xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar5212_misc.c (revision e28a4053)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
24 #ifdef AH_DEBUG
25 #include "ah_desc.h"			/* NB: for HAL_PHYERR* */
26 #endif
27 
28 #include "ar5212/ar5212.h"
29 #include "ar5212/ar5212reg.h"
30 #include "ar5212/ar5212phy.h"
31 
32 #include "ah_eeprom_v3.h"
33 
34 #define	AR_NUM_GPIO	6		/* 6 GPIO pins */
35 #define	AR_GPIOD_MASK	0x0000002F	/* GPIO data reg r/w mask */
36 
37 void
38 ar5212GetMacAddress(struct ath_hal *ah, uint8_t *mac)
39 {
40 	struct ath_hal_5212 *ahp = AH5212(ah);
41 
42 	OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
43 }
44 
45 HAL_BOOL
46 ar5212SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
47 {
48 	struct ath_hal_5212 *ahp = AH5212(ah);
49 
50 	OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
51 	return AH_TRUE;
52 }
53 
54 void
55 ar5212GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
56 {
57 	struct ath_hal_5212 *ahp = AH5212(ah);
58 
59 	OS_MEMCPY(mask, ahp->ah_bssidmask, IEEE80211_ADDR_LEN);
60 }
61 
62 HAL_BOOL
63 ar5212SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
64 {
65 	struct ath_hal_5212 *ahp = AH5212(ah);
66 
67 	/* save it since it must be rewritten on reset */
68 	OS_MEMCPY(ahp->ah_bssidmask, mask, IEEE80211_ADDR_LEN);
69 
70 	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
71 	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
72 	return AH_TRUE;
73 }
74 
75 /*
76  * Attempt to change the cards operating regulatory domain to the given value
77  */
78 HAL_BOOL
79 ar5212SetRegulatoryDomain(struct ath_hal *ah,
80 	uint16_t regDomain, HAL_STATUS *status)
81 {
82 	HAL_STATUS ecode;
83 
84 	if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
85 		ecode = HAL_EINVAL;
86 		goto bad;
87 	}
88 	if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
89 		ecode = HAL_EEWRITE;
90 		goto bad;
91 	}
92 #ifdef AH_SUPPORT_WRITE_REGDOMAIN
93 	if (ath_hal_eepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) {
94 		HALDEBUG(ah, HAL_DEBUG_ANY,
95 		    "%s: set regulatory domain to %u (0x%x)\n",
96 		    __func__, regDomain, regDomain);
97 		AH_PRIVATE(ah)->ah_currentRD = regDomain;
98 		return AH_TRUE;
99 	}
100 #endif
101 	ecode = HAL_EIO;
102 bad:
103 	if (status)
104 		*status = ecode;
105 	return AH_FALSE;
106 }
107 
108 /*
109  * Return the wireless modes (a,b,g,t) supported by hardware.
110  *
111  * This value is what is actually supported by the hardware
112  * and is unaffected by regulatory/country code settings.
113  */
114 u_int
115 ar5212GetWirelessModes(struct ath_hal *ah)
116 {
117 	u_int mode = 0;
118 
119 	if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
120 		mode = HAL_MODE_11A;
121 		if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
122 			mode |= HAL_MODE_TURBO | HAL_MODE_108A;
123 		if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
124 			mode |= HAL_MODE_11A_HALF_RATE;
125 		if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
126 			mode |= HAL_MODE_11A_QUARTER_RATE;
127 	}
128 	if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
129 		mode |= HAL_MODE_11B;
130 	if (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) &&
131 	    AH_PRIVATE(ah)->ah_subvendorid != AR_SUBVENDOR_ID_NOG) {
132 		mode |= HAL_MODE_11G;
133 		if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO2DISABLE))
134 			mode |= HAL_MODE_108G;
135 		if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
136 			mode |= HAL_MODE_11G_HALF_RATE;
137 		if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
138 			mode |= HAL_MODE_11G_QUARTER_RATE;
139 	}
140 	return mode;
141 }
142 
143 /*
144  * Set the interrupt and GPIO values so the ISR can disable RF
145  * on a switch signal.  Assumes GPIO port and interrupt polarity
146  * are set prior to call.
147  */
148 void
149 ar5212EnableRfKill(struct ath_hal *ah)
150 {
151 	uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
152 	int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
153 	int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
154 
155 	/*
156 	 * Configure the desired GPIO port for input
157 	 * and enable baseband rf silence.
158 	 */
159 	ath_hal_gpioCfgInput(ah, select);
160 	OS_REG_SET_BIT(ah, AR_PHY(0), 0x00002000);
161 	/*
162 	 * If radio disable switch connection to GPIO bit x is enabled
163 	 * program GPIO interrupt.
164 	 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
165 	 * verified that it is a later version of eeprom, it has a place for
166 	 * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
167 	 * connection is present.
168 	 */
169 	ath_hal_gpioSetIntr(ah, select,
170 	    (ath_hal_gpioGet(ah, select) == polarity ? !polarity : polarity));
171 }
172 
173 /*
174  * Change the LED blinking pattern to correspond to the connectivity
175  */
176 void
177 ar5212SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
178 {
179 	static const uint32_t ledbits[8] = {
180 		AR_PCICFG_LEDCTL_NONE,	/* HAL_LED_INIT */
181 		AR_PCICFG_LEDCTL_PEND,	/* HAL_LED_SCAN */
182 		AR_PCICFG_LEDCTL_PEND,	/* HAL_LED_AUTH */
183 		AR_PCICFG_LEDCTL_ASSOC,	/* HAL_LED_ASSOC*/
184 		AR_PCICFG_LEDCTL_ASSOC,	/* HAL_LED_RUN */
185 		AR_PCICFG_LEDCTL_NONE,
186 		AR_PCICFG_LEDCTL_NONE,
187 		AR_PCICFG_LEDCTL_NONE,
188 	};
189 	uint32_t bits;
190 
191 	bits = OS_REG_READ(ah, AR_PCICFG);
192 	if (IS_2417(ah)) {
193 		/*
194 		 * Enable LED for Nala. There is a bit marked reserved
195 		 * that must be set and we also turn on the power led.
196 		 * Because we mark s/w LED control setting the control
197 		 * status bits below is meangless (the driver must flash
198 		 * the LED(s) using the GPIO lines).
199 		 */
200 		bits = (bits &~ AR_PCICFG_LEDMODE)
201 		     | SM(AR_PCICFG_LEDMODE_POWON, AR_PCICFG_LEDMODE)
202 #if 0
203 		     | SM(AR_PCICFG_LEDMODE_NETON, AR_PCICFG_LEDMODE)
204 #endif
205 		     | 0x08000000;
206 	}
207 	bits = (bits &~ AR_PCICFG_LEDCTL)
208 	     | SM(ledbits[state & 0x7], AR_PCICFG_LEDCTL);
209 	OS_REG_WRITE(ah, AR_PCICFG, bits);
210 }
211 
212 /*
213  * Change association related fields programmed into the hardware.
214  * Writing a valid BSSID to the hardware effectively enables the hardware
215  * to synchronize its TSF to the correct beacons and receive frames coming
216  * from that BSSID. It is called by the SME JOIN operation.
217  */
218 void
219 ar5212WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
220 {
221 	struct ath_hal_5212 *ahp = AH5212(ah);
222 
223 	/* XXX save bssid for possible re-use on reset */
224 	OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
225 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
226 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
227 				     ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
228 }
229 
230 /*
231  * Get the current hardware tsf for stamlme
232  */
233 uint64_t
234 ar5212GetTsf64(struct ath_hal *ah)
235 {
236 	uint32_t low1, low2, u32;
237 
238 	/* sync multi-word read */
239 	low1 = OS_REG_READ(ah, AR_TSF_L32);
240 	u32 = OS_REG_READ(ah, AR_TSF_U32);
241 	low2 = OS_REG_READ(ah, AR_TSF_L32);
242 	if (low2 < low1) {	/* roll over */
243 		/*
244 		 * If we are not preempted this will work.  If we are
245 		 * then we re-reading AR_TSF_U32 does no good as the
246 		 * low bits will be meaningless.  Likewise reading
247 		 * L32, U32, U32, then comparing the last two reads
248 		 * to check for rollover doesn't help if preempted--so
249 		 * we take this approach as it costs one less PCI read
250 		 * which can be noticeable when doing things like
251 		 * timestamping packets in monitor mode.
252 		 */
253 		u32++;
254 	}
255 	return (((uint64_t) u32) << 32) | ((uint64_t) low2);
256 }
257 
258 /*
259  * Get the current hardware tsf for stamlme
260  */
261 uint32_t
262 ar5212GetTsf32(struct ath_hal *ah)
263 {
264 	return OS_REG_READ(ah, AR_TSF_L32);
265 }
266 
267 /*
268  * Reset the current hardware tsf for stamlme.
269  */
270 void
271 ar5212ResetTsf(struct ath_hal *ah)
272 {
273 
274 	uint32_t val = OS_REG_READ(ah, AR_BEACON);
275 
276 	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
277 	/*
278 	 * When resetting the TSF, write twice to the
279 	 * corresponding register; each write to the RESET_TSF bit toggles
280 	 * the internal signal to cause a reset of the TSF - but if the signal
281 	 * is left high, it will reset the TSF on the next chip reset also!
282 	 * writing the bit an even number of times fixes this issue
283 	 */
284 	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
285 }
286 
287 /*
288  * Set or clear hardware basic rate bit
289  * Set hardware basic rate set if basic rate is found
290  * and basic rate is equal or less than 2Mbps
291  */
292 void
293 ar5212SetBasicRate(struct ath_hal *ah, HAL_RATE_SET *rs)
294 {
295 	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
296 	uint32_t reg;
297 	uint8_t xset;
298 	int i;
299 
300 	if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan))
301 		return;
302 	xset = 0;
303 	for (i = 0; i < rs->rs_count; i++) {
304 		uint8_t rset = rs->rs_rates[i];
305 		/* Basic rate defined? */
306 		if ((rset & 0x80) && (rset &= 0x7f) >= xset)
307 			xset = rset;
308 	}
309 	/*
310 	 * Set the h/w bit to reflect whether or not the basic
311 	 * rate is found to be equal or less than 2Mbps.
312 	 */
313 	reg = OS_REG_READ(ah, AR_STA_ID1);
314 	if (xset && xset/2 <= 2)
315 		OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
316 	else
317 		OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
318 }
319 
320 /*
321  * Grab a semi-random value from hardware registers - may not
322  * change often
323  */
324 uint32_t
325 ar5212GetRandomSeed(struct ath_hal *ah)
326 {
327 	uint32_t nf;
328 
329 	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
330 	if (nf & 0x100)
331 		nf = 0 - ((nf ^ 0x1ff) + 1);
332 	return (OS_REG_READ(ah, AR_TSF_U32) ^
333 		OS_REG_READ(ah, AR_TSF_L32) ^ nf);
334 }
335 
336 /*
337  * Detect if our card is present
338  */
339 HAL_BOOL
340 ar5212DetectCardPresent(struct ath_hal *ah)
341 {
342 	uint16_t macVersion, macRev;
343 	uint32_t v;
344 
345 	/*
346 	 * Read the Silicon Revision register and compare that
347 	 * to what we read at attach time.  If the same, we say
348 	 * a card/device is present.
349 	 */
350 	v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID;
351 	macVersion = v >> AR_SREV_ID_S;
352 	macRev = v & AR_SREV_REVISION;
353 	return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
354 		AH_PRIVATE(ah)->ah_macRev == macRev);
355 }
356 
357 void
358 ar5212EnableMibCounters(struct ath_hal *ah)
359 {
360 	/* NB: this just resets the mib counter machinery */
361 	OS_REG_WRITE(ah, AR_MIBC,
362 	    ~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS) & 0x0f);
363 }
364 
365 void
366 ar5212DisableMibCounters(struct ath_hal *ah)
367 {
368 	OS_REG_WRITE(ah, AR_MIBC,  AR_MIBC | AR_MIBC_CMC);
369 }
370 
371 /*
372  * Update MIB Counters
373  */
374 void
375 ar5212UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS* stats)
376 {
377 	stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
378 	stats->rts_bad	  += OS_REG_READ(ah, AR_RTS_FAIL);
379 	stats->fcs_bad	  += OS_REG_READ(ah, AR_FCS_FAIL);
380 	stats->rts_good	  += OS_REG_READ(ah, AR_RTS_OK);
381 	stats->beacons	  += OS_REG_READ(ah, AR_BEACON_CNT);
382 }
383 
384 /*
385  * Detect if the HW supports spreading a CCK signal on channel 14
386  */
387 HAL_BOOL
388 ar5212IsJapanChannelSpreadSupported(struct ath_hal *ah)
389 {
390 	return AH_TRUE;
391 }
392 
393 /*
394  * Get the rssi of frame curently being received.
395  */
396 uint32_t
397 ar5212GetCurRssi(struct ath_hal *ah)
398 {
399 	return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
400 }
401 
402 u_int
403 ar5212GetDefAntenna(struct ath_hal *ah)
404 {
405 	return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
406 }
407 
408 void
409 ar5212SetDefAntenna(struct ath_hal *ah, u_int antenna)
410 {
411 	OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
412 }
413 
414 HAL_ANT_SETTING
415 ar5212GetAntennaSwitch(struct ath_hal *ah)
416 {
417 	return AH5212(ah)->ah_antControl;
418 }
419 
420 HAL_BOOL
421 ar5212SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING setting)
422 {
423 	struct ath_hal_5212 *ahp = AH5212(ah);
424 	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
425 
426 	if (!ahp->ah_phyPowerOn || chan == AH_NULL) {
427 		/* PHY powered off, just stash settings */
428 		ahp->ah_antControl = setting;
429 		ahp->ah_diversity = (setting == HAL_ANT_VARIABLE);
430 		return AH_TRUE;
431 	}
432 	return ar5212SetAntennaSwitchInternal(ah, setting, chan);
433 }
434 
435 HAL_BOOL
436 ar5212IsSleepAfterBeaconBroken(struct ath_hal *ah)
437 {
438 	return AH_TRUE;
439 }
440 
441 HAL_BOOL
442 ar5212SetSifsTime(struct ath_hal *ah, u_int us)
443 {
444 	struct ath_hal_5212 *ahp = AH5212(ah);
445 
446 	if (us > ath_hal_mac_usec(ah, 0xffff)) {
447 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
448 		    __func__, us);
449 		ahp->ah_sifstime = (u_int) -1;	/* restore default handling */
450 		return AH_FALSE;
451 	} else {
452 		/* convert to system clocks */
453 		OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us-2));
454 		ahp->ah_slottime = us;
455 		return AH_TRUE;
456 	}
457 }
458 
459 u_int
460 ar5212GetSifsTime(struct ath_hal *ah)
461 {
462 	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
463 	return ath_hal_mac_usec(ah, clks)+2;	/* convert from system clocks */
464 }
465 
466 HAL_BOOL
467 ar5212SetSlotTime(struct ath_hal *ah, u_int us)
468 {
469 	struct ath_hal_5212 *ahp = AH5212(ah);
470 
471 	if (us < HAL_SLOT_TIME_6 || us > ath_hal_mac_usec(ah, 0xffff)) {
472 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
473 		    __func__, us);
474 		ahp->ah_slottime = (u_int) -1;	/* restore default handling */
475 		return AH_FALSE;
476 	} else {
477 		/* convert to system clocks */
478 		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
479 		ahp->ah_slottime = us;
480 		return AH_TRUE;
481 	}
482 }
483 
484 u_int
485 ar5212GetSlotTime(struct ath_hal *ah)
486 {
487 	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
488 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
489 }
490 
491 HAL_BOOL
492 ar5212SetAckTimeout(struct ath_hal *ah, u_int us)
493 {
494 	struct ath_hal_5212 *ahp = AH5212(ah);
495 
496 	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
497 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
498 		    __func__, us);
499 		ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
500 		return AH_FALSE;
501 	} else {
502 		/* convert to system clocks */
503 		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
504 			AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
505 		ahp->ah_acktimeout = us;
506 		return AH_TRUE;
507 	}
508 }
509 
510 u_int
511 ar5212GetAckTimeout(struct ath_hal *ah)
512 {
513 	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
514 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
515 }
516 
517 u_int
518 ar5212GetAckCTSRate(struct ath_hal *ah)
519 {
520 	return ((AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
521 }
522 
523 HAL_BOOL
524 ar5212SetAckCTSRate(struct ath_hal *ah, u_int high)
525 {
526 	struct ath_hal_5212 *ahp = AH5212(ah);
527 
528 	if (high) {
529 		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
530 		ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
531 	} else {
532 		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
533 		ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
534 	}
535 	return AH_TRUE;
536 }
537 
538 HAL_BOOL
539 ar5212SetCTSTimeout(struct ath_hal *ah, u_int us)
540 {
541 	struct ath_hal_5212 *ahp = AH5212(ah);
542 
543 	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
544 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
545 		    __func__, us);
546 		ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
547 		return AH_FALSE;
548 	} else {
549 		/* convert to system clocks */
550 		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
551 			AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
552 		ahp->ah_ctstimeout = us;
553 		return AH_TRUE;
554 	}
555 }
556 
557 u_int
558 ar5212GetCTSTimeout(struct ath_hal *ah)
559 {
560 	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
561 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
562 }
563 
564 /* Setup decompression for given key index */
565 HAL_BOOL
566 ar5212SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
567 {
568 	struct ath_hal_5212 *ahp = AH5212(ah);
569 
570         if (keyidx >= HAL_DECOMP_MASK_SIZE)
571                 return HAL_EINVAL;
572         OS_REG_WRITE(ah, AR_DCM_A, keyidx);
573         OS_REG_WRITE(ah, AR_DCM_D, en ? AR_DCM_D_EN : 0);
574         ahp->ah_decompMask[keyidx] = en;
575 
576         return AH_TRUE;
577 }
578 
579 /* Setup coverage class */
580 void
581 ar5212SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
582 {
583 	uint32_t slot, timeout, eifs;
584 	u_int clkRate;
585 
586 	AH_PRIVATE(ah)->ah_coverageClass = coverageclass;
587 
588 	if (now) {
589 		if (AH_PRIVATE(ah)->ah_coverageClass == 0)
590 			return;
591 
592 		/* Don't apply coverage class to non A channels */
593 		if (!IEEE80211_IS_CHAN_A(AH_PRIVATE(ah)->ah_curchan))
594 			return;
595 
596 		/* Get core clock rate */
597 		clkRate = ath_hal_mac_clks(ah, 1);
598 
599 		/* Compute EIFS */
600 		slot = coverageclass * 3 * clkRate;
601 		eifs = coverageclass * 6 * clkRate;
602 		if (IEEE80211_IS_CHAN_HALF(AH_PRIVATE(ah)->ah_curchan)) {
603 			slot += IFS_SLOT_HALF_RATE;
604 			eifs += IFS_EIFS_HALF_RATE;
605 		} else if (IEEE80211_IS_CHAN_QUARTER(AH_PRIVATE(ah)->ah_curchan)) {
606 			slot += IFS_SLOT_QUARTER_RATE;
607 			eifs += IFS_EIFS_QUARTER_RATE;
608 		} else { /* full rate */
609 			slot += IFS_SLOT_FULL_RATE;
610 			eifs += IFS_EIFS_FULL_RATE;
611 		}
612 
613 		/*
614 		 * Add additional time for air propagation for ACK and CTS
615 		 * timeouts. This value is in core clocks.
616   		 */
617 		timeout = ACK_CTS_TIMEOUT_11A + (coverageclass * 3 * clkRate);
618 
619 		/*
620 		 * Write the values: slot, eifs, ack/cts timeouts.
621 		 */
622 		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
623 		OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
624 		OS_REG_WRITE(ah, AR_TIME_OUT,
625 			  SM(timeout, AR_TIME_OUT_CTS)
626 			| SM(timeout, AR_TIME_OUT_ACK));
627 	}
628 }
629 
630 void
631 ar5212SetPCUConfig(struct ath_hal *ah)
632 {
633 	ar5212SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
634 }
635 
636 /*
637  * Return whether an external 32KHz crystal should be used
638  * to reduce power consumption when sleeping.  We do so if
639  * the crystal is present (obtained from EEPROM) and if we
640  * are not running as an AP and are configured to use it.
641  */
642 HAL_BOOL
643 ar5212Use32KHzclock(struct ath_hal *ah, HAL_OPMODE opmode)
644 {
645 	if (opmode != HAL_M_HOSTAP) {
646 		struct ath_hal_5212 *ahp = AH5212(ah);
647 		return ath_hal_eepromGetFlag(ah, AR_EEP_32KHZCRYSTAL) &&
648 		       (ahp->ah_enable32kHzClock == USE_32KHZ ||
649 		        ahp->ah_enable32kHzClock == AUTO_32KHZ);
650 	} else
651 		return AH_FALSE;
652 }
653 
654 /*
655  * If 32KHz clock exists, use it to lower power consumption during sleep
656  *
657  * Note: If clock is set to 32 KHz, delays on accessing certain
658  *       baseband registers (27-31, 124-127) are required.
659  */
660 void
661 ar5212SetupClock(struct ath_hal *ah, HAL_OPMODE opmode)
662 {
663 	if (ar5212Use32KHzclock(ah, opmode)) {
664 		/*
665 		 * Enable clocks to be turned OFF in BB during sleep
666 		 * and also enable turning OFF 32MHz/40MHz Refclk
667 		 * from A2.
668 		 */
669 		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
670 		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
671 		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 0x14 : 0x18);
672 		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32, 1);
673 		OS_REG_WRITE(ah, AR_TSF_PARM, 61);  /* 32 KHz TSF incr */
674 		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 1);
675 
676 		if (IS_2413(ah) || IS_5413(ah) || IS_2417(ah)) {
677 			OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x26);
678 			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0d);
679 			OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x07);
680 			OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0x3f);
681 			/* # Set sleep clock rate to 32 KHz. */
682 			OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x2);
683 		} else {
684 			OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x0a);
685 			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0c);
686 			OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x03);
687 			OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0x20);
688 			OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x3);
689 		}
690 	} else {
691 		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x0);
692 		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
693 
694 		OS_REG_WRITE(ah, AR_TSF_PARM, 1);	/* 32MHz TSF inc */
695 
696 		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
697 		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x7f);
698 
699 		if (IS_2417(ah))
700 			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0a);
701 		else if (IS_HB63(ah))
702 			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x32);
703 		else
704 			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
705 		OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x0c);
706 		OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0xff);
707 		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
708 		    IS_RAD5112_ANY(ah) || IS_5413(ah) || IS_2417(ah) ? 0x14 : 0x18);
709 		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
710 		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
711 	}
712 }
713 
714 /*
715  * If 32KHz clock exists, turn it off and turn back on the 32Mhz
716  */
717 void
718 ar5212RestoreClock(struct ath_hal *ah, HAL_OPMODE opmode)
719 {
720 	if (ar5212Use32KHzclock(ah, opmode)) {
721 		/* # Set sleep clock rate back to 32 MHz. */
722 		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0);
723 		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
724 
725 		OS_REG_WRITE(ah, AR_TSF_PARM, 1);	/* 32 MHz TSF incr */
726 		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
727 		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
728 
729 		/*
730 		 * Restore BB registers to power-on defaults
731 		 */
732 		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
733 		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x7f);
734 		OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0e);
735 		OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x0c);
736 		OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0xff);
737 		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
738 		    IS_RAD5112_ANY(ah) || IS_5413(ah) ?  0x14 : 0x18);
739 	}
740 }
741 
742 /*
743  * Adjust NF based on statistical values for 5GHz frequencies.
744  * Default method: this may be overridden by the rf backend.
745  */
746 int16_t
747 ar5212GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
748 {
749 	static const struct {
750 		uint16_t freqLow;
751 		int16_t	  adjust;
752 	} adjustDef[] = {
753 		{ 5790,	11 },	/* NB: ordered high -> low */
754 		{ 5730, 10 },
755 		{ 5690,  9 },
756 		{ 5660,  8 },
757 		{ 5610,  7 },
758 		{ 5530,  5 },
759 		{ 5450,  4 },
760 		{ 5379,  2 },
761 		{ 5209,  0 },
762 		{ 3000,  1 },
763 		{    0,  0 },
764 	};
765 	int i;
766 
767 	for (i = 0; c->channel <= adjustDef[i].freqLow; i++)
768 		;
769 	return adjustDef[i].adjust;
770 }
771 
772 HAL_STATUS
773 ar5212GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
774 	uint32_t capability, uint32_t *result)
775 {
776 #define	MACVERSION(ah)	AH_PRIVATE(ah)->ah_macVersion
777 	struct ath_hal_5212 *ahp = AH5212(ah);
778 	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
779 	const struct ar5212AniState *ani;
780 
781 	switch (type) {
782 	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
783 		switch (capability) {
784 		case HAL_CIPHER_AES_CCM:
785 			return pCap->halCipherAesCcmSupport ?
786 				HAL_OK : HAL_ENOTSUPP;
787 		case HAL_CIPHER_AES_OCB:
788 		case HAL_CIPHER_TKIP:
789 		case HAL_CIPHER_WEP:
790 		case HAL_CIPHER_MIC:
791 		case HAL_CIPHER_CLR:
792 			return HAL_OK;
793 		default:
794 			return HAL_ENOTSUPP;
795 		}
796 	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
797 		switch (capability) {
798 		case 0:			/* hardware capability */
799 			return HAL_OK;
800 		case 1:
801 			return (ahp->ah_staId1Defaults &
802 			    AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
803 		}
804 		return HAL_EINVAL;
805 	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
806 		switch (capability) {
807 		case 0:			/* hardware capability */
808 			return pCap->halTkipMicTxRxKeySupport ?
809 				HAL_ENXIO : HAL_OK;
810 		case 1:			/* current setting */
811 			return (ahp->ah_miscMode &
812 			    AR_MISC_MODE_MIC_NEW_LOC_ENABLE) ? HAL_ENXIO : HAL_OK;
813 		}
814 		return HAL_EINVAL;
815 	case HAL_CAP_WME_TKIPMIC:	/* hardware can do TKIP MIC w/ WMM */
816 		/* XXX move to capability bit */
817 		return MACVERSION(ah) > AR_SREV_VERSION_VENICE ||
818 		    (MACVERSION(ah) == AR_SREV_VERSION_VENICE &&
819 		     AH_PRIVATE(ah)->ah_macRev >= 8) ? HAL_OK : HAL_ENOTSUPP;
820 	case HAL_CAP_DIVERSITY:		/* hardware supports fast diversity */
821 		switch (capability) {
822 		case 0:			/* hardware capability */
823 			return HAL_OK;
824 		case 1:			/* current setting */
825 			return ahp->ah_diversity ? HAL_OK : HAL_ENXIO;
826 		}
827 		return HAL_EINVAL;
828 	case HAL_CAP_DIAG:
829 		*result = AH_PRIVATE(ah)->ah_diagreg;
830 		return HAL_OK;
831 	case HAL_CAP_TPC:
832 		switch (capability) {
833 		case 0:			/* hardware capability */
834 			return HAL_OK;
835 		case 1:
836 			return ahp->ah_tpcEnabled ? HAL_OK : HAL_ENXIO;
837 		}
838 		return HAL_OK;
839 	case HAL_CAP_PHYDIAG:		/* radar pulse detection capability */
840 		switch (capability) {
841 		case HAL_CAP_RADAR:
842 			return ath_hal_eepromGetFlag(ah, AR_EEP_AMODE) ?
843 			    HAL_OK: HAL_ENXIO;
844 		case HAL_CAP_AR:
845 			return (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) ||
846 			    ath_hal_eepromGetFlag(ah, AR_EEP_BMODE)) ?
847 			       HAL_OK: HAL_ENXIO;
848 		}
849 		return HAL_ENXIO;
850 	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
851 		switch (capability) {
852 		case 0:			/* hardware capability */
853 			return HAL_OK;
854 		case 1:
855 			return (ahp->ah_staId1Defaults &
856 			    AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
857 		}
858 		return HAL_EINVAL;
859 	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
860 		switch (capability) {
861 		case 0:			/* hardware capability */
862 			return pCap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
863 		case 1:
864 			return (ahp->ah_miscMode & AR_MISC_MODE_TX_ADD_TSF) ?
865 				HAL_OK : HAL_ENXIO;
866 		}
867 		return HAL_EINVAL;
868 	case HAL_CAP_TPC_ACK:
869 		*result = MS(ahp->ah_macTPC, AR_TPC_ACK);
870 		return HAL_OK;
871 	case HAL_CAP_TPC_CTS:
872 		*result = MS(ahp->ah_macTPC, AR_TPC_CTS);
873 		return HAL_OK;
874 	case HAL_CAP_INTMIT:		/* interference mitigation */
875 		switch (capability) {
876 		case 0:			/* hardware capability */
877 			return HAL_OK;
878 		case 1:
879 			return (ahp->ah_procPhyErr & HAL_ANI_ENA) ?
880 				HAL_OK : HAL_ENXIO;
881 		case 2:			/* HAL_ANI_NOISE_IMMUNITY_LEVEL */
882 		case 3:			/* HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION */
883 		case 4:			/* HAL_ANI_CCK_WEAK_SIGNAL_THR */
884 		case 5:			/* HAL_ANI_FIRSTEP_LEVEL */
885 		case 6:			/* HAL_ANI_SPUR_IMMUNITY_LEVEL */
886 			ani = ar5212AniGetCurrentState(ah);
887 			if (ani == AH_NULL)
888 				return HAL_ENXIO;
889 			switch (capability) {
890 			case 2:	*result = ani->noiseImmunityLevel; break;
891 			case 3: *result = !ani->ofdmWeakSigDetectOff; break;
892 			case 4: *result = ani->cckWeakSigThreshold; break;
893 			case 5: *result = ani->firstepLevel; break;
894 			case 6: *result = ani->spurImmunityLevel; break;
895 			}
896 			return HAL_OK;
897 		}
898 		return HAL_EINVAL;
899 	default:
900 		return ath_hal_getcapability(ah, type, capability, result);
901 	}
902 #undef MACVERSION
903 }
904 
905 HAL_BOOL
906 ar5212SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
907 	uint32_t capability, uint32_t setting, HAL_STATUS *status)
908 {
909 #define	N(a)	(sizeof(a)/sizeof(a[0]))
910 	struct ath_hal_5212 *ahp = AH5212(ah);
911 	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
912 	uint32_t v;
913 
914 	switch (type) {
915 	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
916 		if (setting)
917 			ahp->ah_staId1Defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
918 		else
919 			ahp->ah_staId1Defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
920 		return AH_TRUE;
921 	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
922 		if (!pCap->halTkipMicTxRxKeySupport)
923 			return AH_FALSE;
924 		/* NB: true =>'s use split key cache layout */
925 		if (setting)
926 			ahp->ah_miscMode &= ~AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
927 		else
928 			ahp->ah_miscMode |= AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
929 		/* NB: write here so keys can be setup w/o a reset */
930 		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
931 		return AH_TRUE;
932 	case HAL_CAP_DIVERSITY:
933 		if (ahp->ah_phyPowerOn) {
934 			v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
935 			if (setting)
936 				v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
937 			else
938 				v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
939 			OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
940 		}
941 		ahp->ah_diversity = (setting != 0);
942 		return AH_TRUE;
943 	case HAL_CAP_DIAG:		/* hardware diagnostic support */
944 		/*
945 		 * NB: could split this up into virtual capabilities,
946 		 *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
947 		 *     seems worth the additional complexity.
948 		 */
949 		AH_PRIVATE(ah)->ah_diagreg = setting;
950 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
951 		return AH_TRUE;
952 	case HAL_CAP_TPC:
953 		ahp->ah_tpcEnabled = (setting != 0);
954 		return AH_TRUE;
955 	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
956 		if (setting)
957 			ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
958 		else
959 			ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
960 		return AH_TRUE;
961 	case HAL_CAP_TPC_ACK:
962 	case HAL_CAP_TPC_CTS:
963 		setting += ahp->ah_txPowerIndexOffset;
964 		if (setting > 63)
965 			setting = 63;
966 		if (type == HAL_CAP_TPC_ACK) {
967 			ahp->ah_macTPC &= AR_TPC_ACK;
968 			ahp->ah_macTPC |= MS(setting, AR_TPC_ACK);
969 		} else {
970 			ahp->ah_macTPC &= AR_TPC_CTS;
971 			ahp->ah_macTPC |= MS(setting, AR_TPC_CTS);
972 		}
973 		OS_REG_WRITE(ah, AR_TPC, ahp->ah_macTPC);
974 		return AH_TRUE;
975 	case HAL_CAP_INTMIT: {		/* interference mitigation */
976 		static const HAL_ANI_CMD cmds[] = {
977 			HAL_ANI_PRESENT,
978 			HAL_ANI_MODE,
979 			HAL_ANI_NOISE_IMMUNITY_LEVEL,
980 			HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
981 			HAL_ANI_CCK_WEAK_SIGNAL_THR,
982 			HAL_ANI_FIRSTEP_LEVEL,
983 			HAL_ANI_SPUR_IMMUNITY_LEVEL,
984 		};
985 		return capability < N(cmds) ?
986 			ar5212AniControl(ah, cmds[capability], setting) :
987 			AH_FALSE;
988 	}
989 	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
990 		if (pCap->halTsfAddSupport) {
991 			if (setting)
992 				ahp->ah_miscMode |= AR_MISC_MODE_TX_ADD_TSF;
993 			else
994 				ahp->ah_miscMode &= ~AR_MISC_MODE_TX_ADD_TSF;
995 			return AH_TRUE;
996 		}
997 		/* fall thru... */
998 	default:
999 		return ath_hal_setcapability(ah, type, capability,
1000 				setting, status);
1001 	}
1002 #undef N
1003 }
1004 
1005 HAL_BOOL
1006 ar5212GetDiagState(struct ath_hal *ah, int request,
1007 	const void *args, uint32_t argsize,
1008 	void **result, uint32_t *resultsize)
1009 {
1010 	struct ath_hal_5212 *ahp = AH5212(ah);
1011 
1012 	(void) ahp;
1013 	if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
1014 		return AH_TRUE;
1015 	switch (request) {
1016 	case HAL_DIAG_EEPROM:
1017 	case HAL_DIAG_EEPROM_EXP_11A:
1018 	case HAL_DIAG_EEPROM_EXP_11B:
1019 	case HAL_DIAG_EEPROM_EXP_11G:
1020 	case HAL_DIAG_RFGAIN:
1021 		return ath_hal_eepromDiag(ah, request,
1022 		    args, argsize, result, resultsize);
1023 	case HAL_DIAG_RFGAIN_CURSTEP:
1024 		*result = __DECONST(void *, ahp->ah_gainValues.currStep);
1025 		*resultsize = (*result == AH_NULL) ?
1026 			0 : sizeof(GAIN_OPTIMIZATION_STEP);
1027 		return AH_TRUE;
1028 	case HAL_DIAG_PCDAC:
1029 		*result = ahp->ah_pcdacTable;
1030 		*resultsize = ahp->ah_pcdacTableSize;
1031 		return AH_TRUE;
1032 	case HAL_DIAG_TXRATES:
1033 		*result = &ahp->ah_ratesArray[0];
1034 		*resultsize = sizeof(ahp->ah_ratesArray);
1035 		return AH_TRUE;
1036 	case HAL_DIAG_ANI_CURRENT:
1037 		*result = ar5212AniGetCurrentState(ah);
1038 		*resultsize = (*result == AH_NULL) ?
1039 			0 : sizeof(struct ar5212AniState);
1040 		return AH_TRUE;
1041 	case HAL_DIAG_ANI_STATS:
1042 		*result = ar5212AniGetCurrentStats(ah);
1043 		*resultsize = (*result == AH_NULL) ?
1044 			0 : sizeof(struct ar5212Stats);
1045 		return AH_TRUE;
1046 	case HAL_DIAG_ANI_CMD:
1047 		if (argsize != 2*sizeof(uint32_t))
1048 			return AH_FALSE;
1049 		ar5212AniControl(ah, ((const uint32_t *)args)[0],
1050 			((const uint32_t *)args)[1]);
1051 		return AH_TRUE;
1052 	case HAL_DIAG_ANI_PARAMS:
1053 		/*
1054 		 * NB: We assume struct ar5212AniParams is identical
1055 		 * to HAL_ANI_PARAMS; if they diverge then we'll need
1056 		 * to handle it here
1057 		 */
1058 		if (argsize == 0 && args == AH_NULL) {
1059 			struct ar5212AniState *aniState =
1060 			    ar5212AniGetCurrentState(ah);
1061 			if (aniState == AH_NULL)
1062 				return AH_FALSE;
1063 			*result = __DECONST(void *, aniState->params);
1064 			*resultsize = sizeof(struct ar5212AniParams);
1065 			return AH_TRUE;
1066 		} else {
1067 			if (argsize != sizeof(struct ar5212AniParams))
1068 				return AH_FALSE;
1069 			return ar5212AniSetParams(ah, args, args);
1070 		}
1071 	}
1072 	return AH_FALSE;
1073 }
1074 
1075 /*
1076  * Check whether there's an in-progress NF completion.
1077  *
1078  * Returns AH_TRUE if there's a in-progress NF calibration, AH_FALSE
1079  * otherwise.
1080  */
1081 HAL_BOOL
1082 ar5212IsNFCalInProgress(struct ath_hal *ah)
1083 {
1084 	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF)
1085 		return AH_TRUE;
1086 	return AH_FALSE;
1087 }
1088 
1089 /*
1090  * Wait for an in-progress NF calibration to complete.
1091  *
1092  * The completion function waits "i" times 10uS.
1093  * It returns AH_TRUE if the NF calibration completed (or was never
1094  * in progress); AH_FALSE if it was still in progress after "i" checks.
1095  */
1096 HAL_BOOL
1097 ar5212WaitNFCalComplete(struct ath_hal *ah, int i)
1098 {
1099 	int j;
1100 	if (i <= 0)
1101 		i = 1;	  /* it should run at least once */
1102 	for (j = 0; j < i; j++) {
1103 		if (! ar5212IsNFCalInProgress(ah))
1104 			return AH_TRUE;
1105 		OS_DELAY(10);
1106 	}
1107 	return AH_FALSE;
1108 }
1109