slot for them here.
2929 			 */
2930 			VERIFY(metaslab_class_throttle_reserve(mc,
2931 			    zp.zp_copies, cio->io_allocator, cio, flags));
2932 		}
2933 		zio_nowait(cio);
2934 	}
2935 
2936 	/*
2937 	 * Set pio's pipeline to just wait for zio to finish.
2938 	 */
2939 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2940 
2941 	/*
2942 	 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2943 	 */
2944 	pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2945 
2946 	zio_nowait(zio);
2947 
2948 	return (pio);
2949 }
2950 
2951 /*
2952  * The zio_nop_write stage in the pipeline determines if allocating a
2953  * new bp is necessary.  The nopwrite feature can handle writes in
2954  * either syncing or open context (i.e. zil writes) and as a result is
2955  * mutually exclusive with dedup.
2956  *
2957  * By leveraging a cryptographically secure checksum, such as SHA256, we
2958  * can compare the checksums of the new data and the old to determine if
2959  * allocating a new block is required.  Note that our requirements for
2960  * cryptographic strength are fairly weak: there can't be any accidental
2961  * hash collisions, but we don't need to be secure against intentional
2962  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2963  * to write the file to begin with, and triggering an incorrect (hash
2964  * collision) nopwrite is no worse than simply writing to the file.
2965  * That said, there are no known attacks against the checksum algorithms
2966  * used for nopwrite, assuming that the salt and the checksums
2967  * themselves remain secret.
2968  */
2969 static zio_t *
2970 zio_nop_write(zio_t *zio)
2971 {
2972 	blkptr_t *bp = zio->io_bp;
2973 	blkptr_t *bp_orig = &zio->io_bp_orig;
2974 	zio_prop_t *zp = &zio->io_prop;
2975 
2976 	ASSERT(BP_GET_LEVEL(bp) == 0);
2977 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2978 	ASSERT(zp->zp_nopwrite);
2979 	ASSERT(!zp->zp_dedup);
2980 	ASSERT(zio->io_bp_override == NULL);
2981 	ASSERT(IO_IS_ALLOCATING(zio));
2982 
2983 	/*
2984 	 * Check to see if the original bp and the new bp have matching
2985 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2986 	 * If they don't then just continue with the pipeline which will
2987 	 * allocate a new bp.
2988 	 */
2989 	if (BP_IS_HOLE(bp_orig) ||
2990 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2991 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2992 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2993 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2994 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2995 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2996 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2997 		return (zio);
2998 
2999 	/*
3000 	 * If the checksums match then reset the pipeline so that we
3001 	 * avoid allocating a new bp and issuing any I/O.
3002 	 */
3003 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3004 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3005 		    ZCHECKSUM_FLAG_NOPWRITE);
3006 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3007 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3008 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3009 		ASSERT(memcmp(&bp->blk_prop, &bp_orig->blk_prop,
3010 		    sizeof (uint64_t)) == 0);
3011 
3012 		/*
3013 		 * If we're overwriting a block that is currently on an
3014 		 * indirect vdev, then ignore the nopwrite request and
3015 		 * allow a new block to be allocated on a concrete vdev.
3016 		 */
3017 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3018 		vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3019 		    DVA_GET_VDEV(&bp->blk_dva[0]));
3020 		if (tvd->vdev_ops == &vdev_indirect_ops) {
3021 			spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3022 			return (zio);
3023 		}
3024 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3025 
3026 		*bp = *bp_orig;
3027 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3028 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3029 	}
3030 
3031 	return (zio);
3032 }
3033 
3034 /*
3035  * ==========================================================================
3036  * Dedup
3037  * ==========================================================================
3038  */
3039 static void
3040 zio_ddt_child_read_done(zio_t *zio)
3041 {
3042 	blkptr_t *bp = zio->io_bp;
3043 	ddt_entry_t *dde = zio->io_private;
3044 	ddt_phys_t *ddp;
3045 	zio_t *pio = zio_unique_parent(zio);
3046 
3047 	mutex_enter(&pio->io_lock);
3048 	ddp = ddt_phys_select(dde, bp);
3049 	if (zio->io_error == 0)
3050 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3051 
3052 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3053 		dde->dde_repair_abd = zio->io_abd;
3054 	else
3055 		abd_free(zio->io_abd);
3056 	mutex_exit(&pio->io_lock);
3057 }
3058 
3059 static zio_t *
3060 zio_ddt_read_start(zio_t *zio)
3061 {
3062 	blkptr_t *bp = zio->io_bp;
3063 
3064 	ASSERT(BP_GET_DEDUP(bp));
3065 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3066 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3067 
3068 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3069 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3070 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3071 		ddt_phys_t *ddp = dde->dde_phys;
3072 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3073 		blkptr_t blk;
3074 
3075 		ASSERT(zio->io_vsd == NULL);
3076 		zio->io_vsd = dde;
3077 
3078 		if (ddp_self == NULL)
3079 			return (zio);
3080 
3081 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3082 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3083 				continue;
3084 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3085 			    &blk);
3086 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3087 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3088 			    zio->io_size, zio_ddt_child_read_done, dde,
3089 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3090 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3091 		}
3092 		return (zio);
3093 	}
3094 
3095 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3096 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3097 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3098 
3099 	return (zio);
3100 }
3101 
3102 static zio_t *
3103 zio_ddt_read_done(zio_t *zio)
3104 {
3105 	blkptr_t *bp = zio->io_bp;
3106 
3107 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3108 		return (NULL);
3109 	}
3110 
3111 	ASSERT(BP_GET_DEDUP(bp));
3112 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3113 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3114 
3115 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3116 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3117 		ddt_entry_t *dde = zio->io_vsd;
3118 		if (ddt == NULL) {
3119 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3120 			return (zio);
3121 		}
3122 		if (dde == NULL) {
3123 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3124 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3125 			return (NULL);
3126 		}
3127 		if (dde->dde_repair_abd != NULL) {
3128 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3129 			    zio->io_size);
3130 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3131 		}
3132 		ddt_repair_done(ddt, dde);
3133 		zio->io_vsd = NULL;
3134 	}
3135 
3136 	ASSERT(zio->io_vsd == NULL);
3137 
3138 	return (zio);
3139 }
3140 
3141 static boolean_t
3142 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3143 {
3144 	spa_t *spa = zio->io_spa;
3145 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3146 
3147 	ASSERT(!(zio->io_bp_override && do_raw));
3148 
3149 	/*
3150 	 * Note: we compare the original data, not the transformed data,
3151 	 * because when zio->io_bp is an override bp, we will not have
3152 	 * pushed the I/O transforms.  That's an important optimization
3153 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3154 	 * However, we should never get a raw, override zio so in these
3155 	 * cases we can compare the io_abd directly. This is useful because
3156 	 * it allows us to do dedup verification even if we don't have access
3157 	 * to the original data (for instance, if the encryption keys aren't
3158 	 * loaded).
3159 	 */
3160 
3161 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3162 		zio_t *lio = dde->dde_lead_zio[p];
3163 
3164 		if (lio != NULL && do_raw) {
3165 			return (lio->io_size != zio->io_size ||
3166 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3167 		} else if (lio != NULL) {
3168 			return (lio->io_orig_size != zio->io_orig_size ||
3169 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3170 		}
3171 	}
3172 
3173 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3174 		ddt_phys_t *ddp = &dde->dde_phys[p];
3175 
3176 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3177 			blkptr_t blk = *zio->io_bp;
3178 			uint64_t psize;
3179 			abd_t *tmpabd;
3180 			int error;
3181 
3182 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3183 			psize = BP_GET_PSIZE(&blk);
3184 
3185 			if (psize != zio->io_size)
3186 				return (B_TRUE);
3187 
3188 			ddt_exit(ddt);
3189 
3190 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3191 
3192 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3193 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3194 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3195 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3196 
3197 			if (error == 0) {
3198 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3199 					error = SET_ERROR(ENOENT);
3200 			}
3201 
3202 			abd_free(tmpabd);
3203 			ddt_enter(ddt);
3204 			return (error != 0);
3205 		} else if (ddp->ddp_phys_birth != 0) {
3206 			arc_buf_t *abuf = NULL;
3207 			arc_flags_t aflags = ARC_FLAG_WAIT;
3208 			blkptr_t blk = *zio->io_bp;
3209 			int error;
3210 
3211 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3212 
3213 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3214 				return (B_TRUE);
3215 
3216 			ddt_exit(ddt);
3217 
3218 			error = arc_read(NULL, spa, &blk,
3219 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3220 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3221 			    &aflags, &zio->io_bookmark);
3222 
3223 			if (error == 0) {
3224 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3225 				    zio->io_orig_size) != 0)
3226 					error = SET_ERROR(ENOENT);
3227 				arc_buf_destroy(abuf, &abuf);
3228 			}
3229 
3230 			ddt_enter(ddt);
3231 			return (error != 0);
3232 		}
3233 	}
3234 
3235 	return (B_FALSE);
3236 }
3237 
3238 static void
3239 zio_ddt_child_write_ready(zio_t *zio)
3240 {
3241 	int p = zio->io_prop.zp_copies;
3242 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3243 	ddt_entry_t *dde = zio->io_private;
3244 	ddt_phys_t *ddp = &dde->dde_phys[p];
3245 	zio_t *pio;
3246 
3247 	if (zio->io_error)
3248 		return;
3249 
3250 	ddt_enter(ddt);
3251 
3252 	ASSERT(dde->dde_lead_zio[p] == zio);
3253 
3254 	ddt_phys_fill(ddp, zio->io_bp);
3255 
3256 	zio_link_t *zl = NULL;
3257 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3258 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3259 
3260 	ddt_exit(ddt);
3261 }
3262 
3263 static void
3264 zio_ddt_child_write_done(zio_t *zio)
3265 {
3266 	int p = zio->io_prop.zp_copies;
3267 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3268 	ddt_entry_t *dde = zio->io_private;
3269 	ddt_phys_t *ddp = &dde->dde_phys[p];
3270 
3271 	ddt_enter(ddt);
3272 
3273 	ASSERT(ddp->ddp_refcnt == 0);
3274 	ASSERT(dde->dde_lead_zio[p] == zio);
3275 	dde->dde_lead_zio[p] = NULL;
3276 
3277 	if (zio->io_error == 0) {
3278 		zio_link_t *zl = NULL;
3279 		while (zio_walk_parents(zio, &zl) != NULL)
3280 			ddt_phys_addref(ddp);
3281 	} else {
3282 		ddt_phys_clear(ddp);
3283 	}
3284 
3285 	ddt_exit(ddt);
3286 }
3287 
3288 static zio_t *
3289 zio_ddt_write(zio_t *zio)
3290 {
3291 	spa_t *spa = zio->io_spa;
3292 	blkptr_t *bp = zio->io_bp;
3293 	uint64_t txg = zio->io_txg;
3294 	zio_prop_t *zp = &zio->io_prop;
3295 	int p = zp->zp_copies;
3296 	zio_t *cio = NULL;
3297 	ddt_t *ddt = ddt_select(spa, bp);
3298 	ddt_entry_t *dde;
3299 	ddt_phys_t *ddp;
3300 
3301 	ASSERT(BP_GET_DEDUP(bp));
3302 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3303 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3304 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3305 
3306 	ddt_enter(ddt);
3307 	dde = ddt_lookup(ddt, bp, B_TRUE);
3308 	ddp = &dde->dde_phys[p];
3309 
3310 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3311 		/*
3312 		 * If we're using a weak checksum, upgrade to a strong checksum
3313 		 * and try again.  If we're already using a strong checksum,
3314 		 * we can't resolve it, so just convert to an ordinary write.
3315 		 * (And automatically e-mail a paper to Nature?)
3316 		 */
3317 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3318 		    ZCHECKSUM_FLAG_DEDUP)) {
3319 			zp->zp_checksum = spa_dedup_checksum(spa);
3320 			zio_pop_transforms(zio);
3321 			zio->io_stage = ZIO_STAGE_OPEN;
3322 			BP_ZERO(bp);
3323 		} else {
3324 			zp->zp_dedup = B_FALSE;
3325 			BP_SET_DEDUP(bp, B_FALSE);
3326 		}
3327 		ASSERT(!BP_GET_DEDUP(bp));
3328 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3329 		ddt_exit(ddt);
3330 		return (zio);
3331 	}
3332 
3333 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3334 		if (ddp->ddp_phys_birth != 0)
3335 			ddt_bp_fill(ddp, bp, txg);
3336 		if (dde->dde_lead_zio[p] != NULL)
3337 			zio_add_child(zio, dde->dde_lead_zio[p]);
3338 		else
3339 			ddt_phys_addref(ddp);
3340 	} else if (zio->io_bp_override) {
3341 		ASSERT(bp->blk_birth == txg);
3342 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3343 		ddt_phys_fill(ddp, bp);
3344 		ddt_phys_addref(ddp);
3345 	} else {
3346 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3347 		    zio->io_orig_size, zio->io_orig_size, zp,
3348 		    zio_ddt_child_write_ready, NULL, NULL,
3349 		    zio_ddt_child_write_done, dde, zio->io_priority,
3350 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3351 
3352 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3353 		dde->dde_lead_zio[p] = cio;
3354 	}
3355 
3356 	ddt_exit(ddt);
3357 
3358 	zio_nowait(cio);
3359 
3360 	return (zio);
3361 }
3362 
3363 ddt_entry_t *freedde; /* for debugging */
3364 
3365 static zio_t *
3366 zio_ddt_free(zio_t *zio)
3367 {
3368 	spa_t *spa = zio->io_spa;
3369 	blkptr_t *bp = zio->io_bp;
3370 	ddt_t *ddt = ddt_select(spa, bp);
3371 	ddt_entry_t *dde;
3372 	ddt_phys_t *ddp;
3373 
3374 	ASSERT(BP_GET_DEDUP(bp));
3375 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3376 
3377 	ddt_enter(ddt);
3378 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3379 	if (dde) {
3380 		ddp = ddt_phys_select(dde, bp);
3381 		if (ddp)
3382 			ddt_phys_decref(ddp);
3383 	}
3384 	ddt_exit(ddt);
3385 
3386 	return (zio);
3387 }
3388 
3389 /*
3390  * ==========================================================================
3391  * Allocate and free blocks
3392  * ==========================================================================
3393  */
3394 
3395 static zio_t *
3396 zio_io_to_allocate(spa_t *spa, int allocator)
3397 {
3398 	zio_t *zio;
3399 
3400 	ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3401 
3402 	zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3403 	if (zio == NULL)
3404 		return (NULL);
3405 
3406 	ASSERT(IO_IS_ALLOCATING(zio));
3407 
3408 	/*
3409 	 * Try to place a reservation for this zio. If we're unable to
3410 	 * reserve then we throttle.
3411 	 */
3412 	ASSERT3U(zio->io_allocator, ==, allocator);
3413 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3414 	    zio->io_prop.zp_copies, allocator, zio, 0)) {
3415 		return (NULL);
3416 	}
3417 
3418 	avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3419 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3420 
3421 	return (zio);
3422 }
3423 
3424 static zio_t *
3425 zio_dva_throttle(zio_t *zio)
3426 {
3427 	spa_t *spa = zio->io_spa;
3428 	zio_t *nio;
3429 	metaslab_class_t *mc;
3430 
3431 	/* locate an appropriate allocation class */
3432 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3433 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3434 
3435 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3436 	    !mc->mc_alloc_throttle_enabled ||
3437 	    zio->io_child_type == ZIO_CHILD_GANG ||
3438 	    zio->io_flags & ZIO_FLAG_NODATA) {
3439 		return (zio);
3440 	}
3441 
3442 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3443 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3444 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3445 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3446 
3447 	zbookmark_phys_t *bm = &zio->io_bookmark;
3448 	/*
3449 	 * We want to try to use as many allocators as possible to help improve
3450 	 * performance, but we also want logically adjacent IOs to be physically
3451 	 * adjacent to improve sequential read performance. We chunk each object
3452 	 * into 2^20 block regions, and then hash based on the objset, object,
3453 	 * level, and region to accomplish both of these goals.
3454 	 */
3455 	int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object,
3456 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3457 	zio->io_allocator = allocator;
3458 	zio->io_metaslab_class = mc;
3459 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3460 	avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3461 	nio = zio_io_to_allocate(spa, allocator);
3462 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3463 	return (nio);
3464 }
3465 
3466 static void
3467 zio_allocate_dispatch(spa_t *spa, int allocator)
3468 {
3469 	zio_t *zio;
3470 
3471 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3472 	zio = zio_io_to_allocate(spa, allocator);
3473 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3474 	if (zio == NULL)
3475 		return;
3476 
3477 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3478 	ASSERT0(zio->io_error);
3479 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3480 }
3481 
3482 static zio_t *
3483 zio_dva_allocate(zio_t *zio)
3484 {
3485 	spa_t *spa = zio->io_spa;
3486 	metaslab_class_t *mc;
3487 	blkptr_t *bp = zio->io_bp;
3488 	int error;
3489 	int flags = 0;
3490 
3491 	if (zio->io_gang_leader == NULL) {
3492 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3493 		zio->io_gang_leader = zio;
3494 	}
3495 
3496 	ASSERT(BP_IS_HOLE(bp));
3497 	ASSERT0(BP_GET_NDVAS(bp));
3498 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3499 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3500 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3501 
3502 	flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3503 	if (zio->io_flags & ZIO_FLAG_NODATA)
3504 		flags |= METASLAB_DONT_THROTTLE;
3505 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3506 		flags |= METASLAB_GANG_CHILD;
3507 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3508 		flags |= METASLAB_ASYNC_ALLOC;
3509 
3510 	/*
3511 	 * if not already chosen, locate an appropriate allocation class
3512 	 */
3513 	mc = zio->io_metaslab_class;
3514 	if (mc == NULL) {
3515 		mc = spa_preferred_class(spa, zio->io_size,
3516 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3517 		    zio->io_prop.zp_zpl_smallblk);
3518 		zio->io_metaslab_class = mc;
3519 	}
3520 
3521 	/*
3522 	 * Try allocating the block in the usual metaslab class.
3523 	 * If that's full, allocate it in the normal class.
3524 	 * If that's full, allocate as a gang block,
3525 	 * and if all are full, the allocation fails (which shouldn't happen).
3526 	 *
3527 	 * Note that we do not fall back on embedded slog (ZIL) space, to
3528 	 * preserve unfragmented slog space, which is critical for decent
3529 	 * sync write performance.  If a log allocation fails, we will fall
3530 	 * back to spa_sync() which is abysmal for performance.
3531 	 */
3532 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3533 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3534 	    &zio->io_alloc_list, zio, zio->io_allocator);
3535 
3536 	/*
3537 	 * Fallback to normal class when an alloc class is full
3538 	 */
3539 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3540 		/*
3541 		 * If throttling, transfer reservation over to normal class.
3542 		 * The io_allocator slot can remain the same even though we
3543 		 * are switching classes.
3544 		 */
3545 		if (mc->mc_alloc_throttle_enabled &&
3546 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3547 			metaslab_class_throttle_unreserve(mc,
3548 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3549 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3550 
3551 			VERIFY(metaslab_class_throttle_reserve(
3552 			    spa_normal_class(spa),
3553 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3554 			    flags | METASLAB_MUST_RESERVE));
3555 		}
3556 		zio->io_metaslab_class = mc = spa_normal_class(spa);
3557 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3558 			zfs_dbgmsg("%s: metaslab allocation failure, "
3559 			    "trying normal class: zio %px, size %llu, error %d",
3560 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3561 			    error);
3562 		}
3563 
3564 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3565 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3566 		    &zio->io_alloc_list, zio, zio->io_allocator);
3567 	}
3568 
3569 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3570 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3571 			zfs_dbgmsg("%s: metaslab allocation failure, "
3572 			    "trying ganging: zio %px, size %llu, error %d",
3573 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3574 			    error);
3575 		}
3576 		return (zio_write_gang_block(zio, mc));
3577 	}
3578 	if (error != 0) {
3579 		if (error != ENOSPC ||
3580 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3581 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3582 			    "size %llu, error %d",
3583 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3584 			    error);
3585 		}
3586 		zio->io_error = error;
3587 	}
3588 
3589 	return (zio);
3590 }
3591 
3592 static zio_t *
3593 zio_dva_free(zio_t *zio)
3594 {
3595 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3596 
3597 	return (zio);
3598 }
3599 
3600 static zio_t *
3601 zio_dva_claim(zio_t *zio)
3602 {
3603 	int error;
3604 
3605 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3606 	if (error)
3607 		zio->io_error = error;
3608 
3609 	return (zio);
3610 }
3611 
3612 /*
3613  * Undo an allocation.  This is used by zio_done() when an I/O fails
3614  * and we want to give back the block we just allocated.
3615  * This handles both normal blocks and gang blocks.
3616  */
3617 static void
3618 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3619 {
3620 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3621 	ASSERT(zio->io_bp_override == NULL);
3622 
3623 	if (!BP_IS_HOLE(bp))
3624 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3625 
3626 	if (gn != NULL) {
3627 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3628 			zio_dva_unallocate(zio, gn->gn_child[g],
3629 			    &gn->gn_gbh->zg_blkptr[g]);
3630 		}
3631 	}
3632 }
3633 
3634 /*
3635  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3636  */
3637 int
3638 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3639     uint64_t size, boolean_t *slog)
3640 {
3641 	int error = 1;
3642 	zio_alloc_list_t io_alloc_list;
3643 
3644 	ASSERT(txg > spa_syncing_txg(spa));
3645 
3646 	metaslab_trace_init(&io_alloc_list);
3647 
3648 	/*
3649 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3650 	 * Fill in the obvious ones before calling into metaslab_alloc().
3651 	 */
3652 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3653 	BP_SET_PSIZE(new_bp, size);
3654 	BP_SET_LEVEL(new_bp, 0);
3655 
3656 	/*
3657 	 * When allocating a zil block, we don't have information about
3658 	 * the final destination of the block except the objset it's part
3659 	 * of, so we just hash the objset ID to pick the allocator to get
3660 	 * some parallelism.
3661 	 */
3662 	int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3663 	int allocator = (uint_t)cityhash4(0, 0, 0,
3664 	    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3665 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3666 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
3667 	*slog = (error == 0);
3668 	if (error != 0) {
3669 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3670 		    new_bp, 1, txg, NULL, flags,
3671 		    &io_alloc_list, NULL, allocator);
3672 	}
3673 	if (error != 0) {
3674 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3675 		    new_bp, 1, txg, NULL, flags,
3676 		    &io_alloc_list, NULL, allocator);
3677 	}
3678 	metaslab_trace_fini(&io_alloc_list);
3679 
3680 	if (error == 0) {
3681 		BP_SET_LSIZE(new_bp, size);
3682 		BP_SET_PSIZE(new_bp, size);
3683 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3684 		BP_SET_CHECKSUM(new_bp,
3685 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3686 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3687 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3688 		BP_SET_LEVEL(new_bp, 0);
3689 		BP_SET_DEDUP(new_bp, 0);
3690 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3691 
3692 		/*
3693 		 * encrypted blocks will require an IV and salt. We generate
3694 		 * these now since we will not be rewriting the bp at
3695 		 * rewrite time.
3696 		 */
3697 		if (os->os_encrypted) {
3698 			uint8_t iv[ZIO_DATA_IV_LEN];
3699 			uint8_t salt[ZIO_DATA_SALT_LEN];
3700 
3701 			BP_SET_CRYPT(new_bp, B_TRUE);
3702 			VERIFY0(spa_crypt_get_salt(spa,
3703 			    dmu_objset_id(os), salt));
3704 			VERIFY0(zio_crypt_generate_iv(iv));
3705 
3706 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3707 		}
3708 	} else {
3709 		zfs_dbgmsg("%s: zil block allocation failure: "
3710 		    "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3711 		    error);
3712 	}
3713 
3714 	return (error);
3715 }
3716 
3717 /*
3718  * ==========================================================================
3719  * Read and write to physical devices
3720  * ==========================================================================
3721  */
3722 
3723 /*
3724  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3725  * stops after this stage and will resume upon I/O completion.
3726  * However, there are instances where the vdev layer may need to
3727  * continue the pipeline when an I/O was not issued. Since the I/O
3728  * that was sent to the vdev layer might be different than the one
3729  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3730  * force the underlying vdev layers to call either zio_execute() or
3731  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3732  */
3733 static zio_t *
3734 zio_vdev_io_start(zio_t *zio)
3735 {
3736 	vdev_t *vd = zio->io_vd;
3737 	uint64_t align;
3738 	spa_t *spa = zio->io_spa;
3739 
3740 	zio->io_delay = 0;
3741 
3742 	ASSERT(zio->io_error == 0);
3743 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3744 
3745 	if (vd == NULL) {
3746 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3747 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3748 
3749 		/*
3750 		 * The mirror_ops handle multiple DVAs in a single BP.
3751 		 */
3752 		vdev_mirror_ops.vdev_op_io_start(zio);
3753 		return (NULL);
3754 	}
3755 
3756 	ASSERT3P(zio->io_logical, !=, zio);
3757 	if (zio->io_type == ZIO_TYPE_WRITE) {
3758 		ASSERT(spa->spa_trust_config);
3759 
3760 		/*
3761 		 * Note: the code can handle other kinds of writes,
3762 		 * but we don't expect them.
3763 		 */
3764 		if (zio->io_vd->vdev_noalloc) {
3765 			ASSERT(zio->io_flags &
3766 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3767 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3768 		}
3769 	}
3770 
3771 	align = 1ULL << vd->vdev_top->vdev_ashift;
3772 
3773 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3774 	    P2PHASE(zio->io_size, align) != 0) {
3775 		/* Transform logical writes to be a full physical block size. */
3776 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3777 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3778 		ASSERT(vd == vd->vdev_top);
3779 		if (zio->io_type == ZIO_TYPE_WRITE) {
3780 			abd_copy(abuf, zio->io_abd, zio->io_size);
3781 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3782 		}
3783 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3784 	}
3785 
3786 	/*
3787 	 * If this is not a physical io, make sure that it is properly aligned
3788 	 * before proceeding.
3789 	 */
3790 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3791 		ASSERT0(P2PHASE(zio->io_offset, align));
3792 		ASSERT0(P2PHASE(zio->io_size, align));
3793 	} else {
3794 		/*
3795 		 * For physical writes, we allow 512b aligned writes and assume
3796 		 * the device will perform a read-modify-write as necessary.
3797 		 */
3798 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3799 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3800 	}
3801 
3802 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3803 
3804 	/*
3805 	 * If this is a repair I/O, and there's no self-healing involved --
3806 	 * that is, we're just resilvering what we expect to resilver --
3807 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3808 	 * This prevents spurious resilvering.
3809 	 *
3810 	 * There are a few ways that we can end up creating these spurious
3811 	 * resilver i/os:
3812 	 *
3813 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3814 	 * dirty DTL.  The mirror code will issue resilver writes to
3815 	 * each DVA, including the one(s) that are not on vdevs with dirty
3816 	 * DTLs.
3817 	 *
3818 	 * 2. With nested replication, which happens when we have a
3819 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3820 	 * For example, given mirror(replacing(A+B), C), it's likely that
3821 	 * only A is out of date (it's the new device). In this case, we'll
3822 	 * read from C, then use the data to resilver A+B -- but we don't
3823 	 * actually want to resilver B, just A. The top-level mirror has no
3824 	 * way to know this, so instead we just discard unnecessary repairs
3825 	 * as we work our way down the vdev tree.
3826 	 *
3827 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3828 	 * The same logic applies to any form of nested replication: ditto
3829 	 * + mirror, RAID-Z + replacing, etc.
3830 	 *
3831 	 * However, indirect vdevs point off to other vdevs which may have
3832 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3833 	 * will be properly bypassed instead.
3834 	 *
3835 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3836 	 * a dRAID spare vdev. For example, when a dRAID spare is first
3837 	 * used, its spare blocks need to be written to but the leaf vdev's
3838 	 * of such blocks can have empty DTL_PARTIAL.
3839 	 *
3840 	 * There seemed no clean way to allow such writes while bypassing
3841 	 * spurious ones. At this point, just avoid all bypassing for dRAID
3842 	 * for correctness.
3843 	 */
3844 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3845 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3846 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3847 	    vd->vdev_ops != &vdev_indirect_ops &&
3848 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3849 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3850 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3851 		zio_vdev_io_bypass(zio);
3852 		return (zio);
3853 	}
3854 
3855 	/*
3856 	 * Select the next best leaf I/O to process.  Distributed spares are
3857 	 * excluded since they dispatch the I/O directly to a leaf vdev after
3858 	 * applying the dRAID mapping.
3859 	 */
3860 	if (vd->vdev_ops->vdev_op_leaf &&
3861 	    vd->vdev_ops != &vdev_draid_spare_ops &&
3862 	    (zio->io_type == ZIO_TYPE_READ ||
3863 	    zio->io_type == ZIO_TYPE_WRITE ||
3864 	    zio->io_type == ZIO_TYPE_TRIM)) {
3865 
3866 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3867 			return (zio);
3868 
3869 		if ((zio = vdev_queue_io(zio)) == NULL)
3870 			return (NULL);
3871 
3872 		if (!vdev_accessible(vd, zio)) {
3873 			zio->io_error = SET_ERROR(ENXIO);
3874 			zio_interrupt(zio);
3875 			return (NULL);
3876 		}
3877 		zio->io_delay = gethrtime();
3878 	}
3879 
3880 	vd->vdev_ops->vdev_op_io_start(zio);
3881 	return (NULL);
3882 }
3883 
3884 static zio_t *
3885 zio_vdev_io_done(zio_t *zio)
3886 {
3887 	vdev_t *vd = zio->io_vd;
3888 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3889 	boolean_t unexpected_error = B_FALSE;
3890 
3891 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3892 		return (NULL);
3893 	}
3894 
3895 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3896 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3897 
3898 	if (zio->io_delay)
3899 		zio->io_delay = gethrtime() - zio->io_delay;
3900 
3901 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3902 	    vd->vdev_ops != &vdev_draid_spare_ops) {
3903 		vdev_queue_io_done(zio);
3904 
3905 		if (zio->io_type == ZIO_TYPE_WRITE)
3906 			vdev_cache_write(zio);
3907 
3908 		if (zio_injection_enabled && zio->io_error == 0)
3909 			zio->io_error = zio_handle_device_injections(vd, zio,
3910 			    EIO, EILSEQ);
3911 
3912 		if (zio_injection_enabled && zio->io_error == 0)
3913 			zio->io_error = zio_handle_label_injection(zio, EIO);
3914 
3915 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3916 			if (!vdev_accessible(vd, zio)) {
3917 				zio->io_error = SET_ERROR(ENXIO);
3918 			} else {
3919 				unexpected_error = B_TRUE;
3920 			}
3921 		}
3922 	}
3923 
3924 	ops->vdev_op_io_done(zio);
3925 
3926 	if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
3927 		VERIFY(vdev_probe(vd, zio) == NULL);
3928 
3929 	return (zio);
3930 }
3931 
3932 /*
3933  * This function is used to change the priority of an existing zio that is
3934  * currently in-flight. This is used by the arc to upgrade priority in the
3935  * event that a demand read is made for a block that is currently queued
3936  * as a scrub or async read IO. Otherwise, the high priority read request
3937  * would end up having to wait for the lower priority IO.
3938  */
3939 void
3940 zio_change_priority(zio_t *pio, zio_priority_t priority)
3941 {
3942 	zio_t *cio, *cio_next;
3943 	zio_link_t *zl = NULL;
3944 
3945 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3946 
3947 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3948 		vdev_queue_change_io_priority(pio, priority);
3949 	} else {
3950 		pio->io_priority = priority;
3951 	}
3952 
3953 	mutex_enter(&pio->io_lock);
3954 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3955 		cio_next = zio_walk_children(pio, &zl);
3956 		zio_change_priority(cio, priority);
3957 	}
3958 	mutex_exit(&pio->io_lock);
3959 }
3960 
3961 /*
3962  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3963  * disk, and use that to finish the checksum ereport later.
3964  */
3965 static void
3966 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3967     const abd_t *good_buf)
3968 {
3969 	/* no processing needed */
3970 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3971 }
3972 
3973 void
3974 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
3975 {
3976 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3977 
3978 	abd_copy(abd, zio->io_abd, zio->io_size);
3979 
3980 	zcr->zcr_cbinfo = zio->io_size;
3981 	zcr->zcr_cbdata = abd;
3982 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3983 	zcr->zcr_free = zio_abd_free;
3984 }
3985 
3986 static zio_t *
3987 zio_vdev_io_assess(zio_t *zio)
3988 {
3989 	vdev_t *vd = zio->io_vd;
3990 
3991 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3992 		return (NULL);
3993 	}
3994 
3995 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3996 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3997 
3998 	if (zio->io_vsd != NULL) {
3999 		zio->io_vsd_ops->vsd_free(zio);
4000 		zio->io_vsd = NULL;
4001 	}
4002 
4003 	if (zio_injection_enabled && zio->io_error == 0)
4004 		zio->io_error = zio_handle_fault_injection(zio, EIO);
4005 
4006 	/*
4007 	 * If the I/O failed, determine whether we should attempt to retry it.
4008 	 *
4009 	 * On retry, we cut in line in the issue queue, since we don't want
4010 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4011 	 */
4012 	if (zio->io_error && vd == NULL &&
4013 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4014 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
4015 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
4016 		zio->io_error = 0;
4017 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
4018 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
4019 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4020 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4021 		    zio_requeue_io_start_cut_in_line);
4022 		return (NULL);
4023 	}
4024 
4025 	/*
4026 	 * If we got an error on a leaf device, convert it to ENXIO
4027 	 * if the device is not accessible at all.
4028 	 */
4029 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4030 	    !vdev_accessible(vd, zio))
4031 		zio->io_error = SET_ERROR(ENXIO);
4032 
4033 	/*
4034 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4035 	 * set vdev_cant_write so that we stop trying to allocate from it.
4036 	 */
4037 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4038 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4039 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4040 		    "cant_write=TRUE due to write failure with ENXIO",
4041 		    zio);
4042 		vd->vdev_cant_write = B_TRUE;
4043 	}
4044 
4045 	/*
4046 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4047 	 * attempts will ever succeed. In this case we set a persistent
4048 	 * boolean flag so that we don't bother with it in the future.
4049 	 */
4050 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4051 	    zio->io_type == ZIO_TYPE_IOCTL &&
4052 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4053 		vd->vdev_nowritecache = B_TRUE;
4054 
4055 	if (zio->io_error)
4056 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4057 
4058 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4059 	    zio->io_physdone != NULL) {
4060 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
4061 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
4062 		zio->io_physdone(zio->io_logical);
4063 	}
4064 
4065 	return (zio);
4066 }
4067 
4068 void
4069 zio_vdev_io_reissue(zio_t *zio)
4070 {
4071 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4072 	ASSERT(zio->io_error == 0);
4073 
4074 	zio->io_stage >>= 1;
4075 }
4076 
4077 void
4078 zio_vdev_io_redone(zio_t *zio)
4079 {
4080 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4081 
4082 	zio->io_stage >>= 1;
4083 }
4084 
4085 void
4086 zio_vdev_io_bypass(zio_t *zio)
4087 {
4088 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4089 	ASSERT(zio->io_error == 0);
4090 
4091 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4092 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4093 }
4094 
4095 /*
4096  * ==========================================================================
4097  * Encrypt and store encryption parameters
4098  * ==========================================================================
4099  */
4100 
4101 
4102 /*
4103  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4104  * managing the storage of encryption parameters and passing them to the
4105  * lower-level encryption functions.
4106  */
4107 static zio_t *
4108 zio_encrypt(zio_t *zio)
4109 {
4110 	zio_prop_t *zp = &zio->io_prop;
4111 	spa_t *spa = zio->io_spa;
4112 	blkptr_t *bp = zio->io_bp;
4113 	uint64_t psize = BP_GET_PSIZE(bp);
4114 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4115 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4116 	void *enc_buf = NULL;
4117 	abd_t *eabd = NULL;
4118 	uint8_t salt[ZIO_DATA_SALT_LEN];
4119 	uint8_t iv[ZIO_DATA_IV_LEN];
4120 	uint8_t mac[ZIO_DATA_MAC_LEN];
4121 	boolean_t no_crypt = B_FALSE;
4122 
4123 	/* the root zio already encrypted the data */
4124 	if (zio->io_child_type == ZIO_CHILD_GANG)
4125 		return (zio);
4126 
4127 	/* only ZIL blocks are re-encrypted on rewrite */
4128 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4129 		return (zio);
4130 
4131 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4132 		BP_SET_CRYPT(bp, B_FALSE);
4133 		return (zio);
4134 	}
4135 
4136 	/* if we are doing raw encryption set the provided encryption params */
4137 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4138 		ASSERT0(BP_GET_LEVEL(bp));
4139 		BP_SET_CRYPT(bp, B_TRUE);
4140 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4141 		if (ot != DMU_OT_OBJSET)
4142 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4143 
4144 		/* dnode blocks must be written out in the provided byteorder */
4145 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4146 		    ot == DMU_OT_DNODE) {
4147 			void *bswap_buf = zio_buf_alloc(psize);
4148 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4149 
4150 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4151 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4152 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4153 			    psize);
4154 
4155 			abd_take_ownership_of_buf(babd, B_TRUE);
4156 			zio_push_transform(zio, babd, psize, psize, NULL);
4157 		}
4158 
4159 		if (DMU_OT_IS_ENCRYPTED(ot))
4160 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4161 		return (zio);
4162 	}
4163 
4164 	/* indirect blocks only maintain a cksum of the lower level MACs */
4165 	if (BP_GET_LEVEL(bp) > 0) {
4166 		BP_SET_CRYPT(bp, B_TRUE);
4167 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4168 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4169 		    mac));
4170 		zio_crypt_encode_mac_bp(bp, mac);
4171 		return (zio);
4172 	}
4173 
4174 	/*
4175 	 * Objset blocks are a special case since they have 2 256-bit MACs
4176 	 * embedded within them.
4177 	 */
4178 	if (ot == DMU_OT_OBJSET) {
4179 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4180 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4181 		BP_SET_CRYPT(bp, B_TRUE);
4182 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4183 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4184 		return (zio);
4185 	}
4186 
4187 	/* unencrypted object types are only authenticated with a MAC */
4188 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4189 		BP_SET_CRYPT(bp, B_TRUE);
4190 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4191 		    zio->io_abd, psize, mac));
4192 		zio_crypt_encode_mac_bp(bp, mac);
4193 		return (zio);
4194 	}
4195 
4196 	/*
4197 	 * Later passes of sync-to-convergence may decide to rewrite data
4198 	 * in place to avoid more disk reallocations. This presents a problem
4199 	 * for encryption because this constitutes rewriting the new data with
4200 	 * the same encryption key and IV. However, this only applies to blocks
4201 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4202 	 * MOS. We assert that the zio is allocating or an intent log write
4203 	 * to enforce this.
4204 	 */
4205 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4206 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4207 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4208 	ASSERT3U(psize, !=, 0);
4209 
4210 	enc_buf = zio_buf_alloc(psize);
4211 	eabd = abd_get_from_buf(enc_buf, psize);
4212 	abd_take_ownership_of_buf(eabd, B_TRUE);
4213 
4214 	/*
4215 	 * For an explanation of what encryption parameters are stored
4216 	 * where, see the block comment in zio_crypt.c.
4217 	 */
4218 	if (ot == DMU_OT_INTENT_LOG) {
4219 		zio_crypt_decode_params_bp(bp, salt, iv);
4220 	} else {
4221 		BP_SET_CRYPT(bp, B_TRUE);
4222 	}
4223 
4224 	/* Perform the encryption. This should not fail */
4225 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4226 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4227 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4228 
4229 	/* encode encryption metadata into the bp */
4230 	if (ot == DMU_OT_INTENT_LOG) {
4231 		/*
4232 		 * ZIL blocks store the MAC in the embedded checksum, so the
4233 		 * transform must always be applied.
4234 		 */
4235 		zio_crypt_encode_mac_zil(enc_buf, mac);
4236 		zio_push_transform(zio, eabd, psize, psize, NULL);
4237 	} else {
4238 		BP_SET_CRYPT(bp, B_TRUE);
4239 		zio_crypt_encode_params_bp(bp, salt, iv);
4240 		zio_crypt_encode_mac_bp(bp, mac);
4241 
4242 		if (no_crypt) {
4243 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4244 			abd_free(eabd);
4245 		} else {
4246 			zio_push_transform(zio, eabd, psize, psize, NULL);
4247 		}
4248 	}
4249 
4250 	return (zio);
4251 }
4252 
4253 /*
4254  * ==========================================================================
4255  * Generate and verify checksums
4256  * ==========================================================================
4257  */
4258 static zio_t *
4259 zio_checksum_generate(zio_t *zio)
4260 {
4261 	blkptr_t *bp = zio->io_bp;
4262 	enum zio_checksum checksum;
4263 
4264 	if (bp == NULL) {
4265 		/*
4266 		 * This is zio_write_phys().
4267 		 * We're either generating a label checksum, or none at all.
4268 		 */
4269 		checksum = zio->io_prop.zp_checksum;
4270 
4271 		if (checksum == ZIO_CHECKSUM_OFF)
4272 			return (zio);
4273 
4274 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4275 	} else {
4276 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4277 			ASSERT(!IO_IS_ALLOCATING(zio));
4278 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4279 		} else {
4280 			checksum = BP_GET_CHECKSUM(bp);
4281 		}
4282 	}
4283 
4284 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4285 
4286 	return (zio);
4287 }
4288 
4289 static zio_t *
4290 zio_checksum_verify(zio_t *zio)
4291 {
4292 	zio_bad_cksum_t info;
4293 	blkptr_t *bp = zio->io_bp;
4294 	int error;
4295 
4296 	ASSERT(zio->io_vd != NULL);
4297 
4298 	if (bp == NULL) {
4299 		/*
4300 		 * This is zio_read_phys().
4301 		 * We're either verifying a label checksum, or nothing at all.
4302 		 */
4303 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4304 			return (zio);
4305 
4306 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4307 	}
4308 
4309 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4310 		zio->io_error = error;
4311 		if (error == ECKSUM &&
4312 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4313 			(void) zfs_ereport_start_checksum(zio->io_spa,
4314 			    zio->io_vd, &zio->io_bookmark, zio,
4315 			    zio->io_offset, zio->io_size, &info);
4316 			mutex_enter(&zio->io_vd->vdev_stat_lock);
4317 			zio->io_vd->vdev_stat.vs_checksum_errors++;
4318 			mutex_exit(&zio->io_vd->vdev_stat_lock);
4319 		}
4320 	}
4321 
4322 	return (zio);
4323 }
4324 
4325 /*
4326  * Called by RAID-Z to ensure we don't compute the checksum twice.
4327  */
4328 void
4329 zio_checksum_verified(zio_t *zio)
4330 {
4331 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4332 }
4333 
4334 /*
4335  * ==========================================================================
4336  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4337  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4338  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4339  * indicate errors that are specific to one I/O, and most likely permanent.
4340  * Any other error is presumed to be worse because we weren't expecting it.
4341  * ==========================================================================
4342  */
4343 int
4344 zio_worst_error(int e1, int e2)
4345 {
4346 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4347 	int r1, r2;
4348 
4349 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4350 		if (e1 == zio_error_rank[r1])
4351 			break;
4352 
4353 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4354 		if (e2 == zio_error_rank[r2])
4355 			break;
4356 
4357 	return (r1 > r2 ? e1 : e2);
4358 }
4359 
4360 /*
4361  * ==========================================================================
4362  * I/O completion
4363  * ==========================================================================
4364  */
4365 static zio_t *
4366 zio_ready(zio_t *zio)
4367 {
4368 	blkptr_t *bp = zio->io_bp;
4369 	zio_t *pio, *pio_next;
4370 	zio_link_t *zl = NULL;
4371 
4372 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4373 	    ZIO_WAIT_READY)) {
4374 		return (NULL);
4375 	}
4376 
4377 	if (zio->io_ready) {
4378 		ASSERT(IO_IS_ALLOCATING(zio));
4379 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4380 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4381 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4382 
4383 		zio->io_ready(zio);
4384 	}
4385 
4386 	if (bp != NULL && bp != &zio->io_bp_copy)
4387 		zio->io_bp_copy = *bp;
4388 
4389 	if (zio->io_error != 0) {
4390 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4391 
4392 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4393 			ASSERT(IO_IS_ALLOCATING(zio));
4394 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4395 			ASSERT(zio->io_metaslab_class != NULL);
4396 
4397 			/*
4398 			 * We were unable to allocate anything, unreserve and
4399 			 * issue the next I/O to allocate.
4400 			 */
4401 			metaslab_class_throttle_unreserve(
4402 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4403 			    zio->io_allocator, zio);
4404 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4405 		}
4406 	}
4407 
4408 	mutex_enter(&zio->io_lock);
4409 	zio->io_state[ZIO_WAIT_READY] = 1;
4410 	pio = zio_walk_parents(zio, &zl);
4411 	mutex_exit(&zio->io_lock);
4412 
4413 	/*
4414 	 * As we notify zio's parents, new parents could be added.
4415 	 * New parents go to the head of zio's io_parent_list, however,
4416 	 * so we will (correctly) not notify them.  The remainder of zio's
4417 	 * io_parent_list, from 'pio_next' onward, cannot change because
4418 	 * all parents must wait for us to be done before they can be done.
4419 	 */
4420 	for (; pio != NULL; pio = pio_next) {
4421 		pio_next = zio_walk_parents(zio, &zl);
4422 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4423 	}
4424 
4425 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4426 		if (BP_IS_GANG(bp)) {
4427 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4428 		} else {
4429 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4430 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4431 		}
4432 	}
4433 
4434 	if (zio_injection_enabled &&
4435 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4436 		zio_handle_ignored_writes(zio);
4437 
4438 	return (zio);
4439 }
4440 
4441 /*
4442  * Update the allocation throttle accounting.
4443  */
4444 static void
4445 zio_dva_throttle_done(zio_t *zio)
4446 {
4447 	zio_t *lio __maybe_unused = zio->io_logical;
4448 	zio_t *pio = zio_unique_parent(zio);
4449 	vdev_t *vd = zio->io_vd;
4450 	int flags = METASLAB_ASYNC_ALLOC;
4451 
4452 	ASSERT3P(zio->io_bp, !=, NULL);
4453 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4454 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4455 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4456 	ASSERT(vd != NULL);
4457 	ASSERT3P(vd, ==, vd->vdev_top);
4458 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4459 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4460 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4461 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4462 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4463 
4464 	/*
4465 	 * Parents of gang children can have two flavors -- ones that
4466 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4467 	 * and ones that allocated the constituent blocks. The allocation
4468 	 * throttle needs to know the allocating parent zio so we must find
4469 	 * it here.
4470 	 */
4471 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4472 		/*
4473 		 * If our parent is a rewrite gang child then our grandparent
4474 		 * would have been the one that performed the allocation.
4475 		 */
4476 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4477 			pio = zio_unique_parent(pio);
4478 		flags |= METASLAB_GANG_CHILD;
4479 	}
4480 
4481 	ASSERT(IO_IS_ALLOCATING(pio));
4482 	ASSERT3P(zio, !=, zio->io_logical);
4483 	ASSERT(zio->io_logical != NULL);
4484 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4485 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4486 	ASSERT(zio->io_metaslab_class != NULL);
4487 
4488 	mutex_enter(&pio->io_lock);
4489 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4490 	    pio->io_allocator, B_TRUE);
4491 	mutex_exit(&pio->io_lock);
4492 
4493 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4494 	    pio->io_allocator, pio);
4495 
4496 	/*
4497 	 * Call into the pipeline to see if there is more work that
4498 	 * needs to be done. If there is work to be done it will be
4499 	 * dispatched to another taskq thread.
4500 	 */
4501 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4502 }
4503 
4504 static zio_t *
4505 zio_done(zio_t *zio)
4506 {
4507 	/*
4508 	 * Always attempt to keep stack usage minimal here since
4509 	 * we can be called recursively up to 19 levels deep.
4510 	 */
4511 	const uint64_t psize = zio->io_size;
4512 	zio_t *pio, *pio_next;
4513 	zio_link_t *zl = NULL;
4514 
4515 	/*
4516 	 * If our children haven't all completed,
4517 	 * wait for them and then repeat this pipeline stage.
4518 	 */
4519 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4520 		return (NULL);
4521 	}
4522 
4523 	/*
4524 	 * If the allocation throttle is enabled, then update the accounting.
4525 	 * We only track child I/Os that are part of an allocating async
4526 	 * write. We must do this since the allocation is performed
4527 	 * by the logical I/O but the actual write is done by child I/Os.
4528 	 */
4529 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4530 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4531 		ASSERT(zio->io_metaslab_class != NULL);
4532 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4533 		zio_dva_throttle_done(zio);
4534 	}
4535 
4536 	/*
4537 	 * If the allocation throttle is enabled, verify that
4538 	 * we have decremented the refcounts for every I/O that was throttled.
4539 	 */
4540 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4541 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4542 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4543 		ASSERT(zio->io_bp != NULL);
4544 
4545 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4546 		    zio->io_allocator);
4547 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4548 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4549 	}
4550 
4551 
4552 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4553 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4554 			ASSERT(zio->io_children[c][w] == 0);
4555 
4556 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4557 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4558 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4559 		ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4560 		    sizeof (blkptr_t)) == 0 ||
4561 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4562 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4563 		    zio->io_bp_override == NULL &&
4564 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4565 			ASSERT3U(zio->io_prop.zp_copies, <=,
4566 			    BP_GET_NDVAS(zio->io_bp));
4567 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4568 			    (BP_COUNT_GANG(zio->io_bp) ==
4569 			    BP_GET_NDVAS(zio->io_bp)));
4570 		}
4571 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4572 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4573 	}
4574 
4575 	/*
4576 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4577 	 */
4578 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4579 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4580 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4581 
4582 	/*
4583 	 * If the I/O on the transformed data was successful, generate any
4584 	 * checksum reports now while we still have the transformed data.
4585 	 */
4586 	if (zio->io_error == 0) {
4587 		while (zio->io_cksum_report != NULL) {
4588 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4589 			uint64_t align = zcr->zcr_align;
4590 			uint64_t asize = P2ROUNDUP(psize, align);
4591 			abd_t *adata = zio->io_abd;
4592 
4593 			if (adata != NULL && asize != psize) {
4594 				adata = abd_alloc(asize, B_TRUE);
4595 				abd_copy(adata, zio->io_abd, psize);
4596 				abd_zero_off(adata, psize, asize - psize);
4597 			}
4598 
4599 			zio->io_cksum_report = zcr->zcr_next;
4600 			zcr->zcr_next = NULL;
4601 			zcr->zcr_finish(zcr, adata);
4602 			zfs_ereport_free_checksum(zcr);
4603 
4604 			if (adata != NULL && asize != psize)
4605 				abd_free(adata);
4606 		}
4607 	}
4608 
4609 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4610 
4611 	vdev_stat_update(zio, psize);
4612 
4613 	/*
4614 	 * If this I/O is attached to a particular vdev is slow, exceeding
4615 	 * 30 seconds to complete, post an error described the I/O delay.
4616 	 * We ignore these errors if the device is currently unavailable.
4617 	 */
4618 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4619 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4620 			/*
4621 			 * We want to only increment our slow IO counters if
4622 			 * the IO is valid (i.e. not if the drive is removed).
4623 			 *
4624 			 * zfs_ereport_post() will also do these checks, but
4625 			 * it can also ratelimit and have other failures, so we
4626 			 * need to increment the slow_io counters independent
4627 			 * of it.
4628 			 */
4629 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4630 			    zio->io_spa, zio->io_vd, zio)) {
4631 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4632 				zio->io_vd->vdev_stat.vs_slow_ios++;
4633 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4634 
4635 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4636 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4637 				    zio, 0);
4638 			}
4639 		}
4640 	}
4641 
4642 	if (zio->io_error) {
4643 		/*
4644 		 * If this I/O is attached to a particular vdev,
4645 		 * generate an error message describing the I/O failure
4646 		 * at the block level.  We ignore these errors if the
4647 		 * device is currently unavailable.
4648 		 */
4649 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4650 		    !vdev_is_dead(zio->io_vd)) {
4651 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4652 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4653 			if (ret != EALREADY) {
4654 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4655 				if (zio->io_type == ZIO_TYPE_READ)
4656 					zio->io_vd->vdev_stat.vs_read_errors++;
4657 				else if (zio->io_type == ZIO_TYPE_WRITE)
4658 					zio->io_vd->vdev_stat.vs_write_errors++;
4659 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4660 			}
4661 		}
4662 
4663 		if ((zio->io_error == EIO || !(zio->io_flags &
4664 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4665 		    zio == zio->io_logical) {
4666 			/*
4667 			 * For logical I/O requests, tell the SPA to log the
4668 			 * error and generate a logical data ereport.
4669 			 */
4670 			spa_log_error(zio->io_spa, &zio->io_bookmark);
4671 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4672 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4673 		}
4674 	}
4675 
4676 	if (zio->io_error && zio == zio->io_logical) {
4677 		/*
4678 		 * Determine whether zio should be reexecuted.  This will
4679 		 * propagate all the way to the root via zio_notify_parent().
4680 		 */
4681 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4682 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4683 
4684 		if (IO_IS_ALLOCATING(zio) &&
4685 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4686 			if (zio->io_error != ENOSPC)
4687 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4688 			else
4689 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4690 		}
4691 
4692 		if ((zio->io_type == ZIO_TYPE_READ ||
4693 		    zio->io_type == ZIO_TYPE_FREE) &&
4694 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4695 		    zio->io_error == ENXIO &&
4696 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4697 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4698 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4699 
4700 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4701 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4702 
4703 		/*
4704 		 * Here is a possibly good place to attempt to do
4705 		 * either combinatorial reconstruction or error correction
4706 		 * based on checksums.  It also might be a good place
4707 		 * to send out preliminary ereports before we suspend
4708 		 * processing.
4709 		 */
4710 	}
4711 
4712 	/*
4713 	 * If there were logical child errors, they apply to us now.
4714 	 * We defer this until now to avoid conflating logical child
4715 	 * errors with errors that happened to the zio itself when
4716 	 * updating vdev stats and reporting FMA events above.
4717 	 */
4718 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4719 
4720 	if ((zio->io_error || zio->io_reexecute) &&
4721 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4722 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4723 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4724 
4725 	zio_gang_tree_free(&zio->io_gang_tree);
4726 
4727 	/*
4728 	 * Godfather I/Os should never suspend.
4729 	 */
4730 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4731 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4732 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4733 
4734 	if (zio->io_reexecute) {
4735 		/*
4736 		 * This is a logical I/O that wants to reexecute.
4737 		 *
4738 		 * Reexecute is top-down.  When an i/o fails, if it's not
4739 		 * the root, it simply notifies its parent and sticks around.
4740 		 * The parent, seeing that it still has children in zio_done(),
4741 		 * does the same.  This percolates all the way up to the root.
4742 		 * The root i/o will reexecute or suspend the entire tree.
4743 		 *
4744 		 * This approach ensures that zio_reexecute() honors
4745 		 * all the original i/o dependency relationships, e.g.
4746 		 * parents not executing until children are ready.
4747 		 */
4748 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4749 
4750 		zio->io_gang_leader = NULL;
4751 
4752 		mutex_enter(&zio->io_lock);
4753 		zio->io_state[ZIO_WAIT_DONE] = 1;
4754 		mutex_exit(&zio->io_lock);
4755 
4756 		/*
4757 		 * "The Godfather" I/O monitors its children but is
4758 		 * not a true parent to them. It will track them through
4759 		 * the pipeline but severs its ties whenever they get into
4760 		 * trouble (e.g. suspended). This allows "The Godfather"
4761 		 * I/O to return status without blocking.
4762 		 */
4763 		zl = NULL;
4764 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4765 		    pio = pio_next) {
4766 			zio_link_t *remove_zl = zl;
4767 			pio_next = zio_walk_parents(zio, &zl);
4768 
4769 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4770 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4771 				zio_remove_child(pio, zio, remove_zl);
4772 				/*
4773 				 * This is a rare code path, so we don't
4774 				 * bother with "next_to_execute".
4775 				 */
4776 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4777 				    NULL);
4778 			}
4779 		}
4780 
4781 		if ((pio = zio_unique_parent(zio)) != NULL) {
4782 			/*
4783 			 * We're not a root i/o, so there's nothing to do
4784 			 * but notify our parent.  Don't propagate errors
4785 			 * upward since we haven't permanently failed yet.
4786 			 */
4787 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4788 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4789 			/*
4790 			 * This is a rare code path, so we don't bother with
4791 			 * "next_to_execute".
4792 			 */
4793 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4794 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4795 			/*
4796 			 * We'd fail again if we reexecuted now, so suspend
4797 			 * until conditions improve (e.g. device comes online).
4798 			 */
4799 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4800 		} else {
4801 			/*
4802 			 * Reexecution is potentially a huge amount of work.
4803 			 * Hand it off to the otherwise-unused claim taskq.
4804 			 */
4805 			ASSERT(taskq_empty_ent(&zio->io_tqent));
4806 			spa_taskq_dispatch_ent(zio->io_spa,
4807 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4808 			    zio_reexecute, zio, 0, &zio->io_tqent);
4809 		}
4810 		return (NULL);
4811 	}
4812 
4813 	ASSERT(zio->io_child_count == 0);
4814 	ASSERT(zio->io_reexecute == 0);
4815 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4816 
4817 	/*
4818 	 * Report any checksum errors, since the I/O is complete.
4819 	 */
4820 	while (zio->io_cksum_report != NULL) {
4821 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4822 		zio->io_cksum_report = zcr->zcr_next;
4823 		zcr->zcr_next = NULL;
4824 		zcr->zcr_finish(zcr, NULL);
4825 		zfs_ereport_free_checksum(zcr);
4826 	}
4827 
4828 	if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4829 	    !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4830 	    !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4831 		metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4832 	}
4833 
4834 	/*
4835 	 * It is the responsibility of the done callback to ensure that this
4836 	 * particular zio is no longer discoverable for adoption, and as
4837 	 * such, cannot acquire any new parents.
4838 	 */
4839 	if (zio->io_done)
4840 		zio->io_done(zio);
4841 
4842 	mutex_enter(&zio->io_lock);
4843 	zio->io_state[ZIO_WAIT_DONE] = 1;
4844 	mutex_exit(&zio->io_lock);
4845 
4846 	/*
4847 	 * We are done executing this zio.  We may want to execute a parent
4848 	 * next.  See the comment in zio_notify_parent().
4849 	 */
4850 	zio_t *next_to_execute = NULL;
4851 	zl = NULL;
4852 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4853 		zio_link_t *remove_zl = zl;
4854 		pio_next = zio_walk_parents(zio, &zl);
4855 		zio_remove_child(pio, zio, remove_zl);
4856 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4857 	}
4858 
4859 	if (zio->io_waiter != NULL) {
4860 		mutex_enter(&zio->io_lock);
4861 		zio->io_executor = NULL;
4862 		cv_broadcast(&zio->io_cv);
4863 		mutex_exit(&zio->io_lock);
4864 	} else {
4865 		zio_destroy(zio);
4866 	}
4867 
4868 	return (next_to_execute);
4869 }
4870 
4871 /*
4872  * ==========================================================================
4873  * I/O pipeline definition
4874  * ==========================================================================
4875  */
4876 static zio_pipe_stage_t *zio_pipeline[] = {
4877 	NULL,
4878 	zio_read_bp_init,
4879 	zio_write_bp_init,
4880 	zio_free_bp_init,
4881 	zio_issue_async,
4882 	zio_write_compress,
4883 	zio_encrypt,
4884 	zio_checksum_generate,
4885 	zio_nop_write,
4886 	zio_ddt_read_start,
4887 	zio_ddt_read_done,
4888 	zio_ddt_write,
4889 	zio_ddt_free,
4890 	zio_gang_assemble,
4891 	zio_gang_issue,
4892 	zio_dva_throttle,
4893 	zio_dva_allocate,
4894 	zio_dva_free,
4895 	zio_dva_claim,
4896 	zio_ready,
4897 	zio_vdev_io_start,
4898 	zio_vdev_io_done,
4899 	zio_vdev_io_assess,
4900 	zio_checksum_verify,
4901 	zio_done
4902 };
4903 
4904 
4905 
4906 
4907 /*
4908  * Compare two zbookmark_phys_t's to see which we would reach first in a
4909  * pre-order traversal of the object tree.
4910  *
4911  * This is simple in every case aside from the meta-dnode object. For all other
4912  * objects, we traverse them in order (object 1 before object 2, and so on).
4913  * However, all of these objects are traversed while traversing object 0, since
4914  * the data it points to is the list of objects.  Thus, we need to convert to a
4915  * canonical representation so we can compare meta-dnode bookmarks to
4916  * non-meta-dnode bookmarks.
4917  *
4918  * We do this by calculating "equivalents" for each field of the zbookmark.
4919  * zbookmarks outside of the meta-dnode use their own object and level, and
4920  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4921  * blocks this bookmark refers to) by multiplying their blkid by their span
4922  * (the number of L0 blocks contained within one block at their level).
4923  * zbookmarks inside the meta-dnode calculate their object equivalent
4924  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4925  * level + 1<<31 (any value larger than a level could ever be) for their level.
4926  * This causes them to always compare before a bookmark in their object
4927  * equivalent, compare appropriately to bookmarks in other objects, and to
4928  * compare appropriately to other bookmarks in the meta-dnode.
4929  */
4930 int
4931 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4932     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4933 {
4934 	/*
4935 	 * These variables represent the "equivalent" values for the zbookmark,
4936 	 * after converting zbookmarks inside the meta dnode to their
4937 	 * normal-object equivalents.
4938 	 */
4939 	uint64_t zb1obj, zb2obj;
4940 	uint64_t zb1L0, zb2L0;
4941 	uint64_t zb1level, zb2level;
4942 
4943 	if (zb1->zb_object == zb2->zb_object &&
4944 	    zb1->zb_level == zb2->zb_level &&
4945 	    zb1->zb_blkid == zb2->zb_blkid)
4946 		return (0);
4947 
4948 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4949 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4950 
4951 	/*
4952 	 * BP_SPANB calculates the span in blocks.
4953 	 */
4954 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4955 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4956 
4957 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4958 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4959 		zb1L0 = 0;
4960 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4961 	} else {
4962 		zb1obj = zb1->zb_object;
4963 		zb1level = zb1->zb_level;
4964 	}
4965 
4966 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4967 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4968 		zb2L0 = 0;
4969 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4970 	} else {
4971 		zb2obj = zb2->zb_object;
4972 		zb2level = zb2->zb_level;
4973 	}
4974 
4975 	/* Now that we have a canonical representation, do the comparison. */
4976 	if (zb1obj != zb2obj)
4977 		return (zb1obj < zb2obj ? -1 : 1);
4978 	else if (zb1L0 != zb2L0)
4979 		return (zb1L0 < zb2L0 ? -1 : 1);
4980 	else if (zb1level != zb2level)
4981 		return (zb1level > zb2level ? -1 : 1);
4982 	/*
4983 	 * This can (theoretically) happen if the bookmarks have the same object
4984 	 * and level, but different blkids, if the block sizes are not the same.
4985 	 * There is presently no way to change the indirect block sizes
4986 	 */
4987 	return (0);
4988 }
4989 
4990 /*
4991  *  This function checks the following: given that last_block is the place that
4992  *  our traversal stopped last time, does that guarantee that we've visited
4993  *  every node under subtree_root?  Therefore, we can't just use the raw output
4994  *  of zbookmark_compare.  We have to pass in a modified version of
4995  *  subtree_root; by incrementing the block id, and then checking whether
4996  *  last_block is before or equal to that, we can tell whether or not having
4997  *  visited last_block implies that all of subtree_root's children have been
4998  *  visited.
4999  */
5000 boolean_t
5001 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5002     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5003 {
5004 	zbookmark_phys_t mod_zb = *subtree_root;
5005 	mod_zb.zb_blkid++;
5006 	ASSERT0(last_block->zb_level);
5007 
5008 	/* The objset_phys_t isn't before anything. */
5009 	if (dnp == NULL)
5010 		return (B_FALSE);
5011 
5012 	/*
5013 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5014 	 * data block size in sectors, because that variable is only used if
5015 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
5016 	 * know without examining it what object it refers to, and there's no
5017 	 * harm in passing in this value in other cases, we always pass it in.
5018 	 *
5019 	 * We pass in 0 for the indirect block size shift because zb2 must be
5020 	 * level 0.  The indirect block size is only used to calculate the span
5021 	 * of the bookmark, but since the bookmark must be level 0, the span is
5022 	 * always 1, so the math works out.
5023 	 *
5024 	 * If you make changes to how the zbookmark_compare code works, be sure
5025 	 * to make sure that this code still works afterwards.
5026 	 */
5027 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5028 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5029 	    last_block) <= 0);
5030 }
5031 
5032 /*
5033  * This function is similar to zbookmark_subtree_completed(), but returns true
5034  * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5035  */
5036 boolean_t
5037 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5038     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5039 {
5040 	ASSERT0(last_block->zb_level);
5041 	if (dnp == NULL)
5042 		return (B_FALSE);
5043 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5044 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5045 	    last_block) >= 0);
5046 }
5047 
5048 EXPORT_SYMBOL(zio_type_name);
5049 EXPORT_SYMBOL(zio_buf_alloc);
5050 EXPORT_SYMBOL(zio_data_buf_alloc);
5051 EXPORT_SYMBOL(zio_buf_free);
5052 EXPORT_SYMBOL(zio_data_buf_free);
5053 
5054 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5055 	"Max I/O completion time (milliseconds) before marking it as slow");
5056 
5057 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5058 	"Prioritize requeued I/O");
5059 
5060 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  UINT, ZMOD_RW,
5061 	"Defer frees starting in this pass");
5062 
5063 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5064 	"Don't compress starting in this pass");
5065 
5066 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5067 	"Rewrite new bps starting in this pass");
5068 
5069 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5070 	"Throttle block allocations in the ZIO pipeline");
5071 
5072 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5073 	"Log all slow ZIOs, not just those with vdevs");
5074