xref: /freebsd/sys/dev/ale/if_ale.c (revision f05cddf9)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/module.h>
41 #include <sys/rman.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 #include <machine/bus.h>
70 #include <machine/in_cksum.h>
71 
72 #include <dev/ale/if_alereg.h>
73 #include <dev/ale/if_alevar.h>
74 
75 /* "device miibus" required.  See GENERIC if you get errors here. */
76 #include "miibus_if.h"
77 
78 /* For more information about Tx checksum offload issues see ale_encap(). */
79 #define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
80 
81 MODULE_DEPEND(ale, pci, 1, 1, 1);
82 MODULE_DEPEND(ale, ether, 1, 1, 1);
83 MODULE_DEPEND(ale, miibus, 1, 1, 1);
84 
85 /* Tunables. */
86 static int msi_disable = 0;
87 static int msix_disable = 0;
88 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
89 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
90 
91 /*
92  * Devices supported by this driver.
93  */
94 static const struct ale_dev {
95 	uint16_t	ale_vendorid;
96 	uint16_t	ale_deviceid;
97 	const char	*ale_name;
98 } ale_devs[] = {
99     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
100     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
101 };
102 
103 static int	ale_attach(device_t);
104 static int	ale_check_boundary(struct ale_softc *);
105 static int	ale_detach(device_t);
106 static int	ale_dma_alloc(struct ale_softc *);
107 static void	ale_dma_free(struct ale_softc *);
108 static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
109 static int	ale_encap(struct ale_softc *, struct mbuf **);
110 static void	ale_get_macaddr(struct ale_softc *);
111 static void	ale_init(void *);
112 static void	ale_init_locked(struct ale_softc *);
113 static void	ale_init_rx_pages(struct ale_softc *);
114 static void	ale_init_tx_ring(struct ale_softc *);
115 static void	ale_int_task(void *, int);
116 static int	ale_intr(void *);
117 static int	ale_ioctl(struct ifnet *, u_long, caddr_t);
118 static void	ale_mac_config(struct ale_softc *);
119 static int	ale_miibus_readreg(device_t, int, int);
120 static void	ale_miibus_statchg(device_t);
121 static int	ale_miibus_writereg(device_t, int, int, int);
122 static int	ale_mediachange(struct ifnet *);
123 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
124 static void	ale_phy_reset(struct ale_softc *);
125 static int	ale_probe(device_t);
126 static void	ale_reset(struct ale_softc *);
127 static int	ale_resume(device_t);
128 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
129     uint32_t, uint32_t *);
130 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
131 static int	ale_rxeof(struct ale_softc *sc, int);
132 static void	ale_rxfilter(struct ale_softc *);
133 static void	ale_rxvlan(struct ale_softc *);
134 static void	ale_setlinkspeed(struct ale_softc *);
135 static void	ale_setwol(struct ale_softc *);
136 static int	ale_shutdown(device_t);
137 static void	ale_start(struct ifnet *);
138 static void	ale_start_locked(struct ifnet *);
139 static void	ale_stats_clear(struct ale_softc *);
140 static void	ale_stats_update(struct ale_softc *);
141 static void	ale_stop(struct ale_softc *);
142 static void	ale_stop_mac(struct ale_softc *);
143 static int	ale_suspend(device_t);
144 static void	ale_sysctl_node(struct ale_softc *);
145 static void	ale_tick(void *);
146 static void	ale_txeof(struct ale_softc *);
147 static void	ale_watchdog(struct ale_softc *);
148 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
149 static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
150 static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
151 
152 static device_method_t ale_methods[] = {
153 	/* Device interface. */
154 	DEVMETHOD(device_probe,		ale_probe),
155 	DEVMETHOD(device_attach,	ale_attach),
156 	DEVMETHOD(device_detach,	ale_detach),
157 	DEVMETHOD(device_shutdown,	ale_shutdown),
158 	DEVMETHOD(device_suspend,	ale_suspend),
159 	DEVMETHOD(device_resume,	ale_resume),
160 
161 	/* MII interface. */
162 	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
163 	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
164 	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
165 
166 	DEVMETHOD_END
167 };
168 
169 static driver_t ale_driver = {
170 	"ale",
171 	ale_methods,
172 	sizeof(struct ale_softc)
173 };
174 
175 static devclass_t ale_devclass;
176 
177 DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, NULL, NULL);
178 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, NULL, NULL);
179 
180 static struct resource_spec ale_res_spec_mem[] = {
181 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
182 	{ -1,			0,		0 }
183 };
184 
185 static struct resource_spec ale_irq_spec_legacy[] = {
186 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
187 	{ -1,			0,		0 }
188 };
189 
190 static struct resource_spec ale_irq_spec_msi[] = {
191 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
192 	{ -1,			0,		0 }
193 };
194 
195 static struct resource_spec ale_irq_spec_msix[] = {
196 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197 	{ -1,			0,		0 }
198 };
199 
200 static int
201 ale_miibus_readreg(device_t dev, int phy, int reg)
202 {
203 	struct ale_softc *sc;
204 	uint32_t v;
205 	int i;
206 
207 	sc = device_get_softc(dev);
208 
209 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
210 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
211 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
212 		DELAY(5);
213 		v = CSR_READ_4(sc, ALE_MDIO);
214 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
215 			break;
216 	}
217 
218 	if (i == 0) {
219 		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
220 		return (0);
221 	}
222 
223 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
224 }
225 
226 static int
227 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
228 {
229 	struct ale_softc *sc;
230 	uint32_t v;
231 	int i;
232 
233 	sc = device_get_softc(dev);
234 
235 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
236 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
237 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
238 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
239 		DELAY(5);
240 		v = CSR_READ_4(sc, ALE_MDIO);
241 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
242 			break;
243 	}
244 
245 	if (i == 0)
246 		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
247 
248 	return (0);
249 }
250 
251 static void
252 ale_miibus_statchg(device_t dev)
253 {
254 	struct ale_softc *sc;
255 	struct mii_data *mii;
256 	struct ifnet *ifp;
257 	uint32_t reg;
258 
259 	sc = device_get_softc(dev);
260 	mii = device_get_softc(sc->ale_miibus);
261 	ifp = sc->ale_ifp;
262 	if (mii == NULL || ifp == NULL ||
263 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
264 		return;
265 
266 	sc->ale_flags &= ~ALE_FLAG_LINK;
267 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
268 	    (IFM_ACTIVE | IFM_AVALID)) {
269 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
270 		case IFM_10_T:
271 		case IFM_100_TX:
272 			sc->ale_flags |= ALE_FLAG_LINK;
273 			break;
274 		case IFM_1000_T:
275 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
276 				sc->ale_flags |= ALE_FLAG_LINK;
277 			break;
278 		default:
279 			break;
280 		}
281 	}
282 
283 	/* Stop Rx/Tx MACs. */
284 	ale_stop_mac(sc);
285 
286 	/* Program MACs with resolved speed/duplex/flow-control. */
287 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
288 		ale_mac_config(sc);
289 		/* Reenable Tx/Rx MACs. */
290 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
291 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
292 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
293 	}
294 }
295 
296 static void
297 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
298 {
299 	struct ale_softc *sc;
300 	struct mii_data *mii;
301 
302 	sc = ifp->if_softc;
303 	ALE_LOCK(sc);
304 	if ((ifp->if_flags & IFF_UP) == 0) {
305 		ALE_UNLOCK(sc);
306 		return;
307 	}
308 	mii = device_get_softc(sc->ale_miibus);
309 
310 	mii_pollstat(mii);
311 	ifmr->ifm_status = mii->mii_media_status;
312 	ifmr->ifm_active = mii->mii_media_active;
313 	ALE_UNLOCK(sc);
314 }
315 
316 static int
317 ale_mediachange(struct ifnet *ifp)
318 {
319 	struct ale_softc *sc;
320 	struct mii_data *mii;
321 	struct mii_softc *miisc;
322 	int error;
323 
324 	sc = ifp->if_softc;
325 	ALE_LOCK(sc);
326 	mii = device_get_softc(sc->ale_miibus);
327 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
328 		PHY_RESET(miisc);
329 	error = mii_mediachg(mii);
330 	ALE_UNLOCK(sc);
331 
332 	return (error);
333 }
334 
335 static int
336 ale_probe(device_t dev)
337 {
338 	const struct ale_dev *sp;
339 	int i;
340 	uint16_t vendor, devid;
341 
342 	vendor = pci_get_vendor(dev);
343 	devid = pci_get_device(dev);
344 	sp = ale_devs;
345 	for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) {
346 		if (vendor == sp->ale_vendorid &&
347 		    devid == sp->ale_deviceid) {
348 			device_set_desc(dev, sp->ale_name);
349 			return (BUS_PROBE_DEFAULT);
350 		}
351 		sp++;
352 	}
353 
354 	return (ENXIO);
355 }
356 
357 static void
358 ale_get_macaddr(struct ale_softc *sc)
359 {
360 	uint32_t ea[2], reg;
361 	int i, vpdc;
362 
363 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
364 	if ((reg & SPI_VPD_ENB) != 0) {
365 		reg &= ~SPI_VPD_ENB;
366 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
367 	}
368 
369 	if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
370 		/*
371 		 * PCI VPD capability found, let TWSI reload EEPROM.
372 		 * This will set ethernet address of controller.
373 		 */
374 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
375 		    TWSI_CTRL_SW_LD_START);
376 		for (i = 100; i > 0; i--) {
377 			DELAY(1000);
378 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
379 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
380 				break;
381 		}
382 		if (i == 0)
383 			device_printf(sc->ale_dev,
384 			    "reloading EEPROM timeout!\n");
385 	} else {
386 		if (bootverbose)
387 			device_printf(sc->ale_dev,
388 			    "PCI VPD capability not found!\n");
389 	}
390 
391 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
392 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
393 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
394 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
395 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
396 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
397 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
398 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
399 }
400 
401 static void
402 ale_phy_reset(struct ale_softc *sc)
403 {
404 
405 	/* Reset magic from Linux. */
406 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
407 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
408 	    GPHY_CTRL_PHY_PLL_ON);
409 	DELAY(1000);
410 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
411 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
412 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
413 	DELAY(1000);
414 
415 #define	ATPHY_DBG_ADDR		0x1D
416 #define	ATPHY_DBG_DATA		0x1E
417 
418 	/* Enable hibernation mode. */
419 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
420 	    ATPHY_DBG_ADDR, 0x0B);
421 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
422 	    ATPHY_DBG_DATA, 0xBC00);
423 	/* Set Class A/B for all modes. */
424 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
425 	    ATPHY_DBG_ADDR, 0x00);
426 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
427 	    ATPHY_DBG_DATA, 0x02EF);
428 	/* Enable 10BT power saving. */
429 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
430 	    ATPHY_DBG_ADDR, 0x12);
431 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
432 	    ATPHY_DBG_DATA, 0x4C04);
433 	/* Adjust 1000T power. */
434 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
435 	    ATPHY_DBG_ADDR, 0x04);
436 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
437 	    ATPHY_DBG_ADDR, 0x8BBB);
438 	/* 10BT center tap voltage. */
439 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
440 	    ATPHY_DBG_ADDR, 0x05);
441 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
442 	    ATPHY_DBG_ADDR, 0x2C46);
443 
444 #undef	ATPHY_DBG_ADDR
445 #undef	ATPHY_DBG_DATA
446 	DELAY(1000);
447 }
448 
449 static int
450 ale_attach(device_t dev)
451 {
452 	struct ale_softc *sc;
453 	struct ifnet *ifp;
454 	uint16_t burst;
455 	int error, i, msic, msixc, pmc;
456 	uint32_t rxf_len, txf_len;
457 
458 	error = 0;
459 	sc = device_get_softc(dev);
460 	sc->ale_dev = dev;
461 
462 	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
463 	    MTX_DEF);
464 	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
465 	TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
466 
467 	/* Map the device. */
468 	pci_enable_busmaster(dev);
469 	sc->ale_res_spec = ale_res_spec_mem;
470 	sc->ale_irq_spec = ale_irq_spec_legacy;
471 	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
472 	if (error != 0) {
473 		device_printf(dev, "cannot allocate memory resources.\n");
474 		goto fail;
475 	}
476 
477 	/* Set PHY address. */
478 	sc->ale_phyaddr = ALE_PHY_ADDR;
479 
480 	/* Reset PHY. */
481 	ale_phy_reset(sc);
482 
483 	/* Reset the ethernet controller. */
484 	ale_reset(sc);
485 
486 	/* Get PCI and chip id/revision. */
487 	sc->ale_rev = pci_get_revid(dev);
488 	if (sc->ale_rev >= 0xF0) {
489 		/* L2E Rev. B. AR8114 */
490 		sc->ale_flags |= ALE_FLAG_FASTETHER;
491 	} else {
492 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
493 			/* L1E AR8121 */
494 			sc->ale_flags |= ALE_FLAG_JUMBO;
495 		} else {
496 			/* L2E Rev. A. AR8113 */
497 			sc->ale_flags |= ALE_FLAG_FASTETHER;
498 		}
499 	}
500 	/*
501 	 * All known controllers seems to require 4 bytes alignment
502 	 * of Tx buffers to make Tx checksum offload with custom
503 	 * checksum generation method work.
504 	 */
505 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
506 	/*
507 	 * All known controllers seems to have issues on Rx checksum
508 	 * offload for fragmented IP datagrams.
509 	 */
510 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
511 	/*
512 	 * Don't use Tx CMB. It is known to cause RRS update failure
513 	 * under certain circumstances. Typical phenomenon of the
514 	 * issue would be unexpected sequence number encountered in
515 	 * Rx handler.
516 	 */
517 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
518 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
519 	    MASTER_CHIP_REV_SHIFT;
520 	if (bootverbose) {
521 		device_printf(dev, "PCI device revision : 0x%04x\n",
522 		    sc->ale_rev);
523 		device_printf(dev, "Chip id/revision : 0x%04x\n",
524 		    sc->ale_chip_rev);
525 	}
526 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
527 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
528 	/*
529 	 * Uninitialized hardware returns an invalid chip id/revision
530 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
531 	 */
532 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
533 	    rxf_len == 0xFFFFFFF) {
534 		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
535 		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
536 		    txf_len, rxf_len);
537 		error = ENXIO;
538 		goto fail;
539 	}
540 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
541 
542 	/* Allocate IRQ resources. */
543 	msixc = pci_msix_count(dev);
544 	msic = pci_msi_count(dev);
545 	if (bootverbose) {
546 		device_printf(dev, "MSIX count : %d\n", msixc);
547 		device_printf(dev, "MSI count : %d\n", msic);
548 	}
549 
550 	/* Prefer MSIX over MSI. */
551 	if (msix_disable == 0 || msi_disable == 0) {
552 		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
553 		    pci_alloc_msix(dev, &msixc) == 0) {
554 			if (msixc == ALE_MSIX_MESSAGES) {
555 				device_printf(dev, "Using %d MSIX messages.\n",
556 				    msixc);
557 				sc->ale_flags |= ALE_FLAG_MSIX;
558 				sc->ale_irq_spec = ale_irq_spec_msix;
559 			} else
560 				pci_release_msi(dev);
561 		}
562 		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
563 		    msic == ALE_MSI_MESSAGES &&
564 		    pci_alloc_msi(dev, &msic) == 0) {
565 			if (msic == ALE_MSI_MESSAGES) {
566 				device_printf(dev, "Using %d MSI messages.\n",
567 				    msic);
568 				sc->ale_flags |= ALE_FLAG_MSI;
569 				sc->ale_irq_spec = ale_irq_spec_msi;
570 			} else
571 				pci_release_msi(dev);
572 		}
573 	}
574 
575 	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
576 	if (error != 0) {
577 		device_printf(dev, "cannot allocate IRQ resources.\n");
578 		goto fail;
579 	}
580 
581 	/* Get DMA parameters from PCIe device control register. */
582 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
583 		sc->ale_flags |= ALE_FLAG_PCIE;
584 		burst = pci_read_config(dev, i + 0x08, 2);
585 		/* Max read request size. */
586 		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
587 		    DMA_CFG_RD_BURST_SHIFT;
588 		/* Max payload size. */
589 		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
590 		    DMA_CFG_WR_BURST_SHIFT;
591 		if (bootverbose) {
592 			device_printf(dev, "Read request size : %d bytes.\n",
593 			    128 << ((burst >> 12) & 0x07));
594 			device_printf(dev, "TLP payload size : %d bytes.\n",
595 			    128 << ((burst >> 5) & 0x07));
596 		}
597 	} else {
598 		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
599 		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
600 	}
601 
602 	/* Create device sysctl node. */
603 	ale_sysctl_node(sc);
604 
605 	if ((error = ale_dma_alloc(sc) != 0))
606 		goto fail;
607 
608 	/* Load station address. */
609 	ale_get_macaddr(sc);
610 
611 	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
612 	if (ifp == NULL) {
613 		device_printf(dev, "cannot allocate ifnet structure.\n");
614 		error = ENXIO;
615 		goto fail;
616 	}
617 
618 	ifp->if_softc = sc;
619 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
620 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
621 	ifp->if_ioctl = ale_ioctl;
622 	ifp->if_start = ale_start;
623 	ifp->if_init = ale_init;
624 	ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
625 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
626 	IFQ_SET_READY(&ifp->if_snd);
627 	ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
628 	ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
629 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
630 		sc->ale_flags |= ALE_FLAG_PMCAP;
631 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
632 	}
633 	ifp->if_capenable = ifp->if_capabilities;
634 
635 	/* Set up MII bus. */
636 	error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
637 	    ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
638 	    MIIF_DOPAUSE);
639 	if (error != 0) {
640 		device_printf(dev, "attaching PHYs failed\n");
641 		goto fail;
642 	}
643 
644 	ether_ifattach(ifp, sc->ale_eaddr);
645 
646 	/* VLAN capability setup. */
647 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
648 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
649 	ifp->if_capenable = ifp->if_capabilities;
650 	/*
651 	 * Even though controllers supported by ale(3) have Rx checksum
652 	 * offload bug the workaround for fragmented frames seemed to
653 	 * work so far. However it seems Rx checksum offload does not
654 	 * work under certain conditions. So disable Rx checksum offload
655 	 * until I find more clue about it but allow users to override it.
656 	 */
657 	ifp->if_capenable &= ~IFCAP_RXCSUM;
658 
659 	/* Tell the upper layer(s) we support long frames. */
660 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
661 
662 	/* Create local taskq. */
663 	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
664 	    taskqueue_thread_enqueue, &sc->ale_tq);
665 	if (sc->ale_tq == NULL) {
666 		device_printf(dev, "could not create taskqueue.\n");
667 		ether_ifdetach(ifp);
668 		error = ENXIO;
669 		goto fail;
670 	}
671 	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
672 	    device_get_nameunit(sc->ale_dev));
673 
674 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
675 		msic = ALE_MSIX_MESSAGES;
676 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
677 		msic = ALE_MSI_MESSAGES;
678 	else
679 		msic = 1;
680 	for (i = 0; i < msic; i++) {
681 		error = bus_setup_intr(dev, sc->ale_irq[i],
682 		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
683 		    &sc->ale_intrhand[i]);
684 		if (error != 0)
685 			break;
686 	}
687 	if (error != 0) {
688 		device_printf(dev, "could not set up interrupt handler.\n");
689 		taskqueue_free(sc->ale_tq);
690 		sc->ale_tq = NULL;
691 		ether_ifdetach(ifp);
692 		goto fail;
693 	}
694 
695 fail:
696 	if (error != 0)
697 		ale_detach(dev);
698 
699 	return (error);
700 }
701 
702 static int
703 ale_detach(device_t dev)
704 {
705 	struct ale_softc *sc;
706 	struct ifnet *ifp;
707 	int i, msic;
708 
709 	sc = device_get_softc(dev);
710 
711 	ifp = sc->ale_ifp;
712 	if (device_is_attached(dev)) {
713 		ether_ifdetach(ifp);
714 		ALE_LOCK(sc);
715 		ale_stop(sc);
716 		ALE_UNLOCK(sc);
717 		callout_drain(&sc->ale_tick_ch);
718 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
719 	}
720 
721 	if (sc->ale_tq != NULL) {
722 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
723 		taskqueue_free(sc->ale_tq);
724 		sc->ale_tq = NULL;
725 	}
726 
727 	if (sc->ale_miibus != NULL) {
728 		device_delete_child(dev, sc->ale_miibus);
729 		sc->ale_miibus = NULL;
730 	}
731 	bus_generic_detach(dev);
732 	ale_dma_free(sc);
733 
734 	if (ifp != NULL) {
735 		if_free(ifp);
736 		sc->ale_ifp = NULL;
737 	}
738 
739 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
740 		msic = ALE_MSIX_MESSAGES;
741 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
742 		msic = ALE_MSI_MESSAGES;
743 	else
744 		msic = 1;
745 	for (i = 0; i < msic; i++) {
746 		if (sc->ale_intrhand[i] != NULL) {
747 			bus_teardown_intr(dev, sc->ale_irq[i],
748 			    sc->ale_intrhand[i]);
749 			sc->ale_intrhand[i] = NULL;
750 		}
751 	}
752 
753 	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
754 	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
755 		pci_release_msi(dev);
756 	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
757 	mtx_destroy(&sc->ale_mtx);
758 
759 	return (0);
760 }
761 
762 #define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
763 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
764 
765 #if __FreeBSD_version >= 900030
766 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
767 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
768 #elif __FreeBSD_version > 800000
769 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
770 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
771 #else
772 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
773 	    SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
774 #endif
775 
776 static void
777 ale_sysctl_node(struct ale_softc *sc)
778 {
779 	struct sysctl_ctx_list *ctx;
780 	struct sysctl_oid_list *child, *parent;
781 	struct sysctl_oid *tree;
782 	struct ale_hw_stats *stats;
783 	int error;
784 
785 	stats = &sc->ale_stats;
786 	ctx = device_get_sysctl_ctx(sc->ale_dev);
787 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
788 
789 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
790 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
791 	    sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
792 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
793 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
794 	    sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
795 	/* Pull in device tunables. */
796 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
797 	error = resource_int_value(device_get_name(sc->ale_dev),
798 	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
799 	if (error == 0) {
800 		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
801 		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
802 			device_printf(sc->ale_dev, "int_rx_mod value out of "
803 			    "range; using default: %d\n",
804 			    ALE_IM_RX_TIMER_DEFAULT);
805 			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
806 		}
807 	}
808 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
809 	error = resource_int_value(device_get_name(sc->ale_dev),
810 	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
811 	if (error == 0) {
812 		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
813 		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
814 			device_printf(sc->ale_dev, "int_tx_mod value out of "
815 			    "range; using default: %d\n",
816 			    ALE_IM_TX_TIMER_DEFAULT);
817 			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
818 		}
819 	}
820 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
821 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
822 	    sysctl_hw_ale_proc_limit, "I",
823 	    "max number of Rx events to process");
824 	/* Pull in device tunables. */
825 	sc->ale_process_limit = ALE_PROC_DEFAULT;
826 	error = resource_int_value(device_get_name(sc->ale_dev),
827 	    device_get_unit(sc->ale_dev), "process_limit",
828 	    &sc->ale_process_limit);
829 	if (error == 0) {
830 		if (sc->ale_process_limit < ALE_PROC_MIN ||
831 		    sc->ale_process_limit > ALE_PROC_MAX) {
832 			device_printf(sc->ale_dev,
833 			    "process_limit value out of range; "
834 			    "using default: %d\n", ALE_PROC_DEFAULT);
835 			sc->ale_process_limit = ALE_PROC_DEFAULT;
836 		}
837 	}
838 
839 	/* Misc statistics. */
840 	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
841 	    &stats->reset_brk_seq,
842 	    "Controller resets due to broken Rx sequnce number");
843 
844 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
845 	    NULL, "ATE statistics");
846 	parent = SYSCTL_CHILDREN(tree);
847 
848 	/* Rx statistics. */
849 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
850 	    NULL, "Rx MAC statistics");
851 	child = SYSCTL_CHILDREN(tree);
852 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
853 	    &stats->rx_frames, "Good frames");
854 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
855 	    &stats->rx_bcast_frames, "Good broadcast frames");
856 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
857 	    &stats->rx_mcast_frames, "Good multicast frames");
858 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
859 	    &stats->rx_pause_frames, "Pause control frames");
860 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
861 	    &stats->rx_control_frames, "Control frames");
862 	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
863 	    &stats->rx_crcerrs, "CRC errors");
864 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
865 	    &stats->rx_lenerrs, "Frames with length mismatched");
866 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
867 	    &stats->rx_bytes, "Good octets");
868 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
869 	    &stats->rx_bcast_bytes, "Good broadcast octets");
870 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
871 	    &stats->rx_mcast_bytes, "Good multicast octets");
872 	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
873 	    &stats->rx_runts, "Too short frames");
874 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
875 	    &stats->rx_fragments, "Fragmented frames");
876 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
877 	    &stats->rx_pkts_64, "64 bytes frames");
878 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
879 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
880 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
881 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
882 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
883 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
884 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
885 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
886 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
887 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
888 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
889 	    &stats->rx_pkts_1519_max, "1519 to max frames");
890 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
891 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
892 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
893 	    &stats->rx_fifo_oflows, "FIFO overflows");
894 	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
895 	    &stats->rx_rrs_errs, "Return status write-back errors");
896 	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
897 	    &stats->rx_alignerrs, "Alignment errors");
898 	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
899 	    &stats->rx_pkts_filtered,
900 	    "Frames dropped due to address filtering");
901 
902 	/* Tx statistics. */
903 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
904 	    NULL, "Tx MAC statistics");
905 	child = SYSCTL_CHILDREN(tree);
906 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
907 	    &stats->tx_frames, "Good frames");
908 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
909 	    &stats->tx_bcast_frames, "Good broadcast frames");
910 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
911 	    &stats->tx_mcast_frames, "Good multicast frames");
912 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
913 	    &stats->tx_pause_frames, "Pause control frames");
914 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
915 	    &stats->tx_control_frames, "Control frames");
916 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
917 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
918 	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
919 	    &stats->tx_excess_defer, "Frames with derferrals");
920 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
921 	    &stats->tx_bytes, "Good octets");
922 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
923 	    &stats->tx_bcast_bytes, "Good broadcast octets");
924 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
925 	    &stats->tx_mcast_bytes, "Good multicast octets");
926 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
927 	    &stats->tx_pkts_64, "64 bytes frames");
928 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
929 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
930 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
931 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
932 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
933 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
934 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
935 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
936 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
937 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
938 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
939 	    &stats->tx_pkts_1519_max, "1519 to max frames");
940 	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
941 	    &stats->tx_single_colls, "Single collisions");
942 	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
943 	    &stats->tx_multi_colls, "Multiple collisions");
944 	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
945 	    &stats->tx_late_colls, "Late collisions");
946 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
947 	    &stats->tx_excess_colls, "Excessive collisions");
948 	ALE_SYSCTL_STAT_ADD32(ctx, child, "abort",
949 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
950 	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
951 	    &stats->tx_underrun, "FIFO underruns");
952 	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
953 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
954 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
955 	    &stats->tx_lenerrs, "Frames with length mismatched");
956 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
957 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
958 }
959 
960 #undef ALE_SYSCTL_STAT_ADD32
961 #undef ALE_SYSCTL_STAT_ADD64
962 
963 struct ale_dmamap_arg {
964 	bus_addr_t	ale_busaddr;
965 };
966 
967 static void
968 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
969 {
970 	struct ale_dmamap_arg *ctx;
971 
972 	if (error != 0)
973 		return;
974 
975 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
976 
977 	ctx = (struct ale_dmamap_arg *)arg;
978 	ctx->ale_busaddr = segs[0].ds_addr;
979 }
980 
981 /*
982  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
983  * which specifies high address region of DMA blocks. Therefore these
984  * blocks should have the same high address of given 4GB address
985  * space(i.e. crossing 4GB boundary is not allowed).
986  */
987 static int
988 ale_check_boundary(struct ale_softc *sc)
989 {
990 	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
991 	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
992 
993 	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
994 	    sc->ale_pagesize;
995 	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
996 	    sc->ale_pagesize;
997 	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
998 	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
999 	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
1000 	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
1001 
1002 	if ((ALE_ADDR_HI(tx_ring_end) !=
1003 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
1004 	    (ALE_ADDR_HI(rx_page_end[0]) !=
1005 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
1006 	    (ALE_ADDR_HI(rx_page_end[1]) !=
1007 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
1008 	    (ALE_ADDR_HI(tx_cmb_end) !=
1009 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
1010 	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
1011 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
1012 	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
1013 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
1014 		return (EFBIG);
1015 
1016 	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
1017 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
1018 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
1019 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
1020 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
1021 		return (EFBIG);
1022 
1023 	return (0);
1024 }
1025 
1026 static int
1027 ale_dma_alloc(struct ale_softc *sc)
1028 {
1029 	struct ale_txdesc *txd;
1030 	bus_addr_t lowaddr;
1031 	struct ale_dmamap_arg ctx;
1032 	int error, guard_size, i;
1033 
1034 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1035 		guard_size = ALE_JUMBO_FRAMELEN;
1036 	else
1037 		guard_size = ALE_MAX_FRAMELEN;
1038 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1039 	    ALE_RX_PAGE_ALIGN);
1040 	lowaddr = BUS_SPACE_MAXADDR;
1041 again:
1042 	/* Create parent DMA tag. */
1043 	error = bus_dma_tag_create(
1044 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1045 	    1, 0,			/* alignment, boundary */
1046 	    lowaddr,			/* lowaddr */
1047 	    BUS_SPACE_MAXADDR,		/* highaddr */
1048 	    NULL, NULL,			/* filter, filterarg */
1049 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1050 	    0,				/* nsegments */
1051 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1052 	    0,				/* flags */
1053 	    NULL, NULL,			/* lockfunc, lockarg */
1054 	    &sc->ale_cdata.ale_parent_tag);
1055 	if (error != 0) {
1056 		device_printf(sc->ale_dev,
1057 		    "could not create parent DMA tag.\n");
1058 		goto fail;
1059 	}
1060 
1061 	/* Create DMA tag for Tx descriptor ring. */
1062 	error = bus_dma_tag_create(
1063 	    sc->ale_cdata.ale_parent_tag, /* parent */
1064 	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1065 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1066 	    BUS_SPACE_MAXADDR,		/* highaddr */
1067 	    NULL, NULL,			/* filter, filterarg */
1068 	    ALE_TX_RING_SZ,		/* maxsize */
1069 	    1,				/* nsegments */
1070 	    ALE_TX_RING_SZ,		/* maxsegsize */
1071 	    0,				/* flags */
1072 	    NULL, NULL,			/* lockfunc, lockarg */
1073 	    &sc->ale_cdata.ale_tx_ring_tag);
1074 	if (error != 0) {
1075 		device_printf(sc->ale_dev,
1076 		    "could not create Tx ring DMA tag.\n");
1077 		goto fail;
1078 	}
1079 
1080 	/* Create DMA tag for Rx pages. */
1081 	for (i = 0; i < ALE_RX_PAGES; i++) {
1082 		error = bus_dma_tag_create(
1083 		    sc->ale_cdata.ale_parent_tag, /* parent */
1084 		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1085 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1086 		    BUS_SPACE_MAXADDR,		/* highaddr */
1087 		    NULL, NULL,			/* filter, filterarg */
1088 		    sc->ale_pagesize,		/* maxsize */
1089 		    1,				/* nsegments */
1090 		    sc->ale_pagesize,		/* maxsegsize */
1091 		    0,				/* flags */
1092 		    NULL, NULL,			/* lockfunc, lockarg */
1093 		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1094 		if (error != 0) {
1095 			device_printf(sc->ale_dev,
1096 			    "could not create Rx page %d DMA tag.\n", i);
1097 			goto fail;
1098 		}
1099 	}
1100 
1101 	/* Create DMA tag for Tx coalescing message block. */
1102 	error = bus_dma_tag_create(
1103 	    sc->ale_cdata.ale_parent_tag, /* parent */
1104 	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1105 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1106 	    BUS_SPACE_MAXADDR,		/* highaddr */
1107 	    NULL, NULL,			/* filter, filterarg */
1108 	    ALE_TX_CMB_SZ,		/* maxsize */
1109 	    1,				/* nsegments */
1110 	    ALE_TX_CMB_SZ,		/* maxsegsize */
1111 	    0,				/* flags */
1112 	    NULL, NULL,			/* lockfunc, lockarg */
1113 	    &sc->ale_cdata.ale_tx_cmb_tag);
1114 	if (error != 0) {
1115 		device_printf(sc->ale_dev,
1116 		    "could not create Tx CMB DMA tag.\n");
1117 		goto fail;
1118 	}
1119 
1120 	/* Create DMA tag for Rx coalescing message block. */
1121 	for (i = 0; i < ALE_RX_PAGES; i++) {
1122 		error = bus_dma_tag_create(
1123 		    sc->ale_cdata.ale_parent_tag, /* parent */
1124 		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1125 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1126 		    BUS_SPACE_MAXADDR,		/* highaddr */
1127 		    NULL, NULL,			/* filter, filterarg */
1128 		    ALE_RX_CMB_SZ,		/* maxsize */
1129 		    1,				/* nsegments */
1130 		    ALE_RX_CMB_SZ,		/* maxsegsize */
1131 		    0,				/* flags */
1132 		    NULL, NULL,			/* lockfunc, lockarg */
1133 		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1134 		if (error != 0) {
1135 			device_printf(sc->ale_dev,
1136 			    "could not create Rx page %d CMB DMA tag.\n", i);
1137 			goto fail;
1138 		}
1139 	}
1140 
1141 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1142 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1143 	    (void **)&sc->ale_cdata.ale_tx_ring,
1144 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1145 	    &sc->ale_cdata.ale_tx_ring_map);
1146 	if (error != 0) {
1147 		device_printf(sc->ale_dev,
1148 		    "could not allocate DMA'able memory for Tx ring.\n");
1149 		goto fail;
1150 	}
1151 	ctx.ale_busaddr = 0;
1152 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1153 	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1154 	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1155 	if (error != 0 || ctx.ale_busaddr == 0) {
1156 		device_printf(sc->ale_dev,
1157 		    "could not load DMA'able memory for Tx ring.\n");
1158 		goto fail;
1159 	}
1160 	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1161 
1162 	/* Rx pages. */
1163 	for (i = 0; i < ALE_RX_PAGES; i++) {
1164 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1165 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1166 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1167 		    &sc->ale_cdata.ale_rx_page[i].page_map);
1168 		if (error != 0) {
1169 			device_printf(sc->ale_dev,
1170 			    "could not allocate DMA'able memory for "
1171 			    "Rx page %d.\n", i);
1172 			goto fail;
1173 		}
1174 		ctx.ale_busaddr = 0;
1175 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1176 		    sc->ale_cdata.ale_rx_page[i].page_map,
1177 		    sc->ale_cdata.ale_rx_page[i].page_addr,
1178 		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1179 		if (error != 0 || ctx.ale_busaddr == 0) {
1180 			device_printf(sc->ale_dev,
1181 			    "could not load DMA'able memory for "
1182 			    "Rx page %d.\n", i);
1183 			goto fail;
1184 		}
1185 		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1186 	}
1187 
1188 	/* Tx CMB. */
1189 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1190 	    (void **)&sc->ale_cdata.ale_tx_cmb,
1191 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1192 	    &sc->ale_cdata.ale_tx_cmb_map);
1193 	if (error != 0) {
1194 		device_printf(sc->ale_dev,
1195 		    "could not allocate DMA'able memory for Tx CMB.\n");
1196 		goto fail;
1197 	}
1198 	ctx.ale_busaddr = 0;
1199 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1200 	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1201 	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1202 	if (error != 0 || ctx.ale_busaddr == 0) {
1203 		device_printf(sc->ale_dev,
1204 		    "could not load DMA'able memory for Tx CMB.\n");
1205 		goto fail;
1206 	}
1207 	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1208 
1209 	/* Rx CMB. */
1210 	for (i = 0; i < ALE_RX_PAGES; i++) {
1211 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1212 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1213 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1214 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1215 		if (error != 0) {
1216 			device_printf(sc->ale_dev, "could not allocate "
1217 			    "DMA'able memory for Rx page %d CMB.\n", i);
1218 			goto fail;
1219 		}
1220 		ctx.ale_busaddr = 0;
1221 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1222 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1223 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1224 		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1225 		if (error != 0 || ctx.ale_busaddr == 0) {
1226 			device_printf(sc->ale_dev, "could not load DMA'able "
1227 			    "memory for Rx page %d CMB.\n", i);
1228 			goto fail;
1229 		}
1230 		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1231 	}
1232 
1233 	/*
1234 	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1235 	 * high address region of 64bit DMA address space.
1236 	 */
1237 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1238 	    (error = ale_check_boundary(sc)) != 0) {
1239 		device_printf(sc->ale_dev, "4GB boundary crossed, "
1240 		    "switching to 32bit DMA addressing mode.\n");
1241 		ale_dma_free(sc);
1242 		/*
1243 		 * Limit max allowable DMA address space to 32bit
1244 		 * and try again.
1245 		 */
1246 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1247 		goto again;
1248 	}
1249 
1250 	/*
1251 	 * Create Tx buffer parent tag.
1252 	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1253 	 * needs separate parent DMA tag as parent DMA address space
1254 	 * could be restricted to be within 32bit address space by
1255 	 * 4GB boundary crossing.
1256 	 */
1257 	error = bus_dma_tag_create(
1258 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1259 	    1, 0,			/* alignment, boundary */
1260 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1261 	    BUS_SPACE_MAXADDR,		/* highaddr */
1262 	    NULL, NULL,			/* filter, filterarg */
1263 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1264 	    0,				/* nsegments */
1265 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1266 	    0,				/* flags */
1267 	    NULL, NULL,			/* lockfunc, lockarg */
1268 	    &sc->ale_cdata.ale_buffer_tag);
1269 	if (error != 0) {
1270 		device_printf(sc->ale_dev,
1271 		    "could not create parent buffer DMA tag.\n");
1272 		goto fail;
1273 	}
1274 
1275 	/* Create DMA tag for Tx buffers. */
1276 	error = bus_dma_tag_create(
1277 	    sc->ale_cdata.ale_buffer_tag, /* parent */
1278 	    1, 0,			/* alignment, boundary */
1279 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1280 	    BUS_SPACE_MAXADDR,		/* highaddr */
1281 	    NULL, NULL,			/* filter, filterarg */
1282 	    ALE_TSO_MAXSIZE,		/* maxsize */
1283 	    ALE_MAXTXSEGS,		/* nsegments */
1284 	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1285 	    0,				/* flags */
1286 	    NULL, NULL,			/* lockfunc, lockarg */
1287 	    &sc->ale_cdata.ale_tx_tag);
1288 	if (error != 0) {
1289 		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1290 		goto fail;
1291 	}
1292 
1293 	/* Create DMA maps for Tx buffers. */
1294 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1295 		txd = &sc->ale_cdata.ale_txdesc[i];
1296 		txd->tx_m = NULL;
1297 		txd->tx_dmamap = NULL;
1298 		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1299 		    &txd->tx_dmamap);
1300 		if (error != 0) {
1301 			device_printf(sc->ale_dev,
1302 			    "could not create Tx dmamap.\n");
1303 			goto fail;
1304 		}
1305 	}
1306 
1307 fail:
1308 	return (error);
1309 }
1310 
1311 static void
1312 ale_dma_free(struct ale_softc *sc)
1313 {
1314 	struct ale_txdesc *txd;
1315 	int i;
1316 
1317 	/* Tx buffers. */
1318 	if (sc->ale_cdata.ale_tx_tag != NULL) {
1319 		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1320 			txd = &sc->ale_cdata.ale_txdesc[i];
1321 			if (txd->tx_dmamap != NULL) {
1322 				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1323 				    txd->tx_dmamap);
1324 				txd->tx_dmamap = NULL;
1325 			}
1326 		}
1327 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1328 		sc->ale_cdata.ale_tx_tag = NULL;
1329 	}
1330 	/* Tx descriptor ring. */
1331 	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1332 		if (sc->ale_cdata.ale_tx_ring_map != NULL)
1333 			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1334 			    sc->ale_cdata.ale_tx_ring_map);
1335 		if (sc->ale_cdata.ale_tx_ring_map != NULL &&
1336 		    sc->ale_cdata.ale_tx_ring != NULL)
1337 			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1338 			    sc->ale_cdata.ale_tx_ring,
1339 			    sc->ale_cdata.ale_tx_ring_map);
1340 		sc->ale_cdata.ale_tx_ring = NULL;
1341 		sc->ale_cdata.ale_tx_ring_map = NULL;
1342 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1343 		sc->ale_cdata.ale_tx_ring_tag = NULL;
1344 	}
1345 	/* Rx page block. */
1346 	for (i = 0; i < ALE_RX_PAGES; i++) {
1347 		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1348 			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
1349 				bus_dmamap_unload(
1350 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1351 				    sc->ale_cdata.ale_rx_page[i].page_map);
1352 			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
1353 			    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1354 				bus_dmamem_free(
1355 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1356 				    sc->ale_cdata.ale_rx_page[i].page_addr,
1357 				    sc->ale_cdata.ale_rx_page[i].page_map);
1358 			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1359 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
1360 			bus_dma_tag_destroy(
1361 			    sc->ale_cdata.ale_rx_page[i].page_tag);
1362 			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1363 		}
1364 	}
1365 	/* Rx CMB. */
1366 	for (i = 0; i < ALE_RX_PAGES; i++) {
1367 		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1368 			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
1369 				bus_dmamap_unload(
1370 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1371 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1372 			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
1373 			    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1374 				bus_dmamem_free(
1375 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1376 				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1377 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1378 			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1379 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
1380 			bus_dma_tag_destroy(
1381 			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1382 			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1383 		}
1384 	}
1385 	/* Tx CMB. */
1386 	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1387 		if (sc->ale_cdata.ale_tx_cmb_map != NULL)
1388 			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1389 			    sc->ale_cdata.ale_tx_cmb_map);
1390 		if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
1391 		    sc->ale_cdata.ale_tx_cmb != NULL)
1392 			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1393 			    sc->ale_cdata.ale_tx_cmb,
1394 			    sc->ale_cdata.ale_tx_cmb_map);
1395 		sc->ale_cdata.ale_tx_cmb = NULL;
1396 		sc->ale_cdata.ale_tx_cmb_map = NULL;
1397 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1398 		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1399 	}
1400 	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1401 		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1402 		sc->ale_cdata.ale_buffer_tag = NULL;
1403 	}
1404 	if (sc->ale_cdata.ale_parent_tag != NULL) {
1405 		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1406 		sc->ale_cdata.ale_parent_tag = NULL;
1407 	}
1408 }
1409 
1410 static int
1411 ale_shutdown(device_t dev)
1412 {
1413 
1414 	return (ale_suspend(dev));
1415 }
1416 
1417 /*
1418  * Note, this driver resets the link speed to 10/100Mbps by
1419  * restarting auto-negotiation in suspend/shutdown phase but we
1420  * don't know whether that auto-negotiation would succeed or not
1421  * as driver has no control after powering off/suspend operation.
1422  * If the renegotiation fail WOL may not work. Running at 1Gbps
1423  * will draw more power than 375mA at 3.3V which is specified in
1424  * PCI specification and that would result in complete
1425  * shutdowning power to ethernet controller.
1426  *
1427  * TODO
1428  * Save current negotiated media speed/duplex/flow-control to
1429  * softc and restore the same link again after resuming. PHY
1430  * handling such as power down/resetting to 100Mbps may be better
1431  * handled in suspend method in phy driver.
1432  */
1433 static void
1434 ale_setlinkspeed(struct ale_softc *sc)
1435 {
1436 	struct mii_data *mii;
1437 	int aneg, i;
1438 
1439 	mii = device_get_softc(sc->ale_miibus);
1440 	mii_pollstat(mii);
1441 	aneg = 0;
1442 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1443 	    (IFM_ACTIVE | IFM_AVALID)) {
1444 		switch IFM_SUBTYPE(mii->mii_media_active) {
1445 		case IFM_10_T:
1446 		case IFM_100_TX:
1447 			return;
1448 		case IFM_1000_T:
1449 			aneg++;
1450 			break;
1451 		default:
1452 			break;
1453 		}
1454 	}
1455 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1456 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1457 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1458 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1459 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1460 	DELAY(1000);
1461 	if (aneg != 0) {
1462 		/*
1463 		 * Poll link state until ale(4) get a 10/100Mbps link.
1464 		 */
1465 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1466 			mii_pollstat(mii);
1467 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1468 			    == (IFM_ACTIVE | IFM_AVALID)) {
1469 				switch (IFM_SUBTYPE(
1470 				    mii->mii_media_active)) {
1471 				case IFM_10_T:
1472 				case IFM_100_TX:
1473 					ale_mac_config(sc);
1474 					return;
1475 				default:
1476 					break;
1477 				}
1478 			}
1479 			ALE_UNLOCK(sc);
1480 			pause("alelnk", hz);
1481 			ALE_LOCK(sc);
1482 		}
1483 		if (i == MII_ANEGTICKS_GIGE)
1484 			device_printf(sc->ale_dev,
1485 			    "establishing a link failed, WOL may not work!");
1486 	}
1487 	/*
1488 	 * No link, force MAC to have 100Mbps, full-duplex link.
1489 	 * This is the last resort and may/may not work.
1490 	 */
1491 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1492 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1493 	ale_mac_config(sc);
1494 }
1495 
1496 static void
1497 ale_setwol(struct ale_softc *sc)
1498 {
1499 	struct ifnet *ifp;
1500 	uint32_t reg, pmcs;
1501 	uint16_t pmstat;
1502 	int pmc;
1503 
1504 	ALE_LOCK_ASSERT(sc);
1505 
1506 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1507 		/* Disable WOL. */
1508 		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1509 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1510 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1511 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1512 		/* Force PHY power down. */
1513 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1514 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1515 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1516 		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1517 		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1518 		return;
1519 	}
1520 
1521 	ifp = sc->ale_ifp;
1522 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1523 		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1524 			ale_setlinkspeed(sc);
1525 	}
1526 
1527 	pmcs = 0;
1528 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1529 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1530 	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1531 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1532 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1533 	    MAC_CFG_BCAST);
1534 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1535 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1536 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1537 		reg |= MAC_CFG_RX_ENB;
1538 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1539 
1540 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1541 		/* WOL disabled, PHY power down. */
1542 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1543 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1544 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1545 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1546 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1547 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1548 		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1549 		    GPHY_CTRL_PWDOWN_HW);
1550 	}
1551 	/* Request PME. */
1552 	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1553 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1554 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1555 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1556 	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1557 }
1558 
1559 static int
1560 ale_suspend(device_t dev)
1561 {
1562 	struct ale_softc *sc;
1563 
1564 	sc = device_get_softc(dev);
1565 
1566 	ALE_LOCK(sc);
1567 	ale_stop(sc);
1568 	ale_setwol(sc);
1569 	ALE_UNLOCK(sc);
1570 
1571 	return (0);
1572 }
1573 
1574 static int
1575 ale_resume(device_t dev)
1576 {
1577 	struct ale_softc *sc;
1578 	struct ifnet *ifp;
1579 	int pmc;
1580 	uint16_t pmstat;
1581 
1582 	sc = device_get_softc(dev);
1583 
1584 	ALE_LOCK(sc);
1585 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1586 		/* Disable PME and clear PME status. */
1587 		pmstat = pci_read_config(sc->ale_dev,
1588 		    pmc + PCIR_POWER_STATUS, 2);
1589 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1590 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1591 			pci_write_config(sc->ale_dev,
1592 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1593 		}
1594 	}
1595 	/* Reset PHY. */
1596 	ale_phy_reset(sc);
1597 	ifp = sc->ale_ifp;
1598 	if ((ifp->if_flags & IFF_UP) != 0) {
1599 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1600 		ale_init_locked(sc);
1601 	}
1602 	ALE_UNLOCK(sc);
1603 
1604 	return (0);
1605 }
1606 
1607 static int
1608 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1609 {
1610 	struct ale_txdesc *txd, *txd_last;
1611 	struct tx_desc *desc;
1612 	struct mbuf *m;
1613 	struct ip *ip;
1614 	struct tcphdr *tcp;
1615 	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1616 	bus_dmamap_t map;
1617 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1618 	int error, i, nsegs, prod, si;
1619 
1620 	ALE_LOCK_ASSERT(sc);
1621 
1622 	M_ASSERTPKTHDR((*m_head));
1623 
1624 	m = *m_head;
1625 	ip = NULL;
1626 	tcp = NULL;
1627 	cflags = vtag = 0;
1628 	ip_off = poff = 0;
1629 	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1630 		/*
1631 		 * AR81xx requires offset of TCP/UDP payload in its Tx
1632 		 * descriptor to perform hardware Tx checksum offload.
1633 		 * Additionally, TSO requires IP/TCP header size and
1634 		 * modification of IP/TCP header in order to make TSO
1635 		 * engine work. This kind of operation takes many CPU
1636 		 * cycles on FreeBSD so fast host CPU is required to
1637 		 * get smooth TSO performance.
1638 		 */
1639 		struct ether_header *eh;
1640 
1641 		if (M_WRITABLE(m) == 0) {
1642 			/* Get a writable copy. */
1643 			m = m_dup(*m_head, M_NOWAIT);
1644 			/* Release original mbufs. */
1645 			m_freem(*m_head);
1646 			if (m == NULL) {
1647 				*m_head = NULL;
1648 				return (ENOBUFS);
1649 			}
1650 			*m_head = m;
1651 		}
1652 
1653 		/*
1654 		 * Buggy-controller requires 4 byte aligned Tx buffer
1655 		 * to make custom checksum offload work.
1656 		 */
1657 		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1658 		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1659 		    (mtod(m, intptr_t) & 3) != 0) {
1660 			m = m_defrag(*m_head, M_NOWAIT);
1661 			if (m == NULL) {
1662 				*m_head = NULL;
1663 				return (ENOBUFS);
1664 			}
1665 			*m_head = m;
1666 		}
1667 
1668 		ip_off = sizeof(struct ether_header);
1669 		m = m_pullup(m, ip_off);
1670 		if (m == NULL) {
1671 			*m_head = NULL;
1672 			return (ENOBUFS);
1673 		}
1674 		eh = mtod(m, struct ether_header *);
1675 		/*
1676 		 * Check if hardware VLAN insertion is off.
1677 		 * Additional check for LLC/SNAP frame?
1678 		 */
1679 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1680 			ip_off = sizeof(struct ether_vlan_header);
1681 			m = m_pullup(m, ip_off);
1682 			if (m == NULL) {
1683 				*m_head = NULL;
1684 				return (ENOBUFS);
1685 			}
1686 		}
1687 		m = m_pullup(m, ip_off + sizeof(struct ip));
1688 		if (m == NULL) {
1689 			*m_head = NULL;
1690 			return (ENOBUFS);
1691 		}
1692 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1693 		poff = ip_off + (ip->ip_hl << 2);
1694 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1695 			/*
1696 			 * XXX
1697 			 * AR81xx requires the first descriptor should
1698 			 * not include any TCP playload for TSO case.
1699 			 * (i.e. ethernet header + IP + TCP header only)
1700 			 * m_pullup(9) above will ensure this too.
1701 			 * However it's not correct if the first mbuf
1702 			 * of the chain does not use cluster.
1703 			 */
1704 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1705 			if (m == NULL) {
1706 				*m_head = NULL;
1707 				return (ENOBUFS);
1708 			}
1709 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1710 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1711 			m = m_pullup(m, poff + (tcp->th_off << 2));
1712 			if (m == NULL) {
1713 				*m_head = NULL;
1714 				return (ENOBUFS);
1715 			}
1716 			/*
1717 			 * AR81xx requires IP/TCP header size and offset as
1718 			 * well as TCP pseudo checksum which complicates
1719 			 * TSO configuration. I guess this comes from the
1720 			 * adherence to Microsoft NDIS Large Send
1721 			 * specification which requires insertion of
1722 			 * pseudo checksum by upper stack. The pseudo
1723 			 * checksum that NDIS refers to doesn't include
1724 			 * TCP payload length so ale(4) should recompute
1725 			 * the pseudo checksum here. Hopefully this wouldn't
1726 			 * be much burden on modern CPUs.
1727 			 * Reset IP checksum and recompute TCP pseudo
1728 			 * checksum as NDIS specification said.
1729 			 */
1730 			ip->ip_sum = 0;
1731 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1732 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1733 		}
1734 		*m_head = m;
1735 	}
1736 
1737 	si = prod = sc->ale_cdata.ale_tx_prod;
1738 	txd = &sc->ale_cdata.ale_txdesc[prod];
1739 	txd_last = txd;
1740 	map = txd->tx_dmamap;
1741 
1742 	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1743 	    *m_head, txsegs, &nsegs, 0);
1744 	if (error == EFBIG) {
1745 		m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS);
1746 		if (m == NULL) {
1747 			m_freem(*m_head);
1748 			*m_head = NULL;
1749 			return (ENOMEM);
1750 		}
1751 		*m_head = m;
1752 		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1753 		    *m_head, txsegs, &nsegs, 0);
1754 		if (error != 0) {
1755 			m_freem(*m_head);
1756 			*m_head = NULL;
1757 			return (error);
1758 		}
1759 	} else if (error != 0)
1760 		return (error);
1761 	if (nsegs == 0) {
1762 		m_freem(*m_head);
1763 		*m_head = NULL;
1764 		return (EIO);
1765 	}
1766 
1767 	/* Check descriptor overrun. */
1768 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1769 		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1770 		return (ENOBUFS);
1771 	}
1772 	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1773 
1774 	m = *m_head;
1775 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1776 		/* Request TSO and set MSS. */
1777 		cflags |= ALE_TD_TSO;
1778 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1779 		/* Set IP/TCP header size. */
1780 		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1781 		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1782 	} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1783 		/*
1784 		 * AR81xx supports Tx custom checksum offload feature
1785 		 * that offloads single 16bit checksum computation.
1786 		 * So you can choose one among IP, TCP and UDP.
1787 		 * Normally driver sets checksum start/insertion
1788 		 * position from the information of TCP/UDP frame as
1789 		 * TCP/UDP checksum takes more time than that of IP.
1790 		 * However it seems that custom checksum offload
1791 		 * requires 4 bytes aligned Tx buffers due to hardware
1792 		 * bug.
1793 		 * AR81xx also supports explicit Tx checksum computation
1794 		 * if it is told that the size of IP header and TCP
1795 		 * header(for UDP, the header size does not matter
1796 		 * because it's fixed length). However with this scheme
1797 		 * TSO does not work so you have to choose one either
1798 		 * TSO or explicit Tx checksum offload. I chosen TSO
1799 		 * plus custom checksum offload with work-around which
1800 		 * will cover most common usage for this consumer
1801 		 * ethernet controller. The work-around takes a lot of
1802 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1803 		 * boundary, though.
1804 		 */
1805 		cflags |= ALE_TD_CXSUM;
1806 		/* Set checksum start offset. */
1807 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1808 		/* Set checksum insertion position of TCP/UDP. */
1809 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1810 		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1811 	}
1812 
1813 	/* Configure VLAN hardware tag insertion. */
1814 	if ((m->m_flags & M_VLANTAG) != 0) {
1815 		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1816 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1817 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1818 	}
1819 
1820 	i = 0;
1821 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1822 		/*
1823 		 * Make sure the first fragment contains
1824 		 * only ethernet and IP/TCP header with options.
1825 		 */
1826 		hdrlen =  poff + (tcp->th_off << 2);
1827 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1828 		desc->addr = htole64(txsegs[i].ds_addr);
1829 		desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1830 		desc->flags = htole32(cflags);
1831 		sc->ale_cdata.ale_tx_cnt++;
1832 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1833 		if (m->m_len - hdrlen > 0) {
1834 			/* Handle remaining payload of the first fragment. */
1835 			desc = &sc->ale_cdata.ale_tx_ring[prod];
1836 			desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1837 			desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1838 			    vtag);
1839 			desc->flags = htole32(cflags);
1840 			sc->ale_cdata.ale_tx_cnt++;
1841 			ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1842 		}
1843 		i = 1;
1844 	}
1845 	for (; i < nsegs; i++) {
1846 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1847 		desc->addr = htole64(txsegs[i].ds_addr);
1848 		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1849 		desc->flags = htole32(cflags);
1850 		sc->ale_cdata.ale_tx_cnt++;
1851 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1852 	}
1853 	/* Update producer index. */
1854 	sc->ale_cdata.ale_tx_prod = prod;
1855 	/* Set TSO header on the first descriptor. */
1856 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1857 		desc = &sc->ale_cdata.ale_tx_ring[si];
1858 		desc->flags |= htole32(ALE_TD_TSO_HDR);
1859 	}
1860 
1861 	/* Finally set EOP on the last descriptor. */
1862 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1863 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1864 	desc->flags |= htole32(ALE_TD_EOP);
1865 
1866 	/* Swap dmamap of the first and the last. */
1867 	txd = &sc->ale_cdata.ale_txdesc[prod];
1868 	map = txd_last->tx_dmamap;
1869 	txd_last->tx_dmamap = txd->tx_dmamap;
1870 	txd->tx_dmamap = map;
1871 	txd->tx_m = m;
1872 
1873 	/* Sync descriptors. */
1874 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1875 	    sc->ale_cdata.ale_tx_ring_map,
1876 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1877 
1878 	return (0);
1879 }
1880 
1881 static void
1882 ale_start(struct ifnet *ifp)
1883 {
1884         struct ale_softc *sc;
1885 
1886 	sc = ifp->if_softc;
1887 	ALE_LOCK(sc);
1888 	ale_start_locked(ifp);
1889 	ALE_UNLOCK(sc);
1890 }
1891 
1892 static void
1893 ale_start_locked(struct ifnet *ifp)
1894 {
1895         struct ale_softc *sc;
1896         struct mbuf *m_head;
1897 	int enq;
1898 
1899 	sc = ifp->if_softc;
1900 
1901 	ALE_LOCK_ASSERT(sc);
1902 
1903 	/* Reclaim transmitted frames. */
1904 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1905 		ale_txeof(sc);
1906 
1907 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1908 	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
1909 		return;
1910 
1911 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1912 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1913 		if (m_head == NULL)
1914 			break;
1915 		/*
1916 		 * Pack the data into the transmit ring. If we
1917 		 * don't have room, set the OACTIVE flag and wait
1918 		 * for the NIC to drain the ring.
1919 		 */
1920 		if (ale_encap(sc, &m_head)) {
1921 			if (m_head == NULL)
1922 				break;
1923 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1924 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1925 			break;
1926 		}
1927 
1928 		enq++;
1929 		/*
1930 		 * If there's a BPF listener, bounce a copy of this frame
1931 		 * to him.
1932 		 */
1933 		ETHER_BPF_MTAP(ifp, m_head);
1934 	}
1935 
1936 	if (enq > 0) {
1937 		/* Kick. */
1938 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1939 		    sc->ale_cdata.ale_tx_prod);
1940 		/* Set a timeout in case the chip goes out to lunch. */
1941 		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1942 	}
1943 }
1944 
1945 static void
1946 ale_watchdog(struct ale_softc *sc)
1947 {
1948 	struct ifnet *ifp;
1949 
1950 	ALE_LOCK_ASSERT(sc);
1951 
1952 	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1953 		return;
1954 
1955 	ifp = sc->ale_ifp;
1956 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1957 		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1958 		ifp->if_oerrors++;
1959 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1960 		ale_init_locked(sc);
1961 		return;
1962 	}
1963 	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1964 	ifp->if_oerrors++;
1965 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1966 	ale_init_locked(sc);
1967 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1968 		ale_start_locked(ifp);
1969 }
1970 
1971 static int
1972 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1973 {
1974 	struct ale_softc *sc;
1975 	struct ifreq *ifr;
1976 	struct mii_data *mii;
1977 	int error, mask;
1978 
1979 	sc = ifp->if_softc;
1980 	ifr = (struct ifreq *)data;
1981 	error = 0;
1982 	switch (cmd) {
1983 	case SIOCSIFMTU:
1984 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1985 		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1986 		    ifr->ifr_mtu > ETHERMTU))
1987 			error = EINVAL;
1988 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1989 			ALE_LOCK(sc);
1990 			ifp->if_mtu = ifr->ifr_mtu;
1991 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1992 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1993 				ale_init_locked(sc);
1994 			}
1995 			ALE_UNLOCK(sc);
1996 		}
1997 		break;
1998 	case SIOCSIFFLAGS:
1999 		ALE_LOCK(sc);
2000 		if ((ifp->if_flags & IFF_UP) != 0) {
2001 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2002 				if (((ifp->if_flags ^ sc->ale_if_flags)
2003 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2004 					ale_rxfilter(sc);
2005 			} else {
2006 				ale_init_locked(sc);
2007 			}
2008 		} else {
2009 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2010 				ale_stop(sc);
2011 		}
2012 		sc->ale_if_flags = ifp->if_flags;
2013 		ALE_UNLOCK(sc);
2014 		break;
2015 	case SIOCADDMULTI:
2016 	case SIOCDELMULTI:
2017 		ALE_LOCK(sc);
2018 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2019 			ale_rxfilter(sc);
2020 		ALE_UNLOCK(sc);
2021 		break;
2022 	case SIOCSIFMEDIA:
2023 	case SIOCGIFMEDIA:
2024 		mii = device_get_softc(sc->ale_miibus);
2025 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2026 		break;
2027 	case SIOCSIFCAP:
2028 		ALE_LOCK(sc);
2029 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2030 		if ((mask & IFCAP_TXCSUM) != 0 &&
2031 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2032 			ifp->if_capenable ^= IFCAP_TXCSUM;
2033 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2034 				ifp->if_hwassist |= ALE_CSUM_FEATURES;
2035 			else
2036 				ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
2037 		}
2038 		if ((mask & IFCAP_RXCSUM) != 0 &&
2039 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2040 			ifp->if_capenable ^= IFCAP_RXCSUM;
2041 		if ((mask & IFCAP_TSO4) != 0 &&
2042 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2043 			ifp->if_capenable ^= IFCAP_TSO4;
2044 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2045 				ifp->if_hwassist |= CSUM_TSO;
2046 			else
2047 				ifp->if_hwassist &= ~CSUM_TSO;
2048 		}
2049 
2050 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2051 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2052 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2053 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2054 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2055 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2056 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2057 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2058 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2059 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2060 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2061 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2062 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2063 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2064 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2065 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2066 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
2067 			ale_rxvlan(sc);
2068 		}
2069 		ALE_UNLOCK(sc);
2070 		VLAN_CAPABILITIES(ifp);
2071 		break;
2072 	default:
2073 		error = ether_ioctl(ifp, cmd, data);
2074 		break;
2075 	}
2076 
2077 	return (error);
2078 }
2079 
2080 static void
2081 ale_mac_config(struct ale_softc *sc)
2082 {
2083 	struct mii_data *mii;
2084 	uint32_t reg;
2085 
2086 	ALE_LOCK_ASSERT(sc);
2087 
2088 	mii = device_get_softc(sc->ale_miibus);
2089 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2090 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2091 	    MAC_CFG_SPEED_MASK);
2092 	/* Reprogram MAC with resolved speed/duplex. */
2093 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2094 	case IFM_10_T:
2095 	case IFM_100_TX:
2096 		reg |= MAC_CFG_SPEED_10_100;
2097 		break;
2098 	case IFM_1000_T:
2099 		reg |= MAC_CFG_SPEED_1000;
2100 		break;
2101 	}
2102 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2103 		reg |= MAC_CFG_FULL_DUPLEX;
2104 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2105 			reg |= MAC_CFG_TX_FC;
2106 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2107 			reg |= MAC_CFG_RX_FC;
2108 	}
2109 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2110 }
2111 
2112 static void
2113 ale_stats_clear(struct ale_softc *sc)
2114 {
2115 	struct smb sb;
2116 	uint32_t *reg;
2117 	int i;
2118 
2119 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2120 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2121 		i += sizeof(uint32_t);
2122 	}
2123 	/* Read Tx statistics. */
2124 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2125 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2126 		i += sizeof(uint32_t);
2127 	}
2128 }
2129 
2130 static void
2131 ale_stats_update(struct ale_softc *sc)
2132 {
2133 	struct ale_hw_stats *stat;
2134 	struct smb sb, *smb;
2135 	struct ifnet *ifp;
2136 	uint32_t *reg;
2137 	int i;
2138 
2139 	ALE_LOCK_ASSERT(sc);
2140 
2141 	ifp = sc->ale_ifp;
2142 	stat = &sc->ale_stats;
2143 	smb = &sb;
2144 
2145 	/* Read Rx statistics. */
2146 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2147 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2148 		i += sizeof(uint32_t);
2149 	}
2150 	/* Read Tx statistics. */
2151 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2152 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2153 		i += sizeof(uint32_t);
2154 	}
2155 
2156 	/* Rx stats. */
2157 	stat->rx_frames += smb->rx_frames;
2158 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2159 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2160 	stat->rx_pause_frames += smb->rx_pause_frames;
2161 	stat->rx_control_frames += smb->rx_control_frames;
2162 	stat->rx_crcerrs += smb->rx_crcerrs;
2163 	stat->rx_lenerrs += smb->rx_lenerrs;
2164 	stat->rx_bytes += smb->rx_bytes;
2165 	stat->rx_runts += smb->rx_runts;
2166 	stat->rx_fragments += smb->rx_fragments;
2167 	stat->rx_pkts_64 += smb->rx_pkts_64;
2168 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2169 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2170 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2171 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2172 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2173 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2174 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2175 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2176 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2177 	stat->rx_alignerrs += smb->rx_alignerrs;
2178 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2179 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2180 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2181 
2182 	/* Tx stats. */
2183 	stat->tx_frames += smb->tx_frames;
2184 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2185 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2186 	stat->tx_pause_frames += smb->tx_pause_frames;
2187 	stat->tx_excess_defer += smb->tx_excess_defer;
2188 	stat->tx_control_frames += smb->tx_control_frames;
2189 	stat->tx_deferred += smb->tx_deferred;
2190 	stat->tx_bytes += smb->tx_bytes;
2191 	stat->tx_pkts_64 += smb->tx_pkts_64;
2192 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2193 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2194 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2195 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2196 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2197 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2198 	stat->tx_single_colls += smb->tx_single_colls;
2199 	stat->tx_multi_colls += smb->tx_multi_colls;
2200 	stat->tx_late_colls += smb->tx_late_colls;
2201 	stat->tx_excess_colls += smb->tx_excess_colls;
2202 	stat->tx_abort += smb->tx_abort;
2203 	stat->tx_underrun += smb->tx_underrun;
2204 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2205 	stat->tx_lenerrs += smb->tx_lenerrs;
2206 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2207 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2208 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2209 
2210 	/* Update counters in ifnet. */
2211 	ifp->if_opackets += smb->tx_frames;
2212 
2213 	ifp->if_collisions += smb->tx_single_colls +
2214 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2215 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2216 
2217 	/*
2218 	 * XXX
2219 	 * tx_pkts_truncated counter looks suspicious. It constantly
2220 	 * increments with no sign of Tx errors. This may indicate
2221 	 * the counter name is not correct one so I've removed the
2222 	 * counter in output errors.
2223 	 */
2224 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2225 	    smb->tx_underrun;
2226 
2227 	ifp->if_ipackets += smb->rx_frames;
2228 
2229 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2230 	    smb->rx_runts + smb->rx_pkts_truncated +
2231 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2232 	    smb->rx_alignerrs;
2233 }
2234 
2235 static int
2236 ale_intr(void *arg)
2237 {
2238 	struct ale_softc *sc;
2239 	uint32_t status;
2240 
2241 	sc = (struct ale_softc *)arg;
2242 
2243 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2244 	if ((status & ALE_INTRS) == 0)
2245 		return (FILTER_STRAY);
2246 	/* Disable interrupts. */
2247 	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2248 	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2249 
2250 	return (FILTER_HANDLED);
2251 }
2252 
2253 static void
2254 ale_int_task(void *arg, int pending)
2255 {
2256 	struct ale_softc *sc;
2257 	struct ifnet *ifp;
2258 	uint32_t status;
2259 	int more;
2260 
2261 	sc = (struct ale_softc *)arg;
2262 
2263 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2264 	ALE_LOCK(sc);
2265 	if (sc->ale_morework != 0)
2266 		status |= INTR_RX_PKT;
2267 	if ((status & ALE_INTRS) == 0)
2268 		goto done;
2269 
2270 	/* Acknowledge interrupts but still disable interrupts. */
2271 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2272 
2273 	ifp = sc->ale_ifp;
2274 	more = 0;
2275 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2276 		more = ale_rxeof(sc, sc->ale_process_limit);
2277 		if (more == EAGAIN)
2278 			sc->ale_morework = 1;
2279 		else if (more == EIO) {
2280 			sc->ale_stats.reset_brk_seq++;
2281 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2282 			ale_init_locked(sc);
2283 			ALE_UNLOCK(sc);
2284 			return;
2285 		}
2286 
2287 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2288 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2289 				device_printf(sc->ale_dev,
2290 				    "DMA read error! -- resetting\n");
2291 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2292 				device_printf(sc->ale_dev,
2293 				    "DMA write error! -- resetting\n");
2294 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2295 			ale_init_locked(sc);
2296 			ALE_UNLOCK(sc);
2297 			return;
2298 		}
2299 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2300 			ale_start_locked(ifp);
2301 	}
2302 
2303 	if (more == EAGAIN ||
2304 	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2305 		ALE_UNLOCK(sc);
2306 		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2307 		return;
2308 	}
2309 
2310 done:
2311 	ALE_UNLOCK(sc);
2312 
2313 	/* Re-enable interrupts. */
2314 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2315 }
2316 
2317 static void
2318 ale_txeof(struct ale_softc *sc)
2319 {
2320 	struct ifnet *ifp;
2321 	struct ale_txdesc *txd;
2322 	uint32_t cons, prod;
2323 	int prog;
2324 
2325 	ALE_LOCK_ASSERT(sc);
2326 
2327 	ifp = sc->ale_ifp;
2328 
2329 	if (sc->ale_cdata.ale_tx_cnt == 0)
2330 		return;
2331 
2332 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2333 	    sc->ale_cdata.ale_tx_ring_map,
2334 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2335 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2336 		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2337 		    sc->ale_cdata.ale_tx_cmb_map,
2338 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2339 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2340 	} else
2341 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2342 	cons = sc->ale_cdata.ale_tx_cons;
2343 	/*
2344 	 * Go through our Tx list and free mbufs for those
2345 	 * frames which have been transmitted.
2346 	 */
2347 	for (prog = 0; cons != prod; prog++,
2348 	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2349 		if (sc->ale_cdata.ale_tx_cnt <= 0)
2350 			break;
2351 		prog++;
2352 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2353 		sc->ale_cdata.ale_tx_cnt--;
2354 		txd = &sc->ale_cdata.ale_txdesc[cons];
2355 		if (txd->tx_m != NULL) {
2356 			/* Reclaim transmitted mbufs. */
2357 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2358 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2359 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2360 			    txd->tx_dmamap);
2361 			m_freem(txd->tx_m);
2362 			txd->tx_m = NULL;
2363 		}
2364 	}
2365 
2366 	if (prog > 0) {
2367 		sc->ale_cdata.ale_tx_cons = cons;
2368 		/*
2369 		 * Unarm watchdog timer only when there is no pending
2370 		 * Tx descriptors in queue.
2371 		 */
2372 		if (sc->ale_cdata.ale_tx_cnt == 0)
2373 			sc->ale_watchdog_timer = 0;
2374 	}
2375 }
2376 
2377 static void
2378 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2379     uint32_t length, uint32_t *prod)
2380 {
2381 	struct ale_rx_page *rx_page;
2382 
2383 	rx_page = *page;
2384 	/* Update consumer position. */
2385 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2386 	    ALE_RX_PAGE_ALIGN);
2387 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2388 		/*
2389 		 * End of Rx page reached, let hardware reuse
2390 		 * this page.
2391 		 */
2392 		rx_page->cons = 0;
2393 		*rx_page->cmb_addr = 0;
2394 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2395 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2396 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2397 		    RXF_VALID);
2398 		/* Switch to alternate Rx page. */
2399 		sc->ale_cdata.ale_rx_curp ^= 1;
2400 		rx_page = *page =
2401 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2402 		/* Page flipped, sync CMB and Rx page. */
2403 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2404 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2405 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2406 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2407 		/* Sync completed, cache updated producer index. */
2408 		*prod = *rx_page->cmb_addr;
2409 	}
2410 }
2411 
2412 
2413 /*
2414  * It seems that AR81xx controller can compute partial checksum.
2415  * The partial checksum value can be used to accelerate checksum
2416  * computation for fragmented TCP/UDP packets. Upper network stack
2417  * already takes advantage of the partial checksum value in IP
2418  * reassembly stage. But I'm not sure the correctness of the
2419  * partial hardware checksum assistance due to lack of data sheet.
2420  * In addition, the Rx feature of controller that requires copying
2421  * for every frames effectively nullifies one of most nice offload
2422  * capability of controller.
2423  */
2424 static void
2425 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2426 {
2427 	struct ifnet *ifp;
2428 	struct ip *ip;
2429 	char *p;
2430 
2431 	ifp = sc->ale_ifp;
2432 	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2433 	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2434 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2435 
2436 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2437 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2438 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2439 		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2440 			m->m_pkthdr.csum_flags |=
2441 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2442 			m->m_pkthdr.csum_data = 0xffff;
2443 		}
2444 	} else {
2445 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2446 		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2447 			p = mtod(m, char *);
2448 			p += ETHER_HDR_LEN;
2449 			if ((status & ALE_RD_802_3) != 0)
2450 				p += LLC_SNAPFRAMELEN;
2451 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2452 			    (status & ALE_RD_VLAN) != 0)
2453 				p += ETHER_VLAN_ENCAP_LEN;
2454 			ip = (struct ip *)p;
2455 			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2456 				return;
2457 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2458 			    CSUM_PSEUDO_HDR;
2459 			m->m_pkthdr.csum_data = 0xffff;
2460 		}
2461 	}
2462 	/*
2463 	 * Don't mark bad checksum for TCP/UDP frames
2464 	 * as fragmented frames may always have set
2465 	 * bad checksummed bit of frame status.
2466 	 */
2467 }
2468 
2469 /* Process received frames. */
2470 static int
2471 ale_rxeof(struct ale_softc *sc, int count)
2472 {
2473 	struct ale_rx_page *rx_page;
2474 	struct rx_rs *rs;
2475 	struct ifnet *ifp;
2476 	struct mbuf *m;
2477 	uint32_t length, prod, seqno, status, vtags;
2478 	int prog;
2479 
2480 	ifp = sc->ale_ifp;
2481 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2482 	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2483 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2484 	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2485 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2486 	/*
2487 	 * Don't directly access producer index as hardware may
2488 	 * update it while Rx handler is in progress. It would
2489 	 * be even better if there is a way to let hardware
2490 	 * know how far driver processed its received frames.
2491 	 * Alternatively, hardware could provide a way to disable
2492 	 * CMB updates until driver acknowledges the end of CMB
2493 	 * access.
2494 	 */
2495 	prod = *rx_page->cmb_addr;
2496 	for (prog = 0; prog < count; prog++) {
2497 		if (rx_page->cons >= prod)
2498 			break;
2499 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2500 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2501 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2502 			/*
2503 			 * Normally I believe this should not happen unless
2504 			 * severe driver bug or corrupted memory. However
2505 			 * it seems to happen under certain conditions which
2506 			 * is triggered by abrupt Rx events such as initiation
2507 			 * of bulk transfer of remote host. It's not easy to
2508 			 * reproduce this and I doubt it could be related
2509 			 * with FIFO overflow of hardware or activity of Tx
2510 			 * CMB updates. I also remember similar behaviour
2511 			 * seen on RealTek 8139 which uses resembling Rx
2512 			 * scheme.
2513 			 */
2514 			if (bootverbose)
2515 				device_printf(sc->ale_dev,
2516 				    "garbled seq: %u, expected: %u -- "
2517 				    "resetting!\n", seqno,
2518 				    sc->ale_cdata.ale_rx_seqno);
2519 			return (EIO);
2520 		}
2521 		/* Frame received. */
2522 		sc->ale_cdata.ale_rx_seqno++;
2523 		length = ALE_RX_BYTES(le32toh(rs->length));
2524 		status = le32toh(rs->flags);
2525 		if ((status & ALE_RD_ERROR) != 0) {
2526 			/*
2527 			 * We want to pass the following frames to upper
2528 			 * layer regardless of error status of Rx return
2529 			 * status.
2530 			 *
2531 			 *  o IP/TCP/UDP checksum is bad.
2532 			 *  o frame length and protocol specific length
2533 			 *     does not match.
2534 			 */
2535 			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2536 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2537 			    ALE_RD_TRUNC)) != 0) {
2538 				ale_rx_update_page(sc, &rx_page, length, &prod);
2539 				continue;
2540 			}
2541 		}
2542 		/*
2543 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2544 		 * from hardware limitation). For jumbo frames we could
2545 		 * get a slightly better performance if driver use
2546 		 * m_getjcl(9) with proper buffer size argument. However
2547 		 * that would make code more complicated and I don't
2548 		 * think users would expect good Rx performance numbers
2549 		 * on these low-end consumer ethernet controller.
2550 		 */
2551 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2552 		    ETHER_ALIGN, ifp, NULL);
2553 		if (m == NULL) {
2554 			ifp->if_iqdrops++;
2555 			ale_rx_update_page(sc, &rx_page, length, &prod);
2556 			continue;
2557 		}
2558 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2559 		    (status & ALE_RD_IPV4) != 0)
2560 			ale_rxcsum(sc, m, status);
2561 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2562 		    (status & ALE_RD_VLAN) != 0) {
2563 			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2564 			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2565 			m->m_flags |= M_VLANTAG;
2566 		}
2567 
2568 		/* Pass it to upper layer. */
2569 		ALE_UNLOCK(sc);
2570 		(*ifp->if_input)(ifp, m);
2571 		ALE_LOCK(sc);
2572 
2573 		ale_rx_update_page(sc, &rx_page, length, &prod);
2574 	}
2575 
2576 	return (count > 0 ? 0 : EAGAIN);
2577 }
2578 
2579 static void
2580 ale_tick(void *arg)
2581 {
2582 	struct ale_softc *sc;
2583 	struct mii_data *mii;
2584 
2585 	sc = (struct ale_softc *)arg;
2586 
2587 	ALE_LOCK_ASSERT(sc);
2588 
2589 	mii = device_get_softc(sc->ale_miibus);
2590 	mii_tick(mii);
2591 	ale_stats_update(sc);
2592 	/*
2593 	 * Reclaim Tx buffers that have been transferred. It's not
2594 	 * needed here but it would release allocated mbuf chains
2595 	 * faster and limit the maximum delay to a hz.
2596 	 */
2597 	ale_txeof(sc);
2598 	ale_watchdog(sc);
2599 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2600 }
2601 
2602 static void
2603 ale_reset(struct ale_softc *sc)
2604 {
2605 	uint32_t reg;
2606 	int i;
2607 
2608 	/* Initialize PCIe module. From Linux. */
2609 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2610 
2611 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2612 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2613 		DELAY(10);
2614 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2615 			break;
2616 	}
2617 	if (i == 0)
2618 		device_printf(sc->ale_dev, "master reset timeout!\n");
2619 
2620 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2621 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2622 			break;
2623 		DELAY(10);
2624 	}
2625 
2626 	if (i == 0)
2627 		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2628 }
2629 
2630 static void
2631 ale_init(void *xsc)
2632 {
2633 	struct ale_softc *sc;
2634 
2635 	sc = (struct ale_softc *)xsc;
2636 	ALE_LOCK(sc);
2637 	ale_init_locked(sc);
2638 	ALE_UNLOCK(sc);
2639 }
2640 
2641 static void
2642 ale_init_locked(struct ale_softc *sc)
2643 {
2644 	struct ifnet *ifp;
2645 	struct mii_data *mii;
2646 	uint8_t eaddr[ETHER_ADDR_LEN];
2647 	bus_addr_t paddr;
2648 	uint32_t reg, rxf_hi, rxf_lo;
2649 
2650 	ALE_LOCK_ASSERT(sc);
2651 
2652 	ifp = sc->ale_ifp;
2653 	mii = device_get_softc(sc->ale_miibus);
2654 
2655 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2656 		return;
2657 	/*
2658 	 * Cancel any pending I/O.
2659 	 */
2660 	ale_stop(sc);
2661 	/*
2662 	 * Reset the chip to a known state.
2663 	 */
2664 	ale_reset(sc);
2665 	/* Initialize Tx descriptors, DMA memory blocks. */
2666 	ale_init_rx_pages(sc);
2667 	ale_init_tx_ring(sc);
2668 
2669 	/* Reprogram the station address. */
2670 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2671 	CSR_WRITE_4(sc, ALE_PAR0,
2672 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2673 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2674 	/*
2675 	 * Clear WOL status and disable all WOL feature as WOL
2676 	 * would interfere Rx operation under normal environments.
2677 	 */
2678 	CSR_READ_4(sc, ALE_WOL_CFG);
2679 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2680 	/*
2681 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2682 	 * the same high address part of DMAable region.
2683 	 */
2684 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2685 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2686 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2687 	CSR_WRITE_4(sc, ALE_TPD_CNT,
2688 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2689 	/* Set Rx page base address, note we use single queue. */
2690 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2691 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2692 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2693 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2694 	/* Set Tx/Rx CMB addresses. */
2695 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2696 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2697 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2698 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2699 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2700 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2701 	/* Mark RXF0 is valid. */
2702 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2703 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2704 	/*
2705 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2706 	 * multi-queue yet.
2707 	 */
2708 
2709 	/* Set Rx page size, excluding guard frame size. */
2710 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2711 	/* Tell hardware that we're ready to load DMA blocks. */
2712 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2713 
2714 	/* Set Rx/Tx interrupt trigger threshold. */
2715 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2716 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2717 	/*
2718 	 * XXX
2719 	 * Set interrupt trigger timer, its purpose and relation
2720 	 * with interrupt moderation mechanism is not clear yet.
2721 	 */
2722 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2723 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2724 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2725 
2726 	/* Configure interrupt moderation timer. */
2727 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2728 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2729 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2730 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2731 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2732 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2733 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2734 		reg |= MASTER_IM_RX_TIMER_ENB;
2735 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2736 		reg |= MASTER_IM_TX_TIMER_ENB;
2737 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2738 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2739 
2740 	/* Set Maximum frame size of controller. */
2741 	if (ifp->if_mtu < ETHERMTU)
2742 		sc->ale_max_frame_size = ETHERMTU;
2743 	else
2744 		sc->ale_max_frame_size = ifp->if_mtu;
2745 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2746 	    ETHER_CRC_LEN;
2747 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2748 	/* Configure IPG/IFG parameters. */
2749 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2750 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2751 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2752 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2753 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2754 	/* Set parameters for half-duplex media. */
2755 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2756 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2757 	    HDPX_CFG_LCOL_MASK) |
2758 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2759 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2760 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2761 	    HDPX_CFG_ABEBT_MASK) |
2762 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2763 	    HDPX_CFG_JAMIPG_MASK));
2764 
2765 	/* Configure Tx jumbo frame parameters. */
2766 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2767 		if (ifp->if_mtu < ETHERMTU)
2768 			reg = sc->ale_max_frame_size;
2769 		else if (ifp->if_mtu < 6 * 1024)
2770 			reg = (sc->ale_max_frame_size * 2) / 3;
2771 		else
2772 			reg = sc->ale_max_frame_size / 2;
2773 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2774 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2775 		    TX_JUMBO_THRESH_UNIT_SHIFT);
2776 	}
2777 	/* Configure TxQ. */
2778 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2779 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2780 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2781 	    TXQ_CFG_TPD_BURST_MASK;
2782 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2783 
2784 	/* Configure Rx jumbo frame & flow control parameters. */
2785 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2786 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2787 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2788 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2789 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2790 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2791 		    RX_JUMBO_LKAH_MASK));
2792 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2793 		rxf_hi = (reg * 7) / 10;
2794 		rxf_lo = (reg * 3)/ 10;
2795 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2796 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2797 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2798 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2799 		    RX_FIFO_PAUSE_THRESH_HI_MASK));
2800 	}
2801 
2802 	/* Disable RSS. */
2803 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2804 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2805 
2806 	/* Configure RxQ. */
2807 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2808 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2809 
2810 	/* Configure DMA parameters. */
2811 	reg = 0;
2812 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2813 		reg |= DMA_CFG_TXCMB_ENB;
2814 	CSR_WRITE_4(sc, ALE_DMA_CFG,
2815 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2816 	    sc->ale_dma_rd_burst | reg |
2817 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2818 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2819 	    DMA_CFG_RD_DELAY_CNT_MASK) |
2820 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2821 	    DMA_CFG_WR_DELAY_CNT_MASK));
2822 
2823 	/*
2824 	 * Hardware can be configured to issue SMB interrupt based
2825 	 * on programmed interval. Since there is a callout that is
2826 	 * invoked for every hz in driver we use that instead of
2827 	 * relying on periodic SMB interrupt.
2828 	 */
2829 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2830 	/* Clear MAC statistics. */
2831 	ale_stats_clear(sc);
2832 
2833 	/*
2834 	 * Configure Tx/Rx MACs.
2835 	 *  - Auto-padding for short frames.
2836 	 *  - Enable CRC generation.
2837 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2838 	 *  is followed after detection of link establishment.
2839 	 *  AR81xx always does checksum computation regardless of
2840 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2841 	 *  cause Rx handling issue for fragmented IP datagrams due
2842 	 *  to silicon bug.
2843 	 */
2844 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2845 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2846 	    MAC_CFG_PREAMBLE_MASK);
2847 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2848 		reg |= MAC_CFG_SPEED_10_100;
2849 	else
2850 		reg |= MAC_CFG_SPEED_1000;
2851 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2852 
2853 	/* Set up the receive filter. */
2854 	ale_rxfilter(sc);
2855 	ale_rxvlan(sc);
2856 
2857 	/* Acknowledge all pending interrupts and clear it. */
2858 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2859 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2860 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2861 
2862 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2863 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2864 
2865 	sc->ale_flags &= ~ALE_FLAG_LINK;
2866 	/* Switch to the current media. */
2867 	mii_mediachg(mii);
2868 
2869 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2870 }
2871 
2872 static void
2873 ale_stop(struct ale_softc *sc)
2874 {
2875 	struct ifnet *ifp;
2876 	struct ale_txdesc *txd;
2877 	uint32_t reg;
2878 	int i;
2879 
2880 	ALE_LOCK_ASSERT(sc);
2881 	/*
2882 	 * Mark the interface down and cancel the watchdog timer.
2883 	 */
2884 	ifp = sc->ale_ifp;
2885 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2886 	sc->ale_flags &= ~ALE_FLAG_LINK;
2887 	callout_stop(&sc->ale_tick_ch);
2888 	sc->ale_watchdog_timer = 0;
2889 	ale_stats_update(sc);
2890 	/* Disable interrupts. */
2891 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2892 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2893 	/* Disable queue processing and DMA. */
2894 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2895 	reg &= ~TXQ_CFG_ENB;
2896 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2897 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2898 	reg &= ~RXQ_CFG_ENB;
2899 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2900 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2901 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2902 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2903 	DELAY(1000);
2904 	/* Stop Rx/Tx MACs. */
2905 	ale_stop_mac(sc);
2906 	/* Disable interrupts which might be touched in taskq handler. */
2907 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2908 
2909 	/*
2910 	 * Free TX mbufs still in the queues.
2911 	 */
2912 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2913 		txd = &sc->ale_cdata.ale_txdesc[i];
2914 		if (txd->tx_m != NULL) {
2915 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2916 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2917 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2918 			    txd->tx_dmamap);
2919 			m_freem(txd->tx_m);
2920 			txd->tx_m = NULL;
2921 		}
2922         }
2923 }
2924 
2925 static void
2926 ale_stop_mac(struct ale_softc *sc)
2927 {
2928 	uint32_t reg;
2929 	int i;
2930 
2931 	ALE_LOCK_ASSERT(sc);
2932 
2933 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2934 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2935 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2936 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2937 	}
2938 
2939 	for (i = ALE_TIMEOUT; i > 0; i--) {
2940 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2941 		if (reg == 0)
2942 			break;
2943 		DELAY(10);
2944 	}
2945 	if (i == 0)
2946 		device_printf(sc->ale_dev,
2947 		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2948 }
2949 
2950 static void
2951 ale_init_tx_ring(struct ale_softc *sc)
2952 {
2953 	struct ale_txdesc *txd;
2954 	int i;
2955 
2956 	ALE_LOCK_ASSERT(sc);
2957 
2958 	sc->ale_cdata.ale_tx_prod = 0;
2959 	sc->ale_cdata.ale_tx_cons = 0;
2960 	sc->ale_cdata.ale_tx_cnt = 0;
2961 
2962 	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2963 	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2964 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2965 		txd = &sc->ale_cdata.ale_txdesc[i];
2966 		txd->tx_m = NULL;
2967 	}
2968 	*sc->ale_cdata.ale_tx_cmb = 0;
2969 	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2970 	    sc->ale_cdata.ale_tx_cmb_map,
2971 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2972 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2973 	    sc->ale_cdata.ale_tx_ring_map,
2974 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2975 }
2976 
2977 static void
2978 ale_init_rx_pages(struct ale_softc *sc)
2979 {
2980 	struct ale_rx_page *rx_page;
2981 	int i;
2982 
2983 	ALE_LOCK_ASSERT(sc);
2984 
2985 	sc->ale_morework = 0;
2986 	sc->ale_cdata.ale_rx_seqno = 0;
2987 	sc->ale_cdata.ale_rx_curp = 0;
2988 
2989 	for (i = 0; i < ALE_RX_PAGES; i++) {
2990 		rx_page = &sc->ale_cdata.ale_rx_page[i];
2991 		bzero(rx_page->page_addr, sc->ale_pagesize);
2992 		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
2993 		rx_page->cons = 0;
2994 		*rx_page->cmb_addr = 0;
2995 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2996 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2997 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2998 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2999 	}
3000 }
3001 
3002 static void
3003 ale_rxvlan(struct ale_softc *sc)
3004 {
3005 	struct ifnet *ifp;
3006 	uint32_t reg;
3007 
3008 	ALE_LOCK_ASSERT(sc);
3009 
3010 	ifp = sc->ale_ifp;
3011 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
3012 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3013 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3014 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3015 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
3016 }
3017 
3018 static void
3019 ale_rxfilter(struct ale_softc *sc)
3020 {
3021 	struct ifnet *ifp;
3022 	struct ifmultiaddr *ifma;
3023 	uint32_t crc;
3024 	uint32_t mchash[2];
3025 	uint32_t rxcfg;
3026 
3027 	ALE_LOCK_ASSERT(sc);
3028 
3029 	ifp = sc->ale_ifp;
3030 
3031 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3032 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3033 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3034 		rxcfg |= MAC_CFG_BCAST;
3035 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3036 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3037 			rxcfg |= MAC_CFG_PROMISC;
3038 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3039 			rxcfg |= MAC_CFG_ALLMULTI;
3040 		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3041 		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3042 		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3043 		return;
3044 	}
3045 
3046 	/* Program new filter. */
3047 	bzero(mchash, sizeof(mchash));
3048 
3049 	if_maddr_rlock(ifp);
3050 	TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
3051 		if (ifma->ifma_addr->sa_family != AF_LINK)
3052 			continue;
3053 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3054 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3055 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3056 	}
3057 	if_maddr_runlock(ifp);
3058 
3059 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3060 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3061 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3062 }
3063 
3064 static int
3065 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3066 {
3067 	int error, value;
3068 
3069 	if (arg1 == NULL)
3070 		return (EINVAL);
3071 	value = *(int *)arg1;
3072 	error = sysctl_handle_int(oidp, &value, 0, req);
3073 	if (error || req->newptr == NULL)
3074 		return (error);
3075 	if (value < low || value > high)
3076 		return (EINVAL);
3077         *(int *)arg1 = value;
3078 
3079         return (0);
3080 }
3081 
3082 static int
3083 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3084 {
3085 	return (sysctl_int_range(oidp, arg1, arg2, req,
3086 	    ALE_PROC_MIN, ALE_PROC_MAX));
3087 }
3088 
3089 static int
3090 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3091 {
3092 
3093 	return (sysctl_int_range(oidp, arg1, arg2, req,
3094 	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3095 }
3096