xref: /freebsd/sys/dev/acpica/acpi_cpu.c (revision 9768746b)
1 /*-
2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
3  * Copyright (c) 2001 Michael Smith
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_acpi.h"
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/cpu.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/pcpu.h>
39 #include <sys/power.h>
40 #include <sys/proc.h>
41 #include <sys/sched.h>
42 #include <sys/sbuf.h>
43 #include <sys/smp.h>
44 
45 #include <dev/pci/pcivar.h>
46 #include <machine/atomic.h>
47 #include <machine/bus.h>
48 #if defined(__amd64__) || defined(__i386__)
49 #include <machine/clock.h>
50 #include <machine/specialreg.h>
51 #include <machine/md_var.h>
52 #endif
53 #include <sys/rman.h>
54 
55 #include <contrib/dev/acpica/include/acpi.h>
56 #include <contrib/dev/acpica/include/accommon.h>
57 
58 #include <dev/acpica/acpivar.h>
59 
60 /*
61  * Support for ACPI Processor devices, including C[1-3] sleep states.
62  */
63 
64 /* Hooks for the ACPI CA debugging infrastructure */
65 #define _COMPONENT	ACPI_PROCESSOR
66 ACPI_MODULE_NAME("PROCESSOR")
67 
68 struct acpi_cx {
69     struct resource	*p_lvlx;	/* Register to read to enter state. */
70     uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
71     uint32_t		 trans_lat;	/* Transition latency (usec). */
72     uint32_t		 power;		/* Power consumed (mW). */
73     int			 res_type;	/* Resource type for p_lvlx. */
74     int			 res_rid;	/* Resource ID for p_lvlx. */
75     bool		 do_mwait;
76     uint32_t		 mwait_hint;
77     bool		 mwait_hw_coord;
78     bool		 mwait_bm_avoidance;
79 };
80 #define MAX_CX_STATES	 8
81 
82 struct acpi_cpu_softc {
83     device_t		 cpu_dev;
84     ACPI_HANDLE		 cpu_handle;
85     struct pcpu		*cpu_pcpu;
86     uint32_t		 cpu_acpi_id;	/* ACPI processor id */
87     uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
88     uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
89     struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
90     int			 cpu_cx_count;	/* Number of valid Cx states. */
91     int			 cpu_prev_sleep;/* Last idle sleep duration. */
92     int			 cpu_features;	/* Child driver supported features. */
93     /* Runtime state. */
94     int			 cpu_non_c2;	/* Index of lowest non-C2 state. */
95     int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
96     u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
97     /* Values for sysctl. */
98     struct sysctl_ctx_list cpu_sysctl_ctx;
99     struct sysctl_oid	*cpu_sysctl_tree;
100     int			 cpu_cx_lowest;
101     int			 cpu_cx_lowest_lim;
102     int			 cpu_disable_idle; /* Disable entry to idle function */
103     char 		 cpu_cx_supported[64];
104 };
105 
106 struct acpi_cpu_device {
107     struct resource_list	ad_rl;
108 };
109 
110 #define CPU_GET_REG(reg, width) 					\
111     (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
112 		      rman_get_bushandle((reg)), 0))
113 #define CPU_SET_REG(reg, width, val)					\
114     (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
115 		       rman_get_bushandle((reg)), 0, (val)))
116 
117 #define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
118 
119 #define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
120 #define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
121 
122 #define PCI_VENDOR_INTEL	0x8086
123 #define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
124 #define PCI_REVISION_A_STEP	0
125 #define PCI_REVISION_B_STEP	1
126 #define PCI_REVISION_4E		2
127 #define PCI_REVISION_4M		3
128 #define PIIX4_DEVACTB_REG	0x58
129 #define PIIX4_BRLD_EN_IRQ0	(1<<0)
130 #define PIIX4_BRLD_EN_IRQ	(1<<1)
131 #define PIIX4_BRLD_EN_IRQ8	(1<<5)
132 #define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
133 #define PIIX4_PCNTRL_BST_EN	(1<<10)
134 
135 #define	CST_FFH_VENDOR_INTEL	1
136 #define	CST_FFH_INTEL_CL_C1IO	1
137 #define	CST_FFH_INTEL_CL_MWAIT	2
138 #define	CST_FFH_MWAIT_HW_COORD	0x0001
139 #define	CST_FFH_MWAIT_BM_AVOID	0x0002
140 
141 #define	CPUDEV_DEVICE_ID	"ACPI0007"
142 
143 /* Knob to disable acpi_cpu devices */
144 bool acpi_cpu_disabled = false;
145 
146 /* Platform hardware resource information. */
147 static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
148 static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
149 static int		 cpu_quirks;	/* Indicate any hardware bugs. */
150 
151 /* Values for sysctl. */
152 static struct sysctl_ctx_list cpu_sysctl_ctx;
153 static struct sysctl_oid *cpu_sysctl_tree;
154 static int		 cpu_cx_generic;
155 static int		 cpu_cx_lowest_lim;
156 #if defined(__i386__) || defined(__amd64__)
157 static bool		 cppc_notify;
158 #endif
159 
160 static struct acpi_cpu_softc **cpu_softc;
161 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
162 
163 static int	acpi_cpu_probe(device_t dev);
164 static int	acpi_cpu_attach(device_t dev);
165 static int	acpi_cpu_suspend(device_t dev);
166 static int	acpi_cpu_resume(device_t dev);
167 static int	acpi_pcpu_get_id(device_t dev, uint32_t acpi_id,
168 		    u_int *cpu_id);
169 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
170 static device_t	acpi_cpu_add_child(device_t dev, u_int order, const char *name,
171 		    int unit);
172 static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
173 		    uintptr_t *result);
174 static int	acpi_cpu_shutdown(device_t dev);
175 static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
176 static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
177 static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
178 static void	acpi_cpu_startup(void *arg);
179 static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
180 static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
181 #if defined(__i386__) || defined(__amd64__)
182 static void	acpi_cpu_idle(sbintime_t sbt);
183 #endif
184 static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
185 static void	acpi_cpu_quirks(void);
186 static void	acpi_cpu_quirks_piix4(void);
187 static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
188 static int	acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS);
189 static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
190 static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
191 static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
192 #if defined(__i386__) || defined(__amd64__)
193 static int	acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS);
194 #endif
195 
196 static device_method_t acpi_cpu_methods[] = {
197     /* Device interface */
198     DEVMETHOD(device_probe,	acpi_cpu_probe),
199     DEVMETHOD(device_attach,	acpi_cpu_attach),
200     DEVMETHOD(device_detach,	bus_generic_detach),
201     DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
202     DEVMETHOD(device_suspend,	acpi_cpu_suspend),
203     DEVMETHOD(device_resume,	acpi_cpu_resume),
204 
205     /* Bus interface */
206     DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
207     DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
208     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
209     DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
210     DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
211     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
212     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
213     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
214     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
215     DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
216     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
217 
218     DEVMETHOD_END
219 };
220 
221 static driver_t acpi_cpu_driver = {
222     "cpu",
223     acpi_cpu_methods,
224     sizeof(struct acpi_cpu_softc),
225 };
226 
227 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, 0, 0);
228 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
229 
230 static int
231 acpi_cpu_probe(device_t dev)
232 {
233     static char		   *cpudev_ids[] = { CPUDEV_DEVICE_ID, NULL };
234     int			   acpi_id, cpu_id;
235     ACPI_BUFFER		   buf;
236     ACPI_HANDLE		   handle;
237     ACPI_OBJECT		   *obj;
238     ACPI_STATUS		   status;
239     ACPI_OBJECT_TYPE	   type;
240 
241     if (acpi_disabled("cpu") || acpi_cpu_disabled)
242 	return (ENXIO);
243     type = acpi_get_type(dev);
244     if (type != ACPI_TYPE_PROCESSOR && type != ACPI_TYPE_DEVICE)
245 	return (ENXIO);
246     if (type == ACPI_TYPE_DEVICE &&
247 	ACPI_ID_PROBE(device_get_parent(dev), dev, cpudev_ids, NULL) >= 0)
248 	return (ENXIO);
249 
250     handle = acpi_get_handle(dev);
251     if (cpu_softc == NULL)
252 	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
253 	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
254 
255     if (type == ACPI_TYPE_PROCESSOR) {
256 	/* Get our Processor object. */
257 	buf.Pointer = NULL;
258 	buf.Length = ACPI_ALLOCATE_BUFFER;
259 	status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
260 	if (ACPI_FAILURE(status)) {
261 	    device_printf(dev, "probe failed to get Processor obj - %s\n",
262 		AcpiFormatException(status));
263 	    return (ENXIO);
264 	}
265 	obj = (ACPI_OBJECT *)buf.Pointer;
266 	if (obj->Type != ACPI_TYPE_PROCESSOR) {
267 	    device_printf(dev, "Processor object has bad type %d\n",
268 		obj->Type);
269 	    AcpiOsFree(obj);
270 	    return (ENXIO);
271 	}
272 
273 	/*
274 	 * Find the processor associated with our unit.  We could use the
275 	 * ProcId as a key, however, some boxes do not have the same values
276 	 * in their Processor object as the ProcId values in the MADT.
277 	 */
278 	acpi_id = obj->Processor.ProcId;
279 	AcpiOsFree(obj);
280     } else {
281 	status = acpi_GetInteger(handle, "_UID", &acpi_id);
282 	if (ACPI_FAILURE(status)) {
283 	    device_printf(dev, "Device object has bad value - %s\n",
284 		AcpiFormatException(status));
285 	    return (ENXIO);
286 	}
287     }
288     if (acpi_pcpu_get_id(dev, acpi_id, &cpu_id) != 0) {
289 	if (bootverbose && (type != ACPI_TYPE_PROCESSOR || acpi_id != 255))
290 	    printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
291 		acpi_name(acpi_get_handle(dev)), acpi_id);
292 	return (ENXIO);
293     }
294 
295     if (device_set_unit(dev, cpu_id) != 0)
296 	return (ENXIO);
297 
298     device_set_desc(dev, "ACPI CPU");
299 
300     if (!bootverbose && device_get_unit(dev) != 0) {
301 	    device_quiet(dev);
302 	    device_quiet_children(dev);
303     }
304 
305     return (BUS_PROBE_DEFAULT);
306 }
307 
308 static int
309 acpi_cpu_attach(device_t dev)
310 {
311     ACPI_BUFFER		   buf;
312     ACPI_OBJECT		   arg, *obj;
313     ACPI_OBJECT_LIST	   arglist;
314     struct pcpu		   *pcpu_data;
315     struct acpi_cpu_softc *sc;
316     struct acpi_softc	  *acpi_sc;
317     ACPI_STATUS		   status;
318     u_int		   features;
319     int			   cpu_id, drv_count, i;
320     driver_t 		  **drivers;
321     uint32_t		   cap_set[3];
322 
323     /* UUID needed by _OSC evaluation */
324     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
325 				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
326 				       0x58, 0x71, 0x39, 0x53 };
327 
328     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
329 
330     sc = device_get_softc(dev);
331     sc->cpu_dev = dev;
332     sc->cpu_handle = acpi_get_handle(dev);
333     cpu_id = device_get_unit(dev);
334     cpu_softc[cpu_id] = sc;
335     pcpu_data = pcpu_find(cpu_id);
336     pcpu_data->pc_device = dev;
337     sc->cpu_pcpu = pcpu_data;
338     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
339     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
340 
341     if (acpi_get_type(dev) == ACPI_TYPE_PROCESSOR) {
342 	buf.Pointer = NULL;
343 	buf.Length = ACPI_ALLOCATE_BUFFER;
344 	status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
345 	if (ACPI_FAILURE(status)) {
346 	    device_printf(dev, "attach failed to get Processor obj - %s\n",
347 		AcpiFormatException(status));
348 	    return (ENXIO);
349 	}
350 	obj = (ACPI_OBJECT *)buf.Pointer;
351 	sc->cpu_p_blk = obj->Processor.PblkAddress;
352 	sc->cpu_p_blk_len = obj->Processor.PblkLength;
353 	sc->cpu_acpi_id = obj->Processor.ProcId;
354 	AcpiOsFree(obj);
355     } else {
356 	KASSERT(acpi_get_type(dev) == ACPI_TYPE_DEVICE,
357 	    ("Unexpected ACPI object"));
358 	status = acpi_GetInteger(sc->cpu_handle, "_UID", &sc->cpu_acpi_id);
359 	if (ACPI_FAILURE(status)) {
360 	    device_printf(dev, "Device object has bad value - %s\n",
361 		AcpiFormatException(status));
362 	    return (ENXIO);
363 	}
364 	sc->cpu_p_blk = 0;
365 	sc->cpu_p_blk_len = 0;
366     }
367     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
368 		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
369 
370     /*
371      * If this is the first cpu we attach, create and initialize the generic
372      * resources that will be used by all acpi cpu devices.
373      */
374     if (device_get_unit(dev) == 0) {
375 	/* Assume we won't be using generic Cx mode by default */
376 	cpu_cx_generic = FALSE;
377 
378 	/* Install hw.acpi.cpu sysctl tree */
379 	acpi_sc = acpi_device_get_parent_softc(dev);
380 	sysctl_ctx_init(&cpu_sysctl_ctx);
381 	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
382 	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
383 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "node for CPU children");
384 
385 #if defined(__i386__) || defined(__amd64__)
386 	/* Add sysctl handler to control registering for CPPC notifications */
387 	cppc_notify = 1;
388 	SYSCTL_ADD_BOOL(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
389 	    OID_AUTO, "cppc_notify", CTLFLAG_RDTUN | CTLFLAG_MPSAFE,
390 	    &cppc_notify, 0, "Register for CPPC Notifications");
391 #endif
392     }
393 
394     /*
395      * Before calling any CPU methods, collect child driver feature hints
396      * and notify ACPI of them.  We support unified SMP power control
397      * so advertise this ourselves.  Note this is not the same as independent
398      * SMP control where each CPU can have different settings.
399      */
400     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3 |
401       ACPI_CAP_C1_IO_HALT;
402 
403 #if defined(__i386__) || defined(__amd64__)
404     /*
405      * Ask for MWAIT modes if not disabled and interrupts work
406      * reasonable with MWAIT.
407      */
408     if (!acpi_disabled("mwait") && cpu_mwait_usable())
409 	sc->cpu_features |= ACPI_CAP_SMP_C1_NATIVE | ACPI_CAP_SMP_C3_NATIVE;
410 
411     /*
412      * Work around a lingering SMM bug which leads to freezes when handling
413      * CPPC notifications. Tell the SMM we will handle any CPPC notifications.
414      */
415     if ((cpu_power_eax & CPUTPM1_HWP_NOTIFICATION) && cppc_notify)
416 	    sc->cpu_features |= ACPI_CAP_INTR_CPPC;
417 #endif
418 
419     if (devclass_get_drivers(device_get_devclass(dev), &drivers,
420 	&drv_count) == 0) {
421 	for (i = 0; i < drv_count; i++) {
422 	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
423 		sc->cpu_features |= features;
424 	}
425 	free(drivers, M_TEMP);
426     }
427 
428     /*
429      * CPU capabilities are specified in
430      * Intel Processor Vendor-Specific ACPI Interface Specification.
431      */
432     if (sc->cpu_features) {
433 	cap_set[1] = sc->cpu_features;
434 	status = acpi_EvaluateOSC(sc->cpu_handle, cpu_oscuuid, 1, 2, cap_set,
435 	    cap_set, false);
436 	if (ACPI_SUCCESS(status)) {
437 	    if (cap_set[0] != 0)
438 		device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
439 	}
440 	else {
441 	    arglist.Pointer = &arg;
442 	    arglist.Count = 1;
443 	    arg.Type = ACPI_TYPE_BUFFER;
444 	    arg.Buffer.Length = sizeof(cap_set);
445 	    arg.Buffer.Pointer = (uint8_t *)cap_set;
446 	    cap_set[0] = 1; /* revision */
447 	    cap_set[1] = 1; /* number of capabilities integers */
448 	    cap_set[2] = sc->cpu_features;
449 	    AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
450 	}
451     }
452 
453     /* Probe for Cx state support. */
454     acpi_cpu_cx_probe(sc);
455 
456     return (0);
457 }
458 
459 static void
460 acpi_cpu_postattach(void *unused __unused)
461 {
462     struct acpi_cpu_softc *sc;
463     int attached = 0, i;
464 
465     if (cpu_softc == NULL)
466 	return;
467 
468     bus_topo_lock();
469     CPU_FOREACH(i) {
470 	if ((sc = cpu_softc[i]) != NULL)
471 		bus_generic_probe(sc->cpu_dev);
472     }
473     CPU_FOREACH(i) {
474 	if ((sc = cpu_softc[i]) != NULL) {
475 		bus_generic_attach(sc->cpu_dev);
476 		attached = 1;
477 	}
478     }
479     bus_topo_unlock();
480 
481     if (attached) {
482 #ifdef EARLY_AP_STARTUP
483 	acpi_cpu_startup(NULL);
484 #else
485 	/* Queue post cpu-probing task handler */
486 	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
487 #endif
488     }
489 }
490 
491 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
492     acpi_cpu_postattach, NULL);
493 
494 static void
495 disable_idle(struct acpi_cpu_softc *sc)
496 {
497     cpuset_t cpuset;
498 
499     CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
500     sc->cpu_disable_idle = TRUE;
501 
502     /*
503      * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
504      * Note that this code depends on the fact that the rendezvous IPI
505      * can not penetrate context where interrupts are disabled and acpi_cpu_idle
506      * is called and executed in such a context with interrupts being re-enabled
507      * right before return.
508      */
509     smp_rendezvous_cpus(cpuset, smp_no_rendezvous_barrier, NULL,
510 	smp_no_rendezvous_barrier, NULL);
511 }
512 
513 static void
514 enable_idle(struct acpi_cpu_softc *sc)
515 {
516 
517     sc->cpu_disable_idle = FALSE;
518 }
519 
520 #if defined(__i386__) || defined(__amd64__)
521 static int
522 is_idle_disabled(struct acpi_cpu_softc *sc)
523 {
524 
525     return (sc->cpu_disable_idle);
526 }
527 #endif
528 
529 /*
530  * Disable any entry to the idle function during suspend and re-enable it
531  * during resume.
532  */
533 static int
534 acpi_cpu_suspend(device_t dev)
535 {
536     int error;
537 
538     error = bus_generic_suspend(dev);
539     if (error)
540 	return (error);
541     disable_idle(device_get_softc(dev));
542     return (0);
543 }
544 
545 static int
546 acpi_cpu_resume(device_t dev)
547 {
548 
549     enable_idle(device_get_softc(dev));
550     return (bus_generic_resume(dev));
551 }
552 
553 /*
554  * Find the processor associated with a given ACPI ID.
555  */
556 static int
557 acpi_pcpu_get_id(device_t dev, uint32_t acpi_id, u_int *cpu_id)
558 {
559     struct pcpu	*pc;
560     u_int	 i;
561 
562     CPU_FOREACH(i) {
563 	pc = pcpu_find(i);
564 	if (pc->pc_acpi_id == acpi_id) {
565 	    *cpu_id = pc->pc_cpuid;
566 	    return (0);
567 	}
568     }
569 
570     /*
571      * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
572      * UP box) use the ACPI ID from the first processor we find.
573      */
574     if (mp_ncpus == 1) {
575 	pc = pcpu_find(0);
576 	if (pc->pc_acpi_id == 0xffffffff)
577 	    pc->pc_acpi_id = acpi_id;
578 	*cpu_id = 0;
579 	return (0);
580     }
581 
582     return (ESRCH);
583 }
584 
585 static struct resource_list *
586 acpi_cpu_get_rlist(device_t dev, device_t child)
587 {
588     struct acpi_cpu_device *ad;
589 
590     ad = device_get_ivars(child);
591     if (ad == NULL)
592 	return (NULL);
593     return (&ad->ad_rl);
594 }
595 
596 static device_t
597 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
598 {
599     struct acpi_cpu_device *ad;
600     device_t child;
601 
602     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
603 	return (NULL);
604 
605     resource_list_init(&ad->ad_rl);
606 
607     child = device_add_child_ordered(dev, order, name, unit);
608     if (child != NULL)
609 	device_set_ivars(child, ad);
610     else
611 	free(ad, M_TEMP);
612     return (child);
613 }
614 
615 static int
616 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
617 {
618     struct acpi_cpu_softc *sc;
619 
620     sc = device_get_softc(dev);
621     switch (index) {
622     case ACPI_IVAR_HANDLE:
623 	*result = (uintptr_t)sc->cpu_handle;
624 	break;
625     case CPU_IVAR_PCPU:
626 	*result = (uintptr_t)sc->cpu_pcpu;
627 	break;
628 #if defined(__amd64__) || defined(__i386__)
629     case CPU_IVAR_NOMINAL_MHZ:
630 	if (tsc_is_invariant) {
631 	    *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
632 	    break;
633 	}
634 	/* FALLTHROUGH */
635 #endif
636     default:
637 	return (ENOENT);
638     }
639     return (0);
640 }
641 
642 static int
643 acpi_cpu_shutdown(device_t dev)
644 {
645     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
646 
647     /* Allow children to shutdown first. */
648     bus_generic_shutdown(dev);
649 
650     /*
651      * Disable any entry to the idle function.
652      */
653     disable_idle(device_get_softc(dev));
654 
655     /*
656      * CPU devices are not truly detached and remain referenced,
657      * so their resources are not freed.
658      */
659 
660     return_VALUE (0);
661 }
662 
663 static void
664 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
665 {
666     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
667 
668     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
669     sc->cpu_prev_sleep = 1000000;
670     sc->cpu_cx_lowest = 0;
671     sc->cpu_cx_lowest_lim = 0;
672 
673     /*
674      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
675      * any, we'll revert to generic FADT/P_BLK Cx control method which will
676      * be handled by acpi_cpu_startup. We need to defer to after having
677      * probed all the cpus in the system before probing for generic Cx
678      * states as we may already have found cpus with valid _CST packages
679      */
680     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
681 	/*
682 	 * We were unable to find a _CST package for this cpu or there
683 	 * was an error parsing it. Switch back to generic mode.
684 	 */
685 	cpu_cx_generic = TRUE;
686 	if (bootverbose)
687 	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
688     }
689 
690     /*
691      * TODO: _CSD Package should be checked here.
692      */
693 }
694 
695 static void
696 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
697 {
698     ACPI_GENERIC_ADDRESS	 gas;
699     struct acpi_cx		*cx_ptr;
700 
701     sc->cpu_cx_count = 0;
702     cx_ptr = sc->cpu_cx_states;
703 
704     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
705     sc->cpu_prev_sleep = 1000000;
706 
707     /* C1 has been required since just after ACPI 1.0 */
708     cx_ptr->type = ACPI_STATE_C1;
709     cx_ptr->trans_lat = 0;
710     cx_ptr++;
711     sc->cpu_non_c2 = sc->cpu_cx_count;
712     sc->cpu_non_c3 = sc->cpu_cx_count;
713     sc->cpu_cx_count++;
714 
715     /*
716      * The spec says P_BLK must be 6 bytes long.  However, some systems
717      * use it to indicate a fractional set of features present so we
718      * take 5 as C2.  Some may also have a value of 7 to indicate
719      * another C3 but most use _CST for this (as required) and having
720      * "only" C1-C3 is not a hardship.
721      */
722     if (sc->cpu_p_blk_len < 5)
723 	return;
724 
725     /* Validate and allocate resources for C2 (P_LVL2). */
726     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
727     gas.BitWidth = 8;
728     if (AcpiGbl_FADT.C2Latency <= 100) {
729 	gas.Address = sc->cpu_p_blk + 4;
730 	cx_ptr->res_rid = 0;
731 	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
732 	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
733 	if (cx_ptr->p_lvlx != NULL) {
734 	    cx_ptr->type = ACPI_STATE_C2;
735 	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
736 	    cx_ptr++;
737 	    sc->cpu_non_c3 = sc->cpu_cx_count;
738 	    sc->cpu_cx_count++;
739 	}
740     }
741     if (sc->cpu_p_blk_len < 6)
742 	return;
743 
744     /* Validate and allocate resources for C3 (P_LVL3). */
745     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
746 	gas.Address = sc->cpu_p_blk + 5;
747 	cx_ptr->res_rid = 1;
748 	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
749 	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
750 	if (cx_ptr->p_lvlx != NULL) {
751 	    cx_ptr->type = ACPI_STATE_C3;
752 	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
753 	    cx_ptr++;
754 	    sc->cpu_cx_count++;
755 	}
756     }
757 }
758 
759 #if defined(__i386__) || defined(__amd64__)
760 static void
761 acpi_cpu_cx_cst_mwait(struct acpi_cx *cx_ptr, uint64_t address, int accsize)
762 {
763 
764 	cx_ptr->do_mwait = true;
765 	cx_ptr->mwait_hint = address & 0xffffffff;
766 	cx_ptr->mwait_hw_coord = (accsize & CST_FFH_MWAIT_HW_COORD) != 0;
767 	cx_ptr->mwait_bm_avoidance = (accsize & CST_FFH_MWAIT_BM_AVOID) != 0;
768 }
769 #endif
770 
771 static void
772 acpi_cpu_cx_cst_free_plvlx(device_t cpu_dev, struct acpi_cx *cx_ptr)
773 {
774 
775 	if (cx_ptr->p_lvlx == NULL)
776 		return;
777 	bus_release_resource(cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
778 	    cx_ptr->p_lvlx);
779 	cx_ptr->p_lvlx = NULL;
780 }
781 
782 /*
783  * Parse a _CST package and set up its Cx states.  Since the _CST object
784  * can change dynamically, our notify handler may call this function
785  * to clean up and probe the new _CST package.
786  */
787 static int
788 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
789 {
790     struct	 acpi_cx *cx_ptr;
791     ACPI_STATUS	 status;
792     ACPI_BUFFER	 buf;
793     ACPI_OBJECT	*top;
794     ACPI_OBJECT	*pkg;
795     uint32_t	 count;
796     int		 i;
797 #if defined(__i386__) || defined(__amd64__)
798     uint64_t	 address;
799     int		 vendor, class, accsize;
800 #endif
801 
802     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
803 
804     buf.Pointer = NULL;
805     buf.Length = ACPI_ALLOCATE_BUFFER;
806     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
807     if (ACPI_FAILURE(status))
808 	return (ENXIO);
809 
810     /* _CST is a package with a count and at least one Cx package. */
811     top = (ACPI_OBJECT *)buf.Pointer;
812     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
813 	device_printf(sc->cpu_dev, "invalid _CST package\n");
814 	AcpiOsFree(buf.Pointer);
815 	return (ENXIO);
816     }
817     if (count != top->Package.Count - 1) {
818 	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
819 	       count, top->Package.Count - 1);
820 	count = top->Package.Count - 1;
821     }
822     if (count > MAX_CX_STATES) {
823 	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
824 	count = MAX_CX_STATES;
825     }
826 
827     sc->cpu_non_c2 = 0;
828     sc->cpu_non_c3 = 0;
829     sc->cpu_cx_count = 0;
830     cx_ptr = sc->cpu_cx_states;
831 
832     /*
833      * C1 has been required since just after ACPI 1.0.
834      * Reserve the first slot for it.
835      */
836     cx_ptr->type = ACPI_STATE_C0;
837     cx_ptr++;
838     sc->cpu_cx_count++;
839 
840     /* Set up all valid states. */
841     for (i = 0; i < count; i++) {
842 	pkg = &top->Package.Elements[i + 1];
843 	if (!ACPI_PKG_VALID(pkg, 4) ||
844 	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
845 	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
846 	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
847 	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
848 	    continue;
849 	}
850 
851 	/* Validate the state to see if we should use it. */
852 	switch (cx_ptr->type) {
853 	case ACPI_STATE_C1:
854 	    acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
855 #if defined(__i386__) || defined(__amd64__)
856 	    if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
857 	      &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL) {
858 		if (class == CST_FFH_INTEL_CL_C1IO) {
859 		    /* C1 I/O then Halt */
860 		    cx_ptr->res_rid = sc->cpu_cx_count;
861 		    bus_set_resource(sc->cpu_dev, SYS_RES_IOPORT,
862 		      cx_ptr->res_rid, address, 1);
863 		    cx_ptr->p_lvlx = bus_alloc_resource_any(sc->cpu_dev,
864 		      SYS_RES_IOPORT, &cx_ptr->res_rid, RF_ACTIVE |
865 		      RF_SHAREABLE);
866 		    if (cx_ptr->p_lvlx == NULL) {
867 			bus_delete_resource(sc->cpu_dev, SYS_RES_IOPORT,
868 			  cx_ptr->res_rid);
869 			device_printf(sc->cpu_dev,
870 			  "C1 I/O failed to allocate port %d, "
871 			  "degrading to C1 Halt", (int)address);
872 		    }
873 		} else if (class == CST_FFH_INTEL_CL_MWAIT) {
874 		    acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
875 		}
876 	    }
877 #endif
878 	    if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
879 		/* This is the first C1 state.  Use the reserved slot. */
880 		sc->cpu_cx_states[0] = *cx_ptr;
881 	    } else {
882 		sc->cpu_non_c2 = sc->cpu_cx_count;
883 		sc->cpu_non_c3 = sc->cpu_cx_count;
884 		cx_ptr++;
885 		sc->cpu_cx_count++;
886 	    }
887 	    continue;
888 	case ACPI_STATE_C2:
889 	    sc->cpu_non_c3 = sc->cpu_cx_count;
890 	    break;
891 	case ACPI_STATE_C3:
892 	default:
893 	    if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
894 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
895 				 "acpi_cpu%d: C3[%d] not available.\n",
896 				 device_get_unit(sc->cpu_dev), i));
897 		continue;
898 	    }
899 	    break;
900 	}
901 
902 	/* Free up any previous register. */
903 	acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
904 
905 	/* Allocate the control register for C2 or C3. */
906 #if defined(__i386__) || defined(__amd64__)
907 	if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
908 	  &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL &&
909 	  class == CST_FFH_INTEL_CL_MWAIT) {
910 	    /* Native C State Instruction use (mwait) */
911 	    acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
912 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
913 	      "acpi_cpu%d: Got C%d/mwait - %d latency\n",
914 	      device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat));
915 	    cx_ptr++;
916 	    sc->cpu_cx_count++;
917 	} else
918 #endif
919 	{
920 	    cx_ptr->res_rid = sc->cpu_cx_count;
921 	    acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type,
922 		&cx_ptr->res_rid, &cx_ptr->p_lvlx, RF_SHAREABLE);
923 	    if (cx_ptr->p_lvlx) {
924 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
925 		     "acpi_cpu%d: Got C%d - %d latency\n",
926 		     device_get_unit(sc->cpu_dev), cx_ptr->type,
927 		     cx_ptr->trans_lat));
928 		cx_ptr++;
929 		sc->cpu_cx_count++;
930 	    }
931 	}
932     }
933     AcpiOsFree(buf.Pointer);
934 
935     /* If C1 state was not found, we need one now. */
936     cx_ptr = sc->cpu_cx_states;
937     if (cx_ptr->type == ACPI_STATE_C0) {
938 	cx_ptr->type = ACPI_STATE_C1;
939 	cx_ptr->trans_lat = 0;
940     }
941 
942     return (0);
943 }
944 
945 /*
946  * Call this *after* all CPUs have been attached.
947  */
948 static void
949 acpi_cpu_startup(void *arg)
950 {
951     struct acpi_cpu_softc *sc;
952     int i;
953 
954     /*
955      * Setup any quirks that might necessary now that we have probed
956      * all the CPUs
957      */
958     acpi_cpu_quirks();
959 
960     if (cpu_cx_generic) {
961 	/*
962 	 * We are using generic Cx mode, probe for available Cx states
963 	 * for all processors.
964 	 */
965 	CPU_FOREACH(i) {
966 	    if ((sc = cpu_softc[i]) != NULL)
967 		acpi_cpu_generic_cx_probe(sc);
968 	}
969     } else {
970 	/*
971 	 * We are using _CST mode, remove C3 state if necessary.
972 	 * As we now know for sure that we will be using _CST mode
973 	 * install our notify handler.
974 	 */
975 	CPU_FOREACH(i) {
976 	    if ((sc = cpu_softc[i]) == NULL)
977 		continue;
978 	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
979 		sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1);
980 	    }
981 	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
982 		acpi_cpu_notify, sc);
983 	}
984     }
985 
986     /* Perform Cx final initialization. */
987     CPU_FOREACH(i) {
988 	if ((sc = cpu_softc[i]) != NULL)
989 	    acpi_cpu_startup_cx(sc);
990     }
991 
992     /* Add a sysctl handler to handle global Cx lowest setting */
993     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
994 	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
995 	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
996 	"Global lowest Cx sleep state to use");
997 
998     /* Take over idling from cpu_idle_default(). */
999     cpu_cx_lowest_lim = 0;
1000     CPU_FOREACH(i) {
1001 	if ((sc = cpu_softc[i]) != NULL)
1002 	    enable_idle(sc);
1003     }
1004 #if defined(__i386__) || defined(__amd64__)
1005     cpu_idle_hook = acpi_cpu_idle;
1006 #endif
1007 }
1008 
1009 static void
1010 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
1011 {
1012     struct sbuf sb;
1013     int i;
1014 
1015     /*
1016      * Set up the list of Cx states
1017      */
1018     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
1019 	SBUF_FIXEDLEN);
1020     for (i = 0; i < sc->cpu_cx_count; i++)
1021 	sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
1022 	    sc->cpu_cx_states[i].trans_lat);
1023     sbuf_trim(&sb);
1024     sbuf_finish(&sb);
1025 }
1026 
1027 static void
1028 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
1029 {
1030     acpi_cpu_cx_list(sc);
1031 
1032     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
1033 		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
1034 		      OID_AUTO, "cx_supported", CTLFLAG_RD,
1035 		      sc->cpu_cx_supported, 0,
1036 		      "Cx/microsecond values for supported Cx states");
1037     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1038         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1039 	"cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1040 	(void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
1041 	"lowest Cx sleep state to use");
1042     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1043         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1044 	"cx_usage", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1045 	(void *)sc, 0, acpi_cpu_usage_sysctl, "A",
1046 	"percent usage for each Cx state");
1047     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1048         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1049 	"cx_usage_counters", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1050 	(void *)sc, 0, acpi_cpu_usage_counters_sysctl, "A",
1051 	"Cx sleep state counters");
1052 #if defined(__i386__) || defined(__amd64__)
1053     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1054         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1055 	"cx_method", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1056 	(void *)sc, 0, acpi_cpu_method_sysctl, "A", "Cx entrance methods");
1057 #endif
1058 
1059     /* Signal platform that we can handle _CST notification. */
1060     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
1061 	ACPI_LOCK(acpi);
1062 	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
1063 	ACPI_UNLOCK(acpi);
1064     }
1065 }
1066 
1067 #if defined(__i386__) || defined(__amd64__)
1068 /*
1069  * Idle the CPU in the lowest state possible.  This function is called with
1070  * interrupts disabled.  Note that once it re-enables interrupts, a task
1071  * switch can occur so do not access shared data (i.e. the softc) after
1072  * interrupts are re-enabled.
1073  */
1074 static void
1075 acpi_cpu_idle(sbintime_t sbt)
1076 {
1077     struct	acpi_cpu_softc *sc;
1078     struct	acpi_cx *cx_next;
1079     uint64_t	start_ticks, end_ticks;
1080     uint32_t	start_time, end_time;
1081     ACPI_STATUS	status;
1082     int		bm_active, cx_next_idx, i, us;
1083 
1084     /*
1085      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
1086      * since there is no ACPI processor object for this CPU.  This occurs
1087      * for logical CPUs in the HTT case.
1088      */
1089     sc = cpu_softc[PCPU_GET(cpuid)];
1090     if (sc == NULL) {
1091 	acpi_cpu_c1();
1092 	return;
1093     }
1094 
1095     /* If disabled, take the safe path. */
1096     if (is_idle_disabled(sc)) {
1097 	acpi_cpu_c1();
1098 	return;
1099     }
1100 
1101     /* Find the lowest state that has small enough latency. */
1102     us = sc->cpu_prev_sleep;
1103     if (sbt >= 0 && us > (sbt >> 12))
1104 	us = (sbt >> 12);
1105     cx_next_idx = 0;
1106     if (cpu_disable_c2_sleep)
1107 	i = min(sc->cpu_cx_lowest, sc->cpu_non_c2);
1108     else if (cpu_disable_c3_sleep)
1109 	i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
1110     else
1111 	i = sc->cpu_cx_lowest;
1112     for (; i >= 0; i--) {
1113 	if (sc->cpu_cx_states[i].trans_lat * 3 <= us) {
1114 	    cx_next_idx = i;
1115 	    break;
1116 	}
1117     }
1118 
1119     /*
1120      * Check for bus master activity.  If there was activity, clear
1121      * the bit and use the lowest non-C3 state.  Note that the USB
1122      * driver polling for new devices keeps this bit set all the
1123      * time if USB is loaded.
1124      */
1125     cx_next = &sc->cpu_cx_states[cx_next_idx];
1126     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
1127 	cx_next_idx > sc->cpu_non_c3 &&
1128 	(!cx_next->do_mwait || cx_next->mwait_bm_avoidance)) {
1129 	status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
1130 	if (ACPI_SUCCESS(status) && bm_active != 0) {
1131 	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1132 	    cx_next_idx = sc->cpu_non_c3;
1133 	    cx_next = &sc->cpu_cx_states[cx_next_idx];
1134 	}
1135     }
1136 
1137     /* Select the next state and update statistics. */
1138     sc->cpu_cx_stats[cx_next_idx]++;
1139     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
1140 
1141     /*
1142      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
1143      * precisely calculate the time spent in C1 since the place we wake up
1144      * is an ISR.  Assume we slept no more then half of quantum, unless
1145      * we are called inside critical section, delaying context switch.
1146      */
1147     if (cx_next->type == ACPI_STATE_C1) {
1148 	start_ticks = cpu_ticks();
1149 	if (cx_next->p_lvlx != NULL) {
1150 	    /* C1 I/O then Halt */
1151 	    CPU_GET_REG(cx_next->p_lvlx, 1);
1152 	}
1153 	if (cx_next->do_mwait)
1154 	    acpi_cpu_idle_mwait(cx_next->mwait_hint);
1155 	else
1156 	    acpi_cpu_c1();
1157 	end_ticks = cpu_ticks();
1158 	/* acpi_cpu_c1() returns with interrupts enabled. */
1159 	if (cx_next->do_mwait)
1160 	    ACPI_ENABLE_IRQS();
1161 	end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate();
1162 	if (!cx_next->do_mwait && curthread->td_critnest == 0)
1163 		end_time = min(end_time, 500000 / hz);
1164 	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
1165 	return;
1166     }
1167 
1168     /*
1169      * For C3, disable bus master arbitration and enable bus master wake
1170      * if BM control is available, otherwise flush the CPU cache.
1171      */
1172     if (cx_next->type == ACPI_STATE_C3) {
1173 	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1174 	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
1175 	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
1176 	} else
1177 	    ACPI_FLUSH_CPU_CACHE();
1178     }
1179 
1180     /*
1181      * Read from P_LVLx to enter C2(+), checking time spent asleep.
1182      * Use the ACPI timer for measuring sleep time.  Since we need to
1183      * get the time very close to the CPU start/stop clock logic, this
1184      * is the only reliable time source.
1185      */
1186     if (cx_next->type == ACPI_STATE_C3) {
1187 	AcpiGetTimer(&start_time);
1188 	start_ticks = 0;
1189     } else {
1190 	start_time = 0;
1191 	start_ticks = cpu_ticks();
1192     }
1193     if (cx_next->do_mwait) {
1194 	acpi_cpu_idle_mwait(cx_next->mwait_hint);
1195     } else {
1196 	CPU_GET_REG(cx_next->p_lvlx, 1);
1197 	/*
1198 	 * Read the end time twice.  Since it may take an arbitrary time
1199 	 * to enter the idle state, the first read may be executed before
1200 	 * the processor has stopped.  Doing it again provides enough
1201 	 * margin that we are certain to have a correct value.
1202 	 */
1203 	AcpiGetTimer(&end_time);
1204     }
1205 
1206     if (cx_next->type == ACPI_STATE_C3)
1207 	AcpiGetTimer(&end_time);
1208     else
1209 	end_ticks = cpu_ticks();
1210 
1211     /* Enable bus master arbitration and disable bus master wakeup. */
1212     if (cx_next->type == ACPI_STATE_C3 &&
1213       (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1214 	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
1215 	AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1216     }
1217     ACPI_ENABLE_IRQS();
1218 
1219     if (cx_next->type == ACPI_STATE_C3)
1220 	AcpiGetTimerDuration(start_time, end_time, &end_time);
1221     else
1222 	end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate();
1223     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
1224 }
1225 #endif
1226 
1227 /*
1228  * Re-evaluate the _CST object when we are notified that it changed.
1229  */
1230 static void
1231 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
1232 {
1233     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
1234 
1235     if (notify != ACPI_NOTIFY_CX_STATES)
1236 	return;
1237 
1238     /*
1239      * C-state data for target CPU is going to be in flux while we execute
1240      * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
1241      * Also, it may happen that multiple ACPI taskqueues may concurrently
1242      * execute notifications for the same CPU.  ACPI_SERIAL is used to
1243      * protect against that.
1244      */
1245     ACPI_SERIAL_BEGIN(cpu);
1246     disable_idle(sc);
1247 
1248     /* Update the list of Cx states. */
1249     acpi_cpu_cx_cst(sc);
1250     acpi_cpu_cx_list(sc);
1251     acpi_cpu_set_cx_lowest(sc);
1252 
1253     enable_idle(sc);
1254     ACPI_SERIAL_END(cpu);
1255 
1256     acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
1257 }
1258 
1259 static void
1260 acpi_cpu_quirks(void)
1261 {
1262     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1263 
1264     /*
1265      * Bus mastering arbitration control is needed to keep caches coherent
1266      * while sleeping in C3.  If it's not present but a working flush cache
1267      * instruction is present, flush the caches before entering C3 instead.
1268      * Otherwise, just disable C3 completely.
1269      */
1270     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1271 	AcpiGbl_FADT.Pm2ControlLength == 0) {
1272 	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1273 	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1274 	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1275 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1276 		"acpi_cpu: no BM control, using flush cache method\n"));
1277 	} else {
1278 	    cpu_quirks |= CPU_QUIRK_NO_C3;
1279 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1280 		"acpi_cpu: no BM control, C3 not available\n"));
1281 	}
1282     }
1283 
1284     /*
1285      * If we are using generic Cx mode, C3 on multiple CPUs requires using
1286      * the expensive flush cache instruction.
1287      */
1288     if (cpu_cx_generic && mp_ncpus > 1) {
1289 	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1290 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1291 	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1292     }
1293 
1294     /* Look for various quirks of the PIIX4 part. */
1295     acpi_cpu_quirks_piix4();
1296 }
1297 
1298 static void
1299 acpi_cpu_quirks_piix4(void)
1300 {
1301 #ifdef __i386__
1302     device_t acpi_dev;
1303     uint32_t val;
1304     ACPI_STATUS status;
1305 
1306     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1307     if (acpi_dev != NULL) {
1308 	switch (pci_get_revid(acpi_dev)) {
1309 	/*
1310 	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1311 	 * do not report the BMIDE status to the BM status register and
1312 	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1313 	 * works around the BMIDE bug by reading the BM status directly
1314 	 * but we take the simpler approach of disabling C3 for these
1315 	 * parts.
1316 	 *
1317 	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1318 	 * Livelock") from the January 2002 PIIX4 specification update.
1319 	 * Applies to all PIIX4 models.
1320 	 *
1321 	 * Also, make sure that all interrupts cause a "Stop Break"
1322 	 * event to exit from C2 state.
1323 	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1324 	 * should be set to zero, otherwise it causes C2 to short-sleep.
1325 	 * PIIX4 doesn't properly support C3 and bus master activity
1326 	 * need not break out of C2.
1327 	 */
1328 	case PCI_REVISION_A_STEP:
1329 	case PCI_REVISION_B_STEP:
1330 	case PCI_REVISION_4E:
1331 	case PCI_REVISION_4M:
1332 	    cpu_quirks |= CPU_QUIRK_NO_C3;
1333 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1334 		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1335 
1336 	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1337 	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1338 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1339 		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1340 	    	val |= PIIX4_STOP_BREAK_MASK;
1341 		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1342 	    }
1343 	    status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1344 	    if (ACPI_SUCCESS(status) && val != 0) {
1345 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1346 		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1347 		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1348 	    }
1349 	    break;
1350 	default:
1351 	    break;
1352 	}
1353     }
1354 #endif
1355 }
1356 
1357 static int
1358 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1359 {
1360 	struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
1361 	struct sbuf	 sb;
1362 	char		 buf[128];
1363 	int		 error, i;
1364 	uintmax_t	 fract, sum, whole;
1365 
1366 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1367 	sum = 0;
1368 	for (i = 0; i < sc->cpu_cx_count; i++)
1369 		sum += sc->cpu_cx_stats[i];
1370 	for (i = 0; i < sc->cpu_cx_count; i++) {
1371 		if (sum > 0) {
1372 			whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1373 			fract = (whole % sum) * 100;
1374 			sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1375 			    (u_int)(fract / sum));
1376 		} else
1377 			sbuf_printf(&sb, "0.00%% ");
1378 	}
1379 	sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1380 	error = sbuf_finish(&sb);
1381 	sbuf_delete(&sb);
1382 	return (error);
1383 }
1384 
1385 /*
1386  * XXX TODO: actually add support to count each entry/exit
1387  * from the Cx states.
1388  */
1389 static int
1390 acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS)
1391 {
1392 	struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
1393 	struct sbuf	 sb;
1394 	char		 buf[128];
1395 	int		 error, i;
1396 
1397 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1398 	for (i = 0; i < sc->cpu_cx_count; i++) {
1399 		if (i > 0)
1400 			sbuf_putc(&sb, ' ');
1401 		sbuf_printf(&sb, "%u", sc->cpu_cx_stats[i]);
1402 	}
1403 	error = sbuf_finish(&sb);
1404 	sbuf_delete(&sb);
1405 	return (error);
1406 }
1407 
1408 #if defined(__i386__) || defined(__amd64__)
1409 static int
1410 acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS)
1411 {
1412 	struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
1413 	struct acpi_cx *cx;
1414 	struct sbuf sb;
1415 	char buf[128];
1416 	int error, i;
1417 
1418 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1419 	for (i = 0; i < sc->cpu_cx_count; i++) {
1420 		cx = &sc->cpu_cx_states[i];
1421 		if (i > 0)
1422 			sbuf_putc(&sb, ' ');
1423 		sbuf_printf(&sb, "C%d/", i + 1);
1424 		if (cx->do_mwait) {
1425 			sbuf_cat(&sb, "mwait");
1426 			if (cx->mwait_hw_coord)
1427 				sbuf_cat(&sb, "/hwc");
1428 			if (cx->mwait_bm_avoidance)
1429 				sbuf_cat(&sb, "/bma");
1430 		} else if (cx->type == ACPI_STATE_C1) {
1431 			sbuf_cat(&sb, "hlt");
1432 		} else {
1433 			sbuf_cat(&sb, "io");
1434 		}
1435 		if (cx->type == ACPI_STATE_C1 && cx->p_lvlx != NULL)
1436 			sbuf_cat(&sb, "/iohlt");
1437 	}
1438 	error = sbuf_finish(&sb);
1439 	sbuf_delete(&sb);
1440 	return (error);
1441 }
1442 #endif
1443 
1444 static int
1445 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
1446 {
1447     int i;
1448 
1449     ACPI_SERIAL_ASSERT(cpu);
1450     sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
1451 
1452     /* If not disabling, cache the new lowest non-C3 state. */
1453     sc->cpu_non_c3 = 0;
1454     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1455 	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1456 	    sc->cpu_non_c3 = i;
1457 	    break;
1458 	}
1459     }
1460 
1461     /* Reset the statistics counters. */
1462     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1463     return (0);
1464 }
1465 
1466 static int
1467 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1468 {
1469     struct	 acpi_cpu_softc *sc;
1470     char	 state[8];
1471     int		 val, error;
1472 
1473     sc = (struct acpi_cpu_softc *) arg1;
1474     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
1475     error = sysctl_handle_string(oidp, state, sizeof(state), req);
1476     if (error != 0 || req->newptr == NULL)
1477 	return (error);
1478     if (strlen(state) < 2 || toupper(state[0]) != 'C')
1479 	return (EINVAL);
1480     if (strcasecmp(state, "Cmax") == 0)
1481 	val = MAX_CX_STATES;
1482     else {
1483 	val = (int) strtol(state + 1, NULL, 10);
1484 	if (val < 1 || val > MAX_CX_STATES)
1485 	    return (EINVAL);
1486     }
1487 
1488     ACPI_SERIAL_BEGIN(cpu);
1489     sc->cpu_cx_lowest_lim = val - 1;
1490     acpi_cpu_set_cx_lowest(sc);
1491     ACPI_SERIAL_END(cpu);
1492 
1493     return (0);
1494 }
1495 
1496 static int
1497 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1498 {
1499     struct	acpi_cpu_softc *sc;
1500     char	state[8];
1501     int		val, error, i;
1502 
1503     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
1504     error = sysctl_handle_string(oidp, state, sizeof(state), req);
1505     if (error != 0 || req->newptr == NULL)
1506 	return (error);
1507     if (strlen(state) < 2 || toupper(state[0]) != 'C')
1508 	return (EINVAL);
1509     if (strcasecmp(state, "Cmax") == 0)
1510 	val = MAX_CX_STATES;
1511     else {
1512 	val = (int) strtol(state + 1, NULL, 10);
1513 	if (val < 1 || val > MAX_CX_STATES)
1514 	    return (EINVAL);
1515     }
1516 
1517     /* Update the new lowest useable Cx state for all CPUs. */
1518     ACPI_SERIAL_BEGIN(cpu);
1519     cpu_cx_lowest_lim = val - 1;
1520     CPU_FOREACH(i) {
1521 	if ((sc = cpu_softc[i]) == NULL)
1522 	    continue;
1523 	sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
1524 	acpi_cpu_set_cx_lowest(sc);
1525     }
1526     ACPI_SERIAL_END(cpu);
1527 
1528     return (0);
1529 }
1530