1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24  * Copyright (c) 2017, Intel Corporation.
25  */
26 
27 /*
28  * ZFS fault injection
29  *
30  * To handle fault injection, we keep track of a series of zinject_record_t
31  * structures which describe which logical block(s) should be injected with a
32  * fault.  These are kept in a global list.  Each record corresponds to a given
33  * spa_t and maintains a special hold on the spa_t so that it cannot be deleted
34  * or exported while the injection record exists.
35  *
36  * Device level injection is done using the 'zi_guid' field.  If this is set, it
37  * means that the error is destined for a particular device, not a piece of
38  * data.
39  *
40  * This is a rather poor data structure and algorithm, but we don't expect more
41  * than a few faults at any one time, so it should be sufficient for our needs.
42  */
43 
44 #include <sys/arc.h>
45 #include <sys/zio.h>
46 #include <sys/zfs_ioctl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/dmu_objset.h>
49 #include <sys/dsl_dataset.h>
50 #include <sys/fs/zfs.h>
51 
52 uint32_t zio_injection_enabled = 0;
53 
54 /*
55  * Data describing each zinject handler registered on the system, and
56  * contains the list node linking the handler in the global zinject
57  * handler list.
58  */
59 typedef struct inject_handler {
60 	int			zi_id;
61 	spa_t			*zi_spa;
62 	zinject_record_t	zi_record;
63 	uint64_t		*zi_lanes;
64 	int			zi_next_lane;
65 	list_node_t		zi_link;
66 } inject_handler_t;
67 
68 /*
69  * List of all zinject handlers registered on the system, protected by
70  * the inject_lock defined below.
71  */
72 static list_t inject_handlers;
73 
74 /*
75  * This protects insertion into, and traversal of, the inject handler
76  * list defined above; as well as the inject_delay_count. Any time a
77  * handler is inserted or removed from the list, this lock should be
78  * taken as a RW_WRITER; and any time traversal is done over the list
79  * (without modification to it) this lock should be taken as a RW_READER.
80  */
81 static krwlock_t inject_lock;
82 
83 /*
84  * This holds the number of zinject delay handlers that have been
85  * registered on the system. It is protected by the inject_lock defined
86  * above. Thus modifications to this count must be a RW_WRITER of the
87  * inject_lock, and reads of this count must be (at least) a RW_READER
88  * of the lock.
89  */
90 static int inject_delay_count = 0;
91 
92 /*
93  * This lock is used only in zio_handle_io_delay(), refer to the comment
94  * in that function for more details.
95  */
96 static kmutex_t inject_delay_mtx;
97 
98 /*
99  * Used to assign unique identifying numbers to each new zinject handler.
100  */
101 static int inject_next_id = 1;
102 
103 /*
104  * Test if the requested frequency was triggered
105  */
106 static boolean_t
107 freq_triggered(uint32_t frequency)
108 {
109 	/*
110 	 * zero implies always (100%)
111 	 */
112 	if (frequency == 0)
113 		return (B_TRUE);
114 
115 	/*
116 	 * Note: we still handle legacy (unscaled) frequency values
117 	 */
118 	uint32_t maximum = (frequency <= 100) ? 100 : ZI_PERCENTAGE_MAX;
119 
120 	return (random_in_range(maximum) < frequency);
121 }
122 
123 /*
124  * Returns true if the given record matches the I/O in progress.
125  */
126 static boolean_t
127 zio_match_handler(const zbookmark_phys_t *zb, uint64_t type, int dva,
128     zinject_record_t *record, int error)
129 {
130 	/*
131 	 * Check for a match against the MOS, which is based on type
132 	 */
133 	if (zb->zb_objset == DMU_META_OBJSET &&
134 	    record->zi_objset == DMU_META_OBJSET &&
135 	    record->zi_object == DMU_META_DNODE_OBJECT) {
136 		if (record->zi_type == DMU_OT_NONE ||
137 		    type == record->zi_type)
138 			return (freq_triggered(record->zi_freq));
139 		else
140 			return (B_FALSE);
141 	}
142 
143 	/*
144 	 * Check for an exact match.
145 	 */
146 	if (zb->zb_objset == record->zi_objset &&
147 	    zb->zb_object == record->zi_object &&
148 	    zb->zb_level == record->zi_level &&
149 	    zb->zb_blkid >= record->zi_start &&
150 	    zb->zb_blkid <= record->zi_end &&
151 	    (record->zi_dvas == 0 ||
152 	    (dva != ZI_NO_DVA && (record->zi_dvas & (1ULL << dva)))) &&
153 	    error == record->zi_error) {
154 		return (freq_triggered(record->zi_freq));
155 	}
156 
157 	return (B_FALSE);
158 }
159 
160 /*
161  * Panic the system when a config change happens in the function
162  * specified by tag.
163  */
164 void
165 zio_handle_panic_injection(spa_t *spa, const char *tag, uint64_t type)
166 {
167 	inject_handler_t *handler;
168 
169 	rw_enter(&inject_lock, RW_READER);
170 
171 	for (handler = list_head(&inject_handlers); handler != NULL;
172 	    handler = list_next(&inject_handlers, handler)) {
173 
174 		if (spa != handler->zi_spa)
175 			continue;
176 
177 		if (handler->zi_record.zi_type == type &&
178 		    strcmp(tag, handler->zi_record.zi_func) == 0)
179 			panic("Panic requested in function %s\n", tag);
180 	}
181 
182 	rw_exit(&inject_lock);
183 }
184 
185 /*
186  * Inject a decryption failure. Decryption failures can occur in
187  * both the ARC and the ZIO layers.
188  */
189 int
190 zio_handle_decrypt_injection(spa_t *spa, const zbookmark_phys_t *zb,
191     uint64_t type, int error)
192 {
193 	int ret = 0;
194 	inject_handler_t *handler;
195 
196 	rw_enter(&inject_lock, RW_READER);
197 
198 	for (handler = list_head(&inject_handlers); handler != NULL;
199 	    handler = list_next(&inject_handlers, handler)) {
200 
201 		if (spa != handler->zi_spa ||
202 		    handler->zi_record.zi_cmd != ZINJECT_DECRYPT_FAULT)
203 			continue;
204 
205 		if (zio_match_handler(zb, type, ZI_NO_DVA,
206 		    &handler->zi_record, error)) {
207 			ret = error;
208 			break;
209 		}
210 	}
211 
212 	rw_exit(&inject_lock);
213 	return (ret);
214 }
215 
216 /*
217  * If this is a physical I/O for a vdev child determine which DVA it is
218  * for. We iterate backwards through the DVAs matching on the offset so
219  * that we end up with ZI_NO_DVA (-1) if we don't find a match.
220  */
221 static int
222 zio_match_dva(zio_t *zio)
223 {
224 	int i = ZI_NO_DVA;
225 
226 	if (zio->io_bp != NULL && zio->io_vd != NULL &&
227 	    zio->io_child_type == ZIO_CHILD_VDEV) {
228 		for (i = BP_GET_NDVAS(zio->io_bp) - 1; i >= 0; i--) {
229 			dva_t *dva = &zio->io_bp->blk_dva[i];
230 			uint64_t off = DVA_GET_OFFSET(dva);
231 			vdev_t *vd = vdev_lookup_top(zio->io_spa,
232 			    DVA_GET_VDEV(dva));
233 
234 			/* Compensate for vdev label added to leaves */
235 			if (zio->io_vd->vdev_ops->vdev_op_leaf)
236 				off += VDEV_LABEL_START_SIZE;
237 
238 			if (zio->io_vd == vd && zio->io_offset == off)
239 				break;
240 		}
241 	}
242 
243 	return (i);
244 }
245 
246 
247 /*
248  * Determine if the I/O in question should return failure.  Returns the errno
249  * to be returned to the caller.
250  */
251 int
252 zio_handle_fault_injection(zio_t *zio, int error)
253 {
254 	int ret = 0;
255 	inject_handler_t *handler;
256 
257 	/*
258 	 * Ignore I/O not associated with any logical data.
259 	 */
260 	if (zio->io_logical == NULL)
261 		return (0);
262 
263 	/*
264 	 * Currently, we only support fault injection on reads.
265 	 */
266 	if (zio->io_type != ZIO_TYPE_READ)
267 		return (0);
268 
269 	/*
270 	 * A rebuild I/O has no checksum to verify.
271 	 */
272 	if (zio->io_priority == ZIO_PRIORITY_REBUILD && error == ECKSUM)
273 		return (0);
274 
275 	rw_enter(&inject_lock, RW_READER);
276 
277 	for (handler = list_head(&inject_handlers); handler != NULL;
278 	    handler = list_next(&inject_handlers, handler)) {
279 		if (zio->io_spa != handler->zi_spa ||
280 		    handler->zi_record.zi_cmd != ZINJECT_DATA_FAULT)
281 			continue;
282 
283 		/* If this handler matches, return the specified error */
284 		if (zio_match_handler(&zio->io_logical->io_bookmark,
285 		    zio->io_bp ? BP_GET_TYPE(zio->io_bp) : DMU_OT_NONE,
286 		    zio_match_dva(zio), &handler->zi_record, error)) {
287 			ret = error;
288 			break;
289 		}
290 	}
291 
292 	rw_exit(&inject_lock);
293 
294 	return (ret);
295 }
296 
297 /*
298  * Determine if the zio is part of a label update and has an injection
299  * handler associated with that portion of the label. Currently, we
300  * allow error injection in either the nvlist or the uberblock region of
301  * of the vdev label.
302  */
303 int
304 zio_handle_label_injection(zio_t *zio, int error)
305 {
306 	inject_handler_t *handler;
307 	vdev_t *vd = zio->io_vd;
308 	uint64_t offset = zio->io_offset;
309 	int label;
310 	int ret = 0;
311 
312 	if (offset >= VDEV_LABEL_START_SIZE &&
313 	    offset < vd->vdev_psize - VDEV_LABEL_END_SIZE)
314 		return (0);
315 
316 	rw_enter(&inject_lock, RW_READER);
317 
318 	for (handler = list_head(&inject_handlers); handler != NULL;
319 	    handler = list_next(&inject_handlers, handler)) {
320 		uint64_t start = handler->zi_record.zi_start;
321 		uint64_t end = handler->zi_record.zi_end;
322 
323 		if (handler->zi_record.zi_cmd != ZINJECT_LABEL_FAULT)
324 			continue;
325 
326 		/*
327 		 * The injection region is the relative offsets within a
328 		 * vdev label. We must determine the label which is being
329 		 * updated and adjust our region accordingly.
330 		 */
331 		label = vdev_label_number(vd->vdev_psize, offset);
332 		start = vdev_label_offset(vd->vdev_psize, label, start);
333 		end = vdev_label_offset(vd->vdev_psize, label, end);
334 
335 		if (zio->io_vd->vdev_guid == handler->zi_record.zi_guid &&
336 		    (offset >= start && offset <= end)) {
337 			ret = error;
338 			break;
339 		}
340 	}
341 	rw_exit(&inject_lock);
342 	return (ret);
343 }
344 
345 static int
346 zio_inject_bitflip_cb(void *data, size_t len, void *private)
347 {
348 	zio_t *zio = private;
349 	uint8_t *buffer = data;
350 	uint_t byte = random_in_range(len);
351 
352 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
353 
354 	/* flip a single random bit in an abd data buffer */
355 	buffer[byte] ^= 1 << random_in_range(8);
356 
357 	return (1);	/* stop after first flip */
358 }
359 
360 static int
361 zio_handle_device_injection_impl(vdev_t *vd, zio_t *zio, int err1, int err2)
362 {
363 	inject_handler_t *handler;
364 	int ret = 0;
365 
366 	/*
367 	 * We skip over faults in the labels unless it's during
368 	 * device open (i.e. zio == NULL).
369 	 */
370 	if (zio != NULL) {
371 		uint64_t offset = zio->io_offset;
372 
373 		if (offset < VDEV_LABEL_START_SIZE ||
374 		    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE)
375 			return (0);
376 	}
377 
378 	rw_enter(&inject_lock, RW_READER);
379 
380 	for (handler = list_head(&inject_handlers); handler != NULL;
381 	    handler = list_next(&inject_handlers, handler)) {
382 
383 		if (handler->zi_record.zi_cmd != ZINJECT_DEVICE_FAULT)
384 			continue;
385 
386 		if (vd->vdev_guid == handler->zi_record.zi_guid) {
387 			if (handler->zi_record.zi_failfast &&
388 			    (zio == NULL || (zio->io_flags &
389 			    (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))) {
390 				continue;
391 			}
392 
393 			/* Handle type specific I/O failures */
394 			if (zio != NULL &&
395 			    handler->zi_record.zi_iotype != ZIO_TYPES &&
396 			    handler->zi_record.zi_iotype != zio->io_type)
397 				continue;
398 
399 			if (handler->zi_record.zi_error == err1 ||
400 			    handler->zi_record.zi_error == err2) {
401 				/*
402 				 * limit error injection if requested
403 				 */
404 				if (!freq_triggered(handler->zi_record.zi_freq))
405 					continue;
406 
407 				/*
408 				 * For a failed open, pretend like the device
409 				 * has gone away.
410 				 */
411 				if (err1 == ENXIO)
412 					vd->vdev_stat.vs_aux =
413 					    VDEV_AUX_OPEN_FAILED;
414 
415 				/*
416 				 * Treat these errors as if they had been
417 				 * retried so that all the appropriate stats
418 				 * and FMA events are generated.
419 				 */
420 				if (!handler->zi_record.zi_failfast &&
421 				    zio != NULL)
422 					zio->io_flags |= ZIO_FLAG_IO_RETRY;
423 
424 				/*
425 				 * EILSEQ means flip a bit after a read
426 				 */
427 				if (handler->zi_record.zi_error == EILSEQ) {
428 					if (zio == NULL)
429 						break;
430 
431 					/* locate buffer data and flip a bit */
432 					(void) abd_iterate_func(zio->io_abd, 0,
433 					    zio->io_size, zio_inject_bitflip_cb,
434 					    zio);
435 					break;
436 				}
437 
438 				ret = handler->zi_record.zi_error;
439 				break;
440 			}
441 			if (handler->zi_record.zi_error == ENXIO) {
442 				ret = SET_ERROR(EIO);
443 				break;
444 			}
445 		}
446 	}
447 
448 	rw_exit(&inject_lock);
449 
450 	return (ret);
451 }
452 
453 int
454 zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error)
455 {
456 	return (zio_handle_device_injection_impl(vd, zio, error, INT_MAX));
457 }
458 
459 int
460 zio_handle_device_injections(vdev_t *vd, zio_t *zio, int err1, int err2)
461 {
462 	return (zio_handle_device_injection_impl(vd, zio, err1, err2));
463 }
464 
465 /*
466  * Simulate hardware that ignores cache flushes.  For requested number
467  * of seconds nix the actual writing to disk.
468  */
469 void
470 zio_handle_ignored_writes(zio_t *zio)
471 {
472 	inject_handler_t *handler;
473 
474 	rw_enter(&inject_lock, RW_READER);
475 
476 	for (handler = list_head(&inject_handlers); handler != NULL;
477 	    handler = list_next(&inject_handlers, handler)) {
478 
479 		/* Ignore errors not destined for this pool */
480 		if (zio->io_spa != handler->zi_spa ||
481 		    handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
482 			continue;
483 
484 		/*
485 		 * Positive duration implies # of seconds, negative
486 		 * a number of txgs
487 		 */
488 		if (handler->zi_record.zi_timer == 0) {
489 			if (handler->zi_record.zi_duration > 0)
490 				handler->zi_record.zi_timer = ddi_get_lbolt64();
491 			else
492 				handler->zi_record.zi_timer = zio->io_txg;
493 		}
494 
495 		/* Have a "problem" writing 60% of the time */
496 		if (random_in_range(100) < 60)
497 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
498 		break;
499 	}
500 
501 	rw_exit(&inject_lock);
502 }
503 
504 void
505 spa_handle_ignored_writes(spa_t *spa)
506 {
507 	inject_handler_t *handler;
508 
509 	if (zio_injection_enabled == 0)
510 		return;
511 
512 	rw_enter(&inject_lock, RW_READER);
513 
514 	for (handler = list_head(&inject_handlers); handler != NULL;
515 	    handler = list_next(&inject_handlers, handler)) {
516 
517 		if (spa != handler->zi_spa ||
518 		    handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
519 			continue;
520 
521 		if (handler->zi_record.zi_duration > 0) {
522 			VERIFY(handler->zi_record.zi_timer == 0 ||
523 			    ddi_time_after64(
524 			    (int64_t)handler->zi_record.zi_timer +
525 			    handler->zi_record.zi_duration * hz,
526 			    ddi_get_lbolt64()));
527 		} else {
528 			/* duration is negative so the subtraction here adds */
529 			VERIFY(handler->zi_record.zi_timer == 0 ||
530 			    handler->zi_record.zi_timer -
531 			    handler->zi_record.zi_duration >=
532 			    spa_syncing_txg(spa));
533 		}
534 	}
535 
536 	rw_exit(&inject_lock);
537 }
538 
539 hrtime_t
540 zio_handle_io_delay(zio_t *zio)
541 {
542 	vdev_t *vd = zio->io_vd;
543 	inject_handler_t *min_handler = NULL;
544 	hrtime_t min_target = 0;
545 
546 	rw_enter(&inject_lock, RW_READER);
547 
548 	/*
549 	 * inject_delay_count is a subset of zio_injection_enabled that
550 	 * is only incremented for delay handlers. These checks are
551 	 * mainly added to remind the reader why we're not explicitly
552 	 * checking zio_injection_enabled like the other functions.
553 	 */
554 	IMPLY(inject_delay_count > 0, zio_injection_enabled > 0);
555 	IMPLY(zio_injection_enabled == 0, inject_delay_count == 0);
556 
557 	/*
558 	 * If there aren't any inject delay handlers registered, then we
559 	 * can short circuit and simply return 0 here. A value of zero
560 	 * informs zio_delay_interrupt() that this request should not be
561 	 * delayed. This short circuit keeps us from acquiring the
562 	 * inject_delay_mutex unnecessarily.
563 	 */
564 	if (inject_delay_count == 0) {
565 		rw_exit(&inject_lock);
566 		return (0);
567 	}
568 
569 	/*
570 	 * Each inject handler has a number of "lanes" associated with
571 	 * it. Each lane is able to handle requests independently of one
572 	 * another, and at a latency defined by the inject handler
573 	 * record's zi_timer field. Thus if a handler in configured with
574 	 * a single lane with a 10ms latency, it will delay requests
575 	 * such that only a single request is completed every 10ms. So,
576 	 * if more than one request is attempted per each 10ms interval,
577 	 * the average latency of the requests will be greater than
578 	 * 10ms; but if only a single request is submitted each 10ms
579 	 * interval the average latency will be 10ms.
580 	 *
581 	 * We need to acquire this mutex to prevent multiple concurrent
582 	 * threads being assigned to the same lane of a given inject
583 	 * handler. The mutex allows us to perform the following two
584 	 * operations atomically:
585 	 *
586 	 *	1. determine the minimum handler and minimum target
587 	 *	   value of all the possible handlers
588 	 *	2. update that minimum handler's lane array
589 	 *
590 	 * Without atomicity, two (or more) threads could pick the same
591 	 * lane in step (1), and then conflict with each other in step
592 	 * (2). This could allow a single lane handler to process
593 	 * multiple requests simultaneously, which shouldn't be possible.
594 	 */
595 	mutex_enter(&inject_delay_mtx);
596 
597 	for (inject_handler_t *handler = list_head(&inject_handlers);
598 	    handler != NULL; handler = list_next(&inject_handlers, handler)) {
599 		if (handler->zi_record.zi_cmd != ZINJECT_DELAY_IO)
600 			continue;
601 
602 		if (!freq_triggered(handler->zi_record.zi_freq))
603 			continue;
604 
605 		if (vd->vdev_guid != handler->zi_record.zi_guid)
606 			continue;
607 
608 		if (handler->zi_record.zi_iotype != ZIO_TYPES &&
609 		    handler->zi_record.zi_iotype != zio->io_type)
610 				continue;
611 
612 		/*
613 		 * Defensive; should never happen as the array allocation
614 		 * occurs prior to inserting this handler on the list.
615 		 */
616 		ASSERT3P(handler->zi_lanes, !=, NULL);
617 
618 		/*
619 		 * This should never happen, the zinject command should
620 		 * prevent a user from setting an IO delay with zero lanes.
621 		 */
622 		ASSERT3U(handler->zi_record.zi_nlanes, !=, 0);
623 
624 		ASSERT3U(handler->zi_record.zi_nlanes, >,
625 		    handler->zi_next_lane);
626 
627 		/*
628 		 * We want to issue this IO to the lane that will become
629 		 * idle the soonest, so we compare the soonest this
630 		 * specific handler can complete the IO with all other
631 		 * handlers, to find the lowest value of all possible
632 		 * lanes. We then use this lane to submit the request.
633 		 *
634 		 * Since each handler has a constant value for its
635 		 * delay, we can just use the "next" lane for that
636 		 * handler; as it will always be the lane with the
637 		 * lowest value for that particular handler (i.e. the
638 		 * lane that will become idle the soonest). This saves a
639 		 * scan of each handler's lanes array.
640 		 *
641 		 * There's two cases to consider when determining when
642 		 * this specific IO request should complete. If this
643 		 * lane is idle, we want to "submit" the request now so
644 		 * it will complete after zi_timer milliseconds. Thus,
645 		 * we set the target to now + zi_timer.
646 		 *
647 		 * If the lane is busy, we want this request to complete
648 		 * zi_timer milliseconds after the lane becomes idle.
649 		 * Since the 'zi_lanes' array holds the time at which
650 		 * each lane will become idle, we use that value to
651 		 * determine when this request should complete.
652 		 */
653 		hrtime_t idle = handler->zi_record.zi_timer + gethrtime();
654 		hrtime_t busy = handler->zi_record.zi_timer +
655 		    handler->zi_lanes[handler->zi_next_lane];
656 		hrtime_t target = MAX(idle, busy);
657 
658 		if (min_handler == NULL) {
659 			min_handler = handler;
660 			min_target = target;
661 			continue;
662 		}
663 
664 		ASSERT3P(min_handler, !=, NULL);
665 		ASSERT3U(min_target, !=, 0);
666 
667 		/*
668 		 * We don't yet increment the "next lane" variable since
669 		 * we still might find a lower value lane in another
670 		 * handler during any remaining iterations. Once we're
671 		 * sure we've selected the absolute minimum, we'll claim
672 		 * the lane and increment the handler's "next lane"
673 		 * field below.
674 		 */
675 
676 		if (target < min_target) {
677 			min_handler = handler;
678 			min_target = target;
679 		}
680 	}
681 
682 	/*
683 	 * 'min_handler' will be NULL if no IO delays are registered for
684 	 * this vdev, otherwise it will point to the handler containing
685 	 * the lane that will become idle the soonest.
686 	 */
687 	if (min_handler != NULL) {
688 		ASSERT3U(min_target, !=, 0);
689 		min_handler->zi_lanes[min_handler->zi_next_lane] = min_target;
690 
691 		/*
692 		 * If we've used all possible lanes for this handler,
693 		 * loop back and start using the first lane again;
694 		 * otherwise, just increment the lane index.
695 		 */
696 		min_handler->zi_next_lane = (min_handler->zi_next_lane + 1) %
697 		    min_handler->zi_record.zi_nlanes;
698 	}
699 
700 	mutex_exit(&inject_delay_mtx);
701 	rw_exit(&inject_lock);
702 
703 	return (min_target);
704 }
705 
706 static int
707 zio_calculate_range(const char *pool, zinject_record_t *record)
708 {
709 	dsl_pool_t *dp;
710 	dsl_dataset_t *ds;
711 	objset_t *os = NULL;
712 	dnode_t *dn = NULL;
713 	int error;
714 
715 	/*
716 	 * Obtain the dnode for object using pool, objset, and object
717 	 */
718 	error = dsl_pool_hold(pool, FTAG, &dp);
719 	if (error)
720 		return (error);
721 
722 	error = dsl_dataset_hold_obj(dp, record->zi_objset, FTAG, &ds);
723 	dsl_pool_rele(dp, FTAG);
724 	if (error)
725 		return (error);
726 
727 	error = dmu_objset_from_ds(ds, &os);
728 	dsl_dataset_rele(ds, FTAG);
729 	if (error)
730 		return (error);
731 
732 	error = dnode_hold(os, record->zi_object, FTAG, &dn);
733 	if (error)
734 		return (error);
735 
736 	/*
737 	 * Translate the range into block IDs
738 	 */
739 	if (record->zi_start != 0 || record->zi_end != -1ULL) {
740 		record->zi_start >>= dn->dn_datablkshift;
741 		record->zi_end >>= dn->dn_datablkshift;
742 	}
743 	if (record->zi_level > 0) {
744 		if (record->zi_level >= dn->dn_nlevels) {
745 			dnode_rele(dn, FTAG);
746 			return (SET_ERROR(EDOM));
747 		}
748 
749 		if (record->zi_start != 0 || record->zi_end != 0) {
750 			int shift = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
751 
752 			for (int level = record->zi_level; level > 0; level--) {
753 				record->zi_start >>= shift;
754 				record->zi_end >>= shift;
755 			}
756 		}
757 	}
758 
759 	dnode_rele(dn, FTAG);
760 	return (0);
761 }
762 
763 /*
764  * Create a new handler for the given record.  We add it to the list, adding
765  * a reference to the spa_t in the process.  We increment zio_injection_enabled,
766  * which is the switch to trigger all fault injection.
767  */
768 int
769 zio_inject_fault(char *name, int flags, int *id, zinject_record_t *record)
770 {
771 	inject_handler_t *handler;
772 	int error;
773 	spa_t *spa;
774 
775 	/*
776 	 * If this is pool-wide metadata, make sure we unload the corresponding
777 	 * spa_t, so that the next attempt to load it will trigger the fault.
778 	 * We call spa_reset() to unload the pool appropriately.
779 	 */
780 	if (flags & ZINJECT_UNLOAD_SPA)
781 		if ((error = spa_reset(name)) != 0)
782 			return (error);
783 
784 	if (record->zi_cmd == ZINJECT_DELAY_IO) {
785 		/*
786 		 * A value of zero for the number of lanes or for the
787 		 * delay time doesn't make sense.
788 		 */
789 		if (record->zi_timer == 0 || record->zi_nlanes == 0)
790 			return (SET_ERROR(EINVAL));
791 
792 		/*
793 		 * The number of lanes is directly mapped to the size of
794 		 * an array used by the handler. Thus, to ensure the
795 		 * user doesn't trigger an allocation that's "too large"
796 		 * we cap the number of lanes here.
797 		 */
798 		if (record->zi_nlanes >= UINT16_MAX)
799 			return (SET_ERROR(EINVAL));
800 	}
801 
802 	/*
803 	 * If the supplied range was in bytes -- calculate the actual blkid
804 	 */
805 	if (flags & ZINJECT_CALC_RANGE) {
806 		error = zio_calculate_range(name, record);
807 		if (error != 0)
808 			return (error);
809 	}
810 
811 	if (!(flags & ZINJECT_NULL)) {
812 		/*
813 		 * spa_inject_ref() will add an injection reference, which will
814 		 * prevent the pool from being removed from the namespace while
815 		 * still allowing it to be unloaded.
816 		 */
817 		if ((spa = spa_inject_addref(name)) == NULL)
818 			return (SET_ERROR(ENOENT));
819 
820 		handler = kmem_alloc(sizeof (inject_handler_t), KM_SLEEP);
821 
822 		handler->zi_spa = spa;
823 		handler->zi_record = *record;
824 
825 		if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
826 			handler->zi_lanes = kmem_zalloc(
827 			    sizeof (*handler->zi_lanes) *
828 			    handler->zi_record.zi_nlanes, KM_SLEEP);
829 			handler->zi_next_lane = 0;
830 		} else {
831 			handler->zi_lanes = NULL;
832 			handler->zi_next_lane = 0;
833 		}
834 
835 		rw_enter(&inject_lock, RW_WRITER);
836 
837 		/*
838 		 * We can't move this increment into the conditional
839 		 * above because we need to hold the RW_WRITER lock of
840 		 * inject_lock, and we don't want to hold that while
841 		 * allocating the handler's zi_lanes array.
842 		 */
843 		if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
844 			ASSERT3S(inject_delay_count, >=, 0);
845 			inject_delay_count++;
846 			ASSERT3S(inject_delay_count, >, 0);
847 		}
848 
849 		*id = handler->zi_id = inject_next_id++;
850 		list_insert_tail(&inject_handlers, handler);
851 		atomic_inc_32(&zio_injection_enabled);
852 
853 		rw_exit(&inject_lock);
854 	}
855 
856 	/*
857 	 * Flush the ARC, so that any attempts to read this data will end up
858 	 * going to the ZIO layer.  Note that this is a little overkill, but
859 	 * we don't have the necessary ARC interfaces to do anything else, and
860 	 * fault injection isn't a performance critical path.
861 	 */
862 	if (flags & ZINJECT_FLUSH_ARC)
863 		/*
864 		 * We must use FALSE to ensure arc_flush returns, since
865 		 * we're not preventing concurrent ARC insertions.
866 		 */
867 		arc_flush(NULL, FALSE);
868 
869 	return (0);
870 }
871 
872 /*
873  * Returns the next record with an ID greater than that supplied to the
874  * function.  Used to iterate over all handlers in the system.
875  */
876 int
877 zio_inject_list_next(int *id, char *name, size_t buflen,
878     zinject_record_t *record)
879 {
880 	inject_handler_t *handler;
881 	int ret;
882 
883 	mutex_enter(&spa_namespace_lock);
884 	rw_enter(&inject_lock, RW_READER);
885 
886 	for (handler = list_head(&inject_handlers); handler != NULL;
887 	    handler = list_next(&inject_handlers, handler))
888 		if (handler->zi_id > *id)
889 			break;
890 
891 	if (handler) {
892 		*record = handler->zi_record;
893 		*id = handler->zi_id;
894 		(void) strlcpy(name, spa_name(handler->zi_spa), buflen);
895 		ret = 0;
896 	} else {
897 		ret = SET_ERROR(ENOENT);
898 	}
899 
900 	rw_exit(&inject_lock);
901 	mutex_exit(&spa_namespace_lock);
902 
903 	return (ret);
904 }
905 
906 /*
907  * Clear the fault handler with the given identifier, or return ENOENT if none
908  * exists.
909  */
910 int
911 zio_clear_fault(int id)
912 {
913 	inject_handler_t *handler;
914 
915 	rw_enter(&inject_lock, RW_WRITER);
916 
917 	for (handler = list_head(&inject_handlers); handler != NULL;
918 	    handler = list_next(&inject_handlers, handler))
919 		if (handler->zi_id == id)
920 			break;
921 
922 	if (handler == NULL) {
923 		rw_exit(&inject_lock);
924 		return (SET_ERROR(ENOENT));
925 	}
926 
927 	if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
928 		ASSERT3S(inject_delay_count, >, 0);
929 		inject_delay_count--;
930 		ASSERT3S(inject_delay_count, >=, 0);
931 	}
932 
933 	list_remove(&inject_handlers, handler);
934 	rw_exit(&inject_lock);
935 
936 	if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
937 		ASSERT3P(handler->zi_lanes, !=, NULL);
938 		kmem_free(handler->zi_lanes, sizeof (*handler->zi_lanes) *
939 		    handler->zi_record.zi_nlanes);
940 	} else {
941 		ASSERT3P(handler->zi_lanes, ==, NULL);
942 	}
943 
944 	spa_inject_delref(handler->zi_spa);
945 	kmem_free(handler, sizeof (inject_handler_t));
946 	atomic_dec_32(&zio_injection_enabled);
947 
948 	return (0);
949 }
950 
951 void
952 zio_inject_init(void)
953 {
954 	rw_init(&inject_lock, NULL, RW_DEFAULT, NULL);
955 	mutex_init(&inject_delay_mtx, NULL, MUTEX_DEFAULT, NULL);
956 	list_create(&inject_handlers, sizeof (inject_handler_t),
957 	    offsetof(inject_handler_t, zi_link));
958 }
959 
960 void
961 zio_inject_fini(void)
962 {
963 	list_destroy(&inject_handlers);
964 	mutex_destroy(&inject_delay_mtx);
965 	rw_destroy(&inject_lock);
966 }
967 
968 #if defined(_KERNEL)
969 EXPORT_SYMBOL(zio_injection_enabled);
970 EXPORT_SYMBOL(zio_inject_fault);
971 EXPORT_SYMBOL(zio_inject_list_next);
972 EXPORT_SYMBOL(zio_clear_fault);
973 EXPORT_SYMBOL(zio_handle_fault_injection);
974 EXPORT_SYMBOL(zio_handle_device_injection);
975 EXPORT_SYMBOL(zio_handle_label_injection);
976 #endif
977