1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2006 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 /*
22  * Chips specific device attachment and device info collection
23  * Connects Init Reg Vectors, EEPROM Data, and device Functions.
24  */
25 #include "ah.h"
26 #include "ah_internal.h"
27 #include "ah_devid.h"
28 
29 #include "ar5211/ar5211.h"
30 #include "ar5211/ar5211reg.h"
31 #include "ar5211/ar5211phy.h"
32 
33 #include "ah_eeprom_v3.h"
34 
35 /* Add static register initialization vectors */
36 #include "ar5211/boss.ini"
37 
38 /*
39  * Structure to hold 11b tuning information for Beanie/Sombrero
40  * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
41  */
42 typedef struct {
43 	uint32_t	refClkSel;	/* reference clock, 1 for 16 MHz */
44 	uint32_t	channelSelect;	/* P[7:4]S[3:0] bits */
45 	uint16_t	channel5111;	/* 11a channel for 5111 */
46 } CHAN_INFO_2GHZ;
47 
48 #define CI_2GHZ_INDEX_CORRECTION 19
49 static const CHAN_INFO_2GHZ chan2GHzData[] = {
50 	{ 1, 0x46, 96  },	/* 2312 -19 */
51 	{ 1, 0x46, 97  },	/* 2317 -18 */
52 	{ 1, 0x46, 98  },	/* 2322 -17 */
53 	{ 1, 0x46, 99  },	/* 2327 -16 */
54 	{ 1, 0x46, 100 },	/* 2332 -15 */
55 	{ 1, 0x46, 101 },	/* 2337 -14 */
56 	{ 1, 0x46, 102 },	/* 2342 -13 */
57 	{ 1, 0x46, 103 },	/* 2347 -12 */
58 	{ 1, 0x46, 104 },	/* 2352 -11 */
59 	{ 1, 0x46, 105 },	/* 2357 -10 */
60 	{ 1, 0x46, 106 },	/* 2362  -9 */
61 	{ 1, 0x46, 107 },	/* 2367  -8 */
62 	{ 1, 0x46, 108 },	/* 2372  -7 */
63 	/* index -6 to 0 are pad to make this a nolookup table */
64 	{ 1, 0x46, 116 },	/*       -6 */
65 	{ 1, 0x46, 116 },	/*       -5 */
66 	{ 1, 0x46, 116 },	/*       -4 */
67 	{ 1, 0x46, 116 },	/*       -3 */
68 	{ 1, 0x46, 116 },	/*       -2 */
69 	{ 1, 0x46, 116 },	/*       -1 */
70 	{ 1, 0x46, 116 },	/*        0 */
71 	{ 1, 0x46, 116 },	/* 2412   1 */
72 	{ 1, 0x46, 117 },	/* 2417   2 */
73 	{ 1, 0x46, 118 },	/* 2422   3 */
74 	{ 1, 0x46, 119 },	/* 2427   4 */
75 	{ 1, 0x46, 120 },	/* 2432   5 */
76 	{ 1, 0x46, 121 },	/* 2437   6 */
77 	{ 1, 0x46, 122 },	/* 2442   7 */
78 	{ 1, 0x46, 123 },	/* 2447   8 */
79 	{ 1, 0x46, 124 },	/* 2452   9 */
80 	{ 1, 0x46, 125 },	/* 2457  10 */
81 	{ 1, 0x46, 126 },	/* 2462  11 */
82 	{ 1, 0x46, 127 },	/* 2467  12 */
83 	{ 1, 0x46, 128 },	/* 2472  13 */
84 	{ 1, 0x44, 124 },	/* 2484  14 */
85 	{ 1, 0x46, 136 },	/* 2512  15 */
86 	{ 1, 0x46, 140 },	/* 2532  16 */
87 	{ 1, 0x46, 144 },	/* 2552  17 */
88 	{ 1, 0x46, 148 },	/* 2572  18 */
89 	{ 1, 0x46, 152 },	/* 2592  19 */
90 	{ 1, 0x46, 156 },	/* 2612  20 */
91 	{ 1, 0x46, 160 },	/* 2632  21 */
92 	{ 1, 0x46, 164 },	/* 2652  22 */
93 	{ 1, 0x46, 168 },	/* 2672  23 */
94 	{ 1, 0x46, 172 },	/* 2692  24 */
95 	{ 1, 0x46, 176 },	/* 2712  25 */
96 	{ 1, 0x46, 180 } 	/* 2732  26 */
97 };
98 
99 /* Power timeouts in usec to wait for chip to wake-up. */
100 #define POWER_UP_TIME	2000
101 
102 #define	DELAY_PLL_SETTLE	300		/* 300 us */
103 #define	DELAY_BASE_ACTIVATE	100		/* 100 us */
104 
105 #define NUM_RATES	8
106 
107 static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask);
108 static HAL_BOOL ar5211SetChannel(struct ath_hal *,
109 		const struct ieee80211_channel *);
110 static int16_t ar5211RunNoiseFloor(struct ath_hal *,
111 		uint8_t runTime, int16_t startingNF);
112 static HAL_BOOL ar5211IsNfGood(struct ath_hal *,
113 		struct ieee80211_channel *chan);
114 static HAL_BOOL ar5211SetRf6and7(struct ath_hal *,
115 		const struct ieee80211_channel *chan);
116 static HAL_BOOL ar5211SetBoardValues(struct ath_hal *,
117 		const struct ieee80211_channel *chan);
118 static void ar5211SetPowerTable(struct ath_hal *,
119 		PCDACS_EEPROM *pSrcStruct, uint16_t channel);
120 static HAL_BOOL ar5211SetTransmitPower(struct ath_hal *,
121 		const struct ieee80211_channel *);
122 static void ar5211SetRateTable(struct ath_hal *,
123 		RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo,
124 		uint16_t numChannels, const struct ieee80211_channel *chan);
125 static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
126 		const PCDACS_EEPROM *pSrcStruct);
127 static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
128 		const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
129 static uint16_t ar5211GetInterpolatedValue(uint16_t target,
130 		uint16_t srcLeft, uint16_t srcRight,
131 		uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp);
132 static void ar5211GetLowerUpperValues(uint16_t value,
133 		const uint16_t *pList, uint16_t listSize,
134 		uint16_t *pLowerValue, uint16_t *pUpperValue);
135 static void ar5211GetLowerUpperPcdacs(uint16_t pcdac,
136 		uint16_t channel, const PCDACS_EEPROM *pSrcStruct,
137 		uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
138 
139 static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *);
140 static void ar5211RequestRfgain(struct ath_hal *);
141 static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *);
142 static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *);
143 static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *);
144 static void ar5211SetOperatingMode(struct ath_hal *, int opmode);
145 
146 /*
147  * Places the device in and out of reset and then places sane
148  * values in the registers based on EEPROM config, initialization
149  * vectors (as determined by the mode), and station configuration
150  *
151  * bChannelChange is used to preserve DMA/PCU registers across
152  * a HW Reset during channel change.
153  */
154 HAL_BOOL
155 ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode,
156 	struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
157 	HAL_STATUS *status)
158 {
159 uint32_t softLedCfg, softLedState;
160 #define	N(a)	(sizeof (a) /sizeof (a[0]))
161 #define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
162 	struct ath_hal_5211 *ahp = AH5211(ah);
163 	HAL_CHANNEL_INTERNAL *ichan;
164 	uint32_t i, ledstate;
165 	HAL_STATUS ecode;
166 	int q;
167 
168 	uint32_t		data, synthDelay;
169 	uint32_t		macStaId1;
170 	uint16_t		modesIndex = 0, freqIndex = 0;
171 	uint32_t		saveFrameSeqCount[AR_NUM_DCU];
172 	uint32_t		saveTsfLow = 0, saveTsfHigh = 0;
173 	uint32_t		saveDefAntenna;
174 
175 	HALDEBUG(ah, HAL_DEBUG_RESET,
176 	     "%s: opmode %u channel %u/0x%x %s channel\n",
177 	     __func__, opmode, chan->ic_freq, chan->ic_flags,
178 	     bChannelChange ? "change" : "same");
179 
180 	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
181 	/*
182 	 * Map public channel to private.
183 	 */
184 	ichan = ath_hal_checkchannel(ah, chan);
185 	if (ichan == AH_NULL)
186 		FAIL(HAL_EINVAL);
187 	switch (opmode) {
188 	case HAL_M_STA:
189 	case HAL_M_IBSS:
190 	case HAL_M_HOSTAP:
191 	case HAL_M_MONITOR:
192 		break;
193 	default:
194 		HALDEBUG(ah, HAL_DEBUG_ANY,
195 		    "%s: invalid operating mode %u\n", __func__, opmode);
196 		FAIL(HAL_EINVAL);
197 		break;
198 	}
199 	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
200 
201 	/* Preserve certain DMA hardware registers on a channel change */
202 	if (bChannelChange) {
203 		/*
204 		 * Need to save/restore the TSF because of an issue
205 		 * that accelerates the TSF during a chip reset.
206 		 *
207 		 * We could use system timer routines to more
208 		 * accurately restore the TSF, but
209 		 * 1. Timer routines on certain platforms are
210 		 *	not accurate enough (e.g. 1 ms resolution).
211 		 * 2. It would still not be accurate.
212 		 *
213 		 * The most important aspect of this workaround,
214 		 * is that, after reset, the TSF is behind
215 		 * other STAs TSFs.  This will allow the STA to
216 		 * properly resynchronize its TSF in adhoc mode.
217 		 */
218 		saveTsfLow  = OS_REG_READ(ah, AR_TSF_L32);
219 		saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32);
220 
221 		/* Read frame sequence count */
222 		if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
223 			saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM);
224 		} else {
225 			for (i = 0; i < AR_NUM_DCU; i++)
226 				saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i));
227 		}
228 		if (!IEEE80211_IS_CHAN_DFS(chan))
229 			chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
230 	}
231 
232 	/*
233 	 * Preserve the antenna on a channel change
234 	 */
235 	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
236 	if (saveDefAntenna == 0)
237 		saveDefAntenna = 1;
238 
239 	/* Save hardware flag before chip reset clears the register */
240 	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
241 
242 	/* Save led state from pci config register */
243 	ledstate = OS_REG_READ(ah, AR_PCICFG) &
244 		(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
245 		 AR_PCICFG_LEDSLOW);
246 	softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
247 	softLedState = OS_REG_READ(ah, AR_GPIODO);
248 
249 	if (!ar5211ChipReset(ah, chan)) {
250 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
251 		FAIL(HAL_EIO);
252 	}
253 
254 	/* Setup the indices for the next set of register array writes */
255 	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
256 		freqIndex = 1;
257 		if (IEEE80211_IS_CHAN_TURBO(chan))
258 			modesIndex = 2;
259 		else if (IEEE80211_IS_CHAN_A(chan))
260 			modesIndex = 1;
261 		else {
262 			HALDEBUG(ah, HAL_DEBUG_ANY,
263 			    "%s: invalid channel %u/0x%x\n",
264 			    __func__, chan->ic_freq, chan->ic_flags);
265 			FAIL(HAL_EINVAL);
266 		}
267 	} else {
268 		freqIndex = 2;
269 		if (IEEE80211_IS_CHAN_B(chan))
270 			modesIndex = 3;
271 		else if (IEEE80211_IS_CHAN_PUREG(chan))
272 			modesIndex = 4;
273 		else {
274 			HALDEBUG(ah, HAL_DEBUG_ANY,
275 			    "%s: invalid channel %u/0x%x\n",
276 			    __func__, chan->ic_freq, chan->ic_flags);
277 			FAIL(HAL_EINVAL);
278 		}
279 	}
280 
281 	/* Set correct Baseband to analog shift setting to access analog chips. */
282 	if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
283 		OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007);
284 	} else {
285 		OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047);
286 	}
287 
288 	/* Write parameters specific to AR5211 */
289 	if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
290 		if (IEEE80211_IS_CHAN_2GHZ(chan) &&
291 		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) {
292 			HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
293 			uint32_t ob2GHz, db2GHz;
294 
295 			if (IEEE80211_IS_CHAN_CCK(chan)) {
296 				ob2GHz = ee->ee_ob2GHz[0];
297 				db2GHz = ee->ee_db2GHz[0];
298 			} else {
299 				ob2GHz = ee->ee_ob2GHz[1];
300 				db2GHz = ee->ee_db2GHz[1];
301 			}
302 			ob2GHz = ath_hal_reverseBits(ob2GHz, 3);
303 			db2GHz = ath_hal_reverseBits(db2GHz, 3);
304 			ar5211Mode2_4[25][freqIndex] =
305 				(ar5211Mode2_4[25][freqIndex] & ~0xC0) |
306 					((ob2GHz << 6) & 0xC0);
307 			ar5211Mode2_4[26][freqIndex] =
308 				(ar5211Mode2_4[26][freqIndex] & ~0x0F) |
309 					(((ob2GHz >> 2) & 0x1) |
310 					 ((db2GHz << 1) & 0x0E));
311 		}
312 		for (i = 0; i < N(ar5211Mode2_4); i++)
313 			OS_REG_WRITE(ah, ar5211Mode2_4[i][0],
314 				ar5211Mode2_4[i][freqIndex]);
315 	}
316 
317 	/* Write the analog registers 6 and 7 before other config */
318 	ar5211SetRf6and7(ah, chan);
319 
320 	/* Write registers that vary across all modes */
321 	for (i = 0; i < N(ar5211Modes); i++)
322 		OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]);
323 
324 	/* Write RFGain Parameters that differ between 2.4 and 5 GHz */
325 	for (i = 0; i < N(ar5211BB_RfGain); i++)
326 		OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]);
327 
328 	/* Write Common Array Parameters */
329 	for (i = 0; i < N(ar5211Common); i++) {
330 		uint32_t reg = ar5211Common[i][0];
331 		/* On channel change, don't reset the PCU registers */
332 		if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
333 			OS_REG_WRITE(ah, reg, ar5211Common[i][1]);
334 	}
335 
336 	/* Fix pre-AR5211 register values, this includes AR5311s. */
337 	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
338 		/*
339 		 * The TX and RX latency values have changed locations
340 		 * within the USEC register in AR5211.  Since they're
341 		 * set via the .ini, for both AR5211 and AR5311, they
342 		 * are written properly here for AR5311.
343 		 */
344 		data = OS_REG_READ(ah, AR_USEC);
345 		/* Must be 0 for proper write in AR5311 */
346 		HALASSERT((data & 0x00700000) == 0);
347 		OS_REG_WRITE(ah, AR_USEC,
348 			(data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) |
349 			((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M));
350 		/* The following registers exist only on AR5311. */
351 		OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0);
352 
353 		/* Set proper ADC & DAC delays for AR5311. */
354 		OS_REG_WRITE(ah, 0x00009878, 0x00000008);
355 
356 		/* Enable the PCU FIFO corruption ECO on AR5311. */
357 		OS_REG_WRITE(ah, AR_DIAG_SW,
358 			OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO);
359 	}
360 
361 	/* Restore certain DMA hardware registers on a channel change */
362 	if (bChannelChange) {
363 		/* Restore TSF */
364 		OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow);
365 		OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh);
366 
367 		if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
368 			OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]);
369 		} else {
370 			for (i = 0; i < AR_NUM_DCU; i++)
371 				OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]);
372 		}
373 	}
374 
375 	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
376 	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
377 		| macStaId1
378 	);
379 	ar5211SetOperatingMode(ah, opmode);
380 
381 	/* Restore previous led state */
382 	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
383 	OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
384 	OS_REG_WRITE(ah, AR_GPIODO, softLedState);
385 
386 	/* Restore previous antenna */
387 	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
388 
389 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
390 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
391 
392 	/* Restore bmiss rssi & count thresholds */
393 	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
394 
395 	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
396 
397 	/*
398 	 * for pre-Production Oahu only.
399 	 * Disable clock gating in all DMA blocks. Helps when using
400 	 * 11B and AES but results in higher power consumption.
401 	 */
402 	if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU &&
403 	    AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) {
404 		OS_REG_WRITE(ah, AR_CFG,
405 			OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS);
406 	}
407 
408 	/* Setup the transmit power values. */
409 	if (!ar5211SetTransmitPower(ah, chan)) {
410 		HALDEBUG(ah, HAL_DEBUG_ANY,
411 		    "%s: error init'ing transmit power\n", __func__);
412 		FAIL(HAL_EIO);
413 	}
414 
415 	/*
416 	 * Configurable OFDM spoofing for 11n compatibility; used
417 	 * only when operating in station mode.
418 	 */
419 	if (opmode != HAL_M_HOSTAP &&
420 	    (AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) {
421 		/* NB: override the .ini setting */
422 		OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
423 			AR_PHY_FRAME_CTL_ERR_SERV,
424 			MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1);
425 	}
426 
427 	/* Setup board specific options for EEPROM version 3 */
428 	ar5211SetBoardValues(ah, chan);
429 
430 	if (!ar5211SetChannel(ah, chan)) {
431 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
432 		    __func__);
433 		FAIL(HAL_EIO);
434 	}
435 
436 	/* Activate the PHY */
437 	if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B &&
438 	    IEEE80211_IS_CHAN_2GHZ(chan))
439 		OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */
440 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
441 
442 	/*
443 	 * Wait for the frequency synth to settle (synth goes on
444 	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
445 	 * Value is in 100ns increments.
446 	 */
447 	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M;
448 	if (IEEE80211_IS_CHAN_CCK(chan)) {
449 		synthDelay = (4 * data) / 22;
450 	} else {
451 		synthDelay = data / 10;
452 	}
453 	/*
454 	 * There is an issue if the AP starts the calibration before
455 	 * the baseband timeout completes.  This could result in the
456 	 * rxclear false triggering.  Add an extra delay to ensure this
457 	 * this does not happen.
458 	 */
459 	OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE);
460 
461 	/* Calibrate the AGC and wait for completion. */
462 	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
463 		 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
464 	(void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
465 
466 	/* Perform noise floor and set status */
467 	if (!ar5211CalNoiseFloor(ah, chan)) {
468 		if (!IEEE80211_IS_CHAN_CCK(chan))
469 			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
470 		HALDEBUG(ah, HAL_DEBUG_ANY,
471 		    "%s: noise floor calibration failed\n", __func__);
472 		FAIL(HAL_EIO);
473 	}
474 
475 	/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
476 	if (ahp->ah_calibrationTime != 0) {
477 		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
478 			AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S));
479 		ahp->ah_bIQCalibration = AH_TRUE;
480 	}
481 
482 	/* set 1:1 QCU to DCU mapping for all queues */
483 	for (q = 0; q < AR_NUM_DCU; q++)
484 		OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q);
485 
486 	for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
487 		ar5211ResetTxQueue(ah, q);
488 
489 	/* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
490 	OS_REG_WRITE(ah, AR_IMR_S0,
491 		 (AR_IMR_S0_QCU_TXOK & AR_QCU_0) |
492 		 (AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S)));
493 	OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0));
494 	OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0));
495 
496 	/*
497 	 * GBL_EIFS must always be written after writing
498 	 *		to any QCUMASK register.
499 	 */
500 	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS));
501 
502 	/* Now set up the Interrupt Mask Register and save it for future use */
503 	OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK);
504 	ahp->ah_maskReg = INIT_INTERRUPT_MASK;
505 
506 	/* Enable bus error interrupts */
507 	OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) |
508 		 AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
509 
510 	/* Enable interrupts specific to AP */
511 	if (opmode == HAL_M_HOSTAP) {
512 		OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB);
513 		ahp->ah_maskReg |= AR_IMR_MIB;
514 	}
515 
516 	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
517 		ar5211EnableRfKill(ah);
518 
519 	/*
520 	 * Writing to AR_BEACON will start timers. Hence it should
521 	 * be the last register to be written. Do not reset tsf, do
522 	 * not enable beacons at this point, but preserve other values
523 	 * like beaconInterval.
524 	 */
525 	OS_REG_WRITE(ah, AR_BEACON,
526 		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
527 
528 	/* Restore user-specified slot time and timeouts */
529 	if (ahp->ah_sifstime != (u_int) -1)
530 		ar5211SetSifsTime(ah, ahp->ah_sifstime);
531 	if (ahp->ah_slottime != (u_int) -1)
532 		ar5211SetSlotTime(ah, ahp->ah_slottime);
533 	if (ahp->ah_acktimeout != (u_int) -1)
534 		ar5211SetAckTimeout(ah, ahp->ah_acktimeout);
535 	if (ahp->ah_ctstimeout != (u_int) -1)
536 		ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout);
537 	if (AH_PRIVATE(ah)->ah_diagreg != 0)
538 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
539 
540 	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
541 
542 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
543 
544 	return AH_TRUE;
545 bad:
546 	if (status != AH_NULL)
547 		*status = ecode;
548 	return AH_FALSE;
549 #undef FAIL
550 #undef N
551 }
552 
553 /*
554  * Places the PHY and Radio chips into reset.  A full reset
555  * must be called to leave this state.  The PCI/MAC/PCU are
556  * not placed into reset as we must receive interrupt to
557  * re-enable the hardware.
558  */
559 HAL_BOOL
560 ar5211PhyDisable(struct ath_hal *ah)
561 {
562 	return ar5211SetResetReg(ah, AR_RC_BB);
563 }
564 
565 /*
566  * Places all of hardware into reset
567  */
568 HAL_BOOL
569 ar5211Disable(struct ath_hal *ah)
570 {
571 	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
572 		return AH_FALSE;
573 	/*
574 	 * Reset the HW - PCI must be reset after the rest of the
575 	 * device has been reset.
576 	 */
577 	if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
578 		return AH_FALSE;
579 	OS_DELAY(2100);	   /* 8245 @ 96Mhz hangs with 2000us. */
580 
581 	return AH_TRUE;
582 }
583 
584 /*
585  * Places the hardware into reset and then pulls it out of reset
586  *
587  * Only write the PLL if we're changing to or from CCK mode
588  *
589  * Attach calls with channelFlags = 0, as the coldreset should have
590  * us in the correct mode and we cannot check the hwchannel flags.
591  */
592 HAL_BOOL
593 ar5211ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
594 {
595 	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
596 		return AH_FALSE;
597 
598 	/* NB: called from attach with chan null */
599 	if (chan != AH_NULL) {
600 		/* Set CCK and Turbo modes correctly */
601 		OS_REG_WRITE(ah, AR_PHY_TURBO, IEEE80211_IS_CHAN_TURBO(chan) ?
602 		    AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT : 0);
603 		if (IEEE80211_IS_CHAN_B(chan)) {
604 			OS_REG_WRITE(ah, AR5211_PHY_MODE,
605 			    AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ);
606 			OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44);
607 			/* Wait for the PLL to settle */
608 			OS_DELAY(DELAY_PLL_SETTLE);
609 		} else if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
610 			OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
611 			OS_DELAY(DELAY_PLL_SETTLE);
612 			OS_REG_WRITE(ah, AR5211_PHY_MODE,
613 			    AR5211_PHY_MODE_OFDM | (IEEE80211_IS_CHAN_2GHZ(chan) ?
614 				AR5211_PHY_MODE_RF2GHZ :
615 				AR5211_PHY_MODE_RF5GHZ));
616 		}
617 	}
618 
619 	/*
620 	 * Reset the HW - PCI must be reset after the rest of the
621 	 * device has been reset
622 	 */
623 	if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
624 		return AH_FALSE;
625 	OS_DELAY(2100);	   /* 8245 @ 96Mhz hangs with 2000us. */
626 
627 	/* Bring out of sleep mode (AGAIN) */
628 	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
629 		return AH_FALSE;
630 
631 	/* Clear warm reset register */
632 	return ar5211SetResetReg(ah, 0);
633 }
634 
635 /*
636  * Recalibrate the lower PHY chips to account for temperature/environment
637  * changes.
638  */
639 HAL_BOOL
640 ar5211PerCalibrationN(struct ath_hal *ah,  struct ieee80211_channel *chan,
641 	u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
642 {
643 	struct ath_hal_5211 *ahp = AH5211(ah);
644 	HAL_CHANNEL_INTERNAL *ichan;
645 	int32_t qCoff, qCoffDenom;
646 	uint32_t data;
647 	int32_t iqCorrMeas;
648 	int32_t iCoff, iCoffDenom;
649 	uint32_t powerMeasQ, powerMeasI;
650 
651 	ichan = ath_hal_checkchannel(ah, chan);
652 	if (ichan == AH_NULL) {
653 		HALDEBUG(ah, HAL_DEBUG_ANY,
654 		    "%s: invalid channel %u/0x%x; no mapping\n",
655 		    __func__, chan->ic_freq, chan->ic_flags);
656 		return AH_FALSE;
657 	}
658 	/* IQ calibration in progress. Check to see if it has finished. */
659 	if (ahp->ah_bIQCalibration &&
660 	    !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
661 		/* IQ Calibration has finished. */
662 		ahp->ah_bIQCalibration = AH_FALSE;
663 
664 		/* Read calibration results. */
665 		powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
666 		powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
667 		iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
668 
669 		/*
670 		 * Prescale these values to remove 64-bit operation requirement at the loss
671 		 * of a little precision.
672 		 */
673 		iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
674 		qCoffDenom = powerMeasQ / 64;
675 
676 		/* Protect against divide-by-0. */
677 		if (iCoffDenom != 0 && qCoffDenom != 0) {
678 			iCoff = (-iqCorrMeas) / iCoffDenom;
679 			/* IQCORR_Q_I_COFF is a signed 6 bit number */
680 			iCoff = iCoff & 0x3f;
681 
682 			qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64;
683 			/* IQCORR_Q_Q_COFF is a signed 5 bit number */
684 			qCoff = qCoff & 0x1f;
685 
686 			HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n",
687 			    powerMeasI);
688 			HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n",
689 			    powerMeasQ);
690 			HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n",
691 			    iqCorrMeas);
692 			HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff	  = %d\n",
693 			    iCoff);
694 			HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff	  = %d\n",
695 			    qCoff);
696 
697 			/* Write IQ */
698 			data  = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
699 				AR_PHY_TIMING_CTRL4_IQCORR_ENABLE |
700 				(((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) |
701 				((uint32_t)qCoff);
702 			OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data);
703 		}
704 	}
705 	*isCalDone = !ahp->ah_bIQCalibration;
706 
707 	if (longCal) {
708 		/* Perform noise floor and set status */
709 		if (!ar5211IsNfGood(ah, chan)) {
710 			/* report up and clear internal state */
711 			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
712 			return AH_FALSE;
713 		}
714 		if (!ar5211CalNoiseFloor(ah, chan)) {
715 			/*
716 			 * Delay 5ms before retrying the noise floor
717 			 * just to make sure, as we are in an error
718 			 * condition here.
719 			 */
720 			OS_DELAY(5000);
721 			if (!ar5211CalNoiseFloor(ah, chan)) {
722 				if (!IEEE80211_IS_CHAN_CCK(chan))
723 					chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
724 				return AH_FALSE;
725 			}
726 		}
727 		ar5211RequestRfgain(ah);
728 	}
729 	return AH_TRUE;
730 }
731 
732 HAL_BOOL
733 ar5211PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
734 	HAL_BOOL *isIQdone)
735 {
736 	return ar5211PerCalibrationN(ah,  chan, 0x1, AH_TRUE, isIQdone);
737 }
738 
739 HAL_BOOL
740 ar5211ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
741 {
742 	/* XXX */
743 	return AH_TRUE;
744 }
745 
746 /*
747  * Writes the given reset bit mask into the reset register
748  */
749 static HAL_BOOL
750 ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask)
751 {
752 	uint32_t mask = resetMask ? resetMask : ~0;
753 	HAL_BOOL rt;
754 
755 	(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
756 	OS_REG_WRITE(ah, AR_RC, resetMask);
757 
758 	/* need to wait at least 128 clocks when reseting PCI before read */
759 	OS_DELAY(15);
760 
761 	resetMask &= AR_RC_MAC | AR_RC_BB;
762 	mask &= AR_RC_MAC | AR_RC_BB;
763 	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
764         if ((resetMask & AR_RC_MAC) == 0) {
765 		if (isBigEndian()) {
766 			/*
767 			 * Set CFG, little-endian for register
768 			 * and descriptor accesses.
769 			 */
770 			mask = INIT_CONFIG_STATUS |
771 				AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG;
772 			OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
773 		} else
774 			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
775 	}
776 	return rt;
777 }
778 
779 /*
780  * Takes the MHz channel value and sets the Channel value
781  *
782  * ASSUMES: Writes enabled to analog bus before AGC is active
783  *   or by disabling the AGC.
784  */
785 static HAL_BOOL
786 ar5211SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
787 {
788 	uint32_t refClk, reg32, data2111;
789 	int16_t chan5111, chanIEEE;
790 
791 	chanIEEE = chan->ic_ieee;
792 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
793 		const CHAN_INFO_2GHZ* ci =
794 			&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
795 
796 		data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
797 				<< 5)
798 			 | (ci->refClkSel << 4);
799 		chan5111 = ci->channel5111;
800 	} else {
801 		data2111 = 0;
802 		chan5111 = chanIEEE;
803 	}
804 
805 	/* Rest of the code is common for 5 GHz and 2.4 GHz. */
806 	if (chan5111 >= 145 || (chan5111 & 0x1)) {
807 		reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF;
808 		refClk = 1;
809 	} else {
810 		reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF;
811 		refClk = 0;
812 	}
813 
814 	reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
815 	OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
816 	reg32 >>= 8;
817 	OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
818 
819 	AH_PRIVATE(ah)->ah_curchan = chan;
820 	return AH_TRUE;
821 }
822 
823 static int16_t
824 ar5211GetNoiseFloor(struct ath_hal *ah)
825 {
826 	int16_t nf;
827 
828 	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
829 	if (nf & 0x100)
830 		nf = 0 - ((nf ^ 0x1ff) + 1);
831 	return nf;
832 }
833 
834 /*
835  * Peform the noisefloor calibration for the length of time set
836  * in runTime (valid values 1 to 7)
837  *
838  * Returns: The NF value at the end of the given time (or 0 for failure)
839  */
840 int16_t
841 ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF)
842 {
843 	int i, searchTime;
844 
845 	HALASSERT(runTime <= 7);
846 
847 	/* Setup  noise floor run time and starting value */
848 	OS_REG_WRITE(ah, AR_PHY(25),
849 		(OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) |
850 			 ((runTime << 9) & 0xE00) | (startingNF & 0x1FF));
851 	/* Calibrate the noise floor */
852 	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
853 		OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
854 
855 	/* Compute the required amount of searchTime needed to finish NF */
856 	if (runTime == 0) {
857 		/* 8 search windows * 6.4us each */
858 		searchTime = 8  * 7;
859 	} else {
860 		/* 512 * runtime search windows * 6.4us each */
861 		searchTime = (runTime * 512)  * 7;
862 	}
863 
864 	/*
865 	 * Do not read noise floor until it has been updated
866 	 *
867 	 * As a guesstimate - we may only get 1/60th the time on
868 	 * the air to see search windows  in a heavily congested
869 	 * network (40 us every 2400 us of time)
870 	 */
871 	for (i = 0; i < 60; i++) {
872 		if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0)
873 			break;
874 		OS_DELAY(searchTime);
875 	}
876 	if (i >= 60) {
877 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
878 		    "NF with runTime %d failed to end on channel %d\n",
879 		    runTime, AH_PRIVATE(ah)->ah_curchan->ic_freq);
880 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
881 		    "  PHY NF Reg state:	 0x%x\n",
882 		    OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
883 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
884 		    "  PHY Active Reg state: 0x%x\n",
885 		    OS_REG_READ(ah, AR_PHY_ACTIVE));
886 		return 0;
887 	}
888 
889 	return ar5211GetNoiseFloor(ah);
890 }
891 
892 static HAL_BOOL
893 getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
894 	int16_t *nft)
895 {
896 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
897 
898 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
899 	case IEEE80211_CHAN_A:
900 		*nft = ee->ee_noiseFloorThresh[0];
901 		break;
902 	case IEEE80211_CHAN_B:
903 		*nft = ee->ee_noiseFloorThresh[1];
904 		break;
905 	case IEEE80211_CHAN_PUREG:
906 		*nft = ee->ee_noiseFloorThresh[2];
907 		break;
908 	default:
909 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
910 		    __func__, chan->ic_flags);
911 		return AH_FALSE;
912 	}
913 	return AH_TRUE;
914 }
915 
916 /*
917  * Read the NF and check it against the noise floor threshhold
918  *
919  * Returns: TRUE if the NF is good
920  */
921 static HAL_BOOL
922 ar5211IsNfGood(struct ath_hal *ah, struct ieee80211_channel *chan)
923 {
924 	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
925 	int16_t nf, nfThresh;
926 
927 	if (!getNoiseFloorThresh(ah, chan, &nfThresh))
928 		return AH_FALSE;
929 	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
930 		HALDEBUG(ah, HAL_DEBUG_ANY,
931 		    "%s: NF did not complete in calibration window\n", __func__);
932 	}
933 	nf = ar5211GetNoiseFloor(ah);
934 	if (nf > nfThresh) {
935 		HALDEBUG(ah, HAL_DEBUG_ANY,
936 		    "%s: noise floor failed; detected %u, threshold %u\n",
937 		    __func__, nf, nfThresh);
938 		/*
939 		 * NB: Don't discriminate 2.4 vs 5Ghz, if this
940 		 *     happens it indicates a problem regardless
941 		 *     of the band.
942 		 */
943 		chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
944 	}
945 	ichan->rawNoiseFloor = nf;
946 	return (nf <= nfThresh);
947 }
948 
949 /*
950  * Peform the noisefloor calibration and check for any constant channel
951  * interference.
952  *
953  * NOTE: preAR5211 have a lengthy carrier wave detection process - hence
954  * it is if'ed for MKK regulatory domain only.
955  *
956  * Returns: TRUE for a successful noise floor calibration; else FALSE
957  */
958 HAL_BOOL
959 ar5211CalNoiseFloor(struct ath_hal *ah, const struct ieee80211_channel *chan)
960 {
961 #define	N(a)	(sizeof (a) / sizeof (a[0]))
962 	/* Check for Carrier Wave interference in MKK regulatory zone */
963 	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU &&
964 	    (chan->ic_flags & CHANNEL_NFCREQUIRED)) {
965 		static const uint8_t runtime[3] = { 0, 2, 7 };
966 		HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
967 		int16_t nf, nfThresh;
968 		int i;
969 
970 		if (!getNoiseFloorThresh(ah, chan, &nfThresh))
971 			return AH_FALSE;
972 		/*
973 		 * Run a quick noise floor that will hopefully
974 		 * complete (decrease delay time).
975 		 */
976 		for (i = 0; i < N(runtime); i++) {
977 			nf = ar5211RunNoiseFloor(ah, runtime[i], 0);
978 			if (nf > nfThresh) {
979 				HALDEBUG(ah, HAL_DEBUG_ANY,
980 				    "%s: run failed with %u > threshold %u "
981 				    "(runtime %u)\n", __func__,
982 				    nf, nfThresh, runtime[i]);
983 				ichan->rawNoiseFloor = 0;
984 			} else
985 				ichan->rawNoiseFloor = nf;
986 		}
987 		return (i <= N(runtime));
988 	} else {
989 		/* Calibrate the noise floor */
990 		OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
991 			OS_REG_READ(ah, AR_PHY_AGC_CONTROL) |
992 				 AR_PHY_AGC_CONTROL_NF);
993 	}
994 	return AH_TRUE;
995 #undef N
996 }
997 
998 /*
999  * Adjust NF based on statistical values for 5GHz frequencies.
1000  */
1001 int16_t
1002 ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
1003 {
1004 	static const struct {
1005 		uint16_t freqLow;
1006 		int16_t	  adjust;
1007 	} adjust5111[] = {
1008 		{ 5790,	11 },	/* NB: ordered high -> low */
1009 		{ 5730, 10 },
1010 		{ 5690,  9 },
1011 		{ 5660,  8 },
1012 		{ 5610,  7 },
1013 		{ 5530,  5 },
1014 		{ 5450,  4 },
1015 		{ 5379,  2 },
1016 		{ 5209,  0 },	/* XXX? bogus but doesn't matter */
1017 		{    0,  1 },
1018 	};
1019 	int i;
1020 
1021 	for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
1022 		;
1023 	/* NB: placeholder for 5111's less severe requirement */
1024 	return adjust5111[i].adjust / 3;
1025 }
1026 
1027 /*
1028  * Reads EEPROM header info from device structure and programs
1029  * analog registers 6 and 7
1030  *
1031  * REQUIRES: Access to the analog device
1032  */
1033 static HAL_BOOL
1034 ar5211SetRf6and7(struct ath_hal *ah, const struct ieee80211_channel *chan)
1035 {
1036 #define	N(a)	(sizeof (a) / sizeof (a[0]))
1037 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1038 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1039 	struct ath_hal_5211 *ahp = AH5211(ah);
1040 	uint16_t rfXpdGain, rfPloSel, rfPwdXpd;
1041 	uint16_t tempOB, tempDB;
1042 	uint16_t freqIndex;
1043 	int i;
1044 
1045 	freqIndex = IEEE80211_IS_CHAN_2GHZ(chan) ? 2 : 1;
1046 
1047 	/*
1048 	 * TODO: This array mode correspondes with the index used
1049 	 *	 during the read.
1050 	 * For readability, this should be changed to an enum or #define
1051 	 */
1052 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1053 	case IEEE80211_CHAN_A:
1054 		if (freq > 4000 && freq < 5260) {
1055 			tempOB = ee->ee_ob1;
1056 			tempDB = ee->ee_db1;
1057 		} else if (freq >= 5260 && freq < 5500) {
1058 			tempOB = ee->ee_ob2;
1059 			tempDB = ee->ee_db2;
1060 		} else if (freq >= 5500 && freq < 5725) {
1061 			tempOB = ee->ee_ob3;
1062 			tempDB = ee->ee_db3;
1063 		} else if (freq >= 5725) {
1064 			tempOB = ee->ee_ob4;
1065 			tempDB = ee->ee_db4;
1066 		} else {
1067 			/* XXX panic?? */
1068 			tempOB = tempDB = 0;
1069 		}
1070 
1071 		rfXpdGain = ee->ee_xgain[0];
1072 		rfPloSel  = ee->ee_xpd[0];
1073 		rfPwdXpd  = !ee->ee_xpd[0];
1074 
1075 		ar5211Rf6n7[5][freqIndex]  =
1076 			(ar5211Rf6n7[5][freqIndex] & ~0x10000000) |
1077 				(ee->ee_cornerCal.pd84<< 28);
1078 		ar5211Rf6n7[6][freqIndex]  =
1079 			(ar5211Rf6n7[6][freqIndex] & ~0x04000000) |
1080 				(ee->ee_cornerCal.pd90 << 26);
1081 		ar5211Rf6n7[21][freqIndex] =
1082 			(ar5211Rf6n7[21][freqIndex] & ~0x08) |
1083 				(ee->ee_cornerCal.gSel << 3);
1084 		break;
1085 	case IEEE80211_CHAN_B:
1086 		tempOB = ee->ee_obFor24;
1087 		tempDB = ee->ee_dbFor24;
1088 		rfXpdGain = ee->ee_xgain[1];
1089 		rfPloSel  = ee->ee_xpd[1];
1090 		rfPwdXpd  = !ee->ee_xpd[1];
1091 		break;
1092 	case IEEE80211_CHAN_PUREG:
1093 		tempOB = ee->ee_obFor24g;
1094 		tempDB = ee->ee_dbFor24g;
1095 		rfXpdGain = ee->ee_xgain[2];
1096 		rfPloSel  = ee->ee_xpd[2];
1097 		rfPwdXpd  = !ee->ee_xpd[2];
1098 		break;
1099 	default:
1100 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1101 		    __func__, chan->ic_flags);
1102 		return AH_FALSE;
1103 	}
1104 
1105 	HALASSERT(1 <= tempOB && tempOB <= 5);
1106 	HALASSERT(1 <= tempDB && tempDB <= 5);
1107 
1108 	/* Set rfXpdGain and rfPwdXpd */
1109 	ar5211Rf6n7[11][freqIndex] =  (ar5211Rf6n7[11][freqIndex] & ~0xC0) |
1110 		(((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0);
1111 	ar5211Rf6n7[12][freqIndex] =  (ar5211Rf6n7[12][freqIndex] & ~0x07) |
1112 		((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07);
1113 
1114 	/* Set OB */
1115 	ar5211Rf6n7[12][freqIndex] =  (ar5211Rf6n7[12][freqIndex] & ~0x80) |
1116 		((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80);
1117 	ar5211Rf6n7[13][freqIndex] =  (ar5211Rf6n7[13][freqIndex] & ~0x03) |
1118 		((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03);
1119 
1120 	/* Set DB */
1121 	ar5211Rf6n7[13][freqIndex] =  (ar5211Rf6n7[13][freqIndex] & ~0x1C) |
1122 		((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C);
1123 
1124 	/* Set rfPloSel */
1125 	ar5211Rf6n7[17][freqIndex] =  (ar5211Rf6n7[17][freqIndex] & ~0x08) |
1126 		((rfPloSel << 3) & 0x08);
1127 
1128 	/* Write the Rf registers 6 & 7 */
1129 	for (i = 0; i < N(ar5211Rf6n7); i++)
1130 		OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]);
1131 
1132 	/* Now that we have reprogrammed rfgain value, clear the flag. */
1133 	ahp->ah_rfgainState = RFGAIN_INACTIVE;
1134 
1135 	return AH_TRUE;
1136 #undef N
1137 }
1138 
1139 HAL_BOOL
1140 ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1141 	const struct ieee80211_channel *chan)
1142 {
1143 #define	ANT_SWITCH_TABLE1	0x9960
1144 #define	ANT_SWITCH_TABLE2	0x9964
1145 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1146 	struct ath_hal_5211 *ahp = AH5211(ah);
1147 	uint32_t antSwitchA, antSwitchB;
1148 	int ix;
1149 
1150 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1151 	case IEEE80211_CHAN_A:		ix = 0; break;
1152 	case IEEE80211_CHAN_B:		ix = 1; break;
1153 	case IEEE80211_CHAN_PUREG:	ix = 2; break;
1154 	default:
1155 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1156 		    __func__, chan->ic_flags);
1157 		return AH_FALSE;
1158 	}
1159 
1160 	antSwitchA =  ee->ee_antennaControl[1][ix]
1161 		   | (ee->ee_antennaControl[2][ix] << 6)
1162 		   | (ee->ee_antennaControl[3][ix] << 12)
1163 		   | (ee->ee_antennaControl[4][ix] << 18)
1164 		   | (ee->ee_antennaControl[5][ix] << 24)
1165 		   ;
1166 	antSwitchB =  ee->ee_antennaControl[6][ix]
1167 		   | (ee->ee_antennaControl[7][ix] << 6)
1168 		   | (ee->ee_antennaControl[8][ix] << 12)
1169 		   | (ee->ee_antennaControl[9][ix] << 18)
1170 		   | (ee->ee_antennaControl[10][ix] << 24)
1171 		   ;
1172 	/*
1173 	 * For fixed antenna, give the same setting for both switch banks
1174 	 */
1175 	switch (settings) {
1176 	case HAL_ANT_FIXED_A:
1177 		antSwitchB = antSwitchA;
1178 		break;
1179 	case HAL_ANT_FIXED_B:
1180 		antSwitchA = antSwitchB;
1181 		break;
1182 	case HAL_ANT_VARIABLE:
1183 		break;
1184 	default:
1185 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1186 		    __func__, settings);
1187 		return AH_FALSE;
1188 	}
1189 	ahp->ah_diversityControl = settings;
1190 
1191 	OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1192 	OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1193 
1194 	return AH_TRUE;
1195 #undef ANT_SWITCH_TABLE1
1196 #undef ANT_SWITCH_TABLE2
1197 }
1198 
1199 /*
1200  * Reads EEPROM header info and programs the device for correct operation
1201  * given the channel value
1202  */
1203 static HAL_BOOL
1204 ar5211SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1205 {
1206 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1207 	struct ath_hal_5211 *ahp = AH5211(ah);
1208 	int arrayMode, falseDectectBackoff;
1209 
1210 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1211 	case IEEE80211_CHAN_A:
1212 		arrayMode = 0;
1213 		OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1214 			AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip);
1215 		break;
1216 	case IEEE80211_CHAN_B:
1217 		arrayMode = 1;
1218 		break;
1219 	case IEEE80211_CHAN_PUREG:
1220 		arrayMode = 2;
1221 		break;
1222 	default:
1223 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1224 		    __func__, chan->ic_flags);
1225 		return AH_FALSE;
1226 	}
1227 
1228 	/* Set the antenna register(s) correctly for the chip revision */
1229 	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
1230 		OS_REG_WRITE(ah, AR_PHY(68),
1231 			(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
1232 	} else {
1233 		OS_REG_WRITE(ah, AR_PHY(68),
1234 			(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) |
1235 			(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1236 
1237 		ar5211SetAntennaSwitchInternal(ah,
1238 			ahp->ah_diversityControl, chan);
1239 
1240 		/* Set the Noise Floor Thresh on ar5211 devices */
1241 		OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2),
1242 			(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9));
1243 	}
1244 	OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2),
1245 		(OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) |
1246 		((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80));
1247 	OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2),
1248 		(OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) |
1249 		((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000));
1250 	OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2),
1251 		(OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) |
1252 		((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) |
1253 		(ee->ee_adcDesiredSize[arrayMode] & 0x00FF));
1254 	OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2),
1255 		(ee->ee_txEndToXPAOff[arrayMode] << 24) |
1256 		(ee->ee_txEndToXPAOff[arrayMode] << 16) |
1257 		(ee->ee_txFrameToXPAOn[arrayMode] << 8) |
1258 		ee->ee_txFrameToXPAOn[arrayMode]);
1259 	OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2),
1260 		(OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) |
1261 		(ee->ee_txEndToXLNAOn[arrayMode] << 8));
1262 	OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2),
1263 		(OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) |
1264 		((ee->ee_thresh62[arrayMode] << 12) & 0x7F000));
1265 
1266 #define NO_FALSE_DETECT_BACKOFF   2
1267 #define CB22_FALSE_DETECT_BACKOFF 6
1268 	/*
1269 	 * False detect backoff - suspected 32 MHz spur causes
1270 	 * false detects in OFDM, causing Tx Hangs.  Decrease
1271 	 * weak signal sensitivity for this card.
1272 	 */
1273 	falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1274 	if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) {
1275 		if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1276 		    IEEE80211_IS_CHAN_OFDM(chan))
1277 			falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1278 	} else {
1279 		uint16_t freq = ath_hal_gethwchannel(ah, chan);
1280 		uint32_t remainder = freq % 32;
1281 
1282 		if (remainder && (remainder < 10 || remainder > 22))
1283 			falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1284 	}
1285 	OS_REG_WRITE(ah, 0x9924,
1286 		(OS_REG_READ(ah, 0x9924) & 0xFFFFFF01)
1287 		| ((falseDectectBackoff << 1) & 0xF7));
1288 
1289 	return AH_TRUE;
1290 #undef NO_FALSE_DETECT_BACKOFF
1291 #undef CB22_FALSE_DETECT_BACKOFF
1292 }
1293 
1294 /*
1295  * Set the limit on the overall output power.  Used for dynamic
1296  * transmit power control and the like.
1297  *
1298  * NOTE: The power is passed in is in units of 0.5 dBm.
1299  */
1300 HAL_BOOL
1301 ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1302 {
1303 
1304 	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1305 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit);
1306 	return AH_TRUE;
1307 }
1308 
1309 /*
1310  * Sets the transmit power in the baseband for the given
1311  * operating channel and mode.
1312  */
1313 static HAL_BOOL
1314 ar5211SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
1315 {
1316 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1317 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1318 	TRGT_POWER_INFO *pi;
1319 	RD_EDGES_POWER *rep;
1320 	PCDACS_EEPROM eepromPcdacs;
1321 	u_int nchan, cfgCtl;
1322 	int i;
1323 
1324 	/* setup the pcdac struct to point to the correct info, based on mode */
1325 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1326 	case IEEE80211_CHAN_A:
1327 		eepromPcdacs.numChannels = ee->ee_numChannels11a;
1328 		eepromPcdacs.pChannelList= ee->ee_channels11a;
1329 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
1330 		nchan = ee->ee_numTargetPwr_11a;
1331 		pi = ee->ee_trgtPwr_11a;
1332 		break;
1333 	case IEEE80211_CHAN_PUREG:
1334 		eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1335 		eepromPcdacs.pChannelList= ee->ee_channels11g;
1336 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
1337 		nchan = ee->ee_numTargetPwr_11g;
1338 		pi = ee->ee_trgtPwr_11g;
1339 		break;
1340 	case IEEE80211_CHAN_B:
1341 		eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1342 		eepromPcdacs.pChannelList= ee->ee_channels11b;
1343 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
1344 		nchan = ee->ee_numTargetPwr_11b;
1345 		pi = ee->ee_trgtPwr_11b;
1346 		break;
1347 	default:
1348 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1349 		    __func__, chan->ic_flags);
1350 		return AH_FALSE;
1351 	}
1352 
1353 	ar5211SetPowerTable(ah, &eepromPcdacs, freq);
1354 
1355 	rep = AH_NULL;
1356 	/* Match CTL to EEPROM value */
1357 	cfgCtl = ath_hal_getctl(ah, chan);
1358 	for (i = 0; i < ee->ee_numCtls; i++)
1359 		if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) {
1360 			rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
1361 			break;
1362 		}
1363 	ar5211SetRateTable(ah, rep, pi, nchan, chan);
1364 
1365 	return AH_TRUE;
1366 }
1367 
1368 /*
1369  * Read the transmit power levels from the structures taken
1370  * from EEPROM. Interpolate read transmit power values for
1371  * this channel. Organize the transmit power values into a
1372  * table for writing into the hardware.
1373  */
1374 void
1375 ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct,
1376 	uint16_t channel)
1377 {
1378 	static FULL_PCDAC_STRUCT pcdacStruct;
1379 	static uint16_t pcdacTable[PWR_TABLE_SIZE];
1380 
1381 	uint16_t	 i, j;
1382 	uint16_t	 *pPcdacValues;
1383 	int16_t	  *pScaledUpDbm;
1384 	int16_t	  minScaledPwr;
1385 	int16_t	  maxScaledPwr;
1386 	int16_t	  pwr;
1387 	uint16_t	 pcdacMin = 0;
1388 	uint16_t	 pcdacMax = 63;
1389 	uint16_t	 pcdacTableIndex;
1390 	uint16_t	 scaledPcdac;
1391 	uint32_t	 addr;
1392 	uint32_t	 temp32;
1393 
1394 	OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT));
1395 	OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE);
1396 	pPcdacValues = pcdacStruct.PcdacValues;
1397 	pScaledUpDbm = pcdacStruct.PwrValues;
1398 
1399 	/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
1400 	for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
1401 		pPcdacValues[j] = i;
1402 
1403 	pcdacStruct.numPcdacValues = j;
1404 	pcdacStruct.pcdacMin = PCDAC_START;
1405 	pcdacStruct.pcdacMax = PCDAC_STOP;
1406 
1407 	/* Fill out the power values for this channel */
1408 	for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
1409 		pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct);
1410 
1411 	/* Now scale the pcdac values to fit in the 64 entry power table */
1412 	minScaledPwr = pScaledUpDbm[0];
1413 	maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
1414 
1415 	/* find minimum and make monotonic */
1416 	for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
1417 		if (minScaledPwr >= pScaledUpDbm[j]) {
1418 			minScaledPwr = pScaledUpDbm[j];
1419 			pcdacMin = j;
1420 		}
1421 		/*
1422 		 * Make the full_hsh monotonically increasing otherwise
1423 		 * interpolation algorithm will get fooled gotta start
1424 		 * working from the top, hence i = 63 - j.
1425 		 */
1426 		i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
1427 		if (i == 0)
1428 			break;
1429 		if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
1430 			/*
1431 			 * It could be a glitch, so make the power for
1432 			 * this pcdac the same as the power from the
1433 			 * next highest pcdac.
1434 			 */
1435 			pScaledUpDbm[i - 1] = pScaledUpDbm[i];
1436 		}
1437 	}
1438 
1439 	for (j = 0; j < pcdacStruct.numPcdacValues; j++)
1440 		if (maxScaledPwr < pScaledUpDbm[j]) {
1441 			maxScaledPwr = pScaledUpDbm[j];
1442 			pcdacMax = j;
1443 		}
1444 
1445 	/* Find the first power level with a pcdac */
1446 	pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP)  + PWR_MIN);
1447 
1448 	/* Write all the first pcdac entries based off the pcdacMin */
1449 	pcdacTableIndex = 0;
1450 	for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++)
1451 		pcdacTable[pcdacTableIndex++] = pcdacMin;
1452 
1453 	i = 0;
1454 	while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) {
1455 		pwr += PWR_STEP;
1456 		/* stop if dbM > max_power_possible */
1457 		while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
1458 		       (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
1459 			i++;
1460 		/* scale by 2 and add 1 to enable round up or down as needed */
1461 		scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr,
1462 				pScaledUpDbm[i], pScaledUpDbm[i+1],
1463 				(uint16_t)(pPcdacValues[i] * 2),
1464 				(uint16_t)(pPcdacValues[i+1] * 2), 0) + 1);
1465 
1466 		pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
1467 		if (pcdacTable[pcdacTableIndex] > pcdacMax)
1468 			pcdacTable[pcdacTableIndex] = pcdacMax;
1469 		pcdacTableIndex++;
1470 	}
1471 
1472 	/* Write all the last pcdac entries based off the last valid pcdac */
1473 	while (pcdacTableIndex < PWR_TABLE_SIZE) {
1474 		pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1];
1475 		pcdacTableIndex++;
1476 	}
1477 
1478 	/* Finally, write the power values into the baseband power table */
1479 	addr = AR_PHY_BASE + (608 << 2);
1480 	for (i = 0; i < 32; i++) {
1481 		temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff);
1482 		temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff));
1483 		OS_REG_WRITE(ah, addr, temp32);
1484 		addr += 4;
1485 	}
1486 
1487 }
1488 
1489 /*
1490  * Set the transmit power in the baseband for the given
1491  * operating channel and mode.
1492  */
1493 static void
1494 ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower,
1495 	TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
1496 	const struct ieee80211_channel *chan)
1497 {
1498 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1499 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1500 	struct ath_hal_5211 *ahp = AH5211(ah);
1501 	static uint16_t ratesArray[NUM_RATES];
1502 	static const uint16_t tpcScaleReductionTable[5] =
1503 		{ 0, 3, 6, 9, MAX_RATE_POWER };
1504 
1505 	uint16_t	*pRatesPower;
1506 	uint16_t	lowerChannel, lowerIndex=0, lowerPower=0;
1507 	uint16_t	upperChannel, upperIndex=0, upperPower=0;
1508 	uint16_t	twiceMaxEdgePower=63;
1509 	uint16_t	twicePower = 0;
1510 	uint16_t	i, numEdges;
1511 	uint16_t	tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */
1512 	uint16_t	twiceMaxRDPower;
1513 	int16_t	 scaledPower = 0;		/* for gcc -O2 */
1514 	uint16_t	mask = 0x3f;
1515 	HAL_BOOL	  paPreDEnable = 0;
1516 	int8_t	  twiceAntennaGain, twiceAntennaReduction = 0;
1517 
1518 	pRatesPower = ratesArray;
1519 	twiceMaxRDPower = chan->ic_maxregpower * 2;
1520 
1521 	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
1522 		twiceAntennaGain = ee->ee_antennaGainMax[0];
1523 	} else {
1524 		twiceAntennaGain = ee->ee_antennaGainMax[1];
1525 	}
1526 
1527 	twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
1528 
1529 	if (pRdEdgesPower) {
1530 		/* Get the edge power */
1531 		for (i = 0; i < NUM_EDGES; i++) {
1532 			if (pRdEdgesPower[i].rdEdge == 0)
1533 				break;
1534 			tempChannelList[i] = pRdEdgesPower[i].rdEdge;
1535 		}
1536 		numEdges = i;
1537 
1538 		ar5211GetLowerUpperValues(freq, tempChannelList,
1539 			numEdges, &lowerChannel, &upperChannel);
1540 		/* Get the index for this channel */
1541 		for (i = 0; i < numEdges; i++)
1542 			if (lowerChannel == tempChannelList[i])
1543 				break;
1544 		HALASSERT(i != numEdges);
1545 
1546 		if ((lowerChannel == upperChannel &&
1547 		     lowerChannel == freq) ||
1548 		    pRdEdgesPower[i].flag) {
1549 			twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
1550 			HALASSERT(twiceMaxEdgePower > 0);
1551 		}
1552 	}
1553 
1554 	/* extrapolate the power values for the test Groups */
1555 	for (i = 0; i < numChannels; i++)
1556 		tempChannelList[i] = pPowerInfo[i].testChannel;
1557 
1558 	ar5211GetLowerUpperValues(freq, tempChannelList,
1559 		numChannels, &lowerChannel, &upperChannel);
1560 
1561 	/* get the index for the channel */
1562 	for (i = 0; i < numChannels; i++) {
1563 		if (lowerChannel == tempChannelList[i])
1564 			lowerIndex = i;
1565 		if (upperChannel == tempChannelList[i]) {
1566 			upperIndex = i;
1567 			break;
1568 		}
1569 	}
1570 
1571 	for (i = 0; i < NUM_RATES; i++) {
1572 		if (IEEE80211_IS_CHAN_OFDM(chan)) {
1573 			/* power for rates 6,9,12,18,24 is all the same */
1574 			if (i < 5) {
1575 				lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1576 				upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1577 			} else if (i == 5) {
1578 				lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1579 				upperPower = pPowerInfo[upperIndex].twicePwr36;
1580 			} else if (i == 6) {
1581 				lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1582 				upperPower = pPowerInfo[upperIndex].twicePwr48;
1583 			} else if (i == 7) {
1584 				lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1585 				upperPower = pPowerInfo[upperIndex].twicePwr54;
1586 			}
1587 		} else {
1588 			switch (i) {
1589 			case 0:
1590 			case 1:
1591 				lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1592 				upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1593 				break;
1594 			case 2:
1595 			case 3:
1596 				lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1597 				upperPower = pPowerInfo[upperIndex].twicePwr36;
1598 				break;
1599 			case 4:
1600 			case 5:
1601 				lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1602 				upperPower = pPowerInfo[upperIndex].twicePwr48;
1603 				break;
1604 			case 6:
1605 			case 7:
1606 				lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1607 				upperPower = pPowerInfo[upperIndex].twicePwr54;
1608 				break;
1609 			}
1610 		}
1611 
1612 		twicePower = ar5211GetInterpolatedValue(freq,
1613 			lowerChannel, upperChannel, lowerPower, upperPower, 0);
1614 
1615 		/* Reduce power by band edge restrictions */
1616 		twicePower = AH_MIN(twicePower, twiceMaxEdgePower);
1617 
1618 		/*
1619 		 * If turbo is set, reduce power to keep power
1620 		 * consumption under 2 Watts.  Note that we always do
1621 		 * this unless specially configured.  Then we limit
1622 		 * power only for non-AP operation.
1623 		 */
1624 		if (IEEE80211_IS_CHAN_TURBO(chan) &&
1625 		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1
1626 #ifdef AH_ENABLE_AP_SUPPORT
1627 		    && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
1628 #endif
1629 		) {
1630 			twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5);
1631 		}
1632 
1633 		/* Reduce power by max regulatory domain allowed restrictions */
1634 		pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction);
1635 
1636 		/* Use 6 Mb power level for transmit power scaling reduction */
1637 		/* We don't want to reduce higher rates if its not needed */
1638 		if (i == 0) {
1639 			scaledPower = pRatesPower[0] -
1640 				(tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2);
1641 			if (scaledPower < 1)
1642 				scaledPower = 1;
1643 		}
1644 
1645 		pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower);
1646 	}
1647 
1648 	/* Record txPower at Rate 6 for info gathering */
1649 	ahp->ah_tx6PowerInHalfDbm = pRatesPower[0];
1650 
1651 #ifdef AH_DEBUG
1652 	HALDEBUG(ah, HAL_DEBUG_RESET,
1653 	    "%s: final output power setting %d MHz:\n",
1654 	    __func__, chan->ic_freq);
1655 	HALDEBUG(ah, HAL_DEBUG_RESET,
1656 	    "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
1657 	    scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2);
1658 	HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n",
1659 	    tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2,
1660 	    twiceAntennaReduction / 2);
1661 	if (IEEE80211_IS_CHAN_TURBO(chan) &&
1662 	    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1)
1663 		HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n",
1664 		    ee->ee_turbo2WMaxPower5);
1665 	HALDEBUG(ah, HAL_DEBUG_RESET,
1666 	    "  %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
1667 	    pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2,
1668 	    pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2,
1669 	    pRatesPower[6] / 2, pRatesPower[7] / 2);
1670 #endif /* AH_DEBUG */
1671 
1672 	/* Write the power table into the hardware */
1673 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1674 		 ((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) |
1675 		 ((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) |
1676 		 ((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) |
1677 		 ((paPreDEnable & 1)<< 6 ) |  (pRatesPower[0] & mask));
1678 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1679 		 ((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) |
1680 		 ((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) |
1681 		 ((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) |
1682 		 ((paPreDEnable & 1)<< 6 ) |  (pRatesPower[4] & mask));
1683 
1684 	/* set max power to the power value at rate 6 */
1685 	ar5211SetTxPowerLimit(ah, pRatesPower[0]);
1686 
1687 	AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0];
1688 }
1689 
1690 /*
1691  * Get or interpolate the pcdac value from the calibrated data
1692  */
1693 uint16_t
1694 ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
1695 	const PCDACS_EEPROM *pSrcStruct)
1696 {
1697 	uint16_t powerValue;
1698 	uint16_t lFreq, rFreq;		/* left and right frequency values */
1699 	uint16_t llPcdac, ulPcdac;	/* lower and upper left pcdac values */
1700 	uint16_t lrPcdac, urPcdac;	/* lower and upper right pcdac values */
1701 	uint16_t lPwr, uPwr;		/* lower and upper temp pwr values */
1702 	uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
1703 
1704 	if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue))
1705 		/* value was copied from srcStruct */
1706 		return powerValue;
1707 
1708 	ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList,
1709 		pSrcStruct->numChannels, &lFreq, &rFreq);
1710 	ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct,
1711 		&llPcdac, &ulPcdac);
1712 	ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct,
1713 		&lrPcdac, &urPcdac);
1714 
1715 	/* get the power index for the pcdac value */
1716 	ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
1717 	ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
1718 	lScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1719 				llPcdac, ulPcdac, lPwr, uPwr, 0);
1720 
1721 	ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
1722 	ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
1723 	rScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1724 				lrPcdac, urPcdac, lPwr, uPwr, 0);
1725 
1726 	return ar5211GetInterpolatedValue(channel, lFreq, rFreq,
1727 		lScaledPwr, rScaledPwr, 0);
1728 }
1729 
1730 /*
1731  * Find the value from the calibrated source data struct
1732  */
1733 HAL_BOOL
1734 ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
1735 	const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
1736 {
1737 	const DATA_PER_CHANNEL *pChannelData;
1738 	const uint16_t *pPcdac;
1739 	uint16_t i, j;
1740 
1741 	pChannelData = pSrcStruct->pDataPerChannel;
1742 	for (i = 0; i < pSrcStruct->numChannels; i++ ) {
1743 		if (pChannelData->channelValue == channel) {
1744 			pPcdac = pChannelData->PcdacValues;
1745 			for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
1746 				if (*pPcdac == pcdacValue) {
1747 					*powerValue = pChannelData->PwrValues[j];
1748 					return AH_TRUE;
1749 				}
1750 				pPcdac++;
1751 			}
1752 		}
1753 		pChannelData++;
1754 	}
1755 	return AH_FALSE;
1756 }
1757 
1758 /*
1759  * Returns interpolated or the scaled up interpolated value
1760  */
1761 uint16_t
1762 ar5211GetInterpolatedValue(uint16_t target,
1763 	uint16_t srcLeft, uint16_t srcRight,
1764 	uint16_t targetLeft, uint16_t targetRight,
1765 	HAL_BOOL scaleUp)
1766 {
1767 	uint16_t rv;
1768 	int16_t lRatio;
1769 	uint16_t scaleValue = EEP_SCALE;
1770 
1771 	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
1772 	if ((targetLeft * targetRight) == 0)
1773 		return 0;
1774 	if (scaleUp)
1775 		scaleValue = 1;
1776 
1777 	if (srcRight != srcLeft) {
1778 		/*
1779 		 * Note the ratio always need to be scaled,
1780 		 * since it will be a fraction.
1781 		 */
1782 		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
1783 		if (lRatio < 0) {
1784 		    /* Return as Left target if value would be negative */
1785 		    rv = targetLeft * (scaleUp ? EEP_SCALE : 1);
1786 		} else if (lRatio > EEP_SCALE) {
1787 		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
1788 		    rv = targetRight * (scaleUp ? EEP_SCALE : 1);
1789 		} else {
1790 			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
1791 					targetLeft) / scaleValue;
1792 		}
1793 	} else {
1794 		rv = targetLeft;
1795 		if (scaleUp)
1796 			rv *= EEP_SCALE;
1797 	}
1798 	return rv;
1799 }
1800 
1801 /*
1802  *  Look for value being within 0.1 of the search values
1803  *  however, NDIS can't do float calculations, so multiply everything
1804  *  up by EEP_SCALE so can do integer arithmatic
1805  *
1806  * INPUT  value	   -value to search for
1807  * INPUT  pList	   -ptr to the list to search
1808  * INPUT  listSize	-number of entries in list
1809  * OUTPUT pLowerValue -return the lower value
1810  * OUTPUT pUpperValue -return the upper value
1811  */
1812 void
1813 ar5211GetLowerUpperValues(uint16_t value,
1814 	const uint16_t *pList, uint16_t listSize,
1815 	uint16_t *pLowerValue, uint16_t *pUpperValue)
1816 {
1817 	const uint16_t listEndValue = *(pList + listSize - 1);
1818 	uint32_t target = value * EEP_SCALE;
1819 	int i;
1820 
1821 	/*
1822 	 * See if value is lower than the first value in the list
1823 	 * if so return first value
1824 	 */
1825 	if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) {
1826 		*pLowerValue = *pList;
1827 		*pUpperValue = *pList;
1828 		return;
1829 	}
1830 
1831 	/*
1832 	 * See if value is greater than last value in list
1833 	 * if so return last value
1834 	 */
1835 	if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) {
1836 		*pLowerValue = listEndValue;
1837 		*pUpperValue = listEndValue;
1838 		return;
1839 	}
1840 
1841 	/* look for value being near or between 2 values in list */
1842 	for (i = 0; i < listSize; i++) {
1843 		/*
1844 		 * If value is close to the current value of the list
1845 		 * then target is not between values, it is one of the values
1846 		 */
1847 		if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) {
1848 			*pLowerValue = pList[i];
1849 			*pUpperValue = pList[i];
1850 			return;
1851 		}
1852 
1853 		/*
1854 		 * Look for value being between current value and next value
1855 		 * if so return these 2 values
1856 		 */
1857 		if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) {
1858 			*pLowerValue = pList[i];
1859 			*pUpperValue = pList[i + 1];
1860 			return;
1861 		}
1862 	}
1863 }
1864 
1865 /*
1866  * Get the upper and lower pcdac given the channel and the pcdac
1867  * used in the search
1868  */
1869 void
1870 ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
1871 	const PCDACS_EEPROM *pSrcStruct,
1872 	uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
1873 {
1874 	const DATA_PER_CHANNEL *pChannelData;
1875 	int i;
1876 
1877 	/* Find the channel information */
1878 	pChannelData = pSrcStruct->pDataPerChannel;
1879 	for (i = 0; i < pSrcStruct->numChannels; i++) {
1880 		if (pChannelData->channelValue == channel)
1881 			break;
1882 		pChannelData++;
1883 	}
1884 	ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
1885 		pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac);
1886 }
1887 
1888 #define	DYN_ADJ_UP_MARGIN	15
1889 #define	DYN_ADJ_LO_MARGIN	20
1890 
1891 static const GAIN_OPTIMIZATION_LADDER gainLadder = {
1892 	9,					/* numStepsInLadder */
1893 	4,					/* defaultStepNum */
1894 	{ { {4, 1, 1, 1},  6, "FG8"},
1895 	  { {4, 0, 1, 1},  4, "FG7"},
1896 	  { {3, 1, 1, 1},  3, "FG6"},
1897 	  { {4, 0, 0, 1},  1, "FG5"},
1898 	  { {4, 1, 1, 0},  0, "FG4"},	/* noJack */
1899 	  { {4, 0, 1, 0}, -2, "FG3"},	/* halfJack */
1900 	  { {3, 1, 1, 0}, -3, "FG2"},	/* clip3 */
1901 	  { {4, 0, 0, 0}, -4, "FG1"},	/* noJack */
1902 	  { {2, 1, 1, 0}, -6, "FG0"} 	/* clip2 */
1903 	}
1904 };
1905 
1906 /*
1907  * Initialize the gain structure to good values
1908  */
1909 void
1910 ar5211InitializeGainValues(struct ath_hal *ah)
1911 {
1912 	struct ath_hal_5211 *ahp = AH5211(ah);
1913 	GAIN_VALUES *gv = &ahp->ah_gainValues;
1914 
1915 	/* initialize gain optimization values */
1916 	gv->currStepNum = gainLadder.defaultStepNum;
1917 	gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum];
1918 	gv->active = AH_TRUE;
1919 	gv->loTrig = 20;
1920 	gv->hiTrig = 35;
1921 }
1922 
1923 static HAL_BOOL
1924 ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv)
1925 {
1926 	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1927 	uint32_t gStep, g;
1928 	uint32_t L1, L2, L3, L4;
1929 
1930 	if (IEEE80211_IS_CHAN_CCK(chan)) {
1931 		gStep = 0x18;
1932 		L1 = 0;
1933 		L2 = gStep + 4;
1934 		L3 = 0x40;
1935 		L4 = L3 + 50;
1936 
1937 		gv->loTrig = L1;
1938 		gv->hiTrig = L4+5;
1939 	} else {
1940 		gStep = 0x3f;
1941 		L1 = 0;
1942 		L2 = 50;
1943 		L3 = L1;
1944 		L4 = L3 + 50;
1945 
1946 		gv->loTrig = L1 + DYN_ADJ_LO_MARGIN;
1947 		gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN;
1948 	}
1949 	g = gv->currGain;
1950 
1951 	return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4));
1952 }
1953 
1954 /*
1955  * Enable the probe gain check on the next packet
1956  */
1957 static void
1958 ar5211RequestRfgain(struct ath_hal *ah)
1959 {
1960 	struct ath_hal_5211 *ahp = AH5211(ah);
1961 
1962 	/* Enable the gain readback probe */
1963 	OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE,
1964 		  SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX)
1965 		| AR_PHY_PAPD_PROBE_NEXT_TX);
1966 
1967 	ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED;
1968 }
1969 
1970 /*
1971  * Exported call to check for a recent gain reading and return
1972  * the current state of the thermal calibration gain engine.
1973  */
1974 HAL_RFGAIN
1975 ar5211GetRfgain(struct ath_hal *ah)
1976 {
1977 	struct ath_hal_5211 *ahp = AH5211(ah);
1978 	GAIN_VALUES *gv = &ahp->ah_gainValues;
1979 	uint32_t rddata;
1980 
1981 	if (!gv->active)
1982 		return HAL_RFGAIN_INACTIVE;
1983 
1984 	if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) {
1985 		/* Caller had asked to setup a new reading. Check it. */
1986 		rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE);
1987 
1988 		if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) {
1989 			/* bit got cleared, we have a new reading. */
1990 			gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S;
1991 			/* inactive by default */
1992 			ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
1993 
1994 			if (!ar5211InvalidGainReadback(ah, gv) &&
1995 			    ar5211IsGainAdjustNeeded(ah, gv) &&
1996 			    ar5211AdjustGain(ah, gv) > 0) {
1997 				/*
1998 				 * Change needed. Copy ladder info
1999 				 * into eeprom info.
2000 				 */
2001 				ar5211SetRfgain(ah, gv);
2002 				ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE;
2003 			}
2004 		}
2005 	}
2006 	return ahp->ah_rfgainState;
2007 }
2008 
2009 /*
2010  * Check to see if our readback gain level sits within the linear
2011  * region of our current variable attenuation window
2012  */
2013 static HAL_BOOL
2014 ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv)
2015 {
2016 	return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig);
2017 }
2018 
2019 /*
2020  * Move the rabbit ears in the correct direction.
2021  */
2022 static int32_t
2023 ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv)
2024 {
2025 	/* return > 0 for valid adjustments. */
2026 	if (!gv->active)
2027 		return -1;
2028 
2029 	gv->currStep = &gainLadder.optStep[gv->currStepNum];
2030 	if (gv->currGain >= gv->hiTrig) {
2031 		if (gv->currStepNum == 0) {
2032 			HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2033 			    "%s: Max gain limit.\n", __func__);
2034 			return -1;
2035 		}
2036 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2037 		    "%s: Adding gain: currG=%d [%s] --> ",
2038 		    __func__, gv->currGain, gv->currStep->stepName);
2039 		gv->targetGain = gv->currGain;
2040 		while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) {
2041 			gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain -
2042 				gv->currStep->stepGain);
2043 			gv->currStep = &gainLadder.optStep[gv->currStepNum];
2044 		}
2045 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2046 		    gv->targetGain, gv->currStep->stepName);
2047 		return 1;
2048 	}
2049 	if (gv->currGain <= gv->loTrig) {
2050 		if (gv->currStepNum == gainLadder.numStepsInLadder-1) {
2051 			HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2052 			    "%s: Min gain limit.\n", __func__);
2053 			return -2;
2054 		}
2055 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2056 		    "%s: Deducting gain: currG=%d [%s] --> ",
2057 		    __func__, gv->currGain, gv->currStep->stepName);
2058 		gv->targetGain = gv->currGain;
2059 		while (gv->targetGain <= gv->loTrig &&
2060 		      gv->currStepNum < (gainLadder.numStepsInLadder - 1)) {
2061 			gv->targetGain -= 2 *
2062 				(gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain);
2063 			gv->currStep = &gainLadder.optStep[gv->currStepNum];
2064 		}
2065 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2066 		    gv->targetGain, gv->currStep->stepName);
2067 		return 2;
2068 	}
2069 	return 0;		/* caller didn't call needAdjGain first */
2070 }
2071 
2072 /*
2073  * Adjust the 5GHz EEPROM information with the desired calibration values.
2074  */
2075 static void
2076 ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv)
2077 {
2078 	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2079 
2080 	if (!gv->active)
2081 		return;
2082 	ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */
2083 	ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */
2084 	ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */
2085 	ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */
2086 }
2087 
2088 static void
2089 ar5211SetOperatingMode(struct ath_hal *ah, int opmode)
2090 {
2091 	struct ath_hal_5211 *ahp = AH5211(ah);
2092 	uint32_t val;
2093 
2094 	val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
2095 	switch (opmode) {
2096 	case HAL_M_HOSTAP:
2097 		OS_REG_WRITE(ah, AR_STA_ID1, val
2098 			| AR_STA_ID1_STA_AP
2099 			| AR_STA_ID1_RTS_USE_DEF
2100 			| ahp->ah_staId1Defaults);
2101 		break;
2102 	case HAL_M_IBSS:
2103 		OS_REG_WRITE(ah, AR_STA_ID1, val
2104 			| AR_STA_ID1_ADHOC
2105 			| AR_STA_ID1_DESC_ANTENNA
2106 			| ahp->ah_staId1Defaults);
2107 		break;
2108 	case HAL_M_STA:
2109 	case HAL_M_MONITOR:
2110 		OS_REG_WRITE(ah, AR_STA_ID1, val
2111 			| AR_STA_ID1_DEFAULT_ANTENNA
2112 			| ahp->ah_staId1Defaults);
2113 		break;
2114 	}
2115 }
2116 
2117 void
2118 ar5211SetPCUConfig(struct ath_hal *ah)
2119 {
2120 	ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
2121 }
2122