xref: /freebsd/sys/crypto/ccp/ccp_hardware.c (revision 266f97b5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2017 Chelsio Communications, Inc.
5  * Copyright (c) 2017 Conrad Meyer <cem@FreeBSD.org>
6  * All rights reserved.
7  * Largely borrowed from ccr(4), Written by: John Baldwin <jhb@FreeBSD.org>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_ddb.h"
35 
36 #include <sys/param.h>
37 #include <sys/bus.h>
38 #include <sys/lock.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/module.h>
43 #include <sys/rman.h>
44 #include <sys/sglist.h>
45 #include <sys/sysctl.h>
46 
47 #ifdef DDB
48 #include <ddb/ddb.h>
49 #endif
50 
51 #include <dev/pci/pcireg.h>
52 #include <dev/pci/pcivar.h>
53 
54 #include <machine/bus.h>
55 #include <machine/resource.h>
56 #include <machine/vmparam.h>
57 
58 #include <opencrypto/cryptodev.h>
59 #include <opencrypto/xform.h>
60 
61 #include <vm/vm.h>
62 #include <vm/pmap.h>
63 
64 #include "cryptodev_if.h"
65 
66 #include "ccp.h"
67 #include "ccp_hardware.h"
68 #include "ccp_lsb.h"
69 
70 CTASSERT(sizeof(struct ccp_desc) == 32);
71 
72 static struct ccp_xts_unitsize_map_entry {
73 	enum ccp_xts_unitsize cxu_id;
74 	unsigned cxu_size;
75 } ccp_xts_unitsize_map[] = {
76 	{ CCP_XTS_AES_UNIT_SIZE_16, 16 },
77 	{ CCP_XTS_AES_UNIT_SIZE_512, 512 },
78 	{ CCP_XTS_AES_UNIT_SIZE_1024, 1024 },
79 	{ CCP_XTS_AES_UNIT_SIZE_2048, 2048 },
80 	{ CCP_XTS_AES_UNIT_SIZE_4096, 4096 },
81 };
82 
83 SYSCTL_NODE(_hw, OID_AUTO, ccp, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
84     "ccp node");
85 
86 unsigned g_ccp_ring_order = 11;
87 SYSCTL_UINT(_hw_ccp, OID_AUTO, ring_order, CTLFLAG_RDTUN, &g_ccp_ring_order,
88     0, "Set CCP ring order.  (1 << this) == ring size.  Min: 6, Max: 16");
89 
90 /*
91  * Zero buffer, sufficient for padding LSB entries, that does not span a page
92  * boundary
93  */
94 static const char g_zeroes[32] __aligned(32);
95 
96 static inline uint32_t
97 ccp_read_4(struct ccp_softc *sc, uint32_t offset)
98 {
99 	return (bus_space_read_4(sc->pci_bus_tag, sc->pci_bus_handle, offset));
100 }
101 
102 static inline void
103 ccp_write_4(struct ccp_softc *sc, uint32_t offset, uint32_t value)
104 {
105 	bus_space_write_4(sc->pci_bus_tag, sc->pci_bus_handle, offset, value);
106 }
107 
108 static inline uint32_t
109 ccp_read_queue_4(struct ccp_softc *sc, unsigned queue, uint32_t offset)
110 {
111 	/*
112 	 * Each queue gets its own 4kB register space.  Queue 0 is at 0x1000.
113 	 */
114 	return (ccp_read_4(sc, (CMD_Q_STATUS_INCR * (1 + queue)) + offset));
115 }
116 
117 static inline void
118 ccp_write_queue_4(struct ccp_softc *sc, unsigned queue, uint32_t offset,
119     uint32_t value)
120 {
121 	ccp_write_4(sc, (CMD_Q_STATUS_INCR * (1 + queue)) + offset, value);
122 }
123 
124 void
125 ccp_queue_write_tail(struct ccp_queue *qp)
126 {
127 	ccp_write_queue_4(qp->cq_softc, qp->cq_qindex, CMD_Q_TAIL_LO_BASE,
128 	    ((uint32_t)qp->desc_ring_bus_addr) + (Q_DESC_SIZE * qp->cq_tail));
129 }
130 
131 /*
132  * Given a queue and a reserved LSB entry index, compute the LSB *entry id* of
133  * that entry for the queue's private LSB region.
134  */
135 static inline uint8_t
136 ccp_queue_lsb_entry(struct ccp_queue *qp, unsigned lsb_entry)
137 {
138 	return ((qp->private_lsb * LSB_REGION_LENGTH + lsb_entry));
139 }
140 
141 /*
142  * Given a queue and a reserved LSB entry index, compute the LSB *address* of
143  * that entry for the queue's private LSB region.
144  */
145 static inline uint32_t
146 ccp_queue_lsb_address(struct ccp_queue *qp, unsigned lsb_entry)
147 {
148 	return (ccp_queue_lsb_entry(qp, lsb_entry) * LSB_ENTRY_SIZE);
149 }
150 
151 /*
152  * Some terminology:
153  *
154  * LSB - Local Storage Block
155  * =========================
156  *
157  * 8 segments/regions, each containing 16 entries.
158  *
159  * Each entry contains 256 bits (32 bytes).
160  *
161  * Segments are virtually addressed in commands, but accesses cannot cross
162  * segment boundaries.  Virtual map uses an identity mapping by default
163  * (virtual segment N corresponds to physical segment N).
164  *
165  * Access to a physical region can be restricted to any subset of all five
166  * queues.
167  *
168  * "Pass-through" mode
169  * ===================
170  *
171  * Pass-through is a generic DMA engine, much like ioat(4).  Some nice
172  * features:
173  *
174  * - Supports byte-swapping for endian conversion (32- or 256-bit words)
175  * - AND, OR, XOR with fixed 256-bit mask
176  * - CRC32 of data (may be used in tandem with bswap, but not bit operations)
177  * - Read/write of LSB
178  * - Memset
179  *
180  * If bit manipulation mode is enabled, input must be a multiple of 256 bits
181  * (32 bytes).
182  *
183  * If byte-swapping is enabled, input must be a multiple of the word size.
184  *
185  * Zlib mode -- only usable from one queue at a time, single job at a time.
186  * ========================================================================
187  *
188  * Only usable from private host, aka PSP?  Not host processor?
189  *
190  * RNG.
191  * ====
192  *
193  * Raw bits are conditioned with AES and fed through CTR_DRBG.  Output goes in
194  * a ring buffer readable by software.
195  *
196  * NIST SP 800-90B Repetition Count and Adaptive Proportion health checks are
197  * implemented on the raw input stream and may be enabled to verify min-entropy
198  * of 0.5 bits per bit.
199  */
200 
201 static void
202 ccp_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
203 {
204 	bus_addr_t *baddr;
205 
206 	KASSERT(error == 0, ("%s: error:%d", __func__, error));
207 	baddr = arg;
208 	*baddr = segs->ds_addr;
209 }
210 
211 static int
212 ccp_hw_attach_queue(device_t dev, uint64_t lsbmask, unsigned queue)
213 {
214 	struct ccp_softc *sc;
215 	struct ccp_queue *qp;
216 	void *desc;
217 	size_t ringsz, num_descriptors;
218 	int error;
219 
220 	desc = NULL;
221 	sc = device_get_softc(dev);
222 	qp = &sc->queues[queue];
223 
224 	/*
225 	 * Don't bother allocating a ring for queues the host isn't allowed to
226 	 * drive.
227 	 */
228 	if ((sc->valid_queues & (1 << queue)) == 0)
229 		return (0);
230 
231 	ccp_queue_decode_lsb_regions(sc, lsbmask, queue);
232 
233 	/* Ignore queues that do not have any LSB access. */
234 	if (qp->lsb_mask == 0) {
235 		device_printf(dev, "Ignoring queue %u with no LSB access\n",
236 		    queue);
237 		sc->valid_queues &= ~(1 << queue);
238 		return (0);
239 	}
240 
241 	num_descriptors = 1 << sc->ring_size_order;
242 	ringsz = sizeof(struct ccp_desc) * num_descriptors;
243 
244 	/*
245 	 * "Queue_Size" is order - 1.
246 	 *
247 	 * Queue must be aligned to 5+Queue_Size+1 == 5 + order bits.
248 	 */
249 	error = bus_dma_tag_create(bus_get_dma_tag(dev),
250 	    1 << (5 + sc->ring_size_order),
251 #if defined(__i386__) && !defined(PAE)
252 	    0, BUS_SPACE_MAXADDR,
253 #else
254 	    (bus_addr_t)1 << 32, BUS_SPACE_MAXADDR_48BIT,
255 #endif
256 	    BUS_SPACE_MAXADDR, NULL, NULL, ringsz, 1,
257 	    ringsz, 0, NULL, NULL, &qp->ring_desc_tag);
258 	if (error != 0)
259 		goto out;
260 
261 	error = bus_dmamem_alloc(qp->ring_desc_tag, &desc,
262 	    BUS_DMA_ZERO | BUS_DMA_WAITOK, &qp->ring_desc_map);
263 	if (error != 0)
264 		goto out;
265 
266 	error = bus_dmamap_load(qp->ring_desc_tag, qp->ring_desc_map, desc,
267 	    ringsz, ccp_dmamap_cb, &qp->desc_ring_bus_addr, BUS_DMA_WAITOK);
268 	if (error != 0)
269 		goto out;
270 
271 	qp->desc_ring = desc;
272 	qp->completions_ring = malloc(num_descriptors *
273 	    sizeof(*qp->completions_ring), M_CCP, M_ZERO | M_WAITOK);
274 
275 	/* Zero control register; among other things, clears the RUN flag. */
276 	qp->qcontrol = 0;
277 	ccp_write_queue_4(sc, queue, CMD_Q_CONTROL_BASE, qp->qcontrol);
278 	ccp_write_queue_4(sc, queue, CMD_Q_INT_ENABLE_BASE, 0);
279 
280 	/* Clear any leftover interrupt status flags */
281 	ccp_write_queue_4(sc, queue, CMD_Q_INTERRUPT_STATUS_BASE,
282 	    ALL_INTERRUPTS);
283 
284 	qp->qcontrol |= (sc->ring_size_order - 1) << CMD_Q_SIZE_SHIFT;
285 
286 	ccp_write_queue_4(sc, queue, CMD_Q_TAIL_LO_BASE,
287 	    (uint32_t)qp->desc_ring_bus_addr);
288 	ccp_write_queue_4(sc, queue, CMD_Q_HEAD_LO_BASE,
289 	    (uint32_t)qp->desc_ring_bus_addr);
290 
291 	/*
292 	 * Enable completion interrupts, as well as error or administrative
293 	 * halt interrupts.  We don't use administrative halts, but they
294 	 * shouldn't trip unless we do, so it ought to be harmless.
295 	 */
296 	ccp_write_queue_4(sc, queue, CMD_Q_INT_ENABLE_BASE,
297 	    INT_COMPLETION | INT_ERROR | INT_QUEUE_STOPPED);
298 
299 	qp->qcontrol |= (qp->desc_ring_bus_addr >> 32) << CMD_Q_PTR_HI_SHIFT;
300 	qp->qcontrol |= CMD_Q_RUN;
301 	ccp_write_queue_4(sc, queue, CMD_Q_CONTROL_BASE, qp->qcontrol);
302 
303 out:
304 	if (error != 0) {
305 		if (qp->desc_ring != NULL)
306 			bus_dmamap_unload(qp->ring_desc_tag,
307 			    qp->ring_desc_map);
308 		if (desc != NULL)
309 			bus_dmamem_free(qp->ring_desc_tag, desc,
310 			    qp->ring_desc_map);
311 		if (qp->ring_desc_tag != NULL)
312 			bus_dma_tag_destroy(qp->ring_desc_tag);
313 	}
314 	return (error);
315 }
316 
317 static void
318 ccp_hw_detach_queue(device_t dev, unsigned queue)
319 {
320 	struct ccp_softc *sc;
321 	struct ccp_queue *qp;
322 
323 	sc = device_get_softc(dev);
324 	qp = &sc->queues[queue];
325 
326 	/*
327 	 * Don't bother allocating a ring for queues the host isn't allowed to
328 	 * drive.
329 	 */
330 	if ((sc->valid_queues & (1 << queue)) == 0)
331 		return;
332 
333 	free(qp->completions_ring, M_CCP);
334 	bus_dmamap_unload(qp->ring_desc_tag, qp->ring_desc_map);
335 	bus_dmamem_free(qp->ring_desc_tag, qp->desc_ring, qp->ring_desc_map);
336 	bus_dma_tag_destroy(qp->ring_desc_tag);
337 }
338 
339 static int
340 ccp_map_pci_bar(device_t dev)
341 {
342 	struct ccp_softc *sc;
343 
344 	sc = device_get_softc(dev);
345 
346 	sc->pci_resource_id = PCIR_BAR(2);
347 	sc->pci_resource = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
348 	    &sc->pci_resource_id, RF_ACTIVE);
349 	if (sc->pci_resource == NULL) {
350 		device_printf(dev, "unable to allocate pci resource\n");
351 		return (ENODEV);
352 	}
353 
354 	sc->pci_resource_id_msix = PCIR_BAR(5);
355 	sc->pci_resource_msix = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
356 	    &sc->pci_resource_id_msix, RF_ACTIVE);
357 	if (sc->pci_resource_msix == NULL) {
358 		device_printf(dev, "unable to allocate pci resource msix\n");
359 		bus_release_resource(dev, SYS_RES_MEMORY, sc->pci_resource_id,
360 		    sc->pci_resource);
361 		return (ENODEV);
362 	}
363 
364 	sc->pci_bus_tag = rman_get_bustag(sc->pci_resource);
365 	sc->pci_bus_handle = rman_get_bushandle(sc->pci_resource);
366 	return (0);
367 }
368 
369 static void
370 ccp_unmap_pci_bar(device_t dev)
371 {
372 	struct ccp_softc *sc;
373 
374 	sc = device_get_softc(dev);
375 
376 	bus_release_resource(dev, SYS_RES_MEMORY, sc->pci_resource_id_msix,
377 	    sc->pci_resource_msix);
378 	bus_release_resource(dev, SYS_RES_MEMORY, sc->pci_resource_id,
379 	    sc->pci_resource);
380 }
381 
382 const static struct ccp_error_code {
383 	uint8_t		ce_code;
384 	const char	*ce_name;
385 	int		ce_errno;
386 	const char	*ce_desc;
387 } ccp_error_codes[] = {
388 	{ 0x01, "ILLEGAL_ENGINE", EIO, "Requested engine was invalid" },
389 	{ 0x03, "ILLEGAL_FUNCTION_TYPE", EIO,
390 	    "A non-supported function type was specified" },
391 	{ 0x04, "ILLEGAL_FUNCTION_MODE", EIO,
392 	    "A non-supported function mode was specified" },
393 	{ 0x05, "ILLEGAL_FUNCTION_ENCRYPT", EIO,
394 	    "A CMAC type was specified when ENCRYPT was not specified" },
395 	{ 0x06, "ILLEGAL_FUNCTION_SIZE", EIO,
396 	    "A non-supported function size was specified.\n"
397 	    "AES-CFB: Size was not 127 or 7;\n"
398 	    "3DES-CFB: Size was not 7;\n"
399 	    "RSA: See supported size table (7.4.2);\n"
400 	    "ECC: Size was greater than 576 bits." },
401 	{ 0x07, "Zlib_MISSING_INIT_EOM", EIO,
402 	    "Zlib command does not have INIT and EOM set" },
403 	{ 0x08, "ILLEGAL_FUNCTION_RSVD", EIO,
404 	    "Reserved bits in a function specification were not 0" },
405 	{ 0x09, "ILLEGAL_BUFFER_LENGTH", EIO,
406 	    "The buffer length specified was not correct for the selected engine"
407 	},
408 	{ 0x0A, "VLSB_FAULT", EIO, "Illegal VLSB segment mapping:\n"
409 	    "Undefined VLSB segment mapping or\n"
410 	    "mapping to unsupported LSB segment id" },
411 	{ 0x0B, "ILLEGAL_MEM_ADDR", EFAULT,
412 	    "The specified source/destination buffer access was illegal:\n"
413 	    "Data buffer located in a LSB location disallowed by the LSB protection masks; or\n"
414 	    "Data buffer not completely contained within a single segment; or\n"
415 	    "Pointer with Fixed=1 is not 32-bit aligned; or\n"
416 	    "Pointer with Fixed=1 attempted to reference non-AXI1 (local) memory."
417 	},
418 	{ 0x0C, "ILLEGAL_MEM_SEL", EIO,
419 	    "A src_mem, dst_mem, or key_mem field was illegal:\n"
420 	    "A field was set to a reserved value; or\n"
421 	    "A public command attempted to reference AXI1 (local) or GART memory; or\n"
422 	    "A Zlib command attmpted to use the LSB." },
423 	{ 0x0D, "ILLEGAL_CONTEXT_ADDR", EIO,
424 	    "The specified context location was illegal:\n"
425 	    "Context located in a LSB location disallowed by the LSB protection masks; or\n"
426 	    "Context not completely contained within a single segment." },
427 	{ 0x0E, "ILLEGAL_KEY_ADDR", EIO,
428 	    "The specified key location was illegal:\n"
429 	    "Key located in a LSB location disallowed by the LSB protection masks; or\n"
430 	    "Key not completely contained within a single segment." },
431 	{ 0x12, "CMD_TIMEOUT", EIO, "A command timeout violation occurred" },
432 	/* XXX Could fill out these descriptions too */
433 	{ 0x13, "IDMA0_AXI_SLVERR", EIO, "" },
434 	{ 0x14, "IDMA0_AXI_DECERR", EIO, "" },
435 	{ 0x16, "IDMA1_AXI_SLVERR", EIO, "" },
436 	{ 0x17, "IDMA1_AXI_DECERR", EIO, "" },
437 	{ 0x19, "ZLIBVHB_AXI_SLVERR", EIO, "" },
438 	{ 0x1A, "ZLIBVHB_AXI_DECERR", EIO, "" },
439 	{ 0x1C, "ZLIB_UNEXPECTED_EOM", EIO, "" },
440 	{ 0x1D, "ZLIB_EXTRA_DATA", EIO, "" },
441 	{ 0x1E, "ZLIB_BTYPE", EIO, "" },
442 	{ 0x20, "ZLIB_UNDEFINED_DISTANCE_SYMBOL", EIO, "" },
443 	{ 0x21, "ZLIB_CODE_LENGTH_SYMBOL", EIO, "" },
444 	{ 0x22, "ZLIB_VHB_ILLEGAL_FETCH", EIO, "" },
445 	{ 0x23, "ZLIB_UNCOMPRESSED_LEN", EIO, "" },
446 	{ 0x24, "ZLIB_LIMIT_REACHED", EIO, "" },
447 	{ 0x25, "ZLIB_CHECKSUM_MISMATCH", EIO, "" },
448 	{ 0x26, "ODMA0_AXI_SLVERR", EIO, "" },
449 	{ 0x27, "ODMA0_AXI_DECERR", EIO, "" },
450 	{ 0x29, "ODMA1_AXI_SLVERR", EIO, "" },
451 	{ 0x2A, "ODMA1_AXI_DECERR", EIO, "" },
452 	{ 0x2B, "LSB_PARITY_ERR", EIO,
453 	    "A read from the LSB encountered a parity error" },
454 };
455 
456 static void
457 ccp_intr_handle_error(struct ccp_queue *qp, const struct ccp_desc *desc)
458 {
459 	struct ccp_completion_ctx *cctx;
460 	const struct ccp_error_code *ec;
461 	struct ccp_softc *sc;
462 	uint32_t status, error, esource, faultblock;
463 	unsigned q, idx;
464 	int errno;
465 
466 	sc = qp->cq_softc;
467 	q = qp->cq_qindex;
468 
469 	status = ccp_read_queue_4(sc, q, CMD_Q_STATUS_BASE);
470 
471 	error = status & STATUS_ERROR_MASK;
472 
473 	/* Decode error status */
474 	ec = NULL;
475 	for (idx = 0; idx < nitems(ccp_error_codes); idx++)
476 		if (ccp_error_codes[idx].ce_code == error) {
477 			ec = &ccp_error_codes[idx];
478 			break;
479 		}
480 
481 	esource = (status >> STATUS_ERRORSOURCE_SHIFT) &
482 	    STATUS_ERRORSOURCE_MASK;
483 	faultblock = (status >> STATUS_VLSB_FAULTBLOCK_SHIFT) &
484 	    STATUS_VLSB_FAULTBLOCK_MASK;
485 	device_printf(sc->dev, "Error: %s (%u) Source: %u Faulting LSB block: %u\n",
486 	    (ec != NULL) ? ec->ce_name : "(reserved)", error, esource,
487 	    faultblock);
488 	if (ec != NULL)
489 		device_printf(sc->dev, "Error description: %s\n", ec->ce_desc);
490 
491 	/* TODO Could format the desc nicely here */
492 	idx = desc - qp->desc_ring;
493 	DPRINTF(sc->dev, "Bad descriptor index: %u contents: %32D\n", idx,
494 	    (const void *)desc, " ");
495 
496 	/*
497 	 * TODO Per § 14.4 "Error Handling," DMA_Status, DMA_Read/Write_Status,
498 	 * Zlib Decompress status may be interesting.
499 	 */
500 
501 	while (true) {
502 		/* Keep unused descriptors zero for next use. */
503 		memset(&qp->desc_ring[idx], 0, sizeof(qp->desc_ring[idx]));
504 
505 		cctx = &qp->completions_ring[idx];
506 
507 		/*
508 		 * Restart procedure described in § 14.2.5.  Could be used by HoC if we
509 		 * used that.
510 		 *
511 		 * Advance HEAD_LO past bad descriptor + any remaining in
512 		 * transaction manually, then restart queue.
513 		 */
514 		idx = (idx + 1) % (1 << sc->ring_size_order);
515 
516 		/* Callback function signals end of transaction */
517 		if (cctx->callback_fn != NULL) {
518 			if (ec == NULL)
519 				errno = EIO;
520 			else
521 				errno = ec->ce_errno;
522 			/* TODO More specific error code */
523 			cctx->callback_fn(qp, cctx->session, cctx->callback_arg, errno);
524 			cctx->callback_fn = NULL;
525 			break;
526 		}
527 	}
528 
529 	qp->cq_head = idx;
530 	qp->cq_waiting = false;
531 	wakeup(&qp->cq_tail);
532 	DPRINTF(sc->dev, "%s: wrote sw head:%u\n", __func__, qp->cq_head);
533 	ccp_write_queue_4(sc, q, CMD_Q_HEAD_LO_BASE,
534 	    (uint32_t)qp->desc_ring_bus_addr + (idx * Q_DESC_SIZE));
535 	ccp_write_queue_4(sc, q, CMD_Q_CONTROL_BASE, qp->qcontrol);
536 	DPRINTF(sc->dev, "%s: Restarted queue\n", __func__);
537 }
538 
539 static void
540 ccp_intr_run_completions(struct ccp_queue *qp, uint32_t ints)
541 {
542 	struct ccp_completion_ctx *cctx;
543 	struct ccp_softc *sc;
544 	const struct ccp_desc *desc;
545 	uint32_t headlo, idx;
546 	unsigned q, completed;
547 
548 	sc = qp->cq_softc;
549 	q = qp->cq_qindex;
550 
551 	mtx_lock(&qp->cq_lock);
552 
553 	/*
554 	 * Hardware HEAD_LO points to the first incomplete descriptor.  Process
555 	 * any submitted and completed descriptors, up to but not including
556 	 * HEAD_LO.
557 	 */
558 	headlo = ccp_read_queue_4(sc, q, CMD_Q_HEAD_LO_BASE);
559 	idx = (headlo - (uint32_t)qp->desc_ring_bus_addr) / Q_DESC_SIZE;
560 
561 	DPRINTF(sc->dev, "%s: hw head:%u sw head:%u\n", __func__, idx,
562 	    qp->cq_head);
563 	completed = 0;
564 	while (qp->cq_head != idx) {
565 		DPRINTF(sc->dev, "%s: completing:%u\n", __func__, qp->cq_head);
566 
567 		cctx = &qp->completions_ring[qp->cq_head];
568 		if (cctx->callback_fn != NULL) {
569 			cctx->callback_fn(qp, cctx->session,
570 			    cctx->callback_arg, 0);
571 			cctx->callback_fn = NULL;
572 		}
573 
574 		/* Keep unused descriptors zero for next use. */
575 		memset(&qp->desc_ring[qp->cq_head], 0,
576 		    sizeof(qp->desc_ring[qp->cq_head]));
577 
578 		qp->cq_head = (qp->cq_head + 1) % (1 << sc->ring_size_order);
579 		completed++;
580 	}
581 	if (completed > 0) {
582 		qp->cq_waiting = false;
583 		wakeup(&qp->cq_tail);
584 	}
585 
586 	DPRINTF(sc->dev, "%s: wrote sw head:%u\n", __func__, qp->cq_head);
587 
588 	/*
589 	 * Desc points to the first incomplete descriptor, at the time we read
590 	 * HEAD_LO.  If there was an error flagged in interrupt status, the HW
591 	 * will not proceed past the erroneous descriptor by itself.
592 	 */
593 	desc = &qp->desc_ring[idx];
594 	if ((ints & INT_ERROR) != 0)
595 		ccp_intr_handle_error(qp, desc);
596 
597 	mtx_unlock(&qp->cq_lock);
598 }
599 
600 static void
601 ccp_intr_handler(void *arg)
602 {
603 	struct ccp_softc *sc = arg;
604 	size_t i;
605 	uint32_t ints;
606 
607 	DPRINTF(sc->dev, "%s: interrupt\n", __func__);
608 
609 	/*
610 	 * We get one global interrupt per PCI device, shared over all of
611 	 * its queues.  Scan each valid queue on interrupt for flags indicating
612 	 * activity.
613 	 */
614 	for (i = 0; i < nitems(sc->queues); i++) {
615 		if ((sc->valid_queues & (1 << i)) == 0)
616 			continue;
617 
618 		ints = ccp_read_queue_4(sc, i, CMD_Q_INTERRUPT_STATUS_BASE);
619 		if (ints == 0)
620 			continue;
621 
622 #if 0
623 		DPRINTF(sc->dev, "%s: %x interrupts on queue %zu\n", __func__,
624 		    (unsigned)ints, i);
625 #endif
626 		/* Write back 1s to clear interrupt status bits. */
627 		ccp_write_queue_4(sc, i, CMD_Q_INTERRUPT_STATUS_BASE, ints);
628 
629 		/*
630 		 * If there was an error, we still need to run completions on
631 		 * any descriptors prior to the error.  The completions handler
632 		 * invoked below will also handle the error descriptor.
633 		 */
634 		if ((ints & (INT_COMPLETION | INT_ERROR)) != 0)
635 			ccp_intr_run_completions(&sc->queues[i], ints);
636 
637 		if ((ints & INT_QUEUE_STOPPED) != 0)
638 			device_printf(sc->dev, "%s: queue %zu stopped\n",
639 			    __func__, i);
640 	}
641 
642 	/* Re-enable interrupts after processing */
643 	for (i = 0; i < nitems(sc->queues); i++) {
644 		if ((sc->valid_queues & (1 << i)) == 0)
645 			continue;
646 		ccp_write_queue_4(sc, i, CMD_Q_INT_ENABLE_BASE,
647 		    INT_COMPLETION | INT_ERROR | INT_QUEUE_STOPPED);
648 	}
649 }
650 
651 static int
652 ccp_intr_filter(void *arg)
653 {
654 	struct ccp_softc *sc = arg;
655 	size_t i;
656 
657 	/* TODO: Split individual queues into separate taskqueues? */
658 	for (i = 0; i < nitems(sc->queues); i++) {
659 		if ((sc->valid_queues & (1 << i)) == 0)
660 			continue;
661 
662 		/* Mask interrupt until task completes */
663 		ccp_write_queue_4(sc, i, CMD_Q_INT_ENABLE_BASE, 0);
664 	}
665 
666 	return (FILTER_SCHEDULE_THREAD);
667 }
668 
669 static int
670 ccp_setup_interrupts(struct ccp_softc *sc)
671 {
672 	uint32_t nvec;
673 	int rid, error, n, ridcopy;
674 
675 	n = pci_msix_count(sc->dev);
676 	if (n < 1) {
677 		device_printf(sc->dev, "%s: msix_count: %d\n", __func__, n);
678 		return (ENXIO);
679 	}
680 
681 	nvec = n;
682 	error = pci_alloc_msix(sc->dev, &nvec);
683 	if (error != 0) {
684 		device_printf(sc->dev, "%s: alloc_msix error: %d\n", __func__,
685 		    error);
686 		return (error);
687 	}
688 	if (nvec < 1) {
689 		device_printf(sc->dev, "%s: alloc_msix: 0 vectors\n",
690 		    __func__);
691 		return (ENXIO);
692 	}
693 	if (nvec > nitems(sc->intr_res)) {
694 		device_printf(sc->dev, "%s: too many vectors: %u\n", __func__,
695 		    nvec);
696 		nvec = nitems(sc->intr_res);
697 	}
698 
699 	for (rid = 1; rid < 1 + nvec; rid++) {
700 		ridcopy = rid;
701 		sc->intr_res[rid - 1] = bus_alloc_resource_any(sc->dev,
702 		    SYS_RES_IRQ, &ridcopy, RF_ACTIVE);
703 		if (sc->intr_res[rid - 1] == NULL) {
704 			device_printf(sc->dev, "%s: Failed to alloc IRQ resource\n",
705 			    __func__);
706 			return (ENXIO);
707 		}
708 
709 		sc->intr_tag[rid - 1] = NULL;
710 		error = bus_setup_intr(sc->dev, sc->intr_res[rid - 1],
711 		    INTR_MPSAFE | INTR_TYPE_MISC, ccp_intr_filter,
712 		    ccp_intr_handler, sc, &sc->intr_tag[rid - 1]);
713 		if (error != 0)
714 			device_printf(sc->dev, "%s: setup_intr: %d\n",
715 			    __func__, error);
716 	}
717 	sc->intr_count = nvec;
718 
719 	return (error);
720 }
721 
722 static void
723 ccp_release_interrupts(struct ccp_softc *sc)
724 {
725 	unsigned i;
726 
727 	for (i = 0; i < sc->intr_count; i++) {
728 		if (sc->intr_tag[i] != NULL)
729 			bus_teardown_intr(sc->dev, sc->intr_res[i],
730 			    sc->intr_tag[i]);
731 		if (sc->intr_res[i] != NULL)
732 			bus_release_resource(sc->dev, SYS_RES_IRQ,
733 			    rman_get_rid(sc->intr_res[i]), sc->intr_res[i]);
734 	}
735 
736 	pci_release_msi(sc->dev);
737 }
738 
739 int
740 ccp_hw_attach(device_t dev)
741 {
742 	struct ccp_softc *sc;
743 	uint64_t lsbmask;
744 	uint32_t version, lsbmasklo, lsbmaskhi;
745 	unsigned queue_idx, j;
746 	int error;
747 	bool bars_mapped, interrupts_setup;
748 
749 	queue_idx = 0;
750 	bars_mapped = interrupts_setup = false;
751 	sc = device_get_softc(dev);
752 
753 	error = ccp_map_pci_bar(dev);
754 	if (error != 0) {
755 		device_printf(dev, "%s: couldn't map BAR(s)\n", __func__);
756 		goto out;
757 	}
758 	bars_mapped = true;
759 
760 	error = pci_enable_busmaster(dev);
761 	if (error != 0) {
762 		device_printf(dev, "%s: couldn't enable busmaster\n",
763 		    __func__);
764 		goto out;
765 	}
766 
767 	sc->ring_size_order = g_ccp_ring_order;
768 	if (sc->ring_size_order < 6 || sc->ring_size_order > 16) {
769 		device_printf(dev, "bogus hw.ccp.ring_order\n");
770 		error = EINVAL;
771 		goto out;
772 	}
773 	sc->valid_queues = ccp_read_4(sc, CMD_QUEUE_MASK_OFFSET);
774 
775 	version = ccp_read_4(sc, VERSION_REG);
776 	if ((version & VERSION_NUM_MASK) < 5) {
777 		device_printf(dev,
778 		    "driver supports version 5 and later hardware\n");
779 		error = ENXIO;
780 		goto out;
781 	}
782 
783 	error = ccp_setup_interrupts(sc);
784 	if (error != 0)
785 		goto out;
786 	interrupts_setup = true;
787 
788 	sc->hw_version = version & VERSION_NUM_MASK;
789 	sc->num_queues = (version >> VERSION_NUMVQM_SHIFT) &
790 	    VERSION_NUMVQM_MASK;
791 	sc->num_lsb_entries = (version >> VERSION_LSBSIZE_SHIFT) &
792 	    VERSION_LSBSIZE_MASK;
793 	sc->hw_features = version & VERSION_CAP_MASK;
794 
795 	/*
796 	 * Copy private LSB mask to public registers to enable access to LSB
797 	 * from all queues allowed by BIOS.
798 	 */
799 	lsbmasklo = ccp_read_4(sc, LSB_PRIVATE_MASK_LO_OFFSET);
800 	lsbmaskhi = ccp_read_4(sc, LSB_PRIVATE_MASK_HI_OFFSET);
801 	ccp_write_4(sc, LSB_PUBLIC_MASK_LO_OFFSET, lsbmasklo);
802 	ccp_write_4(sc, LSB_PUBLIC_MASK_HI_OFFSET, lsbmaskhi);
803 
804 	lsbmask = ((uint64_t)lsbmaskhi << 30) | lsbmasklo;
805 
806 	for (; queue_idx < nitems(sc->queues); queue_idx++) {
807 		error = ccp_hw_attach_queue(dev, lsbmask, queue_idx);
808 		if (error != 0) {
809 			device_printf(dev, "%s: couldn't attach queue %u\n",
810 			    __func__, queue_idx);
811 			goto out;
812 		}
813 	}
814 	ccp_assign_lsb_regions(sc, lsbmask);
815 
816 out:
817 	if (error != 0) {
818 		if (interrupts_setup)
819 			ccp_release_interrupts(sc);
820 		for (j = 0; j < queue_idx; j++)
821 			ccp_hw_detach_queue(dev, j);
822 		if (sc->ring_size_order != 0)
823 			pci_disable_busmaster(dev);
824 		if (bars_mapped)
825 			ccp_unmap_pci_bar(dev);
826 	}
827 	return (error);
828 }
829 
830 void
831 ccp_hw_detach(device_t dev)
832 {
833 	struct ccp_softc *sc;
834 	unsigned i;
835 
836 	sc = device_get_softc(dev);
837 
838 	for (i = 0; i < nitems(sc->queues); i++)
839 		ccp_hw_detach_queue(dev, i);
840 
841 	ccp_release_interrupts(sc);
842 	pci_disable_busmaster(dev);
843 	ccp_unmap_pci_bar(dev);
844 }
845 
846 static int __must_check
847 ccp_passthrough(struct ccp_queue *qp, bus_addr_t dst,
848     enum ccp_memtype dst_type, bus_addr_t src, enum ccp_memtype src_type,
849     bus_size_t len, enum ccp_passthru_byteswap swapmode,
850     enum ccp_passthru_bitwise bitmode, bool interrupt,
851     const struct ccp_completion_ctx *cctx)
852 {
853 	struct ccp_desc *desc;
854 
855 	if (ccp_queue_get_ring_space(qp) == 0)
856 		return (EAGAIN);
857 
858 	desc = &qp->desc_ring[qp->cq_tail];
859 
860 	memset(desc, 0, sizeof(*desc));
861 	desc->engine = CCP_ENGINE_PASSTHRU;
862 
863 	desc->pt.ioc = interrupt;
864 	desc->pt.byteswap = swapmode;
865 	desc->pt.bitwise = bitmode;
866 	desc->length = len;
867 
868 	desc->src_lo = (uint32_t)src;
869 	desc->src_hi = src >> 32;
870 	desc->src_mem = src_type;
871 
872 	desc->dst_lo = (uint32_t)dst;
873 	desc->dst_hi = dst >> 32;
874 	desc->dst_mem = dst_type;
875 
876 	if (bitmode != CCP_PASSTHRU_BITWISE_NOOP)
877 		desc->lsb_ctx_id = ccp_queue_lsb_entry(qp, LSB_ENTRY_KEY);
878 
879 	if (cctx != NULL)
880 		memcpy(&qp->completions_ring[qp->cq_tail], cctx, sizeof(*cctx));
881 
882 	qp->cq_tail = (qp->cq_tail + 1) % (1 << qp->cq_softc->ring_size_order);
883 	return (0);
884 }
885 
886 static int __must_check
887 ccp_passthrough_sgl(struct ccp_queue *qp, bus_addr_t lsb_addr, bool tolsb,
888     struct sglist *sgl, bus_size_t len, bool interrupt,
889     const struct ccp_completion_ctx *cctx)
890 {
891 	struct sglist_seg *seg;
892 	size_t i, remain, nb;
893 	int error;
894 
895 	remain = len;
896 	for (i = 0; i < sgl->sg_nseg && remain != 0; i++) {
897 		seg = &sgl->sg_segs[i];
898 		/* crp lengths are int, so 32-bit min() is ok. */
899 		nb = min(remain, seg->ss_len);
900 
901 		if (tolsb)
902 			error = ccp_passthrough(qp, lsb_addr, CCP_MEMTYPE_SB,
903 			    seg->ss_paddr, CCP_MEMTYPE_SYSTEM, nb,
904 			    CCP_PASSTHRU_BYTESWAP_NOOP,
905 			    CCP_PASSTHRU_BITWISE_NOOP,
906 			    (nb == remain) && interrupt, cctx);
907 		else
908 			error = ccp_passthrough(qp, seg->ss_paddr,
909 			    CCP_MEMTYPE_SYSTEM, lsb_addr, CCP_MEMTYPE_SB, nb,
910 			    CCP_PASSTHRU_BYTESWAP_NOOP,
911 			    CCP_PASSTHRU_BITWISE_NOOP,
912 			    (nb == remain) && interrupt, cctx);
913 		if (error != 0)
914 			return (error);
915 
916 		remain -= nb;
917 	}
918 	return (0);
919 }
920 
921 /*
922  * Note that these vectors are in reverse of the usual order.
923  */
924 const struct SHA_vectors {
925 	uint32_t SHA1[8];
926 	uint32_t SHA224[8];
927 	uint32_t SHA256[8];
928 	uint64_t SHA384[8];
929 	uint64_t SHA512[8];
930 } SHA_H __aligned(PAGE_SIZE) = {
931 	.SHA1 = {
932 		0xc3d2e1f0ul,
933 		0x10325476ul,
934 		0x98badcfeul,
935 		0xefcdab89ul,
936 		0x67452301ul,
937 		0,
938 		0,
939 		0,
940 	},
941 	.SHA224 = {
942 		0xbefa4fa4ul,
943 		0x64f98fa7ul,
944 		0x68581511ul,
945 		0xffc00b31ul,
946 		0xf70e5939ul,
947 		0x3070dd17ul,
948 		0x367cd507ul,
949 		0xc1059ed8ul,
950 	},
951 	.SHA256 = {
952 		0x5be0cd19ul,
953 		0x1f83d9abul,
954 		0x9b05688cul,
955 		0x510e527ful,
956 		0xa54ff53aul,
957 		0x3c6ef372ul,
958 		0xbb67ae85ul,
959 		0x6a09e667ul,
960 	},
961 	.SHA384 = {
962 		0x47b5481dbefa4fa4ull,
963 		0xdb0c2e0d64f98fa7ull,
964 		0x8eb44a8768581511ull,
965 		0x67332667ffc00b31ull,
966 		0x152fecd8f70e5939ull,
967 		0x9159015a3070dd17ull,
968 		0x629a292a367cd507ull,
969 		0xcbbb9d5dc1059ed8ull,
970 	},
971 	.SHA512 = {
972 		0x5be0cd19137e2179ull,
973 		0x1f83d9abfb41bd6bull,
974 		0x9b05688c2b3e6c1full,
975 		0x510e527fade682d1ull,
976 		0xa54ff53a5f1d36f1ull,
977 		0x3c6ef372fe94f82bull,
978 		0xbb67ae8584caa73bull,
979 		0x6a09e667f3bcc908ull,
980 	},
981 };
982 /*
983  * Ensure vectors do not cross a page boundary.
984  *
985  * Disabled due to a new Clang error:  "expression is not an integral constant
986  * expression."  GCC (cross toolchain) seems to handle this assertion with
987  * _Static_assert just fine.
988  */
989 #if 0
990 CTASSERT(PAGE_SIZE - ((uintptr_t)&SHA_H % PAGE_SIZE) >= sizeof(SHA_H));
991 #endif
992 
993 const struct SHA_Defn {
994 	enum sha_version version;
995 	const void *H_vectors;
996 	size_t H_size;
997 	const struct auth_hash *axf;
998 	enum ccp_sha_type engine_type;
999 } SHA_definitions[] = {
1000 	{
1001 		.version = SHA1,
1002 		.H_vectors = SHA_H.SHA1,
1003 		.H_size = sizeof(SHA_H.SHA1),
1004 		.axf = &auth_hash_hmac_sha1,
1005 		.engine_type = CCP_SHA_TYPE_1,
1006 	},
1007 #if 0
1008 	{
1009 		.version = SHA2_224,
1010 		.H_vectors = SHA_H.SHA224,
1011 		.H_size = sizeof(SHA_H.SHA224),
1012 		.axf = &auth_hash_hmac_sha2_224,
1013 		.engine_type = CCP_SHA_TYPE_224,
1014 	},
1015 #endif
1016 	{
1017 		.version = SHA2_256,
1018 		.H_vectors = SHA_H.SHA256,
1019 		.H_size = sizeof(SHA_H.SHA256),
1020 		.axf = &auth_hash_hmac_sha2_256,
1021 		.engine_type = CCP_SHA_TYPE_256,
1022 	},
1023 	{
1024 		.version = SHA2_384,
1025 		.H_vectors = SHA_H.SHA384,
1026 		.H_size = sizeof(SHA_H.SHA384),
1027 		.axf = &auth_hash_hmac_sha2_384,
1028 		.engine_type = CCP_SHA_TYPE_384,
1029 	},
1030 	{
1031 		.version = SHA2_512,
1032 		.H_vectors = SHA_H.SHA512,
1033 		.H_size = sizeof(SHA_H.SHA512),
1034 		.axf = &auth_hash_hmac_sha2_512,
1035 		.engine_type = CCP_SHA_TYPE_512,
1036 	},
1037 };
1038 
1039 static int __must_check
1040 ccp_sha_single_desc(struct ccp_queue *qp, const struct SHA_Defn *defn,
1041     vm_paddr_t addr, size_t len, bool start, bool end, uint64_t msgbits)
1042 {
1043 	struct ccp_desc *desc;
1044 
1045 	if (ccp_queue_get_ring_space(qp) == 0)
1046 		return (EAGAIN);
1047 
1048 	desc = &qp->desc_ring[qp->cq_tail];
1049 
1050 	memset(desc, 0, sizeof(*desc));
1051 	desc->engine = CCP_ENGINE_SHA;
1052 	desc->som = start;
1053 	desc->eom = end;
1054 
1055 	desc->sha.type = defn->engine_type;
1056 	desc->length = len;
1057 
1058 	if (end) {
1059 		desc->sha_len_lo = (uint32_t)msgbits;
1060 		desc->sha_len_hi = msgbits >> 32;
1061 	}
1062 
1063 	desc->src_lo = (uint32_t)addr;
1064 	desc->src_hi = addr >> 32;
1065 	desc->src_mem = CCP_MEMTYPE_SYSTEM;
1066 
1067 	desc->lsb_ctx_id = ccp_queue_lsb_entry(qp, LSB_ENTRY_SHA);
1068 
1069 	qp->cq_tail = (qp->cq_tail + 1) % (1 << qp->cq_softc->ring_size_order);
1070 	return (0);
1071 }
1072 
1073 static int __must_check
1074 ccp_sha(struct ccp_queue *qp, enum sha_version version, struct sglist *sgl_src,
1075     struct sglist *sgl_dst, const struct ccp_completion_ctx *cctx)
1076 {
1077 	const struct SHA_Defn *defn;
1078 	struct sglist_seg *seg;
1079 	size_t i, msgsize, remaining, nb;
1080 	uint32_t lsbaddr;
1081 	int error;
1082 
1083 	for (i = 0; i < nitems(SHA_definitions); i++)
1084 		if (SHA_definitions[i].version == version)
1085 			break;
1086 	if (i == nitems(SHA_definitions))
1087 		return (EINVAL);
1088 	defn = &SHA_definitions[i];
1089 
1090 	/* XXX validate input ??? */
1091 
1092 	/* Load initial SHA state into LSB */
1093 	/* XXX ensure H_vectors don't span page boundaries */
1094 	error = ccp_passthrough(qp, ccp_queue_lsb_address(qp, LSB_ENTRY_SHA),
1095 	    CCP_MEMTYPE_SB, pmap_kextract((vm_offset_t)defn->H_vectors),
1096 	    CCP_MEMTYPE_SYSTEM, roundup2(defn->H_size, LSB_ENTRY_SIZE),
1097 	    CCP_PASSTHRU_BYTESWAP_NOOP, CCP_PASSTHRU_BITWISE_NOOP, false,
1098 	    NULL);
1099 	if (error != 0)
1100 		return (error);
1101 
1102 	/* Execute series of SHA updates on correctly sized buffers */
1103 	msgsize = 0;
1104 	for (i = 0; i < sgl_src->sg_nseg; i++) {
1105 		seg = &sgl_src->sg_segs[i];
1106 		msgsize += seg->ss_len;
1107 		error = ccp_sha_single_desc(qp, defn, seg->ss_paddr,
1108 		    seg->ss_len, i == 0, i == sgl_src->sg_nseg - 1,
1109 		    msgsize << 3);
1110 		if (error != 0)
1111 			return (error);
1112 	}
1113 
1114 	/* Copy result out to sgl_dst */
1115 	remaining = roundup2(defn->H_size, LSB_ENTRY_SIZE);
1116 	lsbaddr = ccp_queue_lsb_address(qp, LSB_ENTRY_SHA);
1117 	for (i = 0; i < sgl_dst->sg_nseg; i++) {
1118 		seg = &sgl_dst->sg_segs[i];
1119 		/* crp lengths are int, so 32-bit min() is ok. */
1120 		nb = min(remaining, seg->ss_len);
1121 
1122 		error = ccp_passthrough(qp, seg->ss_paddr, CCP_MEMTYPE_SYSTEM,
1123 		    lsbaddr, CCP_MEMTYPE_SB, nb, CCP_PASSTHRU_BYTESWAP_NOOP,
1124 		    CCP_PASSTHRU_BITWISE_NOOP,
1125 		    (cctx != NULL) ? (nb == remaining) : false,
1126 		    (nb == remaining) ? cctx : NULL);
1127 		if (error != 0)
1128 			return (error);
1129 
1130 		remaining -= nb;
1131 		lsbaddr += nb;
1132 		if (remaining == 0)
1133 			break;
1134 	}
1135 
1136 	return (0);
1137 }
1138 
1139 static void
1140 byteswap256(uint64_t *buffer)
1141 {
1142 	uint64_t t;
1143 
1144 	t = bswap64(buffer[3]);
1145 	buffer[3] = bswap64(buffer[0]);
1146 	buffer[0] = t;
1147 
1148 	t = bswap64(buffer[2]);
1149 	buffer[2] = bswap64(buffer[1]);
1150 	buffer[1] = t;
1151 }
1152 
1153 /*
1154  * Translate CCP internal LSB hash format into a standard hash ouput.
1155  *
1156  * Manipulates input buffer with byteswap256 operation.
1157  */
1158 static void
1159 ccp_sha_copy_result(char *output, char *buffer, enum sha_version version)
1160 {
1161 	const struct SHA_Defn *defn;
1162 	size_t i;
1163 
1164 	for (i = 0; i < nitems(SHA_definitions); i++)
1165 		if (SHA_definitions[i].version == version)
1166 			break;
1167 	if (i == nitems(SHA_definitions))
1168 		panic("bogus sha version auth_mode %u\n", (unsigned)version);
1169 
1170 	defn = &SHA_definitions[i];
1171 
1172 	/* Swap 256bit manually -- DMA engine can, but with limitations */
1173 	byteswap256((void *)buffer);
1174 	if (defn->axf->hashsize > LSB_ENTRY_SIZE)
1175 		byteswap256((void *)(buffer + LSB_ENTRY_SIZE));
1176 
1177 	switch (defn->version) {
1178 	case SHA1:
1179 		memcpy(output, buffer + 12, defn->axf->hashsize);
1180 		break;
1181 #if 0
1182 	case SHA2_224:
1183 		memcpy(output, buffer + XXX, defn->axf->hashsize);
1184 		break;
1185 #endif
1186 	case SHA2_256:
1187 		memcpy(output, buffer, defn->axf->hashsize);
1188 		break;
1189 	case SHA2_384:
1190 		memcpy(output,
1191 		    buffer + LSB_ENTRY_SIZE * 3 - defn->axf->hashsize,
1192 		    defn->axf->hashsize - LSB_ENTRY_SIZE);
1193 		memcpy(output + defn->axf->hashsize - LSB_ENTRY_SIZE, buffer,
1194 		    LSB_ENTRY_SIZE);
1195 		break;
1196 	case SHA2_512:
1197 		memcpy(output, buffer + LSB_ENTRY_SIZE, LSB_ENTRY_SIZE);
1198 		memcpy(output + LSB_ENTRY_SIZE, buffer, LSB_ENTRY_SIZE);
1199 		break;
1200 	}
1201 }
1202 
1203 static void
1204 ccp_do_hmac_done(struct ccp_queue *qp, struct ccp_session *s,
1205     struct cryptop *crp, int error)
1206 {
1207 	char ihash[SHA2_512_HASH_LEN /* max hash len */];
1208 	union authctx auth_ctx;
1209 	const struct auth_hash *axf;
1210 
1211 	axf = s->hmac.auth_hash;
1212 
1213 	s->pending--;
1214 
1215 	if (error != 0) {
1216 		crp->crp_etype = error;
1217 		goto out;
1218 	}
1219 
1220 	/* Do remaining outer hash over small inner hash in software */
1221 	axf->Init(&auth_ctx);
1222 	axf->Update(&auth_ctx, s->hmac.opad, axf->blocksize);
1223 	ccp_sha_copy_result(ihash, s->hmac.res, s->hmac.auth_mode);
1224 #if 0
1225 	INSECURE_DEBUG(dev, "%s sha intermediate=%64D\n", __func__,
1226 	    (u_char *)ihash, " ");
1227 #endif
1228 	axf->Update(&auth_ctx, ihash, axf->hashsize);
1229 	axf->Final(s->hmac.res, &auth_ctx);
1230 
1231 	if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
1232 		crypto_copydata(crp, crp->crp_digest_start, s->hmac.hash_len,
1233 		    ihash);
1234 		if (timingsafe_bcmp(s->hmac.res, ihash, s->hmac.hash_len) != 0)
1235 			crp->crp_etype = EBADMSG;
1236 	} else
1237 		crypto_copyback(crp, crp->crp_digest_start, s->hmac.hash_len,
1238 		    s->hmac.res);
1239 
1240 	/* Avoid leaking key material */
1241 	explicit_bzero(&auth_ctx, sizeof(auth_ctx));
1242 	explicit_bzero(s->hmac.res, sizeof(s->hmac.res));
1243 
1244 out:
1245 	crypto_done(crp);
1246 }
1247 
1248 static void
1249 ccp_hmac_done(struct ccp_queue *qp, struct ccp_session *s, void *vcrp,
1250     int error)
1251 {
1252 	struct cryptop *crp;
1253 
1254 	crp = vcrp;
1255 	ccp_do_hmac_done(qp, s, crp, error);
1256 }
1257 
1258 static int __must_check
1259 ccp_do_hmac(struct ccp_queue *qp, struct ccp_session *s, struct cryptop *crp,
1260     const struct ccp_completion_ctx *cctx)
1261 {
1262 	device_t dev;
1263 	const struct auth_hash *axf;
1264 	int error;
1265 
1266 	dev = qp->cq_softc->dev;
1267 	axf = s->hmac.auth_hash;
1268 
1269 	/*
1270 	 * Populate the SGL describing inside hash contents.  We want to hash
1271 	 * the ipad (key XOR fixed bit pattern) concatenated with the user
1272 	 * data.
1273 	 */
1274 	sglist_reset(qp->cq_sg_ulptx);
1275 	error = sglist_append(qp->cq_sg_ulptx, s->hmac.ipad, axf->blocksize);
1276 	if (error != 0)
1277 		return (error);
1278 	if (crp->crp_aad_length != 0) {
1279 		error = sglist_append_sglist(qp->cq_sg_ulptx, qp->cq_sg_crp,
1280 		    crp->crp_aad_start, crp->crp_aad_length);
1281 		if (error != 0)
1282 			return (error);
1283 	}
1284 	error = sglist_append_sglist(qp->cq_sg_ulptx, qp->cq_sg_crp,
1285 	    crp->crp_payload_start, crp->crp_payload_length);
1286 	if (error != 0) {
1287 		DPRINTF(dev, "%s: sglist too short\n", __func__);
1288 		return (error);
1289 	}
1290 	/* Populate SGL for output -- use hmac.res buffer. */
1291 	sglist_reset(qp->cq_sg_dst);
1292 	error = sglist_append(qp->cq_sg_dst, s->hmac.res,
1293 	    roundup2(axf->hashsize, LSB_ENTRY_SIZE));
1294 	if (error != 0)
1295 		return (error);
1296 
1297 	error = ccp_sha(qp, s->hmac.auth_mode, qp->cq_sg_ulptx, qp->cq_sg_dst,
1298 	    cctx);
1299 	if (error != 0) {
1300 		DPRINTF(dev, "%s: ccp_sha error\n", __func__);
1301 		return (error);
1302 	}
1303 	return (0);
1304 }
1305 
1306 int __must_check
1307 ccp_hmac(struct ccp_queue *qp, struct ccp_session *s, struct cryptop *crp)
1308 {
1309 	struct ccp_completion_ctx ctx;
1310 
1311 	ctx.callback_fn = ccp_hmac_done;
1312 	ctx.callback_arg = crp;
1313 	ctx.session = s;
1314 
1315 	return (ccp_do_hmac(qp, s, crp, &ctx));
1316 }
1317 
1318 static void
1319 ccp_byteswap(char *data, size_t len)
1320 {
1321 	size_t i;
1322 	char t;
1323 
1324 	len--;
1325 	for (i = 0; i < len; i++, len--) {
1326 		t = data[i];
1327 		data[i] = data[len];
1328 		data[len] = t;
1329 	}
1330 }
1331 
1332 static void
1333 ccp_blkcipher_done(struct ccp_queue *qp, struct ccp_session *s, void *vcrp,
1334     int error)
1335 {
1336 	struct cryptop *crp;
1337 
1338 	explicit_bzero(&s->blkcipher.iv, sizeof(s->blkcipher.iv));
1339 
1340 	crp = vcrp;
1341 
1342 	s->pending--;
1343 
1344 	if (error != 0)
1345 		crp->crp_etype = error;
1346 
1347 	DPRINTF(qp->cq_softc->dev, "%s: qp=%p crp=%p\n", __func__, qp, crp);
1348 	crypto_done(crp);
1349 }
1350 
1351 static void
1352 ccp_collect_iv(struct cryptop *crp, const struct crypto_session_params *csp,
1353     char *iv)
1354 {
1355 
1356 	crypto_read_iv(crp, iv);
1357 
1358 	/*
1359 	 * Append an explicit counter of 1 for GCM.
1360 	 */
1361 	if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16)
1362 		*(uint32_t *)&iv[12] = htobe32(1);
1363 
1364 	if (csp->csp_cipher_alg == CRYPTO_AES_XTS &&
1365 	    csp->csp_ivlen < AES_BLOCK_LEN)
1366 		memset(&iv[csp->csp_ivlen], 0, AES_BLOCK_LEN - csp->csp_ivlen);
1367 
1368 	/* Reverse order of IV material for HW */
1369 	INSECURE_DEBUG(NULL, "%s: IV: %16D len: %u\n", __func__, iv, " ",
1370 	    csp->csp_ivlen);
1371 
1372 	/*
1373 	 * For unknown reasons, XTS mode expects the IV in the reverse byte
1374 	 * order to every other AES mode.
1375 	 */
1376 	if (csp->csp_cipher_alg != CRYPTO_AES_XTS)
1377 		ccp_byteswap(iv, AES_BLOCK_LEN);
1378 }
1379 
1380 static int __must_check
1381 ccp_do_pst_to_lsb(struct ccp_queue *qp, uint32_t lsbaddr, const void *src,
1382     size_t len)
1383 {
1384 	int error;
1385 
1386 	sglist_reset(qp->cq_sg_ulptx);
1387 	error = sglist_append(qp->cq_sg_ulptx, __DECONST(void *, src), len);
1388 	if (error != 0)
1389 		return (error);
1390 
1391 	error = ccp_passthrough_sgl(qp, lsbaddr, true, qp->cq_sg_ulptx, len,
1392 	    false, NULL);
1393 	return (error);
1394 }
1395 
1396 static int __must_check
1397 ccp_do_xts(struct ccp_queue *qp, struct ccp_session *s, struct cryptop *crp,
1398     enum ccp_cipher_dir dir, const struct ccp_completion_ctx *cctx)
1399 {
1400 	struct ccp_desc *desc;
1401 	device_t dev;
1402 	unsigned i;
1403 	enum ccp_xts_unitsize usize;
1404 
1405 	/* IV and Key data are already loaded */
1406 
1407 	dev = qp->cq_softc->dev;
1408 
1409 	for (i = 0; i < nitems(ccp_xts_unitsize_map); i++)
1410 		if (ccp_xts_unitsize_map[i].cxu_size ==
1411 		    crp->crp_payload_length) {
1412 			usize = ccp_xts_unitsize_map[i].cxu_id;
1413 			break;
1414 		}
1415 	if (i >= nitems(ccp_xts_unitsize_map))
1416 		return (EINVAL);
1417 
1418 	for (i = 0; i < qp->cq_sg_ulptx->sg_nseg; i++) {
1419 		struct sglist_seg *seg;
1420 
1421 		seg = &qp->cq_sg_ulptx->sg_segs[i];
1422 
1423 		desc = &qp->desc_ring[qp->cq_tail];
1424 		desc->engine = CCP_ENGINE_XTS_AES;
1425 		desc->som = (i == 0);
1426 		desc->eom = (i == qp->cq_sg_ulptx->sg_nseg - 1);
1427 		desc->ioc = (desc->eom && cctx != NULL);
1428 		DPRINTF(dev, "%s: XTS %u: som:%d eom:%d ioc:%d dir:%d\n",
1429 		    __func__, qp->cq_tail, (int)desc->som, (int)desc->eom,
1430 		    (int)desc->ioc, (int)dir);
1431 
1432 		if (desc->ioc)
1433 			memcpy(&qp->completions_ring[qp->cq_tail], cctx,
1434 			    sizeof(*cctx));
1435 
1436 		desc->aes_xts.encrypt = dir;
1437 		desc->aes_xts.type = s->blkcipher.cipher_type;
1438 		desc->aes_xts.size = usize;
1439 
1440 		DPRINTF(dev, "XXX %s: XTS %u: type:%u size:%u\n", __func__,
1441 		    qp->cq_tail, (unsigned)desc->aes_xts.type,
1442 		    (unsigned)desc->aes_xts.size);
1443 
1444 		desc->length = seg->ss_len;
1445 		desc->src_lo = (uint32_t)seg->ss_paddr;
1446 		desc->src_hi = (seg->ss_paddr >> 32);
1447 		desc->src_mem = CCP_MEMTYPE_SYSTEM;
1448 
1449 		/* Crypt in-place */
1450 		desc->dst_lo = desc->src_lo;
1451 		desc->dst_hi = desc->src_hi;
1452 		desc->dst_mem = desc->src_mem;
1453 
1454 		desc->key_lo = ccp_queue_lsb_address(qp, LSB_ENTRY_KEY);
1455 		desc->key_hi = 0;
1456 		desc->key_mem = CCP_MEMTYPE_SB;
1457 
1458 		desc->lsb_ctx_id = ccp_queue_lsb_entry(qp, LSB_ENTRY_IV);
1459 
1460 		qp->cq_tail = (qp->cq_tail + 1) %
1461 		    (1 << qp->cq_softc->ring_size_order);
1462 	}
1463 	return (0);
1464 }
1465 
1466 static int __must_check
1467 ccp_do_blkcipher(struct ccp_queue *qp, struct ccp_session *s,
1468     struct cryptop *crp, const struct ccp_completion_ctx *cctx)
1469 {
1470 	const struct crypto_session_params *csp;
1471 	struct ccp_desc *desc;
1472 	char *keydata;
1473 	device_t dev;
1474 	enum ccp_cipher_dir dir;
1475 	int error, iv_len;
1476 	size_t keydata_len;
1477 	unsigned i, j;
1478 
1479 	dev = qp->cq_softc->dev;
1480 
1481 	if (s->blkcipher.key_len == 0 || crp->crp_payload_length == 0) {
1482 		DPRINTF(dev, "%s: empty\n", __func__);
1483 		return (EINVAL);
1484 	}
1485 	if ((crp->crp_payload_length % AES_BLOCK_LEN) != 0) {
1486 		DPRINTF(dev, "%s: len modulo: %d\n", __func__,
1487 		    crp->crp_payload_length);
1488 		return (EINVAL);
1489 	}
1490 
1491 	/*
1492 	 * Individual segments must be multiples of AES block size for the HW
1493 	 * to process it.  Non-compliant inputs aren't bogus, just not doable
1494 	 * on this hardware.
1495 	 */
1496 	for (i = 0; i < qp->cq_sg_crp->sg_nseg; i++)
1497 		if ((qp->cq_sg_crp->sg_segs[i].ss_len % AES_BLOCK_LEN) != 0) {
1498 			DPRINTF(dev, "%s: seg modulo: %zu\n", __func__,
1499 			    qp->cq_sg_crp->sg_segs[i].ss_len);
1500 			return (EINVAL);
1501 		}
1502 
1503 	/* Gather IV/nonce data */
1504 	csp = crypto_get_params(crp->crp_session);
1505 	ccp_collect_iv(crp, csp, s->blkcipher.iv);
1506 	iv_len = csp->csp_ivlen;
1507 	if (csp->csp_cipher_alg == CRYPTO_AES_XTS)
1508 		iv_len = AES_BLOCK_LEN;
1509 
1510 	if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op))
1511 		dir = CCP_CIPHER_DIR_ENCRYPT;
1512 	else
1513 		dir = CCP_CIPHER_DIR_DECRYPT;
1514 
1515 	/* Set up passthrough op(s) to copy IV into LSB */
1516 	error = ccp_do_pst_to_lsb(qp, ccp_queue_lsb_address(qp, LSB_ENTRY_IV),
1517 	    s->blkcipher.iv, iv_len);
1518 	if (error != 0)
1519 		return (error);
1520 
1521 	/*
1522 	 * Initialize keydata and keydata_len for GCC.  The default case of the
1523 	 * following switch is impossible to reach, but GCC doesn't know that.
1524 	 */
1525 	keydata_len = 0;
1526 	keydata = NULL;
1527 
1528 	switch (csp->csp_cipher_alg) {
1529 	case CRYPTO_AES_XTS:
1530 		for (j = 0; j < nitems(ccp_xts_unitsize_map); j++)
1531 			if (ccp_xts_unitsize_map[j].cxu_size ==
1532 			    crp->crp_payload_length)
1533 				break;
1534 		/* Input buffer must be a supported UnitSize */
1535 		if (j >= nitems(ccp_xts_unitsize_map)) {
1536 			device_printf(dev, "%s: rejected block size: %u\n",
1537 			    __func__, crp->crp_payload_length);
1538 			return (EOPNOTSUPP);
1539 		}
1540 		/* FALLTHROUGH */
1541 	case CRYPTO_AES_CBC:
1542 	case CRYPTO_AES_ICM:
1543 		keydata = s->blkcipher.enckey;
1544 		keydata_len = s->blkcipher.key_len;
1545 		break;
1546 	}
1547 
1548 	INSECURE_DEBUG(dev, "%s: KEY(%zu): %16D\n", __func__, keydata_len,
1549 	    keydata, " ");
1550 	if (csp->csp_cipher_alg == CRYPTO_AES_XTS)
1551 		INSECURE_DEBUG(dev, "%s: KEY(XTS): %64D\n", __func__, keydata, " ");
1552 
1553 	/* Reverse order of key material for HW */
1554 	ccp_byteswap(keydata, keydata_len);
1555 
1556 	/* Store key material into LSB to avoid page boundaries */
1557 	if (csp->csp_cipher_alg == CRYPTO_AES_XTS) {
1558 		/*
1559 		 * XTS mode uses 2 256-bit vectors for the primary key and the
1560 		 * tweak key.  For 128-bit keys, the vectors are zero-padded.
1561 		 *
1562 		 * After byteswapping the combined OCF-provided K1:K2 vector
1563 		 * above, we need to reverse the order again so the hardware
1564 		 * gets the swapped keys in the order K1':K2'.
1565 		 */
1566 		error = ccp_do_pst_to_lsb(qp,
1567 		    ccp_queue_lsb_address(qp, LSB_ENTRY_KEY + 1), keydata,
1568 		    keydata_len / 2);
1569 		if (error != 0)
1570 			return (error);
1571 		error = ccp_do_pst_to_lsb(qp,
1572 		    ccp_queue_lsb_address(qp, LSB_ENTRY_KEY),
1573 		    keydata + (keydata_len / 2), keydata_len / 2);
1574 
1575 		/* Zero-pad 128 bit keys */
1576 		if (keydata_len == 32) {
1577 			if (error != 0)
1578 				return (error);
1579 			error = ccp_do_pst_to_lsb(qp,
1580 			    ccp_queue_lsb_address(qp, LSB_ENTRY_KEY) +
1581 			    keydata_len / 2, g_zeroes, keydata_len / 2);
1582 			if (error != 0)
1583 				return (error);
1584 			error = ccp_do_pst_to_lsb(qp,
1585 			    ccp_queue_lsb_address(qp, LSB_ENTRY_KEY + 1) +
1586 			    keydata_len / 2, g_zeroes, keydata_len / 2);
1587 		}
1588 	} else
1589 		error = ccp_do_pst_to_lsb(qp,
1590 		    ccp_queue_lsb_address(qp, LSB_ENTRY_KEY), keydata,
1591 		    keydata_len);
1592 	if (error != 0)
1593 		return (error);
1594 
1595 	/*
1596 	 * Point SGLs at the subset of cryptop buffer contents representing the
1597 	 * data.
1598 	 */
1599 	sglist_reset(qp->cq_sg_ulptx);
1600 	error = sglist_append_sglist(qp->cq_sg_ulptx, qp->cq_sg_crp,
1601 	    crp->crp_payload_start, crp->crp_payload_length);
1602 	if (error != 0)
1603 		return (error);
1604 
1605 	INSECURE_DEBUG(dev, "%s: Contents: %16D\n", __func__,
1606 	    (void *)PHYS_TO_DMAP(qp->cq_sg_ulptx->sg_segs[0].ss_paddr), " ");
1607 
1608 	DPRINTF(dev, "%s: starting AES ops @ %u\n", __func__, qp->cq_tail);
1609 
1610 	if (ccp_queue_get_ring_space(qp) < qp->cq_sg_ulptx->sg_nseg)
1611 		return (EAGAIN);
1612 
1613 	if (csp->csp_cipher_alg == CRYPTO_AES_XTS)
1614 		return (ccp_do_xts(qp, s, crp, dir, cctx));
1615 
1616 	for (i = 0; i < qp->cq_sg_ulptx->sg_nseg; i++) {
1617 		struct sglist_seg *seg;
1618 
1619 		seg = &qp->cq_sg_ulptx->sg_segs[i];
1620 
1621 		desc = &qp->desc_ring[qp->cq_tail];
1622 		desc->engine = CCP_ENGINE_AES;
1623 		desc->som = (i == 0);
1624 		desc->eom = (i == qp->cq_sg_ulptx->sg_nseg - 1);
1625 		desc->ioc = (desc->eom && cctx != NULL);
1626 		DPRINTF(dev, "%s: AES %u: som:%d eom:%d ioc:%d dir:%d\n",
1627 		    __func__, qp->cq_tail, (int)desc->som, (int)desc->eom,
1628 		    (int)desc->ioc, (int)dir);
1629 
1630 		if (desc->ioc)
1631 			memcpy(&qp->completions_ring[qp->cq_tail], cctx,
1632 			    sizeof(*cctx));
1633 
1634 		desc->aes.encrypt = dir;
1635 		desc->aes.mode = s->blkcipher.cipher_mode;
1636 		desc->aes.type = s->blkcipher.cipher_type;
1637 		if (csp->csp_cipher_alg == CRYPTO_AES_ICM)
1638 			/*
1639 			 * Size of CTR value in bits, - 1.  ICM mode uses all
1640 			 * 128 bits as counter.
1641 			 */
1642 			desc->aes.size = 127;
1643 
1644 		DPRINTF(dev, "%s: AES %u: mode:%u type:%u size:%u\n", __func__,
1645 		    qp->cq_tail, (unsigned)desc->aes.mode,
1646 		    (unsigned)desc->aes.type, (unsigned)desc->aes.size);
1647 
1648 		desc->length = seg->ss_len;
1649 		desc->src_lo = (uint32_t)seg->ss_paddr;
1650 		desc->src_hi = (seg->ss_paddr >> 32);
1651 		desc->src_mem = CCP_MEMTYPE_SYSTEM;
1652 
1653 		/* Crypt in-place */
1654 		desc->dst_lo = desc->src_lo;
1655 		desc->dst_hi = desc->src_hi;
1656 		desc->dst_mem = desc->src_mem;
1657 
1658 		desc->key_lo = ccp_queue_lsb_address(qp, LSB_ENTRY_KEY);
1659 		desc->key_hi = 0;
1660 		desc->key_mem = CCP_MEMTYPE_SB;
1661 
1662 		desc->lsb_ctx_id = ccp_queue_lsb_entry(qp, LSB_ENTRY_IV);
1663 
1664 		qp->cq_tail = (qp->cq_tail + 1) %
1665 		    (1 << qp->cq_softc->ring_size_order);
1666 	}
1667 	return (0);
1668 }
1669 
1670 int __must_check
1671 ccp_blkcipher(struct ccp_queue *qp, struct ccp_session *s, struct cryptop *crp)
1672 {
1673 	struct ccp_completion_ctx ctx;
1674 
1675 	ctx.callback_fn = ccp_blkcipher_done;
1676 	ctx.session = s;
1677 	ctx.callback_arg = crp;
1678 
1679 	return (ccp_do_blkcipher(qp, s, crp, &ctx));
1680 }
1681 
1682 static void
1683 ccp_authenc_done(struct ccp_queue *qp, struct ccp_session *s, void *vcrp,
1684     int error)
1685 {
1686 	struct cryptop *crp;
1687 
1688 	explicit_bzero(&s->blkcipher.iv, sizeof(s->blkcipher.iv));
1689 
1690 	crp = vcrp;
1691 
1692 	ccp_do_hmac_done(qp, s, crp, error);
1693 }
1694 
1695 int __must_check
1696 ccp_authenc(struct ccp_queue *qp, struct ccp_session *s, struct cryptop *crp)
1697 {
1698 	struct ccp_completion_ctx ctx;
1699 	int error;
1700 
1701 	ctx.callback_fn = ccp_authenc_done;
1702 	ctx.session = s;
1703 	ctx.callback_arg = crp;
1704 
1705 	/* Perform first operation */
1706 	if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op))
1707 		error = ccp_do_blkcipher(qp, s, crp, NULL);
1708 	else
1709 		error = ccp_do_hmac(qp, s, crp, NULL);
1710 	if (error != 0)
1711 		return (error);
1712 
1713 	/* Perform second operation */
1714 	if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op))
1715 		error = ccp_do_hmac(qp, s, crp, &ctx);
1716 	else
1717 		error = ccp_do_blkcipher(qp, s, crp, &ctx);
1718 	return (error);
1719 }
1720 
1721 static int __must_check
1722 ccp_do_ghash_aad(struct ccp_queue *qp, struct ccp_session *s)
1723 {
1724 	struct ccp_desc *desc;
1725 	struct sglist_seg *seg;
1726 	unsigned i;
1727 
1728 	if (ccp_queue_get_ring_space(qp) < qp->cq_sg_ulptx->sg_nseg)
1729 		return (EAGAIN);
1730 
1731 	for (i = 0; i < qp->cq_sg_ulptx->sg_nseg; i++) {
1732 		seg = &qp->cq_sg_ulptx->sg_segs[i];
1733 
1734 		desc = &qp->desc_ring[qp->cq_tail];
1735 
1736 		desc->engine = CCP_ENGINE_AES;
1737 		desc->aes.mode = CCP_AES_MODE_GHASH;
1738 		desc->aes.type = s->blkcipher.cipher_type;
1739 		desc->aes.encrypt = CCP_AES_MODE_GHASH_AAD;
1740 
1741 		desc->som = (i == 0);
1742 		desc->length = seg->ss_len;
1743 
1744 		desc->src_lo = (uint32_t)seg->ss_paddr;
1745 		desc->src_hi = (seg->ss_paddr >> 32);
1746 		desc->src_mem = CCP_MEMTYPE_SYSTEM;
1747 
1748 		desc->lsb_ctx_id = ccp_queue_lsb_entry(qp, LSB_ENTRY_IV);
1749 
1750 		desc->key_lo = ccp_queue_lsb_address(qp, LSB_ENTRY_KEY);
1751 		desc->key_mem = CCP_MEMTYPE_SB;
1752 
1753 		qp->cq_tail = (qp->cq_tail + 1) %
1754 		    (1 << qp->cq_softc->ring_size_order);
1755 	}
1756 	return (0);
1757 }
1758 
1759 static int __must_check
1760 ccp_do_gctr(struct ccp_queue *qp, struct ccp_session *s,
1761     enum ccp_cipher_dir dir, struct sglist_seg *seg, bool som, bool eom)
1762 {
1763 	struct ccp_desc *desc;
1764 
1765 	if (ccp_queue_get_ring_space(qp) == 0)
1766 		return (EAGAIN);
1767 
1768 	desc = &qp->desc_ring[qp->cq_tail];
1769 
1770 	desc->engine = CCP_ENGINE_AES;
1771 	desc->aes.mode = CCP_AES_MODE_GCTR;
1772 	desc->aes.type = s->blkcipher.cipher_type;
1773 	desc->aes.encrypt = dir;
1774 	desc->aes.size = 8 * (seg->ss_len % GMAC_BLOCK_LEN) - 1;
1775 
1776 	desc->som = som;
1777 	desc->eom = eom;
1778 
1779 	/* Trailing bytes will be masked off by aes.size above. */
1780 	desc->length = roundup2(seg->ss_len, GMAC_BLOCK_LEN);
1781 
1782 	desc->dst_lo = desc->src_lo = (uint32_t)seg->ss_paddr;
1783 	desc->dst_hi = desc->src_hi = seg->ss_paddr >> 32;
1784 	desc->dst_mem = desc->src_mem = CCP_MEMTYPE_SYSTEM;
1785 
1786 	desc->lsb_ctx_id = ccp_queue_lsb_entry(qp, LSB_ENTRY_IV);
1787 
1788 	desc->key_lo = ccp_queue_lsb_address(qp, LSB_ENTRY_KEY);
1789 	desc->key_mem = CCP_MEMTYPE_SB;
1790 
1791 	qp->cq_tail = (qp->cq_tail + 1) %
1792 	    (1 << qp->cq_softc->ring_size_order);
1793 	return (0);
1794 }
1795 
1796 static int __must_check
1797 ccp_do_ghash_final(struct ccp_queue *qp, struct ccp_session *s)
1798 {
1799 	struct ccp_desc *desc;
1800 
1801 	if (ccp_queue_get_ring_space(qp) == 0)
1802 		return (EAGAIN);
1803 
1804 	desc = &qp->desc_ring[qp->cq_tail];
1805 
1806 	desc->engine = CCP_ENGINE_AES;
1807 	desc->aes.mode = CCP_AES_MODE_GHASH;
1808 	desc->aes.type = s->blkcipher.cipher_type;
1809 	desc->aes.encrypt = CCP_AES_MODE_GHASH_FINAL;
1810 
1811 	desc->length = GMAC_BLOCK_LEN;
1812 
1813 	desc->src_lo = ccp_queue_lsb_address(qp, LSB_ENTRY_GHASH_IN);
1814 	desc->src_mem = CCP_MEMTYPE_SB;
1815 
1816 	desc->lsb_ctx_id = ccp_queue_lsb_entry(qp, LSB_ENTRY_IV);
1817 
1818 	desc->key_lo = ccp_queue_lsb_address(qp, LSB_ENTRY_KEY);
1819 	desc->key_mem = CCP_MEMTYPE_SB;
1820 
1821 	desc->dst_lo = ccp_queue_lsb_address(qp, LSB_ENTRY_GHASH);
1822 	desc->dst_mem = CCP_MEMTYPE_SB;
1823 
1824 	qp->cq_tail = (qp->cq_tail + 1) %
1825 	    (1 << qp->cq_softc->ring_size_order);
1826 	return (0);
1827 }
1828 
1829 static void
1830 ccp_gcm_done(struct ccp_queue *qp, struct ccp_session *s, void *vcrp,
1831     int error)
1832 {
1833 	char tag[GMAC_DIGEST_LEN];
1834 	struct cryptop *crp;
1835 
1836 	crp = vcrp;
1837 
1838 	s->pending--;
1839 
1840 	if (error != 0) {
1841 		crp->crp_etype = error;
1842 		goto out;
1843 	}
1844 
1845 	/* Encrypt is done.  Decrypt needs to verify tag. */
1846 	if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op))
1847 		goto out;
1848 
1849 	/* Copy in message tag. */
1850 	crypto_copydata(crp, crp->crp_digest_start, s->gmac.hash_len, tag);
1851 
1852 	/* Verify tag against computed GMAC */
1853 	if (timingsafe_bcmp(tag, s->gmac.final_block, s->gmac.hash_len) != 0)
1854 		crp->crp_etype = EBADMSG;
1855 
1856 out:
1857 	explicit_bzero(&s->blkcipher.iv, sizeof(s->blkcipher.iv));
1858 	explicit_bzero(&s->gmac.final_block, sizeof(s->gmac.final_block));
1859 	crypto_done(crp);
1860 }
1861 
1862 int __must_check
1863 ccp_gcm(struct ccp_queue *qp, struct ccp_session *s, struct cryptop *crp)
1864 {
1865 	const struct crypto_session_params *csp;
1866 	struct ccp_completion_ctx ctx;
1867 	enum ccp_cipher_dir dir;
1868 	device_t dev;
1869 	unsigned i;
1870 	int error;
1871 
1872 	if (s->blkcipher.key_len == 0)
1873 		return (EINVAL);
1874 
1875 	dev = qp->cq_softc->dev;
1876 
1877 	if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op))
1878 		dir = CCP_CIPHER_DIR_ENCRYPT;
1879 	else
1880 		dir = CCP_CIPHER_DIR_DECRYPT;
1881 
1882 	/* Zero initial GHASH portion of context */
1883 	memset(s->blkcipher.iv, 0, sizeof(s->blkcipher.iv));
1884 
1885 	/* Gather IV data */
1886 	csp = crypto_get_params(crp->crp_session);
1887 	ccp_collect_iv(crp, csp, s->blkcipher.iv);
1888 
1889 	/* Reverse order of key material for HW */
1890 	ccp_byteswap(s->blkcipher.enckey, s->blkcipher.key_len);
1891 
1892 	/* Prepare input buffer of concatenated lengths for final GHASH */
1893 	be64enc(s->gmac.final_block, (uint64_t)crp->crp_aad_length * 8);
1894 	be64enc(&s->gmac.final_block[8], (uint64_t)crp->crp_payload_length * 8);
1895 
1896 	/* Send IV + initial zero GHASH, key data, and lengths buffer to LSB */
1897 	error = ccp_do_pst_to_lsb(qp, ccp_queue_lsb_address(qp, LSB_ENTRY_IV),
1898 	    s->blkcipher.iv, 32);
1899 	if (error != 0)
1900 		return (error);
1901 	error = ccp_do_pst_to_lsb(qp, ccp_queue_lsb_address(qp, LSB_ENTRY_KEY),
1902 	    s->blkcipher.enckey, s->blkcipher.key_len);
1903 	if (error != 0)
1904 		return (error);
1905 	error = ccp_do_pst_to_lsb(qp,
1906 	    ccp_queue_lsb_address(qp, LSB_ENTRY_GHASH_IN), s->gmac.final_block,
1907 	    GMAC_BLOCK_LEN);
1908 	if (error != 0)
1909 		return (error);
1910 
1911 	/* First step - compute GHASH over AAD */
1912 	if (crp->crp_aad_length != 0) {
1913 		sglist_reset(qp->cq_sg_ulptx);
1914 		error = sglist_append_sglist(qp->cq_sg_ulptx, qp->cq_sg_crp,
1915 		    crp->crp_aad_start, crp->crp_aad_length);
1916 		if (error != 0)
1917 			return (error);
1918 
1919 		/* This engine cannot process non-block multiple AAD data. */
1920 		for (i = 0; i < qp->cq_sg_ulptx->sg_nseg; i++)
1921 			if ((qp->cq_sg_ulptx->sg_segs[i].ss_len %
1922 			    GMAC_BLOCK_LEN) != 0) {
1923 				DPRINTF(dev, "%s: AD seg modulo: %zu\n",
1924 				    __func__,
1925 				    qp->cq_sg_ulptx->sg_segs[i].ss_len);
1926 				return (EINVAL);
1927 			}
1928 
1929 		error = ccp_do_ghash_aad(qp, s);
1930 		if (error != 0)
1931 			return (error);
1932 	}
1933 
1934 	/* Feed data piece by piece into GCTR */
1935 	sglist_reset(qp->cq_sg_ulptx);
1936 	error = sglist_append_sglist(qp->cq_sg_ulptx, qp->cq_sg_crp,
1937 	    crp->crp_payload_start, crp->crp_payload_length);
1938 	if (error != 0)
1939 		return (error);
1940 
1941 	/*
1942 	 * All segments except the last must be even multiples of AES block
1943 	 * size for the HW to process it.  Non-compliant inputs aren't bogus,
1944 	 * just not doable on this hardware.
1945 	 *
1946 	 * XXX: Well, the hardware will produce a valid tag for shorter final
1947 	 * segment inputs, but it will still write out a block-sized plaintext
1948 	 * or ciphertext chunk.  For a typical CRP this tramples trailing data,
1949 	 * including the provided message tag.  So, reject such inputs for now.
1950 	 */
1951 	for (i = 0; i < qp->cq_sg_ulptx->sg_nseg; i++)
1952 		if ((qp->cq_sg_ulptx->sg_segs[i].ss_len % AES_BLOCK_LEN) != 0) {
1953 			DPRINTF(dev, "%s: seg modulo: %zu\n", __func__,
1954 			    qp->cq_sg_ulptx->sg_segs[i].ss_len);
1955 			return (EINVAL);
1956 		}
1957 
1958 	for (i = 0; i < qp->cq_sg_ulptx->sg_nseg; i++) {
1959 		struct sglist_seg *seg;
1960 
1961 		seg = &qp->cq_sg_ulptx->sg_segs[i];
1962 		error = ccp_do_gctr(qp, s, dir, seg,
1963 		    (i == 0 && crp->crp_aad_length == 0),
1964 		    i == (qp->cq_sg_ulptx->sg_nseg - 1));
1965 		if (error != 0)
1966 			return (error);
1967 	}
1968 
1969 	/* Send just initial IV (not GHASH!) to LSB again */
1970 	error = ccp_do_pst_to_lsb(qp, ccp_queue_lsb_address(qp, LSB_ENTRY_IV),
1971 	    s->blkcipher.iv, AES_BLOCK_LEN);
1972 	if (error != 0)
1973 		return (error);
1974 
1975 	ctx.callback_fn = ccp_gcm_done;
1976 	ctx.session = s;
1977 	ctx.callback_arg = crp;
1978 
1979 	/* Compute final hash and copy result back */
1980 	error = ccp_do_ghash_final(qp, s);
1981 	if (error != 0)
1982 		return (error);
1983 
1984 	/* When encrypting, copy computed tag out to caller buffer. */
1985 	sglist_reset(qp->cq_sg_ulptx);
1986 	if (dir == CCP_CIPHER_DIR_ENCRYPT)
1987 		error = sglist_append_sglist(qp->cq_sg_ulptx, qp->cq_sg_crp,
1988 		    crp->crp_digest_start, s->gmac.hash_len);
1989 	else
1990 		/*
1991 		 * For decrypting, copy the computed tag out to our session
1992 		 * buffer to verify in our callback.
1993 		 */
1994 		error = sglist_append(qp->cq_sg_ulptx, s->gmac.final_block,
1995 		    s->gmac.hash_len);
1996 	if (error != 0)
1997 		return (error);
1998 	error = ccp_passthrough_sgl(qp,
1999 	    ccp_queue_lsb_address(qp, LSB_ENTRY_GHASH), false, qp->cq_sg_ulptx,
2000 	    s->gmac.hash_len, true, &ctx);
2001 	return (error);
2002 }
2003 
2004 #define MAX_TRNG_RETRIES	10
2005 u_int
2006 random_ccp_read(void *v, u_int c)
2007 {
2008 	uint32_t *buf;
2009 	u_int i, j;
2010 
2011 	KASSERT(c % sizeof(*buf) == 0, ("%u not multiple of u_long", c));
2012 
2013 	buf = v;
2014 	for (i = c; i > 0; i -= sizeof(*buf)) {
2015 		for (j = 0; j < MAX_TRNG_RETRIES; j++) {
2016 			*buf = ccp_read_4(g_ccp_softc, TRNG_OUT_OFFSET);
2017 			if (*buf != 0)
2018 				break;
2019 		}
2020 		if (j == MAX_TRNG_RETRIES)
2021 			return (0);
2022 		buf++;
2023 	}
2024 	return (c);
2025 
2026 }
2027 
2028 #ifdef DDB
2029 void
2030 db_ccp_show_hw(struct ccp_softc *sc)
2031 {
2032 
2033 	db_printf("  queue mask: 0x%x\n",
2034 	    ccp_read_4(sc, CMD_QUEUE_MASK_OFFSET));
2035 	db_printf("  queue prio: 0x%x\n",
2036 	    ccp_read_4(sc, CMD_QUEUE_PRIO_OFFSET));
2037 	db_printf("  reqid: 0x%x\n", ccp_read_4(sc, CMD_REQID_CONFIG_OFFSET));
2038 	db_printf("  trng output: 0x%x\n", ccp_read_4(sc, TRNG_OUT_OFFSET));
2039 	db_printf("  cmd timeout: 0x%x\n",
2040 	    ccp_read_4(sc, CMD_CMD_TIMEOUT_OFFSET));
2041 	db_printf("  lsb public mask lo: 0x%x\n",
2042 	    ccp_read_4(sc, LSB_PUBLIC_MASK_LO_OFFSET));
2043 	db_printf("  lsb public mask hi: 0x%x\n",
2044 	    ccp_read_4(sc, LSB_PUBLIC_MASK_HI_OFFSET));
2045 	db_printf("  lsb private mask lo: 0x%x\n",
2046 	    ccp_read_4(sc, LSB_PRIVATE_MASK_LO_OFFSET));
2047 	db_printf("  lsb private mask hi: 0x%x\n",
2048 	    ccp_read_4(sc, LSB_PRIVATE_MASK_HI_OFFSET));
2049 	db_printf("  version: 0x%x\n", ccp_read_4(sc, VERSION_REG));
2050 }
2051 
2052 void
2053 db_ccp_show_queue_hw(struct ccp_queue *qp)
2054 {
2055 	const struct ccp_error_code *ec;
2056 	struct ccp_softc *sc;
2057 	uint32_t status, error, esource, faultblock, headlo, qcontrol;
2058 	unsigned q, i;
2059 
2060 	sc = qp->cq_softc;
2061 	q = qp->cq_qindex;
2062 
2063 	qcontrol = ccp_read_queue_4(sc, q, CMD_Q_CONTROL_BASE);
2064 	db_printf("  qcontrol: 0x%x%s%s\n", qcontrol,
2065 	    (qcontrol & CMD_Q_RUN) ? " RUN" : "",
2066 	    (qcontrol & CMD_Q_HALTED) ? " HALTED" : "");
2067 	db_printf("  tail_lo: 0x%x\n",
2068 	    ccp_read_queue_4(sc, q, CMD_Q_TAIL_LO_BASE));
2069 	headlo = ccp_read_queue_4(sc, q, CMD_Q_HEAD_LO_BASE);
2070 	db_printf("  head_lo: 0x%x\n", headlo);
2071 	db_printf("  int enable: 0x%x\n",
2072 	    ccp_read_queue_4(sc, q, CMD_Q_INT_ENABLE_BASE));
2073 	db_printf("  interrupt status: 0x%x\n",
2074 	    ccp_read_queue_4(sc, q, CMD_Q_INTERRUPT_STATUS_BASE));
2075 	status = ccp_read_queue_4(sc, q, CMD_Q_STATUS_BASE);
2076 	db_printf("  status: 0x%x\n", status);
2077 	db_printf("  int stats: 0x%x\n",
2078 	    ccp_read_queue_4(sc, q, CMD_Q_INT_STATUS_BASE));
2079 
2080 	error = status & STATUS_ERROR_MASK;
2081 	if (error == 0)
2082 		return;
2083 
2084 	esource = (status >> STATUS_ERRORSOURCE_SHIFT) &
2085 	    STATUS_ERRORSOURCE_MASK;
2086 	faultblock = (status >> STATUS_VLSB_FAULTBLOCK_SHIFT) &
2087 	    STATUS_VLSB_FAULTBLOCK_MASK;
2088 
2089 	ec = NULL;
2090 	for (i = 0; i < nitems(ccp_error_codes); i++)
2091 		if (ccp_error_codes[i].ce_code == error)
2092 			break;
2093 	if (i < nitems(ccp_error_codes))
2094 		ec = &ccp_error_codes[i];
2095 
2096 	db_printf("  Error: %s (%u) Source: %u Faulting LSB block: %u\n",
2097 	    (ec != NULL) ? ec->ce_name : "(reserved)", error, esource,
2098 	    faultblock);
2099 	if (ec != NULL)
2100 		db_printf("  Error description: %s\n", ec->ce_desc);
2101 
2102 	i = (headlo - (uint32_t)qp->desc_ring_bus_addr) / Q_DESC_SIZE;
2103 	db_printf("  Bad descriptor idx: %u contents:\n  %32D\n", i,
2104 	    (void *)&qp->desc_ring[i], " ");
2105 }
2106 #endif
2107