xref: /freebsd/sys/crypto/via/padlock_hash.c (revision 315ee00f)
1 /*-
2  * Copyright (c) 2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/kernel.h>
31 #include <sys/module.h>
32 #include <sys/malloc.h>
33 #include <sys/libkern.h>
34 #include <sys/endian.h>
35 #include <sys/pcpu.h>
36 #if defined(__amd64__) || defined(__i386__)
37 #include <machine/cpufunc.h>
38 #include <machine/cputypes.h>
39 #include <machine/fpu.h>
40 #include <machine/md_var.h>
41 #include <machine/specialreg.h>
42 #endif
43 #include <machine/pcb.h>
44 
45 #include <opencrypto/cryptodev.h>
46 #include <opencrypto/xform.h>
47 
48 #include <crypto/via/padlock.h>
49 
50 /*
51  * Implementation notes.
52  *
53  * Some VIA CPUs provides SHA1 and SHA256 acceleration.
54  * We implement all HMAC algorithms provided by crypto(9) framework, but we do
55  * the crypto work in software unless this is HMAC/SHA1 or HMAC/SHA256 and
56  * our CPU can accelerate it.
57  *
58  * Additional CPU instructions, which preform SHA1 and SHA256 are one-shot
59  * functions - we have only one chance to give the data, CPU itself will add
60  * the padding and calculate hash automatically.
61  * This means, it is not possible to implement common init(), update(), final()
62  * methods.
63  * The way I've choosen is to keep adding data to the buffer on update()
64  * (reallocating the buffer if necessary) and call XSHA{1,256} instruction on
65  * final().
66  */
67 
68 struct padlock_sha_ctx {
69 	uint8_t	*psc_buf;
70 	int	 psc_offset;
71 	int	 psc_size;
72 };
73 CTASSERT(sizeof(struct padlock_sha_ctx) <= sizeof(union authctx));
74 
75 static void padlock_sha_init(void *vctx);
76 static int padlock_sha_update(void *vctx, const void *buf, u_int bufsize);
77 static void padlock_sha1_final(uint8_t *hash, void *vctx);
78 static void padlock_sha256_final(uint8_t *hash, void *vctx);
79 
80 static const struct auth_hash padlock_hmac_sha1 = {
81 	.type = CRYPTO_SHA1_HMAC,
82 	.name = "HMAC-SHA1",
83 	.keysize = SHA1_BLOCK_LEN,
84 	.hashsize = SHA1_HASH_LEN,
85 	.ctxsize = sizeof(struct padlock_sha_ctx),
86 	.blocksize = SHA1_BLOCK_LEN,
87         .Init = padlock_sha_init,
88 	.Update = padlock_sha_update,
89 	.Final = padlock_sha1_final,
90 };
91 
92 static const struct auth_hash padlock_hmac_sha256 = {
93 	.type = CRYPTO_SHA2_256_HMAC,
94 	.name = "HMAC-SHA2-256",
95 	.keysize = SHA2_256_BLOCK_LEN,
96 	.hashsize = SHA2_256_HASH_LEN,
97 	.ctxsize = sizeof(struct padlock_sha_ctx),
98 	.blocksize = SHA2_256_BLOCK_LEN,
99         .Init = padlock_sha_init,
100 	.Update = padlock_sha_update,
101 	.Final = padlock_sha256_final,
102 };
103 
104 MALLOC_DECLARE(M_PADLOCK);
105 
106 static __inline void
107 padlock_output_block(uint32_t *src, uint32_t *dst, size_t count)
108 {
109 
110 	while (count-- > 0)
111 		*dst++ = bswap32(*src++);
112 }
113 
114 static void
115 padlock_do_sha1(const u_char *in, u_char *out, int count)
116 {
117 	u_char buf[128+16];	/* PadLock needs at least 128 bytes buffer. */
118 	u_char *result = PADLOCK_ALIGN(buf);
119 
120 	((uint32_t *)result)[0] = 0x67452301;
121 	((uint32_t *)result)[1] = 0xEFCDAB89;
122 	((uint32_t *)result)[2] = 0x98BADCFE;
123 	((uint32_t *)result)[3] = 0x10325476;
124 	((uint32_t *)result)[4] = 0xC3D2E1F0;
125 
126 	__asm __volatile(
127 		".byte  0xf3, 0x0f, 0xa6, 0xc8" /* rep xsha1 */
128 			: "+S"(in), "+D"(result)
129 			: "c"(count), "a"(0)
130 		);
131 
132 	padlock_output_block((uint32_t *)result, (uint32_t *)out,
133 	    SHA1_HASH_LEN / sizeof(uint32_t));
134 }
135 
136 static void
137 padlock_do_sha256(const char *in, char *out, int count)
138 {
139 	char buf[128+16];	/* PadLock needs at least 128 bytes buffer. */
140 	char *result = PADLOCK_ALIGN(buf);
141 
142 	((uint32_t *)result)[0] = 0x6A09E667;
143 	((uint32_t *)result)[1] = 0xBB67AE85;
144 	((uint32_t *)result)[2] = 0x3C6EF372;
145 	((uint32_t *)result)[3] = 0xA54FF53A;
146 	((uint32_t *)result)[4] = 0x510E527F;
147 	((uint32_t *)result)[5] = 0x9B05688C;
148 	((uint32_t *)result)[6] = 0x1F83D9AB;
149 	((uint32_t *)result)[7] = 0x5BE0CD19;
150 
151 	__asm __volatile(
152 		".byte  0xf3, 0x0f, 0xa6, 0xd0" /* rep xsha256 */
153 			: "+S"(in), "+D"(result)
154 			: "c"(count), "a"(0)
155 		);
156 
157 	padlock_output_block((uint32_t *)result, (uint32_t *)out,
158 	    SHA2_256_HASH_LEN / sizeof(uint32_t));
159 }
160 
161 static void
162 padlock_sha_init(void *vctx)
163 {
164 	struct padlock_sha_ctx *ctx;
165 
166 	ctx = vctx;
167 	ctx->psc_buf = NULL;
168 	ctx->psc_offset = 0;
169 	ctx->psc_size = 0;
170 }
171 
172 static int
173 padlock_sha_update(void *vctx, const void *buf, u_int bufsize)
174 {
175 	struct padlock_sha_ctx *ctx;
176 
177 	ctx = vctx;
178 	if (ctx->psc_size - ctx->psc_offset < bufsize) {
179 		ctx->psc_size = MAX(ctx->psc_size * 2, ctx->psc_size + bufsize);
180 		ctx->psc_buf = realloc(ctx->psc_buf, ctx->psc_size, M_PADLOCK,
181 		    M_NOWAIT);
182 		if(ctx->psc_buf == NULL)
183 			return (ENOMEM);
184 	}
185 	bcopy(buf, ctx->psc_buf + ctx->psc_offset, bufsize);
186 	ctx->psc_offset += bufsize;
187 	return (0);
188 }
189 
190 static void
191 padlock_sha_free(void *vctx)
192 {
193 	struct padlock_sha_ctx *ctx;
194 
195 	ctx = vctx;
196 	if (ctx->psc_buf != NULL) {
197 		zfree(ctx->psc_buf, M_PADLOCK);
198 		ctx->psc_buf = NULL;
199 		ctx->psc_offset = 0;
200 		ctx->psc_size = 0;
201 	}
202 }
203 
204 static void
205 padlock_sha1_final(uint8_t *hash, void *vctx)
206 {
207 	struct padlock_sha_ctx *ctx;
208 
209 	ctx = vctx;
210 	padlock_do_sha1(ctx->psc_buf, hash, ctx->psc_offset);
211 	padlock_sha_free(ctx);
212 }
213 
214 static void
215 padlock_sha256_final(uint8_t *hash, void *vctx)
216 {
217 	struct padlock_sha_ctx *ctx;
218 
219 	ctx = vctx;
220 	padlock_do_sha256(ctx->psc_buf, hash, ctx->psc_offset);
221 	padlock_sha_free(ctx);
222 }
223 
224 static void
225 padlock_copy_ctx(const struct auth_hash *axf, void *sctx, void *dctx)
226 {
227 
228 	if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 &&
229 	    (axf->type == CRYPTO_SHA1_HMAC ||
230 	     axf->type == CRYPTO_SHA2_256_HMAC)) {
231 		struct padlock_sha_ctx *spctx = sctx, *dpctx = dctx;
232 
233 		dpctx->psc_offset = spctx->psc_offset;
234 		dpctx->psc_size = spctx->psc_size;
235 		dpctx->psc_buf = malloc(dpctx->psc_size, M_PADLOCK, M_WAITOK);
236 		bcopy(spctx->psc_buf, dpctx->psc_buf, dpctx->psc_size);
237 	} else {
238 		bcopy(sctx, dctx, axf->ctxsize);
239 	}
240 }
241 
242 static void
243 padlock_free_ctx(const struct auth_hash *axf, void *ctx)
244 {
245 
246 	if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 &&
247 	    (axf->type == CRYPTO_SHA1_HMAC ||
248 	     axf->type == CRYPTO_SHA2_256_HMAC)) {
249 		padlock_sha_free(ctx);
250 	}
251 }
252 
253 static void
254 padlock_hash_key_setup(struct padlock_session *ses, const uint8_t *key,
255     int klen)
256 {
257 	const struct auth_hash *axf;
258 
259 	axf = ses->ses_axf;
260 
261 	/*
262 	 * Try to free contexts before using them, because
263 	 * padlock_hash_key_setup() can be called twice - once from
264 	 * padlock_newsession() and again from padlock_process().
265 	 */
266 	padlock_free_ctx(axf, ses->ses_ictx);
267 	padlock_free_ctx(axf, ses->ses_octx);
268 
269 	hmac_init_ipad(axf, key, klen, ses->ses_ictx);
270 	hmac_init_opad(axf, key, klen, ses->ses_octx);
271 }
272 
273 /*
274  * Compute keyed-hash authenticator.
275  */
276 static int
277 padlock_authcompute(struct padlock_session *ses, struct cryptop *crp)
278 {
279 	u_char hash[HASH_MAX_LEN], hash2[HASH_MAX_LEN];
280 	const struct auth_hash *axf;
281 	union authctx ctx;
282 	int error;
283 
284 	axf = ses->ses_axf;
285 
286 	padlock_copy_ctx(axf, ses->ses_ictx, &ctx);
287 	error = crypto_apply(crp, crp->crp_aad_start, crp->crp_aad_length,
288 	    axf->Update, &ctx);
289 	if (error != 0) {
290 		padlock_free_ctx(axf, &ctx);
291 		return (error);
292 	}
293 	error = crypto_apply(crp, crp->crp_payload_start,
294 	    crp->crp_payload_length, axf->Update, &ctx);
295 	if (error != 0) {
296 		padlock_free_ctx(axf, &ctx);
297 		return (error);
298 	}
299 	axf->Final(hash, &ctx);
300 
301 	padlock_copy_ctx(axf, ses->ses_octx, &ctx);
302 	axf->Update(&ctx, hash, axf->hashsize);
303 	axf->Final(hash, &ctx);
304 
305 	if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
306 		crypto_copydata(crp, crp->crp_digest_start, ses->ses_mlen,
307 		    hash2);
308 		if (timingsafe_bcmp(hash, hash2, ses->ses_mlen) != 0)
309 			return (EBADMSG);
310 	} else
311 		crypto_copyback(crp, crp->crp_digest_start, ses->ses_mlen,
312 		    hash);
313 	return (0);
314 }
315 
316 /* Find software structure which describes HMAC algorithm. */
317 static const struct auth_hash *
318 padlock_hash_lookup(int alg)
319 {
320 	const struct auth_hash *axf;
321 
322 	switch (alg) {
323 	case CRYPTO_NULL_HMAC:
324 		axf = &auth_hash_null;
325 		break;
326 	case CRYPTO_SHA1_HMAC:
327 		if ((via_feature_xcrypt & VIA_HAS_SHA) != 0)
328 			axf = &padlock_hmac_sha1;
329 		else
330 			axf = &auth_hash_hmac_sha1;
331 		break;
332 	case CRYPTO_RIPEMD160_HMAC:
333 		axf = &auth_hash_hmac_ripemd_160;
334 		break;
335 	case CRYPTO_SHA2_256_HMAC:
336 		if ((via_feature_xcrypt & VIA_HAS_SHA) != 0)
337 			axf = &padlock_hmac_sha256;
338 		else
339 			axf = &auth_hash_hmac_sha2_256;
340 		break;
341 	case CRYPTO_SHA2_384_HMAC:
342 		axf = &auth_hash_hmac_sha2_384;
343 		break;
344 	case CRYPTO_SHA2_512_HMAC:
345 		axf = &auth_hash_hmac_sha2_512;
346 		break;
347 	default:
348 		axf = NULL;
349 		break;
350 	}
351 	return (axf);
352 }
353 
354 bool
355 padlock_hash_check(const struct crypto_session_params *csp)
356 {
357 
358 	return (padlock_hash_lookup(csp->csp_auth_alg) != NULL);
359 }
360 
361 int
362 padlock_hash_setup(struct padlock_session *ses,
363     const struct crypto_session_params *csp)
364 {
365 
366 	ses->ses_axf = padlock_hash_lookup(csp->csp_auth_alg);
367 	if (csp->csp_auth_mlen == 0)
368 		ses->ses_mlen = ses->ses_axf->hashsize;
369 	else
370 		ses->ses_mlen = csp->csp_auth_mlen;
371 
372 	/* Allocate memory for HMAC inner and outer contexts. */
373 	ses->ses_ictx = malloc(ses->ses_axf->ctxsize, M_PADLOCK,
374 	    M_ZERO | M_NOWAIT);
375 	ses->ses_octx = malloc(ses->ses_axf->ctxsize, M_PADLOCK,
376 	    M_ZERO | M_NOWAIT);
377 	if (ses->ses_ictx == NULL || ses->ses_octx == NULL)
378 		return (ENOMEM);
379 
380 	/* Setup key if given. */
381 	if (csp->csp_auth_key != NULL) {
382 		padlock_hash_key_setup(ses, csp->csp_auth_key,
383 		    csp->csp_auth_klen);
384 	}
385 	return (0);
386 }
387 
388 int
389 padlock_hash_process(struct padlock_session *ses, struct cryptop *crp,
390     const struct crypto_session_params *csp)
391 {
392 	struct thread *td;
393 	int error;
394 
395 	td = curthread;
396 	fpu_kern_enter(td, NULL, FPU_KERN_NORMAL | FPU_KERN_NOCTX);
397 	if (crp->crp_auth_key != NULL)
398 		padlock_hash_key_setup(ses, crp->crp_auth_key,
399 		    csp->csp_auth_klen);
400 
401 	error = padlock_authcompute(ses, crp);
402 	fpu_kern_leave(td, NULL);
403 	return (error);
404 }
405 
406 void
407 padlock_hash_free(struct padlock_session *ses)
408 {
409 
410 	if (ses->ses_ictx != NULL) {
411 		padlock_free_ctx(ses->ses_axf, ses->ses_ictx);
412 		zfree(ses->ses_ictx, M_PADLOCK);
413 		ses->ses_ictx = NULL;
414 	}
415 	if (ses->ses_octx != NULL) {
416 		padlock_free_ctx(ses->ses_axf, ses->ses_octx);
417 		zfree(ses->ses_octx, M_PADLOCK);
418 		ses->ses_octx = NULL;
419 	}
420 }
421