1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22 
23 #include "ah.h"
24 #include "ah_internal.h"
25 #include "ah_devid.h"
26 
27 #include "ah_eeprom_v14.h"
28 
29 #include "ar5416/ar5416.h"
30 #include "ar5416/ar5416reg.h"
31 #include "ar5416/ar5416phy.h"
32 
33 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
34 #define	EEP_MINOR(_ah) \
35 	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
36 #define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
37 #define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
38 
39 /* Additional Time delay to wait after activiting the Base band */
40 #define BASE_ACTIVATE_DELAY	100	/* 100 usec */
41 #define PLL_SETTLE_DELAY	300	/* 300 usec */
42 #define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
43 
44 static void ar5416InitDMA(struct ath_hal *ah);
45 static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *);
46 static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
47 static void ar5416InitQoS(struct ath_hal *ah);
48 static void ar5416InitUserSettings(struct ath_hal *ah);
49 static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *);
50 
51 #if 0
52 static HAL_BOOL	ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *);
53 #endif
54 static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *);
55 
56 static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
57 static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
58 static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
59 	struct ar5416eeprom *pEepData,
60 	const struct ieee80211_channel *chan, int16_t *ratesArray,
61 	uint16_t cfgCtl, uint16_t AntennaReduction,
62 	uint16_t twiceMaxRegulatoryPower,
63 	uint16_t powerLimit);
64 static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan);
65 static void ar5416MarkPhyInactive(struct ath_hal *ah);
66 static void ar5416SetIFSTiming(struct ath_hal *ah,
67    const struct ieee80211_channel *chan);
68 
69 /*
70  * Places the device in and out of reset and then places sane
71  * values in the registers based on EEPROM config, initialization
72  * vectors (as determined by the mode), and station configuration
73  *
74  * bChannelChange is used to preserve DMA/PCU registers across
75  * a HW Reset during channel change.
76  */
77 HAL_BOOL
78 ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
79 	struct ieee80211_channel *chan,
80 	HAL_BOOL bChannelChange,
81 	HAL_RESET_TYPE resetType,
82 	HAL_STATUS *status)
83 {
84 #define	N(a)	(sizeof (a) / sizeof (a[0]))
85 #define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
86 	struct ath_hal_5212 *ahp = AH5212(ah);
87 	HAL_CHANNEL_INTERNAL *ichan;
88 	uint32_t saveDefAntenna, saveLedState;
89 	uint32_t macStaId1;
90 	uint16_t rfXpdGain[2];
91 	HAL_STATUS ecode;
92 	uint32_t powerVal, rssiThrReg;
93 	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
94 	int i;
95 	uint64_t tsf = 0;
96 
97 	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
98 
99 	/* Bring out of sleep mode */
100 	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
101 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
102 		    __func__);
103 		FAIL(HAL_EIO);
104 	}
105 
106 	/*
107 	 * Map public channel to private.
108 	 */
109 	ichan = ath_hal_checkchannel(ah, chan);
110 	if (ichan == AH_NULL)
111 		FAIL(HAL_EINVAL);
112 	switch (opmode) {
113 	case HAL_M_STA:
114 	case HAL_M_IBSS:
115 	case HAL_M_HOSTAP:
116 	case HAL_M_MONITOR:
117 		break;
118 	default:
119 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
120 		    __func__, opmode);
121 		FAIL(HAL_EINVAL);
122 		break;
123 	}
124 	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
125 
126 	/* Blank the channel survey statistics */
127 	ath_hal_survey_clear(ah);
128 
129 	/* XXX Turn on fast channel change for 5416 */
130 
131 	/*
132 	 * Preserve the bmiss rssi threshold and count threshold
133 	 * across resets
134 	 */
135 	rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
136 	/* If reg is zero, first time thru set to default val */
137 	if (rssiThrReg == 0)
138 		rssiThrReg = INIT_RSSI_THR;
139 
140 	/*
141 	 * Preserve the antenna on a channel change
142 	 */
143 	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
144 
145 	/*
146 	 * Don't do this for the AR9285 - it breaks RX for single
147 	 * antenna designs when diversity is disabled.
148 	 *
149 	 * I'm not sure what this was working around; it may be
150 	 * something to do with the AR5416.  Certainly this register
151 	 * isn't supposed to be used by the MIMO chips for anything
152 	 * except for defining the default antenna when an external
153 	 * phase array / smart antenna is connected.
154 	 *
155 	 * See PR: kern/179269 .
156 	 */
157 	if ((! AR_SREV_KITE(ah)) && saveDefAntenna == 0)	/* XXX magic constants */
158 		saveDefAntenna = 1;
159 
160 	/* Save hardware flag before chip reset clears the register */
161 	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
162 		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
163 
164 	/* Save led state from pci config register */
165 	saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
166 		(AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
167 		 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
168 
169 	/* For chips on which the RTC reset is done, save TSF before it gets cleared */
170 	if (AR_SREV_HOWL(ah) ||
171 	    (AR_SREV_MERLIN(ah) &&
172 	     ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) ||
173 	    (resetType == HAL_RESET_FORCE_COLD) ||
174 	    (resetType == HAL_RESET_BBPANIC) ||
175 	    (ah->ah_config.ah_force_full_reset))
176 		tsf = ar5416GetTsf64(ah);
177 
178 	/* Mark PHY as inactive; marked active in ar5416InitBB() */
179 	ar5416MarkPhyInactive(ah);
180 
181 	if (!ar5416ChipReset(ah, chan, resetType)) {
182 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
183 		FAIL(HAL_EIO);
184 	}
185 
186 	/* Restore TSF */
187 	if (tsf)
188 		ar5416SetTsf64(ah, tsf);
189 
190 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
191 	if (AR_SREV_MERLIN_10_OR_LATER(ah))
192 		OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
193 
194 	AH5416(ah)->ah_writeIni(ah, chan);
195 
196 	if(AR_SREV_KIWI_13_OR_LATER(ah) ) {
197 		/* Enable ASYNC FIFO */
198 		OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
199 		    AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
200 		OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
201 		OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
202 		    AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
203 		OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
204 		    AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
205 	}
206 
207 	/* Override ini values (that can be overriden in this fashion) */
208 	ar5416OverrideIni(ah, chan);
209 
210 	/* Setup 11n MAC/Phy mode registers */
211 	ar5416Set11nRegs(ah, chan);
212 
213 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
214 
215 	/*
216 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
217 	 * right after the chip reset. When that happens, write a new
218 	 * value after the initvals have been applied, with an offset
219 	 * based on measured time difference
220 	 */
221 	if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) {
222 		tsf += 1500;
223 		ar5416SetTsf64(ah, tsf);
224 	}
225 
226 	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
227 		__func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
228 	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
229 		__func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
230 
231 	/*
232 	 * This routine swaps the analog chains - it should be done
233 	 * before any radio register twiddling is done.
234 	 */
235 	ar5416InitChainMasks(ah);
236 
237 	/* Setup the open-loop power calibration if required */
238 	if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
239 		AH5416(ah)->ah_olcInit(ah);
240 		AH5416(ah)->ah_olcTempCompensation(ah);
241 	}
242 
243 	/* Setup the transmit power values. */
244 	if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
245 		HALDEBUG(ah, HAL_DEBUG_ANY,
246 		    "%s: error init'ing transmit power\n", __func__);
247 		FAIL(HAL_EIO);
248 	}
249 
250 	/* Write the analog registers */
251 	if (!ahp->ah_rfHal->setRfRegs(ah, chan,
252 	    IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) {
253 		HALDEBUG(ah, HAL_DEBUG_ANY,
254 		    "%s: ar5212SetRfRegs failed\n", __func__);
255 		FAIL(HAL_EIO);
256 	}
257 
258 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
259 	if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan))
260 		ar5416SetDeltaSlope(ah, chan);
261 
262 	AH5416(ah)->ah_spurMitigate(ah, chan);
263 
264 	/* Setup board specific options for EEPROM version 3 */
265 	if (!ah->ah_setBoardValues(ah, chan)) {
266 		HALDEBUG(ah, HAL_DEBUG_ANY,
267 		    "%s: error setting board options\n", __func__);
268 		FAIL(HAL_EIO);
269 	}
270 
271 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
272 
273 	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
274 	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
275 		| macStaId1
276 		| AR_STA_ID1_RTS_USE_DEF
277 		| ahp->ah_staId1Defaults
278 	);
279 	ar5212SetOperatingMode(ah, opmode);
280 
281 	/* Set Venice BSSID mask according to current state */
282 	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
283 	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
284 
285 	/* Restore previous led state */
286 	if (AR_SREV_HOWL(ah))
287 		OS_REG_WRITE(ah, AR_MAC_LED,
288 		    AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ);
289 	else
290 		OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) |
291 		    saveLedState);
292 
293         /* Start TSF2 for generic timer 8-15 */
294 #ifdef	NOTYET
295 	if (AR_SREV_KIWI(ah))
296 		ar5416StartTsf2(ah);
297 #endif
298 
299 	/*
300 	 * Enable Bluetooth Coexistence if it's enabled.
301 	 */
302 	if (AH5416(ah)->ah_btCoexConfigType != HAL_BT_COEX_CFG_NONE)
303 		ar5416InitBTCoex(ah);
304 
305 	/* Restore previous antenna */
306 	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
307 
308 	/* then our BSSID and associate id */
309 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
310 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
311 	    (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
312 
313 	/* Restore bmiss rssi & count thresholds */
314 	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
315 
316 	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
317 
318 	/* Restore bmiss rssi & count thresholds */
319 	OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
320 
321 	if (!ar5212SetChannel(ah, chan))
322 		FAIL(HAL_EIO);
323 
324 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
325 
326 	/* Set 1:1 QCU to DCU mapping for all queues */
327 	for (i = 0; i < AR_NUM_DCU; i++)
328 		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
329 
330 	ahp->ah_intrTxqs = 0;
331 	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
332 		ah->ah_resetTxQueue(ah, i);
333 
334 	ar5416InitIMR(ah, opmode);
335 	ar5416SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
336 	ar5416InitQoS(ah);
337 	/* This may override the AR_DIAG_SW register */
338 	ar5416InitUserSettings(ah);
339 
340 	/* XXX this won't work for AR9287! */
341 	if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
342 		ar5416SetIFSTiming(ah, chan);
343 #if 0
344 			/*
345 			 * AR5413?
346 			 * Force window_length for 1/2 and 1/4 rate channels,
347 			 * the ini file sets this to zero otherwise.
348 			 */
349 			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
350 			    AR_PHY_FRAME_CTL_WINLEN, 3);
351 		}
352 #endif
353 	}
354 
355 	if (AR_SREV_KIWI_13_OR_LATER(ah)) {
356 		/*
357 		 * Enable ASYNC FIFO
358 		 *
359 		 * If Async FIFO is enabled, the following counters change
360 		 * as MAC now runs at 117 Mhz instead of 88/44MHz when
361 		 * async FIFO is disabled.
362 		 *
363 		 * Overwrite the delay/timeouts initialized in ProcessIni()
364 		 * above.
365 		 */
366 		OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
367 		    AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
368 		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
369 		    AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
370 		OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
371 		    AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
372 
373 		OS_REG_WRITE(ah, AR_TIME_OUT,
374 		    AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
375 		OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
376 
377 		OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
378 		    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
379 		OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
380 		    AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
381 	}
382 
383 	if (AR_SREV_KIWI_13_OR_LATER(ah)) {
384 		/* Enable AGGWEP to accelerate encryption engine */
385 		OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
386 		    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
387 	}
388 
389 
390 	/*
391 	 * disable seq number generation in hw
392 	 */
393 	 OS_REG_WRITE(ah, AR_STA_ID1,
394 	     OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
395 
396 	ar5416InitDMA(ah);
397 
398 	/*
399 	 * program OBS bus to see MAC interrupts
400 	 */
401 	OS_REG_WRITE(ah, AR_OBS, 8);
402 
403 	/*
404 	 * Disable the "general" TX/RX mitigation timers.
405 	 */
406 	OS_REG_WRITE(ah, AR_MIRT, 0);
407 
408 #ifdef	AH_AR5416_INTERRUPT_MITIGATION
409 	/*
410 	 * This initialises the RX interrupt mitigation timers.
411 	 *
412 	 * The mitigation timers begin at idle and are triggered
413 	 * upon the RXOK of a single frame (or sub-frame, for A-MPDU.)
414 	 * Then, the RX mitigation interrupt will fire:
415 	 *
416 	 * + 250uS after the last RX'ed frame, or
417 	 * + 700uS after the first RX'ed frame
418 	 *
419 	 * Thus, the LAST field dictates the extra latency
420 	 * induced by the RX mitigation method and the FIRST
421 	 * field dictates how long to delay before firing an
422 	 * RX mitigation interrupt.
423 	 *
424 	 * Please note this only seems to be for RXOK frames;
425 	 * not CRC or PHY error frames.
426 	 *
427 	 */
428 	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250);
429 	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700);
430 #endif
431 	ar5416InitBB(ah, chan);
432 
433 	/* Setup compression registers */
434 	ar5212SetCompRegs(ah);		/* XXX not needed? */
435 
436 	/*
437 	 * 5416 baseband will check the per rate power table
438 	 * and select the lower of the two
439 	 */
440 	ackTpcPow = 63;
441 	ctsTpcPow = 63;
442 	chirpTpcPow = 63;
443 	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
444 		SM(ctsTpcPow, AR_TPC_CTS) |
445 		SM(chirpTpcPow, AR_TPC_CHIRP);
446 	OS_REG_WRITE(ah, AR_TPC, powerVal);
447 
448 	if (!ar5416InitCal(ah, chan))
449 		FAIL(HAL_ESELFTEST);
450 
451 	ar5416RestoreChainMask(ah);
452 
453 	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
454 
455 	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
456 		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
457 
458 	if (AR_SREV_HOWL(ah)) {
459 		/*
460 		 * Enable the MBSSID block-ack fix for HOWL.
461 		 * This feature is only supported on Howl 1.4, but it is safe to
462 		 * set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3),
463 		 * since bit 22 is unused in those Howl revisions.
464 		 */
465 		unsigned int reg;
466 		reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22));
467 		OS_REG_WRITE(ah,AR_STA_ID1, reg);
468 		ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg);
469 	}
470 
471 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
472 
473 	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
474 
475 	return AH_TRUE;
476 bad:
477 	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
478 	if (status != AH_NULL)
479 		*status = ecode;
480 	return AH_FALSE;
481 #undef FAIL
482 #undef N
483 }
484 
485 #if 0
486 /*
487  * This channel change evaluates whether the selected hardware can
488  * perform a synthesizer-only channel change (no reset).  If the
489  * TX is not stopped, or the RFBus cannot be granted in the given
490  * time, the function returns false as a reset is necessary
491  */
492 HAL_BOOL
493 ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan)
494 {
495 	uint32_t       ulCount;
496 	uint32_t   data, synthDelay, qnum;
497 	uint16_t   rfXpdGain[4];
498 	struct ath_hal_5212 *ahp = AH5212(ah);
499 	HAL_CHANNEL_INTERNAL *ichan;
500 
501 	/*
502 	 * Map public channel to private.
503 	 */
504 	ichan = ath_hal_checkchannel(ah, chan);
505 
506 	/* TX must be stopped or RF Bus grant will not work */
507 	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
508 		if (ar5212NumTxPending(ah, qnum)) {
509 			HALDEBUG(ah, HAL_DEBUG_ANY,
510 			    "%s: frames pending on queue %d\n", __func__, qnum);
511 			return AH_FALSE;
512 		}
513 	}
514 
515 	/*
516 	 * Kill last Baseband Rx Frame - Request analog bus grant
517 	 */
518 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
519 	if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
520 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
521 		    __func__);
522 		return AH_FALSE;
523 	}
524 
525 	ar5416Set11nRegs(ah, chan);	/* NB: setup 5416-specific regs */
526 
527 	/* Change the synth */
528 	if (!ar5212SetChannel(ah, chan))
529 		return AH_FALSE;
530 
531 	/* Setup the transmit power values. */
532 	if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
533 		HALDEBUG(ah, HAL_DEBUG_ANY,
534 		    "%s: error init'ing transmit power\n", __func__);
535 		return AH_FALSE;
536 	}
537 
538 	/*
539 	 * Wait for the frequency synth to settle (synth goes on
540 	 * via PHY_ACTIVE_EN).  Read the phy active delay register.
541 	 * Value is in 100ns increments.
542 	 */
543 	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
544 	if (IS_CHAN_CCK(ichan)) {
545 		synthDelay = (4 * data) / 22;
546 	} else {
547 		synthDelay = data / 10;
548 	}
549 
550 	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
551 
552 	/* Release the RFBus Grant */
553 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
554 
555 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
556 	if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) {
557 		HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3);
558 		ar5212SetSpurMitigation(ah, chan);
559 		ar5416SetDeltaSlope(ah, chan);
560 	}
561 
562 	/* XXX spur mitigation for Melin */
563 
564 	if (!IEEE80211_IS_CHAN_DFS(chan))
565 		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
566 
567 	ichan->channel_time = 0;
568 	ichan->tsf_last = ar5416GetTsf64(ah);
569 	ar5212TxEnable(ah, AH_TRUE);
570 	return AH_TRUE;
571 }
572 #endif
573 
574 static void
575 ar5416InitDMA(struct ath_hal *ah)
576 {
577 	struct ath_hal_5212 *ahp = AH5212(ah);
578 
579 	/*
580 	 * set AHB_MODE not to do cacheline prefetches
581 	 */
582 	OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
583 
584 	/*
585 	 * let mac dma reads be in 128 byte chunks
586 	 */
587 	OS_REG_WRITE(ah, AR_TXCFG,
588 		(OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
589 
590 	/*
591 	 * let mac dma writes be in 128 byte chunks
592 	 */
593 	/*
594 	 * XXX If you change this, you must change the headroom
595 	 * assigned in ah_maxTxTrigLev - see ar5416InitState().
596 	 */
597 	OS_REG_WRITE(ah, AR_RXCFG,
598 		(OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
599 
600 	/* restore TX trigger level */
601 	OS_REG_WRITE(ah, AR_TXCFG,
602 		(OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
603 		    SM(ahp->ah_txTrigLev, AR_FTRIG));
604 
605 	/*
606 	 * Setup receive FIFO threshold to hold off TX activities
607 	 */
608 	OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
609 
610 	/*
611 	 * reduce the number of usable entries in PCU TXBUF to avoid
612 	 * wrap around.
613 	 */
614 	if (AR_SREV_KITE(ah))
615 		/*
616 		 * For AR9285 the number of Fifos are reduced to half.
617 		 * So set the usable tx buf size also to half to
618 		 * avoid data/delimiter underruns
619 		 */
620 		OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
621 	else
622 		OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
623 }
624 
625 static void
626 ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan)
627 {
628 	uint32_t synthDelay;
629 
630 	/*
631 	 * Wait for the frequency synth to settle (synth goes on
632 	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
633 	 * Value is in 100ns increments.
634 	  */
635 	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
636 	if (IEEE80211_IS_CHAN_CCK(chan)) {
637 		synthDelay = (4 * synthDelay) / 22;
638 	} else {
639 		synthDelay /= 10;
640 	}
641 
642 	/* Turn on PLL on 5416 */
643 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
644 	    __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
645 
646 	/* Activate the PHY (includes baseband activate and synthesizer on) */
647 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
648 
649 	/*
650 	 * If the AP starts the calibration before the base band timeout
651 	 * completes  we could get rx_clear false triggering.  Add an
652 	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
653 	 * does not happen.
654 	 */
655 	if (IEEE80211_IS_CHAN_HALF(chan)) {
656 		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
657 	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
658 		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
659 	} else {
660 		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
661 	}
662 }
663 
664 static void
665 ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
666 {
667 	struct ath_hal_5212 *ahp = AH5212(ah);
668 
669 	/*
670 	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
671 	 * manipulates the secondary IMR's as queues are enabled
672 	 * and disabled.  This is done with RMW ops to insure the
673 	 * settings we make here are preserved.
674 	 */
675         ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
676 			| AR_IMR_RXERR | AR_IMR_RXORN
677                         | AR_IMR_BCNMISC;
678 
679 #ifdef	AH_AR5416_INTERRUPT_MITIGATION
680 	ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
681 #else
682 	ahp->ah_maskReg |= AR_IMR_RXOK;
683 #endif
684 	ahp->ah_maskReg |= AR_IMR_TXOK;
685 
686 	if (opmode == HAL_M_HOSTAP)
687 		ahp->ah_maskReg |= AR_IMR_MIB;
688 	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
689 
690 #ifdef  ADRIAN_NOTYET
691 	/* This is straight from ath9k */
692 	if (! AR_SREV_HOWL(ah)) {
693 		OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
694 		OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
695 		OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
696 	}
697 #endif
698 
699 	/* Enable bus errors that are OR'd to set the HIUERR bit */
700 #if 0
701 	OS_REG_WRITE(ah, AR_IMR_S2,
702 	    	OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
703 #endif
704 }
705 
706 static void
707 ar5416InitQoS(struct ath_hal *ah)
708 {
709 	/* QoS support */
710 	OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
711 	OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
712 
713 	/* Turn on NOACK Support for QoS packets */
714 	OS_REG_WRITE(ah, AR_NOACK,
715 		SM(2, AR_NOACK_2BIT_VALUE) |
716 		SM(5, AR_NOACK_BIT_OFFSET) |
717 		SM(0, AR_NOACK_BYTE_OFFSET));
718 
719     	/*
720     	 * initialize TXOP for all TIDs
721     	 */
722 	OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
723 	OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
724 	OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
725 	OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
726 	OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
727 }
728 
729 static void
730 ar5416InitUserSettings(struct ath_hal *ah)
731 {
732 	struct ath_hal_5212 *ahp = AH5212(ah);
733 
734 	/* Restore user-specified settings */
735 	if (ahp->ah_miscMode != 0)
736 		OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE)
737 		    | ahp->ah_miscMode);
738 	if (ahp->ah_sifstime != (u_int) -1)
739 		ar5212SetSifsTime(ah, ahp->ah_sifstime);
740 	if (ahp->ah_slottime != (u_int) -1)
741 		ar5212SetSlotTime(ah, ahp->ah_slottime);
742 	if (ahp->ah_acktimeout != (u_int) -1)
743 		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
744 	if (ahp->ah_ctstimeout != (u_int) -1)
745 		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
746 	if (AH_PRIVATE(ah)->ah_diagreg != 0)
747 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
748 	if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1)
749         	ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout);
750 }
751 
752 static void
753 ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan)
754 {
755 	uint32_t rfMode;
756 
757 	if (chan == AH_NULL)
758 		return;
759 
760 	/* treat channel B as channel G , no  B mode suport in owl */
761 	rfMode = IEEE80211_IS_CHAN_CCK(chan) ?
762 	    AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
763 
764 	if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
765 		/* phy mode bits for 5GHz channels require Fast Clock */
766 		rfMode |= AR_PHY_MODE_DYNAMIC
767 		       |  AR_PHY_MODE_DYN_CCK_DISABLE;
768 	} else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
769 		rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ?
770 			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
771 	}
772 
773 	OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
774 }
775 
776 /*
777  * Places the hardware into reset and then pulls it out of reset
778  */
779 HAL_BOOL
780 ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan,
781     HAL_RESET_TYPE resetType)
782 {
783 	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
784 	/*
785 	 * Warm reset is optimistic for open-loop TX power control.
786 	 */
787 	if (AR_SREV_MERLIN(ah) &&
788 	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
789 		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
790 			return AH_FALSE;
791 	} else if (ah->ah_config.ah_force_full_reset) {
792 		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
793 			return AH_FALSE;
794 	} else if ((resetType == HAL_RESET_FORCE_COLD) ||
795 	    (resetType == HAL_RESET_BBPANIC)) {
796 		HALDEBUG(ah, HAL_DEBUG_RESET,
797 		    "%s: full reset; resetType=%d\n",
798 		    __func__, resetType);
799 		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
800 			return AH_FALSE;
801 	} else {
802 		if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
803 			return AH_FALSE;
804 	}
805 
806 	/* Bring out of sleep mode (AGAIN) */
807 	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
808 	       return AH_FALSE;
809 
810 #ifdef notyet
811 	ahp->ah_chipFullSleep = AH_FALSE;
812 #endif
813 
814 	AH5416(ah)->ah_initPLL(ah, chan);
815 
816 	/*
817 	 * Perform warm reset before the mode/PLL/turbo registers
818 	 * are changed in order to deactivate the radio.  Mode changes
819 	 * with an active radio can result in corrupted shifts to the
820 	 * radio device.
821 	 */
822 	ar5416SetRfMode(ah, chan);
823 
824 	return AH_TRUE;
825 }
826 
827 /*
828  * Delta slope coefficient computation.
829  * Required for OFDM operation.
830  */
831 static void
832 ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
833                           uint32_t *coef_mantissa, uint32_t *coef_exponent)
834 {
835 #define COEF_SCALE_S 24
836     uint32_t coef_exp, coef_man;
837     /*
838      * ALGO -> coef_exp = 14-floor(log2(coef));
839      * floor(log2(x)) is the highest set bit position
840      */
841     for (coef_exp = 31; coef_exp > 0; coef_exp--)
842             if ((coef_scaled >> coef_exp) & 0x1)
843                     break;
844     /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
845     HALASSERT(coef_exp);
846     coef_exp = 14 - (coef_exp - COEF_SCALE_S);
847 
848     /*
849      * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
850      * The coefficient is already shifted up for scaling
851      */
852     coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
853 
854     *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
855     *coef_exponent = coef_exp - 16;
856 
857 #undef COEF_SCALE_S
858 }
859 
860 void
861 ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
862 {
863 #define INIT_CLOCKMHZSCALED	0x64000000
864 	uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
865 	uint32_t clockMhzScaled;
866 
867 	CHAN_CENTERS centers;
868 
869 	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
870 	/* scale for selected channel bandwidth */
871 	clockMhzScaled = INIT_CLOCKMHZSCALED;
872 	if (IEEE80211_IS_CHAN_TURBO(chan))
873 		clockMhzScaled <<= 1;
874 	else if (IEEE80211_IS_CHAN_HALF(chan))
875 		clockMhzScaled >>= 1;
876 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
877 		clockMhzScaled >>= 2;
878 
879 	/*
880 	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
881 	 * scaled coef to provide precision for this floating calculation
882 	 */
883 	ar5416GetChannelCenters(ah, chan, &centers);
884 	coef_scaled = clockMhzScaled / centers.synth_center;
885 
886  	ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
887 
888 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
889 		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
890 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
891 		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
892 
893         /*
894          * For Short GI,
895          * scaled coeff is 9/10 that of normal coeff
896          */
897         coef_scaled = (9 * coef_scaled)/10;
898 
899         ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
900 
901         /* for short gi */
902         OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
903                 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
904         OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
905                 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
906 #undef INIT_CLOCKMHZSCALED
907 }
908 
909 /*
910  * Set a limit on the overall output power.  Used for dynamic
911  * transmit power control and the like.
912  *
913  * NB: limit is in units of 0.5 dbM.
914  */
915 HAL_BOOL
916 ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
917 {
918 	uint16_t dummyXpdGains[2];
919 
920 	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
921 	return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan,
922 			dummyXpdGains);
923 }
924 
925 HAL_BOOL
926 ar5416GetChipPowerLimits(struct ath_hal *ah,
927 	struct ieee80211_channel *chan)
928 {
929 	struct ath_hal_5212 *ahp = AH5212(ah);
930 	int16_t minPower, maxPower;
931 
932 	/*
933 	 * Get Pier table max and min powers.
934 	 */
935 	if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
936 		/* NB: rf code returns 1/4 dBm units, convert */
937 		chan->ic_maxpower = maxPower / 2;
938 		chan->ic_minpower = minPower / 2;
939 	} else {
940 		HALDEBUG(ah, HAL_DEBUG_ANY,
941 		    "%s: no min/max power for %u/0x%x\n",
942 		    __func__, chan->ic_freq, chan->ic_flags);
943 		chan->ic_maxpower = AR5416_MAX_RATE_POWER;
944 		chan->ic_minpower = 0;
945 	}
946 	HALDEBUG(ah, HAL_DEBUG_RESET,
947 	    "Chan %d: MaxPow = %d MinPow = %d\n",
948 	    chan->ic_freq, chan->ic_maxpower, chan->ic_minpower);
949 	return AH_TRUE;
950 }
951 
952 /**************************************************************
953  * ar5416WriteTxPowerRateRegisters
954  *
955  * Write the TX power rate registers from the raw values given
956  * in ratesArray[].
957  *
958  * The CCK and HT40 rate registers are only written if needed.
959  * HT20 and 11g/11a OFDM rate registers are always written.
960  *
961  * The values written are raw values which should be written
962  * to the registers - so it's up to the caller to pre-adjust
963  * them (eg CCK power offset value, or Merlin TX power offset,
964  * etc.)
965  */
966 void
967 ar5416WriteTxPowerRateRegisters(struct ath_hal *ah,
968     const struct ieee80211_channel *chan, const int16_t ratesArray[])
969 {
970 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
971 
972     /* Write the OFDM power per rate set */
973     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
974         POW_SM(ratesArray[rate18mb], 24)
975           | POW_SM(ratesArray[rate12mb], 16)
976           | POW_SM(ratesArray[rate9mb], 8)
977           | POW_SM(ratesArray[rate6mb], 0)
978     );
979     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
980         POW_SM(ratesArray[rate54mb], 24)
981           | POW_SM(ratesArray[rate48mb], 16)
982           | POW_SM(ratesArray[rate36mb], 8)
983           | POW_SM(ratesArray[rate24mb], 0)
984     );
985 
986     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
987         /* Write the CCK power per rate set */
988         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
989             POW_SM(ratesArray[rate2s], 24)
990               | POW_SM(ratesArray[rate2l],  16)
991               | POW_SM(ratesArray[rateXr],  8) /* XR target power */
992               | POW_SM(ratesArray[rate1l],   0)
993         );
994         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
995             POW_SM(ratesArray[rate11s], 24)
996               | POW_SM(ratesArray[rate11l], 16)
997               | POW_SM(ratesArray[rate5_5s], 8)
998               | POW_SM(ratesArray[rate5_5l], 0)
999         );
1000     HALDEBUG(ah, HAL_DEBUG_RESET,
1001 	"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
1002 	    __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
1003 	    OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
1004     }
1005 
1006     /* Write the HT20 power per rate set */
1007     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1008         POW_SM(ratesArray[rateHt20_3], 24)
1009           | POW_SM(ratesArray[rateHt20_2], 16)
1010           | POW_SM(ratesArray[rateHt20_1], 8)
1011           | POW_SM(ratesArray[rateHt20_0], 0)
1012     );
1013     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1014         POW_SM(ratesArray[rateHt20_7], 24)
1015           | POW_SM(ratesArray[rateHt20_6], 16)
1016           | POW_SM(ratesArray[rateHt20_5], 8)
1017           | POW_SM(ratesArray[rateHt20_4], 0)
1018     );
1019 
1020     if (IEEE80211_IS_CHAN_HT40(chan)) {
1021         /* Write the HT40 power per rate set */
1022         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1023             POW_SM(ratesArray[rateHt40_3], 24)
1024               | POW_SM(ratesArray[rateHt40_2], 16)
1025               | POW_SM(ratesArray[rateHt40_1], 8)
1026               | POW_SM(ratesArray[rateHt40_0], 0)
1027         );
1028         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1029             POW_SM(ratesArray[rateHt40_7], 24)
1030               | POW_SM(ratesArray[rateHt40_6], 16)
1031               | POW_SM(ratesArray[rateHt40_5], 8)
1032               | POW_SM(ratesArray[rateHt40_4], 0)
1033         );
1034         /* Write the Dup/Ext 40 power per rate set */
1035         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1036             POW_SM(ratesArray[rateExtOfdm], 24)
1037               | POW_SM(ratesArray[rateExtCck], 16)
1038               | POW_SM(ratesArray[rateDupOfdm], 8)
1039               | POW_SM(ratesArray[rateDupCck], 0)
1040         );
1041     }
1042 
1043     /*
1044      * Set max power to 30 dBm and, optionally,
1045      * enable TPC in tx descriptors.
1046      */
1047     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
1048       (AH5212(ah)->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
1049 #undef POW_SM
1050 }
1051 
1052 
1053 /**************************************************************
1054  * ar5416SetTransmitPower
1055  *
1056  * Set the transmit power in the baseband for the given
1057  * operating channel and mode.
1058  */
1059 HAL_BOOL
1060 ar5416SetTransmitPower(struct ath_hal *ah,
1061 	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
1062 {
1063 #define N(a)            (sizeof (a) / sizeof (a[0]))
1064 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
1065 
1066     MODAL_EEP_HEADER	*pModal;
1067     struct ath_hal_5212 *ahp = AH5212(ah);
1068     int16_t		txPowerIndexOffset = 0;
1069     int			i;
1070 
1071     uint16_t		cfgCtl;
1072     uint16_t		powerLimit;
1073     uint16_t		twiceAntennaReduction;
1074     uint16_t		twiceMaxRegulatoryPower;
1075     int16_t		maxPower;
1076     HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1077     struct ar5416eeprom	*pEepData = &ee->ee_base;
1078 
1079     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1080 
1081     /*
1082      * Default to 2, is overridden based on the EEPROM version / value.
1083      */
1084     AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
1085 
1086     /* Setup info for the actual eeprom */
1087     OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
1088     cfgCtl = ath_hal_getctl(ah, chan);
1089     powerLimit = chan->ic_maxregpower * 2;
1090     twiceAntennaReduction = chan->ic_maxantgain;
1091     twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
1092     pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1093     HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
1094 	__func__,chan->ic_freq, cfgCtl );
1095 
1096     if (IS_EEP_MINOR_V2(ah)) {
1097         AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1098     }
1099 
1100     if (!ar5416SetPowerPerRateTable(ah, pEepData,  chan,
1101                                     &AH5416(ah)->ah_ratesArray[0],
1102 				    cfgCtl,
1103                                     twiceAntennaReduction,
1104 				    twiceMaxRegulatoryPower, powerLimit)) {
1105         HALDEBUG(ah, HAL_DEBUG_ANY,
1106 	    "%s: unable to set tx power per rate table\n", __func__);
1107         return AH_FALSE;
1108     }
1109 
1110     if (!AH5416(ah)->ah_setPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
1111         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
1112 	    __func__);
1113         return AH_FALSE;
1114     }
1115 
1116     maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
1117       AH5416(ah)->ah_ratesArray[rateHt20_0]);
1118 
1119     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1120         maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
1121     }
1122 
1123     if (IEEE80211_IS_CHAN_HT40(chan)) {
1124         maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
1125     }
1126 
1127     ahp->ah_tx6PowerInHalfDbm = maxPower;
1128     AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
1129     ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
1130 
1131     /*
1132      * txPowerIndexOffset is set by the SetPowerTable() call -
1133      *  adjust the rate table (0 offset if rates EEPROM not loaded)
1134      */
1135     for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
1136         AH5416(ah)->ah_ratesArray[i] =
1137           (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
1138         if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
1139             AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
1140     }
1141 
1142 #ifdef AH_EEPROM_DUMP
1143     /*
1144      * Dump the rate array whilst it represents the intended dBm*2
1145      * values versus what's being adjusted before being programmed
1146      * in. Keep this in mind if you code up this function and enable
1147      * this debugging; the values won't necessarily be what's being
1148      * programmed into the hardware.
1149      */
1150     ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
1151 #endif
1152 
1153     /*
1154      * Merlin and later have a power offset, so subtract
1155      * pwr_table_offset * 2 from each value. The default
1156      * power offset is -5 dBm - ie, a register value of 0
1157      * equates to a TX power of -5 dBm.
1158      */
1159     if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
1160         int8_t pwr_table_offset;
1161 
1162 	(void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET,
1163 	    &pwr_table_offset);
1164 	/* Underflow power gets clamped at raw value 0 */
1165 	/* Overflow power gets camped at AR5416_MAX_RATE_POWER */
1166 	for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
1167 		/*
1168 		 * + pwr_table_offset is in dBm
1169 		 * + ratesArray is in 1/2 dBm
1170 		 */
1171 		AH5416(ah)->ah_ratesArray[i] -= (pwr_table_offset * 2);
1172 		if (AH5416(ah)->ah_ratesArray[i] < 0)
1173 			AH5416(ah)->ah_ratesArray[i] = 0;
1174 		else if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
1175 		    AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
1176 	}
1177     }
1178 
1179     /*
1180      * Adjust rates for OLC where needed
1181      *
1182      * The following CCK rates need adjusting when doing 2.4ghz
1183      * CCK transmission.
1184      *
1185      * + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l
1186      * + rateExtCck, rateDupCck
1187      *
1188      * They're adjusted here regardless. The hardware then gets
1189      * programmed as needed. 5GHz operation doesn't program in CCK
1190      * rates for legacy mode but they seem to be initialised for
1191      * HT40 regardless of channel type.
1192      */
1193     if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
1194 	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
1195         int adj[] = {
1196 	              rate2s, rate2l, rate1l, rate11s, rate11l,
1197 	              rate5_5s, rate5_5l, rateExtCck, rateDupCck
1198 		    };
1199         int cck_ofdm_delta = 2;
1200 	int i;
1201 	for (i = 0; i < N(adj); i++) {
1202             AH5416(ah)->ah_ratesArray[adj[i]] -= cck_ofdm_delta;
1203 	    if (AH5416(ah)->ah_ratesArray[adj[i]] < 0)
1204 	        AH5416(ah)->ah_ratesArray[adj[i]] = 0;
1205         }
1206     }
1207 
1208     /*
1209      * Adjust the HT40 power to meet the correct target TX power
1210      * for 40MHz mode, based on TX power curves that are established
1211      * for 20MHz mode.
1212      *
1213      * XXX handle overflow/too high power level?
1214      */
1215     if (IEEE80211_IS_CHAN_HT40(chan)) {
1216 	AH5416(ah)->ah_ratesArray[rateHt40_0] +=
1217 	  AH5416(ah)->ah_ht40PowerIncForPdadc;
1218 	AH5416(ah)->ah_ratesArray[rateHt40_1] +=
1219 	  AH5416(ah)->ah_ht40PowerIncForPdadc;
1220 	AH5416(ah)->ah_ratesArray[rateHt40_2] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1221 	AH5416(ah)->ah_ratesArray[rateHt40_3] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1222 	AH5416(ah)->ah_ratesArray[rateHt40_4] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1223 	AH5416(ah)->ah_ratesArray[rateHt40_5] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1224 	AH5416(ah)->ah_ratesArray[rateHt40_6] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1225 	AH5416(ah)->ah_ratesArray[rateHt40_7] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1226     }
1227 
1228     /* Write the TX power rate registers */
1229     ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
1230 
1231     /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
1232     OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1233         POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1234           | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
1235     );
1236     return AH_TRUE;
1237 #undef POW_SM
1238 #undef N
1239 }
1240 
1241 /*
1242  * Exported call to check for a recent gain reading and return
1243  * the current state of the thermal calibration gain engine.
1244  */
1245 HAL_RFGAIN
1246 ar5416GetRfgain(struct ath_hal *ah)
1247 {
1248 
1249 	return (HAL_RFGAIN_INACTIVE);
1250 }
1251 
1252 /*
1253  * Places all of hardware into reset
1254  */
1255 HAL_BOOL
1256 ar5416Disable(struct ath_hal *ah)
1257 {
1258 
1259 	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1260 		return AH_FALSE;
1261 	if (! ar5416SetResetReg(ah, HAL_RESET_COLD))
1262 		return AH_FALSE;
1263 
1264 	AH5416(ah)->ah_initPLL(ah, AH_NULL);
1265 	return (AH_TRUE);
1266 }
1267 
1268 /*
1269  * Places the PHY and Radio chips into reset.  A full reset
1270  * must be called to leave this state.  The PCI/MAC/PCU are
1271  * not placed into reset as we must receive interrupt to
1272  * re-enable the hardware.
1273  */
1274 HAL_BOOL
1275 ar5416PhyDisable(struct ath_hal *ah)
1276 {
1277 
1278 	if (! ar5416SetResetReg(ah, HAL_RESET_WARM))
1279 		return AH_FALSE;
1280 
1281 	AH5416(ah)->ah_initPLL(ah, AH_NULL);
1282 	return (AH_TRUE);
1283 }
1284 
1285 /*
1286  * Write the given reset bit mask into the reset register
1287  */
1288 HAL_BOOL
1289 ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
1290 {
1291 	/*
1292 	 * Set force wake
1293 	 */
1294 	OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1295 	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1296 
1297 	switch (type) {
1298 	case HAL_RESET_POWER_ON:
1299 		return ar5416SetResetPowerOn(ah);
1300 	case HAL_RESET_WARM:
1301 	case HAL_RESET_COLD:
1302 		return ar5416SetReset(ah, type);
1303 	default:
1304 		HALASSERT(AH_FALSE);
1305 		return AH_FALSE;
1306 	}
1307 }
1308 
1309 static HAL_BOOL
1310 ar5416SetResetPowerOn(struct ath_hal *ah)
1311 {
1312     /* Power On Reset (Hard Reset) */
1313 
1314     /*
1315      * Set force wake
1316      *
1317      * If the MAC was running, previously calling
1318      * reset will wake up the MAC but it may go back to sleep
1319      * before we can start polling.
1320      * Set force wake  stops that
1321      * This must be called before initiating a hard reset.
1322      */
1323     OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1324             AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1325 
1326     /*
1327      * PowerOn reset can be used in open loop power control or failure recovery.
1328      * If we do RTC reset while DMA is still running, hardware may corrupt memory.
1329      * Therefore, we need to reset AHB first to stop DMA.
1330      */
1331     if (! AR_SREV_HOWL(ah))
1332     	OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1333     /*
1334      * RTC reset and clear
1335      */
1336     OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1337     OS_DELAY(20);
1338 
1339     if (! AR_SREV_HOWL(ah))
1340     	OS_REG_WRITE(ah, AR_RC, 0);
1341 
1342     OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1343 
1344     /*
1345      * Poll till RTC is ON
1346      */
1347     if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
1348         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
1349         return AH_FALSE;
1350     }
1351 
1352     return ar5416SetReset(ah, HAL_RESET_COLD);
1353 }
1354 
1355 static HAL_BOOL
1356 ar5416SetReset(struct ath_hal *ah, int type)
1357 {
1358     uint32_t tmpReg, mask;
1359     uint32_t rst_flags;
1360 
1361 #ifdef	AH_SUPPORT_AR9130	/* Because of the AR9130 specific registers */
1362     if (AR_SREV_HOWL(ah)) {
1363         HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n");
1364         uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1365         val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1366         val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1367         OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1368         (void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1369     }
1370 #endif	/* AH_SUPPORT_AR9130 */
1371 
1372     /*
1373      * Force wake
1374      */
1375     OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1376 	AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1377 
1378 #ifdef	AH_SUPPORT_AR9130
1379     if (AR_SREV_HOWL(ah)) {
1380         rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1381           AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1382     } else {
1383 #endif	/* AH_SUPPORT_AR9130 */
1384         /*
1385          * Reset AHB
1386          *
1387          * (In case the last interrupt source was a bus timeout.)
1388          * XXX TODO: this is not the way to do it! It should be recorded
1389          * XXX by the interrupt handler and passed _into_ the
1390          * XXX reset path routine so this occurs.
1391          */
1392         tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
1393         if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1394             OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1395             OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
1396         } else {
1397 	    OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1398         }
1399         rst_flags = AR_RTC_RC_MAC_WARM;
1400         if (type == HAL_RESET_COLD)
1401             rst_flags |= AR_RTC_RC_MAC_COLD;
1402 #ifdef	AH_SUPPORT_AR9130
1403     }
1404 #endif	/* AH_SUPPORT_AR9130 */
1405 
1406     OS_REG_WRITE(ah, AR_RTC_RC, rst_flags);
1407 
1408     if (AR_SREV_HOWL(ah))
1409         OS_DELAY(10000);
1410     else
1411         OS_DELAY(100);
1412 
1413     /*
1414      * Clear resets and force wakeup
1415      */
1416     OS_REG_WRITE(ah, AR_RTC_RC, 0);
1417     if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1418         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
1419         return AH_FALSE;
1420     }
1421 
1422     /* Clear AHB reset */
1423     if (! AR_SREV_HOWL(ah))
1424         OS_REG_WRITE(ah, AR_RC, 0);
1425 
1426     if (AR_SREV_HOWL(ah))
1427         OS_DELAY(50);
1428 
1429     if (AR_SREV_HOWL(ah)) {
1430                 uint32_t mask;
1431                 mask = OS_REG_READ(ah, AR_CFG);
1432                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1433                         HALDEBUG(ah, HAL_DEBUG_RESET,
1434                                 "CFG Byte Swap Set 0x%x\n", mask);
1435                 } else {
1436                         mask =
1437                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1438                         OS_REG_WRITE(ah, AR_CFG, mask);
1439                         HALDEBUG(ah, HAL_DEBUG_RESET,
1440                                 "Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG));
1441                 }
1442     } else {
1443 	if (type == HAL_RESET_COLD) {
1444 		if (isBigEndian()) {
1445 			/*
1446 			 * Set CFG, little-endian for descriptor accesses.
1447 			 */
1448 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
1449 #ifndef AH_NEED_DESC_SWAP
1450 			mask |= AR_CFG_SWTD;
1451 #endif
1452 			HALDEBUG(ah, HAL_DEBUG_RESET,
1453 			    "%s Applying descriptor swap\n", __func__);
1454 			OS_REG_WRITE(ah, AR_CFG, mask);
1455 		} else
1456 			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1457 	}
1458     }
1459 
1460     return AH_TRUE;
1461 }
1462 
1463 void
1464 ar5416InitChainMasks(struct ath_hal *ah)
1465 {
1466 	int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1467 
1468 	/* Flip this for this chainmask regardless of chip */
1469 	if (rx_chainmask == 0x5)
1470 		OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1471 
1472 	/*
1473 	 * Workaround for OWL 1.0 calibration failure; enable multi-chain;
1474 	 * then set true mask after calibration.
1475 	 */
1476 	if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1477 		OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1478 		OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1479 	} else {
1480 		OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1481 		OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1482 	}
1483 	OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
1484 
1485 	if (AH5416(ah)->ah_tx_chainmask == 0x5)
1486 		OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1487 
1488 	if (AR_SREV_HOWL(ah)) {
1489 		OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1490 		OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1491 	}
1492 }
1493 
1494 /*
1495  * Work-around for Owl 1.0 calibration failure.
1496  *
1497  * ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0
1498  * due to init calibration failures. ar5416RestoreChainMask restores
1499  * these registers to the correct setting.
1500  */
1501 void
1502 ar5416RestoreChainMask(struct ath_hal *ah)
1503 {
1504 	int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1505 
1506 	if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1507 		OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1508 		OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1509 	}
1510 }
1511 
1512 void
1513 ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
1514 {
1515 	uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1516 	if (chan != AH_NULL) {
1517 		if (IEEE80211_IS_CHAN_HALF(chan))
1518 			pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1519 		else if (IEEE80211_IS_CHAN_QUARTER(chan))
1520 			pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1521 
1522 		if (IEEE80211_IS_CHAN_5GHZ(chan))
1523 			pll |= SM(0xa, AR_RTC_PLL_DIV);
1524 		else
1525 			pll |= SM(0xb, AR_RTC_PLL_DIV);
1526 	} else
1527 		pll |= SM(0xb, AR_RTC_PLL_DIV);
1528 
1529 	OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1530 
1531 	/* TODO:
1532 	* For multi-band owl, switch between bands by reiniting the PLL.
1533 	*/
1534 
1535 	OS_DELAY(RTC_PLL_SETTLE_DELAY);
1536 
1537 	OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
1538 }
1539 
1540 static void
1541 ar5416SetDefGainValues(struct ath_hal *ah,
1542     const MODAL_EEP_HEADER *pModal,
1543     const struct ar5416eeprom *eep,
1544     uint8_t txRxAttenLocal, int regChainOffset, int i)
1545 {
1546 
1547 	if (IS_EEP_MINOR_V3(ah)) {
1548 		txRxAttenLocal = pModal->txRxAttenCh[i];
1549 
1550 		if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1551 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1552 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
1553 			      pModal->bswMargin[i]);
1554 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1555 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
1556 			      pModal->bswAtten[i]);
1557 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1558 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
1559 			      pModal->xatten2Margin[i]);
1560 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1561 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
1562 			      pModal->xatten2Db[i]);
1563 		} else {
1564 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1565 			      AR_PHY_GAIN_2GHZ_BSW_MARGIN,
1566 			      pModal->bswMargin[i]);
1567 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1568 			      AR_PHY_GAIN_2GHZ_BSW_ATTEN,
1569 			      pModal->bswAtten[i]);
1570 		}
1571 	}
1572 
1573 	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1574 		OS_REG_RMW_FIELD(ah,
1575 		      AR_PHY_RXGAIN + regChainOffset,
1576 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1577 		OS_REG_RMW_FIELD(ah,
1578 		      AR_PHY_RXGAIN + regChainOffset,
1579 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
1580 	} else {
1581 		OS_REG_RMW_FIELD(ah,
1582 			  AR_PHY_RXGAIN + regChainOffset,
1583 			  AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1584 		OS_REG_RMW_FIELD(ah,
1585 			  AR_PHY_GAIN_2GHZ + regChainOffset,
1586 			  AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]);
1587 	}
1588 }
1589 
1590 /*
1591  * Get the register chain offset for the given chain.
1592  *
1593  * Take into account the register chain swapping with AR5416 v2.0.
1594  *
1595  * XXX make sure that the reg chain swapping is only done for
1596  * XXX AR5416 v2.0 or greater, and not later chips?
1597  */
1598 int
1599 ar5416GetRegChainOffset(struct ath_hal *ah, int i)
1600 {
1601 	int regChainOffset;
1602 
1603 	if (AR_SREV_5416_V20_OR_LATER(ah) &&
1604 	    (AH5416(ah)->ah_rx_chainmask == 0x5 ||
1605 	    AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
1606 		/* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1607 		 * only chains 0 and 2 populated
1608 		 */
1609 		regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1610 	} else {
1611 		regChainOffset = i * 0x1000;
1612 	}
1613 
1614 	return regChainOffset;
1615 }
1616 
1617 /*
1618  * Read EEPROM header info and program the device for correct operation
1619  * given the channel value.
1620  */
1621 HAL_BOOL
1622 ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1623 {
1624     const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1625     const struct ar5416eeprom *eep = &ee->ee_base;
1626     const MODAL_EEP_HEADER *pModal;
1627     int			i, regChainOffset;
1628     uint8_t		txRxAttenLocal;    /* workaround for eeprom versions <= 14.2 */
1629 
1630     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1631     pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1632 
1633     /* NB: workaround for eeprom versions <= 14.2 */
1634     txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44;
1635 
1636     OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
1637     for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1638 	   if (AR_SREV_MERLIN(ah)) {
1639 		if (i >= 2) break;
1640 	   }
1641 	regChainOffset = ar5416GetRegChainOffset(ah, i);
1642 
1643         OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
1644 
1645         OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
1646         	(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
1647         	~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1648         	SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1649         	SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1650 
1651         /*
1652          * Large signal upgrade,
1653 	 * If 14.3 or later EEPROM, use
1654 	 * txRxAttenLocal = pModal->txRxAttenCh[i]
1655 	 * else txRxAttenLocal is fixed value above.
1656          */
1657 
1658         if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah))
1659 	    ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i);
1660 
1661     }
1662 
1663 	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1664                 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1665                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob);
1666                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db);
1667                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1);
1668                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1);
1669                 } else {
1670                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob);
1671                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db);
1672                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1);
1673                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1);
1674                 }
1675                 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
1676                 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS,
1677 		    !!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS));
1678                 OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
1679 		    !!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON));
1680         }
1681 
1682     OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1683     OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1684 
1685     if (! AR_SREV_MERLIN_10_OR_LATER(ah))
1686     	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
1687 
1688     OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
1689         SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1690         | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1691         | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1692         | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1693 
1694     OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1695 	pModal->txEndToRxOn);
1696 
1697     if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1698 	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1699 	    pModal->thresh62);
1700 	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1701 	    pModal->thresh62);
1702     } else {
1703 	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1704 	    pModal->thresh62);
1705 	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62,
1706 	    pModal->thresh62);
1707     }
1708 
1709     /* Minor Version Specific application */
1710     if (IS_EEP_MINOR_V2(ah)) {
1711         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
1712 	    pModal->txFrameToDataStart);
1713         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
1714 	    pModal->txFrameToPaOn);
1715     }
1716 
1717     if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan))
1718 		/* Overwrite switch settling with HT40 value */
1719 		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1720 		    pModal->swSettleHt40);
1721 
1722     if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19)
1723          OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits);
1724 
1725         if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) {
1726                 if (IEEE80211_IS_CHAN_2GHZ(chan))
1727                         OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1728 			    eep->baseEepHeader.dacLpMode);
1729                 else if (eep->baseEepHeader.dacHiPwrMode_5G)
1730                         OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
1731                 else
1732                         OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1733 			    eep->baseEepHeader.dacLpMode);
1734 
1735 		OS_DELAY(100);
1736 
1737                 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
1738 		    pModal->miscBits >> 2);
1739                 OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK,
1740 		    eep->baseEepHeader.desiredScaleCCK);
1741         }
1742 
1743     return (AH_TRUE);
1744 }
1745 
1746 /*
1747  * Helper functions common for AP/CB/XB
1748  */
1749 
1750 /*
1751  * Set the target power array "ratesArray" from the
1752  * given set of target powers.
1753  *
1754  * This is used by the various chipset/EEPROM TX power
1755  * setup routines.
1756  */
1757 void
1758 ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah,
1759     const struct ieee80211_channel *chan,
1760     int16_t *ratesArray,
1761     const CAL_TARGET_POWER_LEG *targetPowerCck,
1762     const CAL_TARGET_POWER_LEG *targetPowerCckExt,
1763     const CAL_TARGET_POWER_LEG *targetPowerOfdm,
1764     const CAL_TARGET_POWER_LEG *targetPowerOfdmExt,
1765     const CAL_TARGET_POWER_HT *targetPowerHt20,
1766     const CAL_TARGET_POWER_HT *targetPowerHt40)
1767 {
1768 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1769 	int i;
1770 
1771 	/* Blank the rates array, to be consistent */
1772 	for (i = 0; i < Ar5416RateSize; i++)
1773 		ratesArray[i] = 0;
1774 
1775 	/* Set rates Array from collected data */
1776 	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1777 	ratesArray[rate18mb] = ratesArray[rate24mb] =
1778 	    targetPowerOfdm->tPow2x[0];
1779 	ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1];
1780 	ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2];
1781 	ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3];
1782 	ratesArray[rateXr] = targetPowerOfdm->tPow2x[0];
1783 
1784 	for (i = 0; i < N(targetPowerHt20->tPow2x); i++) {
1785 		ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i];
1786 	}
1787 
1788 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1789 		ratesArray[rate1l]  = targetPowerCck->tPow2x[0];
1790 		ratesArray[rate2s] = ratesArray[rate2l]  = targetPowerCck->tPow2x[1];
1791 		ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2];
1792 		ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3];
1793 	}
1794 	if (IEEE80211_IS_CHAN_HT40(chan)) {
1795 		for (i = 0; i < N(targetPowerHt40->tPow2x); i++) {
1796 			ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i];
1797 		}
1798 		ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0];
1799 		ratesArray[rateDupCck]  = targetPowerHt40->tPow2x[0];
1800 		ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0];
1801 		if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1802 			ratesArray[rateExtCck]  = targetPowerCckExt->tPow2x[0];
1803 		}
1804 	}
1805 #undef	N
1806 }
1807 
1808 /*
1809  * ar5416SetPowerPerRateTable
1810  *
1811  * Sets the transmit power in the baseband for the given
1812  * operating channel and mode.
1813  */
1814 static HAL_BOOL
1815 ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
1816                            const struct ieee80211_channel *chan,
1817                            int16_t *ratesArray, uint16_t cfgCtl,
1818                            uint16_t AntennaReduction,
1819                            uint16_t twiceMaxRegulatoryPower,
1820                            uint16_t powerLimit)
1821 {
1822 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1823 /* Local defines to distinguish between extension and control CTL's */
1824 #define EXT_ADDITIVE (0x8000)
1825 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
1826 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
1827 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
1828 
1829 	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1830 	int i;
1831 	int16_t  twiceLargestAntenna;
1832 	CAL_CTL_DATA *rep;
1833 	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
1834 	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
1835 	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
1836 	int16_t scaledPower, minCtlPower;
1837 
1838 #define SUB_NUM_CTL_MODES_AT_5G_40 2   /* excluding HT40, EXT-OFDM */
1839 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
1840 	static const uint16_t ctlModesFor11a[] = {
1841 	   CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1842 	};
1843 	static const uint16_t ctlModesFor11g[] = {
1844 	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1845 	};
1846 	const uint16_t *pCtlMode;
1847 	uint16_t numCtlModes, ctlMode, freq;
1848 	CHAN_CENTERS centers;
1849 
1850 	ar5416GetChannelCenters(ah,  chan, &centers);
1851 
1852 	/* Compute TxPower reduction due to Antenna Gain */
1853 
1854 	twiceLargestAntenna = AH_MAX(AH_MAX(
1855 	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1856 	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
1857 	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1858 #if 0
1859 	/* Turn it back on if we need to calculate per chain antenna gain reduction */
1860 	/* Use only if the expected gain > 6dbi */
1861 	/* Chain 0 is always used */
1862 	twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0];
1863 
1864 	/* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
1865 	if (ahp->ah_tx_chainmask & 0x2)
1866 		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1867 			pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1868 
1869 	if (ahp->ah_tx_chainmask & 0x4)
1870 		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1871 			pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1872 #endif
1873 	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
1874 
1875 	/* XXX setup for 5212 use (really used?) */
1876 	ath_hal_eepromSet(ah,
1877 	    IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
1878 	    twiceLargestAntenna);
1879 
1880 	/*
1881 	 * scaledPower is the minimum of the user input power level and
1882 	 * the regulatory allowed power level
1883 	 */
1884 	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
1885 
1886 	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
1887 	/* TODO: better value than these? */
1888 	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
1889 	case 1:
1890 		break;
1891 	case 2:
1892 		scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
1893 		break;
1894 	case 3:
1895 		scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
1896 		break;
1897 	default:
1898 		return AH_FALSE; /* Unsupported number of chains */
1899 	}
1900 
1901 	scaledPower = AH_MAX(0, scaledPower);
1902 
1903 	/* Get target powers from EEPROM - our baseline for TX Power */
1904 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1905 		/* Setup for CTL modes */
1906 		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
1907 		pCtlMode = ctlModesFor11g;
1908 
1909 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1910 				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
1911 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1912 				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1913 		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
1914 				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1915 
1916 		if (IEEE80211_IS_CHAN_HT40(chan)) {
1917 			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
1918 
1919 			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
1920 				AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1921 			/* Get target powers for extension channels */
1922 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1923 				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
1924 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1925 				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1926 		}
1927 	} else {
1928 		/* Setup for CTL modes */
1929 		numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
1930 		pCtlMode = ctlModesFor11a;
1931 
1932 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1933 				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1934 		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT20,
1935 				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1936 
1937 		if (IEEE80211_IS_CHAN_HT40(chan)) {
1938 			numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
1939 
1940 			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT40,
1941 				AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1942 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1943 				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1944 		}
1945 	}
1946 
1947 	/*
1948 	 * For MIMO, need to apply regulatory caps individually across dynamically
1949 	 * running modes: CCK, OFDM, HT20, HT40
1950 	 *
1951 	 * The outer loop walks through each possible applicable runtime mode.
1952 	 * The inner loop walks through each ctlIndex entry in EEPROM.
1953 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
1954 	 *
1955 	 */
1956 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1957 		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1958 		    (pCtlMode[ctlMode] == CTL_2GHT40);
1959 		if (isHt40CtlMode) {
1960 			freq = centers.ctl_center;
1961 		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
1962 			freq = centers.ext_center;
1963 		} else {
1964 			freq = centers.ctl_center;
1965 		}
1966 
1967 		/* walk through each CTL index stored in EEPROM */
1968 		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1969 			uint16_t twiceMinEdgePower;
1970 
1971 			/* compare test group from regulatory channel list with test mode from pCtlMode list */
1972 			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
1973 				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1974 				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1975 				rep = &(pEepData->ctlData[i]);
1976 				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
1977 							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
1978 							IEEE80211_IS_CHAN_2GHZ(chan));
1979 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1980 					/* Find the minimum of all CTL edge powers that apply to this channel */
1981 					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
1982 				} else {
1983 					/* specific */
1984 					twiceMaxEdgePower = twiceMinEdgePower;
1985 					break;
1986 				}
1987 			}
1988 		}
1989 		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
1990 		/* Apply ctl mode to correct target power set */
1991 		switch(pCtlMode[ctlMode]) {
1992 		case CTL_11B:
1993 			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
1994 				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
1995 			}
1996 			break;
1997 		case CTL_11A:
1998 		case CTL_11G:
1999 			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
2000 				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
2001 			}
2002 			break;
2003 		case CTL_5GHT20:
2004 		case CTL_2GHT20:
2005 			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
2006 				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
2007 			}
2008 			break;
2009 		case CTL_11B_EXT:
2010 			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
2011 			break;
2012 		case CTL_11A_EXT:
2013 		case CTL_11G_EXT:
2014 			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
2015 			break;
2016 		case CTL_5GHT40:
2017 		case CTL_2GHT40:
2018 			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
2019 				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
2020 			}
2021 			break;
2022 		default:
2023 			return AH_FALSE;
2024 			break;
2025 		}
2026 	} /* end ctl mode checking */
2027 
2028 	/* Set rates Array from collected data */
2029 	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
2030 	    &targetPowerCck,
2031 	    &targetPowerCckExt,
2032 	    &targetPowerOfdm,
2033 	    &targetPowerOfdmExt,
2034 	    &targetPowerHt20,
2035 	    &targetPowerHt40);
2036 	return AH_TRUE;
2037 #undef EXT_ADDITIVE
2038 #undef CTL_11A_EXT
2039 #undef CTL_11G_EXT
2040 #undef CTL_11B_EXT
2041 #undef SUB_NUM_CTL_MODES_AT_5G_40
2042 #undef SUB_NUM_CTL_MODES_AT_2G_40
2043 #undef N
2044 }
2045 
2046 /**************************************************************************
2047  * fbin2freq
2048  *
2049  * Get channel value from binary representation held in eeprom
2050  * RETURNS: the frequency in MHz
2051  */
2052 static uint16_t
2053 fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
2054 {
2055     /*
2056      * Reserved value 0xFF provides an empty definition both as
2057      * an fbin and as a frequency - do not convert
2058      */
2059     if (fbin == AR5416_BCHAN_UNUSED) {
2060         return fbin;
2061     }
2062 
2063     return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2064 }
2065 
2066 /*
2067  * ar5416GetMaxEdgePower
2068  *
2069  * Find the maximum conformance test limit for the given channel and CTL info
2070  */
2071 uint16_t
2072 ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
2073 {
2074     uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2075     int      i;
2076 
2077     /* Get the edge power */
2078     for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
2079         /*
2080          * If there's an exact channel match or an inband flag set
2081          * on the lower channel use the given rdEdgePower
2082          */
2083         if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
2084             twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
2085             break;
2086         } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
2087             if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
2088                 twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
2089             }
2090             /* Leave loop - no more affecting edges possible in this monotonic increasing list */
2091             break;
2092         }
2093     }
2094     HALASSERT(twiceMaxEdgePower > 0);
2095     return twiceMaxEdgePower;
2096 }
2097 
2098 /**************************************************************
2099  * ar5416GetTargetPowers
2100  *
2101  * Return the rates of target power for the given target power table
2102  * channel, and number of channels
2103  */
2104 void
2105 ar5416GetTargetPowers(struct ath_hal *ah,  const struct ieee80211_channel *chan,
2106                       CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
2107                       CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
2108                       HAL_BOOL isHt40Target)
2109 {
2110     uint16_t clo, chi;
2111     int i;
2112     int matchIndex = -1, lowIndex = -1;
2113     uint16_t freq;
2114     CHAN_CENTERS centers;
2115 
2116     ar5416GetChannelCenters(ah,  chan, &centers);
2117     freq = isHt40Target ? centers.synth_center : centers.ctl_center;
2118 
2119     /* Copy the target powers into the temp channel list */
2120     if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2121         matchIndex = 0;
2122     } else {
2123         for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2124             if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2125                 matchIndex = i;
2126                 break;
2127             } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2128                        (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2129             {
2130                 lowIndex = i - 1;
2131                 break;
2132             }
2133         }
2134         if ((matchIndex == -1) && (lowIndex == -1)) {
2135             HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2136             matchIndex = i - 1;
2137         }
2138     }
2139 
2140     if (matchIndex != -1) {
2141         OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2142     } else {
2143         HALASSERT(lowIndex != -1);
2144         /*
2145          * Get the lower and upper channels, target powers,
2146          * and interpolate between them.
2147          */
2148         clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2149         chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2150 
2151         for (i = 0; i < numRates; i++) {
2152             pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2153                                    powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2154         }
2155     }
2156 }
2157 /**************************************************************
2158  * ar5416GetTargetPowersLeg
2159  *
2160  * Return the four rates of target power for the given target power table
2161  * channel, and number of channels
2162  */
2163 void
2164 ar5416GetTargetPowersLeg(struct ath_hal *ah,
2165                          const struct ieee80211_channel *chan,
2166                          CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
2167                          CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
2168 			 HAL_BOOL isExtTarget)
2169 {
2170     uint16_t clo, chi;
2171     int i;
2172     int matchIndex = -1, lowIndex = -1;
2173     uint16_t freq;
2174     CHAN_CENTERS centers;
2175 
2176     ar5416GetChannelCenters(ah,  chan, &centers);
2177     freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
2178 
2179     /* Copy the target powers into the temp channel list */
2180     if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2181         matchIndex = 0;
2182     } else {
2183         for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2184             if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2185                 matchIndex = i;
2186                 break;
2187             } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2188                        (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2189             {
2190                 lowIndex = i - 1;
2191                 break;
2192             }
2193         }
2194         if ((matchIndex == -1) && (lowIndex == -1)) {
2195             HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2196             matchIndex = i - 1;
2197         }
2198     }
2199 
2200     if (matchIndex != -1) {
2201         OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2202     } else {
2203         HALASSERT(lowIndex != -1);
2204         /*
2205          * Get the lower and upper channels, target powers,
2206          * and interpolate between them.
2207          */
2208         clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2209         chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2210 
2211         for (i = 0; i < numRates; i++) {
2212             pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2213                                    powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2214         }
2215     }
2216 }
2217 
2218 /*
2219  * Set the gain boundaries for the given radio chain.
2220  *
2221  * The gain boundaries tell the hardware at what point in the
2222  * PDADC array to "switch over" from one PD gain setting
2223  * to another. There's also a gain overlap between two
2224  * PDADC array gain curves where there's valid PD values
2225  * for 2 gain settings.
2226  *
2227  * The hardware uses the gain overlap and gain boundaries
2228  * to determine which gain curve to use for the given
2229  * target TX power.
2230  */
2231 void
2232 ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i,
2233     uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[])
2234 {
2235 	int regChainOffset;
2236 
2237 	regChainOffset = ar5416GetRegChainOffset(ah, i);
2238 
2239 	HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d,"
2240 	    " gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2,
2241 	    gainBoundaries[0], gainBoundaries[1], gainBoundaries[2],
2242 	    gainBoundaries[3]);
2243 	OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
2244 	    SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
2245 	    SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)  |
2246 	    SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)  |
2247 	    SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)  |
2248 	    SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
2249 }
2250 
2251 /*
2252  * Get the gain values and the number of gain levels given
2253  * in xpdMask.
2254  *
2255  * The EEPROM xpdMask determines which power detector gain
2256  * levels were used during calibration. Each of these mask
2257  * bits maps to a fixed gain level in hardware.
2258  */
2259 uint16_t
2260 ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask,
2261     uint16_t xpdGainValues[])
2262 {
2263     int i;
2264     uint16_t numXpdGain = 0;
2265 
2266     for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
2267         if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
2268             if (numXpdGain >= AR5416_NUM_PD_GAINS) {
2269                 HALASSERT(0);
2270                 break;
2271             }
2272             xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
2273             numXpdGain++;
2274         }
2275     }
2276     return numXpdGain;
2277 }
2278 
2279 /*
2280  * Write the detector gain and biases.
2281  *
2282  * There are four power detector gain levels. The xpdMask in the EEPROM
2283  * determines which power detector gain levels have TX power calibration
2284  * data associated with them. This function writes the number of
2285  * PD gain levels and their values into the hardware.
2286  *
2287  * This is valid for all TX chains - the calibration data itself however
2288  * will likely differ per-chain.
2289  */
2290 void
2291 ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain,
2292     uint16_t xpdGainValues[])
2293 {
2294     HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d,"
2295       " xpdGainValues: %d, %d, %d\n", __func__, numXpdGain,
2296       xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]);
2297 
2298     OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
2299     	~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 |
2300 	AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
2301 	SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) |
2302 	SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
2303 	SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) |
2304 	SM(xpdGainValues[2],  AR_PHY_TPCRG1_PD_GAIN_3));
2305 }
2306 
2307 /*
2308  * Write the PDADC array to the given radio chain i.
2309  *
2310  * The 32 PDADC registers are written without any care about
2311  * their contents - so if various chips treat values as "special",
2312  * this routine will not care.
2313  */
2314 void
2315 ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[])
2316 {
2317 	int regOffset, regChainOffset;
2318 	int j;
2319 	int reg32;
2320 
2321 	regChainOffset = ar5416GetRegChainOffset(ah, i);
2322 	regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
2323 
2324 	for (j = 0; j < 32; j++) {
2325 		reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)  |
2326 		    ((pdadcValues[4*j + 1] & 0xFF) << 8)  |
2327 		    ((pdadcValues[4*j + 2] & 0xFF) << 16) |
2328 		    ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
2329 		OS_REG_WRITE(ah, regOffset, reg32);
2330 		HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |"
2331 		    " PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d"
2332 		    " Value %3d | PDADC %3d Value %3d |\n",
2333 		    i,
2334 		    4*j, pdadcValues[4*j],
2335 		    4*j+1, pdadcValues[4*j + 1],
2336 		    4*j+2, pdadcValues[4*j + 2],
2337 		    4*j+3, pdadcValues[4*j + 3]);
2338 		regOffset += 4;
2339 	}
2340 }
2341 
2342 /**************************************************************
2343  * ar5416SetPowerCalTable
2344  *
2345  * Pull the PDADC piers from cal data and interpolate them across the given
2346  * points as well as from the nearest pier(s) to get a power detector
2347  * linear voltage to power level table.
2348  */
2349 HAL_BOOL
2350 ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
2351 	const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
2352 {
2353     CAL_DATA_PER_FREQ *pRawDataset;
2354     uint8_t  *pCalBChans = AH_NULL;
2355     uint16_t pdGainOverlap_t2;
2356     static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
2357     uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
2358     uint16_t numPiers, i;
2359     int16_t  tMinCalPower;
2360     uint16_t numXpdGain, xpdMask;
2361     uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
2362     uint32_t regChainOffset;
2363 
2364     OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
2365 
2366     xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain;
2367 
2368     if (IS_EEP_MINOR_V2(ah)) {
2369         pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap;
2370     } else {
2371     	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
2372     }
2373 
2374     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2375         pCalBChans = pEepData->calFreqPier2G;
2376         numPiers = AR5416_NUM_2G_CAL_PIERS;
2377     } else {
2378         pCalBChans = pEepData->calFreqPier5G;
2379         numPiers = AR5416_NUM_5G_CAL_PIERS;
2380     }
2381 
2382     /* Calculate the value of xpdgains from the xpdGain Mask */
2383     numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues);
2384 
2385     /* Write the detector gain biases and their number */
2386     ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
2387 
2388     for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2389 	regChainOffset = ar5416GetRegChainOffset(ah, i);
2390 
2391         if (pEepData->baseEepHeader.txMask & (1 << i)) {
2392             if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2393                 pRawDataset = pEepData->calPierData2G[i];
2394             } else {
2395                 pRawDataset = pEepData->calPierData5G[i];
2396             }
2397 
2398             /* Fetch the gain boundaries and the PDADC values */
2399 	    ar5416GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
2400                                              pCalBChans, numPiers,
2401                                              pdGainOverlap_t2,
2402                                              &tMinCalPower, gainBoundaries,
2403                                              pdadcValues, numXpdGain);
2404 
2405             if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
2406 		ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2,
2407 		  gainBoundaries);
2408             }
2409 
2410             /* Write the power values into the baseband power table */
2411 	    ar5416WritePdadcValues(ah, i, pdadcValues);
2412         }
2413     }
2414     *pTxPowerIndexOffset = 0;
2415 
2416     return AH_TRUE;
2417 }
2418 
2419 /**************************************************************
2420  * ar5416GetGainBoundariesAndPdadcs
2421  *
2422  * Uses the data points read from EEPROM to reconstruct the pdadc power table
2423  * Called by ar5416SetPowerCalTable only.
2424  */
2425 void
2426 ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
2427                                  const struct ieee80211_channel *chan,
2428 				 CAL_DATA_PER_FREQ *pRawDataSet,
2429                                  uint8_t * bChans,  uint16_t availPiers,
2430                                  uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
2431                                  uint8_t * pPDADCValues, uint16_t numXpdGains)
2432 {
2433 
2434     int       i, j, k;
2435     int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
2436     uint16_t  idxL, idxR, numPiers; /* Pier indexes */
2437 
2438     /* filled out Vpd table for all pdGains (chanL) */
2439     static uint8_t   vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2440 
2441     /* filled out Vpd table for all pdGains (chanR) */
2442     static uint8_t   vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2443 
2444     /* filled out Vpd table for all pdGains (interpolated) */
2445     static uint8_t   vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2446 
2447     uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
2448     uint8_t   minPwrT4[AR5416_NUM_PD_GAINS];
2449     uint8_t   maxPwrT4[AR5416_NUM_PD_GAINS];
2450     int16_t   vpdStep;
2451     int16_t   tmpVal;
2452     uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
2453     HAL_BOOL    match;
2454     int16_t  minDelta = 0;
2455     CHAN_CENTERS centers;
2456 
2457     ar5416GetChannelCenters(ah, chan, &centers);
2458 
2459     /* Trim numPiers for the number of populated channel Piers */
2460     for (numPiers = 0; numPiers < availPiers; numPiers++) {
2461         if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
2462             break;
2463         }
2464     }
2465 
2466     /* Find pier indexes around the current channel */
2467     match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
2468 	IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
2469 
2470     if (match) {
2471         /* Directly fill both vpd tables from the matching index */
2472         for (i = 0; i < numXpdGains; i++) {
2473             minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
2474             maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
2475             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
2476                                pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
2477         }
2478     } else {
2479         for (i = 0; i < numXpdGains; i++) {
2480             pVpdL = pRawDataSet[idxL].vpdPdg[i];
2481             pPwrL = pRawDataSet[idxL].pwrPdg[i];
2482             pVpdR = pRawDataSet[idxR].vpdPdg[i];
2483             pPwrR = pRawDataSet[idxR].pwrPdg[i];
2484 
2485             /* Start Vpd interpolation from the max of the minimum powers */
2486             minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
2487 
2488             /* End Vpd interpolation from the min of the max powers */
2489             maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
2490             HALASSERT(maxPwrT4[i] > minPwrT4[i]);
2491 
2492             /* Fill pier Vpds */
2493             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
2494             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
2495 
2496             /* Interpolate the final vpd */
2497             for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
2498                 vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
2499 		    IEEE80211_IS_CHAN_2GHZ(chan)),
2500                     bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
2501             }
2502         }
2503     }
2504     *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
2505 
2506     k = 0; /* index for the final table */
2507     for (i = 0; i < numXpdGains; i++) {
2508         if (i == (numXpdGains - 1)) {
2509             pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
2510         } else {
2511             pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
2512         }
2513 
2514         pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
2515 
2516 	/* NB: only applies to owl 1.0 */
2517         if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
2518 	    /*
2519              * fix the gain delta, but get a delta that can be applied to min to
2520              * keep the upper power values accurate, don't think max needs to
2521              * be adjusted because should not be at that area of the table?
2522 	     */
2523             minDelta = pPdGainBoundaries[0] - 23;
2524             pPdGainBoundaries[0] = 23;
2525         }
2526         else {
2527             minDelta = 0;
2528         }
2529 
2530         /* Find starting index for this pdGain */
2531         if (i == 0) {
2532             if (AR_SREV_MERLIN_10_OR_LATER(ah))
2533                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
2534             else
2535                 ss = 0; /* for the first pdGain, start from index 0 */
2536         } else {
2537 	    /* need overlap entries extrapolated below. */
2538             ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
2539         }
2540         vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
2541         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2542         /*
2543          *-ve ss indicates need to extrapolate data below for this pdGain
2544          */
2545         while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2546             tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
2547             pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
2548             ss++;
2549         }
2550 
2551         sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
2552         tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
2553         maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
2554 
2555         while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2556             pPDADCValues[k++] = vpdTableI[i][ss++];
2557         }
2558 
2559         vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
2560         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2561         /*
2562          * for last gain, pdGainBoundary == Pmax_t2, so will
2563          * have to extrapolate
2564          */
2565         if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
2566             while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2567                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2568                           (ss - maxIndex +1) * vpdStep));
2569                 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
2570                 ss++;
2571             }
2572         }               /* extrapolated above */
2573     }                   /* for all pdGainUsed */
2574 
2575     /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
2576     while (i < AR5416_PD_GAINS_IN_MASK) {
2577         pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
2578         i++;
2579     }
2580 
2581     while (k < AR5416_NUM_PDADC_VALUES) {
2582         pPDADCValues[k] = pPDADCValues[k-1];
2583         k++;
2584     }
2585     return;
2586 }
2587 
2588 /*
2589  * The linux ath9k driver and (from what I've been told) the reference
2590  * Atheros driver enables the 11n PHY by default whether or not it's
2591  * configured.
2592  */
2593 static void
2594 ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan)
2595 {
2596 	uint32_t phymode;
2597 	uint32_t enableDacFifo = 0;
2598 	HAL_HT_MACMODE macmode;		/* MAC - 20/40 mode */
2599 
2600 	if (AR_SREV_KITE_10_OR_LATER(ah))
2601 		enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO);
2602 
2603 	/* Enable 11n HT, 20 MHz */
2604 	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
2605 		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
2606 
2607 	/* Configure baseband for dynamic 20/40 operation */
2608 	if (IEEE80211_IS_CHAN_HT40(chan)) {
2609 		phymode |= AR_PHY_FC_DYN2040_EN;
2610 
2611 		/* Configure control (primary) channel at +-10MHz */
2612 		if (IEEE80211_IS_CHAN_HT40U(chan))
2613 			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
2614 #if 0
2615 		/* Configure 20/25 spacing */
2616 		if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
2617 			phymode |= AR_PHY_FC_DYN2040_EXT_CH;
2618 #endif
2619 		macmode = HAL_HT_MACMODE_2040;
2620 	} else
2621 		macmode = HAL_HT_MACMODE_20;
2622 	OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
2623 
2624 	/* Configure MAC for 20/40 operation */
2625 	ar5416Set11nMac2040(ah, macmode);
2626 
2627 	/* global transmit timeout (25 TUs default)*/
2628 	/* XXX - put this elsewhere??? */
2629 	OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
2630 
2631 	/* carrier sense timeout */
2632 	OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
2633 	OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
2634 }
2635 
2636 void
2637 ar5416GetChannelCenters(struct ath_hal *ah,
2638 	const struct ieee80211_channel *chan, CHAN_CENTERS *centers)
2639 {
2640 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2641 
2642 	centers->ctl_center = freq;
2643 	centers->synth_center = freq;
2644 	/*
2645 	 * In 20/40 phy mode, the center frequency is
2646 	 * "between" the control and extension channels.
2647 	 */
2648 	if (IEEE80211_IS_CHAN_HT40U(chan)) {
2649 		centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
2650 		centers->ext_center =
2651 		    centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
2652 	} else if (IEEE80211_IS_CHAN_HT40D(chan)) {
2653 		centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
2654 		centers->ext_center =
2655 		    centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
2656 	} else {
2657 		centers->ext_center = freq;
2658 	}
2659 }
2660 
2661 /*
2662  * Override the INI vals being programmed.
2663  */
2664 static void
2665 ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
2666 {
2667 	uint32_t val;
2668 
2669 	/*
2670 	 * Set the RX_ABORT and RX_DIS and clear if off only after
2671 	 * RXE is set for MAC. This prevents frames with corrupted
2672 	 * descriptor status.
2673 	 */
2674 	OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
2675 
2676 	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
2677 		val = OS_REG_READ(ah, AR_PCU_MISC_MODE2);
2678 		val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE);
2679 		if (!AR_SREV_9271(ah))
2680 			val &= ~AR_PCU_MISC_MODE2_HWWAR1;
2681 
2682 		if (AR_SREV_KIWI_10_OR_LATER(ah))
2683 			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
2684 
2685 		OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
2686 	}
2687 
2688 	/*
2689 	 * Disable RIFS search on some chips to avoid baseband
2690 	 * hang issues.
2691 	 */
2692 	if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah))
2693 		(void) ar5416SetRifsDelay(ah, chan, AH_FALSE);
2694 
2695         if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah))
2696 		return;
2697 
2698 	/*
2699 	 * Disable BB clock gating
2700 	 * Necessary to avoid issues on AR5416 2.0
2701 	 */
2702 	OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
2703 }
2704 
2705 struct ini {
2706 	uint32_t        *data;          /* NB: !const */
2707 	int             rows, cols;
2708 };
2709 
2710 /*
2711  * Override XPA bias level based on operating frequency.
2712  * This is a v14 EEPROM specific thing for the AR9160.
2713  */
2714 void
2715 ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan)
2716 {
2717 #define	XPA_LVL_FREQ(cnt)	(pModal->xpaBiasLvlFreq[cnt])
2718 	MODAL_EEP_HEADER	*pModal;
2719 	HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
2720 	struct ar5416eeprom	*eep = &ee->ee_base;
2721 	uint8_t biaslevel;
2722 
2723 	if (! AR_SREV_SOWL(ah))
2724 		return;
2725 
2726         if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7)
2727                 return;
2728 
2729 	pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]);
2730 
2731 	if (pModal->xpaBiasLvl != 0xff)
2732 		biaslevel = pModal->xpaBiasLvl;
2733 	else {
2734 		uint16_t resetFreqBin, freqBin, freqCount = 0;
2735 		CHAN_CENTERS centers;
2736 
2737 		ar5416GetChannelCenters(ah, chan, &centers);
2738 
2739 		resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
2740 		freqBin = XPA_LVL_FREQ(0) & 0xff;
2741 		biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14);
2742 
2743 		freqCount++;
2744 
2745 		while (freqCount < 3) {
2746 			if (XPA_LVL_FREQ(freqCount) == 0x0)
2747 			break;
2748 
2749 			freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
2750 			if (resetFreqBin >= freqBin)
2751 				biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14);
2752 			else
2753 				break;
2754 			freqCount++;
2755 		}
2756 	}
2757 
2758 	HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n",
2759 	    __func__, biaslevel);
2760 
2761 	/*
2762 	 * This is a dirty workaround for the const initval data,
2763 	 * which will upset multiple AR9160's on the same board.
2764 	 *
2765 	 * The HAL should likely just have a private copy of the addac
2766 	 * data per instance.
2767 	 */
2768 	if (IEEE80211_IS_CHAN_2GHZ(chan))
2769                 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) =
2770 		    (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
2771         else
2772                 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) =
2773 		    (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
2774 #undef XPA_LVL_FREQ
2775 }
2776 
2777 static void
2778 ar5416MarkPhyInactive(struct ath_hal *ah)
2779 {
2780 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2781 }
2782 
2783 #define	AR5416_IFS_SLOT_FULL_RATE_40	0x168	/* 9 us half, 40 MHz core clock (9*40) */
2784 #define	AR5416_IFS_SLOT_HALF_RATE_40	0x104	/* 13 us half, 20 MHz core clock (13*20) */
2785 #define	AR5416_IFS_SLOT_QUARTER_RATE_40	0xD2	/* 21 us quarter, 10 MHz core clock (21*10) */
2786 
2787 #define	AR5416_IFS_EIFS_FULL_RATE_40	0xE60	/* (74 + (2 * 9)) * 40MHz core clock */
2788 #define	AR5416_IFS_EIFS_HALF_RATE_40	0xDAC	/* (149 + (2 * 13)) * 20MHz core clock */
2789 #define	AR5416_IFS_EIFS_QUARTER_RATE_40	0xD48	/* (298 + (2 * 21)) * 10MHz core clock */
2790 
2791 #define	AR5416_IFS_SLOT_FULL_RATE_44	0x18c	/* 9 us half, 44 MHz core clock (9*44) */
2792 #define	AR5416_IFS_SLOT_HALF_RATE_44	0x11e	/* 13 us half, 22 MHz core clock (13*22) */
2793 #define	AR5416_IFS_SLOT_QUARTER_RATE_44	0xe7	/* 21 us quarter, 11 MHz core clock (21*11) */
2794 
2795 #define	AR5416_IFS_EIFS_FULL_RATE_44	0xfd0	/* (74 + (2 * 9)) * 44MHz core clock */
2796 #define	AR5416_IFS_EIFS_HALF_RATE_44	0xf0a	/* (149 + (2 * 13)) * 22MHz core clock */
2797 #define	AR5416_IFS_EIFS_QUARTER_RATE_44	0xe9c	/* (298 + (2 * 21)) * 11MHz core clock */
2798 
2799 #define	AR5416_INIT_USEC_40		40
2800 #define	AR5416_HALF_RATE_USEC_40	19 /* ((40 / 2) - 1 ) */
2801 #define	AR5416_QUARTER_RATE_USEC_40	9  /* ((40 / 4) - 1 ) */
2802 
2803 #define	AR5416_INIT_USEC_44		44
2804 #define	AR5416_HALF_RATE_USEC_44	21 /* ((44 / 2) - 1 ) */
2805 #define	AR5416_QUARTER_RATE_USEC_44	10  /* ((44 / 4) - 1 ) */
2806 
2807 
2808 /* XXX What should these be for 40/44MHz clocks (and half/quarter) ? */
2809 #define	AR5416_RX_NON_FULL_RATE_LATENCY		63
2810 #define	AR5416_TX_HALF_RATE_LATENCY		108
2811 #define	AR5416_TX_QUARTER_RATE_LATENCY		216
2812 
2813 /*
2814  * Adjust various register settings based on half/quarter rate clock setting.
2815  * This includes:
2816  *
2817  * + USEC, TX/RX latency,
2818  * + IFS params: slot, eifs, misc etc.
2819  *
2820  * TODO:
2821  *
2822  * + Verify which other registers need to be tweaked;
2823  * + Verify the behaviour of this for 5GHz fast and non-fast clock mode;
2824  * + This just plain won't work for long distance links - the coverage class
2825  *   code isn't aware of the slot/ifs/ACK/RTS timeout values that need to
2826  *   change;
2827  * + Verify whether the 32KHz USEC value needs to be kept for the 802.11n
2828  *   series chips?
2829  * + Calculate/derive values for 2GHz, 5GHz, 5GHz fast clock
2830  */
2831 static void
2832 ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
2833 {
2834 	uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
2835 	int clk_44 = 0;
2836 
2837 	HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
2838 	    IEEE80211_IS_CHAN_QUARTER(chan));
2839 
2840 	/* 2GHz and 5GHz fast clock - 44MHz; else 40MHz */
2841 	if (IEEE80211_IS_CHAN_2GHZ(chan))
2842 		clk_44 = 1;
2843 	else if (IEEE80211_IS_CHAN_5GHZ(chan) &&
2844 	    IS_5GHZ_FAST_CLOCK_EN(ah, chan))
2845 		clk_44 = 1;
2846 
2847 	/* XXX does this need save/restoring for the 11n chips? */
2848 	/*
2849 	 * XXX TODO: should mask out the txlat/rxlat/usec values?
2850 	 */
2851 	refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
2852 
2853 	/*
2854 	 * XXX This really should calculate things, not use
2855 	 * hard coded values! Ew.
2856 	 */
2857 	if (IEEE80211_IS_CHAN_HALF(chan)) {
2858 		if (clk_44) {
2859 			slot = AR5416_IFS_SLOT_HALF_RATE_44;
2860 			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2861 			    AR5416_USEC_RX_LAT_S;
2862 			txLat = AR5416_TX_HALF_RATE_LATENCY <<
2863 			    AR5416_USEC_TX_LAT_S;
2864 			usec = AR5416_HALF_RATE_USEC_44;
2865 			eifs = AR5416_IFS_EIFS_HALF_RATE_44;
2866 			init_usec = AR5416_INIT_USEC_44 >> 1;
2867 		} else {
2868 			slot = AR5416_IFS_SLOT_HALF_RATE_40;
2869 			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2870 			    AR5416_USEC_RX_LAT_S;
2871 			txLat = AR5416_TX_HALF_RATE_LATENCY <<
2872 			    AR5416_USEC_TX_LAT_S;
2873 			usec = AR5416_HALF_RATE_USEC_40;
2874 			eifs = AR5416_IFS_EIFS_HALF_RATE_40;
2875 			init_usec = AR5416_INIT_USEC_40 >> 1;
2876 		}
2877 	} else { /* quarter rate */
2878 		if (clk_44) {
2879 			slot = AR5416_IFS_SLOT_QUARTER_RATE_44;
2880 			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2881 			    AR5416_USEC_RX_LAT_S;
2882 			txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
2883 			    AR5416_USEC_TX_LAT_S;
2884 			usec = AR5416_QUARTER_RATE_USEC_44;
2885 			eifs = AR5416_IFS_EIFS_QUARTER_RATE_44;
2886 			init_usec = AR5416_INIT_USEC_44 >> 2;
2887 		} else {
2888 			slot = AR5416_IFS_SLOT_QUARTER_RATE_40;
2889 			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2890 			    AR5416_USEC_RX_LAT_S;
2891 			txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
2892 			    AR5416_USEC_TX_LAT_S;
2893 			usec = AR5416_QUARTER_RATE_USEC_40;
2894 			eifs = AR5416_IFS_EIFS_QUARTER_RATE_40;
2895 			init_usec = AR5416_INIT_USEC_40 >> 2;
2896 		}
2897 	}
2898 
2899 	/* XXX verify these! */
2900 	OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
2901 	OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
2902 	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
2903 	OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
2904 	    AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
2905 }
2906 
2907