xref: /freebsd/sys/contrib/openzfs/module/zfs/zvol.c (revision c03c5b1c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  *
27  * ZFS volume emulation driver.
28  *
29  * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30  * Volumes are accessed through the symbolic links named:
31  *
32  * /dev/<pool_name>/<dataset_name>
33  *
34  * Volumes are persistent through reboot and module load.  No user command
35  * needs to be run before opening and using a device.
36  *
37  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
38  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
40  */
41 
42 /*
43  * Note on locking of zvol state structures.
44  *
45  * These structures are used to maintain internal state used to emulate block
46  * devices on top of zvols. In particular, management of device minor number
47  * operations - create, remove, rename, and set_snapdev - involves access to
48  * these structures. The zvol_state_lock is primarily used to protect the
49  * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50  * of the zvol_state_t structures, as well as to make sure that when the
51  * time comes to remove the structure from the list, it is not in use, and
52  * therefore, it can be taken off zvol_state_list and freed.
53  *
54  * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55  * e.g. for the duration of receive and rollback operations. This lock can be
56  * held for significant periods of time. Given that it is undesirable to hold
57  * mutexes for long periods of time, the following lock ordering applies:
58  * - take zvol_state_lock if necessary, to protect zvol_state_list
59  * - take zv_suspend_lock if necessary, by the code path in question
60  * - take zv_state_lock to protect zvol_state_t
61  *
62  * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63  * single-threaded (to preserve order of minor operations), and are executed
64  * through the zvol_task_cb that dispatches the specific operations. Therefore,
65  * these operations are serialized per pool. Consequently, we can be certain
66  * that for a given zvol, there is only one operation at a time in progress.
67  * That is why one can be sure that first, zvol_state_t for a given zvol is
68  * allocated and placed on zvol_state_list, and then other minor operations
69  * for this zvol are going to proceed in the order of issue.
70  *
71  */
72 
73 #include <sys/dataset_kstats.h>
74 #include <sys/dbuf.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_prop.h>
78 #include <sys/dsl_dir.h>
79 #include <sys/zap.h>
80 #include <sys/zfeature.h>
81 #include <sys/zil_impl.h>
82 #include <sys/dmu_tx.h>
83 #include <sys/zio.h>
84 #include <sys/zfs_rlock.h>
85 #include <sys/spa_impl.h>
86 #include <sys/zvol.h>
87 #include <sys/zvol_impl.h>
88 
89 unsigned int zvol_inhibit_dev = 0;
90 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
91 
92 struct hlist_head *zvol_htable;
93 static list_t zvol_state_list;
94 krwlock_t zvol_state_lock;
95 
96 typedef enum {
97 	ZVOL_ASYNC_REMOVE_MINORS,
98 	ZVOL_ASYNC_RENAME_MINORS,
99 	ZVOL_ASYNC_SET_SNAPDEV,
100 	ZVOL_ASYNC_SET_VOLMODE,
101 	ZVOL_ASYNC_MAX
102 } zvol_async_op_t;
103 
104 typedef struct {
105 	zvol_async_op_t op;
106 	char name1[MAXNAMELEN];
107 	char name2[MAXNAMELEN];
108 	uint64_t value;
109 } zvol_task_t;
110 
111 uint64_t
112 zvol_name_hash(const char *name)
113 {
114 	int i;
115 	uint64_t crc = -1ULL;
116 	const uint8_t *p = (const uint8_t *)name;
117 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
118 	for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
119 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
120 	}
121 	return (crc);
122 }
123 
124 /*
125  * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
126  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
127  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
128  * before zv_state_lock. The mode argument indicates the mode (including none)
129  * for zv_suspend_lock to be taken.
130  */
131 zvol_state_t *
132 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
133 {
134 	zvol_state_t *zv;
135 	struct hlist_node *p = NULL;
136 
137 	rw_enter(&zvol_state_lock, RW_READER);
138 	hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
139 		zv = hlist_entry(p, zvol_state_t, zv_hlink);
140 		mutex_enter(&zv->zv_state_lock);
141 		if (zv->zv_hash == hash &&
142 		    strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
143 			/*
144 			 * this is the right zvol, take the locks in the
145 			 * right order
146 			 */
147 			if (mode != RW_NONE &&
148 			    !rw_tryenter(&zv->zv_suspend_lock, mode)) {
149 				mutex_exit(&zv->zv_state_lock);
150 				rw_enter(&zv->zv_suspend_lock, mode);
151 				mutex_enter(&zv->zv_state_lock);
152 				/*
153 				 * zvol cannot be renamed as we continue
154 				 * to hold zvol_state_lock
155 				 */
156 				ASSERT(zv->zv_hash == hash &&
157 				    strncmp(zv->zv_name, name, MAXNAMELEN)
158 				    == 0);
159 			}
160 			rw_exit(&zvol_state_lock);
161 			return (zv);
162 		}
163 		mutex_exit(&zv->zv_state_lock);
164 	}
165 	rw_exit(&zvol_state_lock);
166 
167 	return (NULL);
168 }
169 
170 /*
171  * Find a zvol_state_t given the name.
172  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
173  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
174  * before zv_state_lock. The mode argument indicates the mode (including none)
175  * for zv_suspend_lock to be taken.
176  */
177 static zvol_state_t *
178 zvol_find_by_name(const char *name, int mode)
179 {
180 	return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
181 }
182 
183 /*
184  * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
185  */
186 void
187 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
188 {
189 	zfs_creat_t *zct = arg;
190 	nvlist_t *nvprops = zct->zct_props;
191 	int error;
192 	uint64_t volblocksize, volsize;
193 
194 	VERIFY(nvlist_lookup_uint64(nvprops,
195 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
196 	if (nvlist_lookup_uint64(nvprops,
197 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
198 		volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
199 
200 	/*
201 	 * These properties must be removed from the list so the generic
202 	 * property setting step won't apply to them.
203 	 */
204 	VERIFY(nvlist_remove_all(nvprops,
205 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
206 	(void) nvlist_remove_all(nvprops,
207 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
208 
209 	error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
210 	    DMU_OT_NONE, 0, tx);
211 	ASSERT(error == 0);
212 
213 	error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
214 	    DMU_OT_NONE, 0, tx);
215 	ASSERT(error == 0);
216 
217 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
218 	ASSERT(error == 0);
219 }
220 
221 /*
222  * ZFS_IOC_OBJSET_STATS entry point.
223  */
224 int
225 zvol_get_stats(objset_t *os, nvlist_t *nv)
226 {
227 	int error;
228 	dmu_object_info_t *doi;
229 	uint64_t val;
230 
231 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
232 	if (error)
233 		return (SET_ERROR(error));
234 
235 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
236 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
237 	error = dmu_object_info(os, ZVOL_OBJ, doi);
238 
239 	if (error == 0) {
240 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
241 		    doi->doi_data_block_size);
242 	}
243 
244 	kmem_free(doi, sizeof (dmu_object_info_t));
245 
246 	return (SET_ERROR(error));
247 }
248 
249 /*
250  * Sanity check volume size.
251  */
252 int
253 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
254 {
255 	if (volsize == 0)
256 		return (SET_ERROR(EINVAL));
257 
258 	if (volsize % blocksize != 0)
259 		return (SET_ERROR(EINVAL));
260 
261 #ifdef _ILP32
262 	if (volsize - 1 > SPEC_MAXOFFSET_T)
263 		return (SET_ERROR(EOVERFLOW));
264 #endif
265 	return (0);
266 }
267 
268 /*
269  * Ensure the zap is flushed then inform the VFS of the capacity change.
270  */
271 static int
272 zvol_update_volsize(uint64_t volsize, objset_t *os)
273 {
274 	dmu_tx_t *tx;
275 	int error;
276 	uint64_t txg;
277 
278 	tx = dmu_tx_create(os);
279 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
280 	dmu_tx_mark_netfree(tx);
281 	error = dmu_tx_assign(tx, TXG_WAIT);
282 	if (error) {
283 		dmu_tx_abort(tx);
284 		return (SET_ERROR(error));
285 	}
286 	txg = dmu_tx_get_txg(tx);
287 
288 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
289 	    &volsize, tx);
290 	dmu_tx_commit(tx);
291 
292 	txg_wait_synced(dmu_objset_pool(os), txg);
293 
294 	if (error == 0)
295 		error = dmu_free_long_range(os,
296 		    ZVOL_OBJ, volsize, DMU_OBJECT_END);
297 
298 	return (error);
299 }
300 
301 /*
302  * Set ZFS_PROP_VOLSIZE set entry point.  Note that modifying the volume
303  * size will result in a udev "change" event being generated.
304  */
305 int
306 zvol_set_volsize(const char *name, uint64_t volsize)
307 {
308 	objset_t *os = NULL;
309 	uint64_t readonly;
310 	int error;
311 	boolean_t owned = B_FALSE;
312 
313 	error = dsl_prop_get_integer(name,
314 	    zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
315 	if (error != 0)
316 		return (SET_ERROR(error));
317 	if (readonly)
318 		return (SET_ERROR(EROFS));
319 
320 	zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
321 
322 	ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
323 	    RW_READ_HELD(&zv->zv_suspend_lock)));
324 
325 	if (zv == NULL || zv->zv_objset == NULL) {
326 		if (zv != NULL)
327 			rw_exit(&zv->zv_suspend_lock);
328 		if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
329 		    FTAG, &os)) != 0) {
330 			if (zv != NULL)
331 				mutex_exit(&zv->zv_state_lock);
332 			return (SET_ERROR(error));
333 		}
334 		owned = B_TRUE;
335 		if (zv != NULL)
336 			zv->zv_objset = os;
337 	} else {
338 		os = zv->zv_objset;
339 	}
340 
341 	dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
342 
343 	if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
344 	    (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
345 		goto out;
346 
347 	error = zvol_update_volsize(volsize, os);
348 	if (error == 0 && zv != NULL) {
349 		zv->zv_volsize = volsize;
350 		zv->zv_changed = 1;
351 	}
352 out:
353 	kmem_free(doi, sizeof (dmu_object_info_t));
354 
355 	if (owned) {
356 		dmu_objset_disown(os, B_TRUE, FTAG);
357 		if (zv != NULL)
358 			zv->zv_objset = NULL;
359 	} else {
360 		rw_exit(&zv->zv_suspend_lock);
361 	}
362 
363 	if (zv != NULL)
364 		mutex_exit(&zv->zv_state_lock);
365 
366 	if (error == 0 && zv != NULL)
367 		zvol_os_update_volsize(zv, volsize);
368 
369 	return (SET_ERROR(error));
370 }
371 
372 /*
373  * Sanity check volume block size.
374  */
375 int
376 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
377 {
378 	/* Record sizes above 128k need the feature to be enabled */
379 	if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
380 		spa_t *spa;
381 		int error;
382 
383 		if ((error = spa_open(name, &spa, FTAG)) != 0)
384 			return (error);
385 
386 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
387 			spa_close(spa, FTAG);
388 			return (SET_ERROR(ENOTSUP));
389 		}
390 
391 		/*
392 		 * We don't allow setting the property above 1MB,
393 		 * unless the tunable has been changed.
394 		 */
395 		if (volblocksize > zfs_max_recordsize)
396 			return (SET_ERROR(EDOM));
397 
398 		spa_close(spa, FTAG);
399 	}
400 
401 	if (volblocksize < SPA_MINBLOCKSIZE ||
402 	    volblocksize > SPA_MAXBLOCKSIZE ||
403 	    !ISP2(volblocksize))
404 		return (SET_ERROR(EDOM));
405 
406 	return (0);
407 }
408 
409 /*
410  * Replay a TX_TRUNCATE ZIL transaction if asked.  TX_TRUNCATE is how we
411  * implement DKIOCFREE/free-long-range.
412  */
413 static int
414 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
415 {
416 	zvol_state_t *zv = arg1;
417 	lr_truncate_t *lr = arg2;
418 	uint64_t offset, length;
419 
420 	if (byteswap)
421 		byteswap_uint64_array(lr, sizeof (*lr));
422 
423 	offset = lr->lr_offset;
424 	length = lr->lr_length;
425 
426 	dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
427 	dmu_tx_mark_netfree(tx);
428 	int error = dmu_tx_assign(tx, TXG_WAIT);
429 	if (error != 0) {
430 		dmu_tx_abort(tx);
431 	} else {
432 		zil_replaying(zv->zv_zilog, tx);
433 		dmu_tx_commit(tx);
434 		error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
435 		    length);
436 	}
437 
438 	return (error);
439 }
440 
441 /*
442  * Replay a TX_WRITE ZIL transaction that didn't get committed
443  * after a system failure
444  */
445 static int
446 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
447 {
448 	zvol_state_t *zv = arg1;
449 	lr_write_t *lr = arg2;
450 	objset_t *os = zv->zv_objset;
451 	char *data = (char *)(lr + 1);  /* data follows lr_write_t */
452 	uint64_t offset, length;
453 	dmu_tx_t *tx;
454 	int error;
455 
456 	if (byteswap)
457 		byteswap_uint64_array(lr, sizeof (*lr));
458 
459 	offset = lr->lr_offset;
460 	length = lr->lr_length;
461 
462 	/* If it's a dmu_sync() block, write the whole block */
463 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
464 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
465 		if (length < blocksize) {
466 			offset -= offset % blocksize;
467 			length = blocksize;
468 		}
469 	}
470 
471 	tx = dmu_tx_create(os);
472 	dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
473 	error = dmu_tx_assign(tx, TXG_WAIT);
474 	if (error) {
475 		dmu_tx_abort(tx);
476 	} else {
477 		dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
478 		zil_replaying(zv->zv_zilog, tx);
479 		dmu_tx_commit(tx);
480 	}
481 
482 	return (error);
483 }
484 
485 static int
486 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
487 {
488 	(void) arg1, (void) arg2, (void) byteswap;
489 	return (SET_ERROR(ENOTSUP));
490 }
491 
492 /*
493  * Callback vectors for replaying records.
494  * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
495  */
496 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
497 	zvol_replay_err,	/* no such transaction type */
498 	zvol_replay_err,	/* TX_CREATE */
499 	zvol_replay_err,	/* TX_MKDIR */
500 	zvol_replay_err,	/* TX_MKXATTR */
501 	zvol_replay_err,	/* TX_SYMLINK */
502 	zvol_replay_err,	/* TX_REMOVE */
503 	zvol_replay_err,	/* TX_RMDIR */
504 	zvol_replay_err,	/* TX_LINK */
505 	zvol_replay_err,	/* TX_RENAME */
506 	zvol_replay_write,	/* TX_WRITE */
507 	zvol_replay_truncate,	/* TX_TRUNCATE */
508 	zvol_replay_err,	/* TX_SETATTR */
509 	zvol_replay_err,	/* TX_ACL */
510 	zvol_replay_err,	/* TX_CREATE_ATTR */
511 	zvol_replay_err,	/* TX_CREATE_ACL_ATTR */
512 	zvol_replay_err,	/* TX_MKDIR_ACL */
513 	zvol_replay_err,	/* TX_MKDIR_ATTR */
514 	zvol_replay_err,	/* TX_MKDIR_ACL_ATTR */
515 	zvol_replay_err,	/* TX_WRITE2 */
516 };
517 
518 /*
519  * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
520  *
521  * We store data in the log buffers if it's small enough.
522  * Otherwise we will later flush the data out via dmu_sync().
523  */
524 static const ssize_t zvol_immediate_write_sz = 32768;
525 
526 void
527 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
528     uint64_t size, int sync)
529 {
530 	uint32_t blocksize = zv->zv_volblocksize;
531 	zilog_t *zilog = zv->zv_zilog;
532 	itx_wr_state_t write_state;
533 	uint64_t sz = size;
534 
535 	if (zil_replaying(zilog, tx))
536 		return;
537 
538 	if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
539 		write_state = WR_INDIRECT;
540 	else if (!spa_has_slogs(zilog->zl_spa) &&
541 	    size >= blocksize && blocksize > zvol_immediate_write_sz)
542 		write_state = WR_INDIRECT;
543 	else if (sync)
544 		write_state = WR_COPIED;
545 	else
546 		write_state = WR_NEED_COPY;
547 
548 	while (size) {
549 		itx_t *itx;
550 		lr_write_t *lr;
551 		itx_wr_state_t wr_state = write_state;
552 		ssize_t len = size;
553 
554 		if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
555 			wr_state = WR_NEED_COPY;
556 		else if (wr_state == WR_INDIRECT)
557 			len = MIN(blocksize - P2PHASE(offset, blocksize), size);
558 
559 		itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
560 		    (wr_state == WR_COPIED ? len : 0));
561 		lr = (lr_write_t *)&itx->itx_lr;
562 		if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
563 		    offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
564 			zil_itx_destroy(itx);
565 			itx = zil_itx_create(TX_WRITE, sizeof (*lr));
566 			lr = (lr_write_t *)&itx->itx_lr;
567 			wr_state = WR_NEED_COPY;
568 		}
569 
570 		itx->itx_wr_state = wr_state;
571 		lr->lr_foid = ZVOL_OBJ;
572 		lr->lr_offset = offset;
573 		lr->lr_length = len;
574 		lr->lr_blkoff = 0;
575 		BP_ZERO(&lr->lr_blkptr);
576 
577 		itx->itx_private = zv;
578 		itx->itx_sync = sync;
579 
580 		(void) zil_itx_assign(zilog, itx, tx);
581 
582 		offset += len;
583 		size -= len;
584 	}
585 
586 	if (write_state == WR_COPIED || write_state == WR_NEED_COPY) {
587 		dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg);
588 	}
589 }
590 
591 /*
592  * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
593  */
594 void
595 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
596     boolean_t sync)
597 {
598 	itx_t *itx;
599 	lr_truncate_t *lr;
600 	zilog_t *zilog = zv->zv_zilog;
601 
602 	if (zil_replaying(zilog, tx))
603 		return;
604 
605 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
606 	lr = (lr_truncate_t *)&itx->itx_lr;
607 	lr->lr_foid = ZVOL_OBJ;
608 	lr->lr_offset = off;
609 	lr->lr_length = len;
610 
611 	itx->itx_sync = sync;
612 	zil_itx_assign(zilog, itx, tx);
613 }
614 
615 
616 static void
617 zvol_get_done(zgd_t *zgd, int error)
618 {
619 	(void) error;
620 	if (zgd->zgd_db)
621 		dmu_buf_rele(zgd->zgd_db, zgd);
622 
623 	zfs_rangelock_exit(zgd->zgd_lr);
624 
625 	kmem_free(zgd, sizeof (zgd_t));
626 }
627 
628 /*
629  * Get data to generate a TX_WRITE intent log record.
630  */
631 int
632 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
633     struct lwb *lwb, zio_t *zio)
634 {
635 	zvol_state_t *zv = arg;
636 	uint64_t offset = lr->lr_offset;
637 	uint64_t size = lr->lr_length;
638 	dmu_buf_t *db;
639 	zgd_t *zgd;
640 	int error;
641 
642 	ASSERT3P(lwb, !=, NULL);
643 	ASSERT3P(zio, !=, NULL);
644 	ASSERT3U(size, !=, 0);
645 
646 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
647 	zgd->zgd_lwb = lwb;
648 
649 	/*
650 	 * Write records come in two flavors: immediate and indirect.
651 	 * For small writes it's cheaper to store the data with the
652 	 * log record (immediate); for large writes it's cheaper to
653 	 * sync the data and get a pointer to it (indirect) so that
654 	 * we don't have to write the data twice.
655 	 */
656 	if (buf != NULL) { /* immediate write */
657 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
658 		    size, RL_READER);
659 		error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
660 		    DMU_READ_NO_PREFETCH);
661 	} else { /* indirect write */
662 		/*
663 		 * Have to lock the whole block to ensure when it's written out
664 		 * and its checksum is being calculated that no one can change
665 		 * the data. Contrarily to zfs_get_data we need not re-check
666 		 * blocksize after we get the lock because it cannot be changed.
667 		 */
668 		size = zv->zv_volblocksize;
669 		offset = P2ALIGN_TYPED(offset, size, uint64_t);
670 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
671 		    size, RL_READER);
672 		error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db,
673 		    DMU_READ_NO_PREFETCH);
674 		if (error == 0) {
675 			blkptr_t *bp = &lr->lr_blkptr;
676 
677 			zgd->zgd_db = db;
678 			zgd->zgd_bp = bp;
679 
680 			ASSERT(db != NULL);
681 			ASSERT(db->db_offset == offset);
682 			ASSERT(db->db_size == size);
683 
684 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
685 			    zvol_get_done, zgd);
686 
687 			if (error == 0)
688 				return (0);
689 		}
690 	}
691 
692 	zvol_get_done(zgd, error);
693 
694 	return (SET_ERROR(error));
695 }
696 
697 /*
698  * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
699  */
700 
701 void
702 zvol_insert(zvol_state_t *zv)
703 {
704 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
705 	list_insert_head(&zvol_state_list, zv);
706 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
707 }
708 
709 /*
710  * Simply remove the zvol from to list of zvols.
711  */
712 static void
713 zvol_remove(zvol_state_t *zv)
714 {
715 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
716 	list_remove(&zvol_state_list, zv);
717 	hlist_del(&zv->zv_hlink);
718 }
719 
720 /*
721  * Setup zv after we just own the zv->objset
722  */
723 static int
724 zvol_setup_zv(zvol_state_t *zv)
725 {
726 	uint64_t volsize;
727 	int error;
728 	uint64_t ro;
729 	objset_t *os = zv->zv_objset;
730 
731 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
732 	ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
733 
734 	zv->zv_zilog = NULL;
735 	zv->zv_flags &= ~ZVOL_WRITTEN_TO;
736 
737 	error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
738 	if (error)
739 		return (SET_ERROR(error));
740 
741 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
742 	if (error)
743 		return (SET_ERROR(error));
744 
745 	error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
746 	if (error)
747 		return (SET_ERROR(error));
748 
749 	zvol_os_set_capacity(zv, volsize >> 9);
750 	zv->zv_volsize = volsize;
751 
752 	if (ro || dmu_objset_is_snapshot(os) ||
753 	    !spa_writeable(dmu_objset_spa(os))) {
754 		zvol_os_set_disk_ro(zv, 1);
755 		zv->zv_flags |= ZVOL_RDONLY;
756 	} else {
757 		zvol_os_set_disk_ro(zv, 0);
758 		zv->zv_flags &= ~ZVOL_RDONLY;
759 	}
760 	return (0);
761 }
762 
763 /*
764  * Shutdown every zv_objset related stuff except zv_objset itself.
765  * The is the reverse of zvol_setup_zv.
766  */
767 static void
768 zvol_shutdown_zv(zvol_state_t *zv)
769 {
770 	ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
771 	    RW_LOCK_HELD(&zv->zv_suspend_lock));
772 
773 	if (zv->zv_flags & ZVOL_WRITTEN_TO) {
774 		ASSERT(zv->zv_zilog != NULL);
775 		zil_close(zv->zv_zilog);
776 	}
777 
778 	zv->zv_zilog = NULL;
779 
780 	dnode_rele(zv->zv_dn, zv);
781 	zv->zv_dn = NULL;
782 
783 	/*
784 	 * Evict cached data. We must write out any dirty data before
785 	 * disowning the dataset.
786 	 */
787 	if (zv->zv_flags & ZVOL_WRITTEN_TO)
788 		txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
789 	(void) dmu_objset_evict_dbufs(zv->zv_objset);
790 }
791 
792 /*
793  * return the proper tag for rollback and recv
794  */
795 void *
796 zvol_tag(zvol_state_t *zv)
797 {
798 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
799 	return (zv->zv_open_count > 0 ? zv : NULL);
800 }
801 
802 /*
803  * Suspend the zvol for recv and rollback.
804  */
805 zvol_state_t *
806 zvol_suspend(const char *name)
807 {
808 	zvol_state_t *zv;
809 
810 	zv = zvol_find_by_name(name, RW_WRITER);
811 
812 	if (zv == NULL)
813 		return (NULL);
814 
815 	/* block all I/O, release in zvol_resume. */
816 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
817 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
818 
819 	atomic_inc(&zv->zv_suspend_ref);
820 
821 	if (zv->zv_open_count > 0)
822 		zvol_shutdown_zv(zv);
823 
824 	/*
825 	 * do not hold zv_state_lock across suspend/resume to
826 	 * avoid locking up zvol lookups
827 	 */
828 	mutex_exit(&zv->zv_state_lock);
829 
830 	/* zv_suspend_lock is released in zvol_resume() */
831 	return (zv);
832 }
833 
834 int
835 zvol_resume(zvol_state_t *zv)
836 {
837 	int error = 0;
838 
839 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
840 
841 	mutex_enter(&zv->zv_state_lock);
842 
843 	if (zv->zv_open_count > 0) {
844 		VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
845 		VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
846 		VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
847 		dmu_objset_rele(zv->zv_objset, zv);
848 
849 		error = zvol_setup_zv(zv);
850 	}
851 
852 	mutex_exit(&zv->zv_state_lock);
853 
854 	rw_exit(&zv->zv_suspend_lock);
855 	/*
856 	 * We need this because we don't hold zvol_state_lock while releasing
857 	 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
858 	 * zv_suspend_lock to determine it is safe to free because rwlock is
859 	 * not inherent atomic.
860 	 */
861 	atomic_dec(&zv->zv_suspend_ref);
862 
863 	return (SET_ERROR(error));
864 }
865 
866 int
867 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
868 {
869 	objset_t *os;
870 	int error;
871 
872 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
873 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
874 	ASSERT(mutex_owned(&spa_namespace_lock));
875 
876 	boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
877 	error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
878 	if (error)
879 		return (SET_ERROR(error));
880 
881 	zv->zv_objset = os;
882 
883 	error = zvol_setup_zv(zv);
884 	if (error) {
885 		dmu_objset_disown(os, 1, zv);
886 		zv->zv_objset = NULL;
887 	}
888 
889 	return (error);
890 }
891 
892 void
893 zvol_last_close(zvol_state_t *zv)
894 {
895 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
896 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
897 
898 	zvol_shutdown_zv(zv);
899 
900 	dmu_objset_disown(zv->zv_objset, 1, zv);
901 	zv->zv_objset = NULL;
902 }
903 
904 typedef struct minors_job {
905 	list_t *list;
906 	list_node_t link;
907 	/* input */
908 	char *name;
909 	/* output */
910 	int error;
911 } minors_job_t;
912 
913 /*
914  * Prefetch zvol dnodes for the minors_job
915  */
916 static void
917 zvol_prefetch_minors_impl(void *arg)
918 {
919 	minors_job_t *job = arg;
920 	char *dsname = job->name;
921 	objset_t *os = NULL;
922 
923 	job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
924 	    FTAG, &os);
925 	if (job->error == 0) {
926 		dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
927 		dmu_objset_disown(os, B_TRUE, FTAG);
928 	}
929 }
930 
931 /*
932  * Mask errors to continue dmu_objset_find() traversal
933  */
934 static int
935 zvol_create_snap_minor_cb(const char *dsname, void *arg)
936 {
937 	minors_job_t *j = arg;
938 	list_t *minors_list = j->list;
939 	const char *name = j->name;
940 
941 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
942 
943 	/* skip the designated dataset */
944 	if (name && strcmp(dsname, name) == 0)
945 		return (0);
946 
947 	/* at this point, the dsname should name a snapshot */
948 	if (strchr(dsname, '@') == 0) {
949 		dprintf("zvol_create_snap_minor_cb(): "
950 		    "%s is not a snapshot name\n", dsname);
951 	} else {
952 		minors_job_t *job;
953 		char *n = kmem_strdup(dsname);
954 		if (n == NULL)
955 			return (0);
956 
957 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
958 		job->name = n;
959 		job->list = minors_list;
960 		job->error = 0;
961 		list_insert_tail(minors_list, job);
962 		/* don't care if dispatch fails, because job->error is 0 */
963 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
964 		    TQ_SLEEP);
965 	}
966 
967 	return (0);
968 }
969 
970 /*
971  * If spa_keystore_load_wkey() is called for an encrypted zvol,
972  * we need to look for any clones also using the key. This function
973  * is "best effort" - so we just skip over it if there are failures.
974  */
975 static void
976 zvol_add_clones(const char *dsname, list_t *minors_list)
977 {
978 	/* Also check if it has clones */
979 	dsl_dir_t *dd = NULL;
980 	dsl_pool_t *dp = NULL;
981 
982 	if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
983 		return;
984 
985 	if (!spa_feature_is_enabled(dp->dp_spa,
986 	    SPA_FEATURE_ENCRYPTION))
987 		goto out;
988 
989 	if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
990 		goto out;
991 
992 	if (dsl_dir_phys(dd)->dd_clones == 0)
993 		goto out;
994 
995 	zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
996 	zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
997 	objset_t *mos = dd->dd_pool->dp_meta_objset;
998 
999 	for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
1000 	    zap_cursor_retrieve(zc, za) == 0;
1001 	    zap_cursor_advance(zc)) {
1002 		dsl_dataset_t *clone;
1003 		minors_job_t *job;
1004 
1005 		if (dsl_dataset_hold_obj(dd->dd_pool,
1006 		    za->za_first_integer, FTAG, &clone) == 0) {
1007 
1008 			char name[ZFS_MAX_DATASET_NAME_LEN];
1009 			dsl_dataset_name(clone, name);
1010 
1011 			char *n = kmem_strdup(name);
1012 			job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1013 			job->name = n;
1014 			job->list = minors_list;
1015 			job->error = 0;
1016 			list_insert_tail(minors_list, job);
1017 
1018 			dsl_dataset_rele(clone, FTAG);
1019 		}
1020 	}
1021 	zap_cursor_fini(zc);
1022 	kmem_free(za, sizeof (zap_attribute_t));
1023 	kmem_free(zc, sizeof (zap_cursor_t));
1024 
1025 out:
1026 	if (dd != NULL)
1027 		dsl_dir_rele(dd, FTAG);
1028 	if (dp != NULL)
1029 		dsl_pool_rele(dp, FTAG);
1030 }
1031 
1032 /*
1033  * Mask errors to continue dmu_objset_find() traversal
1034  */
1035 static int
1036 zvol_create_minors_cb(const char *dsname, void *arg)
1037 {
1038 	uint64_t snapdev;
1039 	int error;
1040 	list_t *minors_list = arg;
1041 
1042 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1043 
1044 	error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1045 	if (error)
1046 		return (0);
1047 
1048 	/*
1049 	 * Given the name and the 'snapdev' property, create device minor nodes
1050 	 * with the linkages to zvols/snapshots as needed.
1051 	 * If the name represents a zvol, create a minor node for the zvol, then
1052 	 * check if its snapshots are 'visible', and if so, iterate over the
1053 	 * snapshots and create device minor nodes for those.
1054 	 */
1055 	if (strchr(dsname, '@') == 0) {
1056 		minors_job_t *job;
1057 		char *n = kmem_strdup(dsname);
1058 		if (n == NULL)
1059 			return (0);
1060 
1061 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1062 		job->name = n;
1063 		job->list = minors_list;
1064 		job->error = 0;
1065 		list_insert_tail(minors_list, job);
1066 		/* don't care if dispatch fails, because job->error is 0 */
1067 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1068 		    TQ_SLEEP);
1069 
1070 		zvol_add_clones(dsname, minors_list);
1071 
1072 		if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1073 			/*
1074 			 * traverse snapshots only, do not traverse children,
1075 			 * and skip the 'dsname'
1076 			 */
1077 			error = dmu_objset_find(dsname,
1078 			    zvol_create_snap_minor_cb, (void *)job,
1079 			    DS_FIND_SNAPSHOTS);
1080 		}
1081 	} else {
1082 		dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1083 		    dsname);
1084 	}
1085 
1086 	return (0);
1087 }
1088 
1089 /*
1090  * Create minors for the specified dataset, including children and snapshots.
1091  * Pay attention to the 'snapdev' property and iterate over the snapshots
1092  * only if they are 'visible'. This approach allows one to assure that the
1093  * snapshot metadata is read from disk only if it is needed.
1094  *
1095  * The name can represent a dataset to be recursively scanned for zvols and
1096  * their snapshots, or a single zvol snapshot. If the name represents a
1097  * dataset, the scan is performed in two nested stages:
1098  * - scan the dataset for zvols, and
1099  * - for each zvol, create a minor node, then check if the zvol's snapshots
1100  *   are 'visible', and only then iterate over the snapshots if needed
1101  *
1102  * If the name represents a snapshot, a check is performed if the snapshot is
1103  * 'visible' (which also verifies that the parent is a zvol), and if so,
1104  * a minor node for that snapshot is created.
1105  */
1106 void
1107 zvol_create_minors_recursive(const char *name)
1108 {
1109 	list_t minors_list;
1110 	minors_job_t *job;
1111 
1112 	if (zvol_inhibit_dev)
1113 		return;
1114 
1115 	/*
1116 	 * This is the list for prefetch jobs. Whenever we found a match
1117 	 * during dmu_objset_find, we insert a minors_job to the list and do
1118 	 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1119 	 * any lock because all list operation is done on the current thread.
1120 	 *
1121 	 * We will use this list to do zvol_os_create_minor after prefetch
1122 	 * so we don't have to traverse using dmu_objset_find again.
1123 	 */
1124 	list_create(&minors_list, sizeof (minors_job_t),
1125 	    offsetof(minors_job_t, link));
1126 
1127 
1128 	if (strchr(name, '@') != NULL) {
1129 		uint64_t snapdev;
1130 
1131 		int error = dsl_prop_get_integer(name, "snapdev",
1132 		    &snapdev, NULL);
1133 
1134 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1135 			(void) zvol_os_create_minor(name);
1136 	} else {
1137 		fstrans_cookie_t cookie = spl_fstrans_mark();
1138 		(void) dmu_objset_find(name, zvol_create_minors_cb,
1139 		    &minors_list, DS_FIND_CHILDREN);
1140 		spl_fstrans_unmark(cookie);
1141 	}
1142 
1143 	taskq_wait_outstanding(system_taskq, 0);
1144 
1145 	/*
1146 	 * Prefetch is completed, we can do zvol_os_create_minor
1147 	 * sequentially.
1148 	 */
1149 	while ((job = list_head(&minors_list)) != NULL) {
1150 		list_remove(&minors_list, job);
1151 		if (!job->error)
1152 			(void) zvol_os_create_minor(job->name);
1153 		kmem_strfree(job->name);
1154 		kmem_free(job, sizeof (minors_job_t));
1155 	}
1156 
1157 	list_destroy(&minors_list);
1158 }
1159 
1160 void
1161 zvol_create_minor(const char *name)
1162 {
1163 	/*
1164 	 * Note: the dsl_pool_config_lock must not be held.
1165 	 * Minor node creation needs to obtain the zvol_state_lock.
1166 	 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1167 	 * config lock.  Therefore, we can't have the config lock now if
1168 	 * we are going to wait for the zvol_state_lock, because it
1169 	 * would be a lock order inversion which could lead to deadlock.
1170 	 */
1171 
1172 	if (zvol_inhibit_dev)
1173 		return;
1174 
1175 	if (strchr(name, '@') != NULL) {
1176 		uint64_t snapdev;
1177 
1178 		int error = dsl_prop_get_integer(name,
1179 		    "snapdev", &snapdev, NULL);
1180 
1181 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1182 			(void) zvol_os_create_minor(name);
1183 	} else {
1184 		(void) zvol_os_create_minor(name);
1185 	}
1186 }
1187 
1188 /*
1189  * Remove minors for specified dataset including children and snapshots.
1190  */
1191 
1192 static void
1193 zvol_free_task(void *arg)
1194 {
1195 	zvol_os_free(arg);
1196 }
1197 
1198 void
1199 zvol_remove_minors_impl(const char *name)
1200 {
1201 	zvol_state_t *zv, *zv_next;
1202 	int namelen = ((name) ? strlen(name) : 0);
1203 	taskqid_t t;
1204 	list_t free_list;
1205 
1206 	if (zvol_inhibit_dev)
1207 		return;
1208 
1209 	list_create(&free_list, sizeof (zvol_state_t),
1210 	    offsetof(zvol_state_t, zv_next));
1211 
1212 	rw_enter(&zvol_state_lock, RW_WRITER);
1213 
1214 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1215 		zv_next = list_next(&zvol_state_list, zv);
1216 
1217 		mutex_enter(&zv->zv_state_lock);
1218 		if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1219 		    (strncmp(zv->zv_name, name, namelen) == 0 &&
1220 		    (zv->zv_name[namelen] == '/' ||
1221 		    zv->zv_name[namelen] == '@'))) {
1222 			/*
1223 			 * By holding zv_state_lock here, we guarantee that no
1224 			 * one is currently using this zv
1225 			 */
1226 
1227 			/* If in use, leave alone */
1228 			if (zv->zv_open_count > 0 ||
1229 			    atomic_read(&zv->zv_suspend_ref)) {
1230 				mutex_exit(&zv->zv_state_lock);
1231 				continue;
1232 			}
1233 
1234 			zvol_remove(zv);
1235 
1236 			/*
1237 			 * Cleared while holding zvol_state_lock as a writer
1238 			 * which will prevent zvol_open() from opening it.
1239 			 */
1240 			zvol_os_clear_private(zv);
1241 
1242 			/* Drop zv_state_lock before zvol_free() */
1243 			mutex_exit(&zv->zv_state_lock);
1244 
1245 			/* Try parallel zv_free, if failed do it in place */
1246 			t = taskq_dispatch(system_taskq, zvol_free_task, zv,
1247 			    TQ_SLEEP);
1248 			if (t == TASKQID_INVALID)
1249 				list_insert_head(&free_list, zv);
1250 		} else {
1251 			mutex_exit(&zv->zv_state_lock);
1252 		}
1253 	}
1254 	rw_exit(&zvol_state_lock);
1255 
1256 	/* Drop zvol_state_lock before calling zvol_free() */
1257 	while ((zv = list_head(&free_list)) != NULL) {
1258 		list_remove(&free_list, zv);
1259 		zvol_os_free(zv);
1260 	}
1261 }
1262 
1263 /* Remove minor for this specific volume only */
1264 static void
1265 zvol_remove_minor_impl(const char *name)
1266 {
1267 	zvol_state_t *zv = NULL, *zv_next;
1268 
1269 	if (zvol_inhibit_dev)
1270 		return;
1271 
1272 	rw_enter(&zvol_state_lock, RW_WRITER);
1273 
1274 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1275 		zv_next = list_next(&zvol_state_list, zv);
1276 
1277 		mutex_enter(&zv->zv_state_lock);
1278 		if (strcmp(zv->zv_name, name) == 0) {
1279 			/*
1280 			 * By holding zv_state_lock here, we guarantee that no
1281 			 * one is currently using this zv
1282 			 */
1283 
1284 			/* If in use, leave alone */
1285 			if (zv->zv_open_count > 0 ||
1286 			    atomic_read(&zv->zv_suspend_ref)) {
1287 				mutex_exit(&zv->zv_state_lock);
1288 				continue;
1289 			}
1290 			zvol_remove(zv);
1291 
1292 			zvol_os_clear_private(zv);
1293 			mutex_exit(&zv->zv_state_lock);
1294 			break;
1295 		} else {
1296 			mutex_exit(&zv->zv_state_lock);
1297 		}
1298 	}
1299 
1300 	/* Drop zvol_state_lock before calling zvol_free() */
1301 	rw_exit(&zvol_state_lock);
1302 
1303 	if (zv != NULL)
1304 		zvol_os_free(zv);
1305 }
1306 
1307 /*
1308  * Rename minors for specified dataset including children and snapshots.
1309  */
1310 static void
1311 zvol_rename_minors_impl(const char *oldname, const char *newname)
1312 {
1313 	zvol_state_t *zv, *zv_next;
1314 	int oldnamelen;
1315 
1316 	if (zvol_inhibit_dev)
1317 		return;
1318 
1319 	oldnamelen = strlen(oldname);
1320 
1321 	rw_enter(&zvol_state_lock, RW_READER);
1322 
1323 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1324 		zv_next = list_next(&zvol_state_list, zv);
1325 
1326 		mutex_enter(&zv->zv_state_lock);
1327 
1328 		if (strcmp(zv->zv_name, oldname) == 0) {
1329 			zvol_os_rename_minor(zv, newname);
1330 		} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1331 		    (zv->zv_name[oldnamelen] == '/' ||
1332 		    zv->zv_name[oldnamelen] == '@')) {
1333 			char *name = kmem_asprintf("%s%c%s", newname,
1334 			    zv->zv_name[oldnamelen],
1335 			    zv->zv_name + oldnamelen + 1);
1336 			zvol_os_rename_minor(zv, name);
1337 			kmem_strfree(name);
1338 		}
1339 
1340 		mutex_exit(&zv->zv_state_lock);
1341 	}
1342 
1343 	rw_exit(&zvol_state_lock);
1344 }
1345 
1346 typedef struct zvol_snapdev_cb_arg {
1347 	uint64_t snapdev;
1348 } zvol_snapdev_cb_arg_t;
1349 
1350 static int
1351 zvol_set_snapdev_cb(const char *dsname, void *param)
1352 {
1353 	zvol_snapdev_cb_arg_t *arg = param;
1354 
1355 	if (strchr(dsname, '@') == NULL)
1356 		return (0);
1357 
1358 	switch (arg->snapdev) {
1359 		case ZFS_SNAPDEV_VISIBLE:
1360 			(void) zvol_os_create_minor(dsname);
1361 			break;
1362 		case ZFS_SNAPDEV_HIDDEN:
1363 			(void) zvol_remove_minor_impl(dsname);
1364 			break;
1365 	}
1366 
1367 	return (0);
1368 }
1369 
1370 static void
1371 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
1372 {
1373 	zvol_snapdev_cb_arg_t arg = {snapdev};
1374 	fstrans_cookie_t cookie = spl_fstrans_mark();
1375 	/*
1376 	 * The zvol_set_snapdev_sync() sets snapdev appropriately
1377 	 * in the dataset hierarchy. Here, we only scan snapshots.
1378 	 */
1379 	dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1380 	spl_fstrans_unmark(cookie);
1381 }
1382 
1383 static void
1384 zvol_set_volmode_impl(char *name, uint64_t volmode)
1385 {
1386 	fstrans_cookie_t cookie;
1387 	uint64_t old_volmode;
1388 	zvol_state_t *zv;
1389 
1390 	if (strchr(name, '@') != NULL)
1391 		return;
1392 
1393 	/*
1394 	 * It's unfortunate we need to remove minors before we create new ones:
1395 	 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1396 	 * could be different when we set, for instance, volmode from "geom"
1397 	 * to "dev" (or vice versa).
1398 	 */
1399 	zv = zvol_find_by_name(name, RW_NONE);
1400 	if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1401 			return;
1402 	if (zv != NULL) {
1403 		old_volmode = zv->zv_volmode;
1404 		mutex_exit(&zv->zv_state_lock);
1405 		if (old_volmode == volmode)
1406 			return;
1407 		zvol_wait_close(zv);
1408 	}
1409 	cookie = spl_fstrans_mark();
1410 	switch (volmode) {
1411 		case ZFS_VOLMODE_NONE:
1412 			(void) zvol_remove_minor_impl(name);
1413 			break;
1414 		case ZFS_VOLMODE_GEOM:
1415 		case ZFS_VOLMODE_DEV:
1416 			(void) zvol_remove_minor_impl(name);
1417 			(void) zvol_os_create_minor(name);
1418 			break;
1419 		case ZFS_VOLMODE_DEFAULT:
1420 			(void) zvol_remove_minor_impl(name);
1421 			if (zvol_volmode == ZFS_VOLMODE_NONE)
1422 				break;
1423 			else /* if zvol_volmode is invalid defaults to "geom" */
1424 				(void) zvol_os_create_minor(name);
1425 			break;
1426 	}
1427 	spl_fstrans_unmark(cookie);
1428 }
1429 
1430 static zvol_task_t *
1431 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
1432     uint64_t value)
1433 {
1434 	zvol_task_t *task;
1435 
1436 	/* Never allow tasks on hidden names. */
1437 	if (name1[0] == '$')
1438 		return (NULL);
1439 
1440 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1441 	task->op = op;
1442 	task->value = value;
1443 
1444 	strlcpy(task->name1, name1, MAXNAMELEN);
1445 	if (name2 != NULL)
1446 		strlcpy(task->name2, name2, MAXNAMELEN);
1447 
1448 	return (task);
1449 }
1450 
1451 static void
1452 zvol_task_free(zvol_task_t *task)
1453 {
1454 	kmem_free(task, sizeof (zvol_task_t));
1455 }
1456 
1457 /*
1458  * The worker thread function performed asynchronously.
1459  */
1460 static void
1461 zvol_task_cb(void *arg)
1462 {
1463 	zvol_task_t *task = arg;
1464 
1465 	switch (task->op) {
1466 	case ZVOL_ASYNC_REMOVE_MINORS:
1467 		zvol_remove_minors_impl(task->name1);
1468 		break;
1469 	case ZVOL_ASYNC_RENAME_MINORS:
1470 		zvol_rename_minors_impl(task->name1, task->name2);
1471 		break;
1472 	case ZVOL_ASYNC_SET_SNAPDEV:
1473 		zvol_set_snapdev_impl(task->name1, task->value);
1474 		break;
1475 	case ZVOL_ASYNC_SET_VOLMODE:
1476 		zvol_set_volmode_impl(task->name1, task->value);
1477 		break;
1478 	default:
1479 		VERIFY(0);
1480 		break;
1481 	}
1482 
1483 	zvol_task_free(task);
1484 }
1485 
1486 typedef struct zvol_set_prop_int_arg {
1487 	const char *zsda_name;
1488 	uint64_t zsda_value;
1489 	zprop_source_t zsda_source;
1490 	dmu_tx_t *zsda_tx;
1491 } zvol_set_prop_int_arg_t;
1492 
1493 /*
1494  * Sanity check the dataset for safe use by the sync task.  No additional
1495  * conditions are imposed.
1496  */
1497 static int
1498 zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
1499 {
1500 	zvol_set_prop_int_arg_t *zsda = arg;
1501 	dsl_pool_t *dp = dmu_tx_pool(tx);
1502 	dsl_dir_t *dd;
1503 	int error;
1504 
1505 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1506 	if (error != 0)
1507 		return (error);
1508 
1509 	dsl_dir_rele(dd, FTAG);
1510 
1511 	return (error);
1512 }
1513 
1514 static int
1515 zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1516 {
1517 	(void) arg;
1518 	char dsname[MAXNAMELEN];
1519 	zvol_task_t *task;
1520 	uint64_t snapdev;
1521 
1522 	dsl_dataset_name(ds, dsname);
1523 	if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0)
1524 		return (0);
1525 	task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev);
1526 	if (task == NULL)
1527 		return (0);
1528 
1529 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1530 	    task, TQ_SLEEP);
1531 	return (0);
1532 }
1533 
1534 /*
1535  * Traverse all child datasets and apply snapdev appropriately.
1536  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1537  * dataset and read the effective "snapdev" on every child in the callback
1538  * function: this is because the value is not guaranteed to be the same in the
1539  * whole dataset hierarchy.
1540  */
1541 static void
1542 zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
1543 {
1544 	zvol_set_prop_int_arg_t *zsda = arg;
1545 	dsl_pool_t *dp = dmu_tx_pool(tx);
1546 	dsl_dir_t *dd;
1547 	dsl_dataset_t *ds;
1548 	int error;
1549 
1550 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1551 	zsda->zsda_tx = tx;
1552 
1553 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1554 	if (error == 0) {
1555 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
1556 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1557 		    &zsda->zsda_value, zsda->zsda_tx);
1558 		dsl_dataset_rele(ds, FTAG);
1559 	}
1560 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
1561 	    zsda, DS_FIND_CHILDREN);
1562 
1563 	dsl_dir_rele(dd, FTAG);
1564 }
1565 
1566 int
1567 zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
1568 {
1569 	zvol_set_prop_int_arg_t zsda;
1570 
1571 	zsda.zsda_name = ddname;
1572 	zsda.zsda_source = source;
1573 	zsda.zsda_value = snapdev;
1574 
1575 	return (dsl_sync_task(ddname, zvol_set_snapdev_check,
1576 	    zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1577 }
1578 
1579 /*
1580  * Sanity check the dataset for safe use by the sync task.  No additional
1581  * conditions are imposed.
1582  */
1583 static int
1584 zvol_set_volmode_check(void *arg, dmu_tx_t *tx)
1585 {
1586 	zvol_set_prop_int_arg_t *zsda = arg;
1587 	dsl_pool_t *dp = dmu_tx_pool(tx);
1588 	dsl_dir_t *dd;
1589 	int error;
1590 
1591 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1592 	if (error != 0)
1593 		return (error);
1594 
1595 	dsl_dir_rele(dd, FTAG);
1596 
1597 	return (error);
1598 }
1599 
1600 static int
1601 zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1602 {
1603 	(void) arg;
1604 	char dsname[MAXNAMELEN];
1605 	zvol_task_t *task;
1606 	uint64_t volmode;
1607 
1608 	dsl_dataset_name(ds, dsname);
1609 	if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0)
1610 		return (0);
1611 	task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode);
1612 	if (task == NULL)
1613 		return (0);
1614 
1615 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1616 	    task, TQ_SLEEP);
1617 	return (0);
1618 }
1619 
1620 /*
1621  * Traverse all child datasets and apply volmode appropriately.
1622  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1623  * dataset and read the effective "volmode" on every child in the callback
1624  * function: this is because the value is not guaranteed to be the same in the
1625  * whole dataset hierarchy.
1626  */
1627 static void
1628 zvol_set_volmode_sync(void *arg, dmu_tx_t *tx)
1629 {
1630 	zvol_set_prop_int_arg_t *zsda = arg;
1631 	dsl_pool_t *dp = dmu_tx_pool(tx);
1632 	dsl_dir_t *dd;
1633 	dsl_dataset_t *ds;
1634 	int error;
1635 
1636 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1637 	zsda->zsda_tx = tx;
1638 
1639 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1640 	if (error == 0) {
1641 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE),
1642 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1643 		    &zsda->zsda_value, zsda->zsda_tx);
1644 		dsl_dataset_rele(ds, FTAG);
1645 	}
1646 
1647 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb,
1648 	    zsda, DS_FIND_CHILDREN);
1649 
1650 	dsl_dir_rele(dd, FTAG);
1651 }
1652 
1653 int
1654 zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode)
1655 {
1656 	zvol_set_prop_int_arg_t zsda;
1657 
1658 	zsda.zsda_name = ddname;
1659 	zsda.zsda_source = source;
1660 	zsda.zsda_value = volmode;
1661 
1662 	return (dsl_sync_task(ddname, zvol_set_volmode_check,
1663 	    zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1664 }
1665 
1666 void
1667 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1668 {
1669 	zvol_task_t *task;
1670 	taskqid_t id;
1671 
1672 	task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
1673 	if (task == NULL)
1674 		return;
1675 
1676 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1677 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
1678 		taskq_wait_id(spa->spa_zvol_taskq, id);
1679 }
1680 
1681 void
1682 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
1683     boolean_t async)
1684 {
1685 	zvol_task_t *task;
1686 	taskqid_t id;
1687 
1688 	task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
1689 	if (task == NULL)
1690 		return;
1691 
1692 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1693 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
1694 		taskq_wait_id(spa->spa_zvol_taskq, id);
1695 }
1696 
1697 boolean_t
1698 zvol_is_zvol(const char *name)
1699 {
1700 
1701 	return (zvol_os_is_zvol(name));
1702 }
1703 
1704 int
1705 zvol_init_impl(void)
1706 {
1707 	int i;
1708 
1709 	list_create(&zvol_state_list, sizeof (zvol_state_t),
1710 	    offsetof(zvol_state_t, zv_next));
1711 	rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
1712 
1713 	zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
1714 	    KM_SLEEP);
1715 	for (i = 0; i < ZVOL_HT_SIZE; i++)
1716 		INIT_HLIST_HEAD(&zvol_htable[i]);
1717 
1718 	return (0);
1719 }
1720 
1721 void
1722 zvol_fini_impl(void)
1723 {
1724 	zvol_remove_minors_impl(NULL);
1725 
1726 	/*
1727 	 * The call to "zvol_remove_minors_impl" may dispatch entries to
1728 	 * the system_taskq, but it doesn't wait for those entries to
1729 	 * complete before it returns. Thus, we must wait for all of the
1730 	 * removals to finish, before we can continue.
1731 	 */
1732 	taskq_wait_outstanding(system_taskq, 0);
1733 
1734 	kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
1735 	list_destroy(&zvol_state_list);
1736 	rw_destroy(&zvol_state_lock);
1737 }
1738