xref: /freebsd/sys/dev/aac/aac.c (revision f6c4dd3f)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD$
30  */
31 
32 /*
33  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34  */
35 
36 #include "opt_aac.h"
37 
38 /* include <stddef.h> */
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 
44 #include <dev/aac/aac_compat.h>
45 
46 #include <sys/bus.h>
47 #include <sys/conf.h>
48 #include <sys/devicestat.h>
49 #include <sys/disk.h>
50 #include <sys/file.h>
51 #include <sys/signalvar.h>
52 #include <sys/time.h>
53 
54 #include <machine/bus_memio.h>
55 #include <machine/bus.h>
56 #include <machine/resource.h>
57 
58 #include <dev/aac/aacreg.h>
59 #include <dev/aac/aac_ioctl.h>
60 #include <dev/aac/aacvar.h>
61 #include <dev/aac/aac_tables.h>
62 
63 devclass_t	aac_devclass;
64 
65 static void	aac_startup(void *arg);
66 
67 /* Command Processing */
68 static void	aac_startio(struct aac_softc *sc);
69 static void	aac_timeout(struct aac_softc *sc);
70 static int	aac_start(struct aac_command *cm);
71 static void	aac_complete(void *context, int pending);
72 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
73 static void	aac_bio_complete(struct aac_command *cm);
74 static int	aac_wait_command(struct aac_command *cm, int timeout);
75 static void	aac_host_command(struct aac_softc *sc);
76 static void	aac_host_response(struct aac_softc *sc);
77 
78 /* Command Buffer Management */
79 static int	aac_alloc_command(struct aac_softc *sc,
80 				  struct aac_command **cmp);
81 static void	aac_release_command(struct aac_command *cm);
82 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
83 				       int nseg, int error);
84 static int	aac_alloc_commands(struct aac_softc *sc);
85 static void	aac_free_commands(struct aac_softc *sc);
86 static void	aac_map_command(struct aac_command *cm);
87 static void	aac_unmap_command(struct aac_command *cm);
88 
89 /* Hardware Interface */
90 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
91 			       int error);
92 static int	aac_init(struct aac_softc *sc);
93 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
94 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
95 				 u_int32_t arg3, u_int32_t *sp);
96 static int	aac_sync_fib(struct aac_softc *sc, u_int32_t command,
97 			     u_int32_t xferstate, void *data,
98 			     u_int16_t datasize, void *result,
99 			     u_int16_t *resultsize);
100 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
101 				struct aac_command *cm);
102 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
103 				u_int32_t *fib_size, struct aac_fib **fib_addr);
104 
105 /* StrongARM interface */
106 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
107 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
108 static int	aac_sa_get_istatus(struct aac_softc *sc);
109 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
110 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
111 				   u_int32_t arg0, u_int32_t arg1,
112 				   u_int32_t arg2, u_int32_t arg3);
113 static int	aac_sa_get_mailboxstatus(struct aac_softc *sc);
114 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
115 
116 struct aac_interface aac_sa_interface = {
117     aac_sa_get_fwstatus,
118     aac_sa_qnotify,
119     aac_sa_get_istatus,
120     aac_sa_clear_istatus,
121     aac_sa_set_mailbox,
122     aac_sa_get_mailboxstatus,
123     aac_sa_set_interrupts
124 };
125 
126 /* i960Rx interface */
127 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
128 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
129 static int	aac_rx_get_istatus(struct aac_softc *sc);
130 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
131 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
132 				   u_int32_t arg0, u_int32_t arg1,
133 				   u_int32_t arg2, u_int32_t arg3);
134 static int	aac_rx_get_mailboxstatus(struct aac_softc *sc);
135 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
136 
137 struct aac_interface aac_rx_interface = {
138     aac_rx_get_fwstatus,
139     aac_rx_qnotify,
140     aac_rx_get_istatus,
141     aac_rx_clear_istatus,
142     aac_rx_set_mailbox,
143     aac_rx_get_mailboxstatus,
144     aac_rx_set_interrupts
145 };
146 
147 /* Debugging and Diagnostics */
148 static void	aac_describe_controller(struct aac_softc *sc);
149 static char	*aac_describe_code(struct aac_code_lookup *table,
150 				   u_int32_t code);
151 
152 /* Management Interface */
153 static d_open_t		aac_open;
154 static d_close_t	aac_close;
155 static d_ioctl_t	aac_ioctl;
156 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
157 static void		aac_handle_aif(struct aac_softc *sc,
158 				       struct aac_aif_command *aif);
159 #ifdef AAC_COMPAT_LINUX
160 static int		aac_linux_rev_check(struct aac_softc *sc,
161 					    caddr_t udata);
162 static int		aac_linux_getnext_aif(struct aac_softc *sc,
163 					    caddr_t arg);
164 static int		aac_linux_return_aif(struct aac_softc *sc,
165 					    caddr_t uptr);
166 #endif
167 
168 #define AAC_CDEV_MAJOR	150
169 
170 static struct cdevsw aac_cdevsw = {
171     aac_open,		/* open */
172     aac_close,		/* close */
173     noread,		/* read */
174     nowrite,		/* write */
175     aac_ioctl,		/* ioctl */
176     nopoll,		/* poll */
177     nommap,		/* mmap */
178     nostrategy,		/* strategy */
179     "aac",		/* name */
180     AAC_CDEV_MAJOR,	/* major */
181     nodump,		/* dump */
182     nopsize,		/* psize */
183     0,			/* flags */
184 };
185 
186 /******************************************************************************
187  ******************************************************************************
188 				Device Interface
189  ******************************************************************************
190  ******************************************************************************/
191 
192 /******************************************************************************
193  * Initialise the controller and softc
194  */
195 int
196 aac_attach(struct aac_softc *sc)
197 {
198     int		error, unit;
199 
200     debug_called(1);
201 
202     /*
203      * Initialise per-controller queues.
204      */
205     aac_initq_free(sc);
206     aac_initq_ready(sc);
207     aac_initq_busy(sc);
208     aac_initq_complete(sc);
209     aac_initq_bio(sc);
210 
211 #if __FreeBSD_version >= 500005
212     /*
213      * Initialise command-completion task.
214      */
215     TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
216 #endif
217 
218     /* disable interrupts before we enable anything */
219     AAC_MASK_INTERRUPTS(sc);
220 
221     /* mark controller as suspended until we get ourselves organised */
222     sc->aac_state |= AAC_STATE_SUSPEND;
223 
224     /*
225      * Allocate command structures.
226      */
227     if ((error = aac_alloc_commands(sc)) != 0)
228 	return(error);
229 
230     /*
231      * Initialise the adapter.
232      */
233     if ((error = aac_init(sc)) != 0)
234 	return(error);
235 
236     /*
237      * Print a little information about the controller.
238      */
239     aac_describe_controller(sc);
240 
241     /*
242      * Register to probe our containers later.
243      */
244     sc->aac_ich.ich_func = aac_startup;
245     sc->aac_ich.ich_arg = sc;
246     if (config_intrhook_establish(&sc->aac_ich) != 0) {
247         device_printf(sc->aac_dev, "can't establish configuration hook\n");
248         return(ENXIO);
249     }
250 
251     /*
252      * Make the control device.
253      */
254     unit = device_get_unit(sc->aac_dev);
255     sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
256 			     "aac%d", unit);
257     (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
258     (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
259 
260     sc->aac_dev_t->si_drv1 = sc;
261 
262     return(0);
263 }
264 
265 /******************************************************************************
266  * Probe for containers, create disks.
267  */
268 static void
269 aac_startup(void *arg)
270 {
271     struct aac_softc		*sc = (struct aac_softc *)arg;
272     struct aac_mntinfo		mi;
273     struct aac_mntinforesponse	mir;
274     device_t			child;
275     u_int16_t			rsize;
276     int				i;
277 
278     debug_called(1);
279 
280     /* disconnect ourselves from the intrhook chain */
281     config_intrhook_disestablish(&sc->aac_ich);
282 
283     /* loop over possible containers */
284     mi.Command = VM_NameServe;
285     mi.MntType = FT_FILESYS;
286     for (i = 0; i < AAC_MAX_CONTAINERS; i++) {
287 	/* request information on this container */
288 	mi.MntCount = i;
289 	rsize = sizeof(mir);
290 	if (aac_sync_fib(sc, ContainerCommand, 0, &mi,
291 			 sizeof(struct aac_mntinfo), &mir, &rsize)) {
292 	    debug(2, "error probing container %d", i);
293 	    continue;
294 	}
295 	/* check response size */
296 	if (rsize != sizeof(mir)) {
297 	    debug(2, "container info response wrong size (%d should be %d)",
298 		  rsize, sizeof(mir));
299 	    continue;
300 	}
301 	/*
302 	 * Check container volume type for validity.  Note that many of the
303 	 * possible types may never show up.
304 	 */
305 	if ((mir.Status == ST_OK) && (mir.MntTable[0].VolType != CT_NONE)) {
306 	    debug(1, "%d: id %x  name '%.16s'  size %u  type %d",
307 		  i, mir.MntTable[0].ObjectId,
308 		  mir.MntTable[0].FileSystemName, mir.MntTable[0].Capacity,
309 		  mir.MntTable[0].VolType);
310 
311 	    if ((child = device_add_child(sc->aac_dev, NULL, -1)) == NULL) {
312 		device_printf(sc->aac_dev, "device_add_child failed\n");
313 	    } else {
314 		device_set_ivars(child, &sc->aac_container[i]);
315 	    }
316 	    device_set_desc(child, aac_describe_code(aac_container_types,
317 			    mir.MntTable[0].VolType));
318 	    sc->aac_container[i].co_disk = child;
319 	    sc->aac_container[i].co_mntobj = mir.MntTable[0];
320 	}
321     }
322 
323     /* poke the bus to actually attach the child devices */
324     if (bus_generic_attach(sc->aac_dev))
325 	device_printf(sc->aac_dev, "bus_generic_attach failed\n");
326 
327     /* mark the controller up */
328     sc->aac_state &= ~AAC_STATE_SUSPEND;
329 
330     /* enable interrupts now */
331     AAC_UNMASK_INTERRUPTS(sc);
332 
333     /* enable the timeout watchdog */
334     timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
335 }
336 
337 /******************************************************************************
338  * Free all of the resources associated with (sc)
339  *
340  * Should not be called if the controller is active.
341  */
342 void
343 aac_free(struct aac_softc *sc)
344 {
345     debug_called(1);
346 
347     /* remove the control device */
348     if (sc->aac_dev_t != NULL)
349 	destroy_dev(sc->aac_dev_t);
350 
351     /* throw away any FIB buffers, discard the FIB DMA tag */
352     if (sc->aac_fibs != NULL)
353 	aac_free_commands(sc);
354     if (sc->aac_fib_dmat)
355 	bus_dma_tag_destroy(sc->aac_fib_dmat);
356 
357     /* destroy the common area */
358     if (sc->aac_common) {
359 	bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
360 	bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
361 			sc->aac_common_dmamap);
362     }
363     if (sc->aac_common_dmat)
364 	bus_dma_tag_destroy(sc->aac_common_dmat);
365 
366     /* disconnect the interrupt handler */
367     if (sc->aac_intr)
368 	bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
369     if (sc->aac_irq != NULL)
370 	bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
371 			     sc->aac_irq);
372 
373     /* destroy data-transfer DMA tag */
374     if (sc->aac_buffer_dmat)
375 	bus_dma_tag_destroy(sc->aac_buffer_dmat);
376 
377     /* destroy the parent DMA tag */
378     if (sc->aac_parent_dmat)
379 	bus_dma_tag_destroy(sc->aac_parent_dmat);
380 
381     /* release the register window mapping */
382     if (sc->aac_regs_resource != NULL)
383 	bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, sc->aac_regs_rid,
384 			     sc->aac_regs_resource);
385 }
386 
387 /******************************************************************************
388  * Disconnect from the controller completely, in preparation for unload.
389  */
390 int
391 aac_detach(device_t dev)
392 {
393     struct aac_softc	*sc = device_get_softc(dev);
394     int			error;
395 
396     debug_called(1);
397 
398     if (sc->aac_state & AAC_STATE_OPEN)
399 	return(EBUSY);
400 
401     if ((error = aac_shutdown(dev)))
402 	return(error);
403 
404     aac_free(sc);
405 
406     return(0);
407 }
408 
409 /******************************************************************************
410  * Bring the controller down to a dormant state and detach all child devices.
411  *
412  * This function is called before detach or system shutdown.
413  *
414  * Note that we can assume that the bioq on the controller is empty, as we won't
415  * allow shutdown if any device is open.
416  */
417 int
418 aac_shutdown(device_t dev)
419 {
420     struct aac_softc		*sc = device_get_softc(dev);
421     struct aac_close_command	cc;
422     int				s, i;
423 
424     debug_called(1);
425 
426     s = splbio();
427 
428     sc->aac_state |= AAC_STATE_SUSPEND;
429 
430     /*
431      * Send a Container shutdown followed by a HostShutdown FIB to the
432      * controller to convince it that we don't want to talk to it anymore.
433      * We've been closed and all I/O completed already
434      */
435     device_printf(sc->aac_dev, "shutting down controller...");
436 
437     cc.Command = VM_CloseAll;
438     cc.ContainerId = 0xffffffff;
439     if (aac_sync_fib(sc, ContainerCommand, 0, &cc, sizeof(cc), NULL, NULL)) {
440 	printf("FAILED.\n");
441     } else {
442 	i = 0;
443 	if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, &i,
444 			 sizeof(i), NULL, NULL)) {
445 	    printf("FAILED.\n");
446 	} else {
447 	    printf("done.\n");
448 	}
449     }
450 
451     AAC_MASK_INTERRUPTS(sc);
452 
453     splx(s);
454     return(0);
455 }
456 
457 /******************************************************************************
458  * Bring the controller to a quiescent state, ready for system suspend.
459  */
460 int
461 aac_suspend(device_t dev)
462 {
463     struct aac_softc	*sc = device_get_softc(dev);
464     int			s;
465 
466     debug_called(1);
467     s = splbio();
468 
469     sc->aac_state |= AAC_STATE_SUSPEND;
470 
471     AAC_MASK_INTERRUPTS(sc);
472     splx(s);
473     return(0);
474 }
475 
476 /******************************************************************************
477  * Bring the controller back to a state ready for operation.
478  */
479 int
480 aac_resume(device_t dev)
481 {
482     struct aac_softc	*sc = device_get_softc(dev);
483 
484     debug_called(1);
485     sc->aac_state &= ~AAC_STATE_SUSPEND;
486     AAC_UNMASK_INTERRUPTS(sc);
487     return(0);
488 }
489 
490 /******************************************************************************
491  * Take an interrupt.
492  */
493 void
494 aac_intr(void *arg)
495 {
496     struct aac_softc	*sc = (struct aac_softc *)arg;
497     u_int16_t		reason;
498 
499     debug_called(2);
500 
501     reason = AAC_GET_ISTATUS(sc);
502 
503     /* controller wants to talk to the log?  XXX should we defer this? */
504     if (reason & AAC_DB_PRINTF) {
505 	if (sc->aac_common->ac_printf[0]) {
506 	    device_printf(sc->aac_dev, "** %.*s", AAC_PRINTF_BUFSIZE,
507 			  sc->aac_common->ac_printf);
508 	    sc->aac_common->ac_printf[0] = 0;
509 	}
510 	AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
511 	AAC_QNOTIFY(sc, AAC_DB_PRINTF);
512     }
513 
514     /* controller has a message for us? */
515     if (reason & AAC_DB_COMMAND_READY) {
516 	AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY);
517 	aac_host_command(sc);
518     }
519 
520     /* controller has a response for us? */
521     if (reason & AAC_DB_RESPONSE_READY) {
522 	AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
523 	aac_host_response(sc);
524     }
525 
526     /*
527      * spurious interrupts that we don't use - reset the mask and clear the
528      * interrupts
529      */
530     if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) {
531 	AAC_UNMASK_INTERRUPTS(sc);
532 	AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL |
533 			  AAC_DB_RESPONSE_NOT_FULL);
534     }
535 };
536 
537 /******************************************************************************
538  ******************************************************************************
539 				Command Processing
540  ******************************************************************************
541  ******************************************************************************/
542 
543 /******************************************************************************
544  * Start as much queued I/O as possible on the controller
545  */
546 static void
547 aac_startio(struct aac_softc *sc)
548 {
549     struct aac_command	*cm;
550 
551     debug_called(2);
552 
553     for(;;) {
554 	/* try to get a command that's been put off for lack of resources */
555 	cm = aac_dequeue_ready(sc);
556 
557 	/* try to build a command off the bio queue (ignore error return) */
558 	if (cm == NULL)
559 	    aac_bio_command(sc, &cm);
560 
561 	/* nothing to do? */
562 	if (cm == NULL)
563 	    break;
564 
565 	/* try to give the command to the controller */
566 	if (aac_start(cm) == EBUSY) {
567 	    /* put it on the ready queue for later */
568 	    aac_requeue_ready(cm);
569 	    break;
570 	}
571     }
572 }
573 
574 /******************************************************************************
575  * Deliver a command to the controller; allocate controller resources at the
576  * last moment when possible.
577  */
578 static int
579 aac_start(struct aac_command *cm)
580 {
581     struct aac_softc	*sc = cm->cm_sc;
582     int			error;
583 
584     debug_called(2);
585 
586     /* get the command mapped */
587     aac_map_command(cm);
588 
589     /* fix up the address values in the FIB */
590     cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
591     cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
592 
593     /* save a pointer to the command for speedy reverse-lookup */
594     cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
595 							 * address issue */
596 
597     /* put the FIB on the outbound queue */
598     error = aac_enqueue_fib(sc, AAC_ADAP_NORM_CMD_QUEUE, cm);
599     return(error);
600 }
601 
602 /******************************************************************************
603  * Handle notification of one or more FIBs coming from the controller.
604  */
605 static void
606 aac_host_command(struct aac_softc *sc)
607 {
608     struct aac_fib	*fib;
609     u_int32_t		fib_size;
610 
611     debug_called(1);
612 
613     for (;;) {
614 	if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE, &fib_size, &fib))
615 	    break;	/* nothing to do */
616 
617 	switch(fib->Header.Command) {
618 	case AifRequest:
619 	    aac_handle_aif(sc, (struct aac_aif_command *)&fib->data[0]);
620 	    break;
621 	default:
622 	    device_printf(sc->aac_dev, "unknown command from controller\n");
623 	    AAC_PRINT_FIB(sc, fib);
624 	    break;
625 	}
626 
627 	/* XXX reply to FIBs requesting responses ?? */
628 	/* XXX how do we return these FIBs to the controller? */
629     }
630 }
631 
632 /******************************************************************************
633  * Handle notification of one or more FIBs completed by the controller
634  */
635 static void
636 aac_host_response(struct aac_softc *sc)
637 {
638     struct aac_command	*cm;
639     struct aac_fib	*fib;
640     u_int32_t		fib_size;
641 
642     debug_called(2);
643 
644     for (;;) {
645 	/* look for completed FIBs on our queue */
646 	if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size, &fib))
647 	    break;	/* nothing to do */
648 
649 	/* get the command, unmap and queue for later processing */
650 	cm = (struct aac_command *)fib->Header.SenderData;
651 	if (cm == NULL) {
652 	    AAC_PRINT_FIB(sc, fib);
653 	} else {
654 	    aac_remove_busy(cm);
655 	    aac_unmap_command(cm);		/* XXX defer? */
656 	    aac_enqueue_complete(cm);
657 	}
658     }
659 
660     /* handle completion processing */
661 #if __FreeBSD_version >= 500005
662     taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
663 #else
664     aac_complete(sc, 0);
665 #endif
666 }
667 
668 /******************************************************************************
669  * Process completed commands.
670  */
671 static void
672 aac_complete(void *context, int pending)
673 {
674     struct aac_softc	*sc = (struct aac_softc *)context;
675     struct aac_command	*cm;
676 
677     debug_called(2);
678 
679     /* pull completed commands off the queue */
680     for (;;) {
681 	cm = aac_dequeue_complete(sc);
682 	if (cm == NULL)
683 	    break;
684 	cm->cm_flags |= AAC_CMD_COMPLETED;
685 
686 	/* is there a completion handler? */
687 	if (cm->cm_complete != NULL) {
688 	    cm->cm_complete(cm);
689 	} else {
690 	    /* assume that someone is sleeping on this command */
691 	    wakeup(cm);
692 	}
693     }
694 
695     /* see if we can start some more I/O */
696     aac_startio(sc);
697 }
698 
699 /******************************************************************************
700  * Handle a bio submitted from a disk device.
701  */
702 void
703 aac_submit_bio(struct bio *bp)
704 {
705     struct aac_disk	*ad = (struct aac_disk *)bp->bio_dev->si_drv1;
706     struct aac_softc	*sc = ad->ad_controller;
707 
708     debug_called(2);
709 
710     /* queue the BIO and try to get some work done */
711     aac_enqueue_bio(sc, bp);
712     aac_startio(sc);
713 }
714 
715 /******************************************************************************
716  * Get a bio and build a command to go with it.
717  */
718 static int
719 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
720 {
721     struct aac_command		*cm;
722     struct aac_fib		*fib;
723     struct aac_blockread	*br;
724     struct aac_blockwrite	*bw;
725     struct aac_disk		*ad;
726     struct bio			*bp;
727 
728     debug_called(2);
729 
730     /* get the resources we will need */
731     cm = NULL;
732     if ((bp = aac_dequeue_bio(sc)) == NULL)
733 	goto fail;
734     if (aac_alloc_command(sc, &cm))	/* get a command */
735 	goto fail;
736 
737     /* fill out the command */
738     cm->cm_data = (void *)bp->bio_data;
739     cm->cm_datalen = bp->bio_bcount;
740     cm->cm_complete = aac_bio_complete;
741     cm->cm_private = bp;
742     cm->cm_timestamp = time_second;
743 
744     /* build the FIB */
745     fib = cm->cm_fib;
746     fib->Header.XferState =
747 	AAC_FIBSTATE_HOSTOWNED   |
748 	AAC_FIBSTATE_INITIALISED |
749 	AAC_FIBSTATE_FROMHOST    |
750 	AAC_FIBSTATE_REXPECTED   |
751 	AAC_FIBSTATE_NORM;
752     fib->Header.Command = ContainerCommand;
753     fib->Header.Size = sizeof(struct aac_fib_header);
754 
755     /* build the read/write request */
756     ad = (struct aac_disk *)bp->bio_dev->si_drv1;
757     if (BIO_IS_READ(bp)) {
758 	br = (struct aac_blockread *)&fib->data[0];
759 	br->Command = VM_CtBlockRead;
760 	br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
761 	br->BlockNumber = bp->bio_pblkno;
762 	br->ByteCount = bp->bio_bcount;
763 	fib->Header.Size += sizeof(struct aac_blockread);
764 	cm->cm_sgtable = &br->SgMap;
765 	cm->cm_flags |= AAC_CMD_DATAIN;
766     } else {
767 	bw = (struct aac_blockwrite *)&fib->data[0];
768 	bw->Command = VM_CtBlockWrite;
769 	bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
770 	bw->BlockNumber = bp->bio_pblkno;
771 	bw->ByteCount = bp->bio_bcount;
772 	bw->Stable = CUNSTABLE;		/* XXX what's appropriate here? */
773 	fib->Header.Size += sizeof(struct aac_blockwrite);
774 	cm->cm_flags |= AAC_CMD_DATAOUT;
775 	cm->cm_sgtable = &bw->SgMap;
776     }
777 
778     *cmp = cm;
779     return(0);
780 
781 fail:
782     if (bp != NULL)
783 	aac_enqueue_bio(sc, bp);
784     if (cm != NULL)
785 	aac_release_command(cm);
786     return(ENOMEM);
787 }
788 
789 /******************************************************************************
790  * Handle a bio-instigated command that has been completed.
791  */
792 static void
793 aac_bio_complete(struct aac_command *cm)
794 {
795     struct aac_blockread_response	*brr;
796     struct aac_blockwrite_response	*bwr;
797     struct bio				*bp;
798     AAC_FSAStatus			status;
799 
800     /* fetch relevant status and then release the command */
801     bp = (struct bio *)cm->cm_private;
802     if (BIO_IS_READ(bp)) {
803 	brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
804 	status = brr->Status;
805     } else {
806 	bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
807 	status = bwr->Status;
808     }
809     aac_release_command(cm);
810 
811     /* fix up the bio based on status */
812     if (status == ST_OK) {
813 	bp->bio_resid = 0;
814     } else {
815 	bp->bio_error = EIO;
816 	bp->bio_flags |= BIO_ERROR;
817 	/* pass an error string out to the disk layer */
818 	bp->bio_driver1 = aac_describe_code(aac_command_status_table, status);
819     }
820     aac_biodone(bp);
821 }
822 
823 /******************************************************************************
824  * Submit a command to the controller, return when it completes.
825  */
826 static int
827 aac_wait_command(struct aac_command *cm, int timeout)
828 {
829     int s, error = 0;
830 
831     debug_called(2);
832 
833     /* Put the command on the ready queue and get things going */
834     aac_enqueue_ready(cm);
835     aac_startio(cm->cm_sc);
836     s = splbio();
837     while(!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
838         error = tsleep(cm, PRIBIO, "aacwait", 0);
839     }
840     splx(s);
841     return(error);
842 }
843 
844 /******************************************************************************
845  ******************************************************************************
846 			Command Buffer Management
847  ******************************************************************************
848  ******************************************************************************/
849 
850 /******************************************************************************
851  * Allocate a command.
852  */
853 static int
854 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
855 {
856     struct aac_command	*cm;
857 
858     debug_called(3);
859 
860     if ((cm = aac_dequeue_free(sc)) == NULL)
861 	return(ENOMEM);
862 
863     *cmp = cm;
864     return(0);
865 }
866 
867 /******************************************************************************
868  * Release a command back to the freelist.
869  */
870 static void
871 aac_release_command(struct aac_command *cm)
872 {
873     debug_called(3);
874 
875     /* (re)initialise the command/FIB */
876     cm->cm_sgtable = NULL;
877     cm->cm_flags = 0;
878     cm->cm_complete = NULL;
879     cm->cm_private = NULL;
880     cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
881     cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
882     cm->cm_fib->Header.Flags = 0;
883     cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
884 
885     /*
886      * These are duplicated in aac_start to cover the case where an
887      * intermediate stage may have destroyed them.  They're left
888      * initialised here for debugging purposes only.
889      */
890     cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
891     cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
892 
893     aac_enqueue_free(cm);
894 }
895 
896 /******************************************************************************
897  * Map helper for command/FIB allocation.
898  */
899 static void
900 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
901 {
902     struct aac_softc	*sc = (struct aac_softc *)arg;
903 
904     debug_called(3);
905 
906     sc->aac_fibphys = segs[0].ds_addr;
907 }
908 
909 /******************************************************************************
910  * Allocate and initialise commands/FIBs for this adapter.
911  */
912 static int
913 aac_alloc_commands(struct aac_softc *sc)
914 {
915     struct aac_command		*cm;
916     int				i;
917 
918     debug_called(1);
919 
920     /* allocate the FIBs in DMAable memory and load them */
921     if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
922 			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
923 	return(ENOMEM);
924     }
925     bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
926 		    AAC_FIB_COUNT * sizeof(struct aac_fib),
927 		    aac_map_command_helper, sc, 0);
928 
929     /* initialise constant fields in the command structure */
930     for (i = 0; i < AAC_FIB_COUNT; i++) {
931 	cm = &sc->aac_command[i];
932 	cm->cm_sc = sc;
933 	cm->cm_fib = sc->aac_fibs + i;
934 	cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
935 
936 	if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
937 	    aac_release_command(cm);
938     }
939     return(0);
940 }
941 
942 /******************************************************************************
943  * Free FIBs owned by this adapter.
944  */
945 static void
946 aac_free_commands(struct aac_softc *sc)
947 {
948     int			i;
949 
950     debug_called(1);
951 
952     for (i = 0; i < AAC_FIB_COUNT; i++)
953 	bus_dmamap_destroy(sc->aac_buffer_dmat, sc->aac_command[i].cm_datamap);
954     bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
955     bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
956 }
957 
958 /******************************************************************************
959  * Command-mapping helper function - populate this command's s/g table.
960  */
961 static void
962 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
963 {
964     struct aac_command		*cm = (struct aac_command *)arg;
965     struct aac_fib		*fib = cm->cm_fib;
966     struct aac_sg_table		*sg;
967     int				i;
968 
969     debug_called(3);
970 
971     /* find the s/g table */
972     sg = cm->cm_sgtable;
973 
974     /* copy into the FIB */
975     if (sg != NULL) {
976 	sg->SgCount = nseg;
977 	for (i = 0; i < nseg; i++) {
978 	    sg->SgEntry[i].SgAddress = segs[i].ds_addr;
979 	    sg->SgEntry[i].SgByteCount = segs[i].ds_len;
980 	}
981 	/* update the FIB size for the s/g count */
982 	fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
983     }
984 
985 }
986 
987 /******************************************************************************
988  * Map a command into controller-visible space.
989  */
990 static void
991 aac_map_command(struct aac_command *cm)
992 {
993     struct aac_softc	*sc = cm->cm_sc;
994 
995     debug_called(2);
996 
997     /* don't map more than once */
998     if (cm->cm_flags & AAC_CMD_MAPPED)
999 	return;
1000 
1001     if (cm->cm_datalen != 0) {
1002 	bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap, cm->cm_data,
1003 			cm->cm_datalen, aac_map_command_sg, cm, 0);
1004 
1005 	if (cm->cm_flags & AAC_CMD_DATAIN)
1006 	    bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1007 			    BUS_DMASYNC_PREREAD);
1008 	if (cm->cm_flags & AAC_CMD_DATAOUT)
1009 	    bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1010 			    BUS_DMASYNC_PREWRITE);
1011     }
1012     cm->cm_flags |= AAC_CMD_MAPPED;
1013 }
1014 
1015 /******************************************************************************
1016  * Unmap a command from controller-visible space.
1017  */
1018 static void
1019 aac_unmap_command(struct aac_command *cm)
1020 {
1021     struct aac_softc	*sc = cm->cm_sc;
1022 
1023     debug_called(2);
1024 
1025     if (!(cm->cm_flags & AAC_CMD_MAPPED))
1026 	return;
1027 
1028     if (cm->cm_datalen != 0) {
1029 	if (cm->cm_flags & AAC_CMD_DATAIN)
1030 	    bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1031 			    BUS_DMASYNC_POSTREAD);
1032 	if (cm->cm_flags & AAC_CMD_DATAOUT)
1033 	    bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1034 			    BUS_DMASYNC_POSTWRITE);
1035 
1036 	bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1037     }
1038     cm->cm_flags &= ~AAC_CMD_MAPPED;
1039 }
1040 
1041 /******************************************************************************
1042  ******************************************************************************
1043 				Hardware Interface
1044  ******************************************************************************
1045  ******************************************************************************/
1046 
1047 /******************************************************************************
1048  * Initialise the adapter.
1049  */
1050 static void
1051 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1052 {
1053     struct aac_softc	*sc = (struct aac_softc *)arg;
1054 
1055     debug_called(1);
1056 
1057     sc->aac_common_busaddr = segs[0].ds_addr;
1058 }
1059 
1060 static int
1061 aac_init(struct aac_softc *sc)
1062 {
1063     struct aac_adapter_init	*ip;
1064     time_t			then;
1065     u_int32_t			code;
1066     u_int8_t			*qaddr;
1067 
1068     debug_called(1);
1069 
1070     /*
1071      * First wait for the adapter to come ready.
1072      */
1073     then = time_second;
1074     do {
1075 	code = AAC_GET_FWSTATUS(sc);
1076 	if (code & AAC_SELF_TEST_FAILED) {
1077 	    device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1078 	    return(ENXIO);
1079 	}
1080 	if (code & AAC_KERNEL_PANIC) {
1081 	    device_printf(sc->aac_dev, "FATAL: controller kernel panic\n");
1082 	    return(ENXIO);
1083 	}
1084 	if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1085 	    device_printf(sc->aac_dev, "FATAL: controller not coming ready, "
1086 			  "status %x\n", code);
1087 	    return(ENXIO);
1088 	}
1089     } while (!(code & AAC_UP_AND_RUNNING));
1090 
1091     /*
1092      * Create DMA tag for the common structure and allocate it.
1093      */
1094     if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1095 			   1, 0, 			/* algnmnt, boundary */
1096 			   BUS_SPACE_MAXADDR,		/* lowaddr */
1097 			   BUS_SPACE_MAXADDR, 		/* highaddr */
1098 			   NULL, NULL, 			/* filter, filterarg */
1099 			   sizeof(struct aac_common), 1,/* maxsize, nsegments */
1100 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1101 			   0,				/* flags */
1102 			   &sc->aac_common_dmat)) {
1103 	device_printf(sc->aac_dev, "can't allocate common structure DMA tag\n");
1104 	return(ENOMEM);
1105     }
1106     if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1107 			 BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1108 	device_printf(sc->aac_dev, "can't allocate common structure\n");
1109 	return(ENOMEM);
1110     }
1111     bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap, sc->aac_common,
1112 		    sizeof(*sc->aac_common), aac_common_map, sc, 0);
1113     bzero(sc->aac_common, sizeof(*sc->aac_common));
1114 
1115     /*
1116      * Fill in the init structure.  This tells the adapter about the physical
1117      * location of various important shared data structures.
1118      */
1119     ip = &sc->aac_common->ac_init;
1120     ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1121 
1122     ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1123 				     offsetof(struct aac_common, ac_fibs);
1124     ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0];
1125     ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1126     ip->AdapterFibAlign = sizeof(struct aac_fib);
1127 
1128     ip->PrintfBufferAddress = sc->aac_common_busaddr +
1129 			      offsetof(struct aac_common, ac_printf);
1130     ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1131 
1132     ip->HostPhysMemPages = 0;			/* not used? */
1133     ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1134 
1135     /*
1136      * Initialise FIB queues.  Note that it appears that the layout of the
1137      * indexes and the segmentation of the entries may be mandated by the
1138      * adapter, which is only told about the base of the queue index fields.
1139      *
1140      * The initial values of the indices are assumed to inform the adapter
1141      * of the sizes of the respective queues, and theoretically it could work
1142      * out the entire layout of the queue structures from this.  We take the
1143      * easy route and just lay this area out like everyone else does.
1144      *
1145      * The Linux driver uses a much more complex scheme whereby several header
1146      * records are kept for each queue.  We use a couple of generic list
1147      * manipulation functions which 'know' the size of each list by virtue of a
1148      * table.
1149      */
1150     qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1151     qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1152     sc->aac_queues = (struct aac_queue_table *)qaddr;
1153     ip->CommHeaderAddress = sc->aac_common_busaddr + ((u_int32_t)sc->aac_queues
1154 			    - (u_int32_t)sc->aac_common);
1155     bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1156 
1157     sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1158 		AAC_HOST_NORM_CMD_ENTRIES;
1159     sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1160 		AAC_HOST_NORM_CMD_ENTRIES;
1161     sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1162 		AAC_HOST_HIGH_CMD_ENTRIES;
1163     sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1164 		AAC_HOST_HIGH_CMD_ENTRIES;
1165     sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1166 		AAC_ADAP_NORM_CMD_ENTRIES;
1167     sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1168 		AAC_ADAP_NORM_CMD_ENTRIES;
1169     sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1170 		AAC_ADAP_HIGH_CMD_ENTRIES;
1171     sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1172 		AAC_ADAP_HIGH_CMD_ENTRIES;
1173     sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX] =
1174 		AAC_HOST_NORM_RESP_ENTRIES;
1175     sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX] =
1176 		AAC_HOST_NORM_RESP_ENTRIES;
1177     sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX] =
1178 		AAC_HOST_HIGH_RESP_ENTRIES;
1179     sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX] =
1180 		AAC_HOST_HIGH_RESP_ENTRIES;
1181     sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX] =
1182 		AAC_ADAP_NORM_RESP_ENTRIES;
1183     sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX] =
1184 		AAC_ADAP_NORM_RESP_ENTRIES;
1185     sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX] =
1186 		AAC_ADAP_HIGH_RESP_ENTRIES;
1187     sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX] =
1188 		AAC_ADAP_HIGH_RESP_ENTRIES;
1189     sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1190 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1191     sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1192 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1193     sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1194 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1195     sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1196 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1197     sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1198 		&sc->aac_queues->qt_HostNormRespQueue[0];
1199     sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1200 		&sc->aac_queues->qt_HostHighRespQueue[0];
1201     sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1202 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1203     sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1204 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1205 
1206     /*
1207      * Do controller-type-specific initialisation
1208      */
1209     switch (sc->aac_hwif) {
1210     case AAC_HWIF_I960RX:
1211 	AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1212 	break;
1213     }
1214 
1215     /*
1216      * Give the init structure to the controller.
1217      */
1218     if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1219 			 sc->aac_common_busaddr + offsetof(struct aac_common,
1220 			 ac_init), 0, 0, 0, NULL)) {
1221 	device_printf(sc->aac_dev, "error establishing init structure\n");
1222 	return(EIO);
1223     }
1224 
1225     return(0);
1226 }
1227 
1228 /******************************************************************************
1229  * Send a synchronous command to the controller and wait for a result.
1230  */
1231 static int
1232 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1233 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1234 		 u_int32_t *sp)
1235 {
1236     time_t	then;
1237     u_int32_t	status;
1238 
1239     debug_called(3);
1240 
1241     /* populate the mailbox */
1242     AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1243 
1244     /* ensure the sync command doorbell flag is cleared */
1245     AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1246 
1247     /* then set it to signal the adapter */
1248     AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1249 
1250     /* spin waiting for the command to complete */
1251     then = time_second;
1252     do {
1253 	if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1254 	    debug(2, "timed out");
1255 	    return(EIO);
1256 	}
1257     } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1258 
1259     /* clear the completion flag */
1260     AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1261 
1262     /* get the command status */
1263     status = AAC_GET_MAILBOXSTATUS(sc);
1264     if (sp != NULL)
1265 	*sp = status;
1266     return(0);
1267 }
1268 
1269 /******************************************************************************
1270  * Send a synchronous FIB to the controller and wait for a result.
1271  */
1272 static int
1273 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1274 	     void *data, u_int16_t datasize,
1275 	     void *result, u_int16_t *resultsize)
1276 {
1277     struct aac_fib	*fib = &sc->aac_common->ac_sync_fib;
1278 
1279     debug_called(3);
1280 
1281     if (datasize > AAC_FIB_DATASIZE)
1282 	return(EINVAL);
1283 
1284     /*
1285      * Set up the sync FIB
1286      */
1287     fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED | AAC_FIBSTATE_INITIALISED |
1288 			    AAC_FIBSTATE_EMPTY;
1289     fib->Header.XferState |= xferstate;
1290     fib->Header.Command = command;
1291     fib->Header.StructType = AAC_FIBTYPE_TFIB;
1292     fib->Header.Size = sizeof(struct aac_fib) + datasize;
1293     fib->Header.SenderSize = sizeof(struct aac_fib);
1294     fib->Header.SenderFibAddress = (u_int32_t)fib;
1295     fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1296 				     offsetof(struct aac_common, ac_sync_fib);
1297 
1298     /*
1299      * Copy in data.
1300      */
1301     if (data != NULL) {
1302 	KASSERT(datasize <= sizeof(fib->data),
1303 		"aac_sync_fib: datasize to large");
1304 	bcopy(data, fib->data, datasize);
1305 	fib->Header.XferState |= AAC_FIBSTATE_FROMHOST | AAC_FIBSTATE_NORM;
1306     }
1307 
1308     /*
1309      * Give the FIB to the controller, wait for a response.
1310      */
1311     if (aac_sync_command(sc, AAC_MONKER_SYNCFIB, fib->Header.ReceiverFibAddress,
1312 			 0, 0, 0, NULL)) {
1313 	debug(2, "IO error");
1314 	return(EIO);
1315     }
1316 
1317     /*
1318      * Copy out the result
1319      */
1320     if (result != NULL) {
1321 	u_int copysize;
1322 
1323 	copysize = fib->Header.Size - sizeof(struct aac_fib_header);
1324 	if (copysize > *resultsize)
1325 		copysize = *resultsize;
1326 	*resultsize = fib->Header.Size - sizeof(struct aac_fib_header);
1327 	bcopy(fib->data, result, copysize);
1328     }
1329     return(0);
1330 }
1331 
1332 /********************************************************************************
1333  * Adapter-space FIB queue manipulation
1334  *
1335  * Note that the queue implementation here is a little funky; neither the PI or
1336  * CI will ever be zero.  This behaviour is a controller feature.
1337  */
1338 static struct {
1339     int		size;
1340     int		notify;
1341 } aac_qinfo[] = {
1342     {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1343     {AAC_HOST_HIGH_CMD_ENTRIES, 0},
1344     {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1345     {AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1346     {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1347     {AAC_HOST_HIGH_RESP_ENTRIES, 0},
1348     {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1349     {AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1350 };
1351 
1352 /*
1353  * Atomically insert an entry into the nominated queue, returns 0 on success or
1354  * EBUSY if the queue is full.
1355  *
1356  * Note: it would be more efficient to defer notifying the controller in
1357  *       the case where we may be inserting several entries in rapid succession,
1358  *       but implementing this usefully may be difficult (it would involve a
1359  *       separate queue/notify interface).
1360  */
1361 static int
1362 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1363 {
1364     u_int32_t	pi, ci;
1365     int		s, error;
1366     u_int32_t	fib_size;
1367     u_int32_t	fib_addr;
1368 
1369     fib_size = cm->cm_fib->Header.Size;
1370     fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1371 
1372     debug_called(3);
1373 
1374     s = splbio();
1375 
1376     /* get the producer/consumer indices */
1377     pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1378     ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1379 
1380     /* wrap the queue? */
1381     if (pi >= aac_qinfo[queue].size)
1382 	pi = 0;
1383 
1384     /* check for queue full */
1385     if ((pi + 1) == ci) {
1386 	error = EBUSY;
1387 	goto out;
1388     }
1389 
1390     /* populate queue entry */
1391     (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1392     (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1393 
1394     /* update producer index */
1395     sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1396 
1397     /*
1398      * To avoid a race with its completion interrupt, place this command on the
1399      * busy queue prior to advertising it to the controller.
1400      */
1401     aac_enqueue_busy(cm);
1402 
1403     /* notify the adapter if we know how */
1404     if (aac_qinfo[queue].notify != 0)
1405 	AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1406 
1407     error = 0;
1408 
1409 out:
1410     splx(s);
1411     return(error);
1412 }
1413 
1414 /*
1415  * Atomically remove one entry from the nominated queue, returns 0 on success or
1416  * ENOENT if the queue is empty.
1417  */
1418 static int
1419 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1420 		struct aac_fib **fib_addr)
1421 {
1422     u_int32_t	pi, ci;
1423     int		s, error;
1424     int		notify;
1425 
1426     debug_called(3);
1427 
1428     s = splbio();
1429 
1430     /* get the producer/consumer indices */
1431     pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1432     ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1433 
1434     /* check for queue empty */
1435     if (ci == pi) {
1436 	error = ENOENT;
1437 	goto out;
1438     }
1439 
1440     notify = 0;
1441     if (ci == pi + 1)
1442 	notify++;
1443 
1444     /* wrap the queue? */
1445     if (ci >= aac_qinfo[queue].size)
1446 	ci = 0;
1447 
1448     /* fetch the entry */
1449     *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1450     *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] + ci)->aq_fib_addr;
1451 
1452     /* update consumer index */
1453     sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1454 
1455     /* if we have made the queue un-full, notify the adapter */
1456     if (notify && (aac_qinfo[queue].notify != 0))
1457 	AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1458     error = 0;
1459 
1460 out:
1461     splx(s);
1462     return(error);
1463 }
1464 
1465 /******************************************************************************
1466  * Check for commands that have been outstanding for a suspiciously long time,
1467  * and complain about them.
1468  */
1469 static void
1470 aac_timeout(struct aac_softc *sc)
1471 {
1472     int		s;
1473     struct	aac_command *cm;
1474     time_t	deadline;
1475 
1476 #if 0
1477     /* simulate an interrupt to handle possibly-missed interrupts */
1478     /*
1479      * XXX This was done to work around another bug which has since been
1480      * fixed.  It is dangerous anyways because you don't want multiple
1481      * threads in the interrupt handler at the same time!  If calling
1482      * is deamed neccesary in the future, proper mutexes must be used.
1483      */
1484     s = splbio();
1485     aac_intr(sc);
1486     splx(s);
1487 #endif
1488 
1489     /* kick the I/O queue to restart it in the case of deadlock */
1490     aac_startio(sc);
1491 
1492     /* traverse the busy command list, bitch about late commands once only */
1493     deadline = time_second - AAC_CMD_TIMEOUT;
1494     s = splbio();
1495     TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1496 	if ((cm->cm_timestamp < deadline)
1497 	    /*  && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1498 	    cm->cm_flags |= AAC_CMD_TIMEDOUT;
1499 	    device_printf(sc->aac_dev, "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1500 			  cm, (int)(time_second - cm->cm_timestamp));
1501 	    AAC_PRINT_FIB(sc, cm->cm_fib);
1502 	}
1503     }
1504     splx(s);
1505 
1506     /* reset the timer for next time */
1507     timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
1508     return;
1509 }
1510 
1511 /******************************************************************************
1512  ******************************************************************************
1513 			Interface Function Vectors
1514  ******************************************************************************
1515  ******************************************************************************/
1516 
1517 /******************************************************************************
1518  * Read the current firmware status word.
1519  */
1520 static int
1521 aac_sa_get_fwstatus(struct aac_softc *sc)
1522 {
1523     debug_called(3);
1524 
1525     return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1526 }
1527 
1528 static int
1529 aac_rx_get_fwstatus(struct aac_softc *sc)
1530 {
1531     debug_called(3);
1532 
1533     return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1534 }
1535 
1536 /******************************************************************************
1537  * Notify the controller of a change in a given queue
1538  */
1539 
1540 static void
1541 aac_sa_qnotify(struct aac_softc *sc, int qbit)
1542 {
1543     debug_called(3);
1544 
1545     AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1546 }
1547 
1548 static void
1549 aac_rx_qnotify(struct aac_softc *sc, int qbit)
1550 {
1551     debug_called(3);
1552 
1553     AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1554 }
1555 
1556 /******************************************************************************
1557  * Get the interrupt reason bits
1558  */
1559 static int
1560 aac_sa_get_istatus(struct aac_softc *sc)
1561 {
1562     debug_called(3);
1563 
1564     return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1565 }
1566 
1567 static int
1568 aac_rx_get_istatus(struct aac_softc *sc)
1569 {
1570     debug_called(3);
1571 
1572     return(AAC_GETREG4(sc, AAC_RX_ODBR));
1573 }
1574 
1575 /******************************************************************************
1576  * Clear some interrupt reason bits
1577  */
1578 static void
1579 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
1580 {
1581     debug_called(3);
1582 
1583     AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
1584 }
1585 
1586 static void
1587 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
1588 {
1589     debug_called(3);
1590 
1591     AAC_SETREG4(sc, AAC_RX_ODBR, mask);
1592 }
1593 
1594 /******************************************************************************
1595  * Populate the mailbox and set the command word
1596  */
1597 static void
1598 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1599 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1600 {
1601     debug_called(4);
1602 
1603     AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
1604     AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
1605     AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
1606     AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
1607     AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
1608 }
1609 
1610 static void
1611 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
1612 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1613 {
1614     debug_called(4);
1615 
1616     AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
1617     AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
1618     AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
1619     AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
1620     AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
1621 }
1622 
1623 /******************************************************************************
1624  * Fetch the immediate command status word
1625  */
1626 static int
1627 aac_sa_get_mailboxstatus(struct aac_softc *sc)
1628 {
1629     debug_called(4);
1630 
1631     return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
1632 }
1633 
1634 static int
1635 aac_rx_get_mailboxstatus(struct aac_softc *sc)
1636 {
1637     debug_called(4);
1638 
1639     return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
1640 }
1641 
1642 /******************************************************************************
1643  * Set/clear interrupt masks
1644  */
1645 static void
1646 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
1647 {
1648     debug(2, "%sable interrupts", enable ? "en" : "dis");
1649 
1650     if (enable) {
1651 	AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
1652     } else {
1653 	AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
1654     }
1655 }
1656 
1657 static void
1658 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
1659 {
1660     debug(2, "%sable interrupts", enable ? "en" : "dis");
1661 
1662     if (enable) {
1663 	AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
1664     } else {
1665 	AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
1666     }
1667 }
1668 
1669 /******************************************************************************
1670  ******************************************************************************
1671 			Debugging and Diagnostics
1672  ******************************************************************************
1673  ******************************************************************************/
1674 
1675 /******************************************************************************
1676  * Print some information about the controller.
1677  */
1678 static void
1679 aac_describe_controller(struct aac_softc *sc)
1680 {
1681     u_int8_t			buf[AAC_FIB_DATASIZE];	/* XXX really a bit big
1682 							 * for the stack */
1683     u_int16_t			bufsize;
1684     struct aac_adapter_info	*info;
1685     u_int8_t			arg;
1686 
1687     debug_called(2);
1688 
1689     arg = 0;
1690     bufsize = sizeof(buf);
1691     if (aac_sync_fib(sc, RequestAdapterInfo, 0, &arg, sizeof(arg), &buf,
1692 		     &bufsize)) {
1693 	device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1694 	return;
1695     }
1696     if (bufsize != sizeof(*info)) {
1697 	device_printf(sc->aac_dev, "RequestAdapterInfo returned wrong data "
1698 		      "size (%d != %d)\n", bufsize, sizeof(*info));
1699 	/*return;*/
1700     }
1701     info = (struct aac_adapter_info *)&buf[0];
1702 
1703     device_printf(sc->aac_dev, "%s %dMHz, %dMB total memory, %s (%d)\n",
1704 		  aac_describe_code(aac_cpu_variant, info->CpuVariant),
1705 		  info->ClockSpeed, info->TotalMem / (1024 * 1024),
1706 		  aac_describe_code(aac_battery_platform,
1707 		  info->batteryPlatform), info->batteryPlatform);
1708 
1709     /* save the kernel revision structure for later use */
1710     sc->aac_revision = info->KernelRevision;
1711     device_printf(sc->aac_dev, "Kernel %d.%d-%d, S/N %llx\n",
1712 		  info->KernelRevision.external.comp.major,
1713 		  info->KernelRevision.external.comp.minor,
1714 		  info->KernelRevision.external.comp.dash,
1715 		  info->SerialNumber);	/* XXX format? */
1716 }
1717 
1718 /******************************************************************************
1719  * Look up a text description of a numeric error code and return a pointer to
1720  * same.
1721  */
1722 static char *
1723 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
1724 {
1725     int		i;
1726 
1727     for (i = 0; table[i].string != NULL; i++)
1728 	if (table[i].code == code)
1729 	    return(table[i].string);
1730     return(table[i + 1].string);
1731 }
1732 
1733 /*****************************************************************************
1734  *****************************************************************************
1735 				Management Interface
1736  *****************************************************************************
1737  *****************************************************************************/
1738 
1739 static int
1740 aac_open(dev_t dev, int flags, int fmt, struct proc *p)
1741 {
1742     struct aac_softc	*sc = dev->si_drv1;
1743 
1744     debug_called(2);
1745 
1746     /* Check to make sure the device isn't already open */
1747     if (sc->aac_state & AAC_STATE_OPEN) {
1748         return EBUSY;
1749     }
1750     sc->aac_state |= AAC_STATE_OPEN;
1751 
1752     return 0;
1753 }
1754 
1755 static int
1756 aac_close(dev_t dev, int flags, int fmt, struct proc *p)
1757 {
1758     struct aac_softc	*sc = dev->si_drv1;
1759 
1760     debug_called(2);
1761 
1762     /* Mark this unit as no longer open  */
1763     sc->aac_state &= ~AAC_STATE_OPEN;
1764 
1765     return 0;
1766 }
1767 
1768 static int
1769 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, struct proc *p)
1770 {
1771     union aac_statrequest	*as = (union aac_statrequest *)arg;
1772     struct aac_softc		*sc = dev->si_drv1;
1773     int				error = 0;
1774 #ifdef AAC_COMPAT_LINUX
1775     int				i;
1776 #endif
1777 
1778     debug_called(2);
1779 
1780     switch (cmd) {
1781     case AACIO_STATS:
1782 	switch (as->as_item) {
1783 	case AACQ_FREE:
1784 	case AACQ_BIO:
1785 	case AACQ_READY:
1786 	case AACQ_BUSY:
1787 	case AACQ_COMPLETE:
1788 	    bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
1789 		  sizeof(struct aac_qstat));
1790 	    break;
1791 	default:
1792 	    error = ENOENT;
1793 	    break;
1794 	}
1795 	break;
1796 
1797 #ifdef AAC_COMPAT_LINUX
1798     case FSACTL_SENDFIB:
1799 	debug(1, "FSACTL_SENDFIB");
1800 	error = aac_ioctl_sendfib(sc, arg);
1801 	break;
1802     case FSACTL_AIF_THREAD:
1803 	debug(1, "FSACTL_AIF_THREAD");
1804 	error = EINVAL;
1805 	break;
1806     case FSACTL_OPEN_GET_ADAPTER_FIB:
1807 	debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
1808 	/*
1809 	 * Pass the caller out an AdapterFibContext.
1810 	 *
1811 	 * Note that because we only support one opener, we
1812 	 * basically ignore this.  Set the caller's context to a magic
1813 	 * number just in case.
1814 	 *
1815 	 * The Linux code hands the driver a pointer into kernel space,
1816 	 * and then trusts it when the caller hands it back.  Aiee!
1817 	 */
1818 	i = AAC_AIF_SILLYMAGIC;
1819 	error = copyout(&i, arg, sizeof(i));
1820 	break;
1821     case FSACTL_GET_NEXT_ADAPTER_FIB:
1822 	debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
1823 	error = aac_linux_getnext_aif(sc, arg);
1824 	break;
1825     case FSACTL_CLOSE_GET_ADAPTER_FIB:
1826 	debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
1827 	/* don't do anything here */
1828 	break;
1829     case FSACTL_MINIPORT_REV_CHECK:
1830 	debug(1, "FSACTL_MINIPORT_REV_CHECK");
1831 	error = aac_linux_rev_check(sc, arg);
1832 	break;
1833 #endif
1834     default:
1835 	device_printf(sc->aac_dev, "unsupported cmd 0x%lx\n", cmd);
1836 	error = EINVAL;
1837 	break;
1838     }
1839     return(error);
1840 }
1841 
1842 /******************************************************************************
1843  * Send a FIB supplied from userspace
1844  */
1845 static int
1846 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
1847 {
1848     struct aac_command 	*cm;
1849     int			size, error;
1850 
1851     debug_called(2);
1852 
1853     cm = NULL;
1854 
1855     /*
1856      * Get a command
1857      */
1858     if (aac_alloc_command(sc, &cm)) {
1859 	error = EBUSY;
1860 	goto out;
1861     }
1862 
1863     /*
1864      * Fetch the FIB header, then re-copy to get data as well.
1865      */
1866     if ((error = copyin(ufib, cm->cm_fib, sizeof(struct aac_fib_header))) != 0)
1867 	goto out;
1868     size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
1869     if (size > sizeof(struct aac_fib)) {
1870 	device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n", size,
1871 		      sizeof(struct aac_fib));
1872 	size = sizeof(struct aac_fib);
1873     }
1874     if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
1875 	goto out;
1876     cm->cm_fib->Header.Size = size;
1877     cm->cm_timestamp = time_second;
1878 
1879     /*
1880      * Pass the FIB to the controller, wait for it to complete.
1881      */
1882     if ((error = aac_wait_command(cm, 30)) != 0)	/* XXX user timeout? */
1883 	goto out;
1884 
1885     /*
1886      * Copy the FIB and data back out to the caller.
1887      */
1888     size = cm->cm_fib->Header.Size;
1889     if (size > sizeof(struct aac_fib)) {
1890 	device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n", size,
1891 		      sizeof(struct aac_fib));
1892 	size = sizeof(struct aac_fib);
1893     }
1894     error = copyout(cm->cm_fib, ufib, size);
1895 
1896 out:
1897     if (cm != NULL) {
1898 	aac_release_command(cm);
1899     }
1900     return(error);
1901 }
1902 
1903 /******************************************************************************
1904  * Handle an AIF sent to us by the controller; queue it for later reference.
1905  *
1906  * XXX what's the right thing to do here when the queue is full?  Drop the older
1907  * or newer entries?
1908  */
1909 static void
1910 aac_handle_aif(struct aac_softc *sc, struct aac_aif_command *aif)
1911 {
1912     int		next, s;
1913 
1914     debug_called(2);
1915 
1916     s = splbio();
1917     next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
1918     if (next != sc->aac_aifq_tail) {
1919 	bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
1920 	sc->aac_aifq_head = next;
1921 	if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
1922 	    wakeup(sc->aac_aifq);
1923     }
1924     splx(s);
1925     aac_print_aif(sc, aif);
1926 }
1927 
1928 /******************************************************************************
1929  ******************************************************************************
1930 			Linux Management Interface
1931  ******************************************************************************
1932  ******************************************************************************/
1933 
1934 #ifdef AAC_COMPAT_LINUX
1935 
1936 #include <sys/proc.h>
1937 #include <machine/../linux/linux.h>
1938 #include <machine/../linux/linux_proto.h>
1939 #include <compat/linux/linux_ioctl.h>
1940 
1941 #define AAC_LINUX_IOCTL_MIN  0x2000
1942 #define AAC_LINUX_IOCTL_MAX  0x21ff
1943 
1944 static linux_ioctl_function_t aac_linux_ioctl;
1945 static struct linux_ioctl_handler aac_handler = {aac_linux_ioctl,
1946 						AAC_LINUX_IOCTL_MIN,
1947 						AAC_LINUX_IOCTL_MAX};
1948 
1949 SYSINIT  (aac_register,   SI_SUB_KLD, SI_ORDER_MIDDLE,
1950 	  linux_ioctl_register_handler, &aac_handler);
1951 SYSUNINIT(aac_unregister, SI_SUB_KLD, SI_ORDER_MIDDLE,
1952 	  linux_ioctl_unregister_handler, &aac_handler);
1953 
1954 MODULE_DEPEND(aac, linux, 1, 1, 1);
1955 
1956 static int
1957 aac_linux_ioctl(struct proc *p, struct linux_ioctl_args *args)
1958 {
1959     struct file		*fp = p->p_fd->fd_ofiles[args->fd];
1960     u_long		cmd = args->cmd;
1961 
1962     /*
1963      * Pass the ioctl off to our standard handler.
1964      */
1965     return(fo_ioctl(fp, cmd, (caddr_t)args->arg, p));
1966 }
1967 
1968 /******************************************************************************
1969  * Return the Revision of the driver to userspace and check to see if the
1970  * userspace app is possibly compatible.  This is extremely bogus right now
1971  * because I have no idea how to handle the versioning of this driver.  It is
1972  * needed, though, to get aaccli working.
1973  */
1974 static int
1975 aac_linux_rev_check(struct aac_softc *sc, caddr_t udata)
1976 {
1977     struct aac_rev_check	rev_check;
1978     struct aac_rev_check_resp	rev_check_resp;
1979     int				error = 0;
1980 
1981     debug_called(2);
1982 
1983     /*
1984      * Copyin the revision struct from userspace
1985      */
1986     if ((error = copyin(udata, (caddr_t)&rev_check,
1987 			sizeof(struct aac_rev_check))) != 0) {
1988 	return error;
1989     }
1990 
1991     debug(2, "Userland revision= %d\n", rev_check.callingRevision.buildNumber);
1992 
1993     /*
1994      * Doctor up the response struct.
1995      */
1996     rev_check_resp.possiblyCompatible = 1;
1997     rev_check_resp.adapterSWRevision.external.ul = sc->aac_revision.external.ul;
1998     rev_check_resp.adapterSWRevision.buildNumber = sc->aac_revision.buildNumber;
1999 
2000     return(copyout((caddr_t)&rev_check_resp, udata,
2001 		   sizeof(struct aac_rev_check_resp)));
2002 }
2003 
2004 /******************************************************************************
2005  * Pass the caller the next AIF in their queue
2006  */
2007 static int
2008 aac_linux_getnext_aif(struct aac_softc *sc, caddr_t arg)
2009 {
2010     struct get_adapter_fib_ioctl	agf;
2011     int					error, s;
2012 
2013     debug_called(2);
2014 
2015     if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2016 
2017 	/*
2018 	 * Check the magic number that we gave the caller.
2019 	 */
2020 	if (agf.AdapterFibContext != AAC_AIF_SILLYMAGIC) {
2021 	    error = EFAULT;
2022 	} else {
2023 
2024 	    s = splbio();
2025 	    error = aac_linux_return_aif(sc, agf.AifFib);
2026 
2027 	    if ((error == EAGAIN) && (agf.Wait)) {
2028 		sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2029 		while (error == EAGAIN) {
2030 		    error = tsleep(sc->aac_aifq, PRIBIO | PCATCH, "aacaif", 0);
2031 		    if (error == 0)
2032 			error = aac_linux_return_aif(sc, agf.AifFib);
2033 		}
2034 		sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2035 	    }
2036 	    splx(s);
2037 	}
2038     }
2039     return(error);
2040 }
2041 
2042 /******************************************************************************
2043  * Hand the next AIF off the top of the queue out to userspace.
2044  */
2045 static int
2046 aac_linux_return_aif(struct aac_softc *sc, caddr_t uptr)
2047 {
2048     int		error, s;
2049 
2050     debug_called(2);
2051 
2052     s = splbio();
2053     if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2054 	error = EAGAIN;
2055     } else {
2056 	error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2057 			sizeof(struct aac_aif_command));
2058 	if (!error)
2059 	    sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH;
2060     }
2061     splx(s);
2062     return(error);
2063 }
2064 
2065 
2066 #endif /* AAC_COMPAT_LINUX */
2067