xref: /freebsd/sys/dev/ath/ath_hal/ar5416/ar5416_xmit.c (revision c697fb7f)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22 
23 #include "ah.h"
24 #include "ah_desc.h"
25 #include "ah_internal.h"
26 
27 #include "ar5416/ar5416.h"
28 #include "ar5416/ar5416reg.h"
29 #include "ar5416/ar5416phy.h"
30 #include "ar5416/ar5416desc.h"
31 
32 /*
33  * Stop transmit on the specified queue
34  */
35 HAL_BOOL
36 ar5416StopTxDma(struct ath_hal *ah, u_int q)
37 {
38 #define	STOP_DMA_TIMEOUT	4000	/* us */
39 #define	STOP_DMA_ITER		100	/* us */
40 	u_int i;
41 
42 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
43 
44 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
45 
46 	OS_REG_WRITE(ah, AR_Q_TXD, 1 << q);
47 	for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
48 		if (ar5212NumTxPending(ah, q) == 0)
49 			break;
50 		OS_DELAY(STOP_DMA_ITER);
51 	}
52 #ifdef AH_DEBUG
53 	if (i == 0) {
54 		HALDEBUG(ah, HAL_DEBUG_ANY,
55 		    "%s: queue %u DMA did not stop in 400 msec\n", __func__, q);
56 		HALDEBUG(ah, HAL_DEBUG_ANY,
57 		    "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__,
58 		    OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE),
59 		    OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q)));
60 		HALDEBUG(ah, HAL_DEBUG_ANY,
61 		    "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n",
62 		    __func__, OS_REG_READ(ah, AR_QMISC(q)),
63 		    OS_REG_READ(ah, AR_QRDYTIMECFG(q)),
64 		    OS_REG_READ(ah, AR_Q_RDYTIMESHDN));
65 	}
66 #endif /* AH_DEBUG */
67 
68 	/* ar5416 and up can kill packets at the PCU level */
69 	if (ar5212NumTxPending(ah, q)) {
70 		uint32_t j;
71 
72 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
73 		    "%s: Num of pending TX Frames %d on Q %d\n",
74 		    __func__, ar5212NumTxPending(ah, q), q);
75 
76 		/* Kill last PCU Tx Frame */
77 		/* TODO - save off and restore current values of Q1/Q2? */
78 		for (j = 0; j < 2; j++) {
79 			uint32_t tsfLow = OS_REG_READ(ah, AR_TSF_L32);
80 			OS_REG_WRITE(ah, AR_QUIET2,
81 			    SM(10, AR_QUIET2_QUIET_DUR));
82 			OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100);
83 			OS_REG_WRITE(ah, AR_NEXT_QUIET, tsfLow >> 10);
84 			OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
85 
86 			if ((OS_REG_READ(ah, AR_TSF_L32)>>10) == (tsfLow>>10))
87 				break;
88 
89 			HALDEBUG(ah, HAL_DEBUG_ANY,
90 			    "%s: TSF moved while trying to set quiet time "
91 			    "TSF: 0x%08x\n", __func__, tsfLow);
92 			HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */
93 		}
94 
95 		OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
96 
97 		/* Allow the quiet mechanism to do its work */
98 		OS_DELAY(200);
99 		OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
100 
101 		/* Verify the transmit q is empty */
102 		for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
103 			if (ar5212NumTxPending(ah, q) == 0)
104 				break;
105 			OS_DELAY(STOP_DMA_ITER);
106 		}
107 		if (i == 0) {
108 			HALDEBUG(ah, HAL_DEBUG_ANY,
109 			    "%s: Failed to stop Tx DMA in %d msec after killing"
110 			    " last frame\n", __func__, STOP_DMA_TIMEOUT / 1000);
111 		}
112 		OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
113 	}
114 
115 	OS_REG_WRITE(ah, AR_Q_TXD, 0);
116 	return (i != 0);
117 #undef STOP_DMA_ITER
118 #undef STOP_DMA_TIMEOUT
119 }
120 
121 #define VALID_KEY_TYPES \
122         ((1 << HAL_KEY_TYPE_CLEAR) | (1 << HAL_KEY_TYPE_WEP)|\
123          (1 << HAL_KEY_TYPE_AES)   | (1 << HAL_KEY_TYPE_TKIP))
124 #define isValidKeyType(_t)      ((1 << (_t)) & VALID_KEY_TYPES)
125 
126 #define set11nTries(_series, _index) \
127         (SM((_series)[_index].Tries, AR_XmitDataTries##_index))
128 
129 #define set11nRate(_series, _index) \
130         (SM((_series)[_index].Rate, AR_XmitRate##_index))
131 
132 #define set11nPktDurRTSCTS(_series, _index) \
133         (SM((_series)[_index].PktDuration, AR_PacketDur##_index) |\
134          ((_series)[_index].RateFlags & HAL_RATESERIES_RTS_CTS   ?\
135          AR_RTSCTSQual##_index : 0))
136 
137 #define set11nRateFlags(_series, _index) \
138         ((_series)[_index].RateFlags & HAL_RATESERIES_2040 ? AR_2040_##_index : 0) \
139         |((_series)[_index].RateFlags & HAL_RATESERIES_HALFGI ? AR_GI##_index : 0) \
140         |((_series)[_index].RateFlags & HAL_RATESERIES_STBC ? AR_STBC##_index : 0) \
141         |SM((_series)[_index].ChSel, AR_ChainSel##_index)
142 
143 /*
144  * Descriptor Access Functions
145  */
146 
147 #define VALID_PKT_TYPES \
148         ((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\
149          (1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\
150          (1<<HAL_PKT_TYPE_BEACON)|(1<<HAL_PKT_TYPE_AMPDU))
151 #define isValidPktType(_t)      ((1<<(_t)) & VALID_PKT_TYPES)
152 #define VALID_TX_RATES \
153         ((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\
154          (1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\
155 	 (1<<0x1d)|(1<<0x18)|(1<<0x1c)|(1<<0x01)|(1<<0x02)|(1<<0x03)|\
156 	 (1<<0x04)|(1<<0x05)|(1<<0x06)|(1<<0x07)|(1<<0x00))
157 /* NB: accept HT rates */
158 #define	isValidTxRate(_r)	((1<<((_r) & 0x7f)) & VALID_TX_RATES)
159 
160 static inline int
161 ar5416RateToRateTable(struct ath_hal *ah, uint8_t rate, HAL_BOOL is_ht40)
162 {
163 
164 	/*
165 	 * Handle the non-MCS rates
166 	 */
167 	switch (rate) {
168 	case /*   1 Mb */ 0x1b:
169 	case /*   1 MbS*/ 0x1b | 0x4:
170 		return (AH5416(ah)->ah_ratesArray[rate1l]);
171 	case /*   2 Mb */ 0x1a:
172 		return (AH5416(ah)->ah_ratesArray[rate2l]);
173 	case /*   2 MbS*/ 0x1a | 0x4:
174 		return (AH5416(ah)->ah_ratesArray[rate2s]);
175 	case /* 5.5 Mb */ 0x19:
176 		return (AH5416(ah)->ah_ratesArray[rate5_5l]);
177 	case /* 5.5 MbS*/ 0x19 | 0x4:
178 		return (AH5416(ah)->ah_ratesArray[rate5_5s]);
179 	case /*  11 Mb */ 0x18:
180 		return (AH5416(ah)->ah_ratesArray[rate11l]);
181 	case /*  11 MbS*/ 0x18 | 0x4:
182 		return (AH5416(ah)->ah_ratesArray[rate11s]);
183 	}
184 
185 	/* OFDM rates */
186 	switch (rate) {
187 	case /*   6 Mb */ 0x0b:
188 		return (AH5416(ah)->ah_ratesArray[rate6mb]);
189 	case /*   9 Mb */ 0x0f:
190 		return (AH5416(ah)->ah_ratesArray[rate9mb]);
191 	case /*  12 Mb */ 0x0a:
192 		return (AH5416(ah)->ah_ratesArray[rate12mb]);
193 	case /*  18 Mb */ 0x0e:
194 		return (AH5416(ah)->ah_ratesArray[rate18mb]);
195 	case /*  24 Mb */ 0x09:
196 		return (AH5416(ah)->ah_ratesArray[rate24mb]);
197 	case /*  36 Mb */ 0x0d:
198 		return (AH5416(ah)->ah_ratesArray[rate36mb]);
199 	case /*  48 Mb */ 0x08:
200 		return (AH5416(ah)->ah_ratesArray[rate48mb]);
201 	case /*  54 Mb */ 0x0c:
202 		return (AH5416(ah)->ah_ratesArray[rate54mb]);
203 	}
204 
205 	/*
206 	 * Handle HT20/HT40 - we only have to do MCS0-7;
207 	 * there's no stream differences.
208 	 */
209 	if ((rate & 0x80) && is_ht40) {
210 		return (AH5416(ah)->ah_ratesArray[rateHt40_0 + (rate & 0x7)]);
211 	} else if (rate & 0x80) {
212 		return (AH5416(ah)->ah_ratesArray[rateHt20_0 + (rate & 0x7)]);
213 	}
214 
215 	/* XXX default (eg XR, bad bad person!) */
216 	return (AH5416(ah)->ah_ratesArray[rate6mb]);
217 }
218 
219 /*
220  * Return the TX power to be used for the given rate/chains/TX power.
221  *
222  * There are a bunch of tweaks to make to a given TX power based on
223  * the current configuration, so...
224  */
225 static uint16_t
226 ar5416GetTxRatePower(struct ath_hal *ah, uint8_t rate, uint8_t tx_chainmask,
227     uint16_t txPower, HAL_BOOL is_ht40)
228 {
229 	int n_txpower, max_txpower;
230 	const int cck_ofdm_delta = 2;
231 #define	EEP_MINOR(_ah) \
232 	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
233 #define	IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
234 
235 	/* Take a copy ; we may underflow and thus need to clamp things */
236 	n_txpower = txPower;
237 
238 	/* HT40? Need to adjust the TX power by this */
239 	if (is_ht40)
240 		n_txpower += AH5416(ah)->ah_ht40PowerIncForPdadc;
241 
242 	/*
243 	 * Merlin? Offset the target TX power offset - it defaults to
244 	 * starting at -5.0dBm, but that can change!
245 	 *
246 	 * Kiwi/Kite? Always -5.0dBm offset.
247 	 */
248 	if (AR_SREV_KIWI_10_OR_LATER(ah)) {
249 		n_txpower -= (AR5416_PWR_TABLE_OFFSET_DB * 2);
250 	} else if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
251 		int8_t pwr_table_offset = 0;
252 		/* This is in dBm, convert to 1/2 dBm */
253 		(void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET,
254 		    &pwr_table_offset);
255 		n_txpower -= (pwr_table_offset * 2);
256 	}
257 
258 	/*
259 	 * If Open-loop TX power control is used, the CCK rates need
260 	 * to be offset by that.
261 	 *
262 	 * Rates: 2S, 2L, 1S, 1L, 5.5S, 5.5L
263 	 *
264 	 * XXX Odd, we don't have a PHY table entry for long preamble
265 	 * 1mbit CCK?
266 	 */
267 	if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
268 	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
269 
270 		if (rate == 0x19 || rate == 0x1a || rate == 0x1b ||
271 		    rate == (0x19 | 0x04) || rate == (0x1a | 0x04) ||
272 		    rate == (0x1b | 0x04)) {
273 			n_txpower -= cck_ofdm_delta;
274 		}
275 	}
276 
277 	/*
278 	 * We're now offset by the same amount that the static maximum
279 	 * PHY power tables are.  So, clamp the value based on that rate.
280 	 */
281 	max_txpower = ar5416RateToRateTable(ah, rate, is_ht40);
282 #if 0
283 	ath_hal_printf(ah, "%s: n_txpower = %d, max_txpower = %d, "
284 	    "rate = 0x%x , is_ht40 = %d\n",
285 	    __func__,
286 	    n_txpower,
287 	    max_txpower,
288 	    rate,
289 	    is_ht40);
290 #endif
291 	n_txpower = MIN(max_txpower, n_txpower);
292 
293 	/*
294 	 * We don't have to offset the TX power for two or three
295 	 * chain operation here - it's done by the AR_PHY_POWER_TX_SUB
296 	 * register setting via the EEPROM.
297 	 *
298 	 * So for vendors that programmed the maximum target power assuming
299 	 * that 2/3 chains are always on, things will just plain work.
300 	 * (They won't reach that target power if only one chain is on, but
301 	 * that's a different problem.)
302 	 */
303 
304 	/* Over/underflow? Adjust */
305 	if (n_txpower < 0)
306 		n_txpower = 0;
307 	else if (n_txpower > 63)
308 		n_txpower = 63;
309 
310 	/*
311 	 * For some odd reason the AR9160 with txpower=0 results in a
312 	 * much higher (max?) TX power.  So, if it's a chipset before
313 	 * AR9220/AR9280, just clamp the minimum value at 1.
314 	 */
315 	if ((! AR_SREV_MERLIN_10_OR_LATER(ah)) && (n_txpower == 0))
316 		n_txpower = 1;
317 
318 	return (n_txpower);
319 #undef	EEP_MINOR
320 #undef	IS_EEP_MINOR_V2
321 }
322 
323 HAL_BOOL
324 ar5416SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds,
325 	u_int pktLen,
326 	u_int hdrLen,
327 	HAL_PKT_TYPE type,
328 	u_int txPower,
329 	u_int txRate0, u_int txTries0,
330 	u_int keyIx,
331 	u_int antMode,
332 	u_int flags,
333 	u_int rtsctsRate,
334 	u_int rtsctsDuration,
335 	u_int compicvLen,
336 	u_int compivLen,
337 	u_int comp)
338 {
339 #define	RTSCTS	(HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
340 	struct ar5416_desc *ads = AR5416DESC(ds);
341 	struct ath_hal_5416 *ahp = AH5416(ah);
342 
343 	(void) hdrLen;
344 
345 	HALASSERT(txTries0 != 0);
346 	HALASSERT(isValidPktType(type));
347 	HALASSERT(isValidTxRate(txRate0));
348 	HALASSERT((flags & RTSCTS) != RTSCTS);
349 	/* XXX validate antMode */
350 
351         txPower = (txPower + AH5212(ah)->ah_txPowerIndexOffset);
352         if (txPower > 63)
353 		txPower = 63;
354 
355 	/*
356 	 * XXX For now, just assume that this isn't a HT40 frame.
357 	 * It'll get over-ridden by the multi-rate TX power setup.
358 	 */
359 	if (AH5212(ah)->ah_tpcEnabled) {
360 		txPower = ar5416GetTxRatePower(ah, txRate0,
361 		    ahp->ah_tx_chainmask,
362 		    txPower,
363 		    AH_FALSE);
364 	}
365 
366 	ads->ds_ctl0 = (pktLen & AR_FrameLen)
367 		     | (txPower << AR_XmitPower_S)
368 		     | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
369 		     | (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
370 		     | (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0)
371 		     ;
372 	ads->ds_ctl1 = (type << AR_FrameType_S)
373 		     | (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0)
374 		     | (flags & HAL_TXDESC_HWTS ? AR_InsertTS : 0)
375                      ;
376 	ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0)
377 		     | (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEn : 0)
378 		     ;
379 	ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S)
380 		     ;
381 	ads->ds_ctl4 = 0;
382 	ads->ds_ctl5 = 0;
383 	ads->ds_ctl6 = 0;
384 	ads->ds_ctl7 = SM(ahp->ah_tx_chainmask, AR_ChainSel0)
385 		     | SM(ahp->ah_tx_chainmask, AR_ChainSel1)
386 		     | SM(ahp->ah_tx_chainmask, AR_ChainSel2)
387 		     | SM(ahp->ah_tx_chainmask, AR_ChainSel3)
388 		     ;
389 	ads->ds_ctl8 = SM(0, AR_AntCtl0);
390 	ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
391 	ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
392 	ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
393 
394 	if (keyIx != HAL_TXKEYIX_INVALID) {
395 		/* XXX validate key index */
396 		ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
397 		ads->ds_ctl0 |= AR_DestIdxValid;
398 		ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType);
399 	}
400 	if (flags & RTSCTS) {
401 		if (!isValidTxRate(rtsctsRate)) {
402 			HALDEBUG(ah, HAL_DEBUG_ANY,
403 			    "%s: invalid rts/cts rate 0x%x\n",
404 			    __func__, rtsctsRate);
405 			return AH_FALSE;
406 		}
407 		/* XXX validate rtsctsDuration */
408 		ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
409 			     | (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0)
410 			     ;
411 		ads->ds_ctl7 |= (rtsctsRate << AR_RTSCTSRate_S);
412 	}
413 
414 	/*
415 	 * Set the TX antenna to 0 for Kite
416 	 * To preserve existing behaviour, also set the TPC bits to 0;
417 	 * when TPC is enabled these should be filled in appropriately.
418 	 *
419 	 * XXX TODO: when doing TPC, set the TX power up appropriately?
420 	 */
421 	if (AR_SREV_KITE(ah)) {
422 		ads->ds_ctl8 = SM(0, AR_AntCtl0);
423 		ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1);
424 		ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2);
425 		ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3);
426 	}
427 	return AH_TRUE;
428 #undef RTSCTS
429 }
430 
431 HAL_BOOL
432 ar5416SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds,
433 	u_int txRate1, u_int txTries1,
434 	u_int txRate2, u_int txTries2,
435 	u_int txRate3, u_int txTries3)
436 {
437 	struct ar5416_desc *ads = AR5416DESC(ds);
438 
439 	if (txTries1) {
440 		HALASSERT(isValidTxRate(txRate1));
441 		ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1);
442 		ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S);
443 	}
444 	if (txTries2) {
445 		HALASSERT(isValidTxRate(txRate2));
446 		ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2);
447 		ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S);
448 	}
449 	if (txTries3) {
450 		HALASSERT(isValidTxRate(txRate3));
451 		ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3);
452 		ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S);
453 	}
454 	return AH_TRUE;
455 }
456 
457 /*
458  * XXX TODO: Figure out if AR_InsertTS is required on all sub-frames
459  * of a TX descriptor.
460  */
461 HAL_BOOL
462 ar5416FillTxDesc(struct ath_hal *ah, struct ath_desc *ds,
463 	HAL_DMA_ADDR *bufAddrList, uint32_t *segLenList, u_int descId,
464 	u_int qcuId, HAL_BOOL firstSeg, HAL_BOOL lastSeg,
465 	const struct ath_desc *ds0)
466 {
467 	struct ar5416_desc *ads = AR5416DESC(ds);
468 	uint32_t segLen = segLenList[0];
469 
470 	HALASSERT((segLen &~ AR_BufLen) == 0);
471 
472 	ds->ds_data = bufAddrList[0];
473 
474 	if (firstSeg) {
475 		/*
476 		 * First descriptor, don't clobber xmit control data
477 		 * setup by ar5212SetupTxDesc.
478 		 */
479 		ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
480 	} else if (lastSeg) {		/* !firstSeg && lastSeg */
481 		/*
482 		 * Last descriptor in a multi-descriptor frame,
483 		 * copy the multi-rate transmit parameters from
484 		 * the first frame for processing on completion.
485 		 */
486 		ads->ds_ctl1 = segLen;
487 #ifdef AH_NEED_DESC_SWAP
488 		ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0)
489 		    & AR_TxIntrReq;
490 		ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
491 		ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
492 		/* ctl6 - we only need encrtype; the rest are blank */
493 		ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType);
494 #else
495 		ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq;
496 		ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
497 		ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
498 		/* ctl6 - we only need encrtype; the rest are blank */
499 		ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType;
500 #endif
501 	} else {			/* !firstSeg && !lastSeg */
502 		/*
503 		 * Intermediate descriptor in a multi-descriptor frame.
504 		 */
505 #ifdef AH_NEED_DESC_SWAP
506 		ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0)
507 		    & AR_TxIntrReq;
508 		ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType);
509 #else
510 		ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq;
511 		ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType;
512 #endif
513 		ads->ds_ctl1 = segLen | AR_TxMore;
514 		ads->ds_ctl2 = 0;
515 		ads->ds_ctl3 = 0;
516 	}
517 	/* XXX only on last descriptor? */
518 	OS_MEMZERO(ads->u.tx.status, sizeof(ads->u.tx.status));
519 	return AH_TRUE;
520 }
521 
522 /*
523  * NB: cipher is no longer used, it's calculated.
524  */
525 HAL_BOOL
526 ar5416ChainTxDesc(struct ath_hal *ah, struct ath_desc *ds,
527 	HAL_DMA_ADDR *bufAddrList,
528 	uint32_t *segLenList,
529 	u_int pktLen,
530 	u_int hdrLen,
531 	HAL_PKT_TYPE type,
532 	u_int keyIx,
533 	HAL_CIPHER cipher,
534 	uint8_t delims,
535 	HAL_BOOL firstSeg,
536 	HAL_BOOL lastSeg,
537 	HAL_BOOL lastAggr)
538 {
539 	struct ar5416_desc *ads = AR5416DESC(ds);
540 	uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
541 	struct ath_hal_5416 *ahp = AH5416(ah);
542 	u_int segLen = segLenList[0];
543 
544 	int isaggr = 0;
545 	uint32_t last_aggr = 0;
546 
547 	(void) hdrLen;
548 	(void) ah;
549 
550 	HALASSERT((segLen &~ AR_BufLen) == 0);
551 	ds->ds_data = bufAddrList[0];
552 
553 	HALASSERT(isValidPktType(type));
554 	if (type == HAL_PKT_TYPE_AMPDU) {
555 		type = HAL_PKT_TYPE_NORMAL;
556 		isaggr = 1;
557 		if (lastAggr == AH_FALSE)
558 			last_aggr = AR_MoreAggr;
559 	}
560 
561 	/*
562 	 * Since this function is called before any of the other
563 	 * descriptor setup functions (at least in this particular
564 	 * 802.11n aggregation implementation), always bzero() the
565 	 * descriptor. Previously this would be done for all but
566 	 * the first segment.
567 	 * XXX TODO: figure out why; perhaps I'm using this slightly
568 	 * XXX incorrectly.
569 	 */
570 	OS_MEMZERO(ds->ds_hw, AR5416_DESC_TX_CTL_SZ);
571 
572 	/*
573 	 * Note: VEOL should only be for the last descriptor in the chain.
574 	 */
575 	ads->ds_ctl0 = (pktLen & AR_FrameLen);
576 
577 	/*
578 	 * For aggregates:
579 	 * + IsAggr must be set for all descriptors of all subframes of
580 	 *   the aggregate
581 	 * + MoreAggr must be set for all descriptors of all subframes
582 	 *   of the aggregate EXCEPT the last subframe;
583 	 * + MoreAggr must be _CLEAR_ for all descrpitors of the last
584 	 *   subframe of the aggregate.
585 	 */
586 	ads->ds_ctl1 = (type << AR_FrameType_S)
587 			| (isaggr ? (AR_IsAggr | last_aggr) : 0);
588 
589 	ads->ds_ctl2 = 0;
590 	ads->ds_ctl3 = 0;
591 	if (keyIx != HAL_TXKEYIX_INVALID) {
592 		/* XXX validate key index */
593 		ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
594 		ads->ds_ctl0 |= AR_DestIdxValid;
595 	}
596 
597 	ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType);
598 	if (isaggr) {
599 		ads->ds_ctl6 |= SM(delims, AR_PadDelim);
600 	}
601 
602 	if (firstSeg) {
603 		ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
604 	} else if (lastSeg) {           /* !firstSeg && lastSeg */
605 		ads->ds_ctl0 = 0;
606 		ads->ds_ctl1 |= segLen;
607 	} else {                        /* !firstSeg && !lastSeg */
608 		/*
609 		 * Intermediate descriptor in a multi-descriptor frame.
610 		 */
611 		ads->ds_ctl0 = 0;
612 		ads->ds_ctl1 |= segLen | AR_TxMore;
613 	}
614 	ds_txstatus[0] = ds_txstatus[1] = 0;
615 	ds_txstatus[9] &= ~AR_TxDone;
616 
617 	return AH_TRUE;
618 }
619 
620 HAL_BOOL
621 ar5416SetupFirstTxDesc(struct ath_hal *ah, struct ath_desc *ds,
622 	u_int aggrLen, u_int flags, u_int txPower,
623 	u_int txRate0, u_int txTries0, u_int antMode,
624 	u_int rtsctsRate, u_int rtsctsDuration)
625 {
626 #define RTSCTS  (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
627 	struct ar5416_desc *ads = AR5416DESC(ds);
628 	struct ath_hal_5212 *ahp = AH5212(ah);
629 
630 	HALASSERT(txTries0 != 0);
631 	HALASSERT(isValidTxRate(txRate0));
632 	HALASSERT((flags & RTSCTS) != RTSCTS);
633 	/* XXX validate antMode */
634 
635 	txPower = (txPower + ahp->ah_txPowerIndexOffset );
636 	if(txPower > 63)  txPower=63;
637 
638 	ads->ds_ctl0 |= (txPower << AR_XmitPower_S)
639 		| (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
640 		| (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
641 		| (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0);
642 	ads->ds_ctl1 |= (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0);
643 	ads->ds_ctl2 |= SM(txTries0, AR_XmitDataTries0);
644 	ads->ds_ctl3 |= (txRate0 << AR_XmitRate0_S);
645 	ads->ds_ctl7 = SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel0)
646 		| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel1)
647 		| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel2)
648 		| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel3);
649 
650 	/* NB: no V1 WAR */
651 	ads->ds_ctl8 = SM(0, AR_AntCtl0);
652 	ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
653 	ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
654 	ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
655 
656 	ads->ds_ctl6 &= ~(0xffff);
657 	ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
658 
659 	if (flags & RTSCTS) {
660 		/* XXX validate rtsctsDuration */
661 		ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
662 			| (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0);
663 	}
664 
665 	/*
666 	 * Set the TX antenna to 0 for Kite
667 	 * To preserve existing behaviour, also set the TPC bits to 0;
668 	 * when TPC is enabled these should be filled in appropriately.
669 	 */
670 	if (AR_SREV_KITE(ah)) {
671 		ads->ds_ctl8 = SM(0, AR_AntCtl0);
672 		ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1);
673 		ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2);
674 		ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3);
675 	}
676 
677 	return AH_TRUE;
678 #undef RTSCTS
679 }
680 
681 HAL_BOOL
682 ar5416SetupLastTxDesc(struct ath_hal *ah, struct ath_desc *ds,
683 		const struct ath_desc *ds0)
684 {
685 	struct ar5416_desc *ads = AR5416DESC(ds);
686 
687 	ads->ds_ctl1 &= ~AR_MoreAggr;
688 	ads->ds_ctl6 &= ~AR_PadDelim;
689 
690 	/* hack to copy rate info to last desc for later processing */
691 #ifdef AH_NEED_DESC_SWAP
692 	ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
693 	ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
694 #else
695 	ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
696 	ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
697 #endif
698 	return AH_TRUE;
699 }
700 
701 #ifdef AH_NEED_DESC_SWAP
702 /* Swap transmit descriptor */
703 static __inline void
704 ar5416SwapTxDesc(struct ath_desc *ds)
705 {
706 	ds->ds_data = __bswap32(ds->ds_data);
707 	ds->ds_ctl0 = __bswap32(ds->ds_ctl0);
708 	ds->ds_ctl1 = __bswap32(ds->ds_ctl1);
709 	ds->ds_hw[0] = __bswap32(ds->ds_hw[0]);
710 	ds->ds_hw[1] = __bswap32(ds->ds_hw[1]);
711 	ds->ds_hw[2] = __bswap32(ds->ds_hw[2]);
712 	ds->ds_hw[3] = __bswap32(ds->ds_hw[3]);
713 }
714 #endif
715 
716 /*
717  * Processing of HW TX descriptor.
718  */
719 HAL_STATUS
720 ar5416ProcTxDesc(struct ath_hal *ah,
721 	struct ath_desc *ds, struct ath_tx_status *ts)
722 {
723 	struct ar5416_desc *ads = AR5416DESC(ds);
724 	uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
725 
726 #ifdef AH_NEED_DESC_SWAP
727 	if ((ds_txstatus[9] & __bswap32(AR_TxDone)) == 0)
728 		return HAL_EINPROGRESS;
729 	ar5416SwapTxDesc(ds);
730 #else
731 	if ((ds_txstatus[9] & AR_TxDone) == 0)
732 		return HAL_EINPROGRESS;
733 #endif
734 
735 	/* Update software copies of the HW status */
736 	ts->ts_seqnum = MS(ds_txstatus[9], AR_SeqNum);
737 	ts->ts_tstamp = AR_SendTimestamp(ds_txstatus);
738 	ts->ts_tid = MS(ds_txstatus[9], AR_TxTid);
739 
740 	ts->ts_status = 0;
741 	if (ds_txstatus[1] & AR_ExcessiveRetries)
742 		ts->ts_status |= HAL_TXERR_XRETRY;
743 	if (ds_txstatus[1] & AR_Filtered)
744 		ts->ts_status |= HAL_TXERR_FILT;
745 	if (ds_txstatus[1] & AR_FIFOUnderrun)
746 		ts->ts_status |= HAL_TXERR_FIFO;
747 	if (ds_txstatus[9] & AR_TxOpExceeded)
748 		ts->ts_status |= HAL_TXERR_XTXOP;
749 	if (ds_txstatus[1] & AR_TxTimerExpired)
750 		ts->ts_status |= HAL_TXERR_TIMER_EXPIRED;
751 
752 	ts->ts_flags  = 0;
753 	if (ds_txstatus[0] & AR_TxBaStatus) {
754 		ts->ts_flags |= HAL_TX_BA;
755 		ts->ts_ba_low = AR_BaBitmapLow(ds_txstatus);
756 		ts->ts_ba_high = AR_BaBitmapHigh(ds_txstatus);
757 	}
758 	if (ds->ds_ctl1 & AR_IsAggr)
759 		ts->ts_flags |= HAL_TX_AGGR;
760 	if (ds_txstatus[1] & AR_DescCfgErr)
761 		ts->ts_flags |= HAL_TX_DESC_CFG_ERR;
762 	if (ds_txstatus[1] & AR_TxDataUnderrun)
763 		ts->ts_flags |= HAL_TX_DATA_UNDERRUN;
764 	if (ds_txstatus[1] & AR_TxDelimUnderrun)
765 		ts->ts_flags |= HAL_TX_DELIM_UNDERRUN;
766 
767 	/*
768 	 * Extract the transmit rate used and mark the rate as
769 	 * ``alternate'' if it wasn't the series 0 rate.
770 	 */
771 	ts->ts_finaltsi =  MS(ds_txstatus[9], AR_FinalTxIdx);
772 	switch (ts->ts_finaltsi) {
773 	case 0:
774 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0);
775 		break;
776 	case 1:
777 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1);
778 		break;
779 	case 2:
780 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2);
781 		break;
782 	case 3:
783 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3);
784 		break;
785 	}
786 
787 	ts->ts_rssi = MS(ds_txstatus[5], AR_TxRSSICombined);
788 	ts->ts_rssi_ctl[0] = MS(ds_txstatus[0], AR_TxRSSIAnt00);
789 	ts->ts_rssi_ctl[1] = MS(ds_txstatus[0], AR_TxRSSIAnt01);
790 	ts->ts_rssi_ctl[2] = MS(ds_txstatus[0], AR_TxRSSIAnt02);
791 	ts->ts_rssi_ext[0] = MS(ds_txstatus[5], AR_TxRSSIAnt10);
792 	ts->ts_rssi_ext[1] = MS(ds_txstatus[5], AR_TxRSSIAnt11);
793 	ts->ts_rssi_ext[2] = MS(ds_txstatus[5], AR_TxRSSIAnt12);
794 	ts->ts_evm0 = AR_TxEVM0(ds_txstatus);
795 	ts->ts_evm1 = AR_TxEVM1(ds_txstatus);
796 	ts->ts_evm2 = AR_TxEVM2(ds_txstatus);
797 
798 	ts->ts_shortretry = MS(ds_txstatus[1], AR_RTSFailCnt);
799 	ts->ts_longretry = MS(ds_txstatus[1], AR_DataFailCnt);
800 	/*
801 	 * The retry count has the number of un-acked tries for the
802 	 * final series used.  When doing multi-rate retry we must
803 	 * fixup the retry count by adding in the try counts for
804 	 * each series that was fully-processed.  Beware that this
805 	 * takes values from the try counts in the final descriptor.
806 	 * These are not required by the hardware.  We assume they
807 	 * are placed there by the driver as otherwise we have no
808 	 * access and the driver can't do the calculation because it
809 	 * doesn't know the descriptor format.
810 	 */
811 	switch (ts->ts_finaltsi) {
812 	case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2);
813 	case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1);
814 	case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0);
815 	}
816 
817 	/*
818 	 * These fields are not used. Zero these to preserve compatibility
819 	 * with existing drivers.
820 	 */
821 	ts->ts_virtcol = MS(ads->ds_ctl1, AR_VirtRetryCnt);
822 	ts->ts_antenna = 0; /* We don't switch antennas on Owl*/
823 
824 	/* handle tx trigger level changes internally */
825 	if ((ts->ts_status & HAL_TXERR_FIFO) ||
826 	    (ts->ts_flags & (HAL_TX_DATA_UNDERRUN | HAL_TX_DELIM_UNDERRUN)))
827 		ar5212UpdateTxTrigLevel(ah, AH_TRUE);
828 
829 	return HAL_OK;
830 }
831 
832 HAL_BOOL
833 ar5416SetGlobalTxTimeout(struct ath_hal *ah, u_int tu)
834 {
835 	struct ath_hal_5416 *ahp = AH5416(ah);
836 
837 	if (tu > 0xFFFF) {
838 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad global tx timeout %u\n",
839 		    __func__, tu);
840 		/* restore default handling */
841 		ahp->ah_globaltxtimeout = (u_int) -1;
842 		return AH_FALSE;
843 	}
844 	OS_REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
845 	ahp->ah_globaltxtimeout = tu;
846 	return AH_TRUE;
847 }
848 
849 u_int
850 ar5416GetGlobalTxTimeout(struct ath_hal *ah)
851 {
852 	return MS(OS_REG_READ(ah, AR_GTXTO), AR_GTXTO_TIMEOUT_LIMIT);
853 }
854 
855 #define	HT_RC_2_MCS(_rc)	((_rc) & 0x0f)
856 static const u_int8_t baDurationDelta[] = {
857 	24,	//  0: BPSK
858 	12,	//  1: QPSK 1/2
859 	12,	//  2: QPSK 3/4
860 	4,	//  3: 16-QAM 1/2
861 	4,	//  4: 16-QAM 3/4
862 	4,	//  5: 64-QAM 2/3
863 	4,	//  6: 64-QAM 3/4
864 	4,	//  7: 64-QAM 5/6
865 	24,	//  8: BPSK
866 	12,	//  9: QPSK 1/2
867 	12,	// 10: QPSK 3/4
868 	4,	// 11: 16-QAM 1/2
869 	4,	// 12: 16-QAM 3/4
870 	4,	// 13: 64-QAM 2/3
871 	4,	// 14: 64-QAM 3/4
872 	4,	// 15: 64-QAM 5/6
873 };
874 
875 void
876 ar5416Set11nRateScenario(struct ath_hal *ah, struct ath_desc *ds,
877         u_int durUpdateEn, u_int rtsctsRate,
878 	HAL_11N_RATE_SERIES series[], u_int nseries, u_int flags)
879 {
880 	struct ar5416_desc *ads = AR5416DESC(ds);
881 	uint32_t ds_ctl0;
882 
883 	HALASSERT(nseries == 4);
884 	(void)nseries;
885 
886 	/*
887 	 * Only one of RTS and CTS enable must be set.
888 	 * If a frame has both set, just do RTS protection -
889 	 * that's enough to satisfy legacy protection.
890 	 */
891 	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
892 		ds_ctl0 = ads->ds_ctl0;
893 
894 		if (flags & HAL_TXDESC_RTSENA) {
895 			ds_ctl0 &= ~AR_CTSEnable;
896 			ds_ctl0 |= AR_RTSEnable;
897 		} else {
898 			ds_ctl0 &= ~AR_RTSEnable;
899 			ds_ctl0 |= AR_CTSEnable;
900 		}
901 
902 		ads->ds_ctl0 = ds_ctl0;
903 	} else {
904 		ads->ds_ctl0 =
905 		    (ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable));
906 	}
907 
908 	ads->ds_ctl2 = set11nTries(series, 0)
909 		     | set11nTries(series, 1)
910 		     | set11nTries(series, 2)
911 		     | set11nTries(series, 3)
912 		     | (durUpdateEn ? AR_DurUpdateEn : 0);
913 
914 	ads->ds_ctl3 = set11nRate(series, 0)
915 		     | set11nRate(series, 1)
916 		     | set11nRate(series, 2)
917 		     | set11nRate(series, 3);
918 
919 	ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0)
920 		     | set11nPktDurRTSCTS(series, 1);
921 
922 	ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2)
923 		     | set11nPktDurRTSCTS(series, 3);
924 
925 	ads->ds_ctl7 = set11nRateFlags(series, 0)
926 		     | set11nRateFlags(series, 1)
927 		     | set11nRateFlags(series, 2)
928 		     | set11nRateFlags(series, 3)
929 		     | SM(rtsctsRate, AR_RTSCTSRate);
930 
931 	/*
932 	 * Doing per-packet TPC - update the TX power for the first
933 	 * field; program in the other series.
934 	 */
935 	if (AH5212(ah)->ah_tpcEnabled) {
936 		uint32_t ds_ctl0;
937 		uint16_t txPower;
938 
939 		/* Modify the tx power field for rate 0 */
940 		txPower = ar5416GetTxRatePower(ah, series[0].Rate,
941 		    series[0].ChSel,
942 		    series[0].tx_power_cap,
943 		    !! (series[0].RateFlags & HAL_RATESERIES_2040));
944 		ds_ctl0 = ads->ds_ctl0 & ~AR_XmitPower;
945 		ds_ctl0 |= (txPower << AR_XmitPower_S);
946 		ads->ds_ctl0 = ds_ctl0;
947 
948 		/*
949 		 * Override the whole descriptor field for each TX power.
950 		 *
951 		 * This will need changing if we ever support antenna control
952 		 * programming.
953 		 */
954 		txPower = ar5416GetTxRatePower(ah, series[1].Rate,
955 		    series[1].ChSel,
956 		    series[1].tx_power_cap,
957 		    !! (series[1].RateFlags & HAL_RATESERIES_2040));
958 		ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
959 
960 		txPower = ar5416GetTxRatePower(ah, series[2].Rate,
961 		    series[2].ChSel,
962 		    series[2].tx_power_cap,
963 		    !! (series[2].RateFlags & HAL_RATESERIES_2040));
964 		ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
965 
966 		txPower = ar5416GetTxRatePower(ah, series[3].Rate,
967 		    series[3].ChSel,
968 		    series[3].tx_power_cap,
969 		    !! (series[3].RateFlags & HAL_RATESERIES_2040));
970 		ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
971 	}
972 }
973 
974 /*
975  * Note: this should be called before calling ar5416SetBurstDuration()
976  * (if it is indeed called) in order to ensure that the burst duration
977  * is correctly updated with the BA delta workaround.
978  */
979 void
980 ar5416Set11nAggrFirst(struct ath_hal *ah, struct ath_desc *ds, u_int aggrLen,
981     u_int numDelims)
982 {
983 	struct ar5416_desc *ads = AR5416DESC(ds);
984 	uint32_t flags;
985 	uint32_t burstDur;
986 	uint8_t rate;
987 
988 	ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
989 
990 	ads->ds_ctl6 &= ~(AR_AggrLen | AR_PadDelim);
991 	ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
992 	ads->ds_ctl6 |= SM(numDelims, AR_PadDelim);
993 
994 	if (! AR_SREV_MERLIN_10_OR_LATER(ah)) {
995 		/*
996 		 * XXX It'd be nice if I were passed in the rate scenario
997 		 * at this point..
998 		 */
999 		rate = MS(ads->ds_ctl3, AR_XmitRate0);
1000 		flags = ads->ds_ctl0 & (AR_CTSEnable | AR_RTSEnable);
1001 		/*
1002 		 * WAR - MAC assumes normal ACK time instead of
1003 		 * block ACK while computing packet duration.
1004 		 * Add this delta to the burst duration in the descriptor.
1005 		 */
1006 		if (flags && (ads->ds_ctl1 & AR_IsAggr)) {
1007 			burstDur = baDurationDelta[HT_RC_2_MCS(rate)];
1008 			ads->ds_ctl2 &= ~(AR_BurstDur);
1009 			ads->ds_ctl2 |= SM(burstDur, AR_BurstDur);
1010 		}
1011 	}
1012 }
1013 
1014 void
1015 ar5416Set11nAggrMiddle(struct ath_hal *ah, struct ath_desc *ds, u_int numDelims)
1016 {
1017 	struct ar5416_desc *ads = AR5416DESC(ds);
1018 	uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
1019 
1020 	ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
1021 
1022 	ads->ds_ctl6 &= ~AR_PadDelim;
1023 	ads->ds_ctl6 |= SM(numDelims, AR_PadDelim);
1024 	ads->ds_ctl6 &= ~AR_AggrLen;
1025 
1026 	/*
1027 	 * Clear the TxDone status here, may need to change
1028 	 * func name to reflect this
1029 	 */
1030 	ds_txstatus[9] &= ~AR_TxDone;
1031 }
1032 
1033 void
1034 ar5416Set11nAggrLast(struct ath_hal *ah, struct ath_desc *ds)
1035 {
1036 	struct ar5416_desc *ads = AR5416DESC(ds);
1037 
1038 	ads->ds_ctl1 |= AR_IsAggr;
1039 	ads->ds_ctl1 &= ~AR_MoreAggr;
1040 	ads->ds_ctl6 &= ~AR_PadDelim;
1041 }
1042 
1043 void
1044 ar5416Clr11nAggr(struct ath_hal *ah, struct ath_desc *ds)
1045 {
1046 	struct ar5416_desc *ads = AR5416DESC(ds);
1047 
1048 	ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr);
1049 	ads->ds_ctl6 &= ~AR_PadDelim;
1050 	ads->ds_ctl6 &= ~AR_AggrLen;
1051 }
1052 
1053 void
1054 ar5416Set11nVirtualMoreFrag(struct ath_hal *ah, struct ath_desc *ds,
1055     u_int vmf)
1056 {
1057 	struct ar5416_desc *ads = AR5416DESC(ds);
1058 	if (vmf)
1059 		ads->ds_ctl0 |= AR_VirtMoreFrag;
1060 	else
1061 		ads->ds_ctl0 &= ~AR_VirtMoreFrag;
1062 }
1063 
1064 /*
1065  * Program the burst duration, with the included BA delta if it's
1066  * applicable.
1067  */
1068 void
1069 ar5416Set11nBurstDuration(struct ath_hal *ah, struct ath_desc *ds,
1070                                                   u_int burstDuration)
1071 {
1072 	struct ar5416_desc *ads = AR5416DESC(ds);
1073 	uint32_t burstDur = 0;
1074 	uint8_t rate;
1075 
1076 	if (! AR_SREV_MERLIN_10_OR_LATER(ah)) {
1077 		/*
1078 		 * XXX It'd be nice if I were passed in the rate scenario
1079 		 * at this point..
1080 		 */
1081 		rate = MS(ads->ds_ctl3, AR_XmitDataTries0);
1082 		/*
1083 		 * WAR - MAC assumes normal ACK time instead of
1084 		 * block ACK while computing packet duration.
1085 		 * Add this delta to the burst duration in the descriptor.
1086 		 */
1087 		if (ads->ds_ctl1 & AR_IsAggr) {
1088 			burstDur = baDurationDelta[HT_RC_2_MCS(rate)];
1089 		}
1090 	}
1091 
1092 	ads->ds_ctl2 &= ~AR_BurstDur;
1093 	ads->ds_ctl2 |= SM(burstDur + burstDuration, AR_BurstDur);
1094 }
1095 
1096 /*
1097  * Retrieve the rate table from the given TX completion descriptor
1098  */
1099 HAL_BOOL
1100 ar5416GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries)
1101 {
1102 	const struct ar5416_desc *ads = AR5416DESC_CONST(ds0);
1103 
1104 	rates[0] = MS(ads->ds_ctl3, AR_XmitRate0);
1105 	rates[1] = MS(ads->ds_ctl3, AR_XmitRate1);
1106 	rates[2] = MS(ads->ds_ctl3, AR_XmitRate2);
1107 	rates[3] = MS(ads->ds_ctl3, AR_XmitRate3);
1108 
1109 	tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0);
1110 	tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1);
1111 	tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2);
1112 	tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3);
1113 
1114 	return AH_TRUE;
1115 }
1116 
1117 
1118 /*
1119  * TX queue management routines - AR5416 and later chipsets
1120  */
1121 
1122 /*
1123  * Allocate and initialize a tx DCU/QCU combination.
1124  */
1125 int
1126 ar5416SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type,
1127 	const HAL_TXQ_INFO *qInfo)
1128 {
1129 	struct ath_hal_5212 *ahp = AH5212(ah);
1130 	HAL_TX_QUEUE_INFO *qi;
1131 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
1132 	int q, defqflags;
1133 
1134 	/* by default enable OK+ERR+DESC+URN interrupts */
1135 	defqflags = HAL_TXQ_TXOKINT_ENABLE
1136 		  | HAL_TXQ_TXERRINT_ENABLE
1137 		  | HAL_TXQ_TXDESCINT_ENABLE
1138 		  | HAL_TXQ_TXURNINT_ENABLE;
1139 	/* XXX move queue assignment to driver */
1140 	switch (type) {
1141 	case HAL_TX_QUEUE_BEACON:
1142 		q = pCap->halTotalQueues-1;	/* highest priority */
1143 		defqflags |= HAL_TXQ_DBA_GATED
1144 		       | HAL_TXQ_CBR_DIS_QEMPTY
1145 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
1146 		       | HAL_TXQ_BACKOFF_DISABLE;
1147 		break;
1148 	case HAL_TX_QUEUE_CAB:
1149 		q = pCap->halTotalQueues-2;	/* next highest priority */
1150 		defqflags |= HAL_TXQ_DBA_GATED
1151 		       | HAL_TXQ_CBR_DIS_QEMPTY
1152 		       | HAL_TXQ_CBR_DIS_BEMPTY
1153 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
1154 		       | HAL_TXQ_BACKOFF_DISABLE;
1155 		break;
1156 	case HAL_TX_QUEUE_PSPOLL:
1157 		q = 1;				/* lowest priority */
1158 		defqflags |= HAL_TXQ_DBA_GATED
1159 		       | HAL_TXQ_CBR_DIS_QEMPTY
1160 		       | HAL_TXQ_CBR_DIS_BEMPTY
1161 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
1162 		       | HAL_TXQ_BACKOFF_DISABLE;
1163 		break;
1164 	case HAL_TX_QUEUE_UAPSD:
1165 		q = pCap->halTotalQueues-3;	/* nextest highest priority */
1166 		if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) {
1167 			HALDEBUG(ah, HAL_DEBUG_ANY,
1168 			    "%s: no available UAPSD tx queue\n", __func__);
1169 			return -1;
1170 		}
1171 		break;
1172 	case HAL_TX_QUEUE_DATA:
1173 		for (q = 0; q < pCap->halTotalQueues; q++)
1174 			if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE)
1175 				break;
1176 		if (q == pCap->halTotalQueues) {
1177 			HALDEBUG(ah, HAL_DEBUG_ANY,
1178 			    "%s: no available tx queue\n", __func__);
1179 			return -1;
1180 		}
1181 		break;
1182 	default:
1183 		HALDEBUG(ah, HAL_DEBUG_ANY,
1184 		    "%s: bad tx queue type %u\n", __func__, type);
1185 		return -1;
1186 	}
1187 
1188 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
1189 
1190 	qi = &ahp->ah_txq[q];
1191 	if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) {
1192 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n",
1193 		    __func__, q);
1194 		return -1;
1195 	}
1196 	OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO));
1197 	qi->tqi_type = type;
1198 	if (qInfo == AH_NULL) {
1199 		qi->tqi_qflags = defqflags;
1200 		qi->tqi_aifs = INIT_AIFS;
1201 		qi->tqi_cwmin = HAL_TXQ_USEDEFAULT;	/* NB: do at reset */
1202 		qi->tqi_cwmax = INIT_CWMAX;
1203 		qi->tqi_shretry = INIT_SH_RETRY;
1204 		qi->tqi_lgretry = INIT_LG_RETRY;
1205 		qi->tqi_physCompBuf = 0;
1206 	} else {
1207 		qi->tqi_physCompBuf = qInfo->tqi_compBuf;
1208 		(void) ar5212SetTxQueueProps(ah, q, qInfo);
1209 	}
1210 	/* NB: must be followed by ar5212ResetTxQueue */
1211 	return q;
1212 }
1213 
1214 /*
1215  * Update the h/w interrupt registers to reflect a tx q's configuration.
1216  */
1217 static void
1218 setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi)
1219 {
1220 	struct ath_hal_5212 *ahp = AH5212(ah);
1221 
1222 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1223 	    "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__,
1224 	    ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask,
1225 	    ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask,
1226 	    ahp->ah_txUrnInterruptMask);
1227 
1228 	OS_REG_WRITE(ah, AR_IMR_S0,
1229 		  SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK)
1230 		| SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC)
1231 	);
1232 	OS_REG_WRITE(ah, AR_IMR_S1,
1233 		  SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR)
1234 		| SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL)
1235 	);
1236 	OS_REG_RMW_FIELD(ah, AR_IMR_S2,
1237 		AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask);
1238 }
1239 
1240 /*
1241  * Set the retry, aifs, cwmin/max, readyTime regs for specified queue
1242  * Assumes:
1243  *  phwChannel has been set to point to the current channel
1244  */
1245 #define	TU_TO_USEC(_tu)		((_tu) << 10)
1246 HAL_BOOL
1247 ar5416ResetTxQueue(struct ath_hal *ah, u_int q)
1248 {
1249 	struct ath_hal_5212 *ahp = AH5212(ah);
1250 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
1251 	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1252 	HAL_TX_QUEUE_INFO *qi;
1253 	uint32_t cwMin, chanCwMin, qmisc, dmisc;
1254 
1255 	if (q >= pCap->halTotalQueues) {
1256 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
1257 		    __func__, q);
1258 		return AH_FALSE;
1259 	}
1260 	qi = &ahp->ah_txq[q];
1261 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
1262 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
1263 		    __func__, q);
1264 		return AH_TRUE;		/* XXX??? */
1265 	}
1266 
1267 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q);
1268 
1269 	if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) {
1270 		/*
1271 		 * Select cwmin according to channel type.
1272 		 * NB: chan can be NULL during attach
1273 		 */
1274 		if (chan && IEEE80211_IS_CHAN_B(chan))
1275 			chanCwMin = INIT_CWMIN_11B;
1276 		else
1277 			chanCwMin = INIT_CWMIN;
1278 		/* make sure that the CWmin is of the form (2^n - 1) */
1279 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1)
1280 			;
1281 	} else
1282 		cwMin = qi->tqi_cwmin;
1283 
1284 	/* set cwMin/Max and AIFS values */
1285 	OS_REG_WRITE(ah, AR_DLCL_IFS(q),
1286 		  SM(cwMin, AR_D_LCL_IFS_CWMIN)
1287 		| SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
1288 		| SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
1289 
1290 	/* Set retry limit values */
1291 	OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q),
1292 		   SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH)
1293 		 | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG)
1294 		 | SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG)
1295 		 | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)
1296 	);
1297 
1298 	/* NB: always enable early termination on the QCU */
1299 	qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ
1300 	      | SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP);
1301 
1302 	/* NB: always enable DCU to wait for next fragment from QCU */
1303 	dmisc = AR_D_MISC_FRAG_WAIT_EN;
1304 
1305 	/* Enable exponential backoff window */
1306 	dmisc |= AR_D_MISC_BKOFF_PERSISTENCE;
1307 
1308 	/*
1309 	 * The chip reset default is to use a DCU backoff threshold of 0x2.
1310 	 * Restore this when programming the DCU MISC register.
1311 	 */
1312 	dmisc |= 0x2;
1313 
1314 	/* multiqueue support */
1315 	if (qi->tqi_cbrPeriod) {
1316 		OS_REG_WRITE(ah, AR_QCBRCFG(q),
1317 			  SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL)
1318 			| SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH));
1319 		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR;
1320 		if (qi->tqi_cbrOverflowLimit)
1321 			qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT;
1322 	}
1323 
1324 	if (qi->tqi_readyTime && (qi->tqi_type != HAL_TX_QUEUE_CAB)) {
1325 		OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
1326 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT)
1327 			| AR_Q_RDYTIMECFG_ENA);
1328 	}
1329 
1330 	OS_REG_WRITE(ah, AR_DCHNTIME(q),
1331 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR)
1332 		| (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
1333 
1334 	if (qi->tqi_readyTime &&
1335 	    (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE))
1336 		qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY;
1337 	if (qi->tqi_qflags & HAL_TXQ_DBA_GATED)
1338 		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED;
1339 	if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) {
1340 		/*
1341 		 * These are meangingful only when not scheduled asap.
1342 		 */
1343 		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY)
1344 			qmisc |= AR_Q_MISC_CBR_INCR_DIS0;
1345 		else
1346 			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0;
1347 		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY)
1348 			qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
1349 		else
1350 			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1;
1351 	}
1352 
1353 	if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE)
1354 		dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
1355 	if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE)
1356 		dmisc |= AR_D_MISC_FRAG_BKOFF_EN;
1357 	if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL)
1358 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
1359 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
1360 	else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA)
1361 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR,
1362 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
1363 	if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL)
1364 		dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE,
1365 			    AR_D_MISC_VIR_COL_HANDLING);
1366 	if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS)
1367 		dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS;
1368 
1369 	/*
1370 	 * Fillin type-dependent bits.  Most of this can be
1371 	 * removed by specifying the queue parameters in the
1372 	 * driver; it's here for backwards compatibility.
1373 	 */
1374 	switch (qi->tqi_type) {
1375 	case HAL_TX_QUEUE_BEACON:		/* beacon frames */
1376 		qmisc |= AR_Q_MISC_FSP_DBA_GATED
1377 		      |  AR_Q_MISC_BEACON_USE
1378 		      |  AR_Q_MISC_CBR_INCR_DIS1;
1379 
1380 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
1381 			    AR_D_MISC_ARB_LOCKOUT_CNTRL)
1382 		      |  AR_D_MISC_BEACON_USE
1383 		      |  AR_D_MISC_POST_FR_BKOFF_DIS;
1384 		break;
1385 	case HAL_TX_QUEUE_CAB:			/* CAB  frames */
1386 		/*
1387 		 * No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY,
1388 		 * There is an issue with the CAB Queue
1389 		 * not properly refreshing the Tx descriptor if
1390 		 * the TXE clear setting is used.
1391 		 */
1392 		qmisc |= AR_Q_MISC_FSP_DBA_GATED
1393 		      |  AR_Q_MISC_CBR_INCR_DIS1
1394 		      |  AR_Q_MISC_CBR_INCR_DIS0;
1395 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: CAB: tqi_readyTime = %d\n",
1396 		    __func__, qi->tqi_readyTime);
1397 		if (qi->tqi_readyTime) {
1398 			HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1399 			    "%s: using tqi_readyTime\n", __func__);
1400 			OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
1401 			    SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) |
1402 			    AR_Q_RDYTIMECFG_ENA);
1403 		} else {
1404 			int value;
1405 			/*
1406 			 * NB: don't set default ready time if driver
1407 			 * has explicitly specified something.  This is
1408 			 * here solely for backwards compatibility.
1409 			 */
1410 			/*
1411 			 * XXX for now, hard-code a CAB interval of 70%
1412 			 * XXX of the total beacon interval.
1413 			 *
1414 			 * XXX This keeps Merlin and later based MACs
1415 			 * XXX quite a bit happier (stops stuck beacons,
1416 			 * XXX which I gather is because of such a long
1417 			 * XXX cabq time.)
1418 			 */
1419 			value = (ahp->ah_beaconInterval * 50 / 100)
1420 				- ah->ah_config.ah_additional_swba_backoff
1421 				- ah->ah_config.ah_sw_beacon_response_time
1422 				+ ah->ah_config.ah_dma_beacon_response_time;
1423 			/*
1424 			 * XXX Ensure it isn't too low - nothing lower
1425 			 * XXX than 10 TU
1426 			 */
1427 			if (value < 10)
1428 				value = 10;
1429 			HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1430 			    "%s: defaulting to rdytime = %d uS\n",
1431 			    __func__, value);
1432 			OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
1433 			    SM(TU_TO_USEC(value), AR_Q_RDYTIMECFG_INT) |
1434 			    AR_Q_RDYTIMECFG_ENA);
1435 		}
1436 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
1437 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
1438 		break;
1439 	case HAL_TX_QUEUE_PSPOLL:
1440 		qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
1441 		break;
1442 	case HAL_TX_QUEUE_UAPSD:
1443 		dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
1444 		break;
1445 	default:			/* NB: silence compiler */
1446 		break;
1447 	}
1448 
1449 	OS_REG_WRITE(ah, AR_QMISC(q), qmisc);
1450 	OS_REG_WRITE(ah, AR_DMISC(q), dmisc);
1451 
1452 	/* Setup compression scratchpad buffer */
1453 	/*
1454 	 * XXX: calling this asynchronously to queue operation can
1455 	 *      cause unexpected behavior!!!
1456 	 */
1457 	if (qi->tqi_physCompBuf) {
1458 		HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA ||
1459 			  qi->tqi_type == HAL_TX_QUEUE_UAPSD);
1460 		OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q));
1461 		OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf);
1462 		OS_REG_WRITE(ah, AR_Q_CBC,  HAL_COMP_BUF_MAX_SIZE/1024);
1463 		OS_REG_WRITE(ah, AR_Q0_MISC + 4*q,
1464 			     OS_REG_READ(ah, AR_Q0_MISC + 4*q)
1465 			     | AR_Q_MISC_QCU_COMP_EN);
1466 	}
1467 
1468 	/*
1469 	 * Always update the secondary interrupt mask registers - this
1470 	 * could be a new queue getting enabled in a running system or
1471 	 * hw getting re-initialized during a reset!
1472 	 *
1473 	 * Since we don't differentiate between tx interrupts corresponding
1474 	 * to individual queues - secondary tx mask regs are always unmasked;
1475 	 * tx interrupts are enabled/disabled for all queues collectively
1476 	 * using the primary mask reg
1477 	 */
1478 	if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE)
1479 		ahp->ah_txOkInterruptMask |= 1 << q;
1480 	else
1481 		ahp->ah_txOkInterruptMask &= ~(1 << q);
1482 	if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE)
1483 		ahp->ah_txErrInterruptMask |= 1 << q;
1484 	else
1485 		ahp->ah_txErrInterruptMask &= ~(1 << q);
1486 	if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE)
1487 		ahp->ah_txDescInterruptMask |= 1 << q;
1488 	else
1489 		ahp->ah_txDescInterruptMask &= ~(1 << q);
1490 	if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE)
1491 		ahp->ah_txEolInterruptMask |= 1 << q;
1492 	else
1493 		ahp->ah_txEolInterruptMask &= ~(1 << q);
1494 	if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE)
1495 		ahp->ah_txUrnInterruptMask |= 1 << q;
1496 	else
1497 		ahp->ah_txUrnInterruptMask &= ~(1 << q);
1498 	setTxQInterrupts(ah, qi);
1499 
1500 	return AH_TRUE;
1501 }
1502 #undef	TU_TO_USEC
1503