xref: /freebsd/sys/contrib/openzfs/module/zfs/zvol.c (revision 15f0b8c3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  *
27  * ZFS volume emulation driver.
28  *
29  * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30  * Volumes are accessed through the symbolic links named:
31  *
32  * /dev/<pool_name>/<dataset_name>
33  *
34  * Volumes are persistent through reboot and module load.  No user command
35  * needs to be run before opening and using a device.
36  *
37  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
38  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
40  */
41 
42 /*
43  * Note on locking of zvol state structures.
44  *
45  * These structures are used to maintain internal state used to emulate block
46  * devices on top of zvols. In particular, management of device minor number
47  * operations - create, remove, rename, and set_snapdev - involves access to
48  * these structures. The zvol_state_lock is primarily used to protect the
49  * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50  * of the zvol_state_t structures, as well as to make sure that when the
51  * time comes to remove the structure from the list, it is not in use, and
52  * therefore, it can be taken off zvol_state_list and freed.
53  *
54  * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55  * e.g. for the duration of receive and rollback operations. This lock can be
56  * held for significant periods of time. Given that it is undesirable to hold
57  * mutexes for long periods of time, the following lock ordering applies:
58  * - take zvol_state_lock if necessary, to protect zvol_state_list
59  * - take zv_suspend_lock if necessary, by the code path in question
60  * - take zv_state_lock to protect zvol_state_t
61  *
62  * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63  * single-threaded (to preserve order of minor operations), and are executed
64  * through the zvol_task_cb that dispatches the specific operations. Therefore,
65  * these operations are serialized per pool. Consequently, we can be certain
66  * that for a given zvol, there is only one operation at a time in progress.
67  * That is why one can be sure that first, zvol_state_t for a given zvol is
68  * allocated and placed on zvol_state_list, and then other minor operations
69  * for this zvol are going to proceed in the order of issue.
70  *
71  */
72 
73 #include <sys/dataset_kstats.h>
74 #include <sys/dbuf.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_prop.h>
78 #include <sys/dsl_dir.h>
79 #include <sys/zap.h>
80 #include <sys/zfeature.h>
81 #include <sys/zil_impl.h>
82 #include <sys/dmu_tx.h>
83 #include <sys/zio.h>
84 #include <sys/zfs_rlock.h>
85 #include <sys/spa_impl.h>
86 #include <sys/zvol.h>
87 #include <sys/zvol_impl.h>
88 
89 unsigned int zvol_inhibit_dev = 0;
90 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
91 
92 struct hlist_head *zvol_htable;
93 static list_t zvol_state_list;
94 krwlock_t zvol_state_lock;
95 
96 typedef enum {
97 	ZVOL_ASYNC_REMOVE_MINORS,
98 	ZVOL_ASYNC_RENAME_MINORS,
99 	ZVOL_ASYNC_SET_SNAPDEV,
100 	ZVOL_ASYNC_SET_VOLMODE,
101 	ZVOL_ASYNC_MAX
102 } zvol_async_op_t;
103 
104 typedef struct {
105 	zvol_async_op_t op;
106 	char name1[MAXNAMELEN];
107 	char name2[MAXNAMELEN];
108 	uint64_t value;
109 } zvol_task_t;
110 
111 uint64_t
112 zvol_name_hash(const char *name)
113 {
114 	int i;
115 	uint64_t crc = -1ULL;
116 	const uint8_t *p = (const uint8_t *)name;
117 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
118 	for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
119 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
120 	}
121 	return (crc);
122 }
123 
124 /*
125  * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
126  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
127  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
128  * before zv_state_lock. The mode argument indicates the mode (including none)
129  * for zv_suspend_lock to be taken.
130  */
131 zvol_state_t *
132 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
133 {
134 	zvol_state_t *zv;
135 	struct hlist_node *p = NULL;
136 
137 	rw_enter(&zvol_state_lock, RW_READER);
138 	hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
139 		zv = hlist_entry(p, zvol_state_t, zv_hlink);
140 		mutex_enter(&zv->zv_state_lock);
141 		if (zv->zv_hash == hash &&
142 		    strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
143 			/*
144 			 * this is the right zvol, take the locks in the
145 			 * right order
146 			 */
147 			if (mode != RW_NONE &&
148 			    !rw_tryenter(&zv->zv_suspend_lock, mode)) {
149 				mutex_exit(&zv->zv_state_lock);
150 				rw_enter(&zv->zv_suspend_lock, mode);
151 				mutex_enter(&zv->zv_state_lock);
152 				/*
153 				 * zvol cannot be renamed as we continue
154 				 * to hold zvol_state_lock
155 				 */
156 				ASSERT(zv->zv_hash == hash &&
157 				    strncmp(zv->zv_name, name, MAXNAMELEN)
158 				    == 0);
159 			}
160 			rw_exit(&zvol_state_lock);
161 			return (zv);
162 		}
163 		mutex_exit(&zv->zv_state_lock);
164 	}
165 	rw_exit(&zvol_state_lock);
166 
167 	return (NULL);
168 }
169 
170 /*
171  * Find a zvol_state_t given the name.
172  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
173  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
174  * before zv_state_lock. The mode argument indicates the mode (including none)
175  * for zv_suspend_lock to be taken.
176  */
177 static zvol_state_t *
178 zvol_find_by_name(const char *name, int mode)
179 {
180 	return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
181 }
182 
183 /*
184  * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
185  */
186 void
187 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
188 {
189 	zfs_creat_t *zct = arg;
190 	nvlist_t *nvprops = zct->zct_props;
191 	int error;
192 	uint64_t volblocksize, volsize;
193 
194 	VERIFY(nvlist_lookup_uint64(nvprops,
195 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
196 	if (nvlist_lookup_uint64(nvprops,
197 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
198 		volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
199 
200 	/*
201 	 * These properties must be removed from the list so the generic
202 	 * property setting step won't apply to them.
203 	 */
204 	VERIFY(nvlist_remove_all(nvprops,
205 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
206 	(void) nvlist_remove_all(nvprops,
207 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
208 
209 	error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
210 	    DMU_OT_NONE, 0, tx);
211 	ASSERT(error == 0);
212 
213 	error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
214 	    DMU_OT_NONE, 0, tx);
215 	ASSERT(error == 0);
216 
217 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
218 	ASSERT(error == 0);
219 }
220 
221 /*
222  * ZFS_IOC_OBJSET_STATS entry point.
223  */
224 int
225 zvol_get_stats(objset_t *os, nvlist_t *nv)
226 {
227 	int error;
228 	dmu_object_info_t *doi;
229 	uint64_t val;
230 
231 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
232 	if (error)
233 		return (SET_ERROR(error));
234 
235 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
236 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
237 	error = dmu_object_info(os, ZVOL_OBJ, doi);
238 
239 	if (error == 0) {
240 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
241 		    doi->doi_data_block_size);
242 	}
243 
244 	kmem_free(doi, sizeof (dmu_object_info_t));
245 
246 	return (SET_ERROR(error));
247 }
248 
249 /*
250  * Sanity check volume size.
251  */
252 int
253 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
254 {
255 	if (volsize == 0)
256 		return (SET_ERROR(EINVAL));
257 
258 	if (volsize % blocksize != 0)
259 		return (SET_ERROR(EINVAL));
260 
261 #ifdef _ILP32
262 	if (volsize - 1 > SPEC_MAXOFFSET_T)
263 		return (SET_ERROR(EOVERFLOW));
264 #endif
265 	return (0);
266 }
267 
268 /*
269  * Ensure the zap is flushed then inform the VFS of the capacity change.
270  */
271 static int
272 zvol_update_volsize(uint64_t volsize, objset_t *os)
273 {
274 	dmu_tx_t *tx;
275 	int error;
276 	uint64_t txg;
277 
278 	tx = dmu_tx_create(os);
279 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
280 	dmu_tx_mark_netfree(tx);
281 	error = dmu_tx_assign(tx, TXG_WAIT);
282 	if (error) {
283 		dmu_tx_abort(tx);
284 		return (SET_ERROR(error));
285 	}
286 	txg = dmu_tx_get_txg(tx);
287 
288 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
289 	    &volsize, tx);
290 	dmu_tx_commit(tx);
291 
292 	txg_wait_synced(dmu_objset_pool(os), txg);
293 
294 	if (error == 0)
295 		error = dmu_free_long_range(os,
296 		    ZVOL_OBJ, volsize, DMU_OBJECT_END);
297 
298 	return (error);
299 }
300 
301 /*
302  * Set ZFS_PROP_VOLSIZE set entry point.  Note that modifying the volume
303  * size will result in a udev "change" event being generated.
304  */
305 int
306 zvol_set_volsize(const char *name, uint64_t volsize)
307 {
308 	objset_t *os = NULL;
309 	uint64_t readonly;
310 	int error;
311 	boolean_t owned = B_FALSE;
312 
313 	error = dsl_prop_get_integer(name,
314 	    zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
315 	if (error != 0)
316 		return (SET_ERROR(error));
317 	if (readonly)
318 		return (SET_ERROR(EROFS));
319 
320 	zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
321 
322 	ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
323 	    RW_READ_HELD(&zv->zv_suspend_lock)));
324 
325 	if (zv == NULL || zv->zv_objset == NULL) {
326 		if (zv != NULL)
327 			rw_exit(&zv->zv_suspend_lock);
328 		if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
329 		    FTAG, &os)) != 0) {
330 			if (zv != NULL)
331 				mutex_exit(&zv->zv_state_lock);
332 			return (SET_ERROR(error));
333 		}
334 		owned = B_TRUE;
335 		if (zv != NULL)
336 			zv->zv_objset = os;
337 	} else {
338 		os = zv->zv_objset;
339 	}
340 
341 	dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
342 
343 	if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
344 	    (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
345 		goto out;
346 
347 	error = zvol_update_volsize(volsize, os);
348 	if (error == 0 && zv != NULL) {
349 		zv->zv_volsize = volsize;
350 		zv->zv_changed = 1;
351 	}
352 out:
353 	kmem_free(doi, sizeof (dmu_object_info_t));
354 
355 	if (owned) {
356 		dmu_objset_disown(os, B_TRUE, FTAG);
357 		if (zv != NULL)
358 			zv->zv_objset = NULL;
359 	} else {
360 		rw_exit(&zv->zv_suspend_lock);
361 	}
362 
363 	if (zv != NULL)
364 		mutex_exit(&zv->zv_state_lock);
365 
366 	if (error == 0 && zv != NULL)
367 		zvol_os_update_volsize(zv, volsize);
368 
369 	return (SET_ERROR(error));
370 }
371 
372 /*
373  * Sanity check volume block size.
374  */
375 int
376 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
377 {
378 	/* Record sizes above 128k need the feature to be enabled */
379 	if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
380 		spa_t *spa;
381 		int error;
382 
383 		if ((error = spa_open(name, &spa, FTAG)) != 0)
384 			return (error);
385 
386 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
387 			spa_close(spa, FTAG);
388 			return (SET_ERROR(ENOTSUP));
389 		}
390 
391 		/*
392 		 * We don't allow setting the property above 1MB,
393 		 * unless the tunable has been changed.
394 		 */
395 		if (volblocksize > zfs_max_recordsize)
396 			return (SET_ERROR(EDOM));
397 
398 		spa_close(spa, FTAG);
399 	}
400 
401 	if (volblocksize < SPA_MINBLOCKSIZE ||
402 	    volblocksize > SPA_MAXBLOCKSIZE ||
403 	    !ISP2(volblocksize))
404 		return (SET_ERROR(EDOM));
405 
406 	return (0);
407 }
408 
409 /*
410  * Replay a TX_TRUNCATE ZIL transaction if asked.  TX_TRUNCATE is how we
411  * implement DKIOCFREE/free-long-range.
412  */
413 static int
414 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
415 {
416 	zvol_state_t *zv = arg1;
417 	lr_truncate_t *lr = arg2;
418 	uint64_t offset, length;
419 
420 	if (byteswap)
421 		byteswap_uint64_array(lr, sizeof (*lr));
422 
423 	offset = lr->lr_offset;
424 	length = lr->lr_length;
425 
426 	dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
427 	dmu_tx_mark_netfree(tx);
428 	int error = dmu_tx_assign(tx, TXG_WAIT);
429 	if (error != 0) {
430 		dmu_tx_abort(tx);
431 	} else {
432 		(void) zil_replaying(zv->zv_zilog, tx);
433 		dmu_tx_commit(tx);
434 		error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
435 		    length);
436 	}
437 
438 	return (error);
439 }
440 
441 /*
442  * Replay a TX_WRITE ZIL transaction that didn't get committed
443  * after a system failure
444  */
445 static int
446 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
447 {
448 	zvol_state_t *zv = arg1;
449 	lr_write_t *lr = arg2;
450 	objset_t *os = zv->zv_objset;
451 	char *data = (char *)(lr + 1);  /* data follows lr_write_t */
452 	uint64_t offset, length;
453 	dmu_tx_t *tx;
454 	int error;
455 
456 	if (byteswap)
457 		byteswap_uint64_array(lr, sizeof (*lr));
458 
459 	offset = lr->lr_offset;
460 	length = lr->lr_length;
461 
462 	/* If it's a dmu_sync() block, write the whole block */
463 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
464 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
465 		if (length < blocksize) {
466 			offset -= offset % blocksize;
467 			length = blocksize;
468 		}
469 	}
470 
471 	tx = dmu_tx_create(os);
472 	dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
473 	error = dmu_tx_assign(tx, TXG_WAIT);
474 	if (error) {
475 		dmu_tx_abort(tx);
476 	} else {
477 		dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
478 		(void) zil_replaying(zv->zv_zilog, tx);
479 		dmu_tx_commit(tx);
480 	}
481 
482 	return (error);
483 }
484 
485 static int
486 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
487 {
488 	(void) arg1, (void) arg2, (void) byteswap;
489 	return (SET_ERROR(ENOTSUP));
490 }
491 
492 /*
493  * Callback vectors for replaying records.
494  * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
495  */
496 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
497 	zvol_replay_err,	/* no such transaction type */
498 	zvol_replay_err,	/* TX_CREATE */
499 	zvol_replay_err,	/* TX_MKDIR */
500 	zvol_replay_err,	/* TX_MKXATTR */
501 	zvol_replay_err,	/* TX_SYMLINK */
502 	zvol_replay_err,	/* TX_REMOVE */
503 	zvol_replay_err,	/* TX_RMDIR */
504 	zvol_replay_err,	/* TX_LINK */
505 	zvol_replay_err,	/* TX_RENAME */
506 	zvol_replay_write,	/* TX_WRITE */
507 	zvol_replay_truncate,	/* TX_TRUNCATE */
508 	zvol_replay_err,	/* TX_SETATTR */
509 	zvol_replay_err,	/* TX_ACL */
510 	zvol_replay_err,	/* TX_CREATE_ATTR */
511 	zvol_replay_err,	/* TX_CREATE_ACL_ATTR */
512 	zvol_replay_err,	/* TX_MKDIR_ACL */
513 	zvol_replay_err,	/* TX_MKDIR_ATTR */
514 	zvol_replay_err,	/* TX_MKDIR_ACL_ATTR */
515 	zvol_replay_err,	/* TX_WRITE2 */
516 	zvol_replay_err,	/* TX_SETSAXATTR */
517 	zvol_replay_err,	/* TX_RENAME_EXCHANGE */
518 	zvol_replay_err,	/* TX_RENAME_WHITEOUT */
519 };
520 
521 /*
522  * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
523  *
524  * We store data in the log buffers if it's small enough.
525  * Otherwise we will later flush the data out via dmu_sync().
526  */
527 static const ssize_t zvol_immediate_write_sz = 32768;
528 
529 void
530 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
531     uint64_t size, int sync)
532 {
533 	uint32_t blocksize = zv->zv_volblocksize;
534 	zilog_t *zilog = zv->zv_zilog;
535 	itx_wr_state_t write_state;
536 	uint64_t sz = size;
537 
538 	if (zil_replaying(zilog, tx))
539 		return;
540 
541 	if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
542 		write_state = WR_INDIRECT;
543 	else if (!spa_has_slogs(zilog->zl_spa) &&
544 	    size >= blocksize && blocksize > zvol_immediate_write_sz)
545 		write_state = WR_INDIRECT;
546 	else if (sync)
547 		write_state = WR_COPIED;
548 	else
549 		write_state = WR_NEED_COPY;
550 
551 	while (size) {
552 		itx_t *itx;
553 		lr_write_t *lr;
554 		itx_wr_state_t wr_state = write_state;
555 		ssize_t len = size;
556 
557 		if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
558 			wr_state = WR_NEED_COPY;
559 		else if (wr_state == WR_INDIRECT)
560 			len = MIN(blocksize - P2PHASE(offset, blocksize), size);
561 
562 		itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
563 		    (wr_state == WR_COPIED ? len : 0));
564 		lr = (lr_write_t *)&itx->itx_lr;
565 		if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
566 		    offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
567 			zil_itx_destroy(itx);
568 			itx = zil_itx_create(TX_WRITE, sizeof (*lr));
569 			lr = (lr_write_t *)&itx->itx_lr;
570 			wr_state = WR_NEED_COPY;
571 		}
572 
573 		itx->itx_wr_state = wr_state;
574 		lr->lr_foid = ZVOL_OBJ;
575 		lr->lr_offset = offset;
576 		lr->lr_length = len;
577 		lr->lr_blkoff = 0;
578 		BP_ZERO(&lr->lr_blkptr);
579 
580 		itx->itx_private = zv;
581 		itx->itx_sync = sync;
582 
583 		(void) zil_itx_assign(zilog, itx, tx);
584 
585 		offset += len;
586 		size -= len;
587 	}
588 
589 	if (write_state == WR_COPIED || write_state == WR_NEED_COPY) {
590 		dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg);
591 	}
592 }
593 
594 /*
595  * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
596  */
597 void
598 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
599     boolean_t sync)
600 {
601 	itx_t *itx;
602 	lr_truncate_t *lr;
603 	zilog_t *zilog = zv->zv_zilog;
604 
605 	if (zil_replaying(zilog, tx))
606 		return;
607 
608 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
609 	lr = (lr_truncate_t *)&itx->itx_lr;
610 	lr->lr_foid = ZVOL_OBJ;
611 	lr->lr_offset = off;
612 	lr->lr_length = len;
613 
614 	itx->itx_sync = sync;
615 	zil_itx_assign(zilog, itx, tx);
616 }
617 
618 
619 static void
620 zvol_get_done(zgd_t *zgd, int error)
621 {
622 	(void) error;
623 	if (zgd->zgd_db)
624 		dmu_buf_rele(zgd->zgd_db, zgd);
625 
626 	zfs_rangelock_exit(zgd->zgd_lr);
627 
628 	kmem_free(zgd, sizeof (zgd_t));
629 }
630 
631 /*
632  * Get data to generate a TX_WRITE intent log record.
633  */
634 int
635 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
636     struct lwb *lwb, zio_t *zio)
637 {
638 	zvol_state_t *zv = arg;
639 	uint64_t offset = lr->lr_offset;
640 	uint64_t size = lr->lr_length;
641 	dmu_buf_t *db;
642 	zgd_t *zgd;
643 	int error;
644 
645 	ASSERT3P(lwb, !=, NULL);
646 	ASSERT3P(zio, !=, NULL);
647 	ASSERT3U(size, !=, 0);
648 
649 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
650 	zgd->zgd_lwb = lwb;
651 
652 	/*
653 	 * Write records come in two flavors: immediate and indirect.
654 	 * For small writes it's cheaper to store the data with the
655 	 * log record (immediate); for large writes it's cheaper to
656 	 * sync the data and get a pointer to it (indirect) so that
657 	 * we don't have to write the data twice.
658 	 */
659 	if (buf != NULL) { /* immediate write */
660 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
661 		    size, RL_READER);
662 		error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
663 		    DMU_READ_NO_PREFETCH);
664 	} else { /* indirect write */
665 		/*
666 		 * Have to lock the whole block to ensure when it's written out
667 		 * and its checksum is being calculated that no one can change
668 		 * the data. Contrarily to zfs_get_data we need not re-check
669 		 * blocksize after we get the lock because it cannot be changed.
670 		 */
671 		size = zv->zv_volblocksize;
672 		offset = P2ALIGN_TYPED(offset, size, uint64_t);
673 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
674 		    size, RL_READER);
675 		error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db,
676 		    DMU_READ_NO_PREFETCH);
677 		if (error == 0) {
678 			blkptr_t *bp = &lr->lr_blkptr;
679 
680 			zgd->zgd_db = db;
681 			zgd->zgd_bp = bp;
682 
683 			ASSERT(db != NULL);
684 			ASSERT(db->db_offset == offset);
685 			ASSERT(db->db_size == size);
686 
687 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
688 			    zvol_get_done, zgd);
689 
690 			if (error == 0)
691 				return (0);
692 		}
693 	}
694 
695 	zvol_get_done(zgd, error);
696 
697 	return (SET_ERROR(error));
698 }
699 
700 /*
701  * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
702  */
703 
704 void
705 zvol_insert(zvol_state_t *zv)
706 {
707 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
708 	list_insert_head(&zvol_state_list, zv);
709 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
710 }
711 
712 /*
713  * Simply remove the zvol from to list of zvols.
714  */
715 static void
716 zvol_remove(zvol_state_t *zv)
717 {
718 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
719 	list_remove(&zvol_state_list, zv);
720 	hlist_del(&zv->zv_hlink);
721 }
722 
723 /*
724  * Setup zv after we just own the zv->objset
725  */
726 static int
727 zvol_setup_zv(zvol_state_t *zv)
728 {
729 	uint64_t volsize;
730 	int error;
731 	uint64_t ro;
732 	objset_t *os = zv->zv_objset;
733 
734 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
735 	ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
736 
737 	zv->zv_zilog = NULL;
738 	zv->zv_flags &= ~ZVOL_WRITTEN_TO;
739 
740 	error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
741 	if (error)
742 		return (SET_ERROR(error));
743 
744 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
745 	if (error)
746 		return (SET_ERROR(error));
747 
748 	error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
749 	if (error)
750 		return (SET_ERROR(error));
751 
752 	zvol_os_set_capacity(zv, volsize >> 9);
753 	zv->zv_volsize = volsize;
754 
755 	if (ro || dmu_objset_is_snapshot(os) ||
756 	    !spa_writeable(dmu_objset_spa(os))) {
757 		zvol_os_set_disk_ro(zv, 1);
758 		zv->zv_flags |= ZVOL_RDONLY;
759 	} else {
760 		zvol_os_set_disk_ro(zv, 0);
761 		zv->zv_flags &= ~ZVOL_RDONLY;
762 	}
763 	return (0);
764 }
765 
766 /*
767  * Shutdown every zv_objset related stuff except zv_objset itself.
768  * The is the reverse of zvol_setup_zv.
769  */
770 static void
771 zvol_shutdown_zv(zvol_state_t *zv)
772 {
773 	ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
774 	    RW_LOCK_HELD(&zv->zv_suspend_lock));
775 
776 	if (zv->zv_flags & ZVOL_WRITTEN_TO) {
777 		ASSERT(zv->zv_zilog != NULL);
778 		zil_close(zv->zv_zilog);
779 	}
780 
781 	zv->zv_zilog = NULL;
782 
783 	dnode_rele(zv->zv_dn, zv);
784 	zv->zv_dn = NULL;
785 
786 	/*
787 	 * Evict cached data. We must write out any dirty data before
788 	 * disowning the dataset.
789 	 */
790 	if (zv->zv_flags & ZVOL_WRITTEN_TO)
791 		txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
792 	(void) dmu_objset_evict_dbufs(zv->zv_objset);
793 }
794 
795 /*
796  * return the proper tag for rollback and recv
797  */
798 void *
799 zvol_tag(zvol_state_t *zv)
800 {
801 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
802 	return (zv->zv_open_count > 0 ? zv : NULL);
803 }
804 
805 /*
806  * Suspend the zvol for recv and rollback.
807  */
808 zvol_state_t *
809 zvol_suspend(const char *name)
810 {
811 	zvol_state_t *zv;
812 
813 	zv = zvol_find_by_name(name, RW_WRITER);
814 
815 	if (zv == NULL)
816 		return (NULL);
817 
818 	/* block all I/O, release in zvol_resume. */
819 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
820 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
821 
822 	atomic_inc(&zv->zv_suspend_ref);
823 
824 	if (zv->zv_open_count > 0)
825 		zvol_shutdown_zv(zv);
826 
827 	/*
828 	 * do not hold zv_state_lock across suspend/resume to
829 	 * avoid locking up zvol lookups
830 	 */
831 	mutex_exit(&zv->zv_state_lock);
832 
833 	/* zv_suspend_lock is released in zvol_resume() */
834 	return (zv);
835 }
836 
837 int
838 zvol_resume(zvol_state_t *zv)
839 {
840 	int error = 0;
841 
842 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
843 
844 	mutex_enter(&zv->zv_state_lock);
845 
846 	if (zv->zv_open_count > 0) {
847 		VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
848 		VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
849 		VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
850 		dmu_objset_rele(zv->zv_objset, zv);
851 
852 		error = zvol_setup_zv(zv);
853 	}
854 
855 	mutex_exit(&zv->zv_state_lock);
856 
857 	rw_exit(&zv->zv_suspend_lock);
858 	/*
859 	 * We need this because we don't hold zvol_state_lock while releasing
860 	 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
861 	 * zv_suspend_lock to determine it is safe to free because rwlock is
862 	 * not inherent atomic.
863 	 */
864 	atomic_dec(&zv->zv_suspend_ref);
865 
866 	return (SET_ERROR(error));
867 }
868 
869 int
870 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
871 {
872 	objset_t *os;
873 	int error;
874 
875 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
876 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
877 	ASSERT(mutex_owned(&spa_namespace_lock));
878 
879 	boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
880 	error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
881 	if (error)
882 		return (SET_ERROR(error));
883 
884 	zv->zv_objset = os;
885 
886 	error = zvol_setup_zv(zv);
887 	if (error) {
888 		dmu_objset_disown(os, 1, zv);
889 		zv->zv_objset = NULL;
890 	}
891 
892 	return (error);
893 }
894 
895 void
896 zvol_last_close(zvol_state_t *zv)
897 {
898 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
899 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
900 
901 	zvol_shutdown_zv(zv);
902 
903 	dmu_objset_disown(zv->zv_objset, 1, zv);
904 	zv->zv_objset = NULL;
905 }
906 
907 typedef struct minors_job {
908 	list_t *list;
909 	list_node_t link;
910 	/* input */
911 	char *name;
912 	/* output */
913 	int error;
914 } minors_job_t;
915 
916 /*
917  * Prefetch zvol dnodes for the minors_job
918  */
919 static void
920 zvol_prefetch_minors_impl(void *arg)
921 {
922 	minors_job_t *job = arg;
923 	char *dsname = job->name;
924 	objset_t *os = NULL;
925 
926 	job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
927 	    FTAG, &os);
928 	if (job->error == 0) {
929 		dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
930 		dmu_objset_disown(os, B_TRUE, FTAG);
931 	}
932 }
933 
934 /*
935  * Mask errors to continue dmu_objset_find() traversal
936  */
937 static int
938 zvol_create_snap_minor_cb(const char *dsname, void *arg)
939 {
940 	minors_job_t *j = arg;
941 	list_t *minors_list = j->list;
942 	const char *name = j->name;
943 
944 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
945 
946 	/* skip the designated dataset */
947 	if (name && strcmp(dsname, name) == 0)
948 		return (0);
949 
950 	/* at this point, the dsname should name a snapshot */
951 	if (strchr(dsname, '@') == 0) {
952 		dprintf("zvol_create_snap_minor_cb(): "
953 		    "%s is not a snapshot name\n", dsname);
954 	} else {
955 		minors_job_t *job;
956 		char *n = kmem_strdup(dsname);
957 		if (n == NULL)
958 			return (0);
959 
960 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
961 		job->name = n;
962 		job->list = minors_list;
963 		job->error = 0;
964 		list_insert_tail(minors_list, job);
965 		/* don't care if dispatch fails, because job->error is 0 */
966 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
967 		    TQ_SLEEP);
968 	}
969 
970 	return (0);
971 }
972 
973 /*
974  * If spa_keystore_load_wkey() is called for an encrypted zvol,
975  * we need to look for any clones also using the key. This function
976  * is "best effort" - so we just skip over it if there are failures.
977  */
978 static void
979 zvol_add_clones(const char *dsname, list_t *minors_list)
980 {
981 	/* Also check if it has clones */
982 	dsl_dir_t *dd = NULL;
983 	dsl_pool_t *dp = NULL;
984 
985 	if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
986 		return;
987 
988 	if (!spa_feature_is_enabled(dp->dp_spa,
989 	    SPA_FEATURE_ENCRYPTION))
990 		goto out;
991 
992 	if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
993 		goto out;
994 
995 	if (dsl_dir_phys(dd)->dd_clones == 0)
996 		goto out;
997 
998 	zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
999 	zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
1000 	objset_t *mos = dd->dd_pool->dp_meta_objset;
1001 
1002 	for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
1003 	    zap_cursor_retrieve(zc, za) == 0;
1004 	    zap_cursor_advance(zc)) {
1005 		dsl_dataset_t *clone;
1006 		minors_job_t *job;
1007 
1008 		if (dsl_dataset_hold_obj(dd->dd_pool,
1009 		    za->za_first_integer, FTAG, &clone) == 0) {
1010 
1011 			char name[ZFS_MAX_DATASET_NAME_LEN];
1012 			dsl_dataset_name(clone, name);
1013 
1014 			char *n = kmem_strdup(name);
1015 			job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1016 			job->name = n;
1017 			job->list = minors_list;
1018 			job->error = 0;
1019 			list_insert_tail(minors_list, job);
1020 
1021 			dsl_dataset_rele(clone, FTAG);
1022 		}
1023 	}
1024 	zap_cursor_fini(zc);
1025 	kmem_free(za, sizeof (zap_attribute_t));
1026 	kmem_free(zc, sizeof (zap_cursor_t));
1027 
1028 out:
1029 	if (dd != NULL)
1030 		dsl_dir_rele(dd, FTAG);
1031 	dsl_pool_rele(dp, FTAG);
1032 }
1033 
1034 /*
1035  * Mask errors to continue dmu_objset_find() traversal
1036  */
1037 static int
1038 zvol_create_minors_cb(const char *dsname, void *arg)
1039 {
1040 	uint64_t snapdev;
1041 	int error;
1042 	list_t *minors_list = arg;
1043 
1044 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1045 
1046 	error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1047 	if (error)
1048 		return (0);
1049 
1050 	/*
1051 	 * Given the name and the 'snapdev' property, create device minor nodes
1052 	 * with the linkages to zvols/snapshots as needed.
1053 	 * If the name represents a zvol, create a minor node for the zvol, then
1054 	 * check if its snapshots are 'visible', and if so, iterate over the
1055 	 * snapshots and create device minor nodes for those.
1056 	 */
1057 	if (strchr(dsname, '@') == 0) {
1058 		minors_job_t *job;
1059 		char *n = kmem_strdup(dsname);
1060 		if (n == NULL)
1061 			return (0);
1062 
1063 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1064 		job->name = n;
1065 		job->list = minors_list;
1066 		job->error = 0;
1067 		list_insert_tail(minors_list, job);
1068 		/* don't care if dispatch fails, because job->error is 0 */
1069 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1070 		    TQ_SLEEP);
1071 
1072 		zvol_add_clones(dsname, minors_list);
1073 
1074 		if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1075 			/*
1076 			 * traverse snapshots only, do not traverse children,
1077 			 * and skip the 'dsname'
1078 			 */
1079 			(void) dmu_objset_find(dsname,
1080 			    zvol_create_snap_minor_cb, (void *)job,
1081 			    DS_FIND_SNAPSHOTS);
1082 		}
1083 	} else {
1084 		dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1085 		    dsname);
1086 	}
1087 
1088 	return (0);
1089 }
1090 
1091 /*
1092  * Create minors for the specified dataset, including children and snapshots.
1093  * Pay attention to the 'snapdev' property and iterate over the snapshots
1094  * only if they are 'visible'. This approach allows one to assure that the
1095  * snapshot metadata is read from disk only if it is needed.
1096  *
1097  * The name can represent a dataset to be recursively scanned for zvols and
1098  * their snapshots, or a single zvol snapshot. If the name represents a
1099  * dataset, the scan is performed in two nested stages:
1100  * - scan the dataset for zvols, and
1101  * - for each zvol, create a minor node, then check if the zvol's snapshots
1102  *   are 'visible', and only then iterate over the snapshots if needed
1103  *
1104  * If the name represents a snapshot, a check is performed if the snapshot is
1105  * 'visible' (which also verifies that the parent is a zvol), and if so,
1106  * a minor node for that snapshot is created.
1107  */
1108 void
1109 zvol_create_minors_recursive(const char *name)
1110 {
1111 	list_t minors_list;
1112 	minors_job_t *job;
1113 
1114 	if (zvol_inhibit_dev)
1115 		return;
1116 
1117 	/*
1118 	 * This is the list for prefetch jobs. Whenever we found a match
1119 	 * during dmu_objset_find, we insert a minors_job to the list and do
1120 	 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1121 	 * any lock because all list operation is done on the current thread.
1122 	 *
1123 	 * We will use this list to do zvol_os_create_minor after prefetch
1124 	 * so we don't have to traverse using dmu_objset_find again.
1125 	 */
1126 	list_create(&minors_list, sizeof (minors_job_t),
1127 	    offsetof(minors_job_t, link));
1128 
1129 
1130 	if (strchr(name, '@') != NULL) {
1131 		uint64_t snapdev;
1132 
1133 		int error = dsl_prop_get_integer(name, "snapdev",
1134 		    &snapdev, NULL);
1135 
1136 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1137 			(void) zvol_os_create_minor(name);
1138 	} else {
1139 		fstrans_cookie_t cookie = spl_fstrans_mark();
1140 		(void) dmu_objset_find(name, zvol_create_minors_cb,
1141 		    &minors_list, DS_FIND_CHILDREN);
1142 		spl_fstrans_unmark(cookie);
1143 	}
1144 
1145 	taskq_wait_outstanding(system_taskq, 0);
1146 
1147 	/*
1148 	 * Prefetch is completed, we can do zvol_os_create_minor
1149 	 * sequentially.
1150 	 */
1151 	while ((job = list_head(&minors_list)) != NULL) {
1152 		list_remove(&minors_list, job);
1153 		if (!job->error)
1154 			(void) zvol_os_create_minor(job->name);
1155 		kmem_strfree(job->name);
1156 		kmem_free(job, sizeof (minors_job_t));
1157 	}
1158 
1159 	list_destroy(&minors_list);
1160 }
1161 
1162 void
1163 zvol_create_minor(const char *name)
1164 {
1165 	/*
1166 	 * Note: the dsl_pool_config_lock must not be held.
1167 	 * Minor node creation needs to obtain the zvol_state_lock.
1168 	 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1169 	 * config lock.  Therefore, we can't have the config lock now if
1170 	 * we are going to wait for the zvol_state_lock, because it
1171 	 * would be a lock order inversion which could lead to deadlock.
1172 	 */
1173 
1174 	if (zvol_inhibit_dev)
1175 		return;
1176 
1177 	if (strchr(name, '@') != NULL) {
1178 		uint64_t snapdev;
1179 
1180 		int error = dsl_prop_get_integer(name,
1181 		    "snapdev", &snapdev, NULL);
1182 
1183 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1184 			(void) zvol_os_create_minor(name);
1185 	} else {
1186 		(void) zvol_os_create_minor(name);
1187 	}
1188 }
1189 
1190 /*
1191  * Remove minors for specified dataset including children and snapshots.
1192  */
1193 
1194 static void
1195 zvol_free_task(void *arg)
1196 {
1197 	zvol_os_free(arg);
1198 }
1199 
1200 void
1201 zvol_remove_minors_impl(const char *name)
1202 {
1203 	zvol_state_t *zv, *zv_next;
1204 	int namelen = ((name) ? strlen(name) : 0);
1205 	taskqid_t t;
1206 	list_t free_list;
1207 
1208 	if (zvol_inhibit_dev)
1209 		return;
1210 
1211 	list_create(&free_list, sizeof (zvol_state_t),
1212 	    offsetof(zvol_state_t, zv_next));
1213 
1214 	rw_enter(&zvol_state_lock, RW_WRITER);
1215 
1216 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1217 		zv_next = list_next(&zvol_state_list, zv);
1218 
1219 		mutex_enter(&zv->zv_state_lock);
1220 		if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1221 		    (strncmp(zv->zv_name, name, namelen) == 0 &&
1222 		    (zv->zv_name[namelen] == '/' ||
1223 		    zv->zv_name[namelen] == '@'))) {
1224 			/*
1225 			 * By holding zv_state_lock here, we guarantee that no
1226 			 * one is currently using this zv
1227 			 */
1228 
1229 			/* If in use, leave alone */
1230 			if (zv->zv_open_count > 0 ||
1231 			    atomic_read(&zv->zv_suspend_ref)) {
1232 				mutex_exit(&zv->zv_state_lock);
1233 				continue;
1234 			}
1235 
1236 			zvol_remove(zv);
1237 
1238 			/*
1239 			 * Cleared while holding zvol_state_lock as a writer
1240 			 * which will prevent zvol_open() from opening it.
1241 			 */
1242 			zvol_os_clear_private(zv);
1243 
1244 			/* Drop zv_state_lock before zvol_free() */
1245 			mutex_exit(&zv->zv_state_lock);
1246 
1247 			/* Try parallel zv_free, if failed do it in place */
1248 			t = taskq_dispatch(system_taskq, zvol_free_task, zv,
1249 			    TQ_SLEEP);
1250 			if (t == TASKQID_INVALID)
1251 				list_insert_head(&free_list, zv);
1252 		} else {
1253 			mutex_exit(&zv->zv_state_lock);
1254 		}
1255 	}
1256 	rw_exit(&zvol_state_lock);
1257 
1258 	/* Drop zvol_state_lock before calling zvol_free() */
1259 	while ((zv = list_head(&free_list)) != NULL) {
1260 		list_remove(&free_list, zv);
1261 		zvol_os_free(zv);
1262 	}
1263 }
1264 
1265 /* Remove minor for this specific volume only */
1266 static void
1267 zvol_remove_minor_impl(const char *name)
1268 {
1269 	zvol_state_t *zv = NULL, *zv_next;
1270 
1271 	if (zvol_inhibit_dev)
1272 		return;
1273 
1274 	rw_enter(&zvol_state_lock, RW_WRITER);
1275 
1276 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1277 		zv_next = list_next(&zvol_state_list, zv);
1278 
1279 		mutex_enter(&zv->zv_state_lock);
1280 		if (strcmp(zv->zv_name, name) == 0) {
1281 			/*
1282 			 * By holding zv_state_lock here, we guarantee that no
1283 			 * one is currently using this zv
1284 			 */
1285 
1286 			/* If in use, leave alone */
1287 			if (zv->zv_open_count > 0 ||
1288 			    atomic_read(&zv->zv_suspend_ref)) {
1289 				mutex_exit(&zv->zv_state_lock);
1290 				continue;
1291 			}
1292 			zvol_remove(zv);
1293 
1294 			zvol_os_clear_private(zv);
1295 			mutex_exit(&zv->zv_state_lock);
1296 			break;
1297 		} else {
1298 			mutex_exit(&zv->zv_state_lock);
1299 		}
1300 	}
1301 
1302 	/* Drop zvol_state_lock before calling zvol_free() */
1303 	rw_exit(&zvol_state_lock);
1304 
1305 	if (zv != NULL)
1306 		zvol_os_free(zv);
1307 }
1308 
1309 /*
1310  * Rename minors for specified dataset including children and snapshots.
1311  */
1312 static void
1313 zvol_rename_minors_impl(const char *oldname, const char *newname)
1314 {
1315 	zvol_state_t *zv, *zv_next;
1316 	int oldnamelen;
1317 
1318 	if (zvol_inhibit_dev)
1319 		return;
1320 
1321 	oldnamelen = strlen(oldname);
1322 
1323 	rw_enter(&zvol_state_lock, RW_READER);
1324 
1325 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1326 		zv_next = list_next(&zvol_state_list, zv);
1327 
1328 		mutex_enter(&zv->zv_state_lock);
1329 
1330 		if (strcmp(zv->zv_name, oldname) == 0) {
1331 			zvol_os_rename_minor(zv, newname);
1332 		} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1333 		    (zv->zv_name[oldnamelen] == '/' ||
1334 		    zv->zv_name[oldnamelen] == '@')) {
1335 			char *name = kmem_asprintf("%s%c%s", newname,
1336 			    zv->zv_name[oldnamelen],
1337 			    zv->zv_name + oldnamelen + 1);
1338 			zvol_os_rename_minor(zv, name);
1339 			kmem_strfree(name);
1340 		}
1341 
1342 		mutex_exit(&zv->zv_state_lock);
1343 	}
1344 
1345 	rw_exit(&zvol_state_lock);
1346 }
1347 
1348 typedef struct zvol_snapdev_cb_arg {
1349 	uint64_t snapdev;
1350 } zvol_snapdev_cb_arg_t;
1351 
1352 static int
1353 zvol_set_snapdev_cb(const char *dsname, void *param)
1354 {
1355 	zvol_snapdev_cb_arg_t *arg = param;
1356 
1357 	if (strchr(dsname, '@') == NULL)
1358 		return (0);
1359 
1360 	switch (arg->snapdev) {
1361 		case ZFS_SNAPDEV_VISIBLE:
1362 			(void) zvol_os_create_minor(dsname);
1363 			break;
1364 		case ZFS_SNAPDEV_HIDDEN:
1365 			(void) zvol_remove_minor_impl(dsname);
1366 			break;
1367 	}
1368 
1369 	return (0);
1370 }
1371 
1372 static void
1373 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
1374 {
1375 	zvol_snapdev_cb_arg_t arg = {snapdev};
1376 	fstrans_cookie_t cookie = spl_fstrans_mark();
1377 	/*
1378 	 * The zvol_set_snapdev_sync() sets snapdev appropriately
1379 	 * in the dataset hierarchy. Here, we only scan snapshots.
1380 	 */
1381 	dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1382 	spl_fstrans_unmark(cookie);
1383 }
1384 
1385 static void
1386 zvol_set_volmode_impl(char *name, uint64_t volmode)
1387 {
1388 	fstrans_cookie_t cookie;
1389 	uint64_t old_volmode;
1390 	zvol_state_t *zv;
1391 
1392 	if (strchr(name, '@') != NULL)
1393 		return;
1394 
1395 	/*
1396 	 * It's unfortunate we need to remove minors before we create new ones:
1397 	 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1398 	 * could be different when we set, for instance, volmode from "geom"
1399 	 * to "dev" (or vice versa).
1400 	 */
1401 	zv = zvol_find_by_name(name, RW_NONE);
1402 	if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1403 			return;
1404 	if (zv != NULL) {
1405 		old_volmode = zv->zv_volmode;
1406 		mutex_exit(&zv->zv_state_lock);
1407 		if (old_volmode == volmode)
1408 			return;
1409 		zvol_wait_close(zv);
1410 	}
1411 	cookie = spl_fstrans_mark();
1412 	switch (volmode) {
1413 		case ZFS_VOLMODE_NONE:
1414 			(void) zvol_remove_minor_impl(name);
1415 			break;
1416 		case ZFS_VOLMODE_GEOM:
1417 		case ZFS_VOLMODE_DEV:
1418 			(void) zvol_remove_minor_impl(name);
1419 			(void) zvol_os_create_minor(name);
1420 			break;
1421 		case ZFS_VOLMODE_DEFAULT:
1422 			(void) zvol_remove_minor_impl(name);
1423 			if (zvol_volmode == ZFS_VOLMODE_NONE)
1424 				break;
1425 			else /* if zvol_volmode is invalid defaults to "geom" */
1426 				(void) zvol_os_create_minor(name);
1427 			break;
1428 	}
1429 	spl_fstrans_unmark(cookie);
1430 }
1431 
1432 static zvol_task_t *
1433 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
1434     uint64_t value)
1435 {
1436 	zvol_task_t *task;
1437 
1438 	/* Never allow tasks on hidden names. */
1439 	if (name1[0] == '$')
1440 		return (NULL);
1441 
1442 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1443 	task->op = op;
1444 	task->value = value;
1445 
1446 	strlcpy(task->name1, name1, MAXNAMELEN);
1447 	if (name2 != NULL)
1448 		strlcpy(task->name2, name2, MAXNAMELEN);
1449 
1450 	return (task);
1451 }
1452 
1453 static void
1454 zvol_task_free(zvol_task_t *task)
1455 {
1456 	kmem_free(task, sizeof (zvol_task_t));
1457 }
1458 
1459 /*
1460  * The worker thread function performed asynchronously.
1461  */
1462 static void
1463 zvol_task_cb(void *arg)
1464 {
1465 	zvol_task_t *task = arg;
1466 
1467 	switch (task->op) {
1468 	case ZVOL_ASYNC_REMOVE_MINORS:
1469 		zvol_remove_minors_impl(task->name1);
1470 		break;
1471 	case ZVOL_ASYNC_RENAME_MINORS:
1472 		zvol_rename_minors_impl(task->name1, task->name2);
1473 		break;
1474 	case ZVOL_ASYNC_SET_SNAPDEV:
1475 		zvol_set_snapdev_impl(task->name1, task->value);
1476 		break;
1477 	case ZVOL_ASYNC_SET_VOLMODE:
1478 		zvol_set_volmode_impl(task->name1, task->value);
1479 		break;
1480 	default:
1481 		VERIFY(0);
1482 		break;
1483 	}
1484 
1485 	zvol_task_free(task);
1486 }
1487 
1488 typedef struct zvol_set_prop_int_arg {
1489 	const char *zsda_name;
1490 	uint64_t zsda_value;
1491 	zprop_source_t zsda_source;
1492 	dmu_tx_t *zsda_tx;
1493 } zvol_set_prop_int_arg_t;
1494 
1495 /*
1496  * Sanity check the dataset for safe use by the sync task.  No additional
1497  * conditions are imposed.
1498  */
1499 static int
1500 zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
1501 {
1502 	zvol_set_prop_int_arg_t *zsda = arg;
1503 	dsl_pool_t *dp = dmu_tx_pool(tx);
1504 	dsl_dir_t *dd;
1505 	int error;
1506 
1507 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1508 	if (error != 0)
1509 		return (error);
1510 
1511 	dsl_dir_rele(dd, FTAG);
1512 
1513 	return (error);
1514 }
1515 
1516 static int
1517 zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1518 {
1519 	(void) arg;
1520 	char dsname[MAXNAMELEN];
1521 	zvol_task_t *task;
1522 	uint64_t snapdev;
1523 
1524 	dsl_dataset_name(ds, dsname);
1525 	if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0)
1526 		return (0);
1527 	task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev);
1528 	if (task == NULL)
1529 		return (0);
1530 
1531 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1532 	    task, TQ_SLEEP);
1533 	return (0);
1534 }
1535 
1536 /*
1537  * Traverse all child datasets and apply snapdev appropriately.
1538  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1539  * dataset and read the effective "snapdev" on every child in the callback
1540  * function: this is because the value is not guaranteed to be the same in the
1541  * whole dataset hierarchy.
1542  */
1543 static void
1544 zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
1545 {
1546 	zvol_set_prop_int_arg_t *zsda = arg;
1547 	dsl_pool_t *dp = dmu_tx_pool(tx);
1548 	dsl_dir_t *dd;
1549 	dsl_dataset_t *ds;
1550 	int error;
1551 
1552 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1553 	zsda->zsda_tx = tx;
1554 
1555 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1556 	if (error == 0) {
1557 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
1558 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1559 		    &zsda->zsda_value, zsda->zsda_tx);
1560 		dsl_dataset_rele(ds, FTAG);
1561 	}
1562 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
1563 	    zsda, DS_FIND_CHILDREN);
1564 
1565 	dsl_dir_rele(dd, FTAG);
1566 }
1567 
1568 int
1569 zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
1570 {
1571 	zvol_set_prop_int_arg_t zsda;
1572 
1573 	zsda.zsda_name = ddname;
1574 	zsda.zsda_source = source;
1575 	zsda.zsda_value = snapdev;
1576 
1577 	return (dsl_sync_task(ddname, zvol_set_snapdev_check,
1578 	    zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1579 }
1580 
1581 /*
1582  * Sanity check the dataset for safe use by the sync task.  No additional
1583  * conditions are imposed.
1584  */
1585 static int
1586 zvol_set_volmode_check(void *arg, dmu_tx_t *tx)
1587 {
1588 	zvol_set_prop_int_arg_t *zsda = arg;
1589 	dsl_pool_t *dp = dmu_tx_pool(tx);
1590 	dsl_dir_t *dd;
1591 	int error;
1592 
1593 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1594 	if (error != 0)
1595 		return (error);
1596 
1597 	dsl_dir_rele(dd, FTAG);
1598 
1599 	return (error);
1600 }
1601 
1602 static int
1603 zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1604 {
1605 	(void) arg;
1606 	char dsname[MAXNAMELEN];
1607 	zvol_task_t *task;
1608 	uint64_t volmode;
1609 
1610 	dsl_dataset_name(ds, dsname);
1611 	if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0)
1612 		return (0);
1613 	task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode);
1614 	if (task == NULL)
1615 		return (0);
1616 
1617 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1618 	    task, TQ_SLEEP);
1619 	return (0);
1620 }
1621 
1622 /*
1623  * Traverse all child datasets and apply volmode appropriately.
1624  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1625  * dataset and read the effective "volmode" on every child in the callback
1626  * function: this is because the value is not guaranteed to be the same in the
1627  * whole dataset hierarchy.
1628  */
1629 static void
1630 zvol_set_volmode_sync(void *arg, dmu_tx_t *tx)
1631 {
1632 	zvol_set_prop_int_arg_t *zsda = arg;
1633 	dsl_pool_t *dp = dmu_tx_pool(tx);
1634 	dsl_dir_t *dd;
1635 	dsl_dataset_t *ds;
1636 	int error;
1637 
1638 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1639 	zsda->zsda_tx = tx;
1640 
1641 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1642 	if (error == 0) {
1643 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE),
1644 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1645 		    &zsda->zsda_value, zsda->zsda_tx);
1646 		dsl_dataset_rele(ds, FTAG);
1647 	}
1648 
1649 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb,
1650 	    zsda, DS_FIND_CHILDREN);
1651 
1652 	dsl_dir_rele(dd, FTAG);
1653 }
1654 
1655 int
1656 zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode)
1657 {
1658 	zvol_set_prop_int_arg_t zsda;
1659 
1660 	zsda.zsda_name = ddname;
1661 	zsda.zsda_source = source;
1662 	zsda.zsda_value = volmode;
1663 
1664 	return (dsl_sync_task(ddname, zvol_set_volmode_check,
1665 	    zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1666 }
1667 
1668 void
1669 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1670 {
1671 	zvol_task_t *task;
1672 	taskqid_t id;
1673 
1674 	task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
1675 	if (task == NULL)
1676 		return;
1677 
1678 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1679 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
1680 		taskq_wait_id(spa->spa_zvol_taskq, id);
1681 }
1682 
1683 void
1684 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
1685     boolean_t async)
1686 {
1687 	zvol_task_t *task;
1688 	taskqid_t id;
1689 
1690 	task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
1691 	if (task == NULL)
1692 		return;
1693 
1694 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1695 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
1696 		taskq_wait_id(spa->spa_zvol_taskq, id);
1697 }
1698 
1699 boolean_t
1700 zvol_is_zvol(const char *name)
1701 {
1702 
1703 	return (zvol_os_is_zvol(name));
1704 }
1705 
1706 int
1707 zvol_init_impl(void)
1708 {
1709 	int i;
1710 
1711 	list_create(&zvol_state_list, sizeof (zvol_state_t),
1712 	    offsetof(zvol_state_t, zv_next));
1713 	rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
1714 
1715 	zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
1716 	    KM_SLEEP);
1717 	for (i = 0; i < ZVOL_HT_SIZE; i++)
1718 		INIT_HLIST_HEAD(&zvol_htable[i]);
1719 
1720 	return (0);
1721 }
1722 
1723 void
1724 zvol_fini_impl(void)
1725 {
1726 	zvol_remove_minors_impl(NULL);
1727 
1728 	/*
1729 	 * The call to "zvol_remove_minors_impl" may dispatch entries to
1730 	 * the system_taskq, but it doesn't wait for those entries to
1731 	 * complete before it returns. Thus, we must wait for all of the
1732 	 * removals to finish, before we can continue.
1733 	 */
1734 	taskq_wait_outstanding(system_taskq, 0);
1735 
1736 	kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
1737 	list_destroy(&zvol_state_list);
1738 	rw_destroy(&zvol_state_lock);
1739 }
1740