xref: /freebsd/sys/contrib/zstd/lib/common/xxhash.c (revision 42249ef2)
1 /*
2 *  xxHash - Fast Hash algorithm
3 *  Copyright (C) 2012-2016, Yann Collet
4 *
5 *  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
6 *
7 *  Redistribution and use in source and binary forms, with or without
8 *  modification, are permitted provided that the following conditions are
9 *  met:
10 *
11 *  * Redistributions of source code must retain the above copyright
12 *  notice, this list of conditions and the following disclaimer.
13 *  * Redistributions in binary form must reproduce the above
14 *  copyright notice, this list of conditions and the following disclaimer
15 *  in the documentation and/or other materials provided with the
16 *  distribution.
17 *
18 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 *  You can contact the author at :
31 *  - xxHash homepage: http://www.xxhash.com
32 *  - xxHash source repository : https://github.com/Cyan4973/xxHash
33 */
34 
35 
36 /* *************************************
37 *  Tuning parameters
38 ***************************************/
39 /*!XXH_FORCE_MEMORY_ACCESS :
40  * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
41  * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
42  * The below switch allow to select different access method for improved performance.
43  * Method 0 (default) : use `memcpy()`. Safe and portable.
44  * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
45  *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
46  * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
47  *            It can generate buggy code on targets which do not support unaligned memory accesses.
48  *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
49  * See http://stackoverflow.com/a/32095106/646947 for details.
50  * Prefer these methods in priority order (0 > 1 > 2)
51  */
52 #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
53 #  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
54 #    define XXH_FORCE_MEMORY_ACCESS 2
55 #  elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
56   (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
57 #    define XXH_FORCE_MEMORY_ACCESS 1
58 #  endif
59 #endif
60 
61 /*!XXH_ACCEPT_NULL_INPUT_POINTER :
62  * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
63  * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
64  * By default, this option is disabled. To enable it, uncomment below define :
65  */
66 /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
67 
68 /*!XXH_FORCE_NATIVE_FORMAT :
69  * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
70  * Results are therefore identical for little-endian and big-endian CPU.
71  * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
72  * Should endian-independence be of no importance for your application, you may set the #define below to 1,
73  * to improve speed for Big-endian CPU.
74  * This option has no impact on Little_Endian CPU.
75  */
76 #ifndef XXH_FORCE_NATIVE_FORMAT   /* can be defined externally */
77 #  define XXH_FORCE_NATIVE_FORMAT 0
78 #endif
79 
80 /*!XXH_FORCE_ALIGN_CHECK :
81  * This is a minor performance trick, only useful with lots of very small keys.
82  * It means : check for aligned/unaligned input.
83  * The check costs one initial branch per hash; set to 0 when the input data
84  * is guaranteed to be aligned.
85  */
86 #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
87 #  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
88 #    define XXH_FORCE_ALIGN_CHECK 0
89 #  else
90 #    define XXH_FORCE_ALIGN_CHECK 1
91 #  endif
92 #endif
93 
94 
95 /* *************************************
96 *  Includes & Memory related functions
97 ***************************************/
98 /* Modify the local functions below should you wish to use some other memory routines */
99 /* for malloc(), free() */
100 #include <stdlib.h>
101 #include <stddef.h>     /* size_t */
102 static void* XXH_malloc(size_t s) { return malloc(s); }
103 static void  XXH_free  (void* p)  { free(p); }
104 /* for memcpy() */
105 #include <string.h>
106 static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
107 
108 #ifndef XXH_STATIC_LINKING_ONLY
109 #  define XXH_STATIC_LINKING_ONLY
110 #endif
111 #include "xxhash.h"
112 
113 
114 /* *************************************
115 *  Compiler Specific Options
116 ***************************************/
117 #if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
118 #  define INLINE_KEYWORD inline
119 #else
120 #  define INLINE_KEYWORD
121 #endif
122 
123 #if defined(__GNUC__)
124 #  define FORCE_INLINE_ATTR __attribute__((always_inline))
125 #elif defined(_MSC_VER)
126 #  define FORCE_INLINE_ATTR __forceinline
127 #else
128 #  define FORCE_INLINE_ATTR
129 #endif
130 
131 #define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
132 
133 
134 #ifdef _MSC_VER
135 #  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */
136 #endif
137 
138 
139 /* *************************************
140 *  Basic Types
141 ***************************************/
142 #ifndef MEM_MODULE
143 # define MEM_MODULE
144 # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
145 #   include <stdint.h>
146     typedef uint8_t  BYTE;
147     typedef uint16_t U16;
148     typedef uint32_t U32;
149     typedef  int32_t S32;
150     typedef uint64_t U64;
151 #  else
152     typedef unsigned char      BYTE;
153     typedef unsigned short     U16;
154     typedef unsigned int       U32;
155     typedef   signed int       S32;
156     typedef unsigned long long U64;   /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
157 #  endif
158 #endif
159 
160 
161 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
162 
163 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
164 static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
165 static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
166 
167 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
168 
169 /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
170 /* currently only defined for gcc and icc */
171 typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
172 
173 static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
174 static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
175 
176 #else
177 
178 /* portable and safe solution. Generally efficient.
179  * see : http://stackoverflow.com/a/32095106/646947
180  */
181 
182 static U32 XXH_read32(const void* memPtr)
183 {
184     U32 val;
185     memcpy(&val, memPtr, sizeof(val));
186     return val;
187 }
188 
189 static U64 XXH_read64(const void* memPtr)
190 {
191     U64 val;
192     memcpy(&val, memPtr, sizeof(val));
193     return val;
194 }
195 
196 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
197 
198 
199 /* ****************************************
200 *  Compiler-specific Functions and Macros
201 ******************************************/
202 #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
203 
204 /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
205 #if defined(_MSC_VER)
206 #  define XXH_rotl32(x,r) _rotl(x,r)
207 #  define XXH_rotl64(x,r) _rotl64(x,r)
208 #else
209 #  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
210 #  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
211 #endif
212 
213 #if defined(_MSC_VER)     /* Visual Studio */
214 #  define XXH_swap32 _byteswap_ulong
215 #  define XXH_swap64 _byteswap_uint64
216 #elif GCC_VERSION >= 403
217 #  define XXH_swap32 __builtin_bswap32
218 #  define XXH_swap64 __builtin_bswap64
219 #else
220 static U32 XXH_swap32 (U32 x)
221 {
222     return  ((x << 24) & 0xff000000 ) |
223             ((x <<  8) & 0x00ff0000 ) |
224             ((x >>  8) & 0x0000ff00 ) |
225             ((x >> 24) & 0x000000ff );
226 }
227 static U64 XXH_swap64 (U64 x)
228 {
229     return  ((x << 56) & 0xff00000000000000ULL) |
230             ((x << 40) & 0x00ff000000000000ULL) |
231             ((x << 24) & 0x0000ff0000000000ULL) |
232             ((x << 8)  & 0x000000ff00000000ULL) |
233             ((x >> 8)  & 0x00000000ff000000ULL) |
234             ((x >> 24) & 0x0000000000ff0000ULL) |
235             ((x >> 40) & 0x000000000000ff00ULL) |
236             ((x >> 56) & 0x00000000000000ffULL);
237 }
238 #endif
239 
240 
241 /* *************************************
242 *  Architecture Macros
243 ***************************************/
244 typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
245 
246 /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
247 #ifndef XXH_CPU_LITTLE_ENDIAN
248     static const int g_one = 1;
249 #   define XXH_CPU_LITTLE_ENDIAN   (*(const char*)(&g_one))
250 #endif
251 
252 
253 /* ***************************
254 *  Memory reads
255 *****************************/
256 typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
257 
258 FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
259 {
260     if (align==XXH_unaligned)
261         return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
262     else
263         return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
264 }
265 
266 FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
267 {
268     return XXH_readLE32_align(ptr, endian, XXH_unaligned);
269 }
270 
271 static U32 XXH_readBE32(const void* ptr)
272 {
273     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
274 }
275 
276 FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
277 {
278     if (align==XXH_unaligned)
279         return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
280     else
281         return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
282 }
283 
284 FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
285 {
286     return XXH_readLE64_align(ptr, endian, XXH_unaligned);
287 }
288 
289 static U64 XXH_readBE64(const void* ptr)
290 {
291     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
292 }
293 
294 
295 /* *************************************
296 *  Macros
297 ***************************************/
298 #define XXH_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(int)(!!(c)) }; }    /* use only *after* variable declarations */
299 
300 
301 /* *************************************
302 *  Constants
303 ***************************************/
304 static const U32 PRIME32_1 = 2654435761U;
305 static const U32 PRIME32_2 = 2246822519U;
306 static const U32 PRIME32_3 = 3266489917U;
307 static const U32 PRIME32_4 =  668265263U;
308 static const U32 PRIME32_5 =  374761393U;
309 
310 static const U64 PRIME64_1 = 11400714785074694791ULL;
311 static const U64 PRIME64_2 = 14029467366897019727ULL;
312 static const U64 PRIME64_3 =  1609587929392839161ULL;
313 static const U64 PRIME64_4 =  9650029242287828579ULL;
314 static const U64 PRIME64_5 =  2870177450012600261ULL;
315 
316 XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
317 
318 
319 /* **************************
320 *  Utils
321 ****************************/
322 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
323 {
324     memcpy(dstState, srcState, sizeof(*dstState));
325 }
326 
327 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
328 {
329     memcpy(dstState, srcState, sizeof(*dstState));
330 }
331 
332 
333 /* ***************************
334 *  Simple Hash Functions
335 *****************************/
336 
337 static U32 XXH32_round(U32 seed, U32 input)
338 {
339     seed += input * PRIME32_2;
340     seed  = XXH_rotl32(seed, 13);
341     seed *= PRIME32_1;
342     return seed;
343 }
344 
345 FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
346 {
347     const BYTE* p = (const BYTE*)input;
348     const BYTE* bEnd = p + len;
349     U32 h32;
350 #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
351 
352 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
353     if (p==NULL) {
354         len=0;
355         bEnd=p=(const BYTE*)(size_t)16;
356     }
357 #endif
358 
359     if (len>=16) {
360         const BYTE* const limit = bEnd - 16;
361         U32 v1 = seed + PRIME32_1 + PRIME32_2;
362         U32 v2 = seed + PRIME32_2;
363         U32 v3 = seed + 0;
364         U32 v4 = seed - PRIME32_1;
365 
366         do {
367             v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
368             v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
369             v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
370             v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
371         } while (p<=limit);
372 
373         h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
374     } else {
375         h32  = seed + PRIME32_5;
376     }
377 
378     h32 += (U32) len;
379 
380     while (p+4<=bEnd) {
381         h32 += XXH_get32bits(p) * PRIME32_3;
382         h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;
383         p+=4;
384     }
385 
386     while (p<bEnd) {
387         h32 += (*p) * PRIME32_5;
388         h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
389         p++;
390     }
391 
392     h32 ^= h32 >> 15;
393     h32 *= PRIME32_2;
394     h32 ^= h32 >> 13;
395     h32 *= PRIME32_3;
396     h32 ^= h32 >> 16;
397 
398     return h32;
399 }
400 
401 
402 XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
403 {
404 #if 0
405     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
406     XXH32_CREATESTATE_STATIC(state);
407     XXH32_reset(state, seed);
408     XXH32_update(state, input, len);
409     return XXH32_digest(state);
410 #else
411     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
412 
413     if (XXH_FORCE_ALIGN_CHECK) {
414         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
415             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
416                 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
417             else
418                 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
419     }   }
420 
421     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
422         return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
423     else
424         return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
425 #endif
426 }
427 
428 
429 static U64 XXH64_round(U64 acc, U64 input)
430 {
431     acc += input * PRIME64_2;
432     acc  = XXH_rotl64(acc, 31);
433     acc *= PRIME64_1;
434     return acc;
435 }
436 
437 static U64 XXH64_mergeRound(U64 acc, U64 val)
438 {
439     val  = XXH64_round(0, val);
440     acc ^= val;
441     acc  = acc * PRIME64_1 + PRIME64_4;
442     return acc;
443 }
444 
445 FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
446 {
447     const BYTE* p = (const BYTE*)input;
448     const BYTE* const bEnd = p + len;
449     U64 h64;
450 #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
451 
452 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
453     if (p==NULL) {
454         len=0;
455         bEnd=p=(const BYTE*)(size_t)32;
456     }
457 #endif
458 
459     if (len>=32) {
460         const BYTE* const limit = bEnd - 32;
461         U64 v1 = seed + PRIME64_1 + PRIME64_2;
462         U64 v2 = seed + PRIME64_2;
463         U64 v3 = seed + 0;
464         U64 v4 = seed - PRIME64_1;
465 
466         do {
467             v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
468             v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
469             v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
470             v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
471         } while (p<=limit);
472 
473         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
474         h64 = XXH64_mergeRound(h64, v1);
475         h64 = XXH64_mergeRound(h64, v2);
476         h64 = XXH64_mergeRound(h64, v3);
477         h64 = XXH64_mergeRound(h64, v4);
478 
479     } else {
480         h64  = seed + PRIME64_5;
481     }
482 
483     h64 += (U64) len;
484 
485     while (p+8<=bEnd) {
486         U64 const k1 = XXH64_round(0, XXH_get64bits(p));
487         h64 ^= k1;
488         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
489         p+=8;
490     }
491 
492     if (p+4<=bEnd) {
493         h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
494         h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
495         p+=4;
496     }
497 
498     while (p<bEnd) {
499         h64 ^= (*p) * PRIME64_5;
500         h64 = XXH_rotl64(h64, 11) * PRIME64_1;
501         p++;
502     }
503 
504     h64 ^= h64 >> 33;
505     h64 *= PRIME64_2;
506     h64 ^= h64 >> 29;
507     h64 *= PRIME64_3;
508     h64 ^= h64 >> 32;
509 
510     return h64;
511 }
512 
513 
514 XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
515 {
516 #if 0
517     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
518     XXH64_CREATESTATE_STATIC(state);
519     XXH64_reset(state, seed);
520     XXH64_update(state, input, len);
521     return XXH64_digest(state);
522 #else
523     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
524 
525     if (XXH_FORCE_ALIGN_CHECK) {
526         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
527             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
528                 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
529             else
530                 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
531     }   }
532 
533     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
534         return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
535     else
536         return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
537 #endif
538 }
539 
540 
541 /* **************************************************
542 *  Advanced Hash Functions
543 ****************************************************/
544 
545 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
546 {
547     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
548 }
549 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
550 {
551     XXH_free(statePtr);
552     return XXH_OK;
553 }
554 
555 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
556 {
557     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
558 }
559 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
560 {
561     XXH_free(statePtr);
562     return XXH_OK;
563 }
564 
565 
566 /*** Hash feed ***/
567 
568 XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
569 {
570     XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
571     memset(&state, 0, sizeof(state)-4);   /* do not write into reserved, for future removal */
572     state.v1 = seed + PRIME32_1 + PRIME32_2;
573     state.v2 = seed + PRIME32_2;
574     state.v3 = seed + 0;
575     state.v4 = seed - PRIME32_1;
576     memcpy(statePtr, &state, sizeof(state));
577     return XXH_OK;
578 }
579 
580 
581 XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
582 {
583     XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
584     memset(&state, 0, sizeof(state)-8);   /* do not write into reserved, for future removal */
585     state.v1 = seed + PRIME64_1 + PRIME64_2;
586     state.v2 = seed + PRIME64_2;
587     state.v3 = seed + 0;
588     state.v4 = seed - PRIME64_1;
589     memcpy(statePtr, &state, sizeof(state));
590     return XXH_OK;
591 }
592 
593 
594 FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
595 {
596     const BYTE* p = (const BYTE*)input;
597     const BYTE* const bEnd = p + len;
598 
599 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
600     if (input==NULL) return XXH_ERROR;
601 #endif
602 
603     state->total_len_32 += (unsigned)len;
604     state->large_len |= (len>=16) | (state->total_len_32>=16);
605 
606     if (state->memsize + len < 16)  {   /* fill in tmp buffer */
607         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
608         state->memsize += (unsigned)len;
609         return XXH_OK;
610     }
611 
612     if (state->memsize) {   /* some data left from previous update */
613         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
614         {   const U32* p32 = state->mem32;
615             state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
616             state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
617             state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
618             state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
619         }
620         p += 16-state->memsize;
621         state->memsize = 0;
622     }
623 
624     if (p <= bEnd-16) {
625         const BYTE* const limit = bEnd - 16;
626         U32 v1 = state->v1;
627         U32 v2 = state->v2;
628         U32 v3 = state->v3;
629         U32 v4 = state->v4;
630 
631         do {
632             v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
633             v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
634             v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
635             v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
636         } while (p<=limit);
637 
638         state->v1 = v1;
639         state->v2 = v2;
640         state->v3 = v3;
641         state->v4 = v4;
642     }
643 
644     if (p < bEnd) {
645         XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
646         state->memsize = (unsigned)(bEnd-p);
647     }
648 
649     return XXH_OK;
650 }
651 
652 XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
653 {
654     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
655 
656     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
657         return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
658     else
659         return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
660 }
661 
662 
663 
664 FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
665 {
666     const BYTE * p = (const BYTE*)state->mem32;
667     const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
668     U32 h32;
669 
670     if (state->large_len) {
671         h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
672     } else {
673         h32 = state->v3 /* == seed */ + PRIME32_5;
674     }
675 
676     h32 += state->total_len_32;
677 
678     while (p+4<=bEnd) {
679         h32 += XXH_readLE32(p, endian) * PRIME32_3;
680         h32  = XXH_rotl32(h32, 17) * PRIME32_4;
681         p+=4;
682     }
683 
684     while (p<bEnd) {
685         h32 += (*p) * PRIME32_5;
686         h32  = XXH_rotl32(h32, 11) * PRIME32_1;
687         p++;
688     }
689 
690     h32 ^= h32 >> 15;
691     h32 *= PRIME32_2;
692     h32 ^= h32 >> 13;
693     h32 *= PRIME32_3;
694     h32 ^= h32 >> 16;
695 
696     return h32;
697 }
698 
699 
700 XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
701 {
702     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
703 
704     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
705         return XXH32_digest_endian(state_in, XXH_littleEndian);
706     else
707         return XXH32_digest_endian(state_in, XXH_bigEndian);
708 }
709 
710 
711 
712 /* **** XXH64 **** */
713 
714 FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
715 {
716     const BYTE* p = (const BYTE*)input;
717     const BYTE* const bEnd = p + len;
718 
719 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
720     if (input==NULL) return XXH_ERROR;
721 #endif
722 
723     state->total_len += len;
724 
725     if (state->memsize + len < 32) {  /* fill in tmp buffer */
726         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
727         state->memsize += (U32)len;
728         return XXH_OK;
729     }
730 
731     if (state->memsize) {   /* tmp buffer is full */
732         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
733         state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
734         state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
735         state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
736         state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
737         p += 32-state->memsize;
738         state->memsize = 0;
739     }
740 
741     if (p+32 <= bEnd) {
742         const BYTE* const limit = bEnd - 32;
743         U64 v1 = state->v1;
744         U64 v2 = state->v2;
745         U64 v3 = state->v3;
746         U64 v4 = state->v4;
747 
748         do {
749             v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
750             v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
751             v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
752             v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
753         } while (p<=limit);
754 
755         state->v1 = v1;
756         state->v2 = v2;
757         state->v3 = v3;
758         state->v4 = v4;
759     }
760 
761     if (p < bEnd) {
762         XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
763         state->memsize = (unsigned)(bEnd-p);
764     }
765 
766     return XXH_OK;
767 }
768 
769 XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
770 {
771     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
772 
773     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
774         return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
775     else
776         return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
777 }
778 
779 
780 
781 FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
782 {
783     const BYTE * p = (const BYTE*)state->mem64;
784     const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
785     U64 h64;
786 
787     if (state->total_len >= 32) {
788         U64 const v1 = state->v1;
789         U64 const v2 = state->v2;
790         U64 const v3 = state->v3;
791         U64 const v4 = state->v4;
792 
793         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
794         h64 = XXH64_mergeRound(h64, v1);
795         h64 = XXH64_mergeRound(h64, v2);
796         h64 = XXH64_mergeRound(h64, v3);
797         h64 = XXH64_mergeRound(h64, v4);
798     } else {
799         h64  = state->v3 + PRIME64_5;
800     }
801 
802     h64 += (U64) state->total_len;
803 
804     while (p+8<=bEnd) {
805         U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
806         h64 ^= k1;
807         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
808         p+=8;
809     }
810 
811     if (p+4<=bEnd) {
812         h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
813         h64  = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
814         p+=4;
815     }
816 
817     while (p<bEnd) {
818         h64 ^= (*p) * PRIME64_5;
819         h64  = XXH_rotl64(h64, 11) * PRIME64_1;
820         p++;
821     }
822 
823     h64 ^= h64 >> 33;
824     h64 *= PRIME64_2;
825     h64 ^= h64 >> 29;
826     h64 *= PRIME64_3;
827     h64 ^= h64 >> 32;
828 
829     return h64;
830 }
831 
832 
833 XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
834 {
835     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
836 
837     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
838         return XXH64_digest_endian(state_in, XXH_littleEndian);
839     else
840         return XXH64_digest_endian(state_in, XXH_bigEndian);
841 }
842 
843 
844 /* **************************
845 *  Canonical representation
846 ****************************/
847 
848 /*! Default XXH result types are basic unsigned 32 and 64 bits.
849 *   The canonical representation follows human-readable write convention, aka big-endian (large digits first).
850 *   These functions allow transformation of hash result into and from its canonical format.
851 *   This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
852 */
853 
854 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
855 {
856     XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
857     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
858     memcpy(dst, &hash, sizeof(*dst));
859 }
860 
861 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
862 {
863     XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
864     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
865     memcpy(dst, &hash, sizeof(*dst));
866 }
867 
868 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
869 {
870     return XXH_readBE32(src);
871 }
872 
873 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
874 {
875     return XXH_readBE64(src);
876 }
877