xref: /freebsd/sys/dev/ath/if_ath.c (revision 7bd6fde3)
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_inet.h"
48 #include "opt_ath.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/sysctl.h>
53 #include <sys/mbuf.h>
54 #include <sys/malloc.h>
55 #include <sys/lock.h>
56 #include <sys/mutex.h>
57 #include <sys/kernel.h>
58 #include <sys/socket.h>
59 #include <sys/sockio.h>
60 #include <sys/errno.h>
61 #include <sys/callout.h>
62 #include <sys/bus.h>
63 #include <sys/endian.h>
64 #include <sys/kthread.h>
65 #include <sys/taskqueue.h>
66 
67 #include <machine/bus.h>
68 
69 #include <net/if.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 #include <net/if_arp.h>
74 #include <net/ethernet.h>
75 #include <net/if_llc.h>
76 
77 #include <net80211/ieee80211_var.h>
78 
79 #include <net/bpf.h>
80 
81 #ifdef INET
82 #include <netinet/in.h>
83 #include <netinet/if_ether.h>
84 #endif
85 
86 #include <dev/ath/if_athvar.h>
87 #include <contrib/dev/ath/ah_desc.h>
88 #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
89 
90 #ifdef ATH_TX99_DIAG
91 #include <dev/ath/ath_tx99/ath_tx99.h>
92 #endif
93 
94 /* unaligned little endian access */
95 #define LE_READ_2(p)							\
96 	((u_int16_t)							\
97 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
98 #define LE_READ_4(p)							\
99 	((u_int32_t)							\
100 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
101 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
102 
103 enum {
104 	ATH_LED_TX,
105 	ATH_LED_RX,
106 	ATH_LED_POLL,
107 };
108 
109 static void	ath_init(void *);
110 static void	ath_stop_locked(struct ifnet *);
111 static void	ath_stop(struct ifnet *);
112 static void	ath_start(struct ifnet *);
113 static int	ath_reset(struct ifnet *);
114 static int	ath_media_change(struct ifnet *);
115 static void	ath_watchdog(struct ifnet *);
116 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
117 static void	ath_fatal_proc(void *, int);
118 static void	ath_rxorn_proc(void *, int);
119 static void	ath_bmiss_proc(void *, int);
120 static int	ath_key_alloc(struct ieee80211com *,
121 			const struct ieee80211_key *,
122 			ieee80211_keyix *, ieee80211_keyix *);
123 static int	ath_key_delete(struct ieee80211com *,
124 			const struct ieee80211_key *);
125 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
126 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
127 static void	ath_key_update_begin(struct ieee80211com *);
128 static void	ath_key_update_end(struct ieee80211com *);
129 static void	ath_mode_init(struct ath_softc *);
130 static void	ath_setslottime(struct ath_softc *);
131 static void	ath_updateslot(struct ifnet *);
132 static int	ath_beaconq_setup(struct ath_hal *);
133 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
134 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
135 static void	ath_beacon_proc(void *, int);
136 static void	ath_bstuck_proc(void *, int);
137 static void	ath_beacon_free(struct ath_softc *);
138 static void	ath_beacon_config(struct ath_softc *);
139 static void	ath_descdma_cleanup(struct ath_softc *sc,
140 			struct ath_descdma *, ath_bufhead *);
141 static int	ath_desc_alloc(struct ath_softc *);
142 static void	ath_desc_free(struct ath_softc *);
143 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
144 static void	ath_node_free(struct ieee80211_node *);
145 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
146 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
147 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
148 			struct ieee80211_node *ni,
149 			int subtype, int rssi, u_int32_t rstamp);
150 static void	ath_setdefantenna(struct ath_softc *, u_int);
151 static void	ath_rx_proc(void *, int);
152 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
153 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
154 static int	ath_tx_setup(struct ath_softc *, int, int);
155 static int	ath_wme_update(struct ieee80211com *);
156 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
157 static void	ath_tx_cleanup(struct ath_softc *);
158 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159 			     struct ath_buf *, struct mbuf *);
160 static void	ath_tx_proc_q0(void *, int);
161 static void	ath_tx_proc_q0123(void *, int);
162 static void	ath_tx_proc(void *, int);
163 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
164 static void	ath_draintxq(struct ath_softc *);
165 static void	ath_stoprecv(struct ath_softc *);
166 static int	ath_startrecv(struct ath_softc *);
167 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
168 static void	ath_next_scan(void *);
169 static void	ath_calibrate(void *);
170 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
171 static void	ath_setup_stationkey(struct ieee80211_node *);
172 static void	ath_newassoc(struct ieee80211_node *, int);
173 static int	ath_getchannels(struct ath_softc *,
174 			HAL_REG_DOMAIN, HAL_CTRY_CODE, HAL_BOOL, HAL_BOOL);
175 static void	ath_led_event(struct ath_softc *, int);
176 static void	ath_update_txpow(struct ath_softc *);
177 
178 static int	ath_rate_setup(struct ath_softc *, u_int mode);
179 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
180 
181 static void	ath_sysctlattach(struct ath_softc *);
182 static int	ath_raw_xmit(struct ieee80211_node *,
183 			struct mbuf *, const struct ieee80211_bpf_params *);
184 static void	ath_bpfattach(struct ath_softc *);
185 static void	ath_announce(struct ath_softc *);
186 
187 SYSCTL_DECL(_hw_ath);
188 
189 /* XXX validate sysctl values */
190 static	int ath_dwelltime = 200;		/* 5 channels/second */
191 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
192 	    0, "channel dwell time (ms) for AP/station scanning");
193 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
194 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
195 	    0, "chip calibration interval (secs)");
196 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
197 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RW, &ath_outdoor,
198 	    0, "outdoor operation");
199 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
200 static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
201 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RW, &ath_xchanmode,
202 	    0, "extended channel mode");
203 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
204 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
205 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RW, &ath_countrycode,
206 	    0, "country code");
207 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
208 static	int ath_regdomain = 0;			/* regulatory domain */
209 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
210 	    0, "regulatory domain");
211 
212 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
213 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
214 	    0, "rx buffers allocated");
215 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
216 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
217 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
218 	    0, "tx buffers allocated");
219 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
220 
221 #ifdef ATH_DEBUG
222 static	int ath_debug = 0;
223 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
224 	    0, "control debugging printfs");
225 TUNABLE_INT("hw.ath.debug", &ath_debug);
226 enum {
227 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
228 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
229 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
230 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
231 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
232 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
233 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
234 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
235 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
236 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
237 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
238 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
239 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
240 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
241 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
242 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
243 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
244 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
245 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
246 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
247 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
248 	ATH_DEBUG_ANY		= 0xffffffff
249 };
250 #define	IFF_DUMPPKTS(sc, m) \
251 	((sc->sc_debug & (m)) || \
252 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
253 #define	DPRINTF(sc, m, fmt, ...) do {				\
254 	if (sc->sc_debug & (m))					\
255 		printf(fmt, __VA_ARGS__);			\
256 } while (0)
257 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
258 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
259 		ath_keyprint(sc, __func__, ix, hk, mac);	\
260 } while (0)
261 static	void ath_printrxbuf(const struct ath_buf *bf, u_int ix, int);
262 static	void ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done);
263 #else
264 #define	IFF_DUMPPKTS(sc, m) \
265 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
266 #define	DPRINTF(sc, m, fmt, ...) do {				\
267 	(void) sc;						\
268 } while (0)
269 #define	KEYPRINTF(sc, k, ix, mac) do {				\
270 	(void) sc;						\
271 } while (0)
272 #endif
273 
274 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
275 
276 int
277 ath_attach(u_int16_t devid, struct ath_softc *sc)
278 {
279 	struct ifnet *ifp;
280 	struct ieee80211com *ic = &sc->sc_ic;
281 	struct ath_hal *ah = NULL;
282 	HAL_STATUS status;
283 	int error = 0, i;
284 
285 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
286 
287 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
288 	if (ifp == NULL) {
289 		device_printf(sc->sc_dev, "can not if_alloc()\n");
290 		error = ENOSPC;
291 		goto bad;
292 	}
293 
294 	/* set these up early for if_printf use */
295 	if_initname(ifp, device_get_name(sc->sc_dev),
296 		device_get_unit(sc->sc_dev));
297 
298 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
299 	if (ah == NULL) {
300 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
301 			status);
302 		error = ENXIO;
303 		goto bad;
304 	}
305 	if (ah->ah_abi != HAL_ABI_VERSION) {
306 		if_printf(ifp, "HAL ABI mismatch detected "
307 			"(HAL:0x%x != driver:0x%x)\n",
308 			ah->ah_abi, HAL_ABI_VERSION);
309 		error = ENXIO;
310 		goto bad;
311 	}
312 	sc->sc_ah = ah;
313 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
314 
315 	/*
316 	 * Check if the MAC has multi-rate retry support.
317 	 * We do this by trying to setup a fake extended
318 	 * descriptor.  MAC's that don't have support will
319 	 * return false w/o doing anything.  MAC's that do
320 	 * support it will return true w/o doing anything.
321 	 */
322 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
323 
324 	/*
325 	 * Check if the device has hardware counters for PHY
326 	 * errors.  If so we need to enable the MIB interrupt
327 	 * so we can act on stat triggers.
328 	 */
329 	if (ath_hal_hwphycounters(ah))
330 		sc->sc_needmib = 1;
331 
332 	/*
333 	 * Get the hardware key cache size.
334 	 */
335 	sc->sc_keymax = ath_hal_keycachesize(ah);
336 	if (sc->sc_keymax > ATH_KEYMAX) {
337 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
338 			ATH_KEYMAX, sc->sc_keymax);
339 		sc->sc_keymax = ATH_KEYMAX;
340 	}
341 	/*
342 	 * Reset the key cache since some parts do not
343 	 * reset the contents on initial power up.
344 	 */
345 	for (i = 0; i < sc->sc_keymax; i++)
346 		ath_hal_keyreset(ah, i);
347 
348 	/*
349 	 * Collect the channel list using the default country
350 	 * code and including outdoor channels.  The 802.11 layer
351 	 * is resposible for filtering this list based on settings
352 	 * like the phy mode.
353 	 */
354 	error = ath_getchannels(sc, ath_regdomain, ath_countrycode,
355 			ath_xchanmode != 0, ath_outdoor != 0);
356 	if (error != 0)
357 		goto bad;
358 
359 	/*
360 	 * Setup rate tables for all potential media types.
361 	 */
362 	ath_rate_setup(sc, IEEE80211_MODE_11A);
363 	ath_rate_setup(sc, IEEE80211_MODE_11B);
364 	ath_rate_setup(sc, IEEE80211_MODE_11G);
365 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
366 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
367 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
368 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
369 
370 	/* NB: setup here so ath_rate_update is happy */
371 	ath_setcurmode(sc, IEEE80211_MODE_11A);
372 
373 	/*
374 	 * Allocate tx+rx descriptors and populate the lists.
375 	 */
376 	error = ath_desc_alloc(sc);
377 	if (error != 0) {
378 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
379 		goto bad;
380 	}
381 	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
382 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
383 	callout_init(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
384 
385 	ATH_TXBUF_LOCK_INIT(sc);
386 
387 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
388 		taskqueue_thread_enqueue, &sc->sc_tq);
389 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
390 		"%s taskq", ifp->if_xname);
391 
392 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
393 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
394 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
395 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
396 
397 	/*
398 	 * Allocate hardware transmit queues: one queue for
399 	 * beacon frames and one data queue for each QoS
400 	 * priority.  Note that the hal handles reseting
401 	 * these queues at the needed time.
402 	 *
403 	 * XXX PS-Poll
404 	 */
405 	sc->sc_bhalq = ath_beaconq_setup(ah);
406 	if (sc->sc_bhalq == (u_int) -1) {
407 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
408 		error = EIO;
409 		goto bad2;
410 	}
411 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
412 	if (sc->sc_cabq == NULL) {
413 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
414 		error = EIO;
415 		goto bad2;
416 	}
417 	ath_txq_init(sc, &sc->sc_mcastq, -1);	/* NB: s/w q, qnum not used */
418 	/* NB: insure BK queue is the lowest priority h/w queue */
419 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
420 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
421 			ieee80211_wme_acnames[WME_AC_BK]);
422 		error = EIO;
423 		goto bad2;
424 	}
425 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
426 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
427 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
428 		/*
429 		 * Not enough hardware tx queues to properly do WME;
430 		 * just punt and assign them all to the same h/w queue.
431 		 * We could do a better job of this if, for example,
432 		 * we allocate queues when we switch from station to
433 		 * AP mode.
434 		 */
435 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
436 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
437 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
438 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
439 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
440 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
441 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
442 	}
443 
444 	/*
445 	 * Special case certain configurations.  Note the
446 	 * CAB queue is handled by these specially so don't
447 	 * include them when checking the txq setup mask.
448 	 */
449 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
450 	case 0x01:
451 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
452 		break;
453 	case 0x0f:
454 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
455 		break;
456 	default:
457 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
458 		break;
459 	}
460 
461 	/*
462 	 * Setup rate control.  Some rate control modules
463 	 * call back to change the anntena state so expose
464 	 * the necessary entry points.
465 	 * XXX maybe belongs in struct ath_ratectrl?
466 	 */
467 	sc->sc_setdefantenna = ath_setdefantenna;
468 	sc->sc_rc = ath_rate_attach(sc);
469 	if (sc->sc_rc == NULL) {
470 		error = EIO;
471 		goto bad2;
472 	}
473 
474 	sc->sc_blinking = 0;
475 	sc->sc_ledstate = 1;
476 	sc->sc_ledon = 0;			/* low true */
477 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
478 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
479 	/*
480 	 * Auto-enable soft led processing for IBM cards and for
481 	 * 5211 minipci cards.  Users can also manually enable/disable
482 	 * support with a sysctl.
483 	 */
484 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
485 	if (sc->sc_softled) {
486 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
487 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
488 	}
489 
490 	ifp->if_softc = sc;
491 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
492 	ifp->if_start = ath_start;
493 	ifp->if_watchdog = ath_watchdog;
494 	ifp->if_ioctl = ath_ioctl;
495 	ifp->if_init = ath_init;
496 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
497 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
498 	IFQ_SET_READY(&ifp->if_snd);
499 
500 	ic->ic_ifp = ifp;
501 	ic->ic_reset = ath_reset;
502 	ic->ic_newassoc = ath_newassoc;
503 	ic->ic_updateslot = ath_updateslot;
504 	ic->ic_wme.wme_update = ath_wme_update;
505 	/* XXX not right but it's not used anywhere important */
506 	ic->ic_phytype = IEEE80211_T_OFDM;
507 	ic->ic_opmode = IEEE80211_M_STA;
508 	ic->ic_caps =
509 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
510 		| IEEE80211_C_HOSTAP		/* hostap mode */
511 		| IEEE80211_C_MONITOR		/* monitor mode */
512 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
513 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
514 		| IEEE80211_C_SHSLOT		/* short slot time supported */
515 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
516 		;
517 	/*
518 	 * Query the hal to figure out h/w crypto support.
519 	 */
520 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
521 		ic->ic_caps |= IEEE80211_C_WEP;
522 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
523 		ic->ic_caps |= IEEE80211_C_AES;
524 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
525 		ic->ic_caps |= IEEE80211_C_AES_CCM;
526 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
527 		ic->ic_caps |= IEEE80211_C_CKIP;
528 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
529 		ic->ic_caps |= IEEE80211_C_TKIP;
530 		/*
531 		 * Check if h/w does the MIC and/or whether the
532 		 * separate key cache entries are required to
533 		 * handle both tx+rx MIC keys.
534 		 */
535 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
536 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
537 		/*
538 		 * If the h/w supports storing tx+rx MIC keys
539 		 * in one cache slot automatically enable use.
540 		 */
541 		if (ath_hal_hastkipsplit(ah) ||
542 		    !ath_hal_settkipsplit(ah, AH_FALSE))
543 			sc->sc_splitmic = 1;
544 	}
545 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
546 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
547 	/*
548 	 * Mark key cache slots associated with global keys
549 	 * as in use.  If we knew TKIP was not to be used we
550 	 * could leave the +32, +64, and +32+64 slots free.
551 	 */
552 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
553 		setbit(sc->sc_keymap, i);
554 		setbit(sc->sc_keymap, i+64);
555 		if (sc->sc_splitmic) {
556 			setbit(sc->sc_keymap, i+32);
557 			setbit(sc->sc_keymap, i+32+64);
558 		}
559 	}
560 	/*
561 	 * TPC support can be done either with a global cap or
562 	 * per-packet support.  The latter is not available on
563 	 * all parts.  We're a bit pedantic here as all parts
564 	 * support a global cap.
565 	 */
566 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
567 		ic->ic_caps |= IEEE80211_C_TXPMGT;
568 
569 	/*
570 	 * Mark WME capability only if we have sufficient
571 	 * hardware queues to do proper priority scheduling.
572 	 */
573 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
574 		ic->ic_caps |= IEEE80211_C_WME;
575 	/*
576 	 * Check for misc other capabilities.
577 	 */
578 	if (ath_hal_hasbursting(ah))
579 		ic->ic_caps |= IEEE80211_C_BURST;
580 
581 	/*
582 	 * Indicate we need the 802.11 header padded to a
583 	 * 32-bit boundary for 4-address and QoS frames.
584 	 */
585 	ic->ic_flags |= IEEE80211_F_DATAPAD;
586 
587 	/*
588 	 * Query the hal about antenna support.
589 	 */
590 	sc->sc_defant = ath_hal_getdefantenna(ah);
591 
592 	/*
593 	 * Not all chips have the VEOL support we want to
594 	 * use with IBSS beacons; check here for it.
595 	 */
596 	sc->sc_hasveol = ath_hal_hasveol(ah);
597 
598 	/* get mac address from hardware */
599 	ath_hal_getmac(ah, ic->ic_myaddr);
600 
601 	/* call MI attach routine. */
602 	ieee80211_ifattach(ic);
603 	sc->sc_opmode = ic->ic_opmode;
604 	/* override default methods */
605 	ic->ic_node_alloc = ath_node_alloc;
606 	sc->sc_node_free = ic->ic_node_free;
607 	ic->ic_node_free = ath_node_free;
608 	ic->ic_node_getrssi = ath_node_getrssi;
609 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
610 	ic->ic_recv_mgmt = ath_recv_mgmt;
611 	sc->sc_newstate = ic->ic_newstate;
612 	ic->ic_newstate = ath_newstate;
613 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
614 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
615 	ic->ic_crypto.cs_key_delete = ath_key_delete;
616 	ic->ic_crypto.cs_key_set = ath_key_set;
617 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
618 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
619 	ic->ic_raw_xmit = ath_raw_xmit;
620 	/* complete initialization */
621 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
622 
623 	ath_bpfattach(sc);
624 	/*
625 	 * Setup dynamic sysctl's now that country code and
626 	 * regdomain are available from the hal.
627 	 */
628 	ath_sysctlattach(sc);
629 
630 	if (bootverbose)
631 		ieee80211_announce(ic);
632 	ath_announce(sc);
633 	return 0;
634 bad2:
635 	ath_tx_cleanup(sc);
636 	ath_desc_free(sc);
637 bad:
638 	if (ah)
639 		ath_hal_detach(ah);
640 	if (ifp != NULL)
641 		if_free(ifp);
642 	sc->sc_invalid = 1;
643 	return error;
644 }
645 
646 int
647 ath_detach(struct ath_softc *sc)
648 {
649 	struct ifnet *ifp = sc->sc_ifp;
650 
651 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
652 		__func__, ifp->if_flags);
653 
654 	ath_stop(ifp);
655 	bpfdetach(ifp);
656 	/*
657 	 * NB: the order of these is important:
658 	 * o call the 802.11 layer before detaching the hal to
659 	 *   insure callbacks into the driver to delete global
660 	 *   key cache entries can be handled
661 	 * o reclaim the tx queue data structures after calling
662 	 *   the 802.11 layer as we'll get called back to reclaim
663 	 *   node state and potentially want to use them
664 	 * o to cleanup the tx queues the hal is called, so detach
665 	 *   it last
666 	 * Other than that, it's straightforward...
667 	 */
668 	ieee80211_ifdetach(&sc->sc_ic);
669 #ifdef ATH_TX99_DIAG
670 	if (sc->sc_tx99 != NULL)
671 		sc->sc_tx99->detach(sc->sc_tx99);
672 #endif
673 	taskqueue_free(sc->sc_tq);
674 	ath_rate_detach(sc->sc_rc);
675 	ath_desc_free(sc);
676 	ath_tx_cleanup(sc);
677 	ath_hal_detach(sc->sc_ah);
678 	if_free(ifp);
679 
680 	return 0;
681 }
682 
683 void
684 ath_suspend(struct ath_softc *sc)
685 {
686 	struct ifnet *ifp = sc->sc_ifp;
687 
688 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
689 		__func__, ifp->if_flags);
690 
691 	ath_stop(ifp);
692 }
693 
694 void
695 ath_resume(struct ath_softc *sc)
696 {
697 	struct ifnet *ifp = sc->sc_ifp;
698 
699 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
700 		__func__, ifp->if_flags);
701 
702 	if (ifp->if_flags & IFF_UP) {
703 		ath_init(sc);
704 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
705 			ath_start(ifp);
706 	}
707 	if (sc->sc_softled) {
708 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
709 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
710 	}
711 }
712 
713 void
714 ath_shutdown(struct ath_softc *sc)
715 {
716 	struct ifnet *ifp = sc->sc_ifp;
717 
718 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
719 		__func__, ifp->if_flags);
720 
721 	ath_stop(ifp);
722 }
723 
724 /*
725  * Interrupt handler.  Most of the actual processing is deferred.
726  */
727 void
728 ath_intr(void *arg)
729 {
730 	struct ath_softc *sc = arg;
731 	struct ifnet *ifp = sc->sc_ifp;
732 	struct ath_hal *ah = sc->sc_ah;
733 	HAL_INT status;
734 
735 	if (sc->sc_invalid) {
736 		/*
737 		 * The hardware is not ready/present, don't touch anything.
738 		 * Note this can happen early on if the IRQ is shared.
739 		 */
740 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
741 		return;
742 	}
743 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
744 		return;
745 	if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags &
746 	    IFF_DRV_RUNNING))) {
747 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
748 			__func__, ifp->if_flags);
749 		ath_hal_getisr(ah, &status);	/* clear ISR */
750 		ath_hal_intrset(ah, 0);		/* disable further intr's */
751 		return;
752 	}
753 	/*
754 	 * Figure out the reason(s) for the interrupt.  Note
755 	 * that the hal returns a pseudo-ISR that may include
756 	 * bits we haven't explicitly enabled so we mask the
757 	 * value to insure we only process bits we requested.
758 	 */
759 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
760 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
761 	status &= sc->sc_imask;			/* discard unasked for bits */
762 	if (status & HAL_INT_FATAL) {
763 		sc->sc_stats.ast_hardware++;
764 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
765 		ath_fatal_proc(sc, 0);
766 	} else if (status & HAL_INT_RXORN) {
767 		sc->sc_stats.ast_rxorn++;
768 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
769 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxorntask);
770 	} else {
771 		if (status & HAL_INT_SWBA) {
772 			/*
773 			 * Software beacon alert--time to send a beacon.
774 			 * Handle beacon transmission directly; deferring
775 			 * this is too slow to meet timing constraints
776 			 * under load.
777 			 */
778 			ath_beacon_proc(sc, 0);
779 		}
780 		if (status & HAL_INT_RXEOL) {
781 			/*
782 			 * NB: the hardware should re-read the link when
783 			 *     RXE bit is written, but it doesn't work at
784 			 *     least on older hardware revs.
785 			 */
786 			sc->sc_stats.ast_rxeol++;
787 			sc->sc_rxlink = NULL;
788 		}
789 		if (status & HAL_INT_TXURN) {
790 			sc->sc_stats.ast_txurn++;
791 			/* bump tx trigger level */
792 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
793 		}
794 		if (status & HAL_INT_RX)
795 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
796 		if (status & HAL_INT_TX)
797 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
798 		if (status & HAL_INT_BMISS) {
799 			sc->sc_stats.ast_bmiss++;
800 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
801 		}
802 		if (status & HAL_INT_MIB) {
803 			sc->sc_stats.ast_mib++;
804 			/*
805 			 * Disable interrupts until we service the MIB
806 			 * interrupt; otherwise it will continue to fire.
807 			 */
808 			ath_hal_intrset(ah, 0);
809 			/*
810 			 * Let the hal handle the event.  We assume it will
811 			 * clear whatever condition caused the interrupt.
812 			 */
813 			ath_hal_mibevent(ah, &sc->sc_halstats);
814 			ath_hal_intrset(ah, sc->sc_imask);
815 		}
816 	}
817 }
818 
819 static void
820 ath_fatal_proc(void *arg, int pending)
821 {
822 	struct ath_softc *sc = arg;
823 	struct ifnet *ifp = sc->sc_ifp;
824 	u_int32_t *state;
825 	u_int32_t len;
826 
827 	if_printf(ifp, "hardware error; resetting\n");
828 	/*
829 	 * Fatal errors are unrecoverable.  Typically these
830 	 * are caused by DMA errors.  Collect h/w state from
831 	 * the hal so we can diagnose what's going on.
832 	 */
833 	if (ath_hal_getfatalstate(sc->sc_ah, &state, &len)) {
834 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
835 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
836 		    state[0], state[1] , state[2], state[3],
837 		    state[4], state[5]);
838 	}
839 	ath_reset(ifp);
840 }
841 
842 static void
843 ath_rxorn_proc(void *arg, int pending)
844 {
845 	struct ath_softc *sc = arg;
846 	struct ifnet *ifp = sc->sc_ifp;
847 
848 	if_printf(ifp, "rx FIFO overrun; resetting\n");
849 	ath_reset(ifp);
850 }
851 
852 static void
853 ath_bmiss_proc(void *arg, int pending)
854 {
855 	struct ath_softc *sc = arg;
856 	struct ieee80211com *ic = &sc->sc_ic;
857 
858 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
859 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
860 		("unexpect operating mode %u", ic->ic_opmode));
861 	if (ic->ic_state == IEEE80211_S_RUN) {
862 		u_int64_t lastrx = sc->sc_lastrx;
863 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
864 		u_int bmisstimeout =
865 			ic->ic_bmissthreshold * ic->ic_bss->ni_intval * 1024;
866 
867 		DPRINTF(sc, ATH_DEBUG_BEACON,
868 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
869 		    __func__, (unsigned long long) tsf,
870 		    (unsigned long long)(tsf - lastrx),
871 		    (unsigned long long) lastrx, bmisstimeout);
872 		/*
873 		 * Workaround phantom bmiss interrupts by sanity-checking
874 		 * the time of our last rx'd frame.  If it is within the
875 		 * beacon miss interval then ignore the interrupt.  If it's
876 		 * truly a bmiss we'll get another interrupt soon and that'll
877 		 * be dispatched up for processing.
878 		 */
879 		if (tsf - lastrx > bmisstimeout) {
880 			NET_LOCK_GIANT();
881 			ieee80211_beacon_miss(ic);
882 			NET_UNLOCK_GIANT();
883 		} else
884 			sc->sc_stats.ast_bmiss_phantom++;
885 	}
886 }
887 
888 /*
889  * Convert net80211 channel to a HAL channel with the flags
890  * constrained to reflect the current operating mode and
891  * the frequency possibly mapped for GSM channels.
892  */
893 static void
894 ath_mapchan(struct ieee80211com *ic, HAL_CHANNEL *hc,
895 	const struct ieee80211_channel *chan)
896 {
897 #define	N(a)	(sizeof(a) / sizeof(a[0]))
898 	static const u_int modeflags[] = {
899 		0,			/* IEEE80211_MODE_AUTO */
900 		CHANNEL_A,		/* IEEE80211_MODE_11A */
901 		CHANNEL_B,		/* IEEE80211_MODE_11B */
902 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
903 		0,			/* IEEE80211_MODE_FH */
904 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
905 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
906 	};
907 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
908 
909 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
910 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
911 	hc->channelFlags = modeflags[mode];
912 	if (IEEE80211_IS_CHAN_HALF(chan))
913 		hc->channelFlags |= CHANNEL_HALF;
914 	if (IEEE80211_IS_CHAN_QUARTER(chan))
915 		hc->channelFlags |= CHANNEL_QUARTER;
916 
917 	hc->channel = IEEE80211_IS_CHAN_GSM(chan) ?
918 		2422 + (922 - chan->ic_freq) : chan->ic_freq;
919 #undef N
920 }
921 
922 static void
923 ath_init(void *arg)
924 {
925 	struct ath_softc *sc = (struct ath_softc *) arg;
926 	struct ieee80211com *ic = &sc->sc_ic;
927 	struct ifnet *ifp = sc->sc_ifp;
928 	struct ath_hal *ah = sc->sc_ah;
929 	HAL_STATUS status;
930 
931 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
932 		__func__, ifp->if_flags);
933 
934 	ATH_LOCK(sc);
935 	/*
936 	 * Stop anything previously setup.  This is safe
937 	 * whether this is the first time through or not.
938 	 */
939 	ath_stop_locked(ifp);
940 
941 	/*
942 	 * The basic interface to setting the hardware in a good
943 	 * state is ``reset''.  On return the hardware is known to
944 	 * be powered up and with interrupts disabled.  This must
945 	 * be followed by initialization of the appropriate bits
946 	 * and then setup of the interrupt mask.
947 	 */
948 	ath_mapchan(ic, &sc->sc_curchan, ic->ic_curchan);
949 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
950 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
951 			status);
952 		goto done;
953 	}
954 
955 	/*
956 	 * This is needed only to setup initial state
957 	 * but it's best done after a reset.
958 	 */
959 	ath_update_txpow(sc);
960 	/*
961 	 * Likewise this is set during reset so update
962 	 * state cached in the driver.
963 	 */
964 	sc->sc_diversity = ath_hal_getdiversity(ah);
965 	sc->sc_calinterval = 1;
966 	sc->sc_caltries = 0;
967 
968 	/*
969 	 * Setup the hardware after reset: the key cache
970 	 * is filled as needed and the receive engine is
971 	 * set going.  Frame transmit is handled entirely
972 	 * in the frame output path; there's nothing to do
973 	 * here except setup the interrupt mask.
974 	 */
975 	if (ath_startrecv(sc) != 0) {
976 		if_printf(ifp, "unable to start recv logic\n");
977 		goto done;
978 	}
979 
980 	/*
981 	 * Enable interrupts.
982 	 */
983 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
984 		  | HAL_INT_RXEOL | HAL_INT_RXORN
985 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
986 	/*
987 	 * Enable MIB interrupts when there are hardware phy counters.
988 	 * Note we only do this (at the moment) for station mode.
989 	 */
990 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
991 		sc->sc_imask |= HAL_INT_MIB;
992 	ath_hal_intrset(ah, sc->sc_imask);
993 
994 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
995 	ic->ic_state = IEEE80211_S_INIT;
996 
997 	/*
998 	 * The hardware should be ready to go now so it's safe
999 	 * to kick the 802.11 state machine as it's likely to
1000 	 * immediately call back to us to send mgmt frames.
1001 	 */
1002 	ath_chan_change(sc, ic->ic_curchan);
1003 #ifdef ATH_TX99_DIAG
1004 	if (sc->sc_tx99 != NULL)
1005 		sc->sc_tx99->start(sc->sc_tx99);
1006 	else
1007 #endif
1008 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1009 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1010 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1011 	} else
1012 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1013 done:
1014 	ATH_UNLOCK(sc);
1015 }
1016 
1017 static void
1018 ath_stop_locked(struct ifnet *ifp)
1019 {
1020 	struct ath_softc *sc = ifp->if_softc;
1021 	struct ieee80211com *ic = &sc->sc_ic;
1022 	struct ath_hal *ah = sc->sc_ah;
1023 
1024 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1025 		__func__, sc->sc_invalid, ifp->if_flags);
1026 
1027 	ATH_LOCK_ASSERT(sc);
1028 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1029 		/*
1030 		 * Shutdown the hardware and driver:
1031 		 *    reset 802.11 state machine
1032 		 *    turn off timers
1033 		 *    disable interrupts
1034 		 *    turn off the radio
1035 		 *    clear transmit machinery
1036 		 *    clear receive machinery
1037 		 *    drain and release tx queues
1038 		 *    reclaim beacon resources
1039 		 *    power down hardware
1040 		 *
1041 		 * Note that some of this work is not possible if the
1042 		 * hardware is gone (invalid).
1043 		 */
1044 #ifdef ATH_TX99_DIAG
1045 		if (sc->sc_tx99 != NULL)
1046 			sc->sc_tx99->stop(sc->sc_tx99);
1047 #endif
1048 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1049 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1050 		ifp->if_timer = 0;
1051 		if (!sc->sc_invalid) {
1052 			if (sc->sc_softled) {
1053 				callout_stop(&sc->sc_ledtimer);
1054 				ath_hal_gpioset(ah, sc->sc_ledpin,
1055 					!sc->sc_ledon);
1056 				sc->sc_blinking = 0;
1057 			}
1058 			ath_hal_intrset(ah, 0);
1059 		}
1060 		ath_draintxq(sc);
1061 		if (!sc->sc_invalid) {
1062 			ath_stoprecv(sc);
1063 			ath_hal_phydisable(ah);
1064 		} else
1065 			sc->sc_rxlink = NULL;
1066 		IFQ_DRV_PURGE(&ifp->if_snd);
1067 		ath_beacon_free(sc);
1068 	}
1069 }
1070 
1071 static void
1072 ath_stop(struct ifnet *ifp)
1073 {
1074 	struct ath_softc *sc = ifp->if_softc;
1075 
1076 	ATH_LOCK(sc);
1077 	ath_stop_locked(ifp);
1078 	if (!sc->sc_invalid) {
1079 		/*
1080 		 * Set the chip in full sleep mode.  Note that we are
1081 		 * careful to do this only when bringing the interface
1082 		 * completely to a stop.  When the chip is in this state
1083 		 * it must be carefully woken up or references to
1084 		 * registers in the PCI clock domain may freeze the bus
1085 		 * (and system).  This varies by chip and is mostly an
1086 		 * issue with newer parts that go to sleep more quickly.
1087 		 */
1088 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1089 	}
1090 	ATH_UNLOCK(sc);
1091 }
1092 
1093 /*
1094  * Reset the hardware w/o losing operational state.  This is
1095  * basically a more efficient way of doing ath_stop, ath_init,
1096  * followed by state transitions to the current 802.11
1097  * operational state.  Used to recover from various errors and
1098  * to reset or reload hardware state.
1099  */
1100 static int
1101 ath_reset(struct ifnet *ifp)
1102 {
1103 	struct ath_softc *sc = ifp->if_softc;
1104 	struct ieee80211com *ic = &sc->sc_ic;
1105 	struct ath_hal *ah = sc->sc_ah;
1106 	HAL_STATUS status;
1107 
1108 	/*
1109 	 * Convert to a HAL channel description with the flags
1110 	 * constrained to reflect the current operating mode.
1111 	 */
1112 	ath_mapchan(ic, &sc->sc_curchan, ic->ic_curchan);
1113 
1114 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1115 	ath_draintxq(sc);		/* stop xmit side */
1116 	ath_stoprecv(sc);		/* stop recv side */
1117 	/* NB: indicate channel change so we do a full reset */
1118 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status))
1119 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1120 			__func__, status);
1121 	ath_update_txpow(sc);		/* update tx power state */
1122 	sc->sc_diversity = ath_hal_getdiversity(ah);
1123 	sc->sc_calinterval = 1;
1124 	sc->sc_caltries = 0;
1125 	/*
1126 	 * We may be doing a reset in response to an ioctl
1127 	 * that changes the channel so update any state that
1128 	 * might change as a result.
1129 	 */
1130 	ath_chan_change(sc, ic->ic_curchan);
1131 	if (ath_startrecv(sc) != 0)	/* restart recv */
1132 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1133 	if (ic->ic_state == IEEE80211_S_RUN)
1134 		ath_beacon_config(sc);	/* restart beacons */
1135 	ath_hal_intrset(ah, sc->sc_imask);
1136 
1137 	ath_start(ifp);			/* restart xmit */
1138 	return 0;
1139 }
1140 
1141 static void
1142 ath_start(struct ifnet *ifp)
1143 {
1144 	struct ath_softc *sc = ifp->if_softc;
1145 	struct ath_hal *ah = sc->sc_ah;
1146 	struct ieee80211com *ic = &sc->sc_ic;
1147 	struct ieee80211_node *ni;
1148 	struct ath_buf *bf;
1149 	struct mbuf *m;
1150 	struct ieee80211_frame *wh;
1151 	struct ether_header *eh;
1152 
1153 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1154 		return;
1155 	for (;;) {
1156 		/*
1157 		 * Grab a TX buffer and associated resources.
1158 		 */
1159 		ATH_TXBUF_LOCK(sc);
1160 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1161 		if (bf != NULL)
1162 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1163 		ATH_TXBUF_UNLOCK(sc);
1164 		if (bf == NULL) {
1165 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1166 				__func__);
1167 			sc->sc_stats.ast_tx_qstop++;
1168 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1169 			break;
1170 		}
1171 		/*
1172 		 * Poll the management queue for frames; they
1173 		 * have priority over normal data frames.
1174 		 */
1175 		IF_DEQUEUE(&ic->ic_mgtq, m);
1176 		if (m == NULL) {
1177 			/*
1178 			 * No data frames go out unless we're associated.
1179 			 */
1180 			if (ic->ic_state != IEEE80211_S_RUN) {
1181 				DPRINTF(sc, ATH_DEBUG_XMIT,
1182 				    "%s: discard data packet, state %s\n",
1183 				    __func__,
1184 				    ieee80211_state_name[ic->ic_state]);
1185 				sc->sc_stats.ast_tx_discard++;
1186 				ATH_TXBUF_LOCK(sc);
1187 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1188 				ATH_TXBUF_UNLOCK(sc);
1189 				break;
1190 			}
1191 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1192 			if (m == NULL) {
1193 				ATH_TXBUF_LOCK(sc);
1194 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1195 				ATH_TXBUF_UNLOCK(sc);
1196 				break;
1197 			}
1198 			/*
1199 			 * Find the node for the destination so we can do
1200 			 * things like power save and fast frames aggregation.
1201 			 */
1202 			if (m->m_len < sizeof(struct ether_header) &&
1203 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1204 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1205 				ni = NULL;
1206 				goto bad;
1207 			}
1208 			eh = mtod(m, struct ether_header *);
1209 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1210 			if (ni == NULL) {
1211 				/* NB: ieee80211_find_txnode does stat+msg */
1212 				m_freem(m);
1213 				goto bad;
1214 			}
1215 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1216 			    (m->m_flags & M_PWR_SAV) == 0) {
1217 				/*
1218 				 * Station in power save mode; pass the frame
1219 				 * to the 802.11 layer and continue.  We'll get
1220 				 * the frame back when the time is right.
1221 				 */
1222 				ieee80211_pwrsave(ic, ni, m);
1223 				goto reclaim;
1224 			}
1225 			/* calculate priority so we can find the tx queue */
1226 			if (ieee80211_classify(ic, m, ni)) {
1227 				DPRINTF(sc, ATH_DEBUG_XMIT,
1228 					"%s: discard, classification failure\n",
1229 					__func__);
1230 				m_freem(m);
1231 				goto bad;
1232 			}
1233 			ifp->if_opackets++;
1234 			BPF_MTAP(ifp, m);
1235 			/*
1236 			 * Encapsulate the packet in prep for transmission.
1237 			 */
1238 			m = ieee80211_encap(ic, m, ni);
1239 			if (m == NULL) {
1240 				DPRINTF(sc, ATH_DEBUG_XMIT,
1241 					"%s: encapsulation failure\n",
1242 					__func__);
1243 				sc->sc_stats.ast_tx_encap++;
1244 				goto bad;
1245 			}
1246 		} else {
1247 			/*
1248 			 * Hack!  The referenced node pointer is in the
1249 			 * rcvif field of the packet header.  This is
1250 			 * placed there by ieee80211_mgmt_output because
1251 			 * we need to hold the reference with the frame
1252 			 * and there's no other way (other than packet
1253 			 * tags which we consider too expensive to use)
1254 			 * to pass it along.
1255 			 */
1256 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1257 			m->m_pkthdr.rcvif = NULL;
1258 
1259 			wh = mtod(m, struct ieee80211_frame *);
1260 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1261 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1262 				/* fill time stamp */
1263 				u_int64_t tsf;
1264 				u_int32_t *tstamp;
1265 
1266 				tsf = ath_hal_gettsf64(ah);
1267 				/* XXX: adjust 100us delay to xmit */
1268 				tsf += 100;
1269 				tstamp = (u_int32_t *)&wh[1];
1270 				tstamp[0] = htole32(tsf & 0xffffffff);
1271 				tstamp[1] = htole32(tsf >> 32);
1272 			}
1273 			sc->sc_stats.ast_tx_mgmt++;
1274 		}
1275 
1276 		if (ath_tx_start(sc, ni, bf, m)) {
1277 	bad:
1278 			ifp->if_oerrors++;
1279 	reclaim:
1280 			ATH_TXBUF_LOCK(sc);
1281 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1282 			ATH_TXBUF_UNLOCK(sc);
1283 			if (ni != NULL)
1284 				ieee80211_free_node(ni);
1285 			continue;
1286 		}
1287 
1288 		sc->sc_tx_timer = 5;
1289 		ifp->if_timer = 1;
1290 	}
1291 }
1292 
1293 static int
1294 ath_media_change(struct ifnet *ifp)
1295 {
1296 #define	IS_UP(ifp) \
1297 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1298 	int error;
1299 
1300 	error = ieee80211_media_change(ifp);
1301 	if (error == ENETRESET) {
1302 		struct ath_softc *sc = ifp->if_softc;
1303 		struct ieee80211com *ic = &sc->sc_ic;
1304 
1305 		if (ic->ic_opmode == IEEE80211_M_AHDEMO) {
1306 			/*
1307 			 * Adhoc demo mode is just ibss mode w/o beacons
1308 			 * (mostly).  The hal knows nothing about it;
1309 			 * tell it we're operating in ibss mode.
1310 			 */
1311 			sc->sc_opmode = HAL_M_IBSS;
1312 		} else
1313 			sc->sc_opmode = ic->ic_opmode;
1314 		if (IS_UP(ifp))
1315 			ath_init(ifp->if_softc);	/* XXX lose error */
1316 		error = 0;
1317 	}
1318 	return error;
1319 #undef IS_UP
1320 }
1321 
1322 #ifdef ATH_DEBUG
1323 static void
1324 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
1325 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1326 {
1327 	static const char *ciphers[] = {
1328 		"WEP",
1329 		"AES-OCB",
1330 		"AES-CCM",
1331 		"CKIP",
1332 		"TKIP",
1333 		"CLR",
1334 	};
1335 	int i, n;
1336 
1337 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1338 	for (i = 0, n = hk->kv_len; i < n; i++)
1339 		printf("%02x", hk->kv_val[i]);
1340 	printf(" mac %s", ether_sprintf(mac));
1341 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1342 		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
1343 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1344 			printf("%02x", hk->kv_mic[i]);
1345 #if HAL_ABI_VERSION > 0x06052200
1346 		if (!sc->sc_splitmic) {
1347 			printf(" txmic ");
1348 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
1349 				printf("%02x", hk->kv_txmic[i]);
1350 		}
1351 #endif
1352 	}
1353 	printf("\n");
1354 }
1355 #endif
1356 
1357 /*
1358  * Set a TKIP key into the hardware.  This handles the
1359  * potential distribution of key state to multiple key
1360  * cache slots for TKIP.
1361  */
1362 static int
1363 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1364 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1365 {
1366 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1367 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1368 	struct ath_hal *ah = sc->sc_ah;
1369 
1370 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1371 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1372 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1373 		if (sc->sc_splitmic) {
1374 			/*
1375 			 * TX key goes at first index, RX key at the rx index.
1376 			 * The hal handles the MIC keys at index+64.
1377 			 */
1378 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1379 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1380 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1381 				return 0;
1382 
1383 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1384 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1385 			/* XXX delete tx key on failure? */
1386 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1387 		} else {
1388 			/*
1389 			 * Room for both TX+RX MIC keys in one key cache
1390 			 * slot, just set key at the first index; the hal
1391 			 * will handle the reset.
1392 			 */
1393 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1394 #if HAL_ABI_VERSION > 0x06052200
1395 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1396 #endif
1397 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1398 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1399 		}
1400 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1401 		/*
1402 		 * TX/RX key goes at first index.
1403 		 * The hal handles the MIC keys are index+64.
1404 		 */
1405 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1406 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1407 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1408 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1409 	}
1410 	return 0;
1411 #undef IEEE80211_KEY_XR
1412 }
1413 
1414 /*
1415  * Set a net80211 key into the hardware.  This handles the
1416  * potential distribution of key state to multiple key
1417  * cache slots for TKIP with hardware MIC support.
1418  */
1419 static int
1420 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1421 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1422 	struct ieee80211_node *bss)
1423 {
1424 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1425 	static const u_int8_t ciphermap[] = {
1426 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1427 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1428 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1429 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1430 		(u_int8_t) -1,		/* 4 is not allocated */
1431 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1432 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1433 	};
1434 	struct ath_hal *ah = sc->sc_ah;
1435 	const struct ieee80211_cipher *cip = k->wk_cipher;
1436 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1437 	const u_int8_t *mac;
1438 	HAL_KEYVAL hk;
1439 
1440 	memset(&hk, 0, sizeof(hk));
1441 	/*
1442 	 * Software crypto uses a "clear key" so non-crypto
1443 	 * state kept in the key cache are maintained and
1444 	 * so that rx frames have an entry to match.
1445 	 */
1446 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1447 		KASSERT(cip->ic_cipher < N(ciphermap),
1448 			("invalid cipher type %u", cip->ic_cipher));
1449 		hk.kv_type = ciphermap[cip->ic_cipher];
1450 		hk.kv_len = k->wk_keylen;
1451 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1452 	} else
1453 		hk.kv_type = HAL_CIPHER_CLR;
1454 
1455 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1456 		/*
1457 		 * Group keys on hardware that supports multicast frame
1458 		 * key search use a mac that is the sender's address with
1459 		 * the high bit set instead of the app-specified address.
1460 		 */
1461 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1462 		gmac[0] |= 0x80;
1463 		mac = gmac;
1464 	} else
1465 		mac = mac0;
1466 
1467 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1468 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1469 		return ath_keyset_tkip(sc, k, &hk, mac);
1470 	} else {
1471 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1472 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1473 	}
1474 #undef N
1475 }
1476 
1477 /*
1478  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1479  * each key, one for decrypt/encrypt and the other for the MIC.
1480  */
1481 static u_int16_t
1482 key_alloc_2pair(struct ath_softc *sc,
1483 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1484 {
1485 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1486 	u_int i, keyix;
1487 
1488 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1489 	/* XXX could optimize */
1490 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1491 		u_int8_t b = sc->sc_keymap[i];
1492 		if (b != 0xff) {
1493 			/*
1494 			 * One or more slots in this byte are free.
1495 			 */
1496 			keyix = i*NBBY;
1497 			while (b & 1) {
1498 		again:
1499 				keyix++;
1500 				b >>= 1;
1501 			}
1502 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1503 			if (isset(sc->sc_keymap, keyix+32) ||
1504 			    isset(sc->sc_keymap, keyix+64) ||
1505 			    isset(sc->sc_keymap, keyix+32+64)) {
1506 				/* full pair unavailable */
1507 				/* XXX statistic */
1508 				if (keyix == (i+1)*NBBY) {
1509 					/* no slots were appropriate, advance */
1510 					continue;
1511 				}
1512 				goto again;
1513 			}
1514 			setbit(sc->sc_keymap, keyix);
1515 			setbit(sc->sc_keymap, keyix+64);
1516 			setbit(sc->sc_keymap, keyix+32);
1517 			setbit(sc->sc_keymap, keyix+32+64);
1518 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1519 				"%s: key pair %u,%u %u,%u\n",
1520 				__func__, keyix, keyix+64,
1521 				keyix+32, keyix+32+64);
1522 			*txkeyix = keyix;
1523 			*rxkeyix = keyix+32;
1524 			return 1;
1525 		}
1526 	}
1527 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1528 	return 0;
1529 #undef N
1530 }
1531 
1532 /*
1533  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1534  * each key, one for decrypt/encrypt and the other for the MIC.
1535  */
1536 static u_int16_t
1537 key_alloc_pair(struct ath_softc *sc,
1538 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1539 {
1540 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1541 	u_int i, keyix;
1542 
1543 	KASSERT(!sc->sc_splitmic, ("key cache split"));
1544 	/* XXX could optimize */
1545 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1546 		u_int8_t b = sc->sc_keymap[i];
1547 		if (b != 0xff) {
1548 			/*
1549 			 * One or more slots in this byte are free.
1550 			 */
1551 			keyix = i*NBBY;
1552 			while (b & 1) {
1553 		again:
1554 				keyix++;
1555 				b >>= 1;
1556 			}
1557 			if (isset(sc->sc_keymap, keyix+64)) {
1558 				/* full pair unavailable */
1559 				/* XXX statistic */
1560 				if (keyix == (i+1)*NBBY) {
1561 					/* no slots were appropriate, advance */
1562 					continue;
1563 				}
1564 				goto again;
1565 			}
1566 			setbit(sc->sc_keymap, keyix);
1567 			setbit(sc->sc_keymap, keyix+64);
1568 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1569 				"%s: key pair %u,%u\n",
1570 				__func__, keyix, keyix+64);
1571 			*txkeyix = *rxkeyix = keyix;
1572 			return 1;
1573 		}
1574 	}
1575 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1576 	return 0;
1577 #undef N
1578 }
1579 
1580 /*
1581  * Allocate a single key cache slot.
1582  */
1583 static int
1584 key_alloc_single(struct ath_softc *sc,
1585 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1586 {
1587 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1588 	u_int i, keyix;
1589 
1590 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1591 	for (i = 0; i < N(sc->sc_keymap); i++) {
1592 		u_int8_t b = sc->sc_keymap[i];
1593 		if (b != 0xff) {
1594 			/*
1595 			 * One or more slots are free.
1596 			 */
1597 			keyix = i*NBBY;
1598 			while (b & 1)
1599 				keyix++, b >>= 1;
1600 			setbit(sc->sc_keymap, keyix);
1601 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1602 				__func__, keyix);
1603 			*txkeyix = *rxkeyix = keyix;
1604 			return 1;
1605 		}
1606 	}
1607 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1608 	return 0;
1609 #undef N
1610 }
1611 
1612 /*
1613  * Allocate one or more key cache slots for a uniacst key.  The
1614  * key itself is needed only to identify the cipher.  For hardware
1615  * TKIP with split cipher+MIC keys we allocate two key cache slot
1616  * pairs so that we can setup separate TX and RX MIC keys.  Note
1617  * that the MIC key for a TKIP key at slot i is assumed by the
1618  * hardware to be at slot i+64.  This limits TKIP keys to the first
1619  * 64 entries.
1620  */
1621 static int
1622 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1623 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1624 {
1625 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1626 
1627 	/*
1628 	 * Group key allocation must be handled specially for
1629 	 * parts that do not support multicast key cache search
1630 	 * functionality.  For those parts the key id must match
1631 	 * the h/w key index so lookups find the right key.  On
1632 	 * parts w/ the key search facility we install the sender's
1633 	 * mac address (with the high bit set) and let the hardware
1634 	 * find the key w/o using the key id.  This is preferred as
1635 	 * it permits us to support multiple users for adhoc and/or
1636 	 * multi-station operation.
1637 	 */
1638 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1639 		if (!(&ic->ic_nw_keys[0] <= k &&
1640 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1641 			/* should not happen */
1642 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1643 				"%s: bogus group key\n", __func__);
1644 			return 0;
1645 		}
1646 		/*
1647 		 * XXX we pre-allocate the global keys so
1648 		 * have no way to check if they've already been allocated.
1649 		 */
1650 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1651 		return 1;
1652 	}
1653 
1654 	/*
1655 	 * We allocate two pair for TKIP when using the h/w to do
1656 	 * the MIC.  For everything else, including software crypto,
1657 	 * we allocate a single entry.  Note that s/w crypto requires
1658 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1659 	 * not support pass-through cache entries and we map all
1660 	 * those requests to slot 0.
1661 	 */
1662 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1663 		return key_alloc_single(sc, keyix, rxkeyix);
1664 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1665 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1666 		if (sc->sc_splitmic)
1667 			return key_alloc_2pair(sc, keyix, rxkeyix);
1668 		else
1669 			return key_alloc_pair(sc, keyix, rxkeyix);
1670 	} else {
1671 		return key_alloc_single(sc, keyix, rxkeyix);
1672 	}
1673 }
1674 
1675 /*
1676  * Delete an entry in the key cache allocated by ath_key_alloc.
1677  */
1678 static int
1679 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1680 {
1681 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1682 	struct ath_hal *ah = sc->sc_ah;
1683 	const struct ieee80211_cipher *cip = k->wk_cipher;
1684 	u_int keyix = k->wk_keyix;
1685 
1686 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1687 
1688 	ath_hal_keyreset(ah, keyix);
1689 	/*
1690 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1691 	 */
1692 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1693 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1694 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1695 	if (keyix >= IEEE80211_WEP_NKID) {
1696 		/*
1697 		 * Don't touch keymap entries for global keys so
1698 		 * they are never considered for dynamic allocation.
1699 		 */
1700 		clrbit(sc->sc_keymap, keyix);
1701 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1702 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1703 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1704 			if (sc->sc_splitmic) {
1705 				/* +32 for RX key, +32+64 for RX key MIC */
1706 				clrbit(sc->sc_keymap, keyix+32);
1707 				clrbit(sc->sc_keymap, keyix+32+64);
1708 			}
1709 		}
1710 	}
1711 	return 1;
1712 }
1713 
1714 /*
1715  * Set the key cache contents for the specified key.  Key cache
1716  * slot(s) must already have been allocated by ath_key_alloc.
1717  */
1718 static int
1719 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1720 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1721 {
1722 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1723 
1724 	return ath_keyset(sc, k, mac, ic->ic_bss);
1725 }
1726 
1727 /*
1728  * Block/unblock tx+rx processing while a key change is done.
1729  * We assume the caller serializes key management operations
1730  * so we only need to worry about synchronization with other
1731  * uses that originate in the driver.
1732  */
1733 static void
1734 ath_key_update_begin(struct ieee80211com *ic)
1735 {
1736 	struct ifnet *ifp = ic->ic_ifp;
1737 	struct ath_softc *sc = ifp->if_softc;
1738 
1739 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1740 #if 0
1741 	tasklet_disable(&sc->sc_rxtq);
1742 #endif
1743 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1744 }
1745 
1746 static void
1747 ath_key_update_end(struct ieee80211com *ic)
1748 {
1749 	struct ifnet *ifp = ic->ic_ifp;
1750 	struct ath_softc *sc = ifp->if_softc;
1751 
1752 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1753 	IF_UNLOCK(&ifp->if_snd);
1754 #if 0
1755 	tasklet_enable(&sc->sc_rxtq);
1756 #endif
1757 }
1758 
1759 /*
1760  * Calculate the receive filter according to the
1761  * operating mode and state:
1762  *
1763  * o always accept unicast, broadcast, and multicast traffic
1764  * o maintain current state of phy error reception (the hal
1765  *   may enable phy error frames for noise immunity work)
1766  * o probe request frames are accepted only when operating in
1767  *   hostap, adhoc, or monitor modes
1768  * o enable promiscuous mode according to the interface state
1769  * o accept beacons:
1770  *   - when operating in adhoc mode so the 802.11 layer creates
1771  *     node table entries for peers,
1772  *   - when operating in station mode for collecting rssi data when
1773  *     the station is otherwise quiet, or
1774  *   - when scanning
1775  * o accept control frames:
1776  *   - when in monitor mode
1777  */
1778 static u_int32_t
1779 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1780 {
1781 #define	RX_FILTER_PRESERVE	(HAL_RX_FILTER_PHYERR | HAL_RX_FILTER_PHYRADAR)
1782 	struct ieee80211com *ic = &sc->sc_ic;
1783 	struct ath_hal *ah = sc->sc_ah;
1784 	struct ifnet *ifp = sc->sc_ifp;
1785 	u_int32_t rfilt;
1786 
1787 	rfilt = (ath_hal_getrxfilter(ah) & RX_FILTER_PRESERVE)
1788 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1789 	if (ic->ic_opmode != IEEE80211_M_STA)
1790 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1791 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1792 	    (ifp->if_flags & IFF_PROMISC))
1793 		rfilt |= HAL_RX_FILTER_PROM;
1794 	if (ic->ic_opmode == IEEE80211_M_STA ||
1795 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1796 	    state == IEEE80211_S_SCAN)
1797 		rfilt |= HAL_RX_FILTER_BEACON;
1798 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1799 		rfilt |= HAL_RX_FILTER_CONTROL;
1800 	return rfilt;
1801 #undef RX_FILTER_PRESERVE
1802 }
1803 
1804 static void
1805 ath_mode_init(struct ath_softc *sc)
1806 {
1807 	struct ieee80211com *ic = &sc->sc_ic;
1808 	struct ath_hal *ah = sc->sc_ah;
1809 	struct ifnet *ifp = sc->sc_ifp;
1810 	u_int32_t rfilt, mfilt[2], val;
1811 	u_int8_t pos;
1812 	struct ifmultiaddr *ifma;
1813 
1814 	/* configure rx filter */
1815 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1816 	ath_hal_setrxfilter(ah, rfilt);
1817 
1818 	/* configure operational mode */
1819 	ath_hal_setopmode(ah);
1820 
1821 	/*
1822 	 * Handle any link-level address change.  Note that we only
1823 	 * need to force ic_myaddr; any other addresses are handled
1824 	 * as a byproduct of the ifnet code marking the interface
1825 	 * down then up.
1826 	 *
1827 	 * XXX should get from lladdr instead of arpcom but that's more work
1828 	 */
1829 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1830 	ath_hal_setmac(ah, ic->ic_myaddr);
1831 
1832 	/* calculate and install multicast filter */
1833 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1834 		mfilt[0] = mfilt[1] = 0;
1835 		IF_ADDR_LOCK(ifp);
1836 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1837 			caddr_t dl;
1838 
1839 			/* calculate XOR of eight 6bit values */
1840 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1841 			val = LE_READ_4(dl + 0);
1842 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1843 			val = LE_READ_4(dl + 3);
1844 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1845 			pos &= 0x3f;
1846 			mfilt[pos / 32] |= (1 << (pos % 32));
1847 		}
1848 		IF_ADDR_UNLOCK(ifp);
1849 	} else {
1850 		mfilt[0] = mfilt[1] = ~0;
1851 	}
1852 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1853 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1854 		__func__, rfilt, mfilt[0], mfilt[1]);
1855 }
1856 
1857 /*
1858  * Set the slot time based on the current setting.
1859  */
1860 static void
1861 ath_setslottime(struct ath_softc *sc)
1862 {
1863 	struct ieee80211com *ic = &sc->sc_ic;
1864 	struct ath_hal *ah = sc->sc_ah;
1865 	u_int usec;
1866 
1867 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
1868 		usec = 13;
1869 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
1870 		usec = 21;
1871 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
1872 		/* honor short/long slot time only in 11g */
1873 		/* XXX shouldn't honor on pure g or turbo g channel */
1874 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1875 			usec = HAL_SLOT_TIME_9;
1876 		else
1877 			usec = HAL_SLOT_TIME_20;
1878 	} else
1879 		usec = HAL_SLOT_TIME_9;
1880 
1881 	DPRINTF(sc, ATH_DEBUG_RESET,
1882 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
1883 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
1884 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
1885 
1886 	ath_hal_setslottime(ah, usec);
1887 	sc->sc_updateslot = OK;
1888 }
1889 
1890 /*
1891  * Callback from the 802.11 layer to update the
1892  * slot time based on the current setting.
1893  */
1894 static void
1895 ath_updateslot(struct ifnet *ifp)
1896 {
1897 	struct ath_softc *sc = ifp->if_softc;
1898 	struct ieee80211com *ic = &sc->sc_ic;
1899 
1900 	/*
1901 	 * When not coordinating the BSS, change the hardware
1902 	 * immediately.  For other operation we defer the change
1903 	 * until beacon updates have propagated to the stations.
1904 	 */
1905 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1906 		sc->sc_updateslot = UPDATE;
1907 	else
1908 		ath_setslottime(sc);
1909 }
1910 
1911 /*
1912  * Setup a h/w transmit queue for beacons.
1913  */
1914 static int
1915 ath_beaconq_setup(struct ath_hal *ah)
1916 {
1917 	HAL_TXQ_INFO qi;
1918 
1919 	memset(&qi, 0, sizeof(qi));
1920 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1921 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1922 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1923 	/* NB: for dynamic turbo, don't enable any other interrupts */
1924 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1925 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1926 }
1927 
1928 /*
1929  * Setup the transmit queue parameters for the beacon queue.
1930  */
1931 static int
1932 ath_beaconq_config(struct ath_softc *sc)
1933 {
1934 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1935 	struct ieee80211com *ic = &sc->sc_ic;
1936 	struct ath_hal *ah = sc->sc_ah;
1937 	HAL_TXQ_INFO qi;
1938 
1939 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1940 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1941 		/*
1942 		 * Always burst out beacon and CAB traffic.
1943 		 */
1944 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1945 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1946 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1947 	} else {
1948 		struct wmeParams *wmep =
1949 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1950 		/*
1951 		 * Adhoc mode; important thing is to use 2x cwmin.
1952 		 */
1953 		qi.tqi_aifs = wmep->wmep_aifsn;
1954 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1955 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1956 	}
1957 
1958 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1959 		device_printf(sc->sc_dev, "unable to update parameters for "
1960 			"beacon hardware queue!\n");
1961 		return 0;
1962 	} else {
1963 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1964 		return 1;
1965 	}
1966 #undef ATH_EXPONENT_TO_VALUE
1967 }
1968 
1969 /*
1970  * Allocate and setup an initial beacon frame.
1971  */
1972 static int
1973 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1974 {
1975 	struct ieee80211com *ic = ni->ni_ic;
1976 	struct ath_buf *bf;
1977 	struct mbuf *m;
1978 	int error;
1979 
1980 	bf = STAILQ_FIRST(&sc->sc_bbuf);
1981 	if (bf == NULL) {
1982 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1983 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1984 		return ENOMEM;			/* XXX */
1985 	}
1986 	/*
1987 	 * NB: the beacon data buffer must be 32-bit aligned;
1988 	 * we assume the mbuf routines will return us something
1989 	 * with this alignment (perhaps should assert).
1990 	 */
1991 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1992 	if (m == NULL) {
1993 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1994 			__func__);
1995 		sc->sc_stats.ast_be_nombuf++;
1996 		return ENOMEM;
1997 	}
1998 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1999 				     bf->bf_segs, &bf->bf_nseg,
2000 				     BUS_DMA_NOWAIT);
2001 	if (error == 0) {
2002 		bf->bf_m = m;
2003 		bf->bf_node = ieee80211_ref_node(ni);
2004 	} else {
2005 		m_freem(m);
2006 	}
2007 	return error;
2008 }
2009 
2010 /*
2011  * Setup the beacon frame for transmit.
2012  */
2013 static void
2014 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2015 {
2016 #define	USE_SHPREAMBLE(_ic) \
2017 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2018 		== IEEE80211_F_SHPREAMBLE)
2019 	struct ieee80211_node *ni = bf->bf_node;
2020 	struct ieee80211com *ic = ni->ni_ic;
2021 	struct mbuf *m = bf->bf_m;
2022 	struct ath_hal *ah = sc->sc_ah;
2023 	struct ath_desc *ds;
2024 	int flags, antenna;
2025 	const HAL_RATE_TABLE *rt;
2026 	u_int8_t rix, rate;
2027 
2028 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2029 		__func__, m, m->m_len);
2030 
2031 	/* setup descriptors */
2032 	ds = bf->bf_desc;
2033 
2034 	flags = HAL_TXDESC_NOACK;
2035 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2036 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2037 		flags |= HAL_TXDESC_VEOL;
2038 		/*
2039 		 * Let hardware handle antenna switching.
2040 		 */
2041 		antenna = sc->sc_txantenna;
2042 	} else {
2043 		ds->ds_link = 0;
2044 		/*
2045 		 * Switch antenna every 4 beacons.
2046 		 * XXX assumes two antenna
2047 		 */
2048 		antenna = sc->sc_txantenna != 0 ? sc->sc_txantenna
2049 			: (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2050 	}
2051 
2052 	KASSERT(bf->bf_nseg == 1,
2053 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2054 	ds->ds_data = bf->bf_segs[0].ds_addr;
2055 	/*
2056 	 * Calculate rate code.
2057 	 * XXX everything at min xmit rate
2058 	 */
2059 	rix = sc->sc_minrateix;
2060 	rt = sc->sc_currates;
2061 	rate = rt->info[rix].rateCode;
2062 	if (USE_SHPREAMBLE(ic))
2063 		rate |= rt->info[rix].shortPreamble;
2064 	ath_hal_setuptxdesc(ah, ds
2065 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2066 		, sizeof(struct ieee80211_frame)/* header length */
2067 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2068 		, ni->ni_txpower		/* txpower XXX */
2069 		, rate, 1			/* series 0 rate/tries */
2070 		, HAL_TXKEYIX_INVALID		/* no encryption */
2071 		, antenna			/* antenna mode */
2072 		, flags				/* no ack, veol for beacons */
2073 		, 0				/* rts/cts rate */
2074 		, 0				/* rts/cts duration */
2075 	);
2076 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2077 	ath_hal_filltxdesc(ah, ds
2078 		, roundup(m->m_len, 4)		/* buffer length */
2079 		, AH_TRUE			/* first segment */
2080 		, AH_TRUE			/* last segment */
2081 		, ds				/* first descriptor */
2082 	);
2083 #undef USE_SHPREAMBLE
2084 }
2085 
2086 /*
2087  * Append the contents of src to dst; both queues
2088  * are assumed to be locked.
2089  */
2090 static void
2091 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2092 {
2093 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2094 	dst->axq_link = src->axq_link;
2095 	src->axq_link = NULL;
2096 	dst->axq_depth += src->axq_depth;
2097 	src->axq_depth = 0;
2098 }
2099 
2100 /*
2101  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2102  * frame contents are done as needed and the slot time is
2103  * also adjusted based on current state.
2104  */
2105 static void
2106 ath_beacon_proc(void *arg, int pending)
2107 {
2108 	struct ath_softc *sc = arg;
2109 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2110 	struct ieee80211_node *ni = bf->bf_node;
2111 	struct ieee80211com *ic = ni->ni_ic;
2112 	struct ath_hal *ah = sc->sc_ah;
2113 	struct ath_txq *cabq = sc->sc_cabq;
2114 	struct mbuf *m;
2115 	int ncabq, nmcastq, error, otherant;
2116 
2117 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2118 		__func__, pending);
2119 
2120 	if (ic->ic_opmode == IEEE80211_M_STA ||
2121 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2122 	    bf == NULL || bf->bf_m == NULL) {
2123 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2124 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2125 		return;
2126 	}
2127 	/*
2128 	 * Check if the previous beacon has gone out.  If
2129 	 * not don't try to post another, skip this period
2130 	 * and wait for the next.  Missed beacons indicate
2131 	 * a problem and should not occur.  If we miss too
2132 	 * many consecutive beacons reset the device.
2133 	 */
2134 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2135 		sc->sc_bmisscount++;
2136 		DPRINTF(sc, ATH_DEBUG_BEACON,
2137 			"%s: missed %u consecutive beacons\n",
2138 			__func__, sc->sc_bmisscount);
2139 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2140 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2141 		return;
2142 	}
2143 	if (sc->sc_bmisscount != 0) {
2144 		DPRINTF(sc, ATH_DEBUG_BEACON,
2145 			"%s: resume beacon xmit after %u misses\n",
2146 			__func__, sc->sc_bmisscount);
2147 		sc->sc_bmisscount = 0;
2148 	}
2149 
2150 	/*
2151 	 * Update dynamic beacon contents.  If this returns
2152 	 * non-zero then we need to remap the memory because
2153 	 * the beacon frame changed size (probably because
2154 	 * of the TIM bitmap).
2155 	 */
2156 	m = bf->bf_m;
2157 	nmcastq = sc->sc_mcastq.axq_depth;
2158 	ncabq = ath_hal_numtxpending(ah, cabq->axq_qnum);
2159 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq+nmcastq)) {
2160 		/* XXX too conservative? */
2161 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2162 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2163 					     bf->bf_segs, &bf->bf_nseg,
2164 					     BUS_DMA_NOWAIT);
2165 		if (error != 0) {
2166 			if_printf(ic->ic_ifp,
2167 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2168 			    __func__, error);
2169 			return;
2170 		}
2171 	}
2172 	if (ncabq && (sc->sc_boff.bo_tim[4] & 1)) {
2173 		/*
2174 		 * CABQ traffic from the previous DTIM is still pending.
2175 		 * This is ok for now but when there are multiple vap's
2176 		 * and we are using staggered beacons we'll want to drain
2177 		 * the cabq before loading frames for the different vap.
2178 		 */
2179 		DPRINTF(sc, ATH_DEBUG_BEACON,
2180 		    "%s: cabq did not drain, mcastq %u cabq %u/%u\n",
2181 		    __func__, nmcastq, ncabq, cabq->axq_depth);
2182 		sc->sc_stats.ast_cabq_busy++;
2183 	}
2184 
2185 	/*
2186 	 * Handle slot time change when a non-ERP station joins/leaves
2187 	 * an 11g network.  The 802.11 layer notifies us via callback,
2188 	 * we mark updateslot, then wait one beacon before effecting
2189 	 * the change.  This gives associated stations at least one
2190 	 * beacon interval to note the state change.
2191 	 */
2192 	/* XXX locking */
2193 	if (sc->sc_updateslot == UPDATE)
2194 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2195 	else if (sc->sc_updateslot == COMMIT)
2196 		ath_setslottime(sc);		/* commit change to h/w */
2197 
2198 	/*
2199 	 * Check recent per-antenna transmit statistics and flip
2200 	 * the default antenna if noticeably more frames went out
2201 	 * on the non-default antenna.
2202 	 * XXX assumes 2 anntenae
2203 	 */
2204 	otherant = sc->sc_defant & 1 ? 2 : 1;
2205 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2206 		ath_setdefantenna(sc, otherant);
2207 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2208 
2209 	/*
2210 	 * Construct tx descriptor.
2211 	 */
2212 	ath_beacon_setup(sc, bf);
2213 
2214 	/*
2215 	 * Stop any current dma and put the new frame on the queue.
2216 	 * This should never fail since we check above that no frames
2217 	 * are still pending on the queue.
2218 	 */
2219 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2220 		DPRINTF(sc, ATH_DEBUG_ANY,
2221 			"%s: beacon queue %u did not stop?\n",
2222 			__func__, sc->sc_bhalq);
2223 	}
2224 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2225 
2226 	/*
2227 	 * Enable the CAB queue before the beacon queue to
2228 	 * insure cab frames are triggered by this beacon.
2229 	 */
2230 	if (sc->sc_boff.bo_tim_len && (sc->sc_boff.bo_tim[4] & 1)) {
2231 		/* NB: only at DTIM */
2232 		ATH_TXQ_LOCK(cabq);
2233 		ATH_TXQ_LOCK(&sc->sc_mcastq);
2234 		if (nmcastq) {
2235 			struct ath_buf *bfm;
2236 
2237 			/*
2238 			 * Move frames from the s/w mcast q to the h/w cab q.
2239 			 */
2240 			bfm = STAILQ_FIRST(&sc->sc_mcastq.axq_q);
2241 			if (cabq->axq_link != NULL) {
2242 				*cabq->axq_link = bfm->bf_daddr;
2243 			} else
2244 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2245 					bfm->bf_daddr);
2246 			ath_txqmove(cabq, &sc->sc_mcastq);
2247 
2248 			sc->sc_stats.ast_cabq_xmit += nmcastq;
2249 		}
2250 		/* NB: gated by beacon so safe to start here */
2251 		ath_hal_txstart(ah, cabq->axq_qnum);
2252 		ATH_TXQ_UNLOCK(cabq);
2253 		ATH_TXQ_UNLOCK(&sc->sc_mcastq);
2254 	}
2255 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2256 	ath_hal_txstart(ah, sc->sc_bhalq);
2257 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2258 		"%s: TXDP[%u] = %p (%p)\n", __func__,
2259 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2260 
2261 	sc->sc_stats.ast_be_xmit++;
2262 }
2263 
2264 /*
2265  * Reset the hardware after detecting beacons have stopped.
2266  */
2267 static void
2268 ath_bstuck_proc(void *arg, int pending)
2269 {
2270 	struct ath_softc *sc = arg;
2271 	struct ifnet *ifp = sc->sc_ifp;
2272 
2273 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2274 		sc->sc_bmisscount);
2275 	ath_reset(ifp);
2276 }
2277 
2278 /*
2279  * Reclaim beacon resources.
2280  */
2281 static void
2282 ath_beacon_free(struct ath_softc *sc)
2283 {
2284 	struct ath_buf *bf;
2285 
2286 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2287 		if (bf->bf_m != NULL) {
2288 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2289 			m_freem(bf->bf_m);
2290 			bf->bf_m = NULL;
2291 		}
2292 		if (bf->bf_node != NULL) {
2293 			ieee80211_free_node(bf->bf_node);
2294 			bf->bf_node = NULL;
2295 		}
2296 	}
2297 }
2298 
2299 /*
2300  * Configure the beacon and sleep timers.
2301  *
2302  * When operating as an AP this resets the TSF and sets
2303  * up the hardware to notify us when we need to issue beacons.
2304  *
2305  * When operating in station mode this sets up the beacon
2306  * timers according to the timestamp of the last received
2307  * beacon and the current TSF, configures PCF and DTIM
2308  * handling, programs the sleep registers so the hardware
2309  * will wakeup in time to receive beacons, and configures
2310  * the beacon miss handling so we'll receive a BMISS
2311  * interrupt when we stop seeing beacons from the AP
2312  * we've associated with.
2313  */
2314 static void
2315 ath_beacon_config(struct ath_softc *sc)
2316 {
2317 #define	TSF_TO_TU(_h,_l) \
2318 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2319 #define	FUDGE	2
2320 	struct ath_hal *ah = sc->sc_ah;
2321 	struct ieee80211com *ic = &sc->sc_ic;
2322 	struct ieee80211_node *ni = ic->ic_bss;
2323 	u_int32_t nexttbtt, intval, tsftu;
2324 	u_int64_t tsf;
2325 
2326 	/* extract tstamp from last beacon and convert to TU */
2327 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2328 			     LE_READ_4(ni->ni_tstamp.data));
2329 	/* NB: the beacon interval is kept internally in TU's */
2330 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2331 	if (nexttbtt == 0)		/* e.g. for ap mode */
2332 		nexttbtt = intval;
2333 	else if (intval)		/* NB: can be 0 for monitor mode */
2334 		nexttbtt = roundup(nexttbtt, intval);
2335 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2336 		__func__, nexttbtt, intval, ni->ni_intval);
2337 	if (ic->ic_opmode == IEEE80211_M_STA) {
2338 		HAL_BEACON_STATE bs;
2339 		int dtimperiod, dtimcount;
2340 		int cfpperiod, cfpcount;
2341 
2342 		/*
2343 		 * Setup dtim and cfp parameters according to
2344 		 * last beacon we received (which may be none).
2345 		 */
2346 		dtimperiod = ni->ni_dtim_period;
2347 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2348 			dtimperiod = 1;
2349 		dtimcount = ni->ni_dtim_count;
2350 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2351 			dtimcount = 0;		/* XXX? */
2352 		cfpperiod = 1;			/* NB: no PCF support yet */
2353 		cfpcount = 0;
2354 		/*
2355 		 * Pull nexttbtt forward to reflect the current
2356 		 * TSF and calculate dtim+cfp state for the result.
2357 		 */
2358 		tsf = ath_hal_gettsf64(ah);
2359 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2360 		do {
2361 			nexttbtt += intval;
2362 			if (--dtimcount < 0) {
2363 				dtimcount = dtimperiod - 1;
2364 				if (--cfpcount < 0)
2365 					cfpcount = cfpperiod - 1;
2366 			}
2367 		} while (nexttbtt < tsftu);
2368 		memset(&bs, 0, sizeof(bs));
2369 		bs.bs_intval = intval;
2370 		bs.bs_nexttbtt = nexttbtt;
2371 		bs.bs_dtimperiod = dtimperiod*intval;
2372 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2373 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2374 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2375 		bs.bs_cfpmaxduration = 0;
2376 #if 0
2377 		/*
2378 		 * The 802.11 layer records the offset to the DTIM
2379 		 * bitmap while receiving beacons; use it here to
2380 		 * enable h/w detection of our AID being marked in
2381 		 * the bitmap vector (to indicate frames for us are
2382 		 * pending at the AP).
2383 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2384 		 * XXX enable based on h/w rev for newer chips
2385 		 */
2386 		bs.bs_timoffset = ni->ni_timoff;
2387 #endif
2388 		/*
2389 		 * Calculate the number of consecutive beacons to miss
2390 		 * before taking a BMISS interrupt.  The configuration
2391 		 * is specified in ms, so we need to convert that to
2392 		 * TU's and then calculate based on the beacon interval.
2393 		 * Note that we clamp the result to at most 10 beacons.
2394 		 */
2395 		bs.bs_bmissthreshold = ic->ic_bmissthreshold;
2396 		if (bs.bs_bmissthreshold > 10)
2397 			bs.bs_bmissthreshold = 10;
2398 		else if (bs.bs_bmissthreshold <= 0)
2399 			bs.bs_bmissthreshold = 1;
2400 
2401 		/*
2402 		 * Calculate sleep duration.  The configuration is
2403 		 * given in ms.  We insure a multiple of the beacon
2404 		 * period is used.  Also, if the sleep duration is
2405 		 * greater than the DTIM period then it makes senses
2406 		 * to make it a multiple of that.
2407 		 *
2408 		 * XXX fixed at 100ms
2409 		 */
2410 		bs.bs_sleepduration =
2411 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2412 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2413 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2414 
2415 		DPRINTF(sc, ATH_DEBUG_BEACON,
2416 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2417 			, __func__
2418 			, tsf, tsftu
2419 			, bs.bs_intval
2420 			, bs.bs_nexttbtt
2421 			, bs.bs_dtimperiod
2422 			, bs.bs_nextdtim
2423 			, bs.bs_bmissthreshold
2424 			, bs.bs_sleepduration
2425 			, bs.bs_cfpperiod
2426 			, bs.bs_cfpmaxduration
2427 			, bs.bs_cfpnext
2428 			, bs.bs_timoffset
2429 		);
2430 		ath_hal_intrset(ah, 0);
2431 		ath_hal_beacontimers(ah, &bs);
2432 		sc->sc_imask |= HAL_INT_BMISS;
2433 		ath_hal_intrset(ah, sc->sc_imask);
2434 	} else {
2435 		ath_hal_intrset(ah, 0);
2436 		if (nexttbtt == intval)
2437 			intval |= HAL_BEACON_RESET_TSF;
2438 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2439 			/*
2440 			 * In IBSS mode enable the beacon timers but only
2441 			 * enable SWBA interrupts if we need to manually
2442 			 * prepare beacon frames.  Otherwise we use a
2443 			 * self-linked tx descriptor and let the hardware
2444 			 * deal with things.
2445 			 */
2446 			intval |= HAL_BEACON_ENA;
2447 			if (!sc->sc_hasveol)
2448 				sc->sc_imask |= HAL_INT_SWBA;
2449 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2450 				/*
2451 				 * Pull nexttbtt forward to reflect
2452 				 * the current TSF.
2453 				 */
2454 				tsf = ath_hal_gettsf64(ah);
2455 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2456 				do {
2457 					nexttbtt += intval;
2458 				} while (nexttbtt < tsftu);
2459 			}
2460 			ath_beaconq_config(sc);
2461 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2462 			/*
2463 			 * In AP mode we enable the beacon timers and
2464 			 * SWBA interrupts to prepare beacon frames.
2465 			 */
2466 			intval |= HAL_BEACON_ENA;
2467 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2468 			ath_beaconq_config(sc);
2469 		}
2470 		ath_hal_beaconinit(ah, nexttbtt, intval);
2471 		sc->sc_bmisscount = 0;
2472 		ath_hal_intrset(ah, sc->sc_imask);
2473 		/*
2474 		 * When using a self-linked beacon descriptor in
2475 		 * ibss mode load it once here.
2476 		 */
2477 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2478 			ath_beacon_proc(sc, 0);
2479 	}
2480 	sc->sc_syncbeacon = 0;
2481 #undef FUDGE
2482 #undef TSF_TO_TU
2483 }
2484 
2485 static void
2486 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2487 {
2488 	bus_addr_t *paddr = (bus_addr_t*) arg;
2489 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2490 	*paddr = segs->ds_addr;
2491 }
2492 
2493 static int
2494 ath_descdma_setup(struct ath_softc *sc,
2495 	struct ath_descdma *dd, ath_bufhead *head,
2496 	const char *name, int nbuf, int ndesc)
2497 {
2498 #define	DS2PHYS(_dd, _ds) \
2499 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2500 	struct ifnet *ifp = sc->sc_ifp;
2501 	struct ath_desc *ds;
2502 	struct ath_buf *bf;
2503 	int i, bsize, error;
2504 
2505 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2506 	    __func__, name, nbuf, ndesc);
2507 
2508 	dd->dd_name = name;
2509 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2510 
2511 	/*
2512 	 * Setup DMA descriptor area.
2513 	 */
2514 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2515 		       PAGE_SIZE, 0,		/* alignment, bounds */
2516 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2517 		       BUS_SPACE_MAXADDR,	/* highaddr */
2518 		       NULL, NULL,		/* filter, filterarg */
2519 		       dd->dd_desc_len,		/* maxsize */
2520 		       1,			/* nsegments */
2521 		       dd->dd_desc_len,		/* maxsegsize */
2522 		       BUS_DMA_ALLOCNOW,	/* flags */
2523 		       NULL,			/* lockfunc */
2524 		       NULL,			/* lockarg */
2525 		       &dd->dd_dmat);
2526 	if (error != 0) {
2527 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2528 		return error;
2529 	}
2530 
2531 	/* allocate descriptors */
2532 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2533 	if (error != 0) {
2534 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2535 			"error %u\n", dd->dd_name, error);
2536 		goto fail0;
2537 	}
2538 
2539 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2540 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2541 				 &dd->dd_dmamap);
2542 	if (error != 0) {
2543 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2544 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2545 		goto fail1;
2546 	}
2547 
2548 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2549 				dd->dd_desc, dd->dd_desc_len,
2550 				ath_load_cb, &dd->dd_desc_paddr,
2551 				BUS_DMA_NOWAIT);
2552 	if (error != 0) {
2553 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2554 			dd->dd_name, error);
2555 		goto fail2;
2556 	}
2557 
2558 	ds = dd->dd_desc;
2559 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2560 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2561 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2562 
2563 	/* allocate rx buffers */
2564 	bsize = sizeof(struct ath_buf) * nbuf;
2565 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2566 	if (bf == NULL) {
2567 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2568 			dd->dd_name, bsize);
2569 		goto fail3;
2570 	}
2571 	dd->dd_bufptr = bf;
2572 
2573 	STAILQ_INIT(head);
2574 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2575 		bf->bf_desc = ds;
2576 		bf->bf_daddr = DS2PHYS(dd, ds);
2577 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2578 				&bf->bf_dmamap);
2579 		if (error != 0) {
2580 			if_printf(ifp, "unable to create dmamap for %s "
2581 				"buffer %u, error %u\n", dd->dd_name, i, error);
2582 			ath_descdma_cleanup(sc, dd, head);
2583 			return error;
2584 		}
2585 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2586 	}
2587 	return 0;
2588 fail3:
2589 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2590 fail2:
2591 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2592 fail1:
2593 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2594 fail0:
2595 	bus_dma_tag_destroy(dd->dd_dmat);
2596 	memset(dd, 0, sizeof(*dd));
2597 	return error;
2598 #undef DS2PHYS
2599 }
2600 
2601 static void
2602 ath_descdma_cleanup(struct ath_softc *sc,
2603 	struct ath_descdma *dd, ath_bufhead *head)
2604 {
2605 	struct ath_buf *bf;
2606 	struct ieee80211_node *ni;
2607 
2608 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2609 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2610 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2611 	bus_dma_tag_destroy(dd->dd_dmat);
2612 
2613 	STAILQ_FOREACH(bf, head, bf_list) {
2614 		if (bf->bf_m) {
2615 			m_freem(bf->bf_m);
2616 			bf->bf_m = NULL;
2617 		}
2618 		if (bf->bf_dmamap != NULL) {
2619 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2620 			bf->bf_dmamap = NULL;
2621 		}
2622 		ni = bf->bf_node;
2623 		bf->bf_node = NULL;
2624 		if (ni != NULL) {
2625 			/*
2626 			 * Reclaim node reference.
2627 			 */
2628 			ieee80211_free_node(ni);
2629 		}
2630 	}
2631 
2632 	STAILQ_INIT(head);
2633 	free(dd->dd_bufptr, M_ATHDEV);
2634 	memset(dd, 0, sizeof(*dd));
2635 }
2636 
2637 static int
2638 ath_desc_alloc(struct ath_softc *sc)
2639 {
2640 	int error;
2641 
2642 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2643 			"rx", ath_rxbuf, 1);
2644 	if (error != 0)
2645 		return error;
2646 
2647 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2648 			"tx", ath_txbuf, ATH_TXDESC);
2649 	if (error != 0) {
2650 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2651 		return error;
2652 	}
2653 
2654 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2655 			"beacon", 1, 1);
2656 	if (error != 0) {
2657 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2658 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2659 		return error;
2660 	}
2661 	return 0;
2662 }
2663 
2664 static void
2665 ath_desc_free(struct ath_softc *sc)
2666 {
2667 
2668 	if (sc->sc_bdma.dd_desc_len != 0)
2669 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2670 	if (sc->sc_txdma.dd_desc_len != 0)
2671 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2672 	if (sc->sc_rxdma.dd_desc_len != 0)
2673 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2674 }
2675 
2676 static struct ieee80211_node *
2677 ath_node_alloc(struct ieee80211_node_table *nt)
2678 {
2679 	struct ieee80211com *ic = nt->nt_ic;
2680 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2681 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2682 	struct ath_node *an;
2683 
2684 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2685 	if (an == NULL) {
2686 		/* XXX stat+msg */
2687 		return NULL;
2688 	}
2689 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2690 	ath_rate_node_init(sc, an);
2691 
2692 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2693 	return &an->an_node;
2694 }
2695 
2696 static void
2697 ath_node_free(struct ieee80211_node *ni)
2698 {
2699 	struct ieee80211com *ic = ni->ni_ic;
2700         struct ath_softc *sc = ic->ic_ifp->if_softc;
2701 
2702 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2703 
2704 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2705 	sc->sc_node_free(ni);
2706 }
2707 
2708 static u_int8_t
2709 ath_node_getrssi(const struct ieee80211_node *ni)
2710 {
2711 #define	HAL_EP_RND(x, mul) \
2712 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2713 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2714 	int32_t rssi;
2715 
2716 	/*
2717 	 * When only one frame is received there will be no state in
2718 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2719 	 */
2720 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2721 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2722 	else
2723 		rssi = ni->ni_rssi;
2724 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2725 #undef HAL_EP_RND
2726 }
2727 
2728 static int
2729 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2730 {
2731 	struct ath_hal *ah = sc->sc_ah;
2732 	int error;
2733 	struct mbuf *m;
2734 	struct ath_desc *ds;
2735 
2736 	m = bf->bf_m;
2737 	if (m == NULL) {
2738 		/*
2739 		 * NB: by assigning a page to the rx dma buffer we
2740 		 * implicitly satisfy the Atheros requirement that
2741 		 * this buffer be cache-line-aligned and sized to be
2742 		 * multiple of the cache line size.  Not doing this
2743 		 * causes weird stuff to happen (for the 5210 at least).
2744 		 */
2745 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2746 		if (m == NULL) {
2747 			DPRINTF(sc, ATH_DEBUG_ANY,
2748 				"%s: no mbuf/cluster\n", __func__);
2749 			sc->sc_stats.ast_rx_nombuf++;
2750 			return ENOMEM;
2751 		}
2752 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2753 
2754 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2755 					     bf->bf_dmamap, m,
2756 					     bf->bf_segs, &bf->bf_nseg,
2757 					     BUS_DMA_NOWAIT);
2758 		if (error != 0) {
2759 			DPRINTF(sc, ATH_DEBUG_ANY,
2760 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2761 			    __func__, error);
2762 			sc->sc_stats.ast_rx_busdma++;
2763 			m_freem(m);
2764 			return error;
2765 		}
2766 		KASSERT(bf->bf_nseg == 1,
2767 			("multi-segment packet; nseg %u", bf->bf_nseg));
2768 		bf->bf_m = m;
2769 	}
2770 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2771 
2772 	/*
2773 	 * Setup descriptors.  For receive we always terminate
2774 	 * the descriptor list with a self-linked entry so we'll
2775 	 * not get overrun under high load (as can happen with a
2776 	 * 5212 when ANI processing enables PHY error frames).
2777 	 *
2778 	 * To insure the last descriptor is self-linked we create
2779 	 * each descriptor as self-linked and add it to the end.  As
2780 	 * each additional descriptor is added the previous self-linked
2781 	 * entry is ``fixed'' naturally.  This should be safe even
2782 	 * if DMA is happening.  When processing RX interrupts we
2783 	 * never remove/process the last, self-linked, entry on the
2784 	 * descriptor list.  This insures the hardware always has
2785 	 * someplace to write a new frame.
2786 	 */
2787 	ds = bf->bf_desc;
2788 	ds->ds_link = bf->bf_daddr;	/* link to self */
2789 	ds->ds_data = bf->bf_segs[0].ds_addr;
2790 	ath_hal_setuprxdesc(ah, ds
2791 		, m->m_len		/* buffer size */
2792 		, 0
2793 	);
2794 
2795 	if (sc->sc_rxlink != NULL)
2796 		*sc->sc_rxlink = bf->bf_daddr;
2797 	sc->sc_rxlink = &ds->ds_link;
2798 	return 0;
2799 }
2800 
2801 /*
2802  * Extend 15-bit time stamp from rx descriptor to
2803  * a full 64-bit TSF using the specified TSF.
2804  */
2805 static __inline u_int64_t
2806 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2807 {
2808 	if ((tsf & 0x7fff) < rstamp)
2809 		tsf -= 0x8000;
2810 	return ((tsf &~ 0x7fff) | rstamp);
2811 }
2812 
2813 /*
2814  * Intercept management frames to collect beacon rssi data
2815  * and to do ibss merges.
2816  */
2817 static void
2818 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2819 	struct ieee80211_node *ni,
2820 	int subtype, int rssi, u_int32_t rstamp)
2821 {
2822 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2823 
2824 	/*
2825 	 * Call up first so subsequent work can use information
2826 	 * potentially stored in the node (e.g. for ibss merge).
2827 	 */
2828 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2829 	switch (subtype) {
2830 	case IEEE80211_FC0_SUBTYPE_BEACON:
2831 		/* update rssi statistics for use by the hal */
2832 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2833 		if (sc->sc_syncbeacon &&
2834 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2835 			/*
2836 			 * Resync beacon timers using the tsf of the beacon
2837 			 * frame we just received.
2838 			 */
2839 			ath_beacon_config(sc);
2840 		}
2841 		/* fall thru... */
2842 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2843 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2844 		    ic->ic_state == IEEE80211_S_RUN) {
2845 			u_int64_t tsf = ath_extend_tsf(rstamp,
2846 				ath_hal_gettsf64(sc->sc_ah));
2847 			/*
2848 			 * Handle ibss merge as needed; check the tsf on the
2849 			 * frame before attempting the merge.  The 802.11 spec
2850 			 * says the station should change it's bssid to match
2851 			 * the oldest station with the same ssid, where oldest
2852 			 * is determined by the tsf.  Note that hardware
2853 			 * reconfiguration happens through callback to
2854 			 * ath_newstate as the state machine will go from
2855 			 * RUN -> RUN when this happens.
2856 			 */
2857 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2858 				DPRINTF(sc, ATH_DEBUG_STATE,
2859 				    "ibss merge, rstamp %u tsf %ju "
2860 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2861 				    (uintmax_t)ni->ni_tstamp.tsf);
2862 				(void) ieee80211_ibss_merge(ni);
2863 			}
2864 		}
2865 		break;
2866 	}
2867 }
2868 
2869 /*
2870  * Set the default antenna.
2871  */
2872 static void
2873 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2874 {
2875 	struct ath_hal *ah = sc->sc_ah;
2876 
2877 	/* XXX block beacon interrupts */
2878 	ath_hal_setdefantenna(ah, antenna);
2879 	if (sc->sc_defant != antenna)
2880 		sc->sc_stats.ast_ant_defswitch++;
2881 	sc->sc_defant = antenna;
2882 	sc->sc_rxotherant = 0;
2883 }
2884 
2885 static int
2886 ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
2887 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
2888 {
2889 	u_int8_t rix;
2890 
2891 	KASSERT(sc->sc_drvbpf != NULL, ("no tap"));
2892 
2893 	/*
2894 	 * Discard anything shorter than an ack or cts.
2895 	 */
2896 	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
2897 		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
2898 			__func__, m->m_pkthdr.len);
2899 		sc->sc_stats.ast_rx_tooshort++;
2900 		return 0;
2901 	}
2902 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
2903 	rix = rs->rs_rate;
2904 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2905 	if (rs->rs_status & HAL_RXERR_CRC)
2906 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2907 	/* XXX propagate other error flags from descriptor */
2908 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2909 	sc->sc_rx_th.wr_antsignal = rs->rs_rssi + nf;
2910 	sc->sc_rx_th.wr_antnoise = nf;
2911 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
2912 
2913 	bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
2914 
2915 	return 1;
2916 }
2917 
2918 static void
2919 ath_rx_proc(void *arg, int npending)
2920 {
2921 #define	PA2DESC(_sc, _pa) \
2922 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2923 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2924 	struct ath_softc *sc = arg;
2925 	struct ath_buf *bf;
2926 	struct ieee80211com *ic = &sc->sc_ic;
2927 	struct ifnet *ifp = sc->sc_ifp;
2928 	struct ath_hal *ah = sc->sc_ah;
2929 	struct ath_desc *ds;
2930 	struct ath_rx_status *rs;
2931 	struct mbuf *m;
2932 	struct ieee80211_node *ni;
2933 	struct ath_node *an;
2934 	int len, type, ngood;
2935 	u_int phyerr;
2936 	HAL_STATUS status;
2937 	int16_t nf;
2938 	u_int64_t tsf;
2939 
2940 	NET_LOCK_GIANT();		/* XXX */
2941 
2942 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2943 	ngood = 0;
2944 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2945 	tsf = ath_hal_gettsf64(ah);
2946 	do {
2947 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2948 		if (bf == NULL) {		/* NB: shouldn't happen */
2949 			if_printf(ifp, "%s: no buffer!\n", __func__);
2950 			break;
2951 		}
2952 		m = bf->bf_m;
2953 		if (m == NULL) {		/* NB: shouldn't happen */
2954 			/*
2955 			 * If mbuf allocation failed previously there
2956 			 * will be no mbuf; try again to re-populate it.
2957 			 */
2958 			/* XXX make debug msg */
2959 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2960 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2961 			goto rx_next;
2962 		}
2963 		ds = bf->bf_desc;
2964 		if (ds->ds_link == bf->bf_daddr) {
2965 			/* NB: never process the self-linked entry at the end */
2966 			break;
2967 		}
2968 		/* XXX sync descriptor memory */
2969 		/*
2970 		 * Must provide the virtual address of the current
2971 		 * descriptor, the physical address, and the virtual
2972 		 * address of the next descriptor in the h/w chain.
2973 		 * This allows the HAL to look ahead to see if the
2974 		 * hardware is done with a descriptor by checking the
2975 		 * done bit in the following descriptor and the address
2976 		 * of the current descriptor the DMA engine is working
2977 		 * on.  All this is necessary because of our use of
2978 		 * a self-linked list to avoid rx overruns.
2979 		 */
2980 		rs = &bf->bf_status.ds_rxstat;
2981 		status = ath_hal_rxprocdesc(ah, ds,
2982 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
2983 #ifdef ATH_DEBUG
2984 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2985 			ath_printrxbuf(bf, 0, status == HAL_OK);
2986 #endif
2987 		if (status == HAL_EINPROGRESS)
2988 			break;
2989 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2990 		if (rs->rs_more) {
2991 			/*
2992 			 * Frame spans multiple descriptors; this
2993 			 * cannot happen yet as we don't support
2994 			 * jumbograms.  If not in monitor mode,
2995 			 * discard the frame.
2996 			 */
2997 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2998 				sc->sc_stats.ast_rx_toobig++;
2999 				goto rx_next;
3000 			}
3001 			/* fall thru for monitor mode handling... */
3002 		} else if (rs->rs_status != 0) {
3003 			if (rs->rs_status & HAL_RXERR_CRC)
3004 				sc->sc_stats.ast_rx_crcerr++;
3005 			if (rs->rs_status & HAL_RXERR_FIFO)
3006 				sc->sc_stats.ast_rx_fifoerr++;
3007 			if (rs->rs_status & HAL_RXERR_PHY) {
3008 				sc->sc_stats.ast_rx_phyerr++;
3009 				phyerr = rs->rs_phyerr & 0x1f;
3010 				sc->sc_stats.ast_rx_phy[phyerr]++;
3011 				goto rx_next;
3012 			}
3013 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3014 				/*
3015 				 * Decrypt error.  If the error occurred
3016 				 * because there was no hardware key, then
3017 				 * let the frame through so the upper layers
3018 				 * can process it.  This is necessary for 5210
3019 				 * parts which have no way to setup a ``clear''
3020 				 * key cache entry.
3021 				 *
3022 				 * XXX do key cache faulting
3023 				 */
3024 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3025 					goto rx_accept;
3026 				sc->sc_stats.ast_rx_badcrypt++;
3027 			}
3028 			if (rs->rs_status & HAL_RXERR_MIC) {
3029 				sc->sc_stats.ast_rx_badmic++;
3030 				/*
3031 				 * Do minimal work required to hand off
3032 				 * the 802.11 header for notifcation.
3033 				 */
3034 				/* XXX frag's and qos frames */
3035 				len = rs->rs_datalen;
3036 				if (len >= sizeof (struct ieee80211_frame)) {
3037 					bus_dmamap_sync(sc->sc_dmat,
3038 					    bf->bf_dmamap,
3039 					    BUS_DMASYNC_POSTREAD);
3040 					ieee80211_notify_michael_failure(ic,
3041 					    mtod(m, struct ieee80211_frame *),
3042 					    sc->sc_splitmic ?
3043 					        rs->rs_keyix-32 : rs->rs_keyix
3044 					);
3045 				}
3046 			}
3047 			ifp->if_ierrors++;
3048 			/*
3049 			 * When a tap is present pass error frames
3050 			 * that have been requested.  By default we
3051 			 * pass decrypt+mic errors but others may be
3052 			 * interesting (e.g. crc).
3053 			 */
3054 			if (bpf_peers_present(sc->sc_drvbpf) &&
3055 			    (rs->rs_status & sc->sc_monpass)) {
3056 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3057 				    BUS_DMASYNC_POSTREAD);
3058 				/* NB: bpf needs the mbuf length setup */
3059 				len = rs->rs_datalen;
3060 				m->m_pkthdr.len = m->m_len = len;
3061 				(void) ath_rx_tap(sc, m, rs, tsf, nf);
3062 			}
3063 			/* XXX pass MIC errors up for s/w reclaculation */
3064 			goto rx_next;
3065 		}
3066 rx_accept:
3067 		/*
3068 		 * Sync and unmap the frame.  At this point we're
3069 		 * committed to passing the mbuf somewhere so clear
3070 		 * bf_m; this means a new mbuf must be allocated
3071 		 * when the rx descriptor is setup again to receive
3072 		 * another frame.
3073 		 */
3074 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3075 		    BUS_DMASYNC_POSTREAD);
3076 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3077 		bf->bf_m = NULL;
3078 
3079 		m->m_pkthdr.rcvif = ifp;
3080 		len = rs->rs_datalen;
3081 		m->m_pkthdr.len = m->m_len = len;
3082 
3083 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3084 
3085 		if (bpf_peers_present(sc->sc_drvbpf) &&
3086 		    !ath_rx_tap(sc, m, rs, tsf, nf)) {
3087 			m_freem(m);		/* XXX reclaim */
3088 			goto rx_next;
3089 		}
3090 
3091 		/*
3092 		 * From this point on we assume the frame is at least
3093 		 * as large as ieee80211_frame_min; verify that.
3094 		 */
3095 		if (len < IEEE80211_MIN_LEN) {
3096 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3097 				__func__, len);
3098 			sc->sc_stats.ast_rx_tooshort++;
3099 			m_freem(m);
3100 			goto rx_next;
3101 		}
3102 
3103 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3104 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
3105 				   sc->sc_hwmap[rs->rs_rate].ieeerate,
3106 				   rs->rs_rssi);
3107 		}
3108 
3109 		m_adj(m, -IEEE80211_CRC_LEN);
3110 
3111 		/*
3112 		 * Locate the node for sender, track state, and then
3113 		 * pass the (referenced) node up to the 802.11 layer
3114 		 * for its use.
3115 		 */
3116 		ni = ieee80211_find_rxnode_withkey(ic,
3117 			mtod(m, const struct ieee80211_frame_min *),
3118 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
3119 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
3120 		/*
3121 		 * Track rx rssi and do any rx antenna management.
3122 		 */
3123 		an = ATH_NODE(ni);
3124 		ATH_RSSI_LPF(an->an_avgrssi, rs->rs_rssi);
3125 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
3126 		/*
3127 		 * Send frame up for processing.
3128 		 */
3129 		type = ieee80211_input(ic, m, ni, rs->rs_rssi, rs->rs_tstamp);
3130 		ieee80211_free_node(ni);
3131 		if (sc->sc_diversity) {
3132 			/*
3133 			 * When using fast diversity, change the default rx
3134 			 * antenna if diversity chooses the other antenna 3
3135 			 * times in a row.
3136 			 */
3137 			if (sc->sc_defant != rs->rs_antenna) {
3138 				if (++sc->sc_rxotherant >= 3)
3139 					ath_setdefantenna(sc, rs->rs_antenna);
3140 			} else
3141 				sc->sc_rxotherant = 0;
3142 		}
3143 		if (sc->sc_softled) {
3144 			/*
3145 			 * Blink for any data frame.  Otherwise do a
3146 			 * heartbeat-style blink when idle.  The latter
3147 			 * is mainly for station mode where we depend on
3148 			 * periodic beacon frames to trigger the poll event.
3149 			 */
3150 			if (type == IEEE80211_FC0_TYPE_DATA) {
3151 				sc->sc_rxrate = rs->rs_rate;
3152 				ath_led_event(sc, ATH_LED_RX);
3153 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3154 				ath_led_event(sc, ATH_LED_POLL);
3155 		}
3156 		/*
3157 		 * Arrange to update the last rx timestamp only for
3158 		 * frames from our ap when operating in station mode.
3159 		 * This assumes the rx key is always setup when associated.
3160 		 */
3161 		if (ic->ic_opmode == IEEE80211_M_STA &&
3162 		    rs->rs_keyix != HAL_RXKEYIX_INVALID)
3163 			ngood++;
3164 rx_next:
3165 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3166 	} while (ath_rxbuf_init(sc, bf) == 0);
3167 
3168 	/* rx signal state monitoring */
3169 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3170 	if (ngood)
3171 		sc->sc_lastrx = tsf;
3172 
3173 	NET_UNLOCK_GIANT();		/* XXX */
3174 #undef PA2DESC
3175 }
3176 
3177 static void
3178 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3179 {
3180 	txq->axq_qnum = qnum;
3181 	txq->axq_depth = 0;
3182 	txq->axq_intrcnt = 0;
3183 	txq->axq_link = NULL;
3184 	STAILQ_INIT(&txq->axq_q);
3185 	ATH_TXQ_LOCK_INIT(sc, txq);
3186 }
3187 
3188 /*
3189  * Setup a h/w transmit queue.
3190  */
3191 static struct ath_txq *
3192 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3193 {
3194 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3195 	struct ath_hal *ah = sc->sc_ah;
3196 	HAL_TXQ_INFO qi;
3197 	int qnum;
3198 
3199 	memset(&qi, 0, sizeof(qi));
3200 	qi.tqi_subtype = subtype;
3201 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3202 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3203 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3204 	/*
3205 	 * Enable interrupts only for EOL and DESC conditions.
3206 	 * We mark tx descriptors to receive a DESC interrupt
3207 	 * when a tx queue gets deep; otherwise waiting for the
3208 	 * EOL to reap descriptors.  Note that this is done to
3209 	 * reduce interrupt load and this only defers reaping
3210 	 * descriptors, never transmitting frames.  Aside from
3211 	 * reducing interrupts this also permits more concurrency.
3212 	 * The only potential downside is if the tx queue backs
3213 	 * up in which case the top half of the kernel may backup
3214 	 * due to a lack of tx descriptors.
3215 	 */
3216 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3217 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3218 	if (qnum == -1) {
3219 		/*
3220 		 * NB: don't print a message, this happens
3221 		 * normally on parts with too few tx queues
3222 		 */
3223 		return NULL;
3224 	}
3225 	if (qnum >= N(sc->sc_txq)) {
3226 		device_printf(sc->sc_dev,
3227 			"hal qnum %u out of range, max %zu!\n",
3228 			qnum, N(sc->sc_txq));
3229 		ath_hal_releasetxqueue(ah, qnum);
3230 		return NULL;
3231 	}
3232 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3233 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3234 		sc->sc_txqsetup |= 1<<qnum;
3235 	}
3236 	return &sc->sc_txq[qnum];
3237 #undef N
3238 }
3239 
3240 /*
3241  * Setup a hardware data transmit queue for the specified
3242  * access control.  The hal may not support all requested
3243  * queues in which case it will return a reference to a
3244  * previously setup queue.  We record the mapping from ac's
3245  * to h/w queues for use by ath_tx_start and also track
3246  * the set of h/w queues being used to optimize work in the
3247  * transmit interrupt handler and related routines.
3248  */
3249 static int
3250 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3251 {
3252 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3253 	struct ath_txq *txq;
3254 
3255 	if (ac >= N(sc->sc_ac2q)) {
3256 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3257 			ac, N(sc->sc_ac2q));
3258 		return 0;
3259 	}
3260 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3261 	if (txq != NULL) {
3262 		sc->sc_ac2q[ac] = txq;
3263 		return 1;
3264 	} else
3265 		return 0;
3266 #undef N
3267 }
3268 
3269 /*
3270  * Update WME parameters for a transmit queue.
3271  */
3272 static int
3273 ath_txq_update(struct ath_softc *sc, int ac)
3274 {
3275 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3276 #define	ATH_TXOP_TO_US(v)		(v<<5)
3277 	struct ieee80211com *ic = &sc->sc_ic;
3278 	struct ath_txq *txq = sc->sc_ac2q[ac];
3279 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3280 	struct ath_hal *ah = sc->sc_ah;
3281 	HAL_TXQ_INFO qi;
3282 
3283 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3284 	qi.tqi_aifs = wmep->wmep_aifsn;
3285 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3286 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3287 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3288 
3289 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3290 		device_printf(sc->sc_dev, "unable to update hardware queue "
3291 			"parameters for %s traffic!\n",
3292 			ieee80211_wme_acnames[ac]);
3293 		return 0;
3294 	} else {
3295 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3296 		return 1;
3297 	}
3298 #undef ATH_TXOP_TO_US
3299 #undef ATH_EXPONENT_TO_VALUE
3300 }
3301 
3302 /*
3303  * Callback from the 802.11 layer to update WME parameters.
3304  */
3305 static int
3306 ath_wme_update(struct ieee80211com *ic)
3307 {
3308 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3309 
3310 	return !ath_txq_update(sc, WME_AC_BE) ||
3311 	    !ath_txq_update(sc, WME_AC_BK) ||
3312 	    !ath_txq_update(sc, WME_AC_VI) ||
3313 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3314 }
3315 
3316 /*
3317  * Reclaim resources for a setup queue.
3318  */
3319 static void
3320 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3321 {
3322 
3323 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3324 	ATH_TXQ_LOCK_DESTROY(txq);
3325 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3326 }
3327 
3328 /*
3329  * Reclaim all tx queue resources.
3330  */
3331 static void
3332 ath_tx_cleanup(struct ath_softc *sc)
3333 {
3334 	int i;
3335 
3336 	ATH_TXBUF_LOCK_DESTROY(sc);
3337 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3338 		if (ATH_TXQ_SETUP(sc, i))
3339 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3340 	ATH_TXQ_LOCK_DESTROY(&sc->sc_mcastq);
3341 }
3342 
3343 /*
3344  * Defragment an mbuf chain, returning at most maxfrags separate
3345  * mbufs+clusters.  If this is not possible NULL is returned and
3346  * the original mbuf chain is left in it's present (potentially
3347  * modified) state.  We use two techniques: collapsing consecutive
3348  * mbufs and replacing consecutive mbufs by a cluster.
3349  */
3350 static struct mbuf *
3351 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3352 {
3353 	struct mbuf *m, *n, *n2, **prev;
3354 	u_int curfrags;
3355 
3356 	/*
3357 	 * Calculate the current number of frags.
3358 	 */
3359 	curfrags = 0;
3360 	for (m = m0; m != NULL; m = m->m_next)
3361 		curfrags++;
3362 	/*
3363 	 * First, try to collapse mbufs.  Note that we always collapse
3364 	 * towards the front so we don't need to deal with moving the
3365 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3366 	 * less data than the following.
3367 	 */
3368 	m = m0;
3369 again:
3370 	for (;;) {
3371 		n = m->m_next;
3372 		if (n == NULL)
3373 			break;
3374 		if ((m->m_flags & M_RDONLY) == 0 &&
3375 		    n->m_len < M_TRAILINGSPACE(m)) {
3376 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3377 				n->m_len);
3378 			m->m_len += n->m_len;
3379 			m->m_next = n->m_next;
3380 			m_free(n);
3381 			if (--curfrags <= maxfrags)
3382 				return m0;
3383 		} else
3384 			m = n;
3385 	}
3386 	KASSERT(maxfrags > 1,
3387 		("maxfrags %u, but normal collapse failed", maxfrags));
3388 	/*
3389 	 * Collapse consecutive mbufs to a cluster.
3390 	 */
3391 	prev = &m0->m_next;		/* NB: not the first mbuf */
3392 	while ((n = *prev) != NULL) {
3393 		if ((n2 = n->m_next) != NULL &&
3394 		    n->m_len + n2->m_len < MCLBYTES) {
3395 			m = m_getcl(how, MT_DATA, 0);
3396 			if (m == NULL)
3397 				goto bad;
3398 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3399 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3400 				n2->m_len);
3401 			m->m_len = n->m_len + n2->m_len;
3402 			m->m_next = n2->m_next;
3403 			*prev = m;
3404 			m_free(n);
3405 			m_free(n2);
3406 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3407 				return m0;
3408 			/*
3409 			 * Still not there, try the normal collapse
3410 			 * again before we allocate another cluster.
3411 			 */
3412 			goto again;
3413 		}
3414 		prev = &n->m_next;
3415 	}
3416 	/*
3417 	 * No place where we can collapse to a cluster; punt.
3418 	 * This can occur if, for example, you request 2 frags
3419 	 * but the packet requires that both be clusters (we
3420 	 * never reallocate the first mbuf to avoid moving the
3421 	 * packet header).
3422 	 */
3423 bad:
3424 	return NULL;
3425 }
3426 
3427 /*
3428  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3429  */
3430 static int
3431 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3432 {
3433 	int i;
3434 
3435 	for (i = 0; i < rt->rateCount; i++)
3436 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3437 			return i;
3438 	return 0;		/* NB: lowest rate */
3439 }
3440 
3441 static int
3442 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
3443 {
3444 	struct mbuf *m;
3445 	int error;
3446 
3447 	/*
3448 	 * Load the DMA map so any coalescing is done.  This
3449 	 * also calculates the number of descriptors we need.
3450 	 */
3451 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3452 				     bf->bf_segs, &bf->bf_nseg,
3453 				     BUS_DMA_NOWAIT);
3454 	if (error == EFBIG) {
3455 		/* XXX packet requires too many descriptors */
3456 		bf->bf_nseg = ATH_TXDESC+1;
3457 	} else if (error != 0) {
3458 		sc->sc_stats.ast_tx_busdma++;
3459 		m_freem(m0);
3460 		return error;
3461 	}
3462 	/*
3463 	 * Discard null packets and check for packets that
3464 	 * require too many TX descriptors.  We try to convert
3465 	 * the latter to a cluster.
3466 	 */
3467 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3468 		sc->sc_stats.ast_tx_linear++;
3469 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3470 		if (m == NULL) {
3471 			m_freem(m0);
3472 			sc->sc_stats.ast_tx_nombuf++;
3473 			return ENOMEM;
3474 		}
3475 		m0 = m;
3476 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3477 					     bf->bf_segs, &bf->bf_nseg,
3478 					     BUS_DMA_NOWAIT);
3479 		if (error != 0) {
3480 			sc->sc_stats.ast_tx_busdma++;
3481 			m_freem(m0);
3482 			return error;
3483 		}
3484 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3485 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3486 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3487 		sc->sc_stats.ast_tx_nodata++;
3488 		m_freem(m0);
3489 		return EIO;
3490 	}
3491 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
3492 		__func__, m0, m0->m_pkthdr.len);
3493 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3494 	bf->bf_m = m0;
3495 
3496 	return 0;
3497 }
3498 
3499 static void
3500 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
3501 {
3502 	struct ath_hal *ah = sc->sc_ah;
3503 	struct ath_desc *ds, *ds0;
3504 	int i;
3505 
3506 	/*
3507 	 * Fillin the remainder of the descriptor info.
3508 	 */
3509 	ds0 = ds = bf->bf_desc;
3510 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3511 		ds->ds_data = bf->bf_segs[i].ds_addr;
3512 		if (i == bf->bf_nseg - 1)
3513 			ds->ds_link = 0;
3514 		else
3515 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3516 		ath_hal_filltxdesc(ah, ds
3517 			, bf->bf_segs[i].ds_len	/* segment length */
3518 			, i == 0		/* first segment */
3519 			, i == bf->bf_nseg - 1	/* last segment */
3520 			, ds0			/* first descriptor */
3521 		);
3522 		DPRINTF(sc, ATH_DEBUG_XMIT,
3523 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3524 			__func__, i, ds->ds_link, ds->ds_data,
3525 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3526 	}
3527 	/*
3528 	 * Insert the frame on the outbound list and pass it on
3529 	 * to the hardware.  Multicast frames buffered for power
3530 	 * save stations and transmit from the CAB queue are stored
3531 	 * on a s/w only queue and loaded on to the CAB queue in
3532 	 * the SWBA handler since frames only go out on DTIM and
3533 	 * to avoid possible races.
3534 	 */
3535 	ATH_TXQ_LOCK(txq);
3536 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3537 	if (txq != &sc->sc_mcastq) {
3538 		if (txq->axq_link == NULL) {
3539 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3540 			DPRINTF(sc, ATH_DEBUG_XMIT,
3541 			    "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3542 			    txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3543 			    txq->axq_depth);
3544 		} else {
3545 			*txq->axq_link = bf->bf_daddr;
3546 			DPRINTF(sc, ATH_DEBUG_XMIT,
3547 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3548 			    txq->axq_qnum, txq->axq_link,
3549 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3550 		}
3551 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3552 		ath_hal_txstart(ah, txq->axq_qnum);
3553 	} else {
3554 		if (txq->axq_link != NULL)
3555 			*txq->axq_link = bf->bf_daddr;
3556 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3557 	}
3558 	ATH_TXQ_UNLOCK(txq);
3559 }
3560 
3561 static int
3562 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3563     struct mbuf *m0)
3564 {
3565 	struct ieee80211com *ic = &sc->sc_ic;
3566 	struct ath_hal *ah = sc->sc_ah;
3567 	struct ifnet *ifp = sc->sc_ifp;
3568 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3569 	int error, iswep, ismcast, ismrr;
3570 	int keyix, hdrlen, pktlen, try0;
3571 	u_int8_t rix, txrate, ctsrate;
3572 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3573 	struct ath_desc *ds;
3574 	struct ath_txq *txq;
3575 	struct ieee80211_frame *wh;
3576 	u_int subtype, flags, ctsduration;
3577 	HAL_PKT_TYPE atype;
3578 	const HAL_RATE_TABLE *rt;
3579 	HAL_BOOL shortPreamble;
3580 	struct ath_node *an;
3581 	u_int pri;
3582 
3583 	wh = mtod(m0, struct ieee80211_frame *);
3584 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3585 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3586 	hdrlen = ieee80211_anyhdrsize(wh);
3587 	/*
3588 	 * Packet length must not include any
3589 	 * pad bytes; deduct them here.
3590 	 */
3591 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3592 
3593 	if (iswep) {
3594 		const struct ieee80211_cipher *cip;
3595 		struct ieee80211_key *k;
3596 
3597 		/*
3598 		 * Construct the 802.11 header+trailer for an encrypted
3599 		 * frame. The only reason this can fail is because of an
3600 		 * unknown or unsupported cipher/key type.
3601 		 */
3602 		k = ieee80211_crypto_encap(ic, ni, m0);
3603 		if (k == NULL) {
3604 			/*
3605 			 * This can happen when the key is yanked after the
3606 			 * frame was queued.  Just discard the frame; the
3607 			 * 802.11 layer counts failures and provides
3608 			 * debugging/diagnostics.
3609 			 */
3610 			m_freem(m0);
3611 			return EIO;
3612 		}
3613 		/*
3614 		 * Adjust the packet + header lengths for the crypto
3615 		 * additions and calculate the h/w key index.  When
3616 		 * a s/w mic is done the frame will have had any mic
3617 		 * added to it prior to entry so m0->m_pkthdr.len above will
3618 		 * account for it. Otherwise we need to add it to the
3619 		 * packet length.
3620 		 */
3621 		cip = k->wk_cipher;
3622 		hdrlen += cip->ic_header;
3623 		pktlen += cip->ic_header + cip->ic_trailer;
3624 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3625 			pktlen += cip->ic_miclen;
3626 		keyix = k->wk_keyix;
3627 
3628 		/* packet header may have moved, reset our local pointer */
3629 		wh = mtod(m0, struct ieee80211_frame *);
3630 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3631 		/*
3632 		 * Use station key cache slot, if assigned.
3633 		 */
3634 		keyix = ni->ni_ucastkey.wk_keyix;
3635 		if (keyix == IEEE80211_KEYIX_NONE)
3636 			keyix = HAL_TXKEYIX_INVALID;
3637 	} else
3638 		keyix = HAL_TXKEYIX_INVALID;
3639 
3640 	pktlen += IEEE80211_CRC_LEN;
3641 
3642 	/*
3643 	 * Load the DMA map so any coalescing is done.  This
3644 	 * also calculates the number of descriptors we need.
3645 	 */
3646 	error = ath_tx_dmasetup(sc, bf, m0);
3647 	if (error != 0)
3648 		return error;
3649 	bf->bf_node = ni;			/* NB: held reference */
3650 	m0 = bf->bf_m;				/* NB: may have changed */
3651 	wh = mtod(m0, struct ieee80211_frame *);
3652 
3653 	/* setup descriptors */
3654 	ds = bf->bf_desc;
3655 	rt = sc->sc_currates;
3656 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3657 
3658 	/*
3659 	 * NB: the 802.11 layer marks whether or not we should
3660 	 * use short preamble based on the current mode and
3661 	 * negotiated parameters.
3662 	 */
3663 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3664 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3665 		shortPreamble = AH_TRUE;
3666 		sc->sc_stats.ast_tx_shortpre++;
3667 	} else {
3668 		shortPreamble = AH_FALSE;
3669 	}
3670 
3671 	an = ATH_NODE(ni);
3672 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3673 	ismrr = 0;				/* default no multi-rate retry*/
3674 	/*
3675 	 * Calculate Atheros packet type from IEEE80211 packet header,
3676 	 * setup for rate calculations, and select h/w transmit queue.
3677 	 */
3678 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3679 	case IEEE80211_FC0_TYPE_MGT:
3680 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3681 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3682 			atype = HAL_PKT_TYPE_BEACON;
3683 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3684 			atype = HAL_PKT_TYPE_PROBE_RESP;
3685 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3686 			atype = HAL_PKT_TYPE_ATIM;
3687 		else
3688 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3689 		rix = sc->sc_minrateix;
3690 		txrate = rt->info[rix].rateCode;
3691 		if (shortPreamble)
3692 			txrate |= rt->info[rix].shortPreamble;
3693 		try0 = ATH_TXMGTTRY;
3694 		/* NB: force all management frames to highest queue */
3695 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3696 			/* NB: force all management frames to highest queue */
3697 			pri = WME_AC_VO;
3698 		} else
3699 			pri = WME_AC_BE;
3700 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3701 		break;
3702 	case IEEE80211_FC0_TYPE_CTL:
3703 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3704 		rix = sc->sc_minrateix;
3705 		txrate = rt->info[rix].rateCode;
3706 		if (shortPreamble)
3707 			txrate |= rt->info[rix].shortPreamble;
3708 		try0 = ATH_TXMGTTRY;
3709 		/* NB: force all ctl frames to highest queue */
3710 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3711 			/* NB: force all ctl frames to highest queue */
3712 			pri = WME_AC_VO;
3713 		} else
3714 			pri = WME_AC_BE;
3715 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3716 		break;
3717 	case IEEE80211_FC0_TYPE_DATA:
3718 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3719 		/*
3720 		 * Data frames: multicast frames go out at a fixed rate,
3721 		 * otherwise consult the rate control module for the
3722 		 * rate to use.
3723 		 */
3724 		if (ismcast) {
3725 			/*
3726 			 * Check mcast rate setting in case it's changed.
3727 			 * XXX move out of fastpath
3728 			 */
3729 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3730 				sc->sc_mcastrix =
3731 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3732 				sc->sc_mcastrate = ic->ic_mcast_rate;
3733 			}
3734 			rix = sc->sc_mcastrix;
3735 			txrate = rt->info[rix].rateCode;
3736 			if (shortPreamble)
3737 				txrate |= rt->info[rix].shortPreamble;
3738 			try0 = 1;
3739 		} else {
3740 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3741 				&rix, &try0, &txrate);
3742 			sc->sc_txrate = txrate;		/* for LED blinking */
3743 			if (try0 != ATH_TXMAXTRY)
3744 				ismrr = 1;
3745 		}
3746 		pri = M_WME_GETAC(m0);
3747 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3748 			flags |= HAL_TXDESC_NOACK;
3749 		break;
3750 	default:
3751 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3752 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3753 		/* XXX statistic */
3754 		m_freem(m0);
3755 		return EIO;
3756 	}
3757 	txq = sc->sc_ac2q[pri];
3758 
3759 	/*
3760 	 * When servicing one or more stations in power-save mode
3761 	 * (or) if there is some mcast data waiting on the mcast
3762 	 * queue (to prevent out of order delivery) multicast
3763 	 * frames must be buffered until after the beacon.
3764 	 */
3765 	if (ismcast && (ic->ic_ps_sta || sc->sc_mcastq.axq_depth)) {
3766 		txq = &sc->sc_mcastq;
3767 		/* XXX? more bit in 802.11 frame header */
3768 	}
3769 
3770 	/*
3771 	 * Calculate miscellaneous flags.
3772 	 */
3773 	if (ismcast) {
3774 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3775 	} else if (pktlen > ic->ic_rtsthreshold) {
3776 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3777 		cix = rt->info[rix].controlRate;
3778 		sc->sc_stats.ast_tx_rts++;
3779 	}
3780 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3781 		sc->sc_stats.ast_tx_noack++;
3782 
3783 	/*
3784 	 * If 802.11g protection is enabled, determine whether
3785 	 * to use RTS/CTS or just CTS.  Note that this is only
3786 	 * done for OFDM unicast frames.
3787 	 */
3788 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3789 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3790 	    (flags & HAL_TXDESC_NOACK) == 0) {
3791 		/* XXX fragments must use CCK rates w/ protection */
3792 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3793 			flags |= HAL_TXDESC_RTSENA;
3794 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3795 			flags |= HAL_TXDESC_CTSENA;
3796 		cix = rt->info[sc->sc_protrix].controlRate;
3797 		sc->sc_stats.ast_tx_protect++;
3798 	}
3799 
3800 	/*
3801 	 * Calculate duration.  This logically belongs in the 802.11
3802 	 * layer but it lacks sufficient information to calculate it.
3803 	 */
3804 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3805 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3806 		u_int16_t dur;
3807 		/*
3808 		 * XXX not right with fragmentation.
3809 		 */
3810 		if (shortPreamble)
3811 			dur = rt->info[rix].spAckDuration;
3812 		else
3813 			dur = rt->info[rix].lpAckDuration;
3814 		*(u_int16_t *)wh->i_dur = htole16(dur);
3815 	}
3816 
3817 	/*
3818 	 * Calculate RTS/CTS rate and duration if needed.
3819 	 */
3820 	ctsduration = 0;
3821 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3822 		/*
3823 		 * CTS transmit rate is derived from the transmit rate
3824 		 * by looking in the h/w rate table.  We must also factor
3825 		 * in whether or not a short preamble is to be used.
3826 		 */
3827 		/* NB: cix is set above where RTS/CTS is enabled */
3828 		KASSERT(cix != 0xff, ("cix not setup"));
3829 		ctsrate = rt->info[cix].rateCode;
3830 		/*
3831 		 * Compute the transmit duration based on the frame
3832 		 * size and the size of an ACK frame.  We call into the
3833 		 * HAL to do the computation since it depends on the
3834 		 * characteristics of the actual PHY being used.
3835 		 *
3836 		 * NB: CTS is assumed the same size as an ACK so we can
3837 		 *     use the precalculated ACK durations.
3838 		 */
3839 		if (shortPreamble) {
3840 			ctsrate |= rt->info[cix].shortPreamble;
3841 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3842 				ctsduration += rt->info[cix].spAckDuration;
3843 			ctsduration += ath_hal_computetxtime(ah,
3844 				rt, pktlen, rix, AH_TRUE);
3845 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3846 				ctsduration += rt->info[rix].spAckDuration;
3847 		} else {
3848 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3849 				ctsduration += rt->info[cix].lpAckDuration;
3850 			ctsduration += ath_hal_computetxtime(ah,
3851 				rt, pktlen, rix, AH_FALSE);
3852 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3853 				ctsduration += rt->info[rix].lpAckDuration;
3854 		}
3855 		/*
3856 		 * Must disable multi-rate retry when using RTS/CTS.
3857 		 */
3858 		ismrr = 0;
3859 		try0 = ATH_TXMGTTRY;		/* XXX */
3860 	} else
3861 		ctsrate = 0;
3862 
3863 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3864 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3865 			sc->sc_hwmap[txrate].ieeerate, -1);
3866 
3867 	if (bpf_peers_present(ic->ic_rawbpf))
3868 		bpf_mtap(ic->ic_rawbpf, m0);
3869 	if (bpf_peers_present(sc->sc_drvbpf)) {
3870 		u_int64_t tsf = ath_hal_gettsf64(ah);
3871 
3872 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3873 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3874 		if (iswep)
3875 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3876 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3877 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3878 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3879 
3880 		bpf_mtap2(sc->sc_drvbpf,
3881 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3882 	}
3883 
3884 	/*
3885 	 * Determine if a tx interrupt should be generated for
3886 	 * this descriptor.  We take a tx interrupt to reap
3887 	 * descriptors when the h/w hits an EOL condition or
3888 	 * when the descriptor is specifically marked to generate
3889 	 * an interrupt.  We periodically mark descriptors in this
3890 	 * way to insure timely replenishing of the supply needed
3891 	 * for sending frames.  Defering interrupts reduces system
3892 	 * load and potentially allows more concurrent work to be
3893 	 * done but if done to aggressively can cause senders to
3894 	 * backup.
3895 	 *
3896 	 * NB: use >= to deal with sc_txintrperiod changing
3897 	 *     dynamically through sysctl.
3898 	 */
3899 	if (flags & HAL_TXDESC_INTREQ) {
3900 		txq->axq_intrcnt = 0;
3901 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3902 		flags |= HAL_TXDESC_INTREQ;
3903 		txq->axq_intrcnt = 0;
3904 	}
3905 
3906 	/*
3907 	 * Formulate first tx descriptor with tx controls.
3908 	 */
3909 	/* XXX check return value? */
3910 	ath_hal_setuptxdesc(ah, ds
3911 		, pktlen		/* packet length */
3912 		, hdrlen		/* header length */
3913 		, atype			/* Atheros packet type */
3914 		, ni->ni_txpower	/* txpower */
3915 		, txrate, try0		/* series 0 rate/tries */
3916 		, keyix			/* key cache index */
3917 		, sc->sc_txantenna	/* antenna mode */
3918 		, flags			/* flags */
3919 		, ctsrate		/* rts/cts rate */
3920 		, ctsduration		/* rts/cts duration */
3921 	);
3922 	bf->bf_flags = flags;
3923 	/*
3924 	 * Setup the multi-rate retry state only when we're
3925 	 * going to use it.  This assumes ath_hal_setuptxdesc
3926 	 * initializes the descriptors (so we don't have to)
3927 	 * when the hardware supports multi-rate retry and
3928 	 * we don't use it.
3929 	 */
3930 	if (ismrr)
3931 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3932 
3933 	ath_tx_handoff(sc, txq, bf);
3934 	return 0;
3935 }
3936 
3937 /*
3938  * Process completed xmit descriptors from the specified queue.
3939  */
3940 static int
3941 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3942 {
3943 	struct ath_hal *ah = sc->sc_ah;
3944 	struct ieee80211com *ic = &sc->sc_ic;
3945 	struct ath_buf *bf;
3946 	struct ath_desc *ds, *ds0;
3947 	struct ath_tx_status *ts;
3948 	struct ieee80211_node *ni;
3949 	struct ath_node *an;
3950 	int sr, lr, pri, nacked;
3951 	HAL_STATUS status;
3952 
3953 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3954 		__func__, txq->axq_qnum,
3955 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3956 		txq->axq_link);
3957 	nacked = 0;
3958 	for (;;) {
3959 		ATH_TXQ_LOCK(txq);
3960 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3961 		bf = STAILQ_FIRST(&txq->axq_q);
3962 		if (bf == NULL) {
3963 			ATH_TXQ_UNLOCK(txq);
3964 			break;
3965 		}
3966 		ds0 = &bf->bf_desc[0];
3967 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3968 		ts = &bf->bf_status.ds_txstat;
3969 		status = ath_hal_txprocdesc(ah, ds, ts);
3970 #ifdef ATH_DEBUG
3971 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3972 			ath_printtxbuf(bf, txq->axq_qnum, 0, status == HAL_OK);
3973 #endif
3974 		if (status == HAL_EINPROGRESS) {
3975 			ATH_TXQ_UNLOCK(txq);
3976 			break;
3977 		}
3978 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3979 		if (txq->axq_depth == 0)
3980 			txq->axq_link = NULL;
3981 		ATH_TXQ_UNLOCK(txq);
3982 
3983 		ni = bf->bf_node;
3984 		if (ni != NULL) {
3985 			an = ATH_NODE(ni);
3986 			if (ts->ts_status == 0) {
3987 				u_int8_t txant = ts->ts_antenna;
3988 				sc->sc_stats.ast_ant_tx[txant]++;
3989 				sc->sc_ant_tx[txant]++;
3990 				if (ts->ts_rate & HAL_TXSTAT_ALTRATE)
3991 					sc->sc_stats.ast_tx_altrate++;
3992 				sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3993 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3994 					ts->ts_rssi);
3995 				pri = M_WME_GETAC(bf->bf_m);
3996 				if (pri >= WME_AC_VO)
3997 					ic->ic_wme.wme_hipri_traffic++;
3998 				ni->ni_inact = ni->ni_inact_reload;
3999 			} else {
4000 				if (ts->ts_status & HAL_TXERR_XRETRY)
4001 					sc->sc_stats.ast_tx_xretries++;
4002 				if (ts->ts_status & HAL_TXERR_FIFO)
4003 					sc->sc_stats.ast_tx_fifoerr++;
4004 				if (ts->ts_status & HAL_TXERR_FILT)
4005 					sc->sc_stats.ast_tx_filtered++;
4006 			}
4007 			sr = ts->ts_shortretry;
4008 			lr = ts->ts_longretry;
4009 			sc->sc_stats.ast_tx_shortretry += sr;
4010 			sc->sc_stats.ast_tx_longretry += lr;
4011 			/*
4012 			 * Hand the descriptor to the rate control algorithm.
4013 			 */
4014 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4015 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4016 				/*
4017 				 * If frame was ack'd update the last rx time
4018 				 * used to workaround phantom bmiss interrupts.
4019 				 */
4020 				if (ts->ts_status == 0)
4021 					nacked++;
4022 				ath_rate_tx_complete(sc, an, bf);
4023 			}
4024 			/*
4025 			 * Reclaim reference to node.
4026 			 *
4027 			 * NB: the node may be reclaimed here if, for example
4028 			 *     this is a DEAUTH message that was sent and the
4029 			 *     node was timed out due to inactivity.
4030 			 */
4031 			ieee80211_free_node(ni);
4032 		}
4033 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4034 		    BUS_DMASYNC_POSTWRITE);
4035 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4036 		m_freem(bf->bf_m);
4037 		bf->bf_m = NULL;
4038 		bf->bf_node = NULL;
4039 
4040 		ATH_TXBUF_LOCK(sc);
4041 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4042 		ATH_TXBUF_UNLOCK(sc);
4043 	}
4044 	return nacked;
4045 }
4046 
4047 static __inline int
4048 txqactive(struct ath_hal *ah, int qnum)
4049 {
4050 	u_int32_t txqs = 1<<qnum;
4051 	ath_hal_gettxintrtxqs(ah, &txqs);
4052 	return (txqs & (1<<qnum));
4053 }
4054 
4055 /*
4056  * Deferred processing of transmit interrupt; special-cased
4057  * for a single hardware transmit queue (e.g. 5210 and 5211).
4058  */
4059 static void
4060 ath_tx_proc_q0(void *arg, int npending)
4061 {
4062 	struct ath_softc *sc = arg;
4063 	struct ifnet *ifp = sc->sc_ifp;
4064 
4065 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
4066 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4067 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4068 		ath_tx_processq(sc, sc->sc_cabq);
4069 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4070 	sc->sc_tx_timer = 0;
4071 
4072 	if (sc->sc_softled)
4073 		ath_led_event(sc, ATH_LED_TX);
4074 
4075 	ath_start(ifp);
4076 }
4077 
4078 /*
4079  * Deferred processing of transmit interrupt; special-cased
4080  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4081  */
4082 static void
4083 ath_tx_proc_q0123(void *arg, int npending)
4084 {
4085 	struct ath_softc *sc = arg;
4086 	struct ifnet *ifp = sc->sc_ifp;
4087 	int nacked;
4088 
4089 	/*
4090 	 * Process each active queue.
4091 	 */
4092 	nacked = 0;
4093 	if (txqactive(sc->sc_ah, 0))
4094 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4095 	if (txqactive(sc->sc_ah, 1))
4096 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4097 	if (txqactive(sc->sc_ah, 2))
4098 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4099 	if (txqactive(sc->sc_ah, 3))
4100 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4101 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4102 		ath_tx_processq(sc, sc->sc_cabq);
4103 	if (nacked)
4104 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4105 
4106 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4107 	sc->sc_tx_timer = 0;
4108 
4109 	if (sc->sc_softled)
4110 		ath_led_event(sc, ATH_LED_TX);
4111 
4112 	ath_start(ifp);
4113 }
4114 
4115 /*
4116  * Deferred processing of transmit interrupt.
4117  */
4118 static void
4119 ath_tx_proc(void *arg, int npending)
4120 {
4121 	struct ath_softc *sc = arg;
4122 	struct ifnet *ifp = sc->sc_ifp;
4123 	int i, nacked;
4124 
4125 	/*
4126 	 * Process each active queue.
4127 	 */
4128 	nacked = 0;
4129 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4130 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4131 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4132 	if (nacked)
4133 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4134 
4135 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4136 	sc->sc_tx_timer = 0;
4137 
4138 	if (sc->sc_softled)
4139 		ath_led_event(sc, ATH_LED_TX);
4140 
4141 	ath_start(ifp);
4142 }
4143 
4144 static void
4145 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4146 {
4147 #ifdef ATH_DEBUG
4148 	struct ath_hal *ah = sc->sc_ah;
4149 #endif
4150 	struct ieee80211_node *ni;
4151 	struct ath_buf *bf;
4152 	u_int ix;
4153 
4154 	/*
4155 	 * NB: this assumes output has been stopped and
4156 	 *     we do not need to block ath_tx_tasklet
4157 	 */
4158 	for (ix = 0;; ix++) {
4159 		ATH_TXQ_LOCK(txq);
4160 		bf = STAILQ_FIRST(&txq->axq_q);
4161 		if (bf == NULL) {
4162 			txq->axq_link = NULL;
4163 			ATH_TXQ_UNLOCK(txq);
4164 			break;
4165 		}
4166 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4167 		ATH_TXQ_UNLOCK(txq);
4168 #ifdef ATH_DEBUG
4169 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4170 			ath_printtxbuf(bf, txq->axq_qnum, ix,
4171 				ath_hal_txprocdesc(ah, bf->bf_desc,
4172 				    &bf->bf_status.ds_txstat) == HAL_OK);
4173 			ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t),
4174 				bf->bf_m->m_len, 0, -1);
4175 		}
4176 #endif /* ATH_DEBUG */
4177 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4178 		m_freem(bf->bf_m);
4179 		bf->bf_m = NULL;
4180 		ni = bf->bf_node;
4181 		bf->bf_node = NULL;
4182 		if (ni != NULL) {
4183 			/*
4184 			 * Reclaim node reference.
4185 			 */
4186 			ieee80211_free_node(ni);
4187 		}
4188 		ATH_TXBUF_LOCK(sc);
4189 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4190 		ATH_TXBUF_UNLOCK(sc);
4191 	}
4192 }
4193 
4194 static void
4195 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4196 {
4197 	struct ath_hal *ah = sc->sc_ah;
4198 
4199 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4200 	    __func__, txq->axq_qnum,
4201 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4202 	    txq->axq_link);
4203 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4204 }
4205 
4206 /*
4207  * Drain the transmit queues and reclaim resources.
4208  */
4209 static void
4210 ath_draintxq(struct ath_softc *sc)
4211 {
4212 	struct ath_hal *ah = sc->sc_ah;
4213 	struct ifnet *ifp = sc->sc_ifp;
4214 	int i;
4215 
4216 	/* XXX return value */
4217 	if (!sc->sc_invalid) {
4218 		/* don't touch the hardware if marked invalid */
4219 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4220 		    __func__, sc->sc_bhalq,
4221 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4222 		    NULL);
4223 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4224 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4225 			if (ATH_TXQ_SETUP(sc, i))
4226 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4227 	}
4228 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4229 		if (ATH_TXQ_SETUP(sc, i))
4230 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4231 	ath_tx_draintxq(sc, &sc->sc_mcastq);
4232 #ifdef ATH_DEBUG
4233 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4234 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
4235 		if (bf != NULL && bf->bf_m != NULL) {
4236 			ath_printtxbuf(bf, sc->sc_bhalq, 0,
4237 				ath_hal_txprocdesc(ah, bf->bf_desc,
4238 				    &bf->bf_status.ds_txstat) == HAL_OK);
4239 			ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t),
4240 				bf->bf_m->m_len, 0, -1);
4241 		}
4242 	}
4243 #endif /* ATH_DEBUG */
4244 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4245 	sc->sc_tx_timer = 0;
4246 }
4247 
4248 /*
4249  * Disable the receive h/w in preparation for a reset.
4250  */
4251 static void
4252 ath_stoprecv(struct ath_softc *sc)
4253 {
4254 #define	PA2DESC(_sc, _pa) \
4255 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4256 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4257 	struct ath_hal *ah = sc->sc_ah;
4258 
4259 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4260 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4261 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4262 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4263 #ifdef ATH_DEBUG
4264 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4265 		struct ath_buf *bf;
4266 		u_int ix;
4267 
4268 		printf("%s: rx queue %p, link %p\n", __func__,
4269 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4270 		ix = 0;
4271 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4272 			struct ath_desc *ds = bf->bf_desc;
4273 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
4274 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4275 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4276 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4277 				ath_printrxbuf(bf, ix, status == HAL_OK);
4278 			ix++;
4279 		}
4280 	}
4281 #endif
4282 	sc->sc_rxlink = NULL;		/* just in case */
4283 #undef PA2DESC
4284 }
4285 
4286 /*
4287  * Enable the receive h/w following a reset.
4288  */
4289 static int
4290 ath_startrecv(struct ath_softc *sc)
4291 {
4292 	struct ath_hal *ah = sc->sc_ah;
4293 	struct ath_buf *bf;
4294 
4295 	sc->sc_rxlink = NULL;
4296 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4297 		int error = ath_rxbuf_init(sc, bf);
4298 		if (error != 0) {
4299 			DPRINTF(sc, ATH_DEBUG_RECV,
4300 				"%s: ath_rxbuf_init failed %d\n",
4301 				__func__, error);
4302 			return error;
4303 		}
4304 	}
4305 
4306 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4307 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4308 	ath_hal_rxena(ah);		/* enable recv descriptors */
4309 	ath_mode_init(sc);		/* set filters, etc. */
4310 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4311 	return 0;
4312 }
4313 
4314 /*
4315  * Update internal state after a channel change.
4316  */
4317 static void
4318 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4319 {
4320 	struct ieee80211com *ic = &sc->sc_ic;
4321 	enum ieee80211_phymode mode;
4322 	u_int16_t flags;
4323 
4324 	/*
4325 	 * Change channels and update the h/w rate map
4326 	 * if we're switching; e.g. 11a to 11b/g.
4327 	 */
4328 	if (IEEE80211_IS_CHAN_HALF(chan))
4329 		mode = IEEE80211_MODE_HALF;
4330 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
4331 		mode = IEEE80211_MODE_QUARTER;
4332 	else
4333 		mode = ieee80211_chan2mode(ic, chan);
4334 	if (mode != sc->sc_curmode)
4335 		ath_setcurmode(sc, mode);
4336 	/*
4337 	 * Update BPF state.  NB: ethereal et. al. don't handle
4338 	 * merged flags well so pick a unique mode for their use.
4339 	 */
4340 	if (IEEE80211_IS_CHAN_A(chan))
4341 		flags = IEEE80211_CHAN_A;
4342 	/* XXX 11g schizophrenia */
4343 	else if (IEEE80211_IS_CHAN_ANYG(chan))
4344 		flags = IEEE80211_CHAN_G;
4345 	else
4346 		flags = IEEE80211_CHAN_B;
4347 	if (IEEE80211_IS_CHAN_T(chan))
4348 		flags |= IEEE80211_CHAN_TURBO;
4349 	if (IEEE80211_IS_CHAN_HALF(chan))
4350 		flags |= IEEE80211_CHAN_HALF;
4351 	if (IEEE80211_IS_CHAN_QUARTER(chan))
4352 		flags |= IEEE80211_CHAN_QUARTER;
4353 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4354 		htole16(chan->ic_freq);
4355 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4356 		htole16(flags);
4357 }
4358 
4359 /*
4360  * Poll for a channel clear indication; this is required
4361  * for channels requiring DFS and not previously visited
4362  * and/or with a recent radar detection.
4363  */
4364 static void
4365 ath_dfswait(void *arg)
4366 {
4367 	struct ath_softc *sc = arg;
4368 	struct ath_hal *ah = sc->sc_ah;
4369 	HAL_CHANNEL hchan;
4370 
4371 	ath_hal_radar_wait(ah, &hchan);
4372 	DPRINTF(sc, ATH_DEBUG_DFS, "%s: radar_wait %u/%x/%x\n",
4373 	    __func__, hchan.channel, hchan.channelFlags, hchan.privFlags);
4374 
4375 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4376 		if_printf(sc->sc_ifp,
4377 		    "channel %u/0x%x/0x%x has interference\n",
4378 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4379 		return;
4380 	}
4381 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4382 		/* XXX should not happen */
4383 		return;
4384 	}
4385 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4386 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4387 		sc->sc_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4388 		if_printf(sc->sc_ifp,
4389 		    "channel %u/0x%x/0x%x marked clear\n",
4390 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4391 	} else
4392 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4393 }
4394 
4395 /*
4396  * Set/change channels.  If the channel is really being changed,
4397  * it's done by reseting the chip.  To accomplish this we must
4398  * first cleanup any pending DMA, then restart stuff after a la
4399  * ath_init.
4400  */
4401 static int
4402 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4403 {
4404 	struct ath_hal *ah = sc->sc_ah;
4405 	struct ieee80211com *ic = &sc->sc_ic;
4406 	HAL_CHANNEL hchan;
4407 
4408 	/*
4409 	 * Convert to a HAL channel description with
4410 	 * the flags constrained to reflect the current
4411 	 * operating mode.
4412 	 */
4413 	ath_mapchan(ic, &hchan, chan);
4414 
4415 	DPRINTF(sc, ATH_DEBUG_RESET,
4416 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4417 	    __func__,
4418 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4419 		sc->sc_curchan.channelFlags),
4420 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4421 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4422 	        hchan.channel, hchan.channelFlags);
4423 	if (hchan.channel != sc->sc_curchan.channel ||
4424 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4425 		HAL_STATUS status;
4426 
4427 		/*
4428 		 * To switch channels clear any pending DMA operations;
4429 		 * wait long enough for the RX fifo to drain, reset the
4430 		 * hardware at the new frequency, and then re-enable
4431 		 * the relevant bits of the h/w.
4432 		 */
4433 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4434 		ath_draintxq(sc);		/* clear pending tx frames */
4435 		ath_stoprecv(sc);		/* turn off frame recv */
4436 		if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) {
4437 			if_printf(ic->ic_ifp, "%s: unable to reset "
4438 			    "channel %u (%u Mhz, flags 0x%x hal flags 0x%x)\n",
4439 			    __func__, ieee80211_chan2ieee(ic, chan),
4440 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4441 			return EIO;
4442 		}
4443 		sc->sc_curchan = hchan;
4444 		ath_update_txpow(sc);		/* update tx power state */
4445 		sc->sc_diversity = ath_hal_getdiversity(ah);
4446 		sc->sc_calinterval = 1;
4447 		sc->sc_caltries = 0;
4448 
4449 		/*
4450 		 * Re-enable rx framework.
4451 		 */
4452 		if (ath_startrecv(sc) != 0) {
4453 			if_printf(ic->ic_ifp,
4454 				"%s: unable to restart recv logic\n", __func__);
4455 			return EIO;
4456 		}
4457 
4458 		/*
4459 		 * Change channels and update the h/w rate map
4460 		 * if we're switching; e.g. 11a to 11b/g.
4461 		 */
4462 		ic->ic_ibss_chan = chan;
4463 		ath_chan_change(sc, chan);
4464 
4465 		/*
4466 		 * Handle DFS required waiting period to determine
4467 		 * if channel is clear of radar traffic.
4468 		 */
4469 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4470 #define	DFS_AND_NOT_CLEAR(_c) \
4471 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4472 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4473 				if_printf(sc->sc_ifp,
4474 					"wait for DFS clear channel signal\n");
4475 				/* XXX stop sndq */
4476 				sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4477 				callout_reset(&sc->sc_dfs_ch,
4478 					2 * hz, ath_dfswait, sc);
4479 			} else
4480 				callout_stop(&sc->sc_dfs_ch);
4481 #undef DFS_NOT_CLEAR
4482 		}
4483 
4484 		/*
4485 		 * Re-enable interrupts.
4486 		 */
4487 		ath_hal_intrset(ah, sc->sc_imask);
4488 	}
4489 	return 0;
4490 }
4491 
4492 static void
4493 ath_next_scan(void *arg)
4494 {
4495 	struct ath_softc *sc = arg;
4496 	struct ieee80211com *ic = &sc->sc_ic;
4497 
4498 	if (ic->ic_state == IEEE80211_S_SCAN)
4499 		ieee80211_next_scan(ic);
4500 }
4501 
4502 /*
4503  * Periodically recalibrate the PHY to account
4504  * for temperature/environment changes.
4505  */
4506 static void
4507 ath_calibrate(void *arg)
4508 {
4509 	struct ath_softc *sc = arg;
4510 	struct ath_hal *ah = sc->sc_ah;
4511 	HAL_BOOL iqCalDone;
4512 
4513 	sc->sc_stats.ast_per_cal++;
4514 
4515 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4516 		/*
4517 		 * Rfgain is out of bounds, reset the chip
4518 		 * to load new gain values.
4519 		 */
4520 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4521 			"%s: rfgain change\n", __func__);
4522 		sc->sc_stats.ast_per_rfgain++;
4523 		ath_reset(sc->sc_ifp);
4524 	}
4525 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4526 		DPRINTF(sc, ATH_DEBUG_ANY,
4527 			"%s: calibration of channel %u failed\n",
4528 			__func__, sc->sc_curchan.channel);
4529 		sc->sc_stats.ast_per_calfail++;
4530 	}
4531 	/*
4532 	 * Calibrate noise floor data again in case of change.
4533 	 */
4534 	ath_hal_process_noisefloor(ah);
4535 	/*
4536 	 * Poll more frequently when the IQ calibration is in
4537 	 * progress to speedup loading the final settings.
4538 	 * We temper this aggressive polling with an exponential
4539 	 * back off after 4 tries up to ath_calinterval.
4540 	 */
4541 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4542 		sc->sc_caltries = 0;
4543 		sc->sc_calinterval = ath_calinterval;
4544 	} else if (sc->sc_caltries > 4) {
4545 		sc->sc_caltries = 0;
4546 		sc->sc_calinterval <<= 1;
4547 		if (sc->sc_calinterval > ath_calinterval)
4548 			sc->sc_calinterval = ath_calinterval;
4549 	}
4550 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4551 		("bad calibration interval %u", sc->sc_calinterval));
4552 
4553 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4554 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4555 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4556 	sc->sc_caltries++;
4557 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4558 		ath_calibrate, sc);
4559 }
4560 
4561 static int
4562 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4563 {
4564 	struct ifnet *ifp = ic->ic_ifp;
4565 	struct ath_softc *sc = ifp->if_softc;
4566 	struct ath_hal *ah = sc->sc_ah;
4567 	struct ieee80211_node *ni;
4568 	int i, error;
4569 	const u_int8_t *bssid;
4570 	u_int32_t rfilt;
4571 	static const HAL_LED_STATE leds[] = {
4572 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4573 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4574 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4575 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4576 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4577 	};
4578 
4579 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4580 		ieee80211_state_name[ic->ic_state],
4581 		ieee80211_state_name[nstate]);
4582 
4583 	callout_stop(&sc->sc_scan_ch);
4584 	callout_stop(&sc->sc_cal_ch);
4585 	callout_stop(&sc->sc_dfs_ch);
4586 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4587 
4588 	if (nstate == IEEE80211_S_INIT) {
4589 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4590 		/*
4591 		 * NB: disable interrupts so we don't rx frames.
4592 		 */
4593 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4594 		/*
4595 		 * Notify the rate control algorithm.
4596 		 */
4597 		ath_rate_newstate(sc, nstate);
4598 		goto done;
4599 	}
4600 	ni = ic->ic_bss;
4601 	error = ath_chan_set(sc, ic->ic_curchan);
4602 	if (error != 0)
4603 		goto bad;
4604 	rfilt = ath_calcrxfilter(sc, nstate);
4605 	if (nstate == IEEE80211_S_SCAN)
4606 		bssid = ifp->if_broadcastaddr;
4607 	else
4608 		bssid = ni->ni_bssid;
4609 	ath_hal_setrxfilter(ah, rfilt);
4610 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4611 		 __func__, rfilt, ether_sprintf(bssid));
4612 
4613 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4614 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4615 	else
4616 		ath_hal_setassocid(ah, bssid, 0);
4617 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4618 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4619 			if (ath_hal_keyisvalid(ah, i))
4620 				ath_hal_keysetmac(ah, i, bssid);
4621 	}
4622 
4623 	/*
4624 	 * Notify the rate control algorithm so rates
4625 	 * are setup should ath_beacon_alloc be called.
4626 	 */
4627 	ath_rate_newstate(sc, nstate);
4628 
4629 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4630 		/* nothing to do */;
4631 	} else if (nstate == IEEE80211_S_RUN) {
4632 		DPRINTF(sc, ATH_DEBUG_STATE,
4633 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4634 			"capinfo=0x%04x chan=%d\n"
4635 			 , __func__
4636 			 , ic->ic_flags
4637 			 , ni->ni_intval
4638 			 , ether_sprintf(ni->ni_bssid)
4639 			 , ni->ni_capinfo
4640 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4641 
4642 		switch (ic->ic_opmode) {
4643 		case IEEE80211_M_HOSTAP:
4644 		case IEEE80211_M_IBSS:
4645 			/*
4646 			 * Allocate and setup the beacon frame.
4647 			 *
4648 			 * Stop any previous beacon DMA.  This may be
4649 			 * necessary, for example, when an ibss merge
4650 			 * causes reconfiguration; there will be a state
4651 			 * transition from RUN->RUN that means we may
4652 			 * be called with beacon transmission active.
4653 			 */
4654 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4655 			ath_beacon_free(sc);
4656 			error = ath_beacon_alloc(sc, ni);
4657 			if (error != 0)
4658 				goto bad;
4659 			/*
4660 			 * If joining an adhoc network defer beacon timer
4661 			 * configuration to the next beacon frame so we
4662 			 * have a current TSF to use.  Otherwise we're
4663 			 * starting an ibss/bss so there's no need to delay.
4664 			 */
4665 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4666 			    ic->ic_bss->ni_tstamp.tsf != 0)
4667 				sc->sc_syncbeacon = 1;
4668 			else
4669 				ath_beacon_config(sc);
4670 			break;
4671 		case IEEE80211_M_STA:
4672 			/*
4673 			 * Allocate a key cache slot to the station.
4674 			 */
4675 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4676 			    sc->sc_hasclrkey &&
4677 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4678 				ath_setup_stationkey(ni);
4679 			/*
4680 			 * Defer beacon timer configuration to the next
4681 			 * beacon frame so we have a current TSF to use
4682 			 * (any TSF collected when scanning is likely old).
4683 			 */
4684 			sc->sc_syncbeacon = 1;
4685 			break;
4686 		default:
4687 			break;
4688 		}
4689 
4690 		/*
4691 		 * Let the hal process statistics collected during a
4692 		 * scan so it can provide calibrated noise floor data.
4693 		 */
4694 		ath_hal_process_noisefloor(ah);
4695 		/*
4696 		 * Reset rssi stats; maybe not the best place...
4697 		 */
4698 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4699 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4700 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4701 	} else {
4702 		ath_hal_intrset(ah,
4703 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4704 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4705 	}
4706 done:
4707 	/*
4708 	 * Invoke the parent method to complete the work.
4709 	 */
4710 	error = sc->sc_newstate(ic, nstate, arg);
4711 	/*
4712 	 * Finally, start any timers.
4713 	 */
4714 	if (nstate == IEEE80211_S_RUN) {
4715 		/* start periodic recalibration timer */
4716 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4717 			ath_calibrate, sc);
4718 	} else if (nstate == IEEE80211_S_SCAN) {
4719 		/* start ap/neighbor scan timer */
4720 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4721 			ath_next_scan, sc);
4722 	}
4723 bad:
4724 	return error;
4725 }
4726 
4727 /*
4728  * Allocate a key cache slot to the station so we can
4729  * setup a mapping from key index to node. The key cache
4730  * slot is needed for managing antenna state and for
4731  * compression when stations do not use crypto.  We do
4732  * it uniliaterally here; if crypto is employed this slot
4733  * will be reassigned.
4734  */
4735 static void
4736 ath_setup_stationkey(struct ieee80211_node *ni)
4737 {
4738 	struct ieee80211com *ic = ni->ni_ic;
4739 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4740 	ieee80211_keyix keyix, rxkeyix;
4741 
4742 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4743 		/*
4744 		 * Key cache is full; we'll fall back to doing
4745 		 * the more expensive lookup in software.  Note
4746 		 * this also means no h/w compression.
4747 		 */
4748 		/* XXX msg+statistic */
4749 	} else {
4750 		/* XXX locking? */
4751 		ni->ni_ucastkey.wk_keyix = keyix;
4752 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4753 		/* NB: this will create a pass-thru key entry */
4754 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4755 	}
4756 }
4757 
4758 /*
4759  * Setup driver-specific state for a newly associated node.
4760  * Note that we're called also on a re-associate, the isnew
4761  * param tells us if this is the first time or not.
4762  */
4763 static void
4764 ath_newassoc(struct ieee80211_node *ni, int isnew)
4765 {
4766 	struct ieee80211com *ic = ni->ni_ic;
4767 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4768 
4769 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4770 	if (isnew &&
4771 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4772 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4773 		    ("new assoc with a unicast key already setup (keyix %u)",
4774 		    ni->ni_ucastkey.wk_keyix));
4775 		ath_setup_stationkey(ni);
4776 	}
4777 }
4778 
4779 static int
4780 ath_getchannels(struct ath_softc *sc,
4781     HAL_REG_DOMAIN rd, HAL_CTRY_CODE cc, HAL_BOOL outdoor, HAL_BOOL xchanmode)
4782 {
4783 #define	COMPAT \
4784 	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE|CHANNEL_HALF|CHANNEL_QUARTER)
4785 #define IS_CHAN_PUBLIC_SAFETY(_c) \
4786 	(((_c)->channelFlags & CHANNEL_5GHZ) && \
4787 	 ((_c)->channel > 4940 && (_c)->channel < 4990))
4788 	struct ieee80211com *ic = &sc->sc_ic;
4789 	struct ifnet *ifp = sc->sc_ifp;
4790 	struct ath_hal *ah = sc->sc_ah;
4791 	HAL_CHANNEL *chans;
4792 	int i, ix, nchan;
4793 	u_int32_t regdomain;
4794 
4795 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4796 			M_TEMP, M_NOWAIT);
4797 	if (chans == NULL) {
4798 		if_printf(ifp, "unable to allocate channel table\n");
4799 		return ENOMEM;
4800 	}
4801 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4802 	    NULL, 0, NULL, cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4803 		ath_hal_getregdomain(ah, &regdomain);
4804 		if_printf(ifp, "unable to collect channel list from hal; "
4805 			"regdomain likely %u country code %u\n", regdomain, cc);
4806 		free(chans, M_TEMP);
4807 		return EINVAL;
4808 	}
4809 
4810 	/*
4811 	 * Convert HAL channels to ieee80211 ones and insert
4812 	 * them in the table according to their channel number.
4813 	 */
4814 	memset(ic->ic_channels, 0, sizeof(ic->ic_channels));
4815 	for (i = 0; i < nchan; i++) {
4816 		HAL_CHANNEL *c = &chans[i];
4817 		u_int16_t flags;
4818 
4819 		/*
4820 		 * XXX we're not ready to handle the ieee number mapping
4821 		 * for public safety channels as they overlap with any
4822 		 * 2GHz channels; for now use a non-public safety
4823 		 * numbering that is non-overlapping.
4824 		 */
4825 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4826 		if (IS_CHAN_PUBLIC_SAFETY(c))
4827 			ix += 37;		/* XXX */
4828 		if (ix > IEEE80211_CHAN_MAX) {
4829 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4830 				ix, c->channel, c->channelFlags);
4831 			continue;
4832 		}
4833 		if (ix < 0) {
4834 			/* XXX can't handle stuff <2400 right now */
4835 			if (bootverbose)
4836 				if_printf(ifp, "hal channel %d (%u/%x) "
4837 				    "cannot be handled; ignored\n",
4838 				    ix, c->channel, c->channelFlags);
4839 			continue;
4840 		}
4841 		if (bootverbose)
4842 			if_printf(ifp, "hal channel %u/%x -> %u\n",
4843 			    c->channel, c->channelFlags, ix);
4844 		/*
4845 		 * Calculate net80211 flags; most are compatible
4846 		 * but some need massaging.  Note the static turbo
4847 		 * conversion can be removed once net80211 is updated
4848 		 * to understand static vs. dynamic turbo.
4849 		 */
4850 		flags = c->channelFlags & COMPAT;
4851 		if (c->channelFlags & CHANNEL_STURBO)
4852 			flags |= IEEE80211_CHAN_TURBO;
4853 		if (ath_hal_isgsmsku(ah)) {
4854 			/* remap to true frequencies */
4855 			c->channel = 922 + (2422 - c->channel);
4856 			flags |= IEEE80211_CHAN_GSM;
4857 			ix = ieee80211_mhz2ieee(c->channel, flags);
4858 		}
4859 		if (ic->ic_channels[ix].ic_freq == 0) {
4860 			ic->ic_channels[ix].ic_freq = c->channel;
4861 			ic->ic_channels[ix].ic_flags = flags;
4862 		} else {
4863 			/* channels overlap; e.g. 11g and 11b */
4864 			ic->ic_channels[ix].ic_flags |= flags;
4865 		}
4866 	}
4867 	free(chans, M_TEMP);
4868 	ath_hal_getregdomain(ah, &sc->sc_regdomain);
4869 	ath_hal_getcountrycode(ah, &sc->sc_countrycode);
4870 	sc->sc_xchanmode = xchanmode;
4871 	sc->sc_outdoor = outdoor;
4872 	return 0;
4873 #undef IS_CHAN_PUBLIC_SAFETY
4874 #undef COMPAT
4875 }
4876 
4877 static void
4878 ath_led_done(void *arg)
4879 {
4880 	struct ath_softc *sc = arg;
4881 
4882 	sc->sc_blinking = 0;
4883 }
4884 
4885 /*
4886  * Turn the LED off: flip the pin and then set a timer so no
4887  * update will happen for the specified duration.
4888  */
4889 static void
4890 ath_led_off(void *arg)
4891 {
4892 	struct ath_softc *sc = arg;
4893 
4894 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4895 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4896 }
4897 
4898 /*
4899  * Blink the LED according to the specified on/off times.
4900  */
4901 static void
4902 ath_led_blink(struct ath_softc *sc, int on, int off)
4903 {
4904 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4905 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4906 	sc->sc_blinking = 1;
4907 	sc->sc_ledoff = off;
4908 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4909 }
4910 
4911 static void
4912 ath_led_event(struct ath_softc *sc, int event)
4913 {
4914 
4915 	sc->sc_ledevent = ticks;	/* time of last event */
4916 	if (sc->sc_blinking)		/* don't interrupt active blink */
4917 		return;
4918 	switch (event) {
4919 	case ATH_LED_POLL:
4920 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4921 			sc->sc_hwmap[0].ledoff);
4922 		break;
4923 	case ATH_LED_TX:
4924 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4925 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4926 		break;
4927 	case ATH_LED_RX:
4928 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4929 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4930 		break;
4931 	}
4932 }
4933 
4934 static void
4935 ath_update_txpow(struct ath_softc *sc)
4936 {
4937 	struct ieee80211com *ic = &sc->sc_ic;
4938 	struct ath_hal *ah = sc->sc_ah;
4939 	u_int32_t txpow;
4940 
4941 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4942 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4943 		/* read back in case value is clamped */
4944 		ath_hal_gettxpowlimit(ah, &txpow);
4945 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4946 	}
4947 	/*
4948 	 * Fetch max tx power level for status requests.
4949 	 */
4950 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4951 	ic->ic_bss->ni_txpower = txpow;
4952 }
4953 
4954 static int
4955 ath_rate_setup(struct ath_softc *sc, u_int mode)
4956 {
4957 	struct ath_hal *ah = sc->sc_ah;
4958 	const HAL_RATE_TABLE *rt;
4959 
4960 	switch (mode) {
4961 	case IEEE80211_MODE_11A:
4962 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4963 		break;
4964 	case IEEE80211_MODE_HALF:
4965 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
4966 		break;
4967 	case IEEE80211_MODE_QUARTER:
4968 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
4969 		break;
4970 	case IEEE80211_MODE_11B:
4971 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4972 		break;
4973 	case IEEE80211_MODE_11G:
4974 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4975 		break;
4976 	case IEEE80211_MODE_TURBO_A:
4977 		/* XXX until static/dynamic turbo is fixed */
4978 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4979 		break;
4980 	case IEEE80211_MODE_TURBO_G:
4981 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4982 		break;
4983 	default:
4984 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4985 			__func__, mode);
4986 		return 0;
4987 	}
4988 	sc->sc_rates[mode] = rt;
4989 	return (rt != NULL);
4990 }
4991 
4992 static void
4993 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4994 {
4995 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4996 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4997 	static const struct {
4998 		u_int		rate;		/* tx/rx 802.11 rate */
4999 		u_int16_t	timeOn;		/* LED on time (ms) */
5000 		u_int16_t	timeOff;	/* LED off time (ms) */
5001 	} blinkrates[] = {
5002 		{ 108,  40,  10 },
5003 		{  96,  44,  11 },
5004 		{  72,  50,  13 },
5005 		{  48,  57,  14 },
5006 		{  36,  67,  16 },
5007 		{  24,  80,  20 },
5008 		{  22, 100,  25 },
5009 		{  18, 133,  34 },
5010 		{  12, 160,  40 },
5011 		{  10, 200,  50 },
5012 		{   6, 240,  58 },
5013 		{   4, 267,  66 },
5014 		{   2, 400, 100 },
5015 		{   0, 500, 130 },
5016 		/* XXX half/quarter rates */
5017 	};
5018 	const HAL_RATE_TABLE *rt;
5019 	int i, j;
5020 
5021 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5022 	rt = sc->sc_rates[mode];
5023 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5024 	for (i = 0; i < rt->rateCount; i++)
5025 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5026 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5027 	for (i = 0; i < 32; i++) {
5028 		u_int8_t ix = rt->rateCodeToIndex[i];
5029 		if (ix == 0xff) {
5030 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5031 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5032 			continue;
5033 		}
5034 		sc->sc_hwmap[i].ieeerate =
5035 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5036 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5037 		if (rt->info[ix].shortPreamble ||
5038 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5039 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5040 		/* NB: receive frames include FCS */
5041 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5042 			IEEE80211_RADIOTAP_F_FCS;
5043 		/* setup blink rate table to avoid per-packet lookup */
5044 		for (j = 0; j < N(blinkrates)-1; j++)
5045 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5046 				break;
5047 		/* NB: this uses the last entry if the rate isn't found */
5048 		/* XXX beware of overlow */
5049 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5050 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5051 	}
5052 	sc->sc_currates = rt;
5053 	sc->sc_curmode = mode;
5054 	/*
5055 	 * All protection frames are transmited at 2Mb/s for
5056 	 * 11g, otherwise at 1Mb/s.
5057 	 */
5058 	if (mode == IEEE80211_MODE_11G)
5059 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5060 	else
5061 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5062 	/* rate index used to send management frames */
5063 	sc->sc_minrateix = 0;
5064 	/*
5065 	 * Setup multicast rate state.
5066 	 */
5067 	/* XXX layering violation */
5068 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5069 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5070 	/* NB: caller is responsible for reseting rate control state */
5071 #undef N
5072 }
5073 
5074 #ifdef ATH_DEBUG
5075 static void
5076 ath_printrxbuf(const struct ath_buf *bf, u_int ix, int done)
5077 {
5078 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5079 	const struct ath_desc *ds;
5080 	int i;
5081 
5082 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5083 		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
5084 		       "      %08x %08x %08x %08x\n",
5085 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
5086 		    ds->ds_link, ds->ds_data,
5087 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
5088 		    ds->ds_ctl0, ds->ds_ctl1,
5089 		    ds->ds_hw[0], ds->ds_hw[1]);
5090 	}
5091 }
5092 
5093 static void
5094 ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done)
5095 {
5096 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
5097 	const struct ath_desc *ds;
5098 	int i;
5099 
5100 	printf("Q%u[%3u]", qnum, ix);
5101 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5102 		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
5103 		       "        %08x %08x %08x %08x %08x %08x\n",
5104 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
5105 		    ds->ds_link, ds->ds_data, bf->bf_flags,
5106 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
5107 		    ds->ds_ctl0, ds->ds_ctl1,
5108 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
5109 	}
5110 }
5111 #endif /* ATH_DEBUG */
5112 
5113 static void
5114 ath_watchdog(struct ifnet *ifp)
5115 {
5116 	struct ath_softc *sc = ifp->if_softc;
5117 	struct ieee80211com *ic = &sc->sc_ic;
5118 
5119 	ifp->if_timer = 0;
5120 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
5121 		return;
5122 	if (sc->sc_tx_timer) {
5123 		if (--sc->sc_tx_timer == 0) {
5124 			if_printf(ifp, "device timeout\n");
5125 			ath_reset(ifp);
5126 			ifp->if_oerrors++;
5127 			sc->sc_stats.ast_watchdog++;
5128 		} else
5129 			ifp->if_timer = 1;
5130 	}
5131 	ieee80211_watchdog(ic);
5132 }
5133 
5134 #ifdef ATH_DIAGAPI
5135 /*
5136  * Diagnostic interface to the HAL.  This is used by various
5137  * tools to do things like retrieve register contents for
5138  * debugging.  The mechanism is intentionally opaque so that
5139  * it can change frequently w/o concern for compatiblity.
5140  */
5141 static int
5142 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5143 {
5144 	struct ath_hal *ah = sc->sc_ah;
5145 	u_int id = ad->ad_id & ATH_DIAG_ID;
5146 	void *indata = NULL;
5147 	void *outdata = NULL;
5148 	u_int32_t insize = ad->ad_in_size;
5149 	u_int32_t outsize = ad->ad_out_size;
5150 	int error = 0;
5151 
5152 	if (ad->ad_id & ATH_DIAG_IN) {
5153 		/*
5154 		 * Copy in data.
5155 		 */
5156 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5157 		if (indata == NULL) {
5158 			error = ENOMEM;
5159 			goto bad;
5160 		}
5161 		error = copyin(ad->ad_in_data, indata, insize);
5162 		if (error)
5163 			goto bad;
5164 	}
5165 	if (ad->ad_id & ATH_DIAG_DYN) {
5166 		/*
5167 		 * Allocate a buffer for the results (otherwise the HAL
5168 		 * returns a pointer to a buffer where we can read the
5169 		 * results).  Note that we depend on the HAL leaving this
5170 		 * pointer for us to use below in reclaiming the buffer;
5171 		 * may want to be more defensive.
5172 		 */
5173 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5174 		if (outdata == NULL) {
5175 			error = ENOMEM;
5176 			goto bad;
5177 		}
5178 	}
5179 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5180 		if (outsize < ad->ad_out_size)
5181 			ad->ad_out_size = outsize;
5182 		if (outdata != NULL)
5183 			error = copyout(outdata, ad->ad_out_data,
5184 					ad->ad_out_size);
5185 	} else {
5186 		error = EINVAL;
5187 	}
5188 bad:
5189 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5190 		free(indata, M_TEMP);
5191 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5192 		free(outdata, M_TEMP);
5193 	return error;
5194 }
5195 #endif /* ATH_DIAGAPI */
5196 
5197 static int
5198 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5199 {
5200 #define	IS_RUNNING(ifp) \
5201 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5202 	struct ath_softc *sc = ifp->if_softc;
5203 	struct ieee80211com *ic = &sc->sc_ic;
5204 	struct ifreq *ifr = (struct ifreq *)data;
5205 	int error = 0;
5206 
5207 	ATH_LOCK(sc);
5208 	switch (cmd) {
5209 	case SIOCSIFFLAGS:
5210 		if (IS_RUNNING(ifp)) {
5211 			/*
5212 			 * To avoid rescanning another access point,
5213 			 * do not call ath_init() here.  Instead,
5214 			 * only reflect promisc mode settings.
5215 			 */
5216 			ath_mode_init(sc);
5217 		} else if (ifp->if_flags & IFF_UP) {
5218 			/*
5219 			 * Beware of being called during attach/detach
5220 			 * to reset promiscuous mode.  In that case we
5221 			 * will still be marked UP but not RUNNING.
5222 			 * However trying to re-init the interface
5223 			 * is the wrong thing to do as we've already
5224 			 * torn down much of our state.  There's
5225 			 * probably a better way to deal with this.
5226 			 */
5227 			if (!sc->sc_invalid && ic->ic_bss != NULL)
5228 				ath_init(sc);	/* XXX lose error */
5229 		} else
5230 			ath_stop_locked(ifp);
5231 		break;
5232 	case SIOCADDMULTI:
5233 	case SIOCDELMULTI:
5234 		/*
5235 		 * The upper layer has already installed/removed
5236 		 * the multicast address(es), just recalculate the
5237 		 * multicast filter for the card.
5238 		 */
5239 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5240 			ath_mode_init(sc);
5241 		break;
5242 	case SIOCGATHSTATS:
5243 		/* NB: embed these numbers to get a consistent view */
5244 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5245 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5246 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5247 		sc->sc_stats.ast_rx_noise =
5248 			ath_hal_getchannoise(sc->sc_ah, &sc->sc_curchan);
5249 		sc->sc_stats.ast_tx_rate = sc->sc_hwmap[sc->sc_txrate].ieeerate;
5250 		ATH_UNLOCK(sc);
5251 		/*
5252 		 * NB: Drop the softc lock in case of a page fault;
5253 		 * we'll accept any potential inconsisentcy in the
5254 		 * statistics.  The alternative is to copy the data
5255 		 * to a local structure.
5256 		 */
5257 		return copyout(&sc->sc_stats,
5258 				ifr->ifr_data, sizeof (sc->sc_stats));
5259 #ifdef ATH_DIAGAPI
5260 	case SIOCGATHDIAG:
5261 		ATH_UNLOCK(sc);
5262 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5263 		ATH_LOCK(sc);
5264 		break;
5265 #endif
5266 	default:
5267 		error = ieee80211_ioctl(ic, cmd, data);
5268 		if (error == ENETRESET) {
5269 			if (IS_RUNNING(ifp) &&
5270 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5271 				ath_init(sc);	/* XXX lose error */
5272 			error = 0;
5273 		}
5274 		if (error == ERESTART)
5275 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5276 		break;
5277 	}
5278 	ATH_UNLOCK(sc);
5279 	return error;
5280 #undef IS_RUNNING
5281 }
5282 
5283 static int
5284 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
5285 {
5286 	struct ath_softc *sc = arg1;
5287 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
5288 	int error;
5289 
5290 	error = sysctl_handle_int(oidp, &slottime, 0, req);
5291 	if (error || !req->newptr)
5292 		return error;
5293 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
5294 }
5295 
5296 static int
5297 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
5298 {
5299 	struct ath_softc *sc = arg1;
5300 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
5301 	int error;
5302 
5303 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
5304 	if (error || !req->newptr)
5305 		return error;
5306 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
5307 }
5308 
5309 static int
5310 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
5311 {
5312 	struct ath_softc *sc = arg1;
5313 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
5314 	int error;
5315 
5316 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
5317 	if (error || !req->newptr)
5318 		return error;
5319 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
5320 }
5321 
5322 static int
5323 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
5324 {
5325 	struct ath_softc *sc = arg1;
5326 	int softled = sc->sc_softled;
5327 	int error;
5328 
5329 	error = sysctl_handle_int(oidp, &softled, 0, req);
5330 	if (error || !req->newptr)
5331 		return error;
5332 	softled = (softled != 0);
5333 	if (softled != sc->sc_softled) {
5334 		if (softled) {
5335 			/* NB: handle any sc_ledpin change */
5336 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
5337 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
5338 				!sc->sc_ledon);
5339 		}
5340 		sc->sc_softled = softled;
5341 	}
5342 	return 0;
5343 }
5344 
5345 static int
5346 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
5347 {
5348 	struct ath_softc *sc = arg1;
5349 	u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
5350 	int error;
5351 
5352 	error = sysctl_handle_int(oidp, &txantenna, 0, req);
5353 	if (!error && req->newptr) {
5354 		/* XXX assumes 2 antenna ports */
5355 		if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
5356 			return EINVAL;
5357 		ath_hal_setantennaswitch(sc->sc_ah, txantenna);
5358 		/*
5359 		 * NB: with the switch locked this isn't meaningful,
5360 		 *     but set it anyway so things like radiotap get
5361 		 *     consistent info in their data.
5362 		 */
5363 		sc->sc_txantenna = txantenna;
5364 	}
5365 	return error;
5366 }
5367 
5368 static int
5369 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
5370 {
5371 	struct ath_softc *sc = arg1;
5372 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
5373 	int error;
5374 
5375 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
5376 	if (!error && req->newptr)
5377 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
5378 	return error;
5379 }
5380 
5381 static int
5382 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
5383 {
5384 	struct ath_softc *sc = arg1;
5385 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
5386 	int error;
5387 
5388 	error = sysctl_handle_int(oidp, &diversity, 0, req);
5389 	if (error || !req->newptr)
5390 		return error;
5391 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
5392 		return EINVAL;
5393 	sc->sc_diversity = diversity;
5394 	return 0;
5395 }
5396 
5397 static int
5398 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
5399 {
5400 	struct ath_softc *sc = arg1;
5401 	u_int32_t diag;
5402 	int error;
5403 
5404 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
5405 		return EINVAL;
5406 	error = sysctl_handle_int(oidp, &diag, 0, req);
5407 	if (error || !req->newptr)
5408 		return error;
5409 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
5410 }
5411 
5412 static int
5413 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
5414 {
5415 	struct ath_softc *sc = arg1;
5416 	struct ifnet *ifp = sc->sc_ifp;
5417 	u_int32_t scale;
5418 	int error;
5419 
5420 	ath_hal_gettpscale(sc->sc_ah, &scale);
5421 	error = sysctl_handle_int(oidp, &scale, 0, req);
5422 	if (error || !req->newptr)
5423 		return error;
5424 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
5425 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
5426 }
5427 
5428 static int
5429 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
5430 {
5431 	struct ath_softc *sc = arg1;
5432 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
5433 	int error;
5434 
5435 	error = sysctl_handle_int(oidp, &tpc, 0, req);
5436 	if (error || !req->newptr)
5437 		return error;
5438 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
5439 }
5440 
5441 static int
5442 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
5443 {
5444 	struct ath_softc *sc = arg1;
5445 	struct ifnet *ifp = sc->sc_ifp;
5446 	struct ath_hal *ah = sc->sc_ah;
5447 	u_int rfkill = ath_hal_getrfkill(ah);
5448 	int error;
5449 
5450 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
5451 	if (error || !req->newptr)
5452 		return error;
5453 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
5454 		return 0;
5455 	if (!ath_hal_setrfkill(ah, rfkill))
5456 		return EINVAL;
5457 	return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
5458 }
5459 
5460 static int
5461 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
5462 {
5463 	struct ath_softc *sc = arg1;
5464 	u_int rfsilent;
5465 	int error;
5466 
5467 	ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
5468 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
5469 	if (error || !req->newptr)
5470 		return error;
5471 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
5472 		return EINVAL;
5473 	sc->sc_rfsilentpin = rfsilent & 0x1c;
5474 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
5475 	return 0;
5476 }
5477 
5478 static int
5479 ath_sysctl_countrycode(SYSCTL_HANDLER_ARGS)
5480 {
5481 	struct ath_softc *sc = arg1;
5482 	u_int32_t cc = sc->sc_countrycode;
5483 	struct ieee80211com *ic = &sc->sc_ic;
5484 	int error;
5485 
5486 	error = sysctl_handle_int(oidp, &cc, 0, req);
5487 	if (error || !req->newptr)
5488 		return error;
5489 	error = ath_getchannels(sc, sc->sc_regdomain, cc,
5490 			sc->sc_outdoor, sc->sc_xchanmode);
5491 	if (error != 0)
5492 		return error;
5493 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
5494 	/* setcurmode? */
5495 	return 0;
5496 }
5497 
5498 static int
5499 ath_sysctl_regdomain(SYSCTL_HANDLER_ARGS)
5500 {
5501 	struct ath_softc *sc = arg1;
5502 	u_int32_t rd = sc->sc_regdomain;
5503 	struct ieee80211com *ic = &sc->sc_ic;
5504 	int error;
5505 
5506 	error = sysctl_handle_int(oidp, &rd, 0, req);
5507 	if (error || !req->newptr)
5508 		return error;
5509 	if (!ath_hal_setregdomain(sc->sc_ah, rd))
5510 		return EINVAL;
5511 	error = ath_getchannels(sc, rd, sc->sc_countrycode,
5512 			sc->sc_outdoor, sc->sc_xchanmode);
5513 	if (error != 0)
5514 		return error;
5515 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
5516 	/* setcurmode? */
5517 	return 0;
5518 }
5519 
5520 static int
5521 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
5522 {
5523 	struct ath_softc *sc = arg1;
5524 	u_int32_t tpack;
5525 	int error;
5526 
5527 	ath_hal_gettpack(sc->sc_ah, &tpack);
5528 	error = sysctl_handle_int(oidp, &tpack, 0, req);
5529 	if (error || !req->newptr)
5530 		return error;
5531 	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
5532 }
5533 
5534 static int
5535 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
5536 {
5537 	struct ath_softc *sc = arg1;
5538 	u_int32_t tpcts;
5539 	int error;
5540 
5541 	ath_hal_gettpcts(sc->sc_ah, &tpcts);
5542 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
5543 	if (error || !req->newptr)
5544 		return error;
5545 	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
5546 }
5547 
5548 static void
5549 ath_sysctlattach(struct ath_softc *sc)
5550 {
5551 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
5552 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
5553 	struct ath_hal *ah = sc->sc_ah;
5554 
5555 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5556 		"countrycode", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5557 		ath_sysctl_countrycode, "I", "country code");
5558 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5559 		"regdomain", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5560 		ath_sysctl_regdomain, "I", "EEPROM regdomain code");
5561 #ifdef	ATH_DEBUG
5562 	sc->sc_debug = ath_debug;
5563 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5564 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
5565 		"control debugging printfs");
5566 #endif
5567 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5568 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5569 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
5570 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5571 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5572 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
5573 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5574 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5575 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
5576 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5577 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5578 		ath_sysctl_softled, "I", "enable/disable software LED support");
5579 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5580 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
5581 		"GPIO pin connected to LED");
5582 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5583 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
5584 		"setting to turn LED on");
5585 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5586 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
5587 		"idle time for inactivity LED (ticks)");
5588 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5589 		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5590 		ath_sysctl_txantenna, "I", "antenna switch");
5591 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5592 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5593 		ath_sysctl_rxantenna, "I", "default/rx antenna");
5594 	if (ath_hal_hasdiversity(ah))
5595 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5596 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5597 			ath_sysctl_diversity, "I", "antenna diversity");
5598 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
5599 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5600 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
5601 		"tx descriptor batching");
5602 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5603 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5604 		ath_sysctl_diag, "I", "h/w diagnostic control");
5605 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5606 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5607 		ath_sysctl_tpscale, "I", "tx power scaling");
5608 	if (ath_hal_hastpc(ah)) {
5609 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5610 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5611 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
5612 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5613 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5614 			ath_sysctl_tpack, "I", "tx power for ack frames");
5615 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5616 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5617 			ath_sysctl_tpcts, "I", "tx power for cts frames");
5618 	}
5619 	if (ath_hal_hasrfsilent(ah)) {
5620 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5621 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5622 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
5623 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5624 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5625 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
5626 	}
5627 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
5628 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5629 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
5630 		"mask of error frames to pass when monitoring");
5631 }
5632 
5633 static void
5634 ath_bpfattach(struct ath_softc *sc)
5635 {
5636 	struct ifnet *ifp = sc->sc_ifp;
5637 
5638 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5639 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5640 		&sc->sc_drvbpf);
5641 	/*
5642 	 * Initialize constant fields.
5643 	 * XXX make header lengths a multiple of 32-bits so subsequent
5644 	 *     headers are properly aligned; this is a kludge to keep
5645 	 *     certain applications happy.
5646 	 *
5647 	 * NB: the channel is setup each time we transition to the
5648 	 *     RUN state to avoid filling it in for each frame.
5649 	 */
5650 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5651 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5652 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5653 
5654 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5655 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5656 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5657 }
5658 
5659 static int
5660 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
5661 	struct ath_buf *bf, struct mbuf *m0,
5662 	const struct ieee80211_bpf_params *params)
5663 {
5664 	struct ieee80211com *ic = &sc->sc_ic;
5665 	struct ath_hal *ah = sc->sc_ah;
5666 	int error, ismcast, ismrr;
5667 	int hdrlen, pktlen, try0, txantenna;
5668 	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
5669 	struct ath_txq *txq;
5670 	struct ieee80211_frame *wh;
5671 	u_int flags, ctsduration;
5672 	HAL_PKT_TYPE atype;
5673 	const HAL_RATE_TABLE *rt;
5674 	struct ath_desc *ds;
5675 	u_int pri;
5676 
5677 	wh = mtod(m0, struct ieee80211_frame *);
5678 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
5679 	hdrlen = ieee80211_anyhdrsize(wh);
5680 	/*
5681 	 * Packet length must not include any
5682 	 * pad bytes; deduct them here.
5683 	 */
5684 	/* XXX honor IEEE80211_BPF_DATAPAD */
5685 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
5686 
5687 	error = ath_tx_dmasetup(sc, bf, m0);
5688 	if (error != 0)
5689 		return error;
5690 	m0 = bf->bf_m;				/* NB: may have changed */
5691 	wh = mtod(m0, struct ieee80211_frame *);
5692 	bf->bf_node = ni;			/* NB: held reference */
5693 
5694 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
5695 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
5696 	if (params->ibp_flags & IEEE80211_BPF_RTS)
5697 		flags |= HAL_TXDESC_RTSENA;
5698 	else if (params->ibp_flags & IEEE80211_BPF_CTS)
5699 		flags |= HAL_TXDESC_CTSENA;
5700 	/* XXX leave ismcast to injector? */
5701 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
5702 		flags |= HAL_TXDESC_NOACK;
5703 
5704 	rt = sc->sc_currates;
5705 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
5706 	rix = ath_tx_findrix(rt, params->ibp_rate0);
5707 	txrate = rt->info[rix].rateCode;
5708 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
5709 		txrate |= rt->info[rix].shortPreamble;
5710 	sc->sc_txrate = txrate;
5711 	try0 = params->ibp_try0;
5712 	ismrr = (params->ibp_try1 != 0);
5713 	txantenna = params->ibp_pri >> 2;
5714 	if (txantenna == 0)			/* XXX? */
5715 		txantenna = sc->sc_txantenna;
5716 	ctsduration = 0;
5717 	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
5718 		cix = ath_tx_findrix(rt, params->ibp_ctsrate);
5719 		ctsrate = rt->info[cix].rateCode;
5720 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
5721 			ctsrate |= rt->info[cix].shortPreamble;
5722 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
5723 				ctsduration += rt->info[cix].spAckDuration;
5724 			ctsduration += ath_hal_computetxtime(ah,
5725 				rt, pktlen, rix, AH_TRUE);
5726 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
5727 				ctsduration += rt->info[rix].spAckDuration;
5728 		} else {
5729 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
5730 				ctsduration += rt->info[cix].lpAckDuration;
5731 			ctsduration += ath_hal_computetxtime(ah,
5732 				rt, pktlen, rix, AH_FALSE);
5733 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
5734 				ctsduration += rt->info[rix].lpAckDuration;
5735 		}
5736 		ismrr = 0;			/* XXX */
5737 	} else
5738 		ctsrate = 0;
5739 	pri = params->ibp_pri & 3;
5740 	/*
5741 	 * NB: we mark all packets as type PSPOLL so the h/w won't
5742 	 * set the sequence number, duration, etc.
5743 	 */
5744 	atype = HAL_PKT_TYPE_PSPOLL;
5745 
5746 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
5747 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
5748 			sc->sc_hwmap[txrate].ieeerate, -1);
5749 
5750 	if (bpf_peers_present(ic->ic_rawbpf))
5751 		bpf_mtap(ic->ic_rawbpf, m0);
5752 	if (bpf_peers_present(sc->sc_drvbpf)) {
5753 		u_int64_t tsf = ath_hal_gettsf64(ah);
5754 
5755 		sc->sc_tx_th.wt_tsf = htole64(tsf);
5756 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
5757 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
5758 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
5759 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
5760 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
5761 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
5762 
5763 		bpf_mtap2(sc->sc_drvbpf,
5764 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
5765 	}
5766 
5767 	/*
5768 	 * Formulate first tx descriptor with tx controls.
5769 	 */
5770 	ds = bf->bf_desc;
5771 	/* XXX check return value? */
5772 	ath_hal_setuptxdesc(ah, ds
5773 		, pktlen		/* packet length */
5774 		, hdrlen		/* header length */
5775 		, atype			/* Atheros packet type */
5776 		, params->ibp_power	/* txpower */
5777 		, txrate, try0		/* series 0 rate/tries */
5778 		, HAL_TXKEYIX_INVALID	/* key cache index */
5779 		, txantenna		/* antenna mode */
5780 		, flags			/* flags */
5781 		, ctsrate		/* rts/cts rate */
5782 		, ctsduration		/* rts/cts duration */
5783 	);
5784 	bf->bf_flags = flags;
5785 
5786 	if (ismrr) {
5787 		rix = ath_tx_findrix(rt, params->ibp_rate1);
5788 		rate1 = rt->info[rix].rateCode;
5789 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
5790 			rate1 |= rt->info[rix].shortPreamble;
5791 		if (params->ibp_try2) {
5792 			rix = ath_tx_findrix(rt, params->ibp_rate2);
5793 			rate2 = rt->info[rix].rateCode;
5794 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
5795 				rate2 |= rt->info[rix].shortPreamble;
5796 		} else
5797 			rate2 = 0;
5798 		if (params->ibp_try3) {
5799 			rix = ath_tx_findrix(rt, params->ibp_rate3);
5800 			rate3 = rt->info[rix].rateCode;
5801 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
5802 				rate3 |= rt->info[rix].shortPreamble;
5803 		} else
5804 			rate3 = 0;
5805 		ath_hal_setupxtxdesc(ah, ds
5806 			, rate1, params->ibp_try1	/* series 1 */
5807 			, rate2, params->ibp_try2	/* series 2 */
5808 			, rate3, params->ibp_try3	/* series 3 */
5809 		);
5810 	}
5811 
5812 	/*
5813 	 * When servicing one or more stations in power-save mode
5814 	 * (or) if there is some mcast data waiting on the mcast
5815 	 * queue (to prevent out of order delivery) multicast
5816 	 * frames must be buffered until after the beacon.
5817 	 */
5818 	txq = sc->sc_ac2q[pri];
5819 	if (ismcast && (ic->ic_ps_sta || sc->sc_mcastq.axq_depth))
5820 		txq = &sc->sc_mcastq;
5821 	ath_tx_handoff(sc, txq, bf);
5822 	return 0;
5823 }
5824 
5825 static int
5826 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
5827 	const struct ieee80211_bpf_params *params)
5828 {
5829 	struct ieee80211com *ic = ni->ni_ic;
5830 	struct ifnet *ifp = ic->ic_ifp;
5831 	struct ath_softc *sc = ifp->if_softc;
5832 	struct ath_buf *bf;
5833 
5834 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
5835 		m_freem(m);
5836 		return ENETDOWN;
5837 	}
5838 	/*
5839 	 * Grab a TX buffer and associated resources.
5840 	 */
5841 	ATH_TXBUF_LOCK(sc);
5842 	bf = STAILQ_FIRST(&sc->sc_txbuf);
5843 	if (bf != NULL)
5844 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
5845 	ATH_TXBUF_UNLOCK(sc);
5846 	if (bf == NULL) {
5847 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
5848 			__func__);
5849 		sc->sc_stats.ast_tx_qstop++;
5850 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5851 		m_freem(m);
5852 		return ENOBUFS;
5853 	}
5854 
5855 	ifp->if_opackets++;
5856 	sc->sc_stats.ast_tx_raw++;
5857 
5858 	if (params == NULL) {
5859 		/*
5860 		 * Legacy path; interpret frame contents to decide
5861 		 * precisely how to send the frame.
5862 		 */
5863 		if (ath_tx_start(sc, ni, bf, m))
5864 			goto bad;
5865 	} else {
5866 		/*
5867 		 * Caller supplied explicit parameters to use in
5868 		 * sending the frame.
5869 		 */
5870 		if (ath_tx_raw_start(sc, ni, bf, m, params))
5871 			goto bad;
5872 	}
5873 	sc->sc_tx_timer = 5;
5874 	ifp->if_timer = 1;
5875 
5876 	return 0;
5877 bad:
5878 	ifp->if_oerrors++;
5879 	ATH_TXBUF_LOCK(sc);
5880 	STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5881 	ATH_TXBUF_UNLOCK(sc);
5882 	ieee80211_free_node(ni);
5883 	return EIO;		/* XXX */
5884 }
5885 
5886 /*
5887  * Announce various information on device/driver attach.
5888  */
5889 static void
5890 ath_announce(struct ath_softc *sc)
5891 {
5892 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5893 	struct ifnet *ifp = sc->sc_ifp;
5894 	struct ath_hal *ah = sc->sc_ah;
5895 	u_int modes, cc;
5896 
5897 	if_printf(ifp, "mac %d.%d phy %d.%d",
5898 		ah->ah_macVersion, ah->ah_macRev,
5899 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5900 	/*
5901 	 * Print radio revision(s).  We check the wireless modes
5902 	 * to avoid falsely printing revs for inoperable parts.
5903 	 * Dual-band radio revs are returned in the 5Ghz rev number.
5904 	 */
5905 	ath_hal_getcountrycode(ah, &cc);
5906 	modes = ath_hal_getwirelessmodes(ah, cc);
5907 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5908 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5909 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
5910 				ah->ah_analog5GhzRev >> 4,
5911 				ah->ah_analog5GhzRev & 0xf,
5912 				ah->ah_analog2GhzRev >> 4,
5913 				ah->ah_analog2GhzRev & 0xf);
5914 		else
5915 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5916 				ah->ah_analog5GhzRev & 0xf);
5917 	} else
5918 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5919 			ah->ah_analog5GhzRev & 0xf);
5920 	printf("\n");
5921 	if (bootverbose) {
5922 		int i;
5923 		for (i = 0; i <= WME_AC_VO; i++) {
5924 			struct ath_txq *txq = sc->sc_ac2q[i];
5925 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5926 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5927 		}
5928 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5929 			sc->sc_cabq->axq_qnum);
5930 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5931 	}
5932 	if (ath_rxbuf != ATH_RXBUF)
5933 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5934 	if (ath_txbuf != ATH_TXBUF)
5935 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5936 #undef HAL_MODE_DUALBAND
5937 }
5938