xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar5212_misc.c (revision aa0a1e58)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
24 #ifdef AH_DEBUG
25 #include "ah_desc.h"			/* NB: for HAL_PHYERR* */
26 #endif
27 
28 #include "ar5212/ar5212.h"
29 #include "ar5212/ar5212reg.h"
30 #include "ar5212/ar5212phy.h"
31 
32 #include "ah_eeprom_v3.h"
33 
34 #define	AR_NUM_GPIO	6		/* 6 GPIO pins */
35 #define	AR_GPIOD_MASK	0x0000002F	/* GPIO data reg r/w mask */
36 
37 void
38 ar5212GetMacAddress(struct ath_hal *ah, uint8_t *mac)
39 {
40 	struct ath_hal_5212 *ahp = AH5212(ah);
41 
42 	OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
43 }
44 
45 HAL_BOOL
46 ar5212SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
47 {
48 	struct ath_hal_5212 *ahp = AH5212(ah);
49 
50 	OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
51 	return AH_TRUE;
52 }
53 
54 void
55 ar5212GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
56 {
57 	struct ath_hal_5212 *ahp = AH5212(ah);
58 
59 	OS_MEMCPY(mask, ahp->ah_bssidmask, IEEE80211_ADDR_LEN);
60 }
61 
62 HAL_BOOL
63 ar5212SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
64 {
65 	struct ath_hal_5212 *ahp = AH5212(ah);
66 
67 	/* save it since it must be rewritten on reset */
68 	OS_MEMCPY(ahp->ah_bssidmask, mask, IEEE80211_ADDR_LEN);
69 
70 	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
71 	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
72 	return AH_TRUE;
73 }
74 
75 /*
76  * Attempt to change the cards operating regulatory domain to the given value
77  */
78 HAL_BOOL
79 ar5212SetRegulatoryDomain(struct ath_hal *ah,
80 	uint16_t regDomain, HAL_STATUS *status)
81 {
82 	HAL_STATUS ecode;
83 
84 	if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
85 		ecode = HAL_EINVAL;
86 		goto bad;
87 	}
88 	if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
89 		ecode = HAL_EEWRITE;
90 		goto bad;
91 	}
92 #ifdef AH_SUPPORT_WRITE_REGDOMAIN
93 	if (ath_hal_eepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) {
94 		HALDEBUG(ah, HAL_DEBUG_ANY,
95 		    "%s: set regulatory domain to %u (0x%x)\n",
96 		    __func__, regDomain, regDomain);
97 		AH_PRIVATE(ah)->ah_currentRD = regDomain;
98 		return AH_TRUE;
99 	}
100 #endif
101 	ecode = HAL_EIO;
102 bad:
103 	if (status)
104 		*status = ecode;
105 	return AH_FALSE;
106 }
107 
108 /*
109  * Return the wireless modes (a,b,g,t) supported by hardware.
110  *
111  * This value is what is actually supported by the hardware
112  * and is unaffected by regulatory/country code settings.
113  */
114 u_int
115 ar5212GetWirelessModes(struct ath_hal *ah)
116 {
117 	u_int mode = 0;
118 
119 	if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
120 		mode = HAL_MODE_11A;
121 		if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
122 			mode |= HAL_MODE_TURBO | HAL_MODE_108A;
123 		if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
124 			mode |= HAL_MODE_11A_HALF_RATE;
125 		if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
126 			mode |= HAL_MODE_11A_QUARTER_RATE;
127 	}
128 	if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
129 		mode |= HAL_MODE_11B;
130 	if (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) &&
131 	    AH_PRIVATE(ah)->ah_subvendorid != AR_SUBVENDOR_ID_NOG) {
132 		mode |= HAL_MODE_11G;
133 		if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO2DISABLE))
134 			mode |= HAL_MODE_108G;
135 		if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
136 			mode |= HAL_MODE_11G_HALF_RATE;
137 		if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
138 			mode |= HAL_MODE_11G_QUARTER_RATE;
139 	}
140 	return mode;
141 }
142 
143 /*
144  * Set the interrupt and GPIO values so the ISR can disable RF
145  * on a switch signal.  Assumes GPIO port and interrupt polarity
146  * are set prior to call.
147  */
148 void
149 ar5212EnableRfKill(struct ath_hal *ah)
150 {
151 	uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
152 	int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
153 	int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
154 
155 	/*
156 	 * Configure the desired GPIO port for input
157 	 * and enable baseband rf silence.
158 	 */
159 	ath_hal_gpioCfgInput(ah, select);
160 	OS_REG_SET_BIT(ah, AR_PHY(0), 0x00002000);
161 	/*
162 	 * If radio disable switch connection to GPIO bit x is enabled
163 	 * program GPIO interrupt.
164 	 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
165 	 * verified that it is a later version of eeprom, it has a place for
166 	 * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
167 	 * connection is present.
168 	 */
169 	ath_hal_gpioSetIntr(ah, select,
170 	    (ath_hal_gpioGet(ah, select) == polarity ? !polarity : polarity));
171 }
172 
173 /*
174  * Change the LED blinking pattern to correspond to the connectivity
175  */
176 void
177 ar5212SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
178 {
179 	static const uint32_t ledbits[8] = {
180 		AR_PCICFG_LEDCTL_NONE,	/* HAL_LED_INIT */
181 		AR_PCICFG_LEDCTL_PEND,	/* HAL_LED_SCAN */
182 		AR_PCICFG_LEDCTL_PEND,	/* HAL_LED_AUTH */
183 		AR_PCICFG_LEDCTL_ASSOC,	/* HAL_LED_ASSOC*/
184 		AR_PCICFG_LEDCTL_ASSOC,	/* HAL_LED_RUN */
185 		AR_PCICFG_LEDCTL_NONE,
186 		AR_PCICFG_LEDCTL_NONE,
187 		AR_PCICFG_LEDCTL_NONE,
188 	};
189 	uint32_t bits;
190 
191 	bits = OS_REG_READ(ah, AR_PCICFG);
192 	if (IS_2417(ah)) {
193 		/*
194 		 * Enable LED for Nala. There is a bit marked reserved
195 		 * that must be set and we also turn on the power led.
196 		 * Because we mark s/w LED control setting the control
197 		 * status bits below is meangless (the driver must flash
198 		 * the LED(s) using the GPIO lines).
199 		 */
200 		bits = (bits &~ AR_PCICFG_LEDMODE)
201 		     | SM(AR_PCICFG_LEDMODE_POWON, AR_PCICFG_LEDMODE)
202 #if 0
203 		     | SM(AR_PCICFG_LEDMODE_NETON, AR_PCICFG_LEDMODE)
204 #endif
205 		     | 0x08000000;
206 	}
207 	bits = (bits &~ AR_PCICFG_LEDCTL)
208 	     | SM(ledbits[state & 0x7], AR_PCICFG_LEDCTL);
209 	OS_REG_WRITE(ah, AR_PCICFG, bits);
210 }
211 
212 /*
213  * Change association related fields programmed into the hardware.
214  * Writing a valid BSSID to the hardware effectively enables the hardware
215  * to synchronize its TSF to the correct beacons and receive frames coming
216  * from that BSSID. It is called by the SME JOIN operation.
217  */
218 void
219 ar5212WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
220 {
221 	struct ath_hal_5212 *ahp = AH5212(ah);
222 
223 	/* XXX save bssid for possible re-use on reset */
224 	OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
225 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
226 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
227 				     ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
228 }
229 
230 /*
231  * Get the current hardware tsf for stamlme
232  */
233 uint64_t
234 ar5212GetTsf64(struct ath_hal *ah)
235 {
236 	uint32_t low1, low2, u32;
237 
238 	/* sync multi-word read */
239 	low1 = OS_REG_READ(ah, AR_TSF_L32);
240 	u32 = OS_REG_READ(ah, AR_TSF_U32);
241 	low2 = OS_REG_READ(ah, AR_TSF_L32);
242 	if (low2 < low1) {	/* roll over */
243 		/*
244 		 * If we are not preempted this will work.  If we are
245 		 * then we re-reading AR_TSF_U32 does no good as the
246 		 * low bits will be meaningless.  Likewise reading
247 		 * L32, U32, U32, then comparing the last two reads
248 		 * to check for rollover doesn't help if preempted--so
249 		 * we take this approach as it costs one less PCI read
250 		 * which can be noticeable when doing things like
251 		 * timestamping packets in monitor mode.
252 		 */
253 		u32++;
254 	}
255 	return (((uint64_t) u32) << 32) | ((uint64_t) low2);
256 }
257 
258 /*
259  * Get the current hardware tsf for stamlme
260  */
261 uint32_t
262 ar5212GetTsf32(struct ath_hal *ah)
263 {
264 	return OS_REG_READ(ah, AR_TSF_L32);
265 }
266 
267 void
268 ar5212SetTsf64(struct ath_hal *ah, uint64_t tsf64)
269 {
270 	OS_REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
271 	OS_REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
272 }
273 
274 /*
275  * Reset the current hardware tsf for stamlme.
276  */
277 void
278 ar5212ResetTsf(struct ath_hal *ah)
279 {
280 
281 	uint32_t val = OS_REG_READ(ah, AR_BEACON);
282 
283 	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
284 	/*
285 	 * When resetting the TSF, write twice to the
286 	 * corresponding register; each write to the RESET_TSF bit toggles
287 	 * the internal signal to cause a reset of the TSF - but if the signal
288 	 * is left high, it will reset the TSF on the next chip reset also!
289 	 * writing the bit an even number of times fixes this issue
290 	 */
291 	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
292 }
293 
294 /*
295  * Set or clear hardware basic rate bit
296  * Set hardware basic rate set if basic rate is found
297  * and basic rate is equal or less than 2Mbps
298  */
299 void
300 ar5212SetBasicRate(struct ath_hal *ah, HAL_RATE_SET *rs)
301 {
302 	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
303 	uint32_t reg;
304 	uint8_t xset;
305 	int i;
306 
307 	if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan))
308 		return;
309 	xset = 0;
310 	for (i = 0; i < rs->rs_count; i++) {
311 		uint8_t rset = rs->rs_rates[i];
312 		/* Basic rate defined? */
313 		if ((rset & 0x80) && (rset &= 0x7f) >= xset)
314 			xset = rset;
315 	}
316 	/*
317 	 * Set the h/w bit to reflect whether or not the basic
318 	 * rate is found to be equal or less than 2Mbps.
319 	 */
320 	reg = OS_REG_READ(ah, AR_STA_ID1);
321 	if (xset && xset/2 <= 2)
322 		OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
323 	else
324 		OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
325 }
326 
327 /*
328  * Grab a semi-random value from hardware registers - may not
329  * change often
330  */
331 uint32_t
332 ar5212GetRandomSeed(struct ath_hal *ah)
333 {
334 	uint32_t nf;
335 
336 	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
337 	if (nf & 0x100)
338 		nf = 0 - ((nf ^ 0x1ff) + 1);
339 	return (OS_REG_READ(ah, AR_TSF_U32) ^
340 		OS_REG_READ(ah, AR_TSF_L32) ^ nf);
341 }
342 
343 /*
344  * Detect if our card is present
345  */
346 HAL_BOOL
347 ar5212DetectCardPresent(struct ath_hal *ah)
348 {
349 	uint16_t macVersion, macRev;
350 	uint32_t v;
351 
352 	/*
353 	 * Read the Silicon Revision register and compare that
354 	 * to what we read at attach time.  If the same, we say
355 	 * a card/device is present.
356 	 */
357 	v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID;
358 	macVersion = v >> AR_SREV_ID_S;
359 	macRev = v & AR_SREV_REVISION;
360 	return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
361 		AH_PRIVATE(ah)->ah_macRev == macRev);
362 }
363 
364 void
365 ar5212EnableMibCounters(struct ath_hal *ah)
366 {
367 	/* NB: this just resets the mib counter machinery */
368 	OS_REG_WRITE(ah, AR_MIBC,
369 	    ~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS) & 0x0f);
370 }
371 
372 void
373 ar5212DisableMibCounters(struct ath_hal *ah)
374 {
375 	OS_REG_WRITE(ah, AR_MIBC,  AR_MIBC | AR_MIBC_CMC);
376 }
377 
378 /*
379  * Update MIB Counters
380  */
381 void
382 ar5212UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS* stats)
383 {
384 	stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
385 	stats->rts_bad	  += OS_REG_READ(ah, AR_RTS_FAIL);
386 	stats->fcs_bad	  += OS_REG_READ(ah, AR_FCS_FAIL);
387 	stats->rts_good	  += OS_REG_READ(ah, AR_RTS_OK);
388 	stats->beacons	  += OS_REG_READ(ah, AR_BEACON_CNT);
389 }
390 
391 /*
392  * Detect if the HW supports spreading a CCK signal on channel 14
393  */
394 HAL_BOOL
395 ar5212IsJapanChannelSpreadSupported(struct ath_hal *ah)
396 {
397 	return AH_TRUE;
398 }
399 
400 /*
401  * Get the rssi of frame curently being received.
402  */
403 uint32_t
404 ar5212GetCurRssi(struct ath_hal *ah)
405 {
406 	return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
407 }
408 
409 u_int
410 ar5212GetDefAntenna(struct ath_hal *ah)
411 {
412 	return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
413 }
414 
415 void
416 ar5212SetDefAntenna(struct ath_hal *ah, u_int antenna)
417 {
418 	OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
419 }
420 
421 HAL_ANT_SETTING
422 ar5212GetAntennaSwitch(struct ath_hal *ah)
423 {
424 	return AH5212(ah)->ah_antControl;
425 }
426 
427 HAL_BOOL
428 ar5212SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING setting)
429 {
430 	struct ath_hal_5212 *ahp = AH5212(ah);
431 	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
432 
433 	if (!ahp->ah_phyPowerOn || chan == AH_NULL) {
434 		/* PHY powered off, just stash settings */
435 		ahp->ah_antControl = setting;
436 		ahp->ah_diversity = (setting == HAL_ANT_VARIABLE);
437 		return AH_TRUE;
438 	}
439 	return ar5212SetAntennaSwitchInternal(ah, setting, chan);
440 }
441 
442 HAL_BOOL
443 ar5212IsSleepAfterBeaconBroken(struct ath_hal *ah)
444 {
445 	return AH_TRUE;
446 }
447 
448 HAL_BOOL
449 ar5212SetSifsTime(struct ath_hal *ah, u_int us)
450 {
451 	struct ath_hal_5212 *ahp = AH5212(ah);
452 
453 	if (us > ath_hal_mac_usec(ah, 0xffff)) {
454 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
455 		    __func__, us);
456 		ahp->ah_sifstime = (u_int) -1;	/* restore default handling */
457 		return AH_FALSE;
458 	} else {
459 		/* convert to system clocks */
460 		OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us-2));
461 		ahp->ah_sifstime = us;
462 		return AH_TRUE;
463 	}
464 }
465 
466 u_int
467 ar5212GetSifsTime(struct ath_hal *ah)
468 {
469 	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
470 	return ath_hal_mac_usec(ah, clks)+2;	/* convert from system clocks */
471 }
472 
473 HAL_BOOL
474 ar5212SetSlotTime(struct ath_hal *ah, u_int us)
475 {
476 	struct ath_hal_5212 *ahp = AH5212(ah);
477 
478 	if (us < HAL_SLOT_TIME_6 || us > ath_hal_mac_usec(ah, 0xffff)) {
479 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
480 		    __func__, us);
481 		ahp->ah_slottime = (u_int) -1;	/* restore default handling */
482 		return AH_FALSE;
483 	} else {
484 		/* convert to system clocks */
485 		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
486 		ahp->ah_slottime = us;
487 		return AH_TRUE;
488 	}
489 }
490 
491 u_int
492 ar5212GetSlotTime(struct ath_hal *ah)
493 {
494 	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
495 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
496 }
497 
498 HAL_BOOL
499 ar5212SetAckTimeout(struct ath_hal *ah, u_int us)
500 {
501 	struct ath_hal_5212 *ahp = AH5212(ah);
502 
503 	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
504 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
505 		    __func__, us);
506 		ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
507 		return AH_FALSE;
508 	} else {
509 		/* convert to system clocks */
510 		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
511 			AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
512 		ahp->ah_acktimeout = us;
513 		return AH_TRUE;
514 	}
515 }
516 
517 u_int
518 ar5212GetAckTimeout(struct ath_hal *ah)
519 {
520 	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
521 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
522 }
523 
524 u_int
525 ar5212GetAckCTSRate(struct ath_hal *ah)
526 {
527 	return ((AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
528 }
529 
530 HAL_BOOL
531 ar5212SetAckCTSRate(struct ath_hal *ah, u_int high)
532 {
533 	struct ath_hal_5212 *ahp = AH5212(ah);
534 
535 	if (high) {
536 		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
537 		ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
538 	} else {
539 		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
540 		ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
541 	}
542 	return AH_TRUE;
543 }
544 
545 HAL_BOOL
546 ar5212SetCTSTimeout(struct ath_hal *ah, u_int us)
547 {
548 	struct ath_hal_5212 *ahp = AH5212(ah);
549 
550 	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
551 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
552 		    __func__, us);
553 		ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
554 		return AH_FALSE;
555 	} else {
556 		/* convert to system clocks */
557 		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
558 			AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
559 		ahp->ah_ctstimeout = us;
560 		return AH_TRUE;
561 	}
562 }
563 
564 u_int
565 ar5212GetCTSTimeout(struct ath_hal *ah)
566 {
567 	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
568 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
569 }
570 
571 /* Setup decompression for given key index */
572 HAL_BOOL
573 ar5212SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
574 {
575 	struct ath_hal_5212 *ahp = AH5212(ah);
576 
577         if (keyidx >= HAL_DECOMP_MASK_SIZE)
578                 return HAL_EINVAL;
579         OS_REG_WRITE(ah, AR_DCM_A, keyidx);
580         OS_REG_WRITE(ah, AR_DCM_D, en ? AR_DCM_D_EN : 0);
581         ahp->ah_decompMask[keyidx] = en;
582 
583         return AH_TRUE;
584 }
585 
586 /* Setup coverage class */
587 void
588 ar5212SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
589 {
590 	uint32_t slot, timeout, eifs;
591 	u_int clkRate;
592 
593 	AH_PRIVATE(ah)->ah_coverageClass = coverageclass;
594 
595 	if (now) {
596 		if (AH_PRIVATE(ah)->ah_coverageClass == 0)
597 			return;
598 
599 		/* Don't apply coverage class to non A channels */
600 		if (!IEEE80211_IS_CHAN_A(AH_PRIVATE(ah)->ah_curchan))
601 			return;
602 
603 		/* Get core clock rate */
604 		clkRate = ath_hal_mac_clks(ah, 1);
605 
606 		/* Compute EIFS */
607 		slot = coverageclass * 3 * clkRate;
608 		eifs = coverageclass * 6 * clkRate;
609 		if (IEEE80211_IS_CHAN_HALF(AH_PRIVATE(ah)->ah_curchan)) {
610 			slot += IFS_SLOT_HALF_RATE;
611 			eifs += IFS_EIFS_HALF_RATE;
612 		} else if (IEEE80211_IS_CHAN_QUARTER(AH_PRIVATE(ah)->ah_curchan)) {
613 			slot += IFS_SLOT_QUARTER_RATE;
614 			eifs += IFS_EIFS_QUARTER_RATE;
615 		} else { /* full rate */
616 			slot += IFS_SLOT_FULL_RATE;
617 			eifs += IFS_EIFS_FULL_RATE;
618 		}
619 
620 		/*
621 		 * Add additional time for air propagation for ACK and CTS
622 		 * timeouts. This value is in core clocks.
623   		 */
624 		timeout = ACK_CTS_TIMEOUT_11A + (coverageclass * 3 * clkRate);
625 
626 		/*
627 		 * Write the values: slot, eifs, ack/cts timeouts.
628 		 */
629 		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
630 		OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
631 		OS_REG_WRITE(ah, AR_TIME_OUT,
632 			  SM(timeout, AR_TIME_OUT_CTS)
633 			| SM(timeout, AR_TIME_OUT_ACK));
634 	}
635 }
636 
637 void
638 ar5212SetPCUConfig(struct ath_hal *ah)
639 {
640 	ar5212SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
641 }
642 
643 /*
644  * Return whether an external 32KHz crystal should be used
645  * to reduce power consumption when sleeping.  We do so if
646  * the crystal is present (obtained from EEPROM) and if we
647  * are not running as an AP and are configured to use it.
648  */
649 HAL_BOOL
650 ar5212Use32KHzclock(struct ath_hal *ah, HAL_OPMODE opmode)
651 {
652 	if (opmode != HAL_M_HOSTAP) {
653 		struct ath_hal_5212 *ahp = AH5212(ah);
654 		return ath_hal_eepromGetFlag(ah, AR_EEP_32KHZCRYSTAL) &&
655 		       (ahp->ah_enable32kHzClock == USE_32KHZ ||
656 		        ahp->ah_enable32kHzClock == AUTO_32KHZ);
657 	} else
658 		return AH_FALSE;
659 }
660 
661 /*
662  * If 32KHz clock exists, use it to lower power consumption during sleep
663  *
664  * Note: If clock is set to 32 KHz, delays on accessing certain
665  *       baseband registers (27-31, 124-127) are required.
666  */
667 void
668 ar5212SetupClock(struct ath_hal *ah, HAL_OPMODE opmode)
669 {
670 	if (ar5212Use32KHzclock(ah, opmode)) {
671 		/*
672 		 * Enable clocks to be turned OFF in BB during sleep
673 		 * and also enable turning OFF 32MHz/40MHz Refclk
674 		 * from A2.
675 		 */
676 		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
677 		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
678 		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 0x14 : 0x18);
679 		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32, 1);
680 		OS_REG_WRITE(ah, AR_TSF_PARM, 61);  /* 32 KHz TSF incr */
681 		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 1);
682 
683 		if (IS_2413(ah) || IS_5413(ah) || IS_2417(ah)) {
684 			OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x26);
685 			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0d);
686 			OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x07);
687 			OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0x3f);
688 			/* # Set sleep clock rate to 32 KHz. */
689 			OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x2);
690 		} else {
691 			OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x0a);
692 			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0c);
693 			OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x03);
694 			OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0x20);
695 			OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x3);
696 		}
697 	} else {
698 		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x0);
699 		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
700 
701 		OS_REG_WRITE(ah, AR_TSF_PARM, 1);	/* 32MHz TSF inc */
702 
703 		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
704 		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x7f);
705 
706 		if (IS_2417(ah))
707 			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0a);
708 		else if (IS_HB63(ah))
709 			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x32);
710 		else
711 			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
712 		OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x0c);
713 		OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0xff);
714 		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
715 		    IS_RAD5112_ANY(ah) || IS_5413(ah) || IS_2417(ah) ? 0x14 : 0x18);
716 		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
717 		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
718 	}
719 }
720 
721 /*
722  * If 32KHz clock exists, turn it off and turn back on the 32Mhz
723  */
724 void
725 ar5212RestoreClock(struct ath_hal *ah, HAL_OPMODE opmode)
726 {
727 	if (ar5212Use32KHzclock(ah, opmode)) {
728 		/* # Set sleep clock rate back to 32 MHz. */
729 		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0);
730 		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
731 
732 		OS_REG_WRITE(ah, AR_TSF_PARM, 1);	/* 32 MHz TSF incr */
733 		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
734 		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
735 
736 		/*
737 		 * Restore BB registers to power-on defaults
738 		 */
739 		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
740 		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x7f);
741 		OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0e);
742 		OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x0c);
743 		OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0xff);
744 		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
745 		    IS_RAD5112_ANY(ah) || IS_5413(ah) ?  0x14 : 0x18);
746 	}
747 }
748 
749 /*
750  * Adjust NF based on statistical values for 5GHz frequencies.
751  * Default method: this may be overridden by the rf backend.
752  */
753 int16_t
754 ar5212GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
755 {
756 	static const struct {
757 		uint16_t freqLow;
758 		int16_t	  adjust;
759 	} adjustDef[] = {
760 		{ 5790,	11 },	/* NB: ordered high -> low */
761 		{ 5730, 10 },
762 		{ 5690,  9 },
763 		{ 5660,  8 },
764 		{ 5610,  7 },
765 		{ 5530,  5 },
766 		{ 5450,  4 },
767 		{ 5379,  2 },
768 		{ 5209,  0 },
769 		{ 3000,  1 },
770 		{    0,  0 },
771 	};
772 	int i;
773 
774 	for (i = 0; c->channel <= adjustDef[i].freqLow; i++)
775 		;
776 	return adjustDef[i].adjust;
777 }
778 
779 HAL_STATUS
780 ar5212GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
781 	uint32_t capability, uint32_t *result)
782 {
783 #define	MACVERSION(ah)	AH_PRIVATE(ah)->ah_macVersion
784 	struct ath_hal_5212 *ahp = AH5212(ah);
785 	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
786 	const struct ar5212AniState *ani;
787 
788 	switch (type) {
789 	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
790 		switch (capability) {
791 		case HAL_CIPHER_AES_CCM:
792 			return pCap->halCipherAesCcmSupport ?
793 				HAL_OK : HAL_ENOTSUPP;
794 		case HAL_CIPHER_AES_OCB:
795 		case HAL_CIPHER_TKIP:
796 		case HAL_CIPHER_WEP:
797 		case HAL_CIPHER_MIC:
798 		case HAL_CIPHER_CLR:
799 			return HAL_OK;
800 		default:
801 			return HAL_ENOTSUPP;
802 		}
803 	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
804 		switch (capability) {
805 		case 0:			/* hardware capability */
806 			return HAL_OK;
807 		case 1:
808 			return (ahp->ah_staId1Defaults &
809 			    AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
810 		}
811 		return HAL_EINVAL;
812 	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
813 		switch (capability) {
814 		case 0:			/* hardware capability */
815 			return pCap->halTkipMicTxRxKeySupport ?
816 				HAL_ENXIO : HAL_OK;
817 		case 1:			/* current setting */
818 			return (ahp->ah_miscMode &
819 			    AR_MISC_MODE_MIC_NEW_LOC_ENABLE) ? HAL_ENXIO : HAL_OK;
820 		}
821 		return HAL_EINVAL;
822 	case HAL_CAP_WME_TKIPMIC:	/* hardware can do TKIP MIC w/ WMM */
823 		/* XXX move to capability bit */
824 		return MACVERSION(ah) > AR_SREV_VERSION_VENICE ||
825 		    (MACVERSION(ah) == AR_SREV_VERSION_VENICE &&
826 		     AH_PRIVATE(ah)->ah_macRev >= 8) ? HAL_OK : HAL_ENOTSUPP;
827 	case HAL_CAP_DIVERSITY:		/* hardware supports fast diversity */
828 		switch (capability) {
829 		case 0:			/* hardware capability */
830 			return HAL_OK;
831 		case 1:			/* current setting */
832 			return ahp->ah_diversity ? HAL_OK : HAL_ENXIO;
833 		}
834 		return HAL_EINVAL;
835 	case HAL_CAP_DIAG:
836 		*result = AH_PRIVATE(ah)->ah_diagreg;
837 		return HAL_OK;
838 	case HAL_CAP_TPC:
839 		switch (capability) {
840 		case 0:			/* hardware capability */
841 			return HAL_OK;
842 		case 1:
843 			return ahp->ah_tpcEnabled ? HAL_OK : HAL_ENXIO;
844 		}
845 		return HAL_OK;
846 	case HAL_CAP_PHYDIAG:		/* radar pulse detection capability */
847 		switch (capability) {
848 		case HAL_CAP_RADAR:
849 			return ath_hal_eepromGetFlag(ah, AR_EEP_AMODE) ?
850 			    HAL_OK: HAL_ENXIO;
851 		case HAL_CAP_AR:
852 			return (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) ||
853 			    ath_hal_eepromGetFlag(ah, AR_EEP_BMODE)) ?
854 			       HAL_OK: HAL_ENXIO;
855 		}
856 		return HAL_ENXIO;
857 	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
858 		switch (capability) {
859 		case 0:			/* hardware capability */
860 			return HAL_OK;
861 		case 1:
862 			return (ahp->ah_staId1Defaults &
863 			    AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
864 		}
865 		return HAL_EINVAL;
866 	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
867 		switch (capability) {
868 		case 0:			/* hardware capability */
869 			return pCap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
870 		case 1:
871 			return (ahp->ah_miscMode & AR_MISC_MODE_TX_ADD_TSF) ?
872 				HAL_OK : HAL_ENXIO;
873 		}
874 		return HAL_EINVAL;
875 	case HAL_CAP_TPC_ACK:
876 		*result = MS(ahp->ah_macTPC, AR_TPC_ACK);
877 		return HAL_OK;
878 	case HAL_CAP_TPC_CTS:
879 		*result = MS(ahp->ah_macTPC, AR_TPC_CTS);
880 		return HAL_OK;
881 	case HAL_CAP_INTMIT:		/* interference mitigation */
882 		switch (capability) {
883 		case 0:			/* hardware capability */
884 			return HAL_OK;
885 		case 1:
886 			return (ahp->ah_procPhyErr & HAL_ANI_ENA) ?
887 				HAL_OK : HAL_ENXIO;
888 		case 2:			/* HAL_ANI_NOISE_IMMUNITY_LEVEL */
889 		case 3:			/* HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION */
890 		case 4:			/* HAL_ANI_CCK_WEAK_SIGNAL_THR */
891 		case 5:			/* HAL_ANI_FIRSTEP_LEVEL */
892 		case 6:			/* HAL_ANI_SPUR_IMMUNITY_LEVEL */
893 			ani = ar5212AniGetCurrentState(ah);
894 			if (ani == AH_NULL)
895 				return HAL_ENXIO;
896 			switch (capability) {
897 			case 2:	*result = ani->noiseImmunityLevel; break;
898 			case 3: *result = !ani->ofdmWeakSigDetectOff; break;
899 			case 4: *result = ani->cckWeakSigThreshold; break;
900 			case 5: *result = ani->firstepLevel; break;
901 			case 6: *result = ani->spurImmunityLevel; break;
902 			}
903 			return HAL_OK;
904 		}
905 		return HAL_EINVAL;
906 	default:
907 		return ath_hal_getcapability(ah, type, capability, result);
908 	}
909 #undef MACVERSION
910 }
911 
912 HAL_BOOL
913 ar5212SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
914 	uint32_t capability, uint32_t setting, HAL_STATUS *status)
915 {
916 #define	N(a)	(sizeof(a)/sizeof(a[0]))
917 	struct ath_hal_5212 *ahp = AH5212(ah);
918 	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
919 	uint32_t v;
920 
921 	switch (type) {
922 	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
923 		if (setting)
924 			ahp->ah_staId1Defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
925 		else
926 			ahp->ah_staId1Defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
927 		return AH_TRUE;
928 	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
929 		if (!pCap->halTkipMicTxRxKeySupport)
930 			return AH_FALSE;
931 		/* NB: true =>'s use split key cache layout */
932 		if (setting)
933 			ahp->ah_miscMode &= ~AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
934 		else
935 			ahp->ah_miscMode |= AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
936 		/* NB: write here so keys can be setup w/o a reset */
937 		OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode);
938 		return AH_TRUE;
939 	case HAL_CAP_DIVERSITY:
940 		if (ahp->ah_phyPowerOn) {
941 			v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
942 			if (setting)
943 				v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
944 			else
945 				v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
946 			OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
947 		}
948 		ahp->ah_diversity = (setting != 0);
949 		return AH_TRUE;
950 	case HAL_CAP_DIAG:		/* hardware diagnostic support */
951 		/*
952 		 * NB: could split this up into virtual capabilities,
953 		 *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
954 		 *     seems worth the additional complexity.
955 		 */
956 		AH_PRIVATE(ah)->ah_diagreg = setting;
957 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
958 		return AH_TRUE;
959 	case HAL_CAP_TPC:
960 		ahp->ah_tpcEnabled = (setting != 0);
961 		return AH_TRUE;
962 	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
963 		if (setting)
964 			ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
965 		else
966 			ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
967 		return AH_TRUE;
968 	case HAL_CAP_TPC_ACK:
969 	case HAL_CAP_TPC_CTS:
970 		setting += ahp->ah_txPowerIndexOffset;
971 		if (setting > 63)
972 			setting = 63;
973 		if (type == HAL_CAP_TPC_ACK) {
974 			ahp->ah_macTPC &= AR_TPC_ACK;
975 			ahp->ah_macTPC |= MS(setting, AR_TPC_ACK);
976 		} else {
977 			ahp->ah_macTPC &= AR_TPC_CTS;
978 			ahp->ah_macTPC |= MS(setting, AR_TPC_CTS);
979 		}
980 		OS_REG_WRITE(ah, AR_TPC, ahp->ah_macTPC);
981 		return AH_TRUE;
982 	case HAL_CAP_INTMIT: {		/* interference mitigation */
983 		static const HAL_ANI_CMD cmds[] = {
984 			HAL_ANI_PRESENT,
985 			HAL_ANI_MODE,
986 			HAL_ANI_NOISE_IMMUNITY_LEVEL,
987 			HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
988 			HAL_ANI_CCK_WEAK_SIGNAL_THR,
989 			HAL_ANI_FIRSTEP_LEVEL,
990 			HAL_ANI_SPUR_IMMUNITY_LEVEL,
991 		};
992 		return capability < N(cmds) ?
993 			ar5212AniControl(ah, cmds[capability], setting) :
994 			AH_FALSE;
995 	}
996 	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
997 		if (pCap->halTsfAddSupport) {
998 			if (setting)
999 				ahp->ah_miscMode |= AR_MISC_MODE_TX_ADD_TSF;
1000 			else
1001 				ahp->ah_miscMode &= ~AR_MISC_MODE_TX_ADD_TSF;
1002 			return AH_TRUE;
1003 		}
1004 		/* fall thru... */
1005 	default:
1006 		return ath_hal_setcapability(ah, type, capability,
1007 				setting, status);
1008 	}
1009 #undef N
1010 }
1011 
1012 HAL_BOOL
1013 ar5212GetDiagState(struct ath_hal *ah, int request,
1014 	const void *args, uint32_t argsize,
1015 	void **result, uint32_t *resultsize)
1016 {
1017 	struct ath_hal_5212 *ahp = AH5212(ah);
1018 
1019 	(void) ahp;
1020 	if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
1021 		return AH_TRUE;
1022 	switch (request) {
1023 	case HAL_DIAG_EEPROM:
1024 	case HAL_DIAG_EEPROM_EXP_11A:
1025 	case HAL_DIAG_EEPROM_EXP_11B:
1026 	case HAL_DIAG_EEPROM_EXP_11G:
1027 	case HAL_DIAG_RFGAIN:
1028 		return ath_hal_eepromDiag(ah, request,
1029 		    args, argsize, result, resultsize);
1030 	case HAL_DIAG_RFGAIN_CURSTEP:
1031 		*result = __DECONST(void *, ahp->ah_gainValues.currStep);
1032 		*resultsize = (*result == AH_NULL) ?
1033 			0 : sizeof(GAIN_OPTIMIZATION_STEP);
1034 		return AH_TRUE;
1035 	case HAL_DIAG_PCDAC:
1036 		*result = ahp->ah_pcdacTable;
1037 		*resultsize = ahp->ah_pcdacTableSize;
1038 		return AH_TRUE;
1039 	case HAL_DIAG_TXRATES:
1040 		*result = &ahp->ah_ratesArray[0];
1041 		*resultsize = sizeof(ahp->ah_ratesArray);
1042 		return AH_TRUE;
1043 	case HAL_DIAG_ANI_CURRENT:
1044 		*result = ar5212AniGetCurrentState(ah);
1045 		*resultsize = (*result == AH_NULL) ?
1046 			0 : sizeof(struct ar5212AniState);
1047 		return AH_TRUE;
1048 	case HAL_DIAG_ANI_STATS:
1049 		*result = ar5212AniGetCurrentStats(ah);
1050 		*resultsize = (*result == AH_NULL) ?
1051 			0 : sizeof(struct ar5212Stats);
1052 		return AH_TRUE;
1053 	case HAL_DIAG_ANI_CMD:
1054 		if (argsize != 2*sizeof(uint32_t))
1055 			return AH_FALSE;
1056 		ar5212AniControl(ah, ((const uint32_t *)args)[0],
1057 			((const uint32_t *)args)[1]);
1058 		return AH_TRUE;
1059 	case HAL_DIAG_ANI_PARAMS:
1060 		/*
1061 		 * NB: We assume struct ar5212AniParams is identical
1062 		 * to HAL_ANI_PARAMS; if they diverge then we'll need
1063 		 * to handle it here
1064 		 */
1065 		if (argsize == 0 && args == AH_NULL) {
1066 			struct ar5212AniState *aniState =
1067 			    ar5212AniGetCurrentState(ah);
1068 			if (aniState == AH_NULL)
1069 				return AH_FALSE;
1070 			*result = __DECONST(void *, aniState->params);
1071 			*resultsize = sizeof(struct ar5212AniParams);
1072 			return AH_TRUE;
1073 		} else {
1074 			if (argsize != sizeof(struct ar5212AniParams))
1075 				return AH_FALSE;
1076 			return ar5212AniSetParams(ah, args, args);
1077 		}
1078 	}
1079 	return AH_FALSE;
1080 }
1081 
1082 /*
1083  * Check whether there's an in-progress NF completion.
1084  *
1085  * Returns AH_TRUE if there's a in-progress NF calibration, AH_FALSE
1086  * otherwise.
1087  */
1088 HAL_BOOL
1089 ar5212IsNFCalInProgress(struct ath_hal *ah)
1090 {
1091 	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF)
1092 		return AH_TRUE;
1093 	return AH_FALSE;
1094 }
1095 
1096 /*
1097  * Wait for an in-progress NF calibration to complete.
1098  *
1099  * The completion function waits "i" times 10uS.
1100  * It returns AH_TRUE if the NF calibration completed (or was never
1101  * in progress); AH_FALSE if it was still in progress after "i" checks.
1102  */
1103 HAL_BOOL
1104 ar5212WaitNFCalComplete(struct ath_hal *ah, int i)
1105 {
1106 	int j;
1107 	if (i <= 0)
1108 		i = 1;	  /* it should run at least once */
1109 	for (j = 0; j < i; j++) {
1110 		if (! ar5212IsNFCalInProgress(ah))
1111 			return AH_TRUE;
1112 		OS_DELAY(10);
1113 	}
1114 	return AH_FALSE;
1115 }
1116