xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar5413.c (revision 4d846d26)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22 
23 #include "ah.h"
24 #include "ah_internal.h"
25 
26 #include "ah_eeprom_v3.h"
27 
28 #include "ar5212/ar5212.h"
29 #include "ar5212/ar5212reg.h"
30 #include "ar5212/ar5212phy.h"
31 
32 #define AH_5212_5413
33 #include "ar5212/ar5212.ini"
34 
35 #define	N(a)	(sizeof(a)/sizeof(a[0]))
36 
37 struct ar5413State {
38 	RF_HAL_FUNCS	base;		/* public state, must be first */
39 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
40 
41 	uint32_t	Bank1Data[N(ar5212Bank1_5413)];
42 	uint32_t	Bank2Data[N(ar5212Bank2_5413)];
43 	uint32_t	Bank3Data[N(ar5212Bank3_5413)];
44 	uint32_t	Bank6Data[N(ar5212Bank6_5413)];
45 	uint32_t	Bank7Data[N(ar5212Bank7_5413)];
46 
47 	/*
48 	 * Private state for reduced stack usage.
49 	 */
50 	/* filled out Vpd table for all pdGains (chanL) */
51 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
52 			    [MAX_PWR_RANGE_IN_HALF_DB];
53 	/* filled out Vpd table for all pdGains (chanR) */
54 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
55 			    [MAX_PWR_RANGE_IN_HALF_DB];
56 	/* filled out Vpd table for all pdGains (interpolated) */
57 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
58 			    [MAX_PWR_RANGE_IN_HALF_DB];
59 };
60 #define	AR5413(ah)	((struct ar5413State *) AH5212(ah)->ah_rfHal)
61 
62 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
63 		uint32_t numBits, uint32_t firstBit, uint32_t column);
64 
65 static void
66 ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
67 	int writes)
68 {
69 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes);
70 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes);
71 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes);
72 }
73 
74 /*
75  * Take the MHz channel value and set the Channel value
76  *
77  * ASSUMES: Writes enabled to analog bus
78  */
79 static HAL_BOOL
80 ar5413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
81 {
82 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
83 	uint32_t channelSel  = 0;
84 	uint32_t bModeSynth  = 0;
85 	uint32_t aModeRefSel = 0;
86 	uint32_t reg32       = 0;
87 
88 	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
89 
90 	if (freq < 4800) {
91 		uint32_t txctl;
92 
93 		if (((freq - 2192) % 5) == 0) {
94 			channelSel = ((freq - 672) * 2 - 3040)/10;
95 			bModeSynth = 0;
96 		} else if (((freq - 2224) % 5) == 0) {
97 			channelSel = ((freq - 704) * 2 - 3040) / 10;
98 			bModeSynth = 1;
99 		} else {
100 			HALDEBUG(ah, HAL_DEBUG_ANY,
101 			    "%s: invalid channel %u MHz\n",
102 			    __func__, freq);
103 			return AH_FALSE;
104 		}
105 
106 		channelSel = (channelSel << 2) & 0xff;
107 		channelSel = ath_hal_reverseBits(channelSel, 8);
108 
109 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
110 		if (freq == 2484) {
111 			/* Enable channel spreading for channel 14 */
112 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
113 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
114 		} else {
115 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
116 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
117 		}
118 	} else if (((freq % 5) == 2) && (freq <= 5435)) {
119 		freq = freq - 2; /* Align to even 5MHz raster */
120 		channelSel = ath_hal_reverseBits(
121 			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
122             	aModeRefSel = ath_hal_reverseBits(0, 2);
123 	} else if ((freq % 20) == 0 && freq >= 5120) {
124 		channelSel = ath_hal_reverseBits(
125 			((freq - 4800) / 20 << 2), 8);
126 		aModeRefSel = ath_hal_reverseBits(1, 2);
127 	} else if ((freq % 10) == 0) {
128 		channelSel = ath_hal_reverseBits(
129 			((freq - 4800) / 10 << 1), 8);
130 		aModeRefSel = ath_hal_reverseBits(1, 2);
131 	} else if ((freq % 5) == 0) {
132 		channelSel = ath_hal_reverseBits(
133 			(freq - 4800) / 5, 8);
134 		aModeRefSel = ath_hal_reverseBits(1, 2);
135 	} else {
136 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
137 		    __func__, freq);
138 		return AH_FALSE;
139 	}
140 
141 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
142 			(1 << 12) | 0x1;
143 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
144 
145 	reg32 >>= 8;
146 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
147 
148 	AH_PRIVATE(ah)->ah_curchan = chan;
149 	return AH_TRUE;
150 }
151 
152 /*
153  * Reads EEPROM header info from device structure and programs
154  * all rf registers
155  *
156  * REQUIRES: Access to the analog rf device
157  */
158 static HAL_BOOL
159 ar5413SetRfRegs(struct ath_hal *ah,
160 	const struct ieee80211_channel *chan,
161 	uint16_t modesIndex, uint16_t *rfXpdGain)
162 {
163 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
164 	int i;								    \
165 	for (i = 0; i < N(ar5212Bank##_ix##_5413); i++)			    \
166 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\
167 } while (0)
168 	struct ath_hal_5212 *ahp = AH5212(ah);
169 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
170 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
171 	uint16_t ob5GHz = 0, db5GHz = 0;
172 	uint16_t ob2GHz = 0, db2GHz = 0;
173 	struct ar5413State *priv = AR5413(ah);
174 	int regWrites = 0;
175 
176 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
177 	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
178 
179 	HALASSERT(priv != AH_NULL);
180 
181 	/* Setup rf parameters */
182 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
183 	case IEEE80211_CHAN_A:
184 		if (freq > 4000 && freq < 5260) {
185 			ob5GHz = ee->ee_ob1;
186 			db5GHz = ee->ee_db1;
187 		} else if (freq >= 5260 && freq < 5500) {
188 			ob5GHz = ee->ee_ob2;
189 			db5GHz = ee->ee_db2;
190 		} else if (freq >= 5500 && freq < 5725) {
191 			ob5GHz = ee->ee_ob3;
192 			db5GHz = ee->ee_db3;
193 		} else if (freq >= 5725) {
194 			ob5GHz = ee->ee_ob4;
195 			db5GHz = ee->ee_db4;
196 		} else {
197 			/* XXX else */
198 		}
199 		break;
200 	case IEEE80211_CHAN_B:
201 		ob2GHz = ee->ee_obFor24;
202 		db2GHz = ee->ee_dbFor24;
203 		break;
204 	case IEEE80211_CHAN_G:
205 	case IEEE80211_CHAN_PUREG:	/* NB: really 108G */
206 		ob2GHz = ee->ee_obFor24g;
207 		db2GHz = ee->ee_dbFor24g;
208 		break;
209 	default:
210 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
211 		    __func__, chan->ic_flags);
212 		return AH_FALSE;
213 	}
214 
215 	/* Bank 1 Write */
216 	RF_BANK_SETUP(priv, 1, 1);
217 
218 	/* Bank 2 Write */
219 	RF_BANK_SETUP(priv, 2, modesIndex);
220 
221 	/* Bank 3 Write */
222 	RF_BANK_SETUP(priv, 3, modesIndex);
223 
224 	/* Bank 6 Write */
225 	RF_BANK_SETUP(priv, 6, modesIndex);
226 
227     	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
228 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
229         	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0);
230         	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0);
231 
232 			/* TODO - only for Eagle 1.0 2GHz - remove for production */
233 			/* XXX: but without this bit G doesn't work. */
234 			ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2);
235 
236 			/* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */
237 			if (AH_PRIVATE(ah)->ah_ispcie) {
238 				ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3),
239 						 3, 131, 3);
240 			}
241 	} else {
242         	ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0);
243         	ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0);
244 	}
245 
246 	/* Bank 7 Setup */
247 	RF_BANK_SETUP(priv, 7, modesIndex);
248 
249 	/* Write Analog registers */
250 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites);
251 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites);
252 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites);
253 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites);
254 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites);
255 
256 	/* Now that we have reprogrammed rfgain value, clear the flag. */
257 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
258 
259 	return AH_TRUE;
260 #undef	RF_BANK_SETUP
261 }
262 
263 /*
264  * Return a reference to the requested RF Bank.
265  */
266 static uint32_t *
267 ar5413GetRfBank(struct ath_hal *ah, int bank)
268 {
269 	struct ar5413State *priv = AR5413(ah);
270 
271 	HALASSERT(priv != AH_NULL);
272 	switch (bank) {
273 	case 1: return priv->Bank1Data;
274 	case 2: return priv->Bank2Data;
275 	case 3: return priv->Bank3Data;
276 	case 6: return priv->Bank6Data;
277 	case 7: return priv->Bank7Data;
278 	}
279 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
280 	    __func__, bank);
281 	return AH_NULL;
282 }
283 
284 /*
285  * Return indices surrounding the value in sorted integer lists.
286  *
287  * NB: the input list is assumed to be sorted in ascending order
288  */
289 static void
290 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
291                           uint32_t *vlo, uint32_t *vhi)
292 {
293 	int16_t target = v;
294 	const uint16_t *ep = lp+listSize;
295 	const uint16_t *tp;
296 
297 	/*
298 	 * Check first and last elements for out-of-bounds conditions.
299 	 */
300 	if (target < lp[0]) {
301 		*vlo = *vhi = 0;
302 		return;
303 	}
304 	if (target >= ep[-1]) {
305 		*vlo = *vhi = listSize - 1;
306 		return;
307 	}
308 
309 	/* look for value being near or between 2 values in list */
310 	for (tp = lp; tp < ep; tp++) {
311 		/*
312 		 * If value is close to the current value of the list
313 		 * then target is not between values, it is one of the values
314 		 */
315 		if (*tp == target) {
316 			*vlo = *vhi = tp - (const uint16_t *) lp;
317 			return;
318 		}
319 		/*
320 		 * Look for value being between current value and next value
321 		 * if so return these 2 values
322 		 */
323 		if (target < tp[1]) {
324 			*vlo = tp - (const uint16_t *) lp;
325 			*vhi = *vlo + 1;
326 			return;
327 		}
328 	}
329 }
330 
331 /*
332  * Fill the Vpdlist for indices Pmax-Pmin
333  */
334 static HAL_BOOL
335 ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
336 		   const int16_t *pwrList, const uint16_t *VpdList,
337 		   uint16_t numIntercepts,
338 		   uint16_t retVpdList[][64])
339 {
340 	uint16_t ii, jj, kk;
341 	int16_t currPwr = (int16_t)(2*Pmin);
342 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
343 	uint32_t  idxL, idxR;
344 
345 	ii = 0;
346 	jj = 0;
347 
348 	if (numIntercepts < 2)
349 		return AH_FALSE;
350 
351 	while (ii <= (uint16_t)(Pmax - Pmin)) {
352 		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
353 				   numIntercepts, &(idxL), &(idxR));
354 		if (idxR < 1)
355 			idxR = 1;			/* extrapolate below */
356 		if (idxL == (uint32_t)(numIntercepts - 1))
357 			idxL = numIntercepts - 2;	/* extrapolate above */
358 		if (pwrList[idxL] == pwrList[idxR])
359 			kk = VpdList[idxL];
360 		else
361 			kk = (uint16_t)
362 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
363 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
364 				 (pwrList[idxR] - pwrList[idxL]));
365 		retVpdList[pdGainIdx][ii] = kk;
366 		ii++;
367 		currPwr += 2;				/* half dB steps */
368 	}
369 
370 	return AH_TRUE;
371 }
372 
373 /*
374  * Returns interpolated or the scaled up interpolated value
375  */
376 static int16_t
377 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
378 	int16_t targetLeft, int16_t targetRight)
379 {
380 	int16_t rv;
381 
382 	if (srcRight != srcLeft) {
383 		rv = ((target - srcLeft)*targetRight +
384 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
385 	} else {
386 		rv = targetLeft;
387 	}
388 	return rv;
389 }
390 
391 /*
392  * Uses the data points read from EEPROM to reconstruct the pdadc power table
393  * Called by ar5413SetPowerTable()
394  */
395 static int
396 ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
397 		const RAW_DATA_STRUCT_2413 *pRawDataset,
398 		uint16_t pdGainOverlap_t2,
399 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
400 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
401 {
402 	struct ar5413State *priv = AR5413(ah);
403 #define	VpdTable_L	priv->vpdTable_L
404 #define	VpdTable_R	priv->vpdTable_R
405 #define	VpdTable_I	priv->vpdTable_I
406 	uint32_t ii, jj, kk;
407 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
408 	uint32_t idxL, idxR;
409 	uint32_t numPdGainsUsed = 0;
410 	/*
411 	 * If desired to support -ve power levels in future, just
412 	 * change pwr_I_0 to signed 5-bits.
413 	 */
414 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
415 	/* to accommodate -ve power levels later on. */
416 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
417 	/* to accommodate -ve power levels later on */
418 	uint16_t numVpd = 0;
419 	uint16_t Vpd_step;
420 	int16_t tmpVal ;
421 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
422 
423 	/* Get upper lower index */
424 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
425 				 pRawDataset->numChannels, &(idxL), &(idxR));
426 
427 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
428 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
429 		/* work backwards 'cause highest pdGain for lowest power */
430 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
431 		if (numVpd > 0) {
432 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
433 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
434 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
435 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
436 			}
437 			Pmin_t2[numPdGainsUsed] = (int16_t)
438 				(Pmin_t2[numPdGainsUsed] / 2);
439 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
440 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
441 				Pmax_t2[numPdGainsUsed] =
442 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
443 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
444 			ar5413FillVpdTable(
445 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
446 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
447 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
448 					   );
449 			ar5413FillVpdTable(
450 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
451 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
452 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
453 					   );
454 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
455 				VpdTable_I[numPdGainsUsed][kk] =
456 					interpolate_signed(
457 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
458 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
459 			}
460 			/* fill VpdTable_I for this pdGain */
461 			numPdGainsUsed++;
462 		}
463 		/* if this pdGain is used */
464 	}
465 
466 	*pMinCalPower = Pmin_t2[0];
467 	kk = 0; /* index for the final table */
468 	for (ii = 0; ii < numPdGainsUsed; ii++) {
469 		if (ii == (numPdGainsUsed - 1))
470 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
471 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
472 		else
473 			pPdGainBoundaries[ii] = (uint16_t)
474 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
475 		if (pPdGainBoundaries[ii] > 63) {
476 			HALDEBUG(ah, HAL_DEBUG_ANY,
477 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
478 			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
479 			pPdGainBoundaries[ii] = 63;
480 		}
481 
482 		/* Find starting index for this pdGain */
483 		if (ii == 0)
484 			ss = 0; /* for the first pdGain, start from index 0 */
485 		else
486 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
487 				pdGainOverlap_t2;
488 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
489 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
490 		/*
491 		 *-ve ss indicates need to extrapolate data below for this pdGain
492 		 */
493 		while (ss < 0) {
494 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
495 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
496 			ss++;
497 		}
498 
499 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
500 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
501 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
502 
503 		while (ss < (int16_t)maxIndex)
504 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
505 
506 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
507 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
508 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
509 		/*
510 		 * for last gain, pdGainBoundary == Pmax_t2, so will
511 		 * have to extrapolate
512 		 */
513 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
514 			while(ss < (int16_t)tgtIndex) {
515 				tmpVal = (uint16_t)
516 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
517 					 (ss-maxIndex)*Vpd_step);
518 				pPDADCValues[kk++] = (tmpVal > 127) ?
519 					127 : tmpVal;
520 				ss++;
521 			}
522 		}				/* extrapolated above */
523 	}					/* for all pdGainUsed */
524 
525 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
526 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
527 		ii++;
528 	}
529 	while (kk < 128) {
530 		pPDADCValues[kk] = pPDADCValues[kk-1];
531 		kk++;
532 	}
533 
534 	return numPdGainsUsed;
535 #undef VpdTable_L
536 #undef VpdTable_R
537 #undef VpdTable_I
538 }
539 
540 static HAL_BOOL
541 ar5413SetPowerTable(struct ath_hal *ah,
542 	int16_t *minPower, int16_t *maxPower,
543 	const struct ieee80211_channel *chan,
544 	uint16_t *rfXpdGain)
545 {
546 	struct ath_hal_5212 *ahp = AH5212(ah);
547 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
548 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
549 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
550 	uint16_t pdGainOverlap_t2;
551 	int16_t minCalPower5413_t2;
552 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
553 	uint16_t gainBoundaries[4];
554 	uint32_t reg32, regoffset;
555 	int i, numPdGainsUsed;
556 #ifndef AH_USE_INIPDGAIN
557 	uint32_t tpcrg1;
558 #endif
559 
560 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
561 	    __func__, chan->ic_freq, chan->ic_flags);
562 
563 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
564 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
565 	else if (IEEE80211_IS_CHAN_B(chan))
566 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
567 	else {
568 		HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
569 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
570 	}
571 
572 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
573 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
574 
575 	numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah,
576 		freq, pRawDataset, pdGainOverlap_t2,
577 		&minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues);
578 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
579 
580 #ifdef AH_USE_INIPDGAIN
581 	/*
582 	 * Use pd_gains curve from eeprom; Atheros always uses
583 	 * the default curve from the ini file but some vendors
584 	 * (e.g. Zcomax) want to override this curve and not
585 	 * honoring their settings results in tx power 5dBm low.
586 	 */
587 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
588 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
589 #else
590 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
591 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
592 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
593 	switch (numPdGainsUsed) {
594 	case 3:
595 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
596 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
597 		/* fall thru... */
598 	case 2:
599 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
600 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
601 		/* fall thru... */
602 	case 1:
603 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
604 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
605 		break;
606 	}
607 #ifdef AH_DEBUG
608 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
609 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
610 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
611 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
612 #endif
613 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
614 #endif
615 
616 	/*
617 	 * Note the pdadc table may not start at 0 dBm power, could be
618 	 * negative or greater than 0.  Need to offset the power
619 	 * values by the amount of minPower for griffin
620 	 */
621 	if (minCalPower5413_t2 != 0)
622 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2);
623 	else
624 		ahp->ah_txPowerIndexOffset = 0;
625 
626 	/* Finally, write the power values into the baseband power table */
627 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
628 	for (i = 0; i < 32; i++) {
629 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
630 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
631 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
632 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
633 		OS_REG_WRITE(ah, regoffset, reg32);
634 		regoffset += 4;
635 	}
636 
637 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
638 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
639 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
640 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
641 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
642 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
643 
644 	return AH_TRUE;
645 }
646 
647 static int16_t
648 ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
649 {
650 	uint32_t ii,jj;
651 	uint16_t Pmin=0,numVpd;
652 
653 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
654 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
655 		/* work backwards 'cause highest pdGain for lowest power */
656 		numVpd = data->pDataPerPDGain[jj].numVpd;
657 		if (numVpd > 0) {
658 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
659 			return(Pmin);
660 		}
661 	}
662 	return(Pmin);
663 }
664 
665 static int16_t
666 ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
667 {
668 	uint32_t ii;
669 	uint16_t Pmax=0,numVpd;
670 
671 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
672 		/* work forwards cuase lowest pdGain for highest power */
673 		numVpd = data->pDataPerPDGain[ii].numVpd;
674 		if (numVpd > 0) {
675 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
676 			return(Pmax);
677 		}
678 	}
679 	return(Pmax);
680 }
681 
682 static HAL_BOOL
683 ar5413GetChannelMaxMinPower(struct ath_hal *ah,
684 	const struct ieee80211_channel *chan,
685 	int16_t *maxPow, int16_t *minPow)
686 {
687 	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
688 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
689 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
690 	const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL;
691 	uint16_t numChannels;
692 	int totalD,totalF, totalMin,last, i;
693 
694 	*maxPow = 0;
695 
696 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
697 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
698 	else if (IEEE80211_IS_CHAN_B(chan))
699 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
700 	else {
701 		HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
702 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
703 	}
704 
705 	numChannels = pRawDataset->numChannels;
706 	data = pRawDataset->pDataPerChannel;
707 
708 	/* Make sure the channel is in the range of the TP values
709 	 *  (freq piers)
710 	 */
711 	if (numChannels < 1)
712 		return(AH_FALSE);
713 
714 	if ((freq < data[0].channelValue) ||
715 	    (freq > data[numChannels-1].channelValue)) {
716 		if (freq < data[0].channelValue) {
717 			*maxPow = ar5413GetMaxPower(ah, &data[0]);
718 			*minPow = ar5413GetMinPower(ah, &data[0]);
719 			return(AH_TRUE);
720 		} else {
721 			*maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]);
722 			*minPow = ar5413GetMinPower(ah, &data[numChannels - 1]);
723 			return(AH_TRUE);
724 		}
725 	}
726 
727 	/* Linearly interpolate the power value now */
728 	for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
729 	     last = i++);
730 	totalD = data[i].channelValue - data[last].channelValue;
731 	if (totalD > 0) {
732 		totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]);
733 		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
734 				     ar5413GetMaxPower(ah, &data[last])*totalD)/totalD);
735 		totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]);
736 		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
737 				     ar5413GetMinPower(ah, &data[last])*totalD)/totalD);
738 		return(AH_TRUE);
739 	} else {
740 		if (freq == data[i].channelValue) {
741 			*maxPow = ar5413GetMaxPower(ah, &data[i]);
742 			*minPow = ar5413GetMinPower(ah, &data[i]);
743 			return(AH_TRUE);
744 		} else
745 			return(AH_FALSE);
746 	}
747 }
748 
749 /*
750  * Free memory for analog bank scratch buffers
751  */
752 static void
753 ar5413RfDetach(struct ath_hal *ah)
754 {
755 	struct ath_hal_5212 *ahp = AH5212(ah);
756 
757 	HALASSERT(ahp->ah_rfHal != AH_NULL);
758 	ath_hal_free(ahp->ah_rfHal);
759 	ahp->ah_rfHal = AH_NULL;
760 }
761 
762 /*
763  * Allocate memory for analog bank scratch buffers
764  * Scratch Buffer will be reinitialized every reset so no need to zero now
765  */
766 static HAL_BOOL
767 ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
768 {
769 	struct ath_hal_5212 *ahp = AH5212(ah);
770 	struct ar5413State *priv;
771 
772 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
773 
774 	HALASSERT(ahp->ah_rfHal == AH_NULL);
775 	priv = ath_hal_malloc(sizeof(struct ar5413State));
776 	if (priv == AH_NULL) {
777 		HALDEBUG(ah, HAL_DEBUG_ANY,
778 		    "%s: cannot allocate private state\n", __func__);
779 		*status = HAL_ENOMEM;		/* XXX */
780 		return AH_FALSE;
781 	}
782 	priv->base.rfDetach		= ar5413RfDetach;
783 	priv->base.writeRegs		= ar5413WriteRegs;
784 	priv->base.getRfBank		= ar5413GetRfBank;
785 	priv->base.setChannel		= ar5413SetChannel;
786 	priv->base.setRfRegs		= ar5413SetRfRegs;
787 	priv->base.setPowerTable	= ar5413SetPowerTable;
788 	priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower;
789 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
790 
791 	ahp->ah_pcdacTable = priv->pcdacTable;
792 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
793 	ahp->ah_rfHal = &priv->base;
794 
795 	return AH_TRUE;
796 }
797 
798 static HAL_BOOL
799 ar5413Probe(struct ath_hal *ah)
800 {
801 	return IS_5413(ah);
802 }
803 AH_RF(RF5413, ar5413Probe, ar5413RfAttach);
804