xref: /freebsd/sys/contrib/zlib/deflate.c (revision 42249ef2)
1 /* deflate.c -- compress data using the deflation algorithm
2  * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /*
7  *  ALGORITHM
8  *
9  *      The "deflation" process depends on being able to identify portions
10  *      of the input text which are identical to earlier input (within a
11  *      sliding window trailing behind the input currently being processed).
12  *
13  *      The most straightforward technique turns out to be the fastest for
14  *      most input files: try all possible matches and select the longest.
15  *      The key feature of this algorithm is that insertions into the string
16  *      dictionary are very simple and thus fast, and deletions are avoided
17  *      completely. Insertions are performed at each input character, whereas
18  *      string matches are performed only when the previous match ends. So it
19  *      is preferable to spend more time in matches to allow very fast string
20  *      insertions and avoid deletions. The matching algorithm for small
21  *      strings is inspired from that of Rabin & Karp. A brute force approach
22  *      is used to find longer strings when a small match has been found.
23  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24  *      (by Leonid Broukhis).
25  *         A previous version of this file used a more sophisticated algorithm
26  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27  *      time, but has a larger average cost, uses more memory and is patented.
28  *      However the F&G algorithm may be faster for some highly redundant
29  *      files if the parameter max_chain_length (described below) is too large.
30  *
31  *  ACKNOWLEDGEMENTS
32  *
33  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34  *      I found it in 'freeze' written by Leonid Broukhis.
35  *      Thanks to many people for bug reports and testing.
36  *
37  *  REFERENCES
38  *
39  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40  *      Available in http://tools.ietf.org/html/rfc1951
41  *
42  *      A description of the Rabin and Karp algorithm is given in the book
43  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44  *
45  *      Fiala,E.R., and Greene,D.H.
46  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47  *
48  */
49 
50 /* @(#) $Id$ */
51 
52 #include "deflate.h"
53 
54 const char deflate_copyright[] =
55    " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
56 /*
57   If you use the zlib library in a product, an acknowledgment is welcome
58   in the documentation of your product. If for some reason you cannot
59   include such an acknowledgment, I would appreciate that you keep this
60   copyright string in the executable of your product.
61  */
62 
63 /* ===========================================================================
64  *  Function prototypes.
65  */
66 typedef enum {
67     need_more,      /* block not completed, need more input or more output */
68     block_done,     /* block flush performed */
69     finish_started, /* finish started, need only more output at next deflate */
70     finish_done     /* finish done, accept no more input or output */
71 } block_state;
72 
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74 /* Compression function. Returns the block state after the call. */
75 
76 local int deflateStateCheck      OF((z_streamp strm));
77 local void slide_hash     OF((deflate_state *s));
78 local void fill_window    OF((deflate_state *s));
79 local block_state deflate_stored OF((deflate_state *s, int flush));
80 local block_state deflate_fast   OF((deflate_state *s, int flush));
81 #ifndef FASTEST
82 local block_state deflate_slow   OF((deflate_state *s, int flush));
83 #endif
84 local block_state deflate_rle    OF((deflate_state *s, int flush));
85 local block_state deflate_huff   OF((deflate_state *s, int flush));
86 local void lm_init        OF((deflate_state *s));
87 local void putShortMSB    OF((deflate_state *s, uInt b));
88 local void flush_pending  OF((z_streamp strm));
89 local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
90 #ifdef ASMV
91 #  pragma message("Assembler code may have bugs -- use at your own risk")
92       void match_init OF((void)); /* asm code initialization */
93       uInt longest_match  OF((deflate_state *s, IPos cur_match));
94 #else
95 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
96 #endif
97 
98 #ifdef ZLIB_DEBUG
99 local  void check_match OF((deflate_state *s, IPos start, IPos match,
100                             int length));
101 #endif
102 
103 /* ===========================================================================
104  * Local data
105  */
106 
107 #define NIL 0
108 /* Tail of hash chains */
109 
110 #ifndef TOO_FAR
111 #  define TOO_FAR 4096
112 #endif
113 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114 
115 /* Values for max_lazy_match, good_match and max_chain_length, depending on
116  * the desired pack level (0..9). The values given below have been tuned to
117  * exclude worst case performance for pathological files. Better values may be
118  * found for specific files.
119  */
120 typedef struct config_s {
121    ush good_length; /* reduce lazy search above this match length */
122    ush max_lazy;    /* do not perform lazy search above this match length */
123    ush nice_length; /* quit search above this match length */
124    ush max_chain;
125    compress_func func;
126 } config;
127 
128 #ifdef FASTEST
129 local const config configuration_table[2] = {
130 /*      good lazy nice chain */
131 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
132 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
133 #else
134 local const config configuration_table[10] = {
135 /*      good lazy nice chain */
136 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
137 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
138 /* 2 */ {4,    5, 16,    8, deflate_fast},
139 /* 3 */ {4,    6, 32,   32, deflate_fast},
140 
141 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
142 /* 5 */ {8,   16, 32,   32, deflate_slow},
143 /* 6 */ {8,   16, 128, 128, deflate_slow},
144 /* 7 */ {8,   32, 128, 256, deflate_slow},
145 /* 8 */ {32, 128, 258, 1024, deflate_slow},
146 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
147 #endif
148 
149 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
150  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
151  * meaning.
152  */
153 
154 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
156 
157 /* ===========================================================================
158  * Update a hash value with the given input byte
159  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
160  *    characters, so that a running hash key can be computed from the previous
161  *    key instead of complete recalculation each time.
162  */
163 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
164 
165 
166 /* ===========================================================================
167  * Insert string str in the dictionary and set match_head to the previous head
168  * of the hash chain (the most recent string with same hash key). Return
169  * the previous length of the hash chain.
170  * If this file is compiled with -DFASTEST, the compression level is forced
171  * to 1, and no hash chains are maintained.
172  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
173  *    characters and the first MIN_MATCH bytes of str are valid (except for
174  *    the last MIN_MATCH-1 bytes of the input file).
175  */
176 #ifdef FASTEST
177 #define INSERT_STRING(s, str, match_head) \
178    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179     match_head = s->head[s->ins_h], \
180     s->head[s->ins_h] = (Pos)(str))
181 #else
182 #define INSERT_STRING(s, str, match_head) \
183    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185     s->head[s->ins_h] = (Pos)(str))
186 #endif
187 
188 /* ===========================================================================
189  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190  * prev[] will be initialized on the fly.
191  */
192 #define CLEAR_HASH(s) \
193     do { \
194         s->head[s->hash_size-1] = NIL; \
195         zmemzero((Bytef *)s->head, \
196                  (unsigned)(s->hash_size-1)*sizeof(*s->head)); \
197     } while (0)
198 
199 /* ===========================================================================
200  * Slide the hash table when sliding the window down (could be avoided with 32
201  * bit values at the expense of memory usage). We slide even when level == 0 to
202  * keep the hash table consistent if we switch back to level > 0 later.
203  */
204 local void slide_hash(s)
205     deflate_state *s;
206 {
207     unsigned n, m;
208     Posf *p;
209     uInt wsize = s->w_size;
210 
211     n = s->hash_size;
212     p = &s->head[n];
213     do {
214         m = *--p;
215         *p = (Pos)(m >= wsize ? m - wsize : NIL);
216     } while (--n);
217     n = wsize;
218 #ifndef FASTEST
219     p = &s->prev[n];
220     do {
221         m = *--p;
222         *p = (Pos)(m >= wsize ? m - wsize : NIL);
223         /* If n is not on any hash chain, prev[n] is garbage but
224          * its value will never be used.
225          */
226     } while (--n);
227 #endif
228 }
229 
230 /* ========================================================================= */
231 int ZEXPORT deflateInit_(strm, level, version, stream_size)
232     z_streamp strm;
233     int level;
234     const char *version;
235     int stream_size;
236 {
237     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
238                          Z_DEFAULT_STRATEGY, version, stream_size);
239     /* To do: ignore strm->next_in if we use it as window */
240 }
241 
242 /* ========================================================================= */
243 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
244                   version, stream_size)
245     z_streamp strm;
246     int  level;
247     int  method;
248     int  windowBits;
249     int  memLevel;
250     int  strategy;
251     const char *version;
252     int stream_size;
253 {
254     deflate_state *s;
255     int wrap = 1;
256     static const char my_version[] = ZLIB_VERSION;
257 
258     ushf *overlay;
259     /* We overlay pending_buf and d_buf+l_buf. This works since the average
260      * output size for (length,distance) codes is <= 24 bits.
261      */
262 
263     if (version == Z_NULL || version[0] != my_version[0] ||
264         stream_size != sizeof(z_stream)) {
265         return Z_VERSION_ERROR;
266     }
267     if (strm == Z_NULL) return Z_STREAM_ERROR;
268 
269     strm->msg = Z_NULL;
270     if (strm->zalloc == (alloc_func)0) {
271 #if defined(Z_SOLO) && !defined(_KERNEL)
272         return Z_STREAM_ERROR;
273 #else
274         strm->zalloc = zcalloc;
275         strm->opaque = (voidpf)0;
276 #endif
277     }
278     if (strm->zfree == (free_func)0)
279 #if defined(Z_SOLO) && !defined(_KERNEL)
280         return Z_STREAM_ERROR;
281 #else
282         strm->zfree = zcfree;
283 #endif
284 
285 #ifdef FASTEST
286     if (level != 0) level = 1;
287 #else
288     if (level == Z_DEFAULT_COMPRESSION) level = 6;
289 #endif
290 
291     if (windowBits < 0) { /* suppress zlib wrapper */
292         wrap = 0;
293         windowBits = -windowBits;
294     }
295 #ifdef GZIP
296     else if (windowBits > 15) {
297         wrap = 2;       /* write gzip wrapper instead */
298         windowBits -= 16;
299     }
300 #endif
301     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
302         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
303         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
304         return Z_STREAM_ERROR;
305     }
306     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
307     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
308     if (s == Z_NULL) return Z_MEM_ERROR;
309     strm->state = (struct internal_state FAR *)s;
310     s->strm = strm;
311     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
312 
313     s->wrap = wrap;
314     s->gzhead = Z_NULL;
315     s->w_bits = (uInt)windowBits;
316     s->w_size = 1 << s->w_bits;
317     s->w_mask = s->w_size - 1;
318 
319     s->hash_bits = (uInt)memLevel + 7;
320     s->hash_size = 1 << s->hash_bits;
321     s->hash_mask = s->hash_size - 1;
322     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
323 
324     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
325     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
326     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
327 
328     s->high_water = 0;      /* nothing written to s->window yet */
329 
330     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
331 
332     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
333     s->pending_buf = (uchf *) overlay;
334     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
335 
336     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
337         s->pending_buf == Z_NULL) {
338         s->status = FINISH_STATE;
339         strm->msg = ERR_MSG(Z_MEM_ERROR);
340         deflateEnd (strm);
341         return Z_MEM_ERROR;
342     }
343     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
344     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
345 
346     s->level = level;
347     s->strategy = strategy;
348     s->method = (Byte)method;
349 
350     return deflateReset(strm);
351 }
352 
353 /* =========================================================================
354  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
355  */
356 local int deflateStateCheck (strm)
357     z_streamp strm;
358 {
359     deflate_state *s;
360     if (strm == Z_NULL ||
361         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
362         return 1;
363     s = strm->state;
364     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
365 #ifdef GZIP
366                                            s->status != GZIP_STATE &&
367 #endif
368                                            s->status != EXTRA_STATE &&
369                                            s->status != NAME_STATE &&
370                                            s->status != COMMENT_STATE &&
371                                            s->status != HCRC_STATE &&
372                                            s->status != BUSY_STATE &&
373                                            s->status != FINISH_STATE))
374         return 1;
375     return 0;
376 }
377 
378 /* ========================================================================= */
379 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
380     z_streamp strm;
381     const Bytef *dictionary;
382     uInt  dictLength;
383 {
384     deflate_state *s;
385     uInt str, n;
386     int wrap;
387     unsigned avail;
388     z_const unsigned char *next;
389 
390     if (deflateStateCheck(strm) || dictionary == Z_NULL)
391         return Z_STREAM_ERROR;
392     s = strm->state;
393     wrap = s->wrap;
394     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
395         return Z_STREAM_ERROR;
396 
397     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
398     if (wrap == 1)
399         strm->adler = adler32(strm->adler, dictionary, dictLength);
400     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
401 
402     /* if dictionary would fill window, just replace the history */
403     if (dictLength >= s->w_size) {
404         if (wrap == 0) {            /* already empty otherwise */
405             CLEAR_HASH(s);
406             s->strstart = 0;
407             s->block_start = 0L;
408             s->insert = 0;
409         }
410         dictionary += dictLength - s->w_size;  /* use the tail */
411         dictLength = s->w_size;
412     }
413 
414     /* insert dictionary into window and hash */
415     avail = strm->avail_in;
416     next = strm->next_in;
417     strm->avail_in = dictLength;
418     strm->next_in = (z_const Bytef *)dictionary;
419     fill_window(s);
420     while (s->lookahead >= MIN_MATCH) {
421         str = s->strstart;
422         n = s->lookahead - (MIN_MATCH-1);
423         do {
424             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
425 #ifndef FASTEST
426             s->prev[str & s->w_mask] = s->head[s->ins_h];
427 #endif
428             s->head[s->ins_h] = (Pos)str;
429             str++;
430         } while (--n);
431         s->strstart = str;
432         s->lookahead = MIN_MATCH-1;
433         fill_window(s);
434     }
435     s->strstart += s->lookahead;
436     s->block_start = (long)s->strstart;
437     s->insert = s->lookahead;
438     s->lookahead = 0;
439     s->match_length = s->prev_length = MIN_MATCH-1;
440     s->match_available = 0;
441     strm->next_in = next;
442     strm->avail_in = avail;
443     s->wrap = wrap;
444     return Z_OK;
445 }
446 
447 /* ========================================================================= */
448 int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
449     z_streamp strm;
450     Bytef *dictionary;
451     uInt  *dictLength;
452 {
453     deflate_state *s;
454     uInt len;
455 
456     if (deflateStateCheck(strm))
457         return Z_STREAM_ERROR;
458     s = strm->state;
459     len = s->strstart + s->lookahead;
460     if (len > s->w_size)
461         len = s->w_size;
462     if (dictionary != Z_NULL && len)
463         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
464     if (dictLength != Z_NULL)
465         *dictLength = len;
466     return Z_OK;
467 }
468 
469 /* ========================================================================= */
470 int ZEXPORT deflateResetKeep (strm)
471     z_streamp strm;
472 {
473     deflate_state *s;
474 
475     if (deflateStateCheck(strm)) {
476         return Z_STREAM_ERROR;
477     }
478 
479     strm->total_in = strm->total_out = 0;
480     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
481     strm->data_type = Z_UNKNOWN;
482 
483     s = (deflate_state *)strm->state;
484     s->pending = 0;
485     s->pending_out = s->pending_buf;
486 
487     if (s->wrap < 0) {
488         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
489     }
490     s->status =
491 #ifdef GZIP
492         s->wrap == 2 ? GZIP_STATE :
493 #endif
494         s->wrap ? INIT_STATE : BUSY_STATE;
495     strm->adler =
496 #ifdef GZIP
497         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
498 #endif
499         adler32(0L, Z_NULL, 0);
500     s->last_flush = -2;
501 
502     _tr_init(s);
503 
504     return Z_OK;
505 }
506 
507 /* ========================================================================= */
508 int ZEXPORT deflateReset (strm)
509     z_streamp strm;
510 {
511     int ret;
512 
513     ret = deflateResetKeep(strm);
514     if (ret == Z_OK)
515         lm_init(strm->state);
516     return ret;
517 }
518 
519 /* ========================================================================= */
520 int ZEXPORT deflateSetHeader (strm, head)
521     z_streamp strm;
522     gz_headerp head;
523 {
524     if (deflateStateCheck(strm) || strm->state->wrap != 2)
525         return Z_STREAM_ERROR;
526     strm->state->gzhead = head;
527     return Z_OK;
528 }
529 
530 /* ========================================================================= */
531 int ZEXPORT deflatePending (strm, pending, bits)
532     unsigned *pending;
533     int *bits;
534     z_streamp strm;
535 {
536     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
537     if (pending != Z_NULL)
538         *pending = strm->state->pending;
539     if (bits != Z_NULL)
540         *bits = strm->state->bi_valid;
541     return Z_OK;
542 }
543 
544 /* ========================================================================= */
545 int ZEXPORT deflatePrime (strm, bits, value)
546     z_streamp strm;
547     int bits;
548     int value;
549 {
550     deflate_state *s;
551     int put;
552 
553     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
554     s = strm->state;
555     if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
556         return Z_BUF_ERROR;
557     do {
558         put = Buf_size - s->bi_valid;
559         if (put > bits)
560             put = bits;
561         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
562         s->bi_valid += put;
563         _tr_flush_bits(s);
564         value >>= put;
565         bits -= put;
566     } while (bits);
567     return Z_OK;
568 }
569 
570 /* ========================================================================= */
571 int ZEXPORT deflateParams(strm, level, strategy)
572     z_streamp strm;
573     int level;
574     int strategy;
575 {
576     deflate_state *s;
577     compress_func func;
578 
579     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
580     s = strm->state;
581 
582 #ifdef FASTEST
583     if (level != 0) level = 1;
584 #else
585     if (level == Z_DEFAULT_COMPRESSION) level = 6;
586 #endif
587     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
588         return Z_STREAM_ERROR;
589     }
590     func = configuration_table[s->level].func;
591 
592     if ((strategy != s->strategy || func != configuration_table[level].func) &&
593         s->last_flush != -2) {
594         /* Flush the last buffer: */
595         int err = deflate(strm, Z_BLOCK);
596         if (err == Z_STREAM_ERROR)
597             return err;
598         if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
599             return Z_BUF_ERROR;
600     }
601     if (s->level != level) {
602         if (s->level == 0 && s->matches != 0) {
603             if (s->matches == 1)
604                 slide_hash(s);
605             else
606                 CLEAR_HASH(s);
607             s->matches = 0;
608         }
609         s->level = level;
610         s->max_lazy_match   = configuration_table[level].max_lazy;
611         s->good_match       = configuration_table[level].good_length;
612         s->nice_match       = configuration_table[level].nice_length;
613         s->max_chain_length = configuration_table[level].max_chain;
614     }
615     s->strategy = strategy;
616     return Z_OK;
617 }
618 
619 /* ========================================================================= */
620 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
621     z_streamp strm;
622     int good_length;
623     int max_lazy;
624     int nice_length;
625     int max_chain;
626 {
627     deflate_state *s;
628 
629     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
630     s = strm->state;
631     s->good_match = (uInt)good_length;
632     s->max_lazy_match = (uInt)max_lazy;
633     s->nice_match = nice_length;
634     s->max_chain_length = (uInt)max_chain;
635     return Z_OK;
636 }
637 
638 /* =========================================================================
639  * For the default windowBits of 15 and memLevel of 8, this function returns
640  * a close to exact, as well as small, upper bound on the compressed size.
641  * They are coded as constants here for a reason--if the #define's are
642  * changed, then this function needs to be changed as well.  The return
643  * value for 15 and 8 only works for those exact settings.
644  *
645  * For any setting other than those defaults for windowBits and memLevel,
646  * the value returned is a conservative worst case for the maximum expansion
647  * resulting from using fixed blocks instead of stored blocks, which deflate
648  * can emit on compressed data for some combinations of the parameters.
649  *
650  * This function could be more sophisticated to provide closer upper bounds for
651  * every combination of windowBits and memLevel.  But even the conservative
652  * upper bound of about 14% expansion does not seem onerous for output buffer
653  * allocation.
654  */
655 uLong ZEXPORT deflateBound(strm, sourceLen)
656     z_streamp strm;
657     uLong sourceLen;
658 {
659     deflate_state *s;
660     uLong complen, wraplen;
661 
662     /* conservative upper bound for compressed data */
663     complen = sourceLen +
664               ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
665 
666     /* if can't get parameters, return conservative bound plus zlib wrapper */
667     if (deflateStateCheck(strm))
668         return complen + 6;
669 
670     /* compute wrapper length */
671     s = strm->state;
672     switch (s->wrap) {
673     case 0:                                 /* raw deflate */
674         wraplen = 0;
675         break;
676     case 1:                                 /* zlib wrapper */
677         wraplen = 6 + (s->strstart ? 4 : 0);
678         break;
679 #ifdef GZIP
680     case 2:                                 /* gzip wrapper */
681         wraplen = 18;
682         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
683             Bytef *str;
684             if (s->gzhead->extra != Z_NULL)
685                 wraplen += 2 + s->gzhead->extra_len;
686             str = s->gzhead->name;
687             if (str != Z_NULL)
688                 do {
689                     wraplen++;
690                 } while (*str++);
691             str = s->gzhead->comment;
692             if (str != Z_NULL)
693                 do {
694                     wraplen++;
695                 } while (*str++);
696             if (s->gzhead->hcrc)
697                 wraplen += 2;
698         }
699         break;
700 #endif
701     default:                                /* for compiler happiness */
702         wraplen = 6;
703     }
704 
705     /* if not default parameters, return conservative bound */
706     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
707         return complen + wraplen;
708 
709     /* default settings: return tight bound for that case */
710     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
711            (sourceLen >> 25) + 13 - 6 + wraplen;
712 }
713 
714 /* =========================================================================
715  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
716  * IN assertion: the stream state is correct and there is enough room in
717  * pending_buf.
718  */
719 local void putShortMSB (s, b)
720     deflate_state *s;
721     uInt b;
722 {
723     put_byte(s, (Byte)(b >> 8));
724     put_byte(s, (Byte)(b & 0xff));
725 }
726 
727 /* =========================================================================
728  * Flush as much pending output as possible. All deflate() output, except for
729  * some deflate_stored() output, goes through this function so some
730  * applications may wish to modify it to avoid allocating a large
731  * strm->next_out buffer and copying into it. (See also read_buf()).
732  */
733 local void flush_pending(strm)
734     z_streamp strm;
735 {
736     unsigned len;
737     deflate_state *s = strm->state;
738 
739     _tr_flush_bits(s);
740     len = s->pending;
741     if (len > strm->avail_out) len = strm->avail_out;
742     if (len == 0) return;
743 
744     zmemcpy(strm->next_out, s->pending_out, len);
745     strm->next_out  += len;
746     s->pending_out  += len;
747     strm->total_out += len;
748     strm->avail_out -= len;
749     s->pending      -= len;
750     if (s->pending == 0) {
751         s->pending_out = s->pending_buf;
752     }
753 }
754 
755 /* ===========================================================================
756  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
757  */
758 #define HCRC_UPDATE(beg) \
759     do { \
760         if (s->gzhead->hcrc && s->pending > (beg)) \
761             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
762                                 s->pending - (beg)); \
763     } while (0)
764 
765 /* ========================================================================= */
766 int ZEXPORT deflate (strm, flush)
767     z_streamp strm;
768     int flush;
769 {
770     int old_flush; /* value of flush param for previous deflate call */
771     deflate_state *s;
772 
773     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
774         return Z_STREAM_ERROR;
775     }
776     s = strm->state;
777 
778     if (strm->next_out == Z_NULL ||
779         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
780         (s->status == FINISH_STATE && flush != Z_FINISH)) {
781         ERR_RETURN(strm, Z_STREAM_ERROR);
782     }
783     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
784 
785     old_flush = s->last_flush;
786     s->last_flush = flush;
787 
788     /* Flush as much pending output as possible */
789     if (s->pending != 0) {
790         flush_pending(strm);
791         if (strm->avail_out == 0) {
792             /* Since avail_out is 0, deflate will be called again with
793              * more output space, but possibly with both pending and
794              * avail_in equal to zero. There won't be anything to do,
795              * but this is not an error situation so make sure we
796              * return OK instead of BUF_ERROR at next call of deflate:
797              */
798             s->last_flush = -1;
799             return Z_OK;
800         }
801 
802     /* Make sure there is something to do and avoid duplicate consecutive
803      * flushes. For repeated and useless calls with Z_FINISH, we keep
804      * returning Z_STREAM_END instead of Z_BUF_ERROR.
805      */
806     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
807                flush != Z_FINISH) {
808         ERR_RETURN(strm, Z_BUF_ERROR);
809     }
810 
811     /* User must not provide more input after the first FINISH: */
812     if (s->status == FINISH_STATE && strm->avail_in != 0) {
813         ERR_RETURN(strm, Z_BUF_ERROR);
814     }
815 
816     /* Write the header */
817     if (s->status == INIT_STATE) {
818         /* zlib header */
819         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
820         uInt level_flags;
821 
822         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
823             level_flags = 0;
824         else if (s->level < 6)
825             level_flags = 1;
826         else if (s->level == 6)
827             level_flags = 2;
828         else
829             level_flags = 3;
830         header |= (level_flags << 6);
831         if (s->strstart != 0) header |= PRESET_DICT;
832         header += 31 - (header % 31);
833 
834         putShortMSB(s, header);
835 
836         /* Save the adler32 of the preset dictionary: */
837         if (s->strstart != 0) {
838             putShortMSB(s, (uInt)(strm->adler >> 16));
839             putShortMSB(s, (uInt)(strm->adler & 0xffff));
840         }
841         strm->adler = adler32(0L, Z_NULL, 0);
842         s->status = BUSY_STATE;
843 
844         /* Compression must start with an empty pending buffer */
845         flush_pending(strm);
846         if (s->pending != 0) {
847             s->last_flush = -1;
848             return Z_OK;
849         }
850     }
851 #ifdef GZIP
852     if (s->status == GZIP_STATE) {
853         /* gzip header */
854         strm->adler = crc32(0L, Z_NULL, 0);
855         put_byte(s, 31);
856         put_byte(s, 139);
857         put_byte(s, 8);
858         if (s->gzhead == Z_NULL) {
859             put_byte(s, 0);
860             put_byte(s, 0);
861             put_byte(s, 0);
862             put_byte(s, 0);
863             put_byte(s, 0);
864             put_byte(s, s->level == 9 ? 2 :
865                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
866                       4 : 0));
867             put_byte(s, OS_CODE);
868             s->status = BUSY_STATE;
869 
870             /* Compression must start with an empty pending buffer */
871             flush_pending(strm);
872             if (s->pending != 0) {
873                 s->last_flush = -1;
874                 return Z_OK;
875             }
876         }
877         else {
878             put_byte(s, (s->gzhead->text ? 1 : 0) +
879                      (s->gzhead->hcrc ? 2 : 0) +
880                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
881                      (s->gzhead->name == Z_NULL ? 0 : 8) +
882                      (s->gzhead->comment == Z_NULL ? 0 : 16)
883                      );
884             put_byte(s, (Byte)(s->gzhead->time & 0xff));
885             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
886             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
887             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
888             put_byte(s, s->level == 9 ? 2 :
889                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
890                       4 : 0));
891             put_byte(s, s->gzhead->os & 0xff);
892             if (s->gzhead->extra != Z_NULL) {
893                 put_byte(s, s->gzhead->extra_len & 0xff);
894                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
895             }
896             if (s->gzhead->hcrc)
897                 strm->adler = crc32(strm->adler, s->pending_buf,
898                                     s->pending);
899             s->gzindex = 0;
900             s->status = EXTRA_STATE;
901         }
902     }
903     if (s->status == EXTRA_STATE) {
904         if (s->gzhead->extra != Z_NULL) {
905             ulg beg = s->pending;   /* start of bytes to update crc */
906             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
907             while (s->pending + left > s->pending_buf_size) {
908                 uInt copy = s->pending_buf_size - s->pending;
909                 zmemcpy(s->pending_buf + s->pending,
910                         s->gzhead->extra + s->gzindex, copy);
911                 s->pending = s->pending_buf_size;
912                 HCRC_UPDATE(beg);
913                 s->gzindex += copy;
914                 flush_pending(strm);
915                 if (s->pending != 0) {
916                     s->last_flush = -1;
917                     return Z_OK;
918                 }
919                 beg = 0;
920                 left -= copy;
921             }
922             zmemcpy(s->pending_buf + s->pending,
923                     s->gzhead->extra + s->gzindex, left);
924             s->pending += left;
925             HCRC_UPDATE(beg);
926             s->gzindex = 0;
927         }
928         s->status = NAME_STATE;
929     }
930     if (s->status == NAME_STATE) {
931         if (s->gzhead->name != Z_NULL) {
932             ulg beg = s->pending;   /* start of bytes to update crc */
933             int val;
934             do {
935                 if (s->pending == s->pending_buf_size) {
936                     HCRC_UPDATE(beg);
937                     flush_pending(strm);
938                     if (s->pending != 0) {
939                         s->last_flush = -1;
940                         return Z_OK;
941                     }
942                     beg = 0;
943                 }
944                 val = s->gzhead->name[s->gzindex++];
945                 put_byte(s, val);
946             } while (val != 0);
947             HCRC_UPDATE(beg);
948             s->gzindex = 0;
949         }
950         s->status = COMMENT_STATE;
951     }
952     if (s->status == COMMENT_STATE) {
953         if (s->gzhead->comment != Z_NULL) {
954             ulg beg = s->pending;   /* start of bytes to update crc */
955             int val;
956             do {
957                 if (s->pending == s->pending_buf_size) {
958                     HCRC_UPDATE(beg);
959                     flush_pending(strm);
960                     if (s->pending != 0) {
961                         s->last_flush = -1;
962                         return Z_OK;
963                     }
964                     beg = 0;
965                 }
966                 val = s->gzhead->comment[s->gzindex++];
967                 put_byte(s, val);
968             } while (val != 0);
969             HCRC_UPDATE(beg);
970         }
971         s->status = HCRC_STATE;
972     }
973     if (s->status == HCRC_STATE) {
974         if (s->gzhead->hcrc) {
975             if (s->pending + 2 > s->pending_buf_size) {
976                 flush_pending(strm);
977                 if (s->pending != 0) {
978                     s->last_flush = -1;
979                     return Z_OK;
980                 }
981             }
982             put_byte(s, (Byte)(strm->adler & 0xff));
983             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
984             strm->adler = crc32(0L, Z_NULL, 0);
985         }
986         s->status = BUSY_STATE;
987 
988         /* Compression must start with an empty pending buffer */
989         flush_pending(strm);
990         if (s->pending != 0) {
991             s->last_flush = -1;
992             return Z_OK;
993         }
994     }
995 #endif
996 
997     /* Start a new block or continue the current one.
998      */
999     if (strm->avail_in != 0 || s->lookahead != 0 ||
1000         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1001         block_state bstate;
1002 
1003         bstate = s->level == 0 ? deflate_stored(s, flush) :
1004                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1005                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
1006                  (*(configuration_table[s->level].func))(s, flush);
1007 
1008         if (bstate == finish_started || bstate == finish_done) {
1009             s->status = FINISH_STATE;
1010         }
1011         if (bstate == need_more || bstate == finish_started) {
1012             if (strm->avail_out == 0) {
1013                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1014             }
1015             return Z_OK;
1016             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1017              * of deflate should use the same flush parameter to make sure
1018              * that the flush is complete. So we don't have to output an
1019              * empty block here, this will be done at next call. This also
1020              * ensures that for a very small output buffer, we emit at most
1021              * one empty block.
1022              */
1023         }
1024         if (bstate == block_done) {
1025             if (flush == Z_PARTIAL_FLUSH) {
1026                 _tr_align(s);
1027             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1028                 _tr_stored_block(s, (char*)0, 0L, 0);
1029                 /* For a full flush, this empty block will be recognized
1030                  * as a special marker by inflate_sync().
1031                  */
1032                 if (flush == Z_FULL_FLUSH) {
1033                     CLEAR_HASH(s);             /* forget history */
1034                     if (s->lookahead == 0) {
1035                         s->strstart = 0;
1036                         s->block_start = 0L;
1037                         s->insert = 0;
1038                     }
1039                 }
1040             }
1041             flush_pending(strm);
1042             if (strm->avail_out == 0) {
1043               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1044               return Z_OK;
1045             }
1046         }
1047     }
1048 
1049     if (flush != Z_FINISH) return Z_OK;
1050     if (s->wrap <= 0) return Z_STREAM_END;
1051 
1052     /* Write the trailer */
1053 #ifdef GZIP
1054     if (s->wrap == 2) {
1055         put_byte(s, (Byte)(strm->adler & 0xff));
1056         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1057         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1058         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1059         put_byte(s, (Byte)(strm->total_in & 0xff));
1060         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1061         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1062         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1063     }
1064     else
1065 #endif
1066     {
1067         putShortMSB(s, (uInt)(strm->adler >> 16));
1068         putShortMSB(s, (uInt)(strm->adler & 0xffff));
1069     }
1070     flush_pending(strm);
1071     /* If avail_out is zero, the application will call deflate again
1072      * to flush the rest.
1073      */
1074     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1075     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1076 }
1077 
1078 /* ========================================================================= */
1079 int ZEXPORT deflateEnd (strm)
1080     z_streamp strm;
1081 {
1082     int status;
1083 
1084     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1085 
1086     status = strm->state->status;
1087 
1088     /* Deallocate in reverse order of allocations: */
1089     TRY_FREE(strm, strm->state->pending_buf);
1090     TRY_FREE(strm, strm->state->head);
1091     TRY_FREE(strm, strm->state->prev);
1092     TRY_FREE(strm, strm->state->window);
1093 
1094     ZFREE(strm, strm->state);
1095     strm->state = Z_NULL;
1096 
1097     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1098 }
1099 
1100 /* =========================================================================
1101  * Copy the source state to the destination state.
1102  * To simplify the source, this is not supported for 16-bit MSDOS (which
1103  * doesn't have enough memory anyway to duplicate compression states).
1104  */
1105 int ZEXPORT deflateCopy (dest, source)
1106     z_streamp dest;
1107     z_streamp source;
1108 {
1109 #ifdef MAXSEG_64K
1110     return Z_STREAM_ERROR;
1111 #else
1112     deflate_state *ds;
1113     deflate_state *ss;
1114     ushf *overlay;
1115 
1116 
1117     if (deflateStateCheck(source) || dest == Z_NULL) {
1118         return Z_STREAM_ERROR;
1119     }
1120 
1121     ss = source->state;
1122 
1123     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1124 
1125     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1126     if (ds == Z_NULL) return Z_MEM_ERROR;
1127     dest->state = (struct internal_state FAR *) ds;
1128     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1129     ds->strm = dest;
1130 
1131     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1132     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1133     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1134     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1135     ds->pending_buf = (uchf *) overlay;
1136 
1137     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1138         ds->pending_buf == Z_NULL) {
1139         deflateEnd (dest);
1140         return Z_MEM_ERROR;
1141     }
1142     /* following zmemcpy do not work for 16-bit MSDOS */
1143     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1144     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1145     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1146     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1147 
1148     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1149     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1150     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1151 
1152     ds->l_desc.dyn_tree = ds->dyn_ltree;
1153     ds->d_desc.dyn_tree = ds->dyn_dtree;
1154     ds->bl_desc.dyn_tree = ds->bl_tree;
1155 
1156     return Z_OK;
1157 #endif /* MAXSEG_64K */
1158 }
1159 
1160 /* ===========================================================================
1161  * Read a new buffer from the current input stream, update the adler32
1162  * and total number of bytes read.  All deflate() input goes through
1163  * this function so some applications may wish to modify it to avoid
1164  * allocating a large strm->next_in buffer and copying from it.
1165  * (See also flush_pending()).
1166  */
1167 local unsigned read_buf(strm, buf, size)
1168     z_streamp strm;
1169     Bytef *buf;
1170     unsigned size;
1171 {
1172     unsigned len = strm->avail_in;
1173 
1174     if (len > size) len = size;
1175     if (len == 0) return 0;
1176 
1177     strm->avail_in  -= len;
1178 
1179     zmemcpy(buf, strm->next_in, len);
1180     if (strm->state->wrap == 1) {
1181         strm->adler = adler32(strm->adler, buf, len);
1182     }
1183 #ifdef GZIP
1184     else if (strm->state->wrap == 2) {
1185         strm->adler = crc32(strm->adler, buf, len);
1186     }
1187 #endif
1188     strm->next_in  += len;
1189     strm->total_in += len;
1190 
1191     return len;
1192 }
1193 
1194 /* ===========================================================================
1195  * Initialize the "longest match" routines for a new zlib stream
1196  */
1197 local void lm_init (s)
1198     deflate_state *s;
1199 {
1200     s->window_size = (ulg)2L*s->w_size;
1201 
1202     CLEAR_HASH(s);
1203 
1204     /* Set the default configuration parameters:
1205      */
1206     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1207     s->good_match       = configuration_table[s->level].good_length;
1208     s->nice_match       = configuration_table[s->level].nice_length;
1209     s->max_chain_length = configuration_table[s->level].max_chain;
1210 
1211     s->strstart = 0;
1212     s->block_start = 0L;
1213     s->lookahead = 0;
1214     s->insert = 0;
1215     s->match_length = s->prev_length = MIN_MATCH-1;
1216     s->match_available = 0;
1217     s->ins_h = 0;
1218 #ifndef FASTEST
1219 #ifdef ASMV
1220     match_init(); /* initialize the asm code */
1221 #endif
1222 #endif
1223 }
1224 
1225 #ifndef FASTEST
1226 /* ===========================================================================
1227  * Set match_start to the longest match starting at the given string and
1228  * return its length. Matches shorter or equal to prev_length are discarded,
1229  * in which case the result is equal to prev_length and match_start is
1230  * garbage.
1231  * IN assertions: cur_match is the head of the hash chain for the current
1232  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1233  * OUT assertion: the match length is not greater than s->lookahead.
1234  */
1235 #ifndef ASMV
1236 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1237  * match.S. The code will be functionally equivalent.
1238  */
1239 local uInt longest_match(s, cur_match)
1240     deflate_state *s;
1241     IPos cur_match;                             /* current match */
1242 {
1243     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1244     register Bytef *scan = s->window + s->strstart; /* current string */
1245     register Bytef *match;                      /* matched string */
1246     register int len;                           /* length of current match */
1247     int best_len = (int)s->prev_length;         /* best match length so far */
1248     int nice_match = s->nice_match;             /* stop if match long enough */
1249     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1250         s->strstart - (IPos)MAX_DIST(s) : NIL;
1251     /* Stop when cur_match becomes <= limit. To simplify the code,
1252      * we prevent matches with the string of window index 0.
1253      */
1254     Posf *prev = s->prev;
1255     uInt wmask = s->w_mask;
1256 
1257 #ifdef UNALIGNED_OK
1258     /* Compare two bytes at a time. Note: this is not always beneficial.
1259      * Try with and without -DUNALIGNED_OK to check.
1260      */
1261     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1262     register ush scan_start = *(ushf*)scan;
1263     register ush scan_end   = *(ushf*)(scan+best_len-1);
1264 #else
1265     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1266     register Byte scan_end1  = scan[best_len-1];
1267     register Byte scan_end   = scan[best_len];
1268 #endif
1269 
1270     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1271      * It is easy to get rid of this optimization if necessary.
1272      */
1273     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1274 
1275     /* Do not waste too much time if we already have a good match: */
1276     if (s->prev_length >= s->good_match) {
1277         chain_length >>= 2;
1278     }
1279     /* Do not look for matches beyond the end of the input. This is necessary
1280      * to make deflate deterministic.
1281      */
1282     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1283 
1284     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1285 
1286     do {
1287         Assert(cur_match < s->strstart, "no future");
1288         match = s->window + cur_match;
1289 
1290         /* Skip to next match if the match length cannot increase
1291          * or if the match length is less than 2.  Note that the checks below
1292          * for insufficient lookahead only occur occasionally for performance
1293          * reasons.  Therefore uninitialized memory will be accessed, and
1294          * conditional jumps will be made that depend on those values.
1295          * However the length of the match is limited to the lookahead, so
1296          * the output of deflate is not affected by the uninitialized values.
1297          */
1298 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1299         /* This code assumes sizeof(unsigned short) == 2. Do not use
1300          * UNALIGNED_OK if your compiler uses a different size.
1301          */
1302         if (*(ushf*)(match+best_len-1) != scan_end ||
1303             *(ushf*)match != scan_start) continue;
1304 
1305         /* It is not necessary to compare scan[2] and match[2] since they are
1306          * always equal when the other bytes match, given that the hash keys
1307          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1308          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1309          * lookahead only every 4th comparison; the 128th check will be made
1310          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1311          * necessary to put more guard bytes at the end of the window, or
1312          * to check more often for insufficient lookahead.
1313          */
1314         Assert(scan[2] == match[2], "scan[2]?");
1315         scan++, match++;
1316         do {
1317         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1318                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1319                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1320                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1321                  scan < strend);
1322         /* The funny "do {}" generates better code on most compilers */
1323 
1324         /* Here, scan <= window+strstart+257 */
1325         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1326         if (*scan == *match) scan++;
1327 
1328         len = (MAX_MATCH - 1) - (int)(strend-scan);
1329         scan = strend - (MAX_MATCH-1);
1330 
1331 #else /* UNALIGNED_OK */
1332 
1333         if (match[best_len]   != scan_end  ||
1334             match[best_len-1] != scan_end1 ||
1335             *match            != *scan     ||
1336             *++match          != scan[1])      continue;
1337 
1338         /* The check at best_len-1 can be removed because it will be made
1339          * again later. (This heuristic is not always a win.)
1340          * It is not necessary to compare scan[2] and match[2] since they
1341          * are always equal when the other bytes match, given that
1342          * the hash keys are equal and that HASH_BITS >= 8.
1343          */
1344         scan += 2, match++;
1345         Assert(*scan == *match, "match[2]?");
1346 
1347         /* We check for insufficient lookahead only every 8th comparison;
1348          * the 256th check will be made at strstart+258.
1349          */
1350         do {
1351         } while (*++scan == *++match && *++scan == *++match &&
1352                  *++scan == *++match && *++scan == *++match &&
1353                  *++scan == *++match && *++scan == *++match &&
1354                  *++scan == *++match && *++scan == *++match &&
1355                  scan < strend);
1356 
1357         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1358 
1359         len = MAX_MATCH - (int)(strend - scan);
1360         scan = strend - MAX_MATCH;
1361 
1362 #endif /* UNALIGNED_OK */
1363 
1364         if (len > best_len) {
1365             s->match_start = cur_match;
1366             best_len = len;
1367             if (len >= nice_match) break;
1368 #ifdef UNALIGNED_OK
1369             scan_end = *(ushf*)(scan+best_len-1);
1370 #else
1371             scan_end1  = scan[best_len-1];
1372             scan_end   = scan[best_len];
1373 #endif
1374         }
1375     } while ((cur_match = prev[cur_match & wmask]) > limit
1376              && --chain_length != 0);
1377 
1378     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1379     return s->lookahead;
1380 }
1381 #endif /* ASMV */
1382 
1383 #else /* FASTEST */
1384 
1385 /* ---------------------------------------------------------------------------
1386  * Optimized version for FASTEST only
1387  */
1388 local uInt longest_match(s, cur_match)
1389     deflate_state *s;
1390     IPos cur_match;                             /* current match */
1391 {
1392     register Bytef *scan = s->window + s->strstart; /* current string */
1393     register Bytef *match;                       /* matched string */
1394     register int len;                           /* length of current match */
1395     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1396 
1397     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1398      * It is easy to get rid of this optimization if necessary.
1399      */
1400     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1401 
1402     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1403 
1404     Assert(cur_match < s->strstart, "no future");
1405 
1406     match = s->window + cur_match;
1407 
1408     /* Return failure if the match length is less than 2:
1409      */
1410     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1411 
1412     /* The check at best_len-1 can be removed because it will be made
1413      * again later. (This heuristic is not always a win.)
1414      * It is not necessary to compare scan[2] and match[2] since they
1415      * are always equal when the other bytes match, given that
1416      * the hash keys are equal and that HASH_BITS >= 8.
1417      */
1418     scan += 2, match += 2;
1419     Assert(*scan == *match, "match[2]?");
1420 
1421     /* We check for insufficient lookahead only every 8th comparison;
1422      * the 256th check will be made at strstart+258.
1423      */
1424     do {
1425     } while (*++scan == *++match && *++scan == *++match &&
1426              *++scan == *++match && *++scan == *++match &&
1427              *++scan == *++match && *++scan == *++match &&
1428              *++scan == *++match && *++scan == *++match &&
1429              scan < strend);
1430 
1431     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1432 
1433     len = MAX_MATCH - (int)(strend - scan);
1434 
1435     if (len < MIN_MATCH) return MIN_MATCH - 1;
1436 
1437     s->match_start = cur_match;
1438     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1439 }
1440 
1441 #endif /* FASTEST */
1442 
1443 #ifdef ZLIB_DEBUG
1444 
1445 #define EQUAL 0
1446 /* result of memcmp for equal strings */
1447 
1448 /* ===========================================================================
1449  * Check that the match at match_start is indeed a match.
1450  */
1451 local void check_match(s, start, match, length)
1452     deflate_state *s;
1453     IPos start, match;
1454     int length;
1455 {
1456     /* check that the match is indeed a match */
1457     if (zmemcmp(s->window + match,
1458                 s->window + start, length) != EQUAL) {
1459         fprintf(stderr, " start %u, match %u, length %d\n",
1460                 start, match, length);
1461         do {
1462             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1463         } while (--length != 0);
1464         z_error("invalid match");
1465     }
1466     if (z_verbose > 1) {
1467         fprintf(stderr,"\\[%d,%d]", start-match, length);
1468         do { putc(s->window[start++], stderr); } while (--length != 0);
1469     }
1470 }
1471 #else
1472 #  define check_match(s, start, match, length)
1473 #endif /* ZLIB_DEBUG */
1474 
1475 /* ===========================================================================
1476  * Fill the window when the lookahead becomes insufficient.
1477  * Updates strstart and lookahead.
1478  *
1479  * IN assertion: lookahead < MIN_LOOKAHEAD
1480  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1481  *    At least one byte has been read, or avail_in == 0; reads are
1482  *    performed for at least two bytes (required for the zip translate_eol
1483  *    option -- not supported here).
1484  */
1485 local void fill_window(s)
1486     deflate_state *s;
1487 {
1488     unsigned n;
1489     unsigned more;    /* Amount of free space at the end of the window. */
1490     uInt wsize = s->w_size;
1491 
1492     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1493 
1494     do {
1495         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1496 
1497         /* Deal with !@#$% 64K limit: */
1498         if (sizeof(int) <= 2) {
1499             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1500                 more = wsize;
1501 
1502             } else if (more == (unsigned)(-1)) {
1503                 /* Very unlikely, but possible on 16 bit machine if
1504                  * strstart == 0 && lookahead == 1 (input done a byte at time)
1505                  */
1506                 more--;
1507             }
1508         }
1509 
1510         /* If the window is almost full and there is insufficient lookahead,
1511          * move the upper half to the lower one to make room in the upper half.
1512          */
1513         if (s->strstart >= wsize+MAX_DIST(s)) {
1514 
1515             zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1516             s->match_start -= wsize;
1517             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1518             s->block_start -= (long) wsize;
1519             slide_hash(s);
1520             more += wsize;
1521         }
1522         if (s->strm->avail_in == 0) break;
1523 
1524         /* If there was no sliding:
1525          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1526          *    more == window_size - lookahead - strstart
1527          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1528          * => more >= window_size - 2*WSIZE + 2
1529          * In the BIG_MEM or MMAP case (not yet supported),
1530          *   window_size == input_size + MIN_LOOKAHEAD  &&
1531          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1532          * Otherwise, window_size == 2*WSIZE so more >= 2.
1533          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1534          */
1535         Assert(more >= 2, "more < 2");
1536 
1537         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1538         s->lookahead += n;
1539 
1540         /* Initialize the hash value now that we have some input: */
1541         if (s->lookahead + s->insert >= MIN_MATCH) {
1542             uInt str = s->strstart - s->insert;
1543             s->ins_h = s->window[str];
1544             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1545 #if MIN_MATCH != 3
1546             Call UPDATE_HASH() MIN_MATCH-3 more times
1547 #endif
1548             while (s->insert) {
1549                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1550 #ifndef FASTEST
1551                 s->prev[str & s->w_mask] = s->head[s->ins_h];
1552 #endif
1553                 s->head[s->ins_h] = (Pos)str;
1554                 str++;
1555                 s->insert--;
1556                 if (s->lookahead + s->insert < MIN_MATCH)
1557                     break;
1558             }
1559         }
1560         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1561          * but this is not important since only literal bytes will be emitted.
1562          */
1563 
1564     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1565 
1566     /* If the WIN_INIT bytes after the end of the current data have never been
1567      * written, then zero those bytes in order to avoid memory check reports of
1568      * the use of uninitialized (or uninitialised as Julian writes) bytes by
1569      * the longest match routines.  Update the high water mark for the next
1570      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1571      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1572      */
1573     if (s->high_water < s->window_size) {
1574         ulg curr = s->strstart + (ulg)(s->lookahead);
1575         ulg init;
1576 
1577         if (s->high_water < curr) {
1578             /* Previous high water mark below current data -- zero WIN_INIT
1579              * bytes or up to end of window, whichever is less.
1580              */
1581             init = s->window_size - curr;
1582             if (init > WIN_INIT)
1583                 init = WIN_INIT;
1584             zmemzero(s->window + curr, (unsigned)init);
1585             s->high_water = curr + init;
1586         }
1587         else if (s->high_water < (ulg)curr + WIN_INIT) {
1588             /* High water mark at or above current data, but below current data
1589              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1590              * to end of window, whichever is less.
1591              */
1592             init = (ulg)curr + WIN_INIT - s->high_water;
1593             if (init > s->window_size - s->high_water)
1594                 init = s->window_size - s->high_water;
1595             zmemzero(s->window + s->high_water, (unsigned)init);
1596             s->high_water += init;
1597         }
1598     }
1599 
1600     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1601            "not enough room for search");
1602 }
1603 
1604 /* ===========================================================================
1605  * Flush the current block, with given end-of-file flag.
1606  * IN assertion: strstart is set to the end of the current match.
1607  */
1608 #define FLUSH_BLOCK_ONLY(s, last) { \
1609    _tr_flush_block(s, (s->block_start >= 0L ? \
1610                    (charf *)&s->window[(unsigned)s->block_start] : \
1611                    (charf *)Z_NULL), \
1612                 (ulg)((long)s->strstart - s->block_start), \
1613                 (last)); \
1614    s->block_start = s->strstart; \
1615    flush_pending(s->strm); \
1616    Tracev((stderr,"[FLUSH]")); \
1617 }
1618 
1619 /* Same but force premature exit if necessary. */
1620 #define FLUSH_BLOCK(s, last) { \
1621    FLUSH_BLOCK_ONLY(s, last); \
1622    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1623 }
1624 
1625 /* Maximum stored block length in deflate format (not including header). */
1626 #define MAX_STORED 65535
1627 
1628 #if !defined(MIN)
1629 /* Minimum of a and b. */
1630 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1631 #endif
1632 
1633 /* ===========================================================================
1634  * Copy without compression as much as possible from the input stream, return
1635  * the current block state.
1636  *
1637  * In case deflateParams() is used to later switch to a non-zero compression
1638  * level, s->matches (otherwise unused when storing) keeps track of the number
1639  * of hash table slides to perform. If s->matches is 1, then one hash table
1640  * slide will be done when switching. If s->matches is 2, the maximum value
1641  * allowed here, then the hash table will be cleared, since two or more slides
1642  * is the same as a clear.
1643  *
1644  * deflate_stored() is written to minimize the number of times an input byte is
1645  * copied. It is most efficient with large input and output buffers, which
1646  * maximizes the opportunites to have a single copy from next_in to next_out.
1647  */
1648 local block_state deflate_stored(s, flush)
1649     deflate_state *s;
1650     int flush;
1651 {
1652     /* Smallest worthy block size when not flushing or finishing. By default
1653      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1654      * large input and output buffers, the stored block size will be larger.
1655      */
1656     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1657 
1658     /* Copy as many min_block or larger stored blocks directly to next_out as
1659      * possible. If flushing, copy the remaining available input to next_out as
1660      * stored blocks, if there is enough space.
1661      */
1662     unsigned len, left, have, last = 0;
1663     unsigned used = s->strm->avail_in;
1664     do {
1665         /* Set len to the maximum size block that we can copy directly with the
1666          * available input data and output space. Set left to how much of that
1667          * would be copied from what's left in the window.
1668          */
1669         len = MAX_STORED;       /* maximum deflate stored block length */
1670         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1671         if (s->strm->avail_out < have)          /* need room for header */
1672             break;
1673             /* maximum stored block length that will fit in avail_out: */
1674         have = s->strm->avail_out - have;
1675         left = s->strstart - s->block_start;    /* bytes left in window */
1676         if (len > (ulg)left + s->strm->avail_in)
1677             len = left + s->strm->avail_in;     /* limit len to the input */
1678         if (len > have)
1679             len = have;                         /* limit len to the output */
1680 
1681         /* If the stored block would be less than min_block in length, or if
1682          * unable to copy all of the available input when flushing, then try
1683          * copying to the window and the pending buffer instead. Also don't
1684          * write an empty block when flushing -- deflate() does that.
1685          */
1686         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1687                                 flush == Z_NO_FLUSH ||
1688                                 len != left + s->strm->avail_in))
1689             break;
1690 
1691         /* Make a dummy stored block in pending to get the header bytes,
1692          * including any pending bits. This also updates the debugging counts.
1693          */
1694         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1695         _tr_stored_block(s, (char *)0, 0L, last);
1696 
1697         /* Replace the lengths in the dummy stored block with len. */
1698         s->pending_buf[s->pending - 4] = len;
1699         s->pending_buf[s->pending - 3] = len >> 8;
1700         s->pending_buf[s->pending - 2] = ~len;
1701         s->pending_buf[s->pending - 1] = ~len >> 8;
1702 
1703         /* Write the stored block header bytes. */
1704         flush_pending(s->strm);
1705 
1706 #ifdef ZLIB_DEBUG
1707         /* Update debugging counts for the data about to be copied. */
1708         s->compressed_len += len << 3;
1709         s->bits_sent += len << 3;
1710 #endif
1711 
1712         /* Copy uncompressed bytes from the window to next_out. */
1713         if (left) {
1714             if (left > len)
1715                 left = len;
1716             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1717             s->strm->next_out += left;
1718             s->strm->avail_out -= left;
1719             s->strm->total_out += left;
1720             s->block_start += left;
1721             len -= left;
1722         }
1723 
1724         /* Copy uncompressed bytes directly from next_in to next_out, updating
1725          * the check value.
1726          */
1727         if (len) {
1728             read_buf(s->strm, s->strm->next_out, len);
1729             s->strm->next_out += len;
1730             s->strm->avail_out -= len;
1731             s->strm->total_out += len;
1732         }
1733     } while (last == 0);
1734 
1735     /* Update the sliding window with the last s->w_size bytes of the copied
1736      * data, or append all of the copied data to the existing window if less
1737      * than s->w_size bytes were copied. Also update the number of bytes to
1738      * insert in the hash tables, in the event that deflateParams() switches to
1739      * a non-zero compression level.
1740      */
1741     used -= s->strm->avail_in;      /* number of input bytes directly copied */
1742     if (used) {
1743         /* If any input was used, then no unused input remains in the window,
1744          * therefore s->block_start == s->strstart.
1745          */
1746         if (used >= s->w_size) {    /* supplant the previous history */
1747             s->matches = 2;         /* clear hash */
1748             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1749             s->strstart = s->w_size;
1750         }
1751         else {
1752             if (s->window_size - s->strstart <= used) {
1753                 /* Slide the window down. */
1754                 s->strstart -= s->w_size;
1755                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1756                 if (s->matches < 2)
1757                     s->matches++;   /* add a pending slide_hash() */
1758             }
1759             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1760             s->strstart += used;
1761         }
1762         s->block_start = s->strstart;
1763         s->insert += MIN(used, s->w_size - s->insert);
1764     }
1765     if (s->high_water < s->strstart)
1766         s->high_water = s->strstart;
1767 
1768     /* If the last block was written to next_out, then done. */
1769     if (last)
1770         return finish_done;
1771 
1772     /* If flushing and all input has been consumed, then done. */
1773     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1774         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1775         return block_done;
1776 
1777     /* Fill the window with any remaining input. */
1778     have = s->window_size - s->strstart - 1;
1779     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1780         /* Slide the window down. */
1781         s->block_start -= s->w_size;
1782         s->strstart -= s->w_size;
1783         zmemcpy(s->window, s->window + s->w_size, s->strstart);
1784         if (s->matches < 2)
1785             s->matches++;           /* add a pending slide_hash() */
1786         have += s->w_size;          /* more space now */
1787     }
1788     if (have > s->strm->avail_in)
1789         have = s->strm->avail_in;
1790     if (have) {
1791         read_buf(s->strm, s->window + s->strstart, have);
1792         s->strstart += have;
1793     }
1794     if (s->high_water < s->strstart)
1795         s->high_water = s->strstart;
1796 
1797     /* There was not enough avail_out to write a complete worthy or flushed
1798      * stored block to next_out. Write a stored block to pending instead, if we
1799      * have enough input for a worthy block, or if flushing and there is enough
1800      * room for the remaining input as a stored block in the pending buffer.
1801      */
1802     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1803         /* maximum stored block length that will fit in pending: */
1804     have = MIN(s->pending_buf_size - have, MAX_STORED);
1805     min_block = MIN(have, s->w_size);
1806     left = s->strstart - s->block_start;
1807     if (left >= min_block ||
1808         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1809          s->strm->avail_in == 0 && left <= have)) {
1810         len = MIN(left, have);
1811         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1812                len == left ? 1 : 0;
1813         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1814         s->block_start += len;
1815         flush_pending(s->strm);
1816     }
1817 
1818     /* We've done all we can with the available input and output. */
1819     return last ? finish_started : need_more;
1820 }
1821 
1822 /* ===========================================================================
1823  * Compress as much as possible from the input stream, return the current
1824  * block state.
1825  * This function does not perform lazy evaluation of matches and inserts
1826  * new strings in the dictionary only for unmatched strings or for short
1827  * matches. It is used only for the fast compression options.
1828  */
1829 local block_state deflate_fast(s, flush)
1830     deflate_state *s;
1831     int flush;
1832 {
1833     IPos hash_head;       /* head of the hash chain */
1834     int bflush;           /* set if current block must be flushed */
1835 
1836     for (;;) {
1837         /* Make sure that we always have enough lookahead, except
1838          * at the end of the input file. We need MAX_MATCH bytes
1839          * for the next match, plus MIN_MATCH bytes to insert the
1840          * string following the next match.
1841          */
1842         if (s->lookahead < MIN_LOOKAHEAD) {
1843             fill_window(s);
1844             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1845                 return need_more;
1846             }
1847             if (s->lookahead == 0) break; /* flush the current block */
1848         }
1849 
1850         /* Insert the string window[strstart .. strstart+2] in the
1851          * dictionary, and set hash_head to the head of the hash chain:
1852          */
1853         hash_head = NIL;
1854         if (s->lookahead >= MIN_MATCH) {
1855             INSERT_STRING(s, s->strstart, hash_head);
1856         }
1857 
1858         /* Find the longest match, discarding those <= prev_length.
1859          * At this point we have always match_length < MIN_MATCH
1860          */
1861         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1862             /* To simplify the code, we prevent matches with the string
1863              * of window index 0 (in particular we have to avoid a match
1864              * of the string with itself at the start of the input file).
1865              */
1866             s->match_length = longest_match (s, hash_head);
1867             /* longest_match() sets match_start */
1868         }
1869         if (s->match_length >= MIN_MATCH) {
1870             check_match(s, s->strstart, s->match_start, s->match_length);
1871 
1872             _tr_tally_dist(s, s->strstart - s->match_start,
1873                            s->match_length - MIN_MATCH, bflush);
1874 
1875             s->lookahead -= s->match_length;
1876 
1877             /* Insert new strings in the hash table only if the match length
1878              * is not too large. This saves time but degrades compression.
1879              */
1880 #ifndef FASTEST
1881             if (s->match_length <= s->max_insert_length &&
1882                 s->lookahead >= MIN_MATCH) {
1883                 s->match_length--; /* string at strstart already in table */
1884                 do {
1885                     s->strstart++;
1886                     INSERT_STRING(s, s->strstart, hash_head);
1887                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1888                      * always MIN_MATCH bytes ahead.
1889                      */
1890                 } while (--s->match_length != 0);
1891                 s->strstart++;
1892             } else
1893 #endif
1894             {
1895                 s->strstart += s->match_length;
1896                 s->match_length = 0;
1897                 s->ins_h = s->window[s->strstart];
1898                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1899 #if MIN_MATCH != 3
1900                 Call UPDATE_HASH() MIN_MATCH-3 more times
1901 #endif
1902                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1903                  * matter since it will be recomputed at next deflate call.
1904                  */
1905             }
1906         } else {
1907             /* No match, output a literal byte */
1908             Tracevv((stderr,"%c", s->window[s->strstart]));
1909             _tr_tally_lit (s, s->window[s->strstart], bflush);
1910             s->lookahead--;
1911             s->strstart++;
1912         }
1913         if (bflush) FLUSH_BLOCK(s, 0);
1914     }
1915     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1916     if (flush == Z_FINISH) {
1917         FLUSH_BLOCK(s, 1);
1918         return finish_done;
1919     }
1920     if (s->last_lit)
1921         FLUSH_BLOCK(s, 0);
1922     return block_done;
1923 }
1924 
1925 #ifndef FASTEST
1926 /* ===========================================================================
1927  * Same as above, but achieves better compression. We use a lazy
1928  * evaluation for matches: a match is finally adopted only if there is
1929  * no better match at the next window position.
1930  */
1931 local block_state deflate_slow(s, flush)
1932     deflate_state *s;
1933     int flush;
1934 {
1935     IPos hash_head;          /* head of hash chain */
1936     int bflush;              /* set if current block must be flushed */
1937 
1938     /* Process the input block. */
1939     for (;;) {
1940         /* Make sure that we always have enough lookahead, except
1941          * at the end of the input file. We need MAX_MATCH bytes
1942          * for the next match, plus MIN_MATCH bytes to insert the
1943          * string following the next match.
1944          */
1945         if (s->lookahead < MIN_LOOKAHEAD) {
1946             fill_window(s);
1947             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1948                 return need_more;
1949             }
1950             if (s->lookahead == 0) break; /* flush the current block */
1951         }
1952 
1953         /* Insert the string window[strstart .. strstart+2] in the
1954          * dictionary, and set hash_head to the head of the hash chain:
1955          */
1956         hash_head = NIL;
1957         if (s->lookahead >= MIN_MATCH) {
1958             INSERT_STRING(s, s->strstart, hash_head);
1959         }
1960 
1961         /* Find the longest match, discarding those <= prev_length.
1962          */
1963         s->prev_length = s->match_length, s->prev_match = s->match_start;
1964         s->match_length = MIN_MATCH-1;
1965 
1966         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1967             s->strstart - hash_head <= MAX_DIST(s)) {
1968             /* To simplify the code, we prevent matches with the string
1969              * of window index 0 (in particular we have to avoid a match
1970              * of the string with itself at the start of the input file).
1971              */
1972             s->match_length = longest_match (s, hash_head);
1973             /* longest_match() sets match_start */
1974 
1975             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1976 #if TOO_FAR <= 32767
1977                 || (s->match_length == MIN_MATCH &&
1978                     s->strstart - s->match_start > TOO_FAR)
1979 #endif
1980                 )) {
1981 
1982                 /* If prev_match is also MIN_MATCH, match_start is garbage
1983                  * but we will ignore the current match anyway.
1984                  */
1985                 s->match_length = MIN_MATCH-1;
1986             }
1987         }
1988         /* If there was a match at the previous step and the current
1989          * match is not better, output the previous match:
1990          */
1991         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1992             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1993             /* Do not insert strings in hash table beyond this. */
1994 
1995             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1996 
1997             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1998                            s->prev_length - MIN_MATCH, bflush);
1999 
2000             /* Insert in hash table all strings up to the end of the match.
2001              * strstart-1 and strstart are already inserted. If there is not
2002              * enough lookahead, the last two strings are not inserted in
2003              * the hash table.
2004              */
2005             s->lookahead -= s->prev_length-1;
2006             s->prev_length -= 2;
2007             do {
2008                 if (++s->strstart <= max_insert) {
2009                     INSERT_STRING(s, s->strstart, hash_head);
2010                 }
2011             } while (--s->prev_length != 0);
2012             s->match_available = 0;
2013             s->match_length = MIN_MATCH-1;
2014             s->strstart++;
2015 
2016             if (bflush) FLUSH_BLOCK(s, 0);
2017 
2018         } else if (s->match_available) {
2019             /* If there was no match at the previous position, output a
2020              * single literal. If there was a match but the current match
2021              * is longer, truncate the previous match to a single literal.
2022              */
2023             Tracevv((stderr,"%c", s->window[s->strstart-1]));
2024             _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2025             if (bflush) {
2026                 FLUSH_BLOCK_ONLY(s, 0);
2027             }
2028             s->strstart++;
2029             s->lookahead--;
2030             if (s->strm->avail_out == 0) return need_more;
2031         } else {
2032             /* There is no previous match to compare with, wait for
2033              * the next step to decide.
2034              */
2035             s->match_available = 1;
2036             s->strstart++;
2037             s->lookahead--;
2038         }
2039     }
2040     Assert (flush != Z_NO_FLUSH, "no flush?");
2041     if (s->match_available) {
2042         Tracevv((stderr,"%c", s->window[s->strstart-1]));
2043         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2044         s->match_available = 0;
2045     }
2046     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2047     if (flush == Z_FINISH) {
2048         FLUSH_BLOCK(s, 1);
2049         return finish_done;
2050     }
2051     if (s->last_lit)
2052         FLUSH_BLOCK(s, 0);
2053     return block_done;
2054 }
2055 #endif /* FASTEST */
2056 
2057 /* ===========================================================================
2058  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2059  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2060  * deflate switches away from Z_RLE.)
2061  */
2062 local block_state deflate_rle(s, flush)
2063     deflate_state *s;
2064     int flush;
2065 {
2066     int bflush;             /* set if current block must be flushed */
2067     uInt prev;              /* byte at distance one to match */
2068     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2069 
2070     for (;;) {
2071         /* Make sure that we always have enough lookahead, except
2072          * at the end of the input file. We need MAX_MATCH bytes
2073          * for the longest run, plus one for the unrolled loop.
2074          */
2075         if (s->lookahead <= MAX_MATCH) {
2076             fill_window(s);
2077             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2078                 return need_more;
2079             }
2080             if (s->lookahead == 0) break; /* flush the current block */
2081         }
2082 
2083         /* See how many times the previous byte repeats */
2084         s->match_length = 0;
2085         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2086             scan = s->window + s->strstart - 1;
2087             prev = *scan;
2088             if (prev == *++scan && prev == *++scan && prev == *++scan) {
2089                 strend = s->window + s->strstart + MAX_MATCH;
2090                 do {
2091                 } while (prev == *++scan && prev == *++scan &&
2092                          prev == *++scan && prev == *++scan &&
2093                          prev == *++scan && prev == *++scan &&
2094                          prev == *++scan && prev == *++scan &&
2095                          scan < strend);
2096                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2097                 if (s->match_length > s->lookahead)
2098                     s->match_length = s->lookahead;
2099             }
2100             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2101         }
2102 
2103         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2104         if (s->match_length >= MIN_MATCH) {
2105             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2106 
2107             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2108 
2109             s->lookahead -= s->match_length;
2110             s->strstart += s->match_length;
2111             s->match_length = 0;
2112         } else {
2113             /* No match, output a literal byte */
2114             Tracevv((stderr,"%c", s->window[s->strstart]));
2115             _tr_tally_lit (s, s->window[s->strstart], bflush);
2116             s->lookahead--;
2117             s->strstart++;
2118         }
2119         if (bflush) FLUSH_BLOCK(s, 0);
2120     }
2121     s->insert = 0;
2122     if (flush == Z_FINISH) {
2123         FLUSH_BLOCK(s, 1);
2124         return finish_done;
2125     }
2126     if (s->last_lit)
2127         FLUSH_BLOCK(s, 0);
2128     return block_done;
2129 }
2130 
2131 /* ===========================================================================
2132  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2133  * (It will be regenerated if this run of deflate switches away from Huffman.)
2134  */
2135 local block_state deflate_huff(s, flush)
2136     deflate_state *s;
2137     int flush;
2138 {
2139     int bflush;             /* set if current block must be flushed */
2140 
2141     for (;;) {
2142         /* Make sure that we have a literal to write. */
2143         if (s->lookahead == 0) {
2144             fill_window(s);
2145             if (s->lookahead == 0) {
2146                 if (flush == Z_NO_FLUSH)
2147                     return need_more;
2148                 break;      /* flush the current block */
2149             }
2150         }
2151 
2152         /* Output a literal byte */
2153         s->match_length = 0;
2154         Tracevv((stderr,"%c", s->window[s->strstart]));
2155         _tr_tally_lit (s, s->window[s->strstart], bflush);
2156         s->lookahead--;
2157         s->strstart++;
2158         if (bflush) FLUSH_BLOCK(s, 0);
2159     }
2160     s->insert = 0;
2161     if (flush == Z_FINISH) {
2162         FLUSH_BLOCK(s, 1);
2163         return finish_done;
2164     }
2165     if (s->last_lit)
2166         FLUSH_BLOCK(s, 0);
2167     return block_done;
2168 }
2169