1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 
22 #include "opt_ah.h"
23 
24 #include "ah.h"
25 #include "ah_internal.h"
26 #include "ah_devid.h"
27 
28 #include "ah_eeprom_v14.h"
29 #include "ah_eeprom_9287.h"
30 
31 #include "ar5416/ar5416.h"
32 #include "ar5416/ar5416reg.h"
33 #include "ar5416/ar5416phy.h"
34 
35 #include "ar9002/ar9287phy.h"
36 #include "ar9002/ar9287an.h"
37 
38 #include "ar9002/ar9287_olc.h"
39 #include "ar9002/ar9287_reset.h"
40 
41 /*
42  * Set the TX power calibration table per-chain.
43  *
44  * This only supports open-loop TX power control for the AR9287.
45  */
46 static void
47 ar9287SetPowerCalTable(struct ath_hal *ah,
48     const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
49 {
50 	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
51 	uint8_t *pCalBChans = NULL;
52 	uint16_t pdGainOverlap_t2;
53 	uint16_t numPiers = 0, i;
54 	uint16_t numXpdGain, xpdMask;
55 	uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
56 	uint32_t regChainOffset;
57 	HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
58 	struct ar9287_eeprom *pEepData = &ee->ee_base;
59 
60 	xpdMask = pEepData->modalHeader.xpdGain;
61 
62 	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
63 	    AR9287_EEP_MINOR_VER_2)
64 		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
65 	else
66 		pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
67 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
68 
69 	/* Note: Kiwi should only be 2ghz.. */
70 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
71 		pCalBChans = pEepData->calFreqPier2G;
72 		numPiers = AR9287_NUM_2G_CAL_PIERS;
73 		pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
74 		AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
75 	}
76 	numXpdGain = 0;
77 
78 	/* Calculate the value of xpdgains from the xpdGain Mask */
79 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
80 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
81 			if (numXpdGain >= AR5416_NUM_PD_GAINS)
82 				break;
83 			xpdGainValues[numXpdGain] =
84 				(uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
85 			numXpdGain++;
86 		}
87 	}
88 
89 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
90 		      (numXpdGain - 1) & 0x3);
91 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
92 		      xpdGainValues[0]);
93 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
94 		      xpdGainValues[1]);
95 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
96 		      xpdGainValues[2]);
97 
98 	for (i = 0; i < AR9287_MAX_CHAINS; i++) {
99 		regChainOffset = i * 0x1000;
100 
101 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
102 			int8_t txPower;
103 			pRawDatasetOpenLoop =
104 			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
105 				ar9287olcGetTxGainIndex(ah, chan,
106 				    pRawDatasetOpenLoop,
107 				    pCalBChans, numPiers,
108 				    &txPower);
109 				ar9287olcSetPDADCs(ah, txPower, i);
110 		}
111 	}
112 
113 	*pTxPowerIndexOffset = 0;
114 }
115 
116 
117 /* XXX hard-coded values? */
118 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
119 
120 /*
121  * ar9287SetPowerPerRateTable
122  *
123  * Sets the transmit power in the baseband for the given
124  * operating channel and mode.
125  *
126  * This is like the v14 EEPROM table except the 5GHz code.
127  */
128 static HAL_BOOL
129 ar9287SetPowerPerRateTable(struct ath_hal *ah,
130     struct ar9287_eeprom *pEepData,
131     const struct ieee80211_channel *chan,
132     int16_t *ratesArray, uint16_t cfgCtl,
133     uint16_t AntennaReduction,
134     uint16_t twiceMaxRegulatoryPower,
135     uint16_t powerLimit)
136 {
137 #define	N(a)	(sizeof(a)/sizeof(a[0]))
138 /* Local defines to distinguish between extension and control CTL's */
139 #define EXT_ADDITIVE (0x8000)
140 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
141 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
142 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
143 
144 	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
145 	int i;
146 	int16_t  twiceLargestAntenna;
147 	struct cal_ctl_data_ar9287 *rep;
148 	CAL_TARGET_POWER_LEG targetPowerOfdm;
149 	CAL_TARGET_POWER_LEG targetPowerCck = {0, {0, 0, 0, 0}};
150 	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}};
151 	CAL_TARGET_POWER_LEG targetPowerCckExt = {0, {0, 0, 0, 0}};
152 	CAL_TARGET_POWER_HT  targetPowerHt20;
153 	CAL_TARGET_POWER_HT  targetPowerHt40 = {0, {0, 0, 0, 0}};
154 	int16_t scaledPower, minCtlPower;
155 
156 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
157 	static const uint16_t ctlModesFor11g[] = {
158 	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
159 	};
160 	const uint16_t *pCtlMode;
161 	uint16_t numCtlModes, ctlMode, freq;
162 	CHAN_CENTERS centers;
163 
164 	ar5416GetChannelCenters(ah,  chan, &centers);
165 
166 	/* Compute TxPower reduction due to Antenna Gain */
167 
168 	twiceLargestAntenna = AH_MAX(
169 	    pEepData->modalHeader.antennaGainCh[0],
170 	    pEepData->modalHeader.antennaGainCh[1]);
171 
172 	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
173 
174 	/* XXX setup for 5212 use (really used?) */
175 	ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
176 
177 	/*
178 	 * scaledPower is the minimum of the user input power level and
179 	 * the regulatory allowed power level
180 	 */
181 	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
182 
183 	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
184 	/* TODO: better value than these? */
185 	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
186 	case 1:
187 		break;
188 	case 2:
189 		scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
190 		break;
191 	default:
192 		return AH_FALSE; /* Unsupported number of chains */
193 	}
194 
195 	scaledPower = AH_MAX(0, scaledPower);
196 
197 	/* Get target powers from EEPROM - our baseline for TX Power */
198 	/* XXX assume channel is 2ghz */
199 	if (1) {
200 		/* Setup for CTL modes */
201 		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
202 		pCtlMode = ctlModesFor11g;
203 
204 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
205 				AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
206 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
207 				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
208 		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
209 				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
210 
211 		if (IEEE80211_IS_CHAN_HT40(chan)) {
212 			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
213 
214 			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
215 				AR9287_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
216 			/* Get target powers for extension channels */
217 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
218 				AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
219 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
220 				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
221 		}
222 	}
223 
224 	/*
225 	 * For MIMO, need to apply regulatory caps individually across dynamically
226 	 * running modes: CCK, OFDM, HT20, HT40
227 	 *
228 	 * The outer loop walks through each possible applicable runtime mode.
229 	 * The inner loop walks through each ctlIndex entry in EEPROM.
230 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
231 	 *
232 	 */
233 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
234 		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
235 		    (pCtlMode[ctlMode] == CTL_2GHT40);
236 		if (isHt40CtlMode) {
237 			freq = centers.ctl_center;
238 		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
239 			freq = centers.ext_center;
240 		} else {
241 			freq = centers.ctl_center;
242 		}
243 
244 		/* walk through each CTL index stored in EEPROM */
245 		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
246 			uint16_t twiceMinEdgePower;
247 
248 			/* compare test group from regulatory channel list with test mode from pCtlMode list */
249 			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
250 				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
251 				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
252 				rep = &(pEepData->ctlData[i]);
253 				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
254 							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
255 							IEEE80211_IS_CHAN_2GHZ(chan));
256 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
257 					/* Find the minimum of all CTL edge powers that apply to this channel */
258 					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
259 				} else {
260 					/* specific */
261 					twiceMaxEdgePower = twiceMinEdgePower;
262 					break;
263 				}
264 			}
265 		}
266 		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
267 		/* Apply ctl mode to correct target power set */
268 		switch(pCtlMode[ctlMode]) {
269 		case CTL_11B:
270 			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
271 				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
272 			}
273 			break;
274 		case CTL_11A:
275 		case CTL_11G:
276 			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
277 				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
278 			}
279 			break;
280 		case CTL_5GHT20:
281 		case CTL_2GHT20:
282 			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
283 				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
284 			}
285 			break;
286 		case CTL_11B_EXT:
287 			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
288 			break;
289 		case CTL_11A_EXT:
290 		case CTL_11G_EXT:
291 			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
292 			break;
293 		case CTL_5GHT40:
294 		case CTL_2GHT40:
295 			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
296 				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
297 			}
298 			break;
299 		default:
300 			return AH_FALSE;
301 			break;
302 		}
303 	} /* end ctl mode checking */
304 
305 	/* Set rates Array from collected data */
306 	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
307 	    &targetPowerCck,
308 	    &targetPowerCckExt,
309 	    &targetPowerOfdm,
310 	    &targetPowerOfdmExt,
311 	    &targetPowerHt20,
312 	    &targetPowerHt40);
313 	return AH_TRUE;
314 #undef EXT_ADDITIVE
315 #undef CTL_11A_EXT
316 #undef CTL_11G_EXT
317 #undef CTL_11B_EXT
318 #undef SUB_NUM_CTL_MODES_AT_5G_40
319 #undef SUB_NUM_CTL_MODES_AT_2G_40
320 #undef N
321 }
322 
323 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
324 
325 /*
326  * This is based off of the AR5416/AR9285 code and likely could
327  * be unified in the future.
328  */
329 HAL_BOOL
330 ar9287SetTransmitPower(struct ath_hal *ah,
331 	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
332 {
333 #define	POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
334 #define	N(a)	    (sizeof (a) / sizeof (a[0]))
335 
336 	const struct modal_eep_ar9287_header *pModal;
337 	struct ath_hal_5212 *ahp = AH5212(ah);
338 	int16_t	     txPowerIndexOffset = 0;
339 	int		 i;
340 
341 	uint16_t	    cfgCtl;
342 	uint16_t	    powerLimit;
343 	uint16_t	    twiceAntennaReduction;
344 	uint16_t	    twiceMaxRegulatoryPower;
345 	int16_t	     maxPower;
346 	HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
347 	struct ar9287_eeprom *pEepData = &ee->ee_base;
348 
349 	AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
350 
351 	/* Setup info for the actual eeprom */
352 	OS_MEMZERO(AH5416(ah)->ah_ratesArray,
353 	  sizeof(AH5416(ah)->ah_ratesArray));
354 	cfgCtl = ath_hal_getctl(ah, chan);
355 	powerLimit = chan->ic_maxregpower * 2;
356 	twiceAntennaReduction = chan->ic_maxantgain;
357 	twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER,
358 	    AH_PRIVATE(ah)->ah_powerLimit);
359 	pModal = &pEepData->modalHeader;
360 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
361 	    __func__,chan->ic_freq, cfgCtl );
362 
363 	/* XXX Assume Minor is v2 or later */
364 	AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
365 
366 	/* Fetch per-rate power table for the given channel */
367 	if (! ar9287SetPowerPerRateTable(ah, pEepData,  chan,
368 	    &AH5416(ah)->ah_ratesArray[0],
369 	    cfgCtl,
370 	    twiceAntennaReduction,
371 	    twiceMaxRegulatoryPower, powerLimit)) {
372 		HALDEBUG(ah, HAL_DEBUG_ANY,
373 		    "%s: unable to set tx power per rate table\n", __func__);
374 		return AH_FALSE;
375 	}
376 
377 	/* Set TX power control calibration curves for each TX chain */
378 	ar9287SetPowerCalTable(ah, chan, &txPowerIndexOffset);
379 
380 	/* Calculate maximum power level */
381 	maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
382 	    AH5416(ah)->ah_ratesArray[rateHt20_0]);
383 	maxPower = AH_MAX(maxPower,
384 	    AH5416(ah)->ah_ratesArray[rate1l]);
385 
386 	if (IEEE80211_IS_CHAN_HT40(chan))
387 		maxPower = AH_MAX(maxPower,
388 		    AH5416(ah)->ah_ratesArray[rateHt40_0]);
389 
390 	ahp->ah_tx6PowerInHalfDbm = maxPower;
391 	AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
392 	ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
393 
394 	/*
395 	 * txPowerIndexOffset is set by the SetPowerTable() call -
396 	 *  adjust the rate table (0 offset if rates EEPROM not loaded)
397 	 */
398 	/* XXX what about the pwrTableOffset? */
399 	for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
400 		AH5416(ah)->ah_ratesArray[i] =
401 		    (int16_t)(txPowerIndexOffset +
402 		      AH5416(ah)->ah_ratesArray[i]);
403 		/* -5 dBm offset for Merlin and later; this includes Kiwi */
404 		AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
405 		if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
406 			AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
407 		if (AH5416(ah)->ah_ratesArray[i] < 0)
408 			AH5416(ah)->ah_ratesArray[i] = 0;
409 	}
410 
411 #ifdef AH_EEPROM_DUMP
412 	ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
413 #endif
414 
415 	/*
416 	 * Adjust the HT40 power to meet the correct target TX power
417 	 * for 40MHz mode, based on TX power curves that are established
418 	 * for 20MHz mode.
419 	 *
420 	 * XXX handle overflow/too high power level?
421 	 */
422 	if (IEEE80211_IS_CHAN_HT40(chan)) {
423 		AH5416(ah)->ah_ratesArray[rateHt40_0] +=
424 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
425 		AH5416(ah)->ah_ratesArray[rateHt40_1] +=
426 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
427 		AH5416(ah)->ah_ratesArray[rateHt40_2] +=
428 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
429 		AH5416(ah)->ah_ratesArray[rateHt40_3] +=
430 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
431 		AH5416(ah)->ah_ratesArray[rateHt40_4] +=
432 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
433 		AH5416(ah)->ah_ratesArray[rateHt40_5] +=
434 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
435 		AH5416(ah)->ah_ratesArray[rateHt40_6] +=
436 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
437 		AH5416(ah)->ah_ratesArray[rateHt40_7] +=
438 		  AH5416(ah)->ah_ht40PowerIncForPdadc;
439 	}
440 
441 	/* Write the TX power rate registers */
442 	ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
443 
444 	return AH_TRUE;
445 #undef POW_SM
446 #undef N
447 }
448 
449 /*
450  * Read EEPROM header info and program the device for correct operation
451  * given the channel value.
452  */
453 HAL_BOOL
454 ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
455 {
456 	const HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
457 	const struct ar9287_eeprom *eep = &ee->ee_base;
458 	const struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
459 	uint16_t antWrites[AR9287_ANT_16S];
460 	uint32_t regChainOffset, regval;
461 	uint8_t txRxAttenLocal;
462 	int i, j, offset_num;
463 
464 	pModal = &eep->modalHeader;
465 
466 	antWrites[0] = (uint16_t)((pModal->antCtrlCommon >> 28) & 0xF);
467 	antWrites[1] = (uint16_t)((pModal->antCtrlCommon >> 24) & 0xF);
468 	antWrites[2] = (uint16_t)((pModal->antCtrlCommon >> 20) & 0xF);
469 	antWrites[3] = (uint16_t)((pModal->antCtrlCommon >> 16) & 0xF);
470 	antWrites[4] = (uint16_t)((pModal->antCtrlCommon >> 12) & 0xF);
471 	antWrites[5] = (uint16_t)((pModal->antCtrlCommon >> 8) & 0xF);
472 	antWrites[6] = (uint16_t)((pModal->antCtrlCommon >> 4)  & 0xF);
473 	antWrites[7] = (uint16_t)(pModal->antCtrlCommon & 0xF);
474 
475 	offset_num = 8;
476 
477 	for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
478 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 28) & 0xf);
479 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 10) & 0x3);
480 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 8) & 0x3);
481 		antWrites[j++] = 0;
482 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 6) & 0x3);
483 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 4) & 0x3);
484 		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 2) & 0x3);
485 		antWrites[j++] = (uint16_t)(pModal->antCtrlChain[i] & 0x3);
486 	}
487 
488 	OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
489 
490 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
491 		regChainOffset = i * 0x1000;
492 
493 		OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
494 			  pModal->antCtrlChain[i]);
495 
496 		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset,
497 			  (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)
498 			      + regChainOffset)
499 			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
500 			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
501 			  SM(pModal->iqCalICh[i],
502 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
503 			  SM(pModal->iqCalQCh[i],
504 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
505 
506 		txRxAttenLocal = pModal->txRxAttenCh[i];
507 
508 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
509 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
510 			      pModal->bswMargin[i]);
511 		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
512 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
513 			      pModal->bswAtten[i]);
514 		OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
515 			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
516 			      txRxAttenLocal);
517 		OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
518 			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
519 			      pModal->rxTxMarginCh[i]);
520 	}
521 
522 	if (IEEE80211_IS_CHAN_HT40(chan))
523 		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
524 			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
525 	else
526 		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
527 			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
528 
529 	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
530 		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
531 
532 	OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
533 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
534 		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
535 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
536 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
537 
538 	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
539 		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
540 
541 	OS_REG_RMW_FIELD(ah, AR_PHY_CCA,
542 		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
543 	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
544 		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
545 
546 	regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH0);
547 	regval &= ~(AR9287_AN_RF2G3_DB1 |
548 		    AR9287_AN_RF2G3_DB2 |
549 		    AR9287_AN_RF2G3_OB_CCK |
550 		    AR9287_AN_RF2G3_OB_PSK |
551 		    AR9287_AN_RF2G3_OB_QAM |
552 		    AR9287_AN_RF2G3_OB_PAL_OFF);
553 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
554 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
555 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
556 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
557 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
558 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
559 
560 	/* Analog write - requires a 100usec delay */
561 	OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);
562 
563 	regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH1);
564 	regval &= ~(AR9287_AN_RF2G3_DB1 |
565 		    AR9287_AN_RF2G3_DB2 |
566 		    AR9287_AN_RF2G3_OB_CCK |
567 		    AR9287_AN_RF2G3_OB_PSK |
568 		    AR9287_AN_RF2G3_OB_QAM |
569 		    AR9287_AN_RF2G3_OB_PAL_OFF);
570 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
571 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
572 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
573 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
574 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
575 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
576 
577 	OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);
578 
579 	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
580 	    AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
581 	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
582 	    AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
583 
584 	OS_A_REG_RMW_FIELD(ah, AR9287_AN_TOP2,
585 	    AR9287_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
586 
587 	return AH_TRUE;
588 }
589