xref: /freebsd/sys/dev/bce/if_bce.c (revision d6b92ffa)
1 /*-
2  * Copyright (c) 2006-2014 QLogic Corporation
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * The following controllers are supported by this driver:
32  *   BCM5706C A2, A3
33  *   BCM5706S A2, A3
34  *   BCM5708C B1, B2
35  *   BCM5708S B1, B2
36  *   BCM5709C A1, C0
37  *   BCM5709S A1, C0
38  *   BCM5716C C0
39  *   BCM5716S C0
40  *
41  * The following controllers are not supported by this driver:
42  *   BCM5706C A0, A1 (pre-production)
43  *   BCM5706S A0, A1 (pre-production)
44  *   BCM5708C A0, B0 (pre-production)
45  *   BCM5708S A0, B0 (pre-production)
46  *   BCM5709C A0  B0, B1, B2 (pre-production)
47  *   BCM5709S A0, B0, B1, B2 (pre-production)
48  */
49 
50 #include "opt_bce.h"
51 
52 #include <sys/param.h>
53 #include <sys/endian.h>
54 #include <sys/systm.h>
55 #include <sys/sockio.h>
56 #include <sys/lock.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/kernel.h>
61 #include <sys/module.h>
62 #include <sys/socket.h>
63 #include <sys/sysctl.h>
64 #include <sys/queue.h>
65 
66 #include <net/bpf.h>
67 #include <net/ethernet.h>
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/if_arp.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 
74 #include <net/if_types.h>
75 #include <net/if_vlan_var.h>
76 
77 #include <netinet/in_systm.h>
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip6.h>
82 #include <netinet/tcp.h>
83 #include <netinet/udp.h>
84 
85 #include <machine/bus.h>
86 #include <machine/resource.h>
87 #include <sys/bus.h>
88 #include <sys/rman.h>
89 
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 #include "miidevs.h"
93 #include <dev/mii/brgphyreg.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 
98 #include "miibus_if.h"
99 
100 #include <dev/bce/if_bcereg.h>
101 #include <dev/bce/if_bcefw.h>
102 
103 /****************************************************************************/
104 /* BCE Debug Options                                                        */
105 /****************************************************************************/
106 #ifdef BCE_DEBUG
107 	u32 bce_debug = BCE_WARN;
108 
109 	/*          0 = Never              */
110 	/*          1 = 1 in 2,147,483,648 */
111 	/*        256 = 1 in     8,388,608 */
112 	/*       2048 = 1 in     1,048,576 */
113 	/*      65536 = 1 in        32,768 */
114 	/*    1048576 = 1 in         2,048 */
115 	/*  268435456 =	1 in             8 */
116 	/*  536870912 = 1 in             4 */
117 	/* 1073741824 = 1 in             2 */
118 
119 	/* Controls how often the l2_fhdr frame error check will fail. */
120 	int l2fhdr_error_sim_control = 0;
121 
122 	/* Controls how often the unexpected attention check will fail. */
123 	int unexpected_attention_sim_control = 0;
124 
125 	/* Controls how often to simulate an mbuf allocation failure. */
126 	int mbuf_alloc_failed_sim_control = 0;
127 
128 	/* Controls how often to simulate a DMA mapping failure. */
129 	int dma_map_addr_failed_sim_control = 0;
130 
131 	/* Controls how often to simulate a bootcode failure. */
132 	int bootcode_running_failure_sim_control = 0;
133 #endif
134 
135 /****************************************************************************/
136 /* PCI Device ID Table                                                      */
137 /*                                                                          */
138 /* Used by bce_probe() to identify the devices supported by this driver.    */
139 /****************************************************************************/
140 #define BCE_DEVDESC_MAX		64
141 
142 static const struct bce_type bce_devs[] = {
143 	/* BCM5706C Controllers and OEM boards. */
144 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
145 		"HP NC370T Multifunction Gigabit Server Adapter" },
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
147 		"HP NC370i Multifunction Gigabit Server Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
149 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
151 		"HP NC371i Multifunction Gigabit Server Adapter" },
152 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
153 		"QLogic NetXtreme II BCM5706 1000Base-T" },
154 
155 	/* BCM5706S controllers and OEM boards. */
156 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
157 		"HP NC370F Multifunction Gigabit Server Adapter" },
158 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
159 		"QLogic NetXtreme II BCM5706 1000Base-SX" },
160 
161 	/* BCM5708C controllers and OEM boards. */
162 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
163 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
164 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
165 		"HP NC373i Multifunction Gigabit Server Adapter" },
166 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
167 		"HP NC374m PCIe Multifunction Adapter" },
168 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
169 		"QLogic NetXtreme II BCM5708 1000Base-T" },
170 
171 	/* BCM5708S controllers and OEM boards. */
172 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
173 		"HP NC373m Multifunction Gigabit Server Adapter" },
174 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
175 		"HP NC373i Multifunction Gigabit Server Adapter" },
176 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
177 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
178 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
179 		"QLogic NetXtreme II BCM5708 1000Base-SX" },
180 
181 	/* BCM5709C controllers and OEM boards. */
182 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
183 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
184 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
185 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
186 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
187 		"QLogic NetXtreme II BCM5709 1000Base-T" },
188 
189 	/* BCM5709S controllers and OEM boards. */
190 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
191 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
192 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
193 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
194 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
195 		"QLogic NetXtreme II BCM5709 1000Base-SX" },
196 
197 	/* BCM5716 controllers and OEM boards. */
198 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
199 		"QLogic NetXtreme II BCM5716 1000Base-T" },
200 
201 	{ 0, 0, 0, 0, NULL }
202 };
203 
204 
205 /****************************************************************************/
206 /* Supported Flash NVRAM device data.                                       */
207 /****************************************************************************/
208 static const struct flash_spec flash_table[] =
209 {
210 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
211 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
212 
213 	/* Slow EEPROM */
214 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
215 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
216 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
217 	 "EEPROM - slow"},
218 	/* Expansion entry 0001 */
219 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
220 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
221 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
222 	 "Entry 0001"},
223 	/* Saifun SA25F010 (non-buffered flash) */
224 	/* strap, cfg1, & write1 need updates */
225 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
228 	 "Non-buffered flash (128kB)"},
229 	/* Saifun SA25F020 (non-buffered flash) */
230 	/* strap, cfg1, & write1 need updates */
231 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
232 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
233 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
234 	 "Non-buffered flash (256kB)"},
235 	/* Expansion entry 0100 */
236 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
237 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239 	 "Entry 0100"},
240 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
241 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
242 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
243 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
244 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
245 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
246 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
247 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
248 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
249 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
250 	/* Saifun SA25F005 (non-buffered flash) */
251 	/* strap, cfg1, & write1 need updates */
252 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
253 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
255 	 "Non-buffered flash (64kB)"},
256 	/* Fast EEPROM */
257 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
258 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
259 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
260 	 "EEPROM - fast"},
261 	/* Expansion entry 1001 */
262 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
263 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
264 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
265 	 "Entry 1001"},
266 	/* Expansion entry 1010 */
267 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
268 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
269 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
270 	 "Entry 1010"},
271 	/* ATMEL AT45DB011B (buffered flash) */
272 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
273 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
274 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
275 	 "Buffered flash (128kB)"},
276 	/* Expansion entry 1100 */
277 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
278 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
279 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
280 	 "Entry 1100"},
281 	/* Expansion entry 1101 */
282 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
283 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
284 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
285 	 "Entry 1101"},
286 	/* Ateml Expansion entry 1110 */
287 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
288 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
289 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
290 	 "Entry 1110 (Atmel)"},
291 	/* ATMEL AT45DB021B (buffered flash) */
292 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
293 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
294 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
295 	 "Buffered flash (256kB)"},
296 };
297 
298 /*
299  * The BCM5709 controllers transparently handle the
300  * differences between Atmel 264 byte pages and all
301  * flash devices which use 256 byte pages, so no
302  * logical-to-physical mapping is required in the
303  * driver.
304  */
305 static const struct flash_spec flash_5709 = {
306 	.flags		= BCE_NV_BUFFERED,
307 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
308 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
309 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
310 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
311 	.name		= "5709/5716 buffered flash (256kB)",
312 };
313 
314 
315 /****************************************************************************/
316 /* FreeBSD device entry points.                                             */
317 /****************************************************************************/
318 static int  bce_probe			(device_t);
319 static int  bce_attach			(device_t);
320 static int  bce_detach			(device_t);
321 static int  bce_shutdown		(device_t);
322 
323 
324 /****************************************************************************/
325 /* BCE Debug Data Structure Dump Routines                                   */
326 /****************************************************************************/
327 #ifdef BCE_DEBUG
328 static u32  bce_reg_rd				(struct bce_softc *, u32);
329 static void bce_reg_wr				(struct bce_softc *, u32, u32);
330 static void bce_reg_wr16			(struct bce_softc *, u32, u16);
331 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
332 static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
333 static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
334 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
335 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
336 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
337 static void bce_dump_txbd			(struct bce_softc *,
338     int, struct tx_bd *);
339 static void bce_dump_rxbd			(struct bce_softc *,
340     int, struct rx_bd *);
341 static void bce_dump_pgbd			(struct bce_softc *,
342     int, struct rx_bd *);
343 static void bce_dump_l2fhdr		(struct bce_softc *,
344     int, struct l2_fhdr *);
345 static void bce_dump_ctx			(struct bce_softc *, u16);
346 static void bce_dump_ftqs			(struct bce_softc *);
347 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
348 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
349 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
350 static void bce_dump_status_block	(struct bce_softc *);
351 static void bce_dump_stats_block	(struct bce_softc *);
352 static void bce_dump_driver_state	(struct bce_softc *);
353 static void bce_dump_hw_state		(struct bce_softc *);
354 static void bce_dump_shmem_state	(struct bce_softc *);
355 static void bce_dump_mq_regs		(struct bce_softc *);
356 static void bce_dump_bc_state		(struct bce_softc *);
357 static void bce_dump_txp_state		(struct bce_softc *, int);
358 static void bce_dump_rxp_state		(struct bce_softc *, int);
359 static void bce_dump_tpat_state	(struct bce_softc *, int);
360 static void bce_dump_cp_state		(struct bce_softc *, int);
361 static void bce_dump_com_state		(struct bce_softc *, int);
362 static void bce_dump_rv2p_state	(struct bce_softc *);
363 static void bce_breakpoint			(struct bce_softc *);
364 #endif /*BCE_DEBUG */
365 
366 
367 /****************************************************************************/
368 /* BCE Register/Memory Access Routines                                      */
369 /****************************************************************************/
370 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
371 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
372 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
373 static u32  bce_shmem_rd		(struct bce_softc *, u32);
374 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
375 static int  bce_miibus_read_reg		(device_t, int, int);
376 static int  bce_miibus_write_reg	(device_t, int, int, int);
377 static void bce_miibus_statchg		(device_t);
378 
379 #ifdef BCE_DEBUG
380 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
381 #ifdef BCE_NVRAM_WRITE_SUPPORT
382 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
383 #endif
384 #endif
385 
386 /****************************************************************************/
387 /* BCE NVRAM Access Routines                                                */
388 /****************************************************************************/
389 static int  bce_acquire_nvram_lock	(struct bce_softc *);
390 static int  bce_release_nvram_lock	(struct bce_softc *);
391 static void bce_enable_nvram_access(struct bce_softc *);
392 static void bce_disable_nvram_access(struct bce_softc *);
393 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
394 static int  bce_init_nvram			(struct bce_softc *);
395 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
396 static int  bce_nvram_test			(struct bce_softc *);
397 #ifdef BCE_NVRAM_WRITE_SUPPORT
398 static int  bce_enable_nvram_write	(struct bce_softc *);
399 static void bce_disable_nvram_write(struct bce_softc *);
400 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
401 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
402 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
403 #endif
404 
405 /****************************************************************************/
406 /*                                                                          */
407 /****************************************************************************/
408 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
409 static void bce_get_media			(struct bce_softc *);
410 static void bce_init_media			(struct bce_softc *);
411 static u32 bce_get_rphy_link		(struct bce_softc *);
412 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
413 static int  bce_dma_alloc			(device_t);
414 static void bce_dma_free			(struct bce_softc *);
415 static void bce_release_resources	(struct bce_softc *);
416 
417 /****************************************************************************/
418 /* BCE Firmware Synchronization and Load                                    */
419 /****************************************************************************/
420 static void bce_fw_cap_init			(struct bce_softc *);
421 static int  bce_fw_sync			(struct bce_softc *, u32);
422 static void bce_load_rv2p_fw		(struct bce_softc *, const u32 *, u32,
423     u32);
424 static void bce_load_cpu_fw		(struct bce_softc *,
425     struct cpu_reg *, struct fw_info *);
426 static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
427 static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
428 static void bce_start_rxp_cpu		(struct bce_softc *);
429 static void bce_init_rxp_cpu		(struct bce_softc *);
430 static void bce_init_txp_cpu 		(struct bce_softc *);
431 static void bce_init_tpat_cpu		(struct bce_softc *);
432 static void bce_init_cp_cpu	  	(struct bce_softc *);
433 static void bce_init_com_cpu	  	(struct bce_softc *);
434 static void bce_init_cpus			(struct bce_softc *);
435 
436 static void bce_print_adapter_info	(struct bce_softc *);
437 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
438 static void bce_stop				(struct bce_softc *);
439 static int  bce_reset				(struct bce_softc *, u32);
440 static int  bce_chipinit 			(struct bce_softc *);
441 static int  bce_blockinit 			(struct bce_softc *);
442 
443 static int  bce_init_tx_chain		(struct bce_softc *);
444 static void bce_free_tx_chain		(struct bce_softc *);
445 
446 static int  bce_get_rx_buf		(struct bce_softc *, u16, u16, u32 *);
447 static int  bce_init_rx_chain		(struct bce_softc *);
448 static void bce_fill_rx_chain		(struct bce_softc *);
449 static void bce_free_rx_chain		(struct bce_softc *);
450 
451 static int  bce_get_pg_buf		(struct bce_softc *, u16, u16);
452 static int  bce_init_pg_chain		(struct bce_softc *);
453 static void bce_fill_pg_chain		(struct bce_softc *);
454 static void bce_free_pg_chain		(struct bce_softc *);
455 
456 static struct mbuf *bce_tso_setup	(struct bce_softc *,
457     struct mbuf **, u16 *);
458 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
459 static void bce_start_locked		(struct ifnet *);
460 static void bce_start			(struct ifnet *);
461 static int  bce_ioctl			(struct ifnet *, u_long, caddr_t);
462 static uint64_t bce_get_counter		(struct ifnet *, ift_counter);
463 static void bce_watchdog		(struct bce_softc *);
464 static int  bce_ifmedia_upd		(struct ifnet *);
465 static int  bce_ifmedia_upd_locked	(struct ifnet *);
466 static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
467 static void bce_ifmedia_sts_rphy	(struct bce_softc *, struct ifmediareq *);
468 static void bce_init_locked		(struct bce_softc *);
469 static void bce_init				(void *);
470 static void bce_mgmt_init_locked	(struct bce_softc *sc);
471 
472 static int  bce_init_ctx			(struct bce_softc *);
473 static void bce_get_mac_addr		(struct bce_softc *);
474 static void bce_set_mac_addr		(struct bce_softc *);
475 static void bce_phy_intr			(struct bce_softc *);
476 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
477 static void bce_rx_intr			(struct bce_softc *);
478 static void bce_tx_intr			(struct bce_softc *);
479 static void bce_disable_intr		(struct bce_softc *);
480 static void bce_enable_intr		(struct bce_softc *, int);
481 
482 static void bce_intr				(void *);
483 static void bce_set_rx_mode		(struct bce_softc *);
484 static void bce_stats_update		(struct bce_softc *);
485 static void bce_tick				(void *);
486 static void bce_pulse				(void *);
487 static void bce_add_sysctls		(struct bce_softc *);
488 
489 
490 /****************************************************************************/
491 /* FreeBSD device dispatch table.                                           */
492 /****************************************************************************/
493 static device_method_t bce_methods[] = {
494 	/* Device interface (device_if.h) */
495 	DEVMETHOD(device_probe,		bce_probe),
496 	DEVMETHOD(device_attach,	bce_attach),
497 	DEVMETHOD(device_detach,	bce_detach),
498 	DEVMETHOD(device_shutdown,	bce_shutdown),
499 /* Supported by device interface but not used here. */
500 /*	DEVMETHOD(device_identify,	bce_identify),      */
501 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
502 /*	DEVMETHOD(device_resume,	bce_resume),        */
503 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
504 
505 	/* MII interface (miibus_if.h) */
506 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
507 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
508 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
509 /* Supported by MII interface but not used here.       */
510 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
511 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
512 
513 	DEVMETHOD_END
514 };
515 
516 static driver_t bce_driver = {
517 	"bce",
518 	bce_methods,
519 	sizeof(struct bce_softc)
520 };
521 
522 static devclass_t bce_devclass;
523 
524 MODULE_DEPEND(bce, pci, 1, 1, 1);
525 MODULE_DEPEND(bce, ether, 1, 1, 1);
526 MODULE_DEPEND(bce, miibus, 1, 1, 1);
527 
528 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL);
529 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
530 
531 
532 /****************************************************************************/
533 /* Tunable device values                                                    */
534 /****************************************************************************/
535 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
536 
537 /* Allowable values are TRUE or FALSE */
538 static int bce_verbose = TRUE;
539 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
540     "Verbose output enable/disable");
541 
542 /* Allowable values are TRUE or FALSE */
543 static int bce_tso_enable = TRUE;
544 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
545     "TSO Enable/Disable");
546 
547 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
548 /* ToDo: Add MSI-X support. */
549 static int bce_msi_enable = 1;
550 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
551     "MSI-X|MSI|INTx selector");
552 
553 /* Allowable values are 1, 2, 4, 8. */
554 static int bce_rx_pages = DEFAULT_RX_PAGES;
555 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
556     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
557 
558 /* Allowable values are 1, 2, 4, 8. */
559 static int bce_tx_pages = DEFAULT_TX_PAGES;
560 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
561     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
562 
563 /* Allowable values are TRUE or FALSE. */
564 static int bce_hdr_split = TRUE;
565 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
566     "Frame header/payload splitting Enable/Disable");
567 
568 /* Allowable values are TRUE or FALSE. */
569 static int bce_strict_rx_mtu = FALSE;
570 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
571     &bce_strict_rx_mtu, 0,
572     "Enable/Disable strict RX frame size checking");
573 
574 /* Allowable values are 0 ... 100 */
575 #ifdef BCE_DEBUG
576 /* Generate 1 interrupt for every transmit completion. */
577 static int bce_tx_quick_cons_trip_int = 1;
578 #else
579 /* Generate 1 interrupt for every 20 transmit completions. */
580 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
581 #endif
582 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
583     &bce_tx_quick_cons_trip_int, 0,
584     "Transmit BD trip point during interrupts");
585 
586 /* Allowable values are 0 ... 100 */
587 /* Generate 1 interrupt for every transmit completion. */
588 #ifdef BCE_DEBUG
589 static int bce_tx_quick_cons_trip = 1;
590 #else
591 /* Generate 1 interrupt for every 20 transmit completions. */
592 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
593 #endif
594 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
595     &bce_tx_quick_cons_trip, 0,
596     "Transmit BD trip point");
597 
598 /* Allowable values are 0 ... 100 */
599 #ifdef BCE_DEBUG
600 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
601 static int bce_tx_ticks_int = 0;
602 #else
603 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
604 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
605 #endif
606 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
607     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
608 
609 /* Allowable values are 0 ... 100 */
610 #ifdef BCE_DEBUG
611 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
612 static int bce_tx_ticks = 0;
613 #else
614 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
615 static int bce_tx_ticks = DEFAULT_TX_TICKS;
616 #endif
617 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
618     &bce_tx_ticks, 0, "Transmit ticks count");
619 
620 /* Allowable values are 1 ... 100 */
621 #ifdef BCE_DEBUG
622 /* Generate 1 interrupt for every received frame. */
623 static int bce_rx_quick_cons_trip_int = 1;
624 #else
625 /* Generate 1 interrupt for every 6 received frames. */
626 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
627 #endif
628 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
629     &bce_rx_quick_cons_trip_int, 0,
630     "Receive BD trip point duirng interrupts");
631 
632 /* Allowable values are 1 ... 100 */
633 #ifdef BCE_DEBUG
634 /* Generate 1 interrupt for every received frame. */
635 static int bce_rx_quick_cons_trip = 1;
636 #else
637 /* Generate 1 interrupt for every 6 received frames. */
638 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
639 #endif
640 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
641     &bce_rx_quick_cons_trip, 0,
642     "Receive BD trip point");
643 
644 /* Allowable values are 0 ... 100 */
645 #ifdef BCE_DEBUG
646 /* Generate an int. if 0us have elapsed since the last received frame. */
647 static int bce_rx_ticks_int = 0;
648 #else
649 /* Generate an int. if 18us have elapsed since the last received frame. */
650 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
651 #endif
652 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
653     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
654 
655 /* Allowable values are 0 ... 100 */
656 #ifdef BCE_DEBUG
657 /* Generate an int. if 0us have elapsed since the last received frame. */
658 static int bce_rx_ticks = 0;
659 #else
660 /* Generate an int. if 18us have elapsed since the last received frame. */
661 static int bce_rx_ticks = DEFAULT_RX_TICKS;
662 #endif
663 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
664     &bce_rx_ticks, 0, "Receive ticks count");
665 
666 
667 /****************************************************************************/
668 /* Device probe function.                                                   */
669 /*                                                                          */
670 /* Compares the device to the driver's list of supported devices and        */
671 /* reports back to the OS whether this is the right driver for the device.  */
672 /*                                                                          */
673 /* Returns:                                                                 */
674 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
675 /****************************************************************************/
676 static int
677 bce_probe(device_t dev)
678 {
679 	const struct bce_type *t;
680 	struct bce_softc *sc;
681 	char *descbuf;
682 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
683 
684 	t = bce_devs;
685 
686 	sc = device_get_softc(dev);
687 	sc->bce_unit = device_get_unit(dev);
688 	sc->bce_dev = dev;
689 
690 	/* Get the data for the device to be probed. */
691 	vid  = pci_get_vendor(dev);
692 	did  = pci_get_device(dev);
693 	svid = pci_get_subvendor(dev);
694 	sdid = pci_get_subdevice(dev);
695 
696 	DBPRINT(sc, BCE_EXTREME_LOAD,
697 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
698 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
699 
700 	/* Look through the list of known devices for a match. */
701 	while(t->bce_name != NULL) {
702 
703 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
704 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
705 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
706 
707 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
708 
709 			if (descbuf == NULL)
710 				return(ENOMEM);
711 
712 			/* Print out the device identity. */
713 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
714 			    t->bce_name, (((pci_read_config(dev,
715 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
716 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
717 
718 			device_set_desc_copy(dev, descbuf);
719 			free(descbuf, M_TEMP);
720 			return(BUS_PROBE_DEFAULT);
721 		}
722 		t++;
723 	}
724 
725 	return(ENXIO);
726 }
727 
728 
729 /****************************************************************************/
730 /* PCI Capabilities Probe Function.                                         */
731 /*                                                                          */
732 /* Walks the PCI capabiites list for the device to find what features are   */
733 /* supported.                                                               */
734 /*                                                                          */
735 /* Returns:                                                                 */
736 /*   None.                                                                  */
737 /****************************************************************************/
738 static void
739 bce_print_adapter_info(struct bce_softc *sc)
740 {
741 	int i = 0;
742 
743 	DBENTER(BCE_VERBOSE_LOAD);
744 
745 	if (bce_verbose || bootverbose) {
746 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
747 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
748 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
749 
750 
751 		/* Bus info. */
752 		if (sc->bce_flags & BCE_PCIE_FLAG) {
753 			printf("Bus (PCIe x%d, ", sc->link_width);
754 			switch (sc->link_speed) {
755 			case 1: printf("2.5Gbps); "); break;
756 			case 2:	printf("5Gbps); "); break;
757 			default: printf("Unknown link speed); ");
758 			}
759 		} else {
760 			printf("Bus (PCI%s, %s, %dMHz); ",
761 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
762 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
763 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
764 		}
765 
766 		/* Firmware version and device features. */
767 		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
768 		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
769 		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));
770 
771 		if (bce_hdr_split == TRUE) {
772 			printf("SPLT");
773 			i++;
774 		}
775 
776 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
777 			if (i > 0) printf("|");
778 			printf("MSI"); i++;
779 		}
780 
781 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
782 			if (i > 0) printf("|");
783 			printf("MSI-X"); i++;
784 		}
785 
786 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
787 			if (i > 0) printf("|");
788 			printf("2.5G"); i++;
789 		}
790 
791 		if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
792 			if (i > 0) printf("|");
793 			printf("Remote PHY(%s)",
794 			    sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
795 			    "FIBER" : "TP"); i++;
796 		}
797 
798 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
799 			if (i > 0) printf("|");
800 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
801 		} else {
802 			printf(")\n");
803 		}
804 
805 		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
806 		    sc->bce_rx_quick_cons_trip_int,
807 		    sc->bce_rx_quick_cons_trip,
808 		    sc->bce_rx_ticks_int,
809 		    sc->bce_rx_ticks,
810 		    sc->bce_tx_quick_cons_trip_int,
811 		    sc->bce_tx_quick_cons_trip,
812 		    sc->bce_tx_ticks_int,
813 		    sc->bce_tx_ticks);
814 
815 	}
816 
817 	DBEXIT(BCE_VERBOSE_LOAD);
818 }
819 
820 
821 /****************************************************************************/
822 /* PCI Capabilities Probe Function.                                         */
823 /*                                                                          */
824 /* Walks the PCI capabiites list for the device to find what features are   */
825 /* supported.                                                               */
826 /*                                                                          */
827 /* Returns:                                                                 */
828 /*   None.                                                                  */
829 /****************************************************************************/
830 static void
831 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
832 {
833 	u32 reg;
834 
835 	DBENTER(BCE_VERBOSE_LOAD);
836 
837 	/* Check if PCI-X capability is enabled. */
838 	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
839 		if (reg != 0)
840 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
841 	}
842 
843 	/* Check if PCIe capability is enabled. */
844 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
845 		if (reg != 0) {
846 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
847 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
848 			    "0x%08X\n",	link_status);
849 			sc->link_speed = link_status & 0xf;
850 			sc->link_width = (link_status >> 4) & 0x3f;
851 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
852 			sc->bce_flags |= BCE_PCIE_FLAG;
853 		}
854 	}
855 
856 	/* Check if MSI capability is enabled. */
857 	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
858 		if (reg != 0)
859 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
860 	}
861 
862 	/* Check if MSI-X capability is enabled. */
863 	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
864 		if (reg != 0)
865 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
866 	}
867 
868 	DBEXIT(BCE_VERBOSE_LOAD);
869 }
870 
871 
872 /****************************************************************************/
873 /* Load and validate user tunable settings.                                 */
874 /*                                                                          */
875 /* Returns:                                                                 */
876 /*   Nothing.                                                               */
877 /****************************************************************************/
878 static void
879 bce_set_tunables(struct bce_softc *sc)
880 {
881 	/* Set sysctl values for RX page count. */
882 	switch (bce_rx_pages) {
883 	case 1:
884 		/* fall-through */
885 	case 2:
886 		/* fall-through */
887 	case 4:
888 		/* fall-through */
889 	case 8:
890 		sc->rx_pages = bce_rx_pages;
891 		break;
892 	default:
893 		sc->rx_pages = DEFAULT_RX_PAGES;
894 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
895 		    "hw.bce.rx_pages!  Setting default of %d.\n",
896 		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
897 	}
898 
899 	/* ToDo: Consider allowing user setting for pg_pages. */
900 	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
901 
902 	/* Set sysctl values for TX page count. */
903 	switch (bce_tx_pages) {
904 	case 1:
905 		/* fall-through */
906 	case 2:
907 		/* fall-through */
908 	case 4:
909 		/* fall-through */
910 	case 8:
911 		sc->tx_pages = bce_tx_pages;
912 		break;
913 	default:
914 		sc->tx_pages = DEFAULT_TX_PAGES;
915 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
916 		    "hw.bce.tx_pages!  Setting default of %d.\n",
917 		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
918 	}
919 
920 	/*
921 	 * Validate the TX trip point (i.e. the number of
922 	 * TX completions before a status block update is
923 	 * generated and an interrupt is asserted.
924 	 */
925 	if (bce_tx_quick_cons_trip_int <= 100) {
926 		sc->bce_tx_quick_cons_trip_int =
927 		    bce_tx_quick_cons_trip_int;
928 	} else {
929 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
930 		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
931 		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
932 		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
933 		sc->bce_tx_quick_cons_trip_int =
934 		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
935 	}
936 
937 	if (bce_tx_quick_cons_trip <= 100) {
938 		sc->bce_tx_quick_cons_trip =
939 		    bce_tx_quick_cons_trip;
940 	} else {
941 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
942 		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
943 		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
944 		    DEFAULT_TX_QUICK_CONS_TRIP);
945 		sc->bce_tx_quick_cons_trip =
946 		    DEFAULT_TX_QUICK_CONS_TRIP;
947 	}
948 
949 	/*
950 	 * Validate the TX ticks count (i.e. the maximum amount
951 	 * of time to wait after the last TX completion has
952 	 * occurred before a status block update is generated
953 	 * and an interrupt is asserted.
954 	 */
955 	if (bce_tx_ticks_int <= 100) {
956 		sc->bce_tx_ticks_int =
957 		    bce_tx_ticks_int;
958 	} else {
959 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
960 		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
961 		    __FILE__, __LINE__, bce_tx_ticks_int,
962 		    DEFAULT_TX_TICKS_INT);
963 		sc->bce_tx_ticks_int =
964 		    DEFAULT_TX_TICKS_INT;
965 	   }
966 
967 	if (bce_tx_ticks <= 100) {
968 		sc->bce_tx_ticks =
969 		    bce_tx_ticks;
970 	} else {
971 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
972 		    "hw.bce.tx_ticks!  Setting default of %d.\n",
973 		    __FILE__, __LINE__, bce_tx_ticks,
974 		    DEFAULT_TX_TICKS);
975 		sc->bce_tx_ticks =
976 		    DEFAULT_TX_TICKS;
977 	}
978 
979 	/*
980 	 * Validate the RX trip point (i.e. the number of
981 	 * RX frames received before a status block update is
982 	 * generated and an interrupt is asserted.
983 	 */
984 	if (bce_rx_quick_cons_trip_int <= 100) {
985 		sc->bce_rx_quick_cons_trip_int =
986 		    bce_rx_quick_cons_trip_int;
987 	} else {
988 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
989 		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
990 		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
991 		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
992 		sc->bce_rx_quick_cons_trip_int =
993 		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
994 	}
995 
996 	if (bce_rx_quick_cons_trip <= 100) {
997 		sc->bce_rx_quick_cons_trip =
998 		    bce_rx_quick_cons_trip;
999 	} else {
1000 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1001 		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
1002 		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
1003 		    DEFAULT_RX_QUICK_CONS_TRIP);
1004 		sc->bce_rx_quick_cons_trip =
1005 		    DEFAULT_RX_QUICK_CONS_TRIP;
1006 	}
1007 
1008 	/*
1009 	 * Validate the RX ticks count (i.e. the maximum amount
1010 	 * of time to wait after the last RX frame has been
1011 	 * received before a status block update is generated
1012 	 * and an interrupt is asserted.
1013 	 */
1014 	if (bce_rx_ticks_int <= 100) {
1015 		sc->bce_rx_ticks_int = bce_rx_ticks_int;
1016 	} else {
1017 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1018 		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
1019 		    __FILE__, __LINE__, bce_rx_ticks_int,
1020 		    DEFAULT_RX_TICKS_INT);
1021 		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
1022 	}
1023 
1024 	if (bce_rx_ticks <= 100) {
1025 		sc->bce_rx_ticks = bce_rx_ticks;
1026 	} else {
1027 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1028 		    "hw.bce.rx_ticks!  Setting default of %d.\n",
1029 		    __FILE__, __LINE__, bce_rx_ticks,
1030 		    DEFAULT_RX_TICKS);
1031 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1032 	}
1033 
1034 	/* Disabling both RX ticks and RX trips will prevent interrupts. */
1035 	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1036 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1037 		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1038 		   __FILE__, __LINE__);
1039 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1040 		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1041 	}
1042 
1043 	/* Disabling both TX ticks and TX trips will prevent interrupts. */
1044 	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1045 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1046 		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1047 		   __FILE__, __LINE__);
1048 		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1049 		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1050 	}
1051 }
1052 
1053 
1054 /****************************************************************************/
1055 /* Device attach function.                                                  */
1056 /*                                                                          */
1057 /* Allocates device resources, performs secondary chip identification,      */
1058 /* resets and initializes the hardware, and initializes driver instance     */
1059 /* variables.                                                               */
1060 /*                                                                          */
1061 /* Returns:                                                                 */
1062 /*   0 on success, positive value on failure.                               */
1063 /****************************************************************************/
1064 static int
1065 bce_attach(device_t dev)
1066 {
1067 	struct bce_softc *sc;
1068 	struct ifnet *ifp;
1069 	u32 val;
1070 	int count, error, rc = 0, rid;
1071 
1072 	sc = device_get_softc(dev);
1073 	sc->bce_dev = dev;
1074 
1075 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1076 
1077 	sc->bce_unit = device_get_unit(dev);
1078 
1079 	/* Set initial device and PHY flags */
1080 	sc->bce_flags = 0;
1081 	sc->bce_phy_flags = 0;
1082 
1083 	bce_set_tunables(sc);
1084 
1085 	pci_enable_busmaster(dev);
1086 
1087 	/* Allocate PCI memory resources. */
1088 	rid = PCIR_BAR(0);
1089 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1090 		&rid, RF_ACTIVE);
1091 
1092 	if (sc->bce_res_mem == NULL) {
1093 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1094 		    __FILE__, __LINE__);
1095 		rc = ENXIO;
1096 		goto bce_attach_fail;
1097 	}
1098 
1099 	/* Get various resource handles. */
1100 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1101 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1102 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1103 
1104 	bce_probe_pci_caps(dev, sc);
1105 
1106 	rid = 1;
1107 	count = 0;
1108 #if 0
1109 	/* Try allocating MSI-X interrupts. */
1110 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1111 		(bce_msi_enable >= 2) &&
1112 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1113 		&rid, RF_ACTIVE)) != NULL)) {
1114 
1115 		msi_needed = count = 1;
1116 
1117 		if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1118 			(count != msi_needed)) {
1119 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1120 				"Received = %d, error = %d\n", __FILE__, __LINE__,
1121 				msi_needed, count, error);
1122 			count = 0;
1123 			pci_release_msi(dev);
1124 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
1125 				sc->bce_res_irq);
1126 			sc->bce_res_irq = NULL;
1127 		} else {
1128 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1129 				__FUNCTION__);
1130 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
1131 		}
1132 	}
1133 #endif
1134 
1135 	/* Try allocating a MSI interrupt. */
1136 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1137 		(bce_msi_enable >= 1) && (count == 0)) {
1138 		count = 1;
1139 		if ((error = pci_alloc_msi(dev, &count)) != 0) {
1140 			BCE_PRINTF("%s(%d): MSI allocation failed! "
1141 			    "error = %d\n", __FILE__, __LINE__, error);
1142 			count = 0;
1143 			pci_release_msi(dev);
1144 		} else {
1145 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1146 			    "interrupt.\n", __FUNCTION__);
1147 			sc->bce_flags |= BCE_USING_MSI_FLAG;
1148 			if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1149 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1150 			rid = 1;
1151 		}
1152 	}
1153 
1154 	/* Try allocating a legacy interrupt. */
1155 	if (count == 0) {
1156 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1157 			__FUNCTION__);
1158 		rid = 0;
1159 	}
1160 
1161 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1162 	    &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1163 
1164 	/* Report any IRQ allocation errors. */
1165 	if (sc->bce_res_irq == NULL) {
1166 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1167 		    __FILE__, __LINE__);
1168 		rc = ENXIO;
1169 		goto bce_attach_fail;
1170 	}
1171 
1172 	/* Initialize mutex for the current device instance. */
1173 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1174 
1175 	/*
1176 	 * Configure byte swap and enable indirect register access.
1177 	 * Rely on CPU to do target byte swapping on big endian systems.
1178 	 * Access to registers outside of PCI configurtion space are not
1179 	 * valid until this is done.
1180 	 */
1181 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1182 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1183 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1184 
1185 	/* Save ASIC revsion info. */
1186 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1187 
1188 	/* Weed out any non-production controller revisions. */
1189 	switch(BCE_CHIP_ID(sc)) {
1190 	case BCE_CHIP_ID_5706_A0:
1191 	case BCE_CHIP_ID_5706_A1:
1192 	case BCE_CHIP_ID_5708_A0:
1193 	case BCE_CHIP_ID_5708_B0:
1194 	case BCE_CHIP_ID_5709_A0:
1195 	case BCE_CHIP_ID_5709_B0:
1196 	case BCE_CHIP_ID_5709_B1:
1197 	case BCE_CHIP_ID_5709_B2:
1198 		BCE_PRINTF("%s(%d): Unsupported controller "
1199 		    "revision (%c%d)!\n", __FILE__, __LINE__,
1200 		    (((pci_read_config(dev, PCIR_REVID, 4) &
1201 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
1202 		    PCIR_REVID, 4) & 0xf));
1203 		rc = ENODEV;
1204 		goto bce_attach_fail;
1205 	}
1206 
1207 	/*
1208 	 * The embedded PCIe to PCI-X bridge (EPB)
1209 	 * in the 5708 cannot address memory above
1210 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1211 	 */
1212 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1213 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1214 	else
1215 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
1216 
1217 	/*
1218 	 * Find the base address for shared memory access.
1219 	 * Newer versions of bootcode use a signature and offset
1220 	 * while older versions use a fixed address.
1221 	 */
1222 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1223 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1224 		/* Multi-port devices use different offsets in shared memory. */
1225 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1226 		    (pci_get_function(sc->bce_dev) << 2));
1227 	else
1228 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1229 
1230 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1231 	    __FUNCTION__, sc->bce_shmem_base);
1232 
1233 	/* Fetch the bootcode revision. */
1234 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1235 	for (int i = 0, j = 0; i < 3; i++) {
1236 		u8 num;
1237 
1238 		num = (u8) (val >> (24 - (i * 8)));
1239 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1240 			if (num >= k || !skip0 || k == 1) {
1241 				sc->bce_bc_ver[j++] = (num / k) + '0';
1242 				skip0 = 0;
1243 			}
1244 		}
1245 
1246 		if (i != 2)
1247 			sc->bce_bc_ver[j++] = '.';
1248 	}
1249 
1250 	/* Check if any management firwmare is enabled. */
1251 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1252 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1253 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1254 
1255 		/* Allow time for firmware to enter the running state. */
1256 		for (int i = 0; i < 30; i++) {
1257 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1258 			if (val & BCE_CONDITION_MFW_RUN_MASK)
1259 				break;
1260 			DELAY(10000);
1261 		}
1262 
1263 		/* Check if management firmware is running. */
1264 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1265 		val &= BCE_CONDITION_MFW_RUN_MASK;
1266 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1267 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
1268 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1269 			int i = 0;
1270 
1271 			/* Read the management firmware version string. */
1272 			for (int j = 0; j < 3; j++) {
1273 				val = bce_reg_rd_ind(sc, addr + j * 4);
1274 				val = bswap32(val);
1275 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
1276 				i += 4;
1277 			}
1278 		} else {
1279 			/* May cause firmware synchronization timeouts. */
1280 			BCE_PRINTF("%s(%d): Management firmware enabled "
1281 			    "but not running!\n", __FILE__, __LINE__);
1282 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1283 
1284 			/* ToDo: Any action the driver should take? */
1285 		}
1286 	}
1287 
1288 	/* Get PCI bus information (speed and type). */
1289 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1290 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1291 		u32 clkreg;
1292 
1293 		sc->bce_flags |= BCE_PCIX_FLAG;
1294 
1295 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1296 
1297 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1298 		switch (clkreg) {
1299 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1300 			sc->bus_speed_mhz = 133;
1301 			break;
1302 
1303 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1304 			sc->bus_speed_mhz = 100;
1305 			break;
1306 
1307 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1308 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1309 			sc->bus_speed_mhz = 66;
1310 			break;
1311 
1312 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1313 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1314 			sc->bus_speed_mhz = 50;
1315 			break;
1316 
1317 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1318 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1319 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1320 			sc->bus_speed_mhz = 33;
1321 			break;
1322 		}
1323 	} else {
1324 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1325 			sc->bus_speed_mhz = 66;
1326 		else
1327 			sc->bus_speed_mhz = 33;
1328 	}
1329 
1330 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1331 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1332 
1333 	/* Find the media type for the adapter. */
1334 	bce_get_media(sc);
1335 
1336 	/* Reset controller and announce to bootcode that driver is present. */
1337 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1338 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
1339 		    __FILE__, __LINE__);
1340 		rc = ENXIO;
1341 		goto bce_attach_fail;
1342 	}
1343 
1344 	/* Initialize the controller. */
1345 	if (bce_chipinit(sc)) {
1346 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1347 		    __FILE__, __LINE__);
1348 		rc = ENXIO;
1349 		goto bce_attach_fail;
1350 	}
1351 
1352 	/* Perform NVRAM test. */
1353 	if (bce_nvram_test(sc)) {
1354 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1355 		    __FILE__, __LINE__);
1356 		rc = ENXIO;
1357 		goto bce_attach_fail;
1358 	}
1359 
1360 	/* Fetch the permanent Ethernet MAC address. */
1361 	bce_get_mac_addr(sc);
1362 
1363 	/* Update statistics once every second. */
1364 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1365 
1366 	/* Store data needed by PHY driver for backplane applications */
1367 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1368 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1369 
1370 	/* Allocate DMA memory resources. */
1371 	if (bce_dma_alloc(dev)) {
1372 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1373 		    __FILE__, __LINE__);
1374 		rc = ENXIO;
1375 		goto bce_attach_fail;
1376 	}
1377 
1378 	/* Allocate an ifnet structure. */
1379 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1380 	if (ifp == NULL) {
1381 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1382 		    __FILE__, __LINE__);
1383 		rc = ENXIO;
1384 		goto bce_attach_fail;
1385 	}
1386 
1387 	/* Initialize the ifnet interface. */
1388 	ifp->if_softc	= sc;
1389 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1390 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1391 	ifp->if_ioctl	= bce_ioctl;
1392 	ifp->if_start	= bce_start;
1393 	ifp->if_get_counter = bce_get_counter;
1394 	ifp->if_init	= bce_init;
1395 	ifp->if_mtu	= ETHERMTU;
1396 
1397 	if (bce_tso_enable) {
1398 		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1399 		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1400 		    IFCAP_VLAN_HWTSO;
1401 	} else {
1402 		ifp->if_hwassist = BCE_IF_HWASSIST;
1403 		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1404 	}
1405 
1406 #if __FreeBSD_version >= 800505
1407 	/*
1408 	 * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version
1409 	 * so it's approximate value.
1410 	 */
1411 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1412 		ifp->if_capabilities |= IFCAP_LINKSTATE;
1413 #endif
1414 
1415 	ifp->if_capenable = ifp->if_capabilities;
1416 
1417 	/*
1418 	 * Assume standard mbuf sizes for buffer allocation.
1419 	 * This may change later if the MTU size is set to
1420 	 * something other than 1500.
1421 	 */
1422 	bce_get_rx_buffer_sizes(sc,
1423 	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1424 
1425 	/* Recalculate our buffer allocation sizes. */
1426 	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1427 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1428 	IFQ_SET_READY(&ifp->if_snd);
1429 
1430 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1431 		ifp->if_baudrate = IF_Mbps(2500ULL);
1432 	else
1433 		ifp->if_baudrate = IF_Mbps(1000);
1434 
1435 	/* Handle any special PHY initialization for SerDes PHYs. */
1436 	bce_init_media(sc);
1437 
1438 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1439 		ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1440 		    bce_ifmedia_sts);
1441 		/*
1442 		 * We can't manually override remote PHY's link and assume
1443 		 * PHY port configuration(Fiber or TP) is not changed after
1444 		 * device attach.  This may not be correct though.
1445 		 */
1446 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1447 			if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1448 				ifmedia_add(&sc->bce_ifmedia,
1449 				    IFM_ETHER | IFM_2500_SX, 0, NULL);
1450 				ifmedia_add(&sc->bce_ifmedia,
1451 				    IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1452 			}
1453 			ifmedia_add(&sc->bce_ifmedia,
1454 			    IFM_ETHER | IFM_1000_SX, 0, NULL);
1455 			ifmedia_add(&sc->bce_ifmedia,
1456 			    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1457 		} else {
1458 			ifmedia_add(&sc->bce_ifmedia,
1459 			    IFM_ETHER | IFM_10_T, 0, NULL);
1460 			ifmedia_add(&sc->bce_ifmedia,
1461 			    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1462 			ifmedia_add(&sc->bce_ifmedia,
1463 			    IFM_ETHER | IFM_100_TX, 0, NULL);
1464 			ifmedia_add(&sc->bce_ifmedia,
1465 			    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1466 			ifmedia_add(&sc->bce_ifmedia,
1467 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1468 			ifmedia_add(&sc->bce_ifmedia,
1469 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1470 		}
1471 		ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1472 		ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1473 		sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1474 	} else {
1475 		/* MII child bus by attaching the PHY. */
1476 		rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1477 		    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1478 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
1479 		if (rc != 0) {
1480 			BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1481 			    __LINE__);
1482 			goto bce_attach_fail;
1483 		}
1484 	}
1485 
1486 	/* Attach to the Ethernet interface list. */
1487 	ether_ifattach(ifp, sc->eaddr);
1488 
1489 #if __FreeBSD_version < 500000
1490 	callout_init(&sc->bce_tick_callout);
1491 	callout_init(&sc->bce_pulse_callout);
1492 #else
1493 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1494 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1495 #endif
1496 
1497 	/* Hookup IRQ last. */
1498 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1499 		NULL, bce_intr, sc, &sc->bce_intrhand);
1500 
1501 	if (rc) {
1502 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1503 		    __FILE__, __LINE__);
1504 		bce_detach(dev);
1505 		goto bce_attach_exit;
1506 	}
1507 
1508 	/*
1509 	 * At this point we've acquired all the resources
1510 	 * we need to run so there's no turning back, we're
1511 	 * cleared for launch.
1512 	 */
1513 
1514 	/* Print some important debugging info. */
1515 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1516 
1517 	/* Add the supported sysctls to the kernel. */
1518 	bce_add_sysctls(sc);
1519 
1520 	BCE_LOCK(sc);
1521 
1522 	/*
1523 	 * The chip reset earlier notified the bootcode that
1524 	 * a driver is present.  We now need to start our pulse
1525 	 * routine so that the bootcode is reminded that we're
1526 	 * still running.
1527 	 */
1528 	bce_pulse(sc);
1529 
1530 	bce_mgmt_init_locked(sc);
1531 	BCE_UNLOCK(sc);
1532 
1533 	/* Finally, print some useful adapter info */
1534 	bce_print_adapter_info(sc);
1535 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1536 		__FUNCTION__, sc);
1537 
1538 	goto bce_attach_exit;
1539 
1540 bce_attach_fail:
1541 	bce_release_resources(sc);
1542 
1543 bce_attach_exit:
1544 
1545 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1546 
1547 	return(rc);
1548 }
1549 
1550 
1551 /****************************************************************************/
1552 /* Device detach function.                                                  */
1553 /*                                                                          */
1554 /* Stops the controller, resets the controller, and releases resources.     */
1555 /*                                                                          */
1556 /* Returns:                                                                 */
1557 /*   0 on success, positive value on failure.                               */
1558 /****************************************************************************/
1559 static int
1560 bce_detach(device_t dev)
1561 {
1562 	struct bce_softc *sc = device_get_softc(dev);
1563 	struct ifnet *ifp;
1564 	u32 msg;
1565 
1566 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1567 
1568 	ifp = sc->bce_ifp;
1569 
1570 	/* Stop and reset the controller. */
1571 	BCE_LOCK(sc);
1572 
1573 	/* Stop the pulse so the bootcode can go to driver absent state. */
1574 	callout_stop(&sc->bce_pulse_callout);
1575 
1576 	bce_stop(sc);
1577 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1578 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1579 	else
1580 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1581 	bce_reset(sc, msg);
1582 
1583 	BCE_UNLOCK(sc);
1584 
1585 	ether_ifdetach(ifp);
1586 
1587 	/* If we have a child device on the MII bus remove it too. */
1588 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1589 		ifmedia_removeall(&sc->bce_ifmedia);
1590 	else {
1591 		bus_generic_detach(dev);
1592 		device_delete_child(dev, sc->bce_miibus);
1593 	}
1594 
1595 	/* Release all remaining resources. */
1596 	bce_release_resources(sc);
1597 
1598 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1599 
1600 	return(0);
1601 }
1602 
1603 
1604 /****************************************************************************/
1605 /* Device shutdown function.                                                */
1606 /*                                                                          */
1607 /* Stops and resets the controller.                                         */
1608 /*                                                                          */
1609 /* Returns:                                                                 */
1610 /*   0 on success, positive value on failure.                               */
1611 /****************************************************************************/
1612 static int
1613 bce_shutdown(device_t dev)
1614 {
1615 	struct bce_softc *sc = device_get_softc(dev);
1616 	u32 msg;
1617 
1618 	DBENTER(BCE_VERBOSE);
1619 
1620 	BCE_LOCK(sc);
1621 	bce_stop(sc);
1622 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1623 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1624 	else
1625 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1626 	bce_reset(sc, msg);
1627 	BCE_UNLOCK(sc);
1628 
1629 	DBEXIT(BCE_VERBOSE);
1630 
1631 	return (0);
1632 }
1633 
1634 
1635 #ifdef BCE_DEBUG
1636 /****************************************************************************/
1637 /* Register read.                                                           */
1638 /*                                                                          */
1639 /* Returns:                                                                 */
1640 /*   The value of the register.                                             */
1641 /****************************************************************************/
1642 static u32
1643 bce_reg_rd(struct bce_softc *sc, u32 offset)
1644 {
1645 	u32 val = REG_RD(sc, offset);
1646 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1647 		__FUNCTION__, offset, val);
1648 	return val;
1649 }
1650 
1651 
1652 /****************************************************************************/
1653 /* Register write (16 bit).                                                 */
1654 /*                                                                          */
1655 /* Returns:                                                                 */
1656 /*   Nothing.                                                               */
1657 /****************************************************************************/
1658 static void
1659 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1660 {
1661 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1662 		__FUNCTION__, offset, val);
1663 	REG_WR16(sc, offset, val);
1664 }
1665 
1666 
1667 /****************************************************************************/
1668 /* Register write.                                                          */
1669 /*                                                                          */
1670 /* Returns:                                                                 */
1671 /*   Nothing.                                                               */
1672 /****************************************************************************/
1673 static void
1674 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1675 {
1676 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1677 		__FUNCTION__, offset, val);
1678 	REG_WR(sc, offset, val);
1679 }
1680 #endif
1681 
1682 /****************************************************************************/
1683 /* Indirect register read.                                                  */
1684 /*                                                                          */
1685 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1686 /* configuration space.  Using this mechanism avoids issues with posted     */
1687 /* reads but is much slower than memory-mapped I/O.                         */
1688 /*                                                                          */
1689 /* Returns:                                                                 */
1690 /*   The value of the register.                                             */
1691 /****************************************************************************/
1692 static u32
1693 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1694 {
1695 	device_t dev;
1696 	dev = sc->bce_dev;
1697 
1698 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1699 #ifdef BCE_DEBUG
1700 	{
1701 		u32 val;
1702 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1703 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1704 			__FUNCTION__, offset, val);
1705 		return val;
1706 	}
1707 #else
1708 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1709 #endif
1710 }
1711 
1712 
1713 /****************************************************************************/
1714 /* Indirect register write.                                                 */
1715 /*                                                                          */
1716 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1717 /* configuration space.  Using this mechanism avoids issues with posted     */
1718 /* writes but is muchh slower than memory-mapped I/O.                       */
1719 /*                                                                          */
1720 /* Returns:                                                                 */
1721 /*   Nothing.                                                               */
1722 /****************************************************************************/
1723 static void
1724 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1725 {
1726 	device_t dev;
1727 	dev = sc->bce_dev;
1728 
1729 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1730 		__FUNCTION__, offset, val);
1731 
1732 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1733 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1734 }
1735 
1736 
1737 /****************************************************************************/
1738 /* Shared memory write.                                                     */
1739 /*                                                                          */
1740 /* Writes NetXtreme II shared memory region.                                */
1741 /*                                                                          */
1742 /* Returns:                                                                 */
1743 /*   Nothing.                                                               */
1744 /****************************************************************************/
1745 static void
1746 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1747 {
1748 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1749 	    "0x%08X\n",	__FUNCTION__, val, offset);
1750 
1751 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1752 }
1753 
1754 
1755 /****************************************************************************/
1756 /* Shared memory read.                                                      */
1757 /*                                                                          */
1758 /* Reads NetXtreme II shared memory region.                                 */
1759 /*                                                                          */
1760 /* Returns:                                                                 */
1761 /*   The 32 bit value read.                                                 */
1762 /****************************************************************************/
1763 static u32
1764 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1765 {
1766 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1767 
1768 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1769 	    "0x%08X\n",	__FUNCTION__, val, offset);
1770 
1771 	return val;
1772 }
1773 
1774 
1775 #ifdef BCE_DEBUG
1776 /****************************************************************************/
1777 /* Context memory read.                                                     */
1778 /*                                                                          */
1779 /* The NetXtreme II controller uses context memory to track connection      */
1780 /* information for L2 and higher network protocols.                         */
1781 /*                                                                          */
1782 /* Returns:                                                                 */
1783 /*   The requested 32 bit value of context memory.                          */
1784 /****************************************************************************/
1785 static u32
1786 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1787 {
1788 	u32 idx, offset, retry_cnt = 5, val;
1789 
1790 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1791 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1792 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1793 
1794 	offset = ctx_offset + cid_addr;
1795 
1796 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1797 
1798 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1799 
1800 		for (idx = 0; idx < retry_cnt; idx++) {
1801 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1802 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1803 				break;
1804 			DELAY(5);
1805 		}
1806 
1807 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1808 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1809 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1810 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1811 
1812 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1813 	} else {
1814 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1815 		val = REG_RD(sc, BCE_CTX_DATA);
1816 	}
1817 
1818 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1819 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1820 
1821 	return(val);
1822 }
1823 #endif
1824 
1825 
1826 /****************************************************************************/
1827 /* Context memory write.                                                    */
1828 /*                                                                          */
1829 /* The NetXtreme II controller uses context memory to track connection      */
1830 /* information for L2 and higher network protocols.                         */
1831 /*                                                                          */
1832 /* Returns:                                                                 */
1833 /*   Nothing.                                                               */
1834 /****************************************************************************/
1835 static void
1836 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1837 {
1838 	u32 idx, offset = ctx_offset + cid_addr;
1839 	u32 val, retry_cnt = 5;
1840 
1841 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1842 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1843 
1844 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1845 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1846 		    __FUNCTION__, cid_addr));
1847 
1848 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1849 
1850 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1851 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1852 
1853 		for (idx = 0; idx < retry_cnt; idx++) {
1854 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1855 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1856 				break;
1857 			DELAY(5);
1858 		}
1859 
1860 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1861 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1862 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1863 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1864 
1865 	} else {
1866 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1867 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1868 	}
1869 }
1870 
1871 
1872 /****************************************************************************/
1873 /* PHY register read.                                                       */
1874 /*                                                                          */
1875 /* Implements register reads on the MII bus.                                */
1876 /*                                                                          */
1877 /* Returns:                                                                 */
1878 /*   The value of the register.                                             */
1879 /****************************************************************************/
1880 static int
1881 bce_miibus_read_reg(device_t dev, int phy, int reg)
1882 {
1883 	struct bce_softc *sc;
1884 	u32 val;
1885 	int i;
1886 
1887 	sc = device_get_softc(dev);
1888 
1889     /*
1890      * The 5709S PHY is an IEEE Clause 45 PHY
1891      * with special mappings to work with IEEE
1892      * Clause 22 register accesses.
1893      */
1894 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1895 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1896 			reg += 0x10;
1897 	}
1898 
1899     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1900 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1901 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1902 
1903 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1904 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1905 
1906 		DELAY(40);
1907 	}
1908 
1909 
1910 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1911 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1912 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1913 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1914 
1915 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1916 		DELAY(10);
1917 
1918 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1919 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1920 			DELAY(5);
1921 
1922 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1923 			val &= BCE_EMAC_MDIO_COMM_DATA;
1924 
1925 			break;
1926 		}
1927 	}
1928 
1929 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1930 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1931 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1932 		val = 0x0;
1933 	} else {
1934 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1935 	}
1936 
1937 
1938 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1939 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1940 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1941 
1942 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1943 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1944 
1945 		DELAY(40);
1946 	}
1947 
1948 	DB_PRINT_PHY_REG(reg, val);
1949 	return (val & 0xffff);
1950 }
1951 
1952 
1953 /****************************************************************************/
1954 /* PHY register write.                                                      */
1955 /*                                                                          */
1956 /* Implements register writes on the MII bus.                               */
1957 /*                                                                          */
1958 /* Returns:                                                                 */
1959 /*   The value of the register.                                             */
1960 /****************************************************************************/
1961 static int
1962 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1963 {
1964 	struct bce_softc *sc;
1965 	u32 val1;
1966 	int i;
1967 
1968 	sc = device_get_softc(dev);
1969 
1970 	DB_PRINT_PHY_REG(reg, val);
1971 
1972 	/*
1973 	 * The 5709S PHY is an IEEE Clause 45 PHY
1974 	 * with special mappings to work with IEEE
1975 	 * Clause 22 register accesses.
1976 	 */
1977 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1978 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1979 			reg += 0x10;
1980 	}
1981 
1982 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1983 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1984 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1985 
1986 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1987 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1988 
1989 		DELAY(40);
1990 	}
1991 
1992 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1993 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1994 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1995 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1996 
1997 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1998 		DELAY(10);
1999 
2000 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
2001 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
2002 			DELAY(5);
2003 			break;
2004 		}
2005 	}
2006 
2007 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
2008 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
2009 		    __FILE__, __LINE__);
2010 
2011 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
2012 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
2013 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
2014 
2015 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
2016 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
2017 
2018 		DELAY(40);
2019 	}
2020 
2021 	return 0;
2022 }
2023 
2024 
2025 /****************************************************************************/
2026 /* MII bus status change.                                                   */
2027 /*                                                                          */
2028 /* Called by the MII bus driver when the PHY establishes link to set the    */
2029 /* MAC interface registers.                                                 */
2030 /*                                                                          */
2031 /* Returns:                                                                 */
2032 /*   Nothing.                                                               */
2033 /****************************************************************************/
2034 static void
2035 bce_miibus_statchg(device_t dev)
2036 {
2037 	struct bce_softc *sc;
2038 	struct mii_data *mii;
2039 	struct ifmediareq ifmr;
2040 	int media_active, media_status, val;
2041 
2042 	sc = device_get_softc(dev);
2043 
2044 	DBENTER(BCE_VERBOSE_PHY);
2045 
2046 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2047 		bzero(&ifmr, sizeof(ifmr));
2048 		bce_ifmedia_sts_rphy(sc, &ifmr);
2049 		media_active = ifmr.ifm_active;
2050 		media_status = ifmr.ifm_status;
2051 	} else {
2052 		mii = device_get_softc(sc->bce_miibus);
2053 		media_active = mii->mii_media_active;
2054 		media_status = mii->mii_media_status;
2055 	}
2056 
2057 	/* Ignore invalid media status. */
2058 	if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2059 	    (IFM_ACTIVE | IFM_AVALID))
2060 		goto bce_miibus_statchg_exit;
2061 
2062 	val = REG_RD(sc, BCE_EMAC_MODE);
2063 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2064 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2065 	    BCE_EMAC_MODE_25G);
2066 
2067 	/* Set MII or GMII interface based on the PHY speed. */
2068 	switch (IFM_SUBTYPE(media_active)) {
2069 	case IFM_10_T:
2070 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2071 			DBPRINT(sc, BCE_INFO_PHY,
2072 			    "Enabling 10Mb interface.\n");
2073 			val |= BCE_EMAC_MODE_PORT_MII_10;
2074 			break;
2075 		}
2076 		/* fall-through */
2077 	case IFM_100_TX:
2078 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2079 		val |= BCE_EMAC_MODE_PORT_MII;
2080 		break;
2081 	case IFM_2500_SX:
2082 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2083 		val |= BCE_EMAC_MODE_25G;
2084 		/* fall-through */
2085 	case IFM_1000_T:
2086 	case IFM_1000_SX:
2087 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2088 		val |= BCE_EMAC_MODE_PORT_GMII;
2089 		break;
2090 	default:
2091 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2092 		    "default GMII interface.\n");
2093 		val |= BCE_EMAC_MODE_PORT_GMII;
2094 	}
2095 
2096 	/* Set half or full duplex based on PHY settings. */
2097 	if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2098 		DBPRINT(sc, BCE_INFO_PHY,
2099 		    "Setting Half-Duplex interface.\n");
2100 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
2101 	} else
2102 		DBPRINT(sc, BCE_INFO_PHY,
2103 		    "Setting Full-Duplex interface.\n");
2104 
2105 	REG_WR(sc, BCE_EMAC_MODE, val);
2106 
2107 	if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2108 		DBPRINT(sc, BCE_INFO_PHY,
2109 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
2110 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2111 		sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2112 	} else {
2113 		DBPRINT(sc, BCE_INFO_PHY,
2114 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
2115 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2116 		sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2117 	}
2118 
2119 	if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2120 		DBPRINT(sc, BCE_INFO_PHY,
2121 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
2122 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2123 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2124 	} else {
2125 		DBPRINT(sc, BCE_INFO_PHY,
2126 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
2127 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2128 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2129 	}
2130 
2131 	/* ToDo: Update watermarks in bce_init_rx_context(). */
2132 
2133 bce_miibus_statchg_exit:
2134 	DBEXIT(BCE_VERBOSE_PHY);
2135 }
2136 
2137 
2138 /****************************************************************************/
2139 /* Acquire NVRAM lock.                                                      */
2140 /*                                                                          */
2141 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2142 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2143 /* for use by the driver.                                                   */
2144 /*                                                                          */
2145 /* Returns:                                                                 */
2146 /*   0 on success, positive value on failure.                               */
2147 /****************************************************************************/
2148 static int
2149 bce_acquire_nvram_lock(struct bce_softc *sc)
2150 {
2151 	u32 val;
2152 	int j, rc = 0;
2153 
2154 	DBENTER(BCE_VERBOSE_NVRAM);
2155 
2156 	/* Request access to the flash interface. */
2157 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2158 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2159 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2160 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2161 			break;
2162 
2163 		DELAY(5);
2164 	}
2165 
2166 	if (j >= NVRAM_TIMEOUT_COUNT) {
2167 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2168 		rc = EBUSY;
2169 	}
2170 
2171 	DBEXIT(BCE_VERBOSE_NVRAM);
2172 	return (rc);
2173 }
2174 
2175 
2176 /****************************************************************************/
2177 /* Release NVRAM lock.                                                      */
2178 /*                                                                          */
2179 /* When the caller is finished accessing NVRAM the lock must be released.   */
2180 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2181 /* for use by the driver.                                                   */
2182 /*                                                                          */
2183 /* Returns:                                                                 */
2184 /*   0 on success, positive value on failure.                               */
2185 /****************************************************************************/
2186 static int
2187 bce_release_nvram_lock(struct bce_softc *sc)
2188 {
2189 	u32 val;
2190 	int j, rc = 0;
2191 
2192 	DBENTER(BCE_VERBOSE_NVRAM);
2193 
2194 	/*
2195 	 * Relinquish nvram interface.
2196 	 */
2197 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2198 
2199 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2200 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2201 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2202 			break;
2203 
2204 		DELAY(5);
2205 	}
2206 
2207 	if (j >= NVRAM_TIMEOUT_COUNT) {
2208 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2209 		rc = EBUSY;
2210 	}
2211 
2212 	DBEXIT(BCE_VERBOSE_NVRAM);
2213 	return (rc);
2214 }
2215 
2216 
2217 #ifdef BCE_NVRAM_WRITE_SUPPORT
2218 /****************************************************************************/
2219 /* Enable NVRAM write access.                                               */
2220 /*                                                                          */
2221 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2222 /*                                                                          */
2223 /* Returns:                                                                 */
2224 /*   0 on success, positive value on failure.                               */
2225 /****************************************************************************/
2226 static int
2227 bce_enable_nvram_write(struct bce_softc *sc)
2228 {
2229 	u32 val;
2230 	int rc = 0;
2231 
2232 	DBENTER(BCE_VERBOSE_NVRAM);
2233 
2234 	val = REG_RD(sc, BCE_MISC_CFG);
2235 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2236 
2237 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2238 		int j;
2239 
2240 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2241 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2242 
2243 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2244 			DELAY(5);
2245 
2246 			val = REG_RD(sc, BCE_NVM_COMMAND);
2247 			if (val & BCE_NVM_COMMAND_DONE)
2248 				break;
2249 		}
2250 
2251 		if (j >= NVRAM_TIMEOUT_COUNT) {
2252 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2253 			rc = EBUSY;
2254 		}
2255 	}
2256 
2257 	DBENTER(BCE_VERBOSE_NVRAM);
2258 	return (rc);
2259 }
2260 
2261 
2262 /****************************************************************************/
2263 /* Disable NVRAM write access.                                              */
2264 /*                                                                          */
2265 /* When the caller is finished writing to NVRAM write access must be        */
2266 /* disabled.                                                                */
2267 /*                                                                          */
2268 /* Returns:                                                                 */
2269 /*   Nothing.                                                               */
2270 /****************************************************************************/
2271 static void
2272 bce_disable_nvram_write(struct bce_softc *sc)
2273 {
2274 	u32 val;
2275 
2276 	DBENTER(BCE_VERBOSE_NVRAM);
2277 
2278 	val = REG_RD(sc, BCE_MISC_CFG);
2279 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2280 
2281 	DBEXIT(BCE_VERBOSE_NVRAM);
2282 
2283 }
2284 #endif
2285 
2286 
2287 /****************************************************************************/
2288 /* Enable NVRAM access.                                                     */
2289 /*                                                                          */
2290 /* Before accessing NVRAM for read or write operations the caller must      */
2291 /* enabled NVRAM access.                                                    */
2292 /*                                                                          */
2293 /* Returns:                                                                 */
2294 /*   Nothing.                                                               */
2295 /****************************************************************************/
2296 static void
2297 bce_enable_nvram_access(struct bce_softc *sc)
2298 {
2299 	u32 val;
2300 
2301 	DBENTER(BCE_VERBOSE_NVRAM);
2302 
2303 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2304 	/* Enable both bits, even on read. */
2305 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2306 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2307 
2308 	DBEXIT(BCE_VERBOSE_NVRAM);
2309 }
2310 
2311 
2312 /****************************************************************************/
2313 /* Disable NVRAM access.                                                    */
2314 /*                                                                          */
2315 /* When the caller is finished accessing NVRAM access must be disabled.     */
2316 /*                                                                          */
2317 /* Returns:                                                                 */
2318 /*   Nothing.                                                               */
2319 /****************************************************************************/
2320 static void
2321 bce_disable_nvram_access(struct bce_softc *sc)
2322 {
2323 	u32 val;
2324 
2325 	DBENTER(BCE_VERBOSE_NVRAM);
2326 
2327 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2328 
2329 	/* Disable both bits, even after read. */
2330 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2331 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2332 
2333 	DBEXIT(BCE_VERBOSE_NVRAM);
2334 }
2335 
2336 
2337 #ifdef BCE_NVRAM_WRITE_SUPPORT
2338 /****************************************************************************/
2339 /* Erase NVRAM page before writing.                                         */
2340 /*                                                                          */
2341 /* Non-buffered flash parts require that a page be erased before it is      */
2342 /* written.                                                                 */
2343 /*                                                                          */
2344 /* Returns:                                                                 */
2345 /*   0 on success, positive value on failure.                               */
2346 /****************************************************************************/
2347 static int
2348 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2349 {
2350 	u32 cmd;
2351 	int j, rc = 0;
2352 
2353 	DBENTER(BCE_VERBOSE_NVRAM);
2354 
2355 	/* Buffered flash doesn't require an erase. */
2356 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2357 		goto bce_nvram_erase_page_exit;
2358 
2359 	/* Build an erase command. */
2360 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2361 	    BCE_NVM_COMMAND_DOIT;
2362 
2363 	/*
2364 	 * Clear the DONE bit separately, set the NVRAM address to erase,
2365 	 * and issue the erase command.
2366 	 */
2367 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2368 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2369 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2370 
2371 	/* Wait for completion. */
2372 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2373 		u32 val;
2374 
2375 		DELAY(5);
2376 
2377 		val = REG_RD(sc, BCE_NVM_COMMAND);
2378 		if (val & BCE_NVM_COMMAND_DONE)
2379 			break;
2380 	}
2381 
2382 	if (j >= NVRAM_TIMEOUT_COUNT) {
2383 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2384 		rc = EBUSY;
2385 	}
2386 
2387 bce_nvram_erase_page_exit:
2388 	DBEXIT(BCE_VERBOSE_NVRAM);
2389 	return (rc);
2390 }
2391 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2392 
2393 
2394 /****************************************************************************/
2395 /* Read a dword (32 bits) from NVRAM.                                       */
2396 /*                                                                          */
2397 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2398 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2399 /*                                                                          */
2400 /* Returns:                                                                 */
2401 /*   0 on success and the 32 bit value read, positive value on failure.     */
2402 /****************************************************************************/
2403 static int
2404 bce_nvram_read_dword(struct bce_softc *sc,
2405     u32 offset, u8 *ret_val, u32 cmd_flags)
2406 {
2407 	u32 cmd;
2408 	int i, rc = 0;
2409 
2410 	DBENTER(BCE_EXTREME_NVRAM);
2411 
2412 	/* Build the command word. */
2413 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2414 
2415 	/* Calculate the offset for buffered flash if translation is used. */
2416 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2417 		offset = ((offset / sc->bce_flash_info->page_size) <<
2418 		    sc->bce_flash_info->page_bits) +
2419 		    (offset % sc->bce_flash_info->page_size);
2420 	}
2421 
2422 	/*
2423 	 * Clear the DONE bit separately, set the address to read,
2424 	 * and issue the read.
2425 	 */
2426 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2427 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2428 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2429 
2430 	/* Wait for completion. */
2431 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2432 		u32 val;
2433 
2434 		DELAY(5);
2435 
2436 		val = REG_RD(sc, BCE_NVM_COMMAND);
2437 		if (val & BCE_NVM_COMMAND_DONE) {
2438 			val = REG_RD(sc, BCE_NVM_READ);
2439 
2440 			val = bce_be32toh(val);
2441 			memcpy(ret_val, &val, 4);
2442 			break;
2443 		}
2444 	}
2445 
2446 	/* Check for errors. */
2447 	if (i >= NVRAM_TIMEOUT_COUNT) {
2448 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2449 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2450 		rc = EBUSY;
2451 	}
2452 
2453 	DBEXIT(BCE_EXTREME_NVRAM);
2454 	return(rc);
2455 }
2456 
2457 
2458 #ifdef BCE_NVRAM_WRITE_SUPPORT
2459 /****************************************************************************/
2460 /* Write a dword (32 bits) to NVRAM.                                        */
2461 /*                                                                          */
2462 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2463 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2464 /* enabled NVRAM write access.                                              */
2465 /*                                                                          */
2466 /* Returns:                                                                 */
2467 /*   0 on success, positive value on failure.                               */
2468 /****************************************************************************/
2469 static int
2470 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2471 	u32 cmd_flags)
2472 {
2473 	u32 cmd, val32;
2474 	int j, rc = 0;
2475 
2476 	DBENTER(BCE_VERBOSE_NVRAM);
2477 
2478 	/* Build the command word. */
2479 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2480 
2481 	/* Calculate the offset for buffered flash if translation is used. */
2482 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2483 		offset = ((offset / sc->bce_flash_info->page_size) <<
2484 		    sc->bce_flash_info->page_bits) +
2485 		    (offset % sc->bce_flash_info->page_size);
2486 	}
2487 
2488 	/*
2489 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2490 	 * set the NVRAM address to write, and issue the write command
2491 	 */
2492 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2493 	memcpy(&val32, val, 4);
2494 	val32 = htobe32(val32);
2495 	REG_WR(sc, BCE_NVM_WRITE, val32);
2496 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2497 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2498 
2499 	/* Wait for completion. */
2500 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2501 		DELAY(5);
2502 
2503 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2504 			break;
2505 	}
2506 	if (j >= NVRAM_TIMEOUT_COUNT) {
2507 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2508 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2509 		rc = EBUSY;
2510 	}
2511 
2512 	DBEXIT(BCE_VERBOSE_NVRAM);
2513 	return (rc);
2514 }
2515 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2516 
2517 
2518 /****************************************************************************/
2519 /* Initialize NVRAM access.                                                 */
2520 /*                                                                          */
2521 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2522 /* access that device.                                                      */
2523 /*                                                                          */
2524 /* Returns:                                                                 */
2525 /*   0 on success, positive value on failure.                               */
2526 /****************************************************************************/
2527 static int
2528 bce_init_nvram(struct bce_softc *sc)
2529 {
2530 	u32 val;
2531 	int j, entry_count, rc = 0;
2532 	const struct flash_spec *flash;
2533 
2534 	DBENTER(BCE_VERBOSE_NVRAM);
2535 
2536 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2537 		sc->bce_flash_info = &flash_5709;
2538 		goto bce_init_nvram_get_flash_size;
2539 	}
2540 
2541 	/* Determine the selected interface. */
2542 	val = REG_RD(sc, BCE_NVM_CFG1);
2543 
2544 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2545 
2546 	/*
2547 	 * Flash reconfiguration is required to support additional
2548 	 * NVRAM devices not directly supported in hardware.
2549 	 * Check if the flash interface was reconfigured
2550 	 * by the bootcode.
2551 	 */
2552 
2553 	if (val & 0x40000000) {
2554 		/* Flash interface reconfigured by bootcode. */
2555 
2556 		DBPRINT(sc,BCE_INFO_LOAD,
2557 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2558 
2559 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2560 		     j++, flash++) {
2561 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2562 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2563 				sc->bce_flash_info = flash;
2564 				break;
2565 			}
2566 		}
2567 	} else {
2568 		/* Flash interface not yet reconfigured. */
2569 		u32 mask;
2570 
2571 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2572 			__FUNCTION__);
2573 
2574 		if (val & (1 << 23))
2575 			mask = FLASH_BACKUP_STRAP_MASK;
2576 		else
2577 			mask = FLASH_STRAP_MASK;
2578 
2579 		/* Look for the matching NVRAM device configuration data. */
2580 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2581 
2582 			/* Check if the device matches any of the known devices. */
2583 			if ((val & mask) == (flash->strapping & mask)) {
2584 				/* Found a device match. */
2585 				sc->bce_flash_info = flash;
2586 
2587 				/* Request access to the flash interface. */
2588 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2589 					return rc;
2590 
2591 				/* Reconfigure the flash interface. */
2592 				bce_enable_nvram_access(sc);
2593 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2594 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2595 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2596 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2597 				bce_disable_nvram_access(sc);
2598 				bce_release_nvram_lock(sc);
2599 
2600 				break;
2601 			}
2602 		}
2603 	}
2604 
2605 	/* Check if a matching device was found. */
2606 	if (j == entry_count) {
2607 		sc->bce_flash_info = NULL;
2608 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2609 		    __FILE__, __LINE__);
2610 		DBEXIT(BCE_VERBOSE_NVRAM);
2611 		return (ENODEV);
2612 	}
2613 
2614 bce_init_nvram_get_flash_size:
2615 	/* Write the flash config data to the shared memory interface. */
2616 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2617 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2618 	if (val)
2619 		sc->bce_flash_size = val;
2620 	else
2621 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2622 
2623 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2624 	    __FUNCTION__, sc->bce_flash_info->name,
2625 	    sc->bce_flash_info->total_size);
2626 
2627 	DBEXIT(BCE_VERBOSE_NVRAM);
2628 	return rc;
2629 }
2630 
2631 
2632 /****************************************************************************/
2633 /* Read an arbitrary range of data from NVRAM.                              */
2634 /*                                                                          */
2635 /* Prepares the NVRAM interface for access and reads the requested data     */
2636 /* into the supplied buffer.                                                */
2637 /*                                                                          */
2638 /* Returns:                                                                 */
2639 /*   0 on success and the data read, positive value on failure.             */
2640 /****************************************************************************/
2641 static int
2642 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2643 	int buf_size)
2644 {
2645 	int rc = 0;
2646 	u32 cmd_flags, offset32, len32, extra;
2647 
2648 	DBENTER(BCE_VERBOSE_NVRAM);
2649 
2650 	if (buf_size == 0)
2651 		goto bce_nvram_read_exit;
2652 
2653 	/* Request access to the flash interface. */
2654 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2655 		goto bce_nvram_read_exit;
2656 
2657 	/* Enable access to flash interface */
2658 	bce_enable_nvram_access(sc);
2659 
2660 	len32 = buf_size;
2661 	offset32 = offset;
2662 	extra = 0;
2663 
2664 	cmd_flags = 0;
2665 
2666 	if (offset32 & 3) {
2667 		u8 buf[4];
2668 		u32 pre_len;
2669 
2670 		offset32 &= ~3;
2671 		pre_len = 4 - (offset & 3);
2672 
2673 		if (pre_len >= len32) {
2674 			pre_len = len32;
2675 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2676 		}
2677 		else {
2678 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2679 		}
2680 
2681 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2682 
2683 		if (rc)
2684 			return rc;
2685 
2686 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2687 
2688 		offset32 += 4;
2689 		ret_buf += pre_len;
2690 		len32 -= pre_len;
2691 	}
2692 
2693 	if (len32 & 3) {
2694 		extra = 4 - (len32 & 3);
2695 		len32 = (len32 + 4) & ~3;
2696 	}
2697 
2698 	if (len32 == 4) {
2699 		u8 buf[4];
2700 
2701 		if (cmd_flags)
2702 			cmd_flags = BCE_NVM_COMMAND_LAST;
2703 		else
2704 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2705 				    BCE_NVM_COMMAND_LAST;
2706 
2707 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2708 
2709 		memcpy(ret_buf, buf, 4 - extra);
2710 	}
2711 	else if (len32 > 0) {
2712 		u8 buf[4];
2713 
2714 		/* Read the first word. */
2715 		if (cmd_flags)
2716 			cmd_flags = 0;
2717 		else
2718 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2719 
2720 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2721 
2722 		/* Advance to the next dword. */
2723 		offset32 += 4;
2724 		ret_buf += 4;
2725 		len32 -= 4;
2726 
2727 		while (len32 > 4 && rc == 0) {
2728 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2729 
2730 			/* Advance to the next dword. */
2731 			offset32 += 4;
2732 			ret_buf += 4;
2733 			len32 -= 4;
2734 		}
2735 
2736 		if (rc)
2737 			goto bce_nvram_read_locked_exit;
2738 
2739 		cmd_flags = BCE_NVM_COMMAND_LAST;
2740 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2741 
2742 		memcpy(ret_buf, buf, 4 - extra);
2743 	}
2744 
2745 bce_nvram_read_locked_exit:
2746 	/* Disable access to flash interface and release the lock. */
2747 	bce_disable_nvram_access(sc);
2748 	bce_release_nvram_lock(sc);
2749 
2750 bce_nvram_read_exit:
2751 	DBEXIT(BCE_VERBOSE_NVRAM);
2752 	return rc;
2753 }
2754 
2755 
2756 #ifdef BCE_NVRAM_WRITE_SUPPORT
2757 /****************************************************************************/
2758 /* Write an arbitrary range of data from NVRAM.                             */
2759 /*                                                                          */
2760 /* Prepares the NVRAM interface for write access and writes the requested   */
2761 /* data from the supplied buffer.  The caller is responsible for            */
2762 /* calculating any appropriate CRCs.                                        */
2763 /*                                                                          */
2764 /* Returns:                                                                 */
2765 /*   0 on success, positive value on failure.                               */
2766 /****************************************************************************/
2767 static int
2768 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2769 	int buf_size)
2770 {
2771 	u32 written, offset32, len32;
2772 	u8 *buf, start[4], end[4];
2773 	int rc = 0;
2774 	int align_start, align_end;
2775 
2776 	DBENTER(BCE_VERBOSE_NVRAM);
2777 
2778 	buf = data_buf;
2779 	offset32 = offset;
2780 	len32 = buf_size;
2781 	align_start = align_end = 0;
2782 
2783 	if ((align_start = (offset32 & 3))) {
2784 		offset32 &= ~3;
2785 		len32 += align_start;
2786 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2787 			goto bce_nvram_write_exit;
2788 	}
2789 
2790 	if (len32 & 3) {
2791 	       	if ((len32 > 4) || !align_start) {
2792 			align_end = 4 - (len32 & 3);
2793 			len32 += align_end;
2794 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2795 				end, 4))) {
2796 				goto bce_nvram_write_exit;
2797 			}
2798 		}
2799 	}
2800 
2801 	if (align_start || align_end) {
2802 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2803 		if (buf == NULL) {
2804 			rc = ENOMEM;
2805 			goto bce_nvram_write_exit;
2806 		}
2807 
2808 		if (align_start) {
2809 			memcpy(buf, start, 4);
2810 		}
2811 
2812 		if (align_end) {
2813 			memcpy(buf + len32 - 4, end, 4);
2814 		}
2815 		memcpy(buf + align_start, data_buf, buf_size);
2816 	}
2817 
2818 	written = 0;
2819 	while ((written < len32) && (rc == 0)) {
2820 		u32 page_start, page_end, data_start, data_end;
2821 		u32 addr, cmd_flags;
2822 		int i;
2823 		u8 flash_buffer[264];
2824 
2825 	    /* Find the page_start addr */
2826 		page_start = offset32 + written;
2827 		page_start -= (page_start % sc->bce_flash_info->page_size);
2828 		/* Find the page_end addr */
2829 		page_end = page_start + sc->bce_flash_info->page_size;
2830 		/* Find the data_start addr */
2831 		data_start = (written == 0) ? offset32 : page_start;
2832 		/* Find the data_end addr */
2833 		data_end = (page_end > offset32 + len32) ?
2834 			(offset32 + len32) : page_end;
2835 
2836 		/* Request access to the flash interface. */
2837 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2838 			goto bce_nvram_write_exit;
2839 
2840 		/* Enable access to flash interface */
2841 		bce_enable_nvram_access(sc);
2842 
2843 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2844 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2845 			int j;
2846 
2847 			/* Read the whole page into the buffer
2848 			 * (non-buffer flash only) */
2849 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2850 				if (j == (sc->bce_flash_info->page_size - 4)) {
2851 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2852 				}
2853 				rc = bce_nvram_read_dword(sc,
2854 					page_start + j,
2855 					&flash_buffer[j],
2856 					cmd_flags);
2857 
2858 				if (rc)
2859 					goto bce_nvram_write_locked_exit;
2860 
2861 				cmd_flags = 0;
2862 			}
2863 		}
2864 
2865 		/* Enable writes to flash interface (unlock write-protect) */
2866 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2867 			goto bce_nvram_write_locked_exit;
2868 
2869 		/* Erase the page */
2870 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2871 			goto bce_nvram_write_locked_exit;
2872 
2873 		/* Re-enable the write again for the actual write */
2874 		bce_enable_nvram_write(sc);
2875 
2876 		/* Loop to write back the buffer data from page_start to
2877 		 * data_start */
2878 		i = 0;
2879 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2880 			for (addr = page_start; addr < data_start;
2881 				addr += 4, i += 4) {
2882 
2883 				rc = bce_nvram_write_dword(sc, addr,
2884 					&flash_buffer[i], cmd_flags);
2885 
2886 				if (rc != 0)
2887 					goto bce_nvram_write_locked_exit;
2888 
2889 				cmd_flags = 0;
2890 			}
2891 		}
2892 
2893 		/* Loop to write the new data from data_start to data_end */
2894 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2895 			if ((addr == page_end - 4) ||
2896 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2897 				(addr == data_end - 4))) {
2898 
2899 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2900 			}
2901 			rc = bce_nvram_write_dword(sc, addr, buf,
2902 				cmd_flags);
2903 
2904 			if (rc != 0)
2905 				goto bce_nvram_write_locked_exit;
2906 
2907 			cmd_flags = 0;
2908 			buf += 4;
2909 		}
2910 
2911 		/* Loop to write back the buffer data from data_end
2912 		 * to page_end */
2913 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2914 			for (addr = data_end; addr < page_end;
2915 				addr += 4, i += 4) {
2916 
2917 				if (addr == page_end-4) {
2918 					cmd_flags = BCE_NVM_COMMAND_LAST;
2919                 		}
2920 				rc = bce_nvram_write_dword(sc, addr,
2921 					&flash_buffer[i], cmd_flags);
2922 
2923 				if (rc != 0)
2924 					goto bce_nvram_write_locked_exit;
2925 
2926 				cmd_flags = 0;
2927 			}
2928 		}
2929 
2930 		/* Disable writes to flash interface (lock write-protect) */
2931 		bce_disable_nvram_write(sc);
2932 
2933 		/* Disable access to flash interface */
2934 		bce_disable_nvram_access(sc);
2935 		bce_release_nvram_lock(sc);
2936 
2937 		/* Increment written */
2938 		written += data_end - data_start;
2939 	}
2940 
2941 	goto bce_nvram_write_exit;
2942 
2943 bce_nvram_write_locked_exit:
2944 	bce_disable_nvram_write(sc);
2945 	bce_disable_nvram_access(sc);
2946 	bce_release_nvram_lock(sc);
2947 
2948 bce_nvram_write_exit:
2949 	if (align_start || align_end)
2950 		free(buf, M_DEVBUF);
2951 
2952 	DBEXIT(BCE_VERBOSE_NVRAM);
2953 	return (rc);
2954 }
2955 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2956 
2957 
2958 /****************************************************************************/
2959 /* Verifies that NVRAM is accessible and contains valid data.               */
2960 /*                                                                          */
2961 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2962 /* correct.                                                                 */
2963 /*                                                                          */
2964 /* Returns:                                                                 */
2965 /*   0 on success, positive value on failure.                               */
2966 /****************************************************************************/
2967 static int
2968 bce_nvram_test(struct bce_softc *sc)
2969 {
2970 	u32 buf[BCE_NVRAM_SIZE / 4];
2971 	u8 *data = (u8 *) buf;
2972 	int rc = 0;
2973 	u32 magic, csum;
2974 
2975 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2976 
2977 	/*
2978 	 * Check that the device NVRAM is valid by reading
2979 	 * the magic value at offset 0.
2980 	 */
2981 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2982 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2983 		    __FILE__, __LINE__);
2984 		goto bce_nvram_test_exit;
2985 	}
2986 
2987 	/*
2988 	 * Verify that offset 0 of the NVRAM contains
2989 	 * a valid magic number.
2990 	 */
2991 	magic = bce_be32toh(buf[0]);
2992 	if (magic != BCE_NVRAM_MAGIC) {
2993 		rc = ENODEV;
2994 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2995 		    "Expected: 0x%08X, Found: 0x%08X\n",
2996 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2997 		goto bce_nvram_test_exit;
2998 	}
2999 
3000 	/*
3001 	 * Verify that the device NVRAM includes valid
3002 	 * configuration data.
3003 	 */
3004 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
3005 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
3006 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
3007 		goto bce_nvram_test_exit;
3008 	}
3009 
3010 	csum = ether_crc32_le(data, 0x100);
3011 	if (csum != BCE_CRC32_RESIDUAL) {
3012 		rc = ENODEV;
3013 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
3014 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
3015 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
3016 		goto bce_nvram_test_exit;
3017 	}
3018 
3019 	csum = ether_crc32_le(data + 0x100, 0x100);
3020 	if (csum != BCE_CRC32_RESIDUAL) {
3021 		rc = ENODEV;
3022 		BCE_PRINTF("%s(%d): Invalid feature configuration "
3023 		    "information NVRAM CRC! Expected: 0x%08X, "
3024 		    "Found: 08%08X\n", __FILE__, __LINE__,
3025 		    BCE_CRC32_RESIDUAL, csum);
3026 	}
3027 
3028 bce_nvram_test_exit:
3029 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
3030 	return rc;
3031 }
3032 
3033 
3034 /****************************************************************************/
3035 /* Calculates the size of the buffers to allocate based on the MTU.         */
3036 /*                                                                          */
3037 /* Returns:                                                                 */
3038 /*   Nothing.                                                               */
3039 /****************************************************************************/
3040 static void
3041 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
3042 {
3043 	DBENTER(BCE_VERBOSE_LOAD);
3044 
3045 	/* Use a single allocation type when header splitting enabled. */
3046 	if (bce_hdr_split == TRUE) {
3047 		sc->rx_bd_mbuf_alloc_size = MHLEN;
3048 		/* Make sure offset is 16 byte aligned for hardware. */
3049 		sc->rx_bd_mbuf_align_pad =
3050 			roundup2(MSIZE - MHLEN, 16) - (MSIZE - MHLEN);
3051 		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
3052 			sc->rx_bd_mbuf_align_pad;
3053 	} else {
3054 		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
3055 		    ETHER_CRC_LEN) > MCLBYTES) {
3056 			/* Setup for jumbo RX buffer allocations. */
3057 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
3058 			sc->rx_bd_mbuf_align_pad  =
3059 				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3060 			sc->rx_bd_mbuf_data_len =
3061 			    sc->rx_bd_mbuf_alloc_size -
3062 			    sc->rx_bd_mbuf_align_pad;
3063 		} else {
3064 			/* Setup for standard RX buffer allocations. */
3065 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3066 			sc->rx_bd_mbuf_align_pad  =
3067 			    roundup2(MCLBYTES, 16) - MCLBYTES;
3068 			sc->rx_bd_mbuf_data_len =
3069 			    sc->rx_bd_mbuf_alloc_size -
3070 			    sc->rx_bd_mbuf_align_pad;
3071 		}
3072 	}
3073 
3074 //	DBPRINT(sc, BCE_INFO_LOAD,
3075 	DBPRINT(sc, BCE_WARN,
3076 	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3077 	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3078 	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3079 	   sc->rx_bd_mbuf_align_pad);
3080 
3081 	DBEXIT(BCE_VERBOSE_LOAD);
3082 }
3083 
3084 /****************************************************************************/
3085 /* Identifies the current media type of the controller and sets the PHY     */
3086 /* address.                                                                 */
3087 /*                                                                          */
3088 /* Returns:                                                                 */
3089 /*   Nothing.                                                               */
3090 /****************************************************************************/
3091 static void
3092 bce_get_media(struct bce_softc *sc)
3093 {
3094 	u32 val;
3095 
3096 	DBENTER(BCE_VERBOSE_PHY);
3097 
3098 	/* Assume PHY address for copper controllers. */
3099 	sc->bce_phy_addr = 1;
3100 
3101 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3102  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3103 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3104 		u32 strap;
3105 
3106 		/*
3107 		 * The BCM5709S is software configurable
3108 		 * for Copper or SerDes operation.
3109 		 */
3110 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3111 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3112 			    "for copper.\n");
3113 			goto bce_get_media_exit;
3114 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3115 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3116 			    "for dual media.\n");
3117 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3118 			goto bce_get_media_exit;
3119 		}
3120 
3121 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3122 			strap = (val &
3123 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3124 		else
3125 			strap = (val &
3126 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3127 
3128 		if (pci_get_function(sc->bce_dev) == 0) {
3129 			switch (strap) {
3130 			case 0x4:
3131 			case 0x5:
3132 			case 0x6:
3133 				DBPRINT(sc, BCE_INFO_LOAD,
3134 				    "BCM5709 s/w configured for SerDes.\n");
3135 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3136 				break;
3137 			default:
3138 				DBPRINT(sc, BCE_INFO_LOAD,
3139 				    "BCM5709 s/w configured for Copper.\n");
3140 				break;
3141 			}
3142 		} else {
3143 			switch (strap) {
3144 			case 0x1:
3145 			case 0x2:
3146 			case 0x4:
3147 				DBPRINT(sc, BCE_INFO_LOAD,
3148 				    "BCM5709 s/w configured for SerDes.\n");
3149 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3150 				break;
3151 			default:
3152 				DBPRINT(sc, BCE_INFO_LOAD,
3153 				    "BCM5709 s/w configured for Copper.\n");
3154 				break;
3155 			}
3156 		}
3157 
3158 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3159 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3160 
3161 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3162 
3163 		sc->bce_flags |= BCE_NO_WOL_FLAG;
3164 
3165 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3166 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3167 
3168 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3169 			/* 5708S/09S/16S use a separate PHY for SerDes. */
3170 			sc->bce_phy_addr = 2;
3171 
3172 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3173 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3174 				sc->bce_phy_flags |=
3175 				    BCE_PHY_2_5G_CAPABLE_FLAG;
3176 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3177 				    "capable adapter\n");
3178 			}
3179 		}
3180 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3181 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3182 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3183 
3184 bce_get_media_exit:
3185 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3186 		"Using PHY address %d.\n", sc->bce_phy_addr);
3187 
3188 	DBEXIT(BCE_VERBOSE_PHY);
3189 }
3190 
3191 
3192 /****************************************************************************/
3193 /* Performs PHY initialization required before MII drivers access the       */
3194 /* device.                                                                  */
3195 /*                                                                          */
3196 /* Returns:                                                                 */
3197 /*   Nothing.                                                               */
3198 /****************************************************************************/
3199 static void
3200 bce_init_media(struct bce_softc *sc)
3201 {
3202 	if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3203 	    BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3204 		/*
3205 		 * Configure 5709S/5716S PHYs to use traditional IEEE
3206 		 * Clause 22 method. Otherwise we have no way to attach
3207 		 * the PHY in mii(4) layer. PHY specific configuration
3208 		 * is done in mii layer.
3209 		 */
3210 
3211 		/* Select auto-negotiation MMD of the PHY. */
3212 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3213 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3214 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3215 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3216 
3217 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3218 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3219 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3220 	}
3221 }
3222 
3223 
3224 /****************************************************************************/
3225 /* Free any DMA memory owned by the driver.                                 */
3226 /*                                                                          */
3227 /* Scans through each data structre that requires DMA memory and frees      */
3228 /* the memory if allocated.                                                 */
3229 /*                                                                          */
3230 /* Returns:                                                                 */
3231 /*   Nothing.                                                               */
3232 /****************************************************************************/
3233 static void
3234 bce_dma_free(struct bce_softc *sc)
3235 {
3236 	int i;
3237 
3238 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3239 
3240 	/* Free, unmap, and destroy the status block. */
3241 	if (sc->status_block_paddr != 0) {
3242 		bus_dmamap_unload(
3243 		    sc->status_tag,
3244 		    sc->status_map);
3245 		sc->status_block_paddr = 0;
3246 	}
3247 
3248 	if (sc->status_block != NULL) {
3249 		bus_dmamem_free(
3250 		   sc->status_tag,
3251 		    sc->status_block,
3252 		    sc->status_map);
3253 		sc->status_block = NULL;
3254 	}
3255 
3256 	if (sc->status_tag != NULL) {
3257 		bus_dma_tag_destroy(sc->status_tag);
3258 		sc->status_tag = NULL;
3259 	}
3260 
3261 
3262 	/* Free, unmap, and destroy the statistics block. */
3263 	if (sc->stats_block_paddr != 0) {
3264 		bus_dmamap_unload(
3265 		    sc->stats_tag,
3266 		    sc->stats_map);
3267 		sc->stats_block_paddr = 0;
3268 	}
3269 
3270 	if (sc->stats_block != NULL) {
3271 		bus_dmamem_free(
3272 		    sc->stats_tag,
3273 		    sc->stats_block,
3274 		    sc->stats_map);
3275 		sc->stats_block = NULL;
3276 	}
3277 
3278 	if (sc->stats_tag != NULL) {
3279 		bus_dma_tag_destroy(sc->stats_tag);
3280 		sc->stats_tag = NULL;
3281 	}
3282 
3283 
3284 	/* Free, unmap and destroy all context memory pages. */
3285 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3286 		for (i = 0; i < sc->ctx_pages; i++ ) {
3287 			if (sc->ctx_paddr[i] != 0) {
3288 				bus_dmamap_unload(
3289 				    sc->ctx_tag,
3290 				    sc->ctx_map[i]);
3291 				sc->ctx_paddr[i] = 0;
3292 			}
3293 
3294 			if (sc->ctx_block[i] != NULL) {
3295 				bus_dmamem_free(
3296 				    sc->ctx_tag,
3297 				    sc->ctx_block[i],
3298 				    sc->ctx_map[i]);
3299 				sc->ctx_block[i] = NULL;
3300 			}
3301 		}
3302 
3303 		/* Destroy the context memory tag. */
3304 		if (sc->ctx_tag != NULL) {
3305 			bus_dma_tag_destroy(sc->ctx_tag);
3306 			sc->ctx_tag = NULL;
3307 		}
3308 	}
3309 
3310 
3311 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
3312 	for (i = 0; i < sc->tx_pages; i++ ) {
3313 		if (sc->tx_bd_chain_paddr[i] != 0) {
3314 			bus_dmamap_unload(
3315 			    sc->tx_bd_chain_tag,
3316 			    sc->tx_bd_chain_map[i]);
3317 			sc->tx_bd_chain_paddr[i] = 0;
3318 		}
3319 
3320 		if (sc->tx_bd_chain[i] != NULL) {
3321 			bus_dmamem_free(
3322 			    sc->tx_bd_chain_tag,
3323 			    sc->tx_bd_chain[i],
3324 			    sc->tx_bd_chain_map[i]);
3325 			sc->tx_bd_chain[i] = NULL;
3326 		}
3327 	}
3328 
3329 	/* Destroy the TX buffer descriptor tag. */
3330 	if (sc->tx_bd_chain_tag != NULL) {
3331 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3332 		sc->tx_bd_chain_tag = NULL;
3333 	}
3334 
3335 
3336 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
3337 	for (i = 0; i < sc->rx_pages; i++ ) {
3338 		if (sc->rx_bd_chain_paddr[i] != 0) {
3339 			bus_dmamap_unload(
3340 			    sc->rx_bd_chain_tag,
3341 			    sc->rx_bd_chain_map[i]);
3342 			sc->rx_bd_chain_paddr[i] = 0;
3343 		}
3344 
3345 		if (sc->rx_bd_chain[i] != NULL) {
3346 			bus_dmamem_free(
3347 			    sc->rx_bd_chain_tag,
3348 			    sc->rx_bd_chain[i],
3349 			    sc->rx_bd_chain_map[i]);
3350 			sc->rx_bd_chain[i] = NULL;
3351 		}
3352 	}
3353 
3354 	/* Destroy the RX buffer descriptor tag. */
3355 	if (sc->rx_bd_chain_tag != NULL) {
3356 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3357 		sc->rx_bd_chain_tag = NULL;
3358 	}
3359 
3360 
3361 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
3362 	if (bce_hdr_split == TRUE) {
3363 		for (i = 0; i < sc->pg_pages; i++ ) {
3364 			if (sc->pg_bd_chain_paddr[i] != 0) {
3365 				bus_dmamap_unload(
3366 				    sc->pg_bd_chain_tag,
3367 				    sc->pg_bd_chain_map[i]);
3368 				sc->pg_bd_chain_paddr[i] = 0;
3369 			}
3370 
3371 			if (sc->pg_bd_chain[i] != NULL) {
3372 				bus_dmamem_free(
3373 				    sc->pg_bd_chain_tag,
3374 				    sc->pg_bd_chain[i],
3375 				    sc->pg_bd_chain_map[i]);
3376 				sc->pg_bd_chain[i] = NULL;
3377 			}
3378 		}
3379 
3380 		/* Destroy the page buffer descriptor tag. */
3381 		if (sc->pg_bd_chain_tag != NULL) {
3382 			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3383 			sc->pg_bd_chain_tag = NULL;
3384 		}
3385 	}
3386 
3387 
3388 	/* Unload and destroy the TX mbuf maps. */
3389 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3390 		if (sc->tx_mbuf_map[i] != NULL) {
3391 			bus_dmamap_unload(sc->tx_mbuf_tag,
3392 			    sc->tx_mbuf_map[i]);
3393 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3394 	 		    sc->tx_mbuf_map[i]);
3395 			sc->tx_mbuf_map[i] = NULL;
3396 		}
3397 	}
3398 
3399 	/* Destroy the TX mbuf tag. */
3400 	if (sc->tx_mbuf_tag != NULL) {
3401 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3402 		sc->tx_mbuf_tag = NULL;
3403 	}
3404 
3405 	/* Unload and destroy the RX mbuf maps. */
3406 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3407 		if (sc->rx_mbuf_map[i] != NULL) {
3408 			bus_dmamap_unload(sc->rx_mbuf_tag,
3409 			    sc->rx_mbuf_map[i]);
3410 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3411 	 		    sc->rx_mbuf_map[i]);
3412 			sc->rx_mbuf_map[i] = NULL;
3413 		}
3414 	}
3415 
3416 	/* Destroy the RX mbuf tag. */
3417 	if (sc->rx_mbuf_tag != NULL) {
3418 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3419 		sc->rx_mbuf_tag = NULL;
3420 	}
3421 
3422 	/* Unload and destroy the page mbuf maps. */
3423 	if (bce_hdr_split == TRUE) {
3424 		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3425 			if (sc->pg_mbuf_map[i] != NULL) {
3426 				bus_dmamap_unload(sc->pg_mbuf_tag,
3427 				    sc->pg_mbuf_map[i]);
3428 				bus_dmamap_destroy(sc->pg_mbuf_tag,
3429 				    sc->pg_mbuf_map[i]);
3430 				sc->pg_mbuf_map[i] = NULL;
3431 			}
3432 		}
3433 
3434 		/* Destroy the page mbuf tag. */
3435 		if (sc->pg_mbuf_tag != NULL) {
3436 			bus_dma_tag_destroy(sc->pg_mbuf_tag);
3437 			sc->pg_mbuf_tag = NULL;
3438 		}
3439 	}
3440 
3441 	/* Destroy the parent tag */
3442 	if (sc->parent_tag != NULL) {
3443 		bus_dma_tag_destroy(sc->parent_tag);
3444 		sc->parent_tag = NULL;
3445 	}
3446 
3447 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3448 }
3449 
3450 
3451 /****************************************************************************/
3452 /* Get DMA memory from the OS.                                              */
3453 /*                                                                          */
3454 /* Validates that the OS has provided DMA buffers in response to a          */
3455 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3456 /* When the callback is used the OS will return 0 for the mapping function  */
3457 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3458 /* failures back to the caller.                                             */
3459 /*                                                                          */
3460 /* Returns:                                                                 */
3461 /*   Nothing.                                                               */
3462 /****************************************************************************/
3463 static void
3464 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3465 {
3466 	bus_addr_t *busaddr = arg;
3467 
3468 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3469 	    __FUNCTION__, nseg));
3470 	/* Simulate a mapping failure. */
3471 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3472 	    error = ENOMEM);
3473 
3474 	/* ToDo: How to increment debug sim_count variable here? */
3475 
3476 	/* Check for an error and signal the caller that an error occurred. */
3477 	if (error) {
3478 		*busaddr = 0;
3479 	} else {
3480 		*busaddr = segs->ds_addr;
3481 	}
3482 }
3483 
3484 
3485 /****************************************************************************/
3486 /* Allocate any DMA memory needed by the driver.                            */
3487 /*                                                                          */
3488 /* Allocates DMA memory needed for the various global structures needed by  */
3489 /* hardware.                                                                */
3490 /*                                                                          */
3491 /* Memory alignment requirements:                                           */
3492 /* +-----------------+----------+----------+----------+----------+          */
3493 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3494 /* +-----------------+----------+----------+----------+----------+          */
3495 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3496 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3497 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3498 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3499 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3500 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3501 /* |Context Memory   |          |          |          |          |          */
3502 /* +-----------------+----------+----------+----------+----------+          */
3503 /*                                                                          */
3504 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3505 /*                                                                          */
3506 /* Returns:                                                                 */
3507 /*   0 for success, positive value for failure.                             */
3508 /****************************************************************************/
3509 static int
3510 bce_dma_alloc(device_t dev)
3511 {
3512 	struct bce_softc *sc;
3513 	int i, error, rc = 0;
3514 	bus_size_t max_size, max_seg_size;
3515 	int max_segments;
3516 
3517 	sc = device_get_softc(dev);
3518 
3519 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3520 
3521 	/*
3522 	 * Allocate the parent bus DMA tag appropriate for PCI.
3523 	 */
3524 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3525 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3526 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3527 	    &sc->parent_tag)) {
3528 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3529 		    __FILE__, __LINE__);
3530 		rc = ENOMEM;
3531 		goto bce_dma_alloc_exit;
3532 	}
3533 
3534 	/*
3535 	 * Create a DMA tag for the status block, allocate and clear the
3536 	 * memory, map the memory into DMA space, and fetch the physical
3537 	 * address of the block.
3538 	 */
3539 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3540 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3541 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3542 	    0, NULL, NULL, &sc->status_tag)) {
3543 		BCE_PRINTF("%s(%d): Could not allocate status block "
3544 		    "DMA tag!\n", __FILE__, __LINE__);
3545 		rc = ENOMEM;
3546 		goto bce_dma_alloc_exit;
3547 	}
3548 
3549 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3550 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3551 	    &sc->status_map)) {
3552 		BCE_PRINTF("%s(%d): Could not allocate status block "
3553 		    "DMA memory!\n", __FILE__, __LINE__);
3554 		rc = ENOMEM;
3555 		goto bce_dma_alloc_exit;
3556 	}
3557 
3558 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3559 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3560 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3561 
3562 	if (error || sc->status_block_paddr == 0) {
3563 		BCE_PRINTF("%s(%d): Could not map status block "
3564 		    "DMA memory!\n", __FILE__, __LINE__);
3565 		rc = ENOMEM;
3566 		goto bce_dma_alloc_exit;
3567 	}
3568 
3569 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3570 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3571 
3572 	/*
3573 	 * Create a DMA tag for the statistics block, allocate and clear the
3574 	 * memory, map the memory into DMA space, and fetch the physical
3575 	 * address of the block.
3576 	 */
3577 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3578 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3579 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3580 	    0, NULL, NULL, &sc->stats_tag)) {
3581 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3582 		    "DMA tag!\n", __FILE__, __LINE__);
3583 		rc = ENOMEM;
3584 		goto bce_dma_alloc_exit;
3585 	}
3586 
3587 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3588 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3589 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3590 		    "DMA memory!\n", __FILE__, __LINE__);
3591 		rc = ENOMEM;
3592 		goto bce_dma_alloc_exit;
3593 	}
3594 
3595 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3596 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3597 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3598 
3599 	if (error || sc->stats_block_paddr == 0) {
3600 		BCE_PRINTF("%s(%d): Could not map statistics block "
3601 		    "DMA memory!\n", __FILE__, __LINE__);
3602 		rc = ENOMEM;
3603 		goto bce_dma_alloc_exit;
3604 	}
3605 
3606 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3607 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3608 
3609 	/* BCM5709 uses host memory as cache for context memory. */
3610 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3611 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3612 		if (sc->ctx_pages == 0)
3613 			sc->ctx_pages = 1;
3614 
3615 		DBRUNIF((sc->ctx_pages > 512),
3616 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3617 		    __FILE__, __LINE__, sc->ctx_pages));
3618 
3619 		/*
3620 		 * Create a DMA tag for the context pages,
3621 		 * allocate and clear the memory, map the
3622 		 * memory into DMA space, and fetch the
3623 		 * physical address of the block.
3624 		 */
3625 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3626 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3627 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3628 		    0, NULL, NULL, &sc->ctx_tag)) {
3629 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3630 			    "DMA tag!\n", __FILE__, __LINE__);
3631 			rc = ENOMEM;
3632 			goto bce_dma_alloc_exit;
3633 		}
3634 
3635 		for (i = 0; i < sc->ctx_pages; i++) {
3636 
3637 			if(bus_dmamem_alloc(sc->ctx_tag,
3638 			    (void **)&sc->ctx_block[i],
3639 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3640 			    &sc->ctx_map[i])) {
3641 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3642 				    "DMA memory!\n", __FILE__, __LINE__);
3643 				rc = ENOMEM;
3644 				goto bce_dma_alloc_exit;
3645 			}
3646 
3647 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3648 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3649 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3650 
3651 			if (error || sc->ctx_paddr[i] == 0) {
3652 				BCE_PRINTF("%s(%d): Could not map CTX "
3653 				    "DMA memory!\n", __FILE__, __LINE__);
3654 				rc = ENOMEM;
3655 				goto bce_dma_alloc_exit;
3656 			}
3657 
3658 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3659 			    "= 0x%jX\n", __FUNCTION__, i,
3660 			    (uintmax_t) sc->ctx_paddr[i]);
3661 		}
3662 	}
3663 
3664 	/*
3665 	 * Create a DMA tag for the TX buffer descriptor chain,
3666 	 * allocate and clear the  memory, and fetch the
3667 	 * physical address of the block.
3668 	 */
3669 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3670 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3671 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3672 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3673 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3674 		    "chain DMA tag!\n", __FILE__, __LINE__);
3675 		rc = ENOMEM;
3676 		goto bce_dma_alloc_exit;
3677 	}
3678 
3679 	for (i = 0; i < sc->tx_pages; i++) {
3680 
3681 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3682 		    (void **)&sc->tx_bd_chain[i],
3683 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3684 		    &sc->tx_bd_chain_map[i])) {
3685 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3686 			    "chain DMA memory!\n", __FILE__, __LINE__);
3687 			rc = ENOMEM;
3688 			goto bce_dma_alloc_exit;
3689 		}
3690 
3691 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3692 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3693 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3694 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3695 
3696 		if (error || sc->tx_bd_chain_paddr[i] == 0) {
3697 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3698 			    "chain DMA memory!\n", __FILE__, __LINE__);
3699 			rc = ENOMEM;
3700 			goto bce_dma_alloc_exit;
3701 		}
3702 
3703 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3704 		    "0x%jX\n", __FUNCTION__, i,
3705 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3706 	}
3707 
3708 	/* Check the required size before mapping to conserve resources. */
3709 	if (bce_tso_enable) {
3710 		max_size     = BCE_TSO_MAX_SIZE;
3711 		max_segments = BCE_MAX_SEGMENTS;
3712 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3713 	} else {
3714 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3715 		max_segments = BCE_MAX_SEGMENTS;
3716 		max_seg_size = MCLBYTES;
3717 	}
3718 
3719 	/* Create a DMA tag for TX mbufs. */
3720 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3721 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3722 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3723 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3724 		    __FILE__, __LINE__);
3725 		rc = ENOMEM;
3726 		goto bce_dma_alloc_exit;
3727 	}
3728 
3729 	/* Create DMA maps for the TX mbufs clusters. */
3730 	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3731 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3732 			&sc->tx_mbuf_map[i])) {
3733 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3734 			    "map!\n", __FILE__, __LINE__);
3735 			rc = ENOMEM;
3736 			goto bce_dma_alloc_exit;
3737 		}
3738 	}
3739 
3740 	/*
3741 	 * Create a DMA tag for the RX buffer descriptor chain,
3742 	 * allocate and clear the memory, and fetch the physical
3743 	 * address of the blocks.
3744 	 */
3745 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3746 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3747 			sc->max_bus_addr, NULL, NULL,
3748 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3749 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3750 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3751 		    "DMA tag!\n", __FILE__, __LINE__);
3752 		rc = ENOMEM;
3753 		goto bce_dma_alloc_exit;
3754 	}
3755 
3756 	for (i = 0; i < sc->rx_pages; i++) {
3757 
3758 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3759 		    (void **)&sc->rx_bd_chain[i],
3760 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3761 		    &sc->rx_bd_chain_map[i])) {
3762 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3763 			    "chain DMA memory!\n", __FILE__, __LINE__);
3764 			rc = ENOMEM;
3765 			goto bce_dma_alloc_exit;
3766 		}
3767 
3768 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3769 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3770 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3771 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3772 
3773 		if (error || sc->rx_bd_chain_paddr[i] == 0) {
3774 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3775 			    "chain DMA memory!\n", __FILE__, __LINE__);
3776 			rc = ENOMEM;
3777 			goto bce_dma_alloc_exit;
3778 		}
3779 
3780 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3781 		    "0x%jX\n", __FUNCTION__, i,
3782 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3783 	}
3784 
3785 	/*
3786 	 * Create a DMA tag for RX mbufs.
3787 	 */
3788 	if (bce_hdr_split == TRUE)
3789 		max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3790 		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3791 	else
3792 		max_size = MJUM9BYTES;
3793 
3794 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3795 	    "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3796 
3797 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3798 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3799 	    max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3800 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3801 		    __FILE__, __LINE__);
3802 		rc = ENOMEM;
3803 		goto bce_dma_alloc_exit;
3804 	}
3805 
3806 	/* Create DMA maps for the RX mbuf clusters. */
3807 	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3808 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3809 		    &sc->rx_mbuf_map[i])) {
3810 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3811 			    "DMA map!\n", __FILE__, __LINE__);
3812 			rc = ENOMEM;
3813 			goto bce_dma_alloc_exit;
3814 		}
3815 	}
3816 
3817 	if (bce_hdr_split == TRUE) {
3818 		/*
3819 		 * Create a DMA tag for the page buffer descriptor chain,
3820 		 * allocate and clear the memory, and fetch the physical
3821 		 * address of the blocks.
3822 		 */
3823 		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3824 			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3825 			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3826 			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3827 			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3828 			    "chain DMA tag!\n",	__FILE__, __LINE__);
3829 			rc = ENOMEM;
3830 			goto bce_dma_alloc_exit;
3831 		}
3832 
3833 		for (i = 0; i < sc->pg_pages; i++) {
3834 			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3835 			    (void **)&sc->pg_bd_chain[i],
3836 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3837 			    &sc->pg_bd_chain_map[i])) {
3838 				BCE_PRINTF("%s(%d): Could not allocate page "
3839 				    "descriptor chain DMA memory!\n",
3840 				    __FILE__, __LINE__);
3841 				rc = ENOMEM;
3842 				goto bce_dma_alloc_exit;
3843 			}
3844 
3845 			error = bus_dmamap_load(sc->pg_bd_chain_tag,
3846 			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3847 			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3848 			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3849 
3850 			if (error || sc->pg_bd_chain_paddr[i] == 0) {
3851 				BCE_PRINTF("%s(%d): Could not map page descriptor "
3852 					"chain DMA memory!\n", __FILE__, __LINE__);
3853 				rc = ENOMEM;
3854 				goto bce_dma_alloc_exit;
3855 			}
3856 
3857 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3858 				"0x%jX\n", __FUNCTION__, i,
3859 				(uintmax_t) sc->pg_bd_chain_paddr[i]);
3860 		}
3861 
3862 		/*
3863 		 * Create a DMA tag for page mbufs.
3864 		 */
3865 		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3866 		    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3867 		    1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3868 			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3869 				"DMA tag!\n", __FILE__, __LINE__);
3870 			rc = ENOMEM;
3871 			goto bce_dma_alloc_exit;
3872 		}
3873 
3874 		/* Create DMA maps for the page mbuf clusters. */
3875 		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3876 			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3877 				&sc->pg_mbuf_map[i])) {
3878 				BCE_PRINTF("%s(%d): Unable to create page mbuf "
3879 					"DMA map!\n", __FILE__, __LINE__);
3880 				rc = ENOMEM;
3881 				goto bce_dma_alloc_exit;
3882 			}
3883 		}
3884 	}
3885 
3886 bce_dma_alloc_exit:
3887 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3888 	return(rc);
3889 }
3890 
3891 
3892 /****************************************************************************/
3893 /* Release all resources used by the driver.                                */
3894 /*                                                                          */
3895 /* Releases all resources acquired by the driver including interrupts,      */
3896 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3897 /*                                                                          */
3898 /* Returns:                                                                 */
3899 /*   Nothing.                                                               */
3900 /****************************************************************************/
3901 static void
3902 bce_release_resources(struct bce_softc *sc)
3903 {
3904 	device_t dev;
3905 
3906 	DBENTER(BCE_VERBOSE_RESET);
3907 
3908 	dev = sc->bce_dev;
3909 
3910 	bce_dma_free(sc);
3911 
3912 	if (sc->bce_intrhand != NULL) {
3913 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3914 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3915 	}
3916 
3917 	if (sc->bce_res_irq != NULL) {
3918 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3919 		bus_release_resource(dev, SYS_RES_IRQ,
3920 		    rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3921 	}
3922 
3923 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3924 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3925 		pci_release_msi(dev);
3926 	}
3927 
3928 	if (sc->bce_res_mem != NULL) {
3929 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3930 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3931 		    sc->bce_res_mem);
3932 	}
3933 
3934 	if (sc->bce_ifp != NULL) {
3935 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3936 		if_free(sc->bce_ifp);
3937 	}
3938 
3939 	if (mtx_initialized(&sc->bce_mtx))
3940 		BCE_LOCK_DESTROY(sc);
3941 
3942 	DBEXIT(BCE_VERBOSE_RESET);
3943 }
3944 
3945 
3946 /****************************************************************************/
3947 /* Firmware synchronization.                                                */
3948 /*                                                                          */
3949 /* Before performing certain events such as a chip reset, synchronize with  */
3950 /* the firmware first.                                                      */
3951 /*                                                                          */
3952 /* Returns:                                                                 */
3953 /*   0 for success, positive value for failure.                             */
3954 /****************************************************************************/
3955 static int
3956 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3957 {
3958 	int i, rc = 0;
3959 	u32 val;
3960 
3961 	DBENTER(BCE_VERBOSE_RESET);
3962 
3963 	/* Don't waste any time if we've timed out before. */
3964 	if (sc->bce_fw_timed_out == TRUE) {
3965 		rc = EBUSY;
3966 		goto bce_fw_sync_exit;
3967 	}
3968 
3969 	/* Increment the message sequence number. */
3970 	sc->bce_fw_wr_seq++;
3971 	msg_data |= sc->bce_fw_wr_seq;
3972 
3973  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3974 	    "0x%08X\n",	msg_data);
3975 
3976 	/* Send the message to the bootcode driver mailbox. */
3977 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3978 
3979 	/* Wait for the bootcode to acknowledge the message. */
3980 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3981 		/* Check for a response in the bootcode firmware mailbox. */
3982 		val = bce_shmem_rd(sc, BCE_FW_MB);
3983 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3984 			break;
3985 		DELAY(1000);
3986 	}
3987 
3988 	/* If we've timed out, tell bootcode that we've stopped waiting. */
3989 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3990 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3991 
3992 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3993 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3994 
3995 		msg_data &= ~BCE_DRV_MSG_CODE;
3996 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3997 
3998 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3999 
4000 		sc->bce_fw_timed_out = TRUE;
4001 		rc = EBUSY;
4002 	}
4003 
4004 bce_fw_sync_exit:
4005 	DBEXIT(BCE_VERBOSE_RESET);
4006 	return (rc);
4007 }
4008 
4009 
4010 /****************************************************************************/
4011 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
4012 /*                                                                          */
4013 /* Returns:                                                                 */
4014 /*   Nothing.                                                               */
4015 /****************************************************************************/
4016 static void
4017 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
4018 	u32 rv2p_code_len, u32 rv2p_proc)
4019 {
4020 	int i;
4021 	u32 val;
4022 
4023 	DBENTER(BCE_VERBOSE_RESET);
4024 
4025 	/* Set the page size used by RV2P. */
4026 	if (rv2p_proc == RV2P_PROC2) {
4027 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
4028 	}
4029 
4030 	for (i = 0; i < rv2p_code_len; i += 8) {
4031 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
4032 		rv2p_code++;
4033 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
4034 		rv2p_code++;
4035 
4036 		if (rv2p_proc == RV2P_PROC1) {
4037 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
4038 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
4039 		}
4040 		else {
4041 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
4042 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
4043 		}
4044 	}
4045 
4046 	/* Reset the processor, un-stall is done later. */
4047 	if (rv2p_proc == RV2P_PROC1) {
4048 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4049 	}
4050 	else {
4051 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4052 	}
4053 
4054 	DBEXIT(BCE_VERBOSE_RESET);
4055 }
4056 
4057 
4058 /****************************************************************************/
4059 /* Load RISC processor firmware.                                            */
4060 /*                                                                          */
4061 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4062 /* associated with a particular processor.                                  */
4063 /*                                                                          */
4064 /* Returns:                                                                 */
4065 /*   Nothing.                                                               */
4066 /****************************************************************************/
4067 static void
4068 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4069 	struct fw_info *fw)
4070 {
4071 	u32 offset;
4072 
4073 	DBENTER(BCE_VERBOSE_RESET);
4074 
4075     bce_halt_cpu(sc, cpu_reg);
4076 
4077 	/* Load the Text area. */
4078 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4079 	if (fw->text) {
4080 		int j;
4081 
4082 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4083 			REG_WR_IND(sc, offset, fw->text[j]);
4084 	        }
4085 	}
4086 
4087 	/* Load the Data area. */
4088 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4089 	if (fw->data) {
4090 		int j;
4091 
4092 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4093 			REG_WR_IND(sc, offset, fw->data[j]);
4094 		}
4095 	}
4096 
4097 	/* Load the SBSS area. */
4098 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4099 	if (fw->sbss) {
4100 		int j;
4101 
4102 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4103 			REG_WR_IND(sc, offset, fw->sbss[j]);
4104 		}
4105 	}
4106 
4107 	/* Load the BSS area. */
4108 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4109 	if (fw->bss) {
4110 		int j;
4111 
4112 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4113 			REG_WR_IND(sc, offset, fw->bss[j]);
4114 		}
4115 	}
4116 
4117 	/* Load the Read-Only area. */
4118 	offset = cpu_reg->spad_base +
4119 		(fw->rodata_addr - cpu_reg->mips_view_base);
4120 	if (fw->rodata) {
4121 		int j;
4122 
4123 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4124 			REG_WR_IND(sc, offset, fw->rodata[j]);
4125 		}
4126 	}
4127 
4128 	/* Clear the pre-fetch instruction and set the FW start address. */
4129 	REG_WR_IND(sc, cpu_reg->inst, 0);
4130 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4131 
4132 	DBEXIT(BCE_VERBOSE_RESET);
4133 }
4134 
4135 
4136 /****************************************************************************/
4137 /* Starts the RISC processor.                                               */
4138 /*                                                                          */
4139 /* Assumes the CPU starting address has already been set.                   */
4140 /*                                                                          */
4141 /* Returns:                                                                 */
4142 /*   Nothing.                                                               */
4143 /****************************************************************************/
4144 static void
4145 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4146 {
4147 	u32 val;
4148 
4149 	DBENTER(BCE_VERBOSE_RESET);
4150 
4151 	/* Start the CPU. */
4152 	val = REG_RD_IND(sc, cpu_reg->mode);
4153 	val &= ~cpu_reg->mode_value_halt;
4154 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4155 	REG_WR_IND(sc, cpu_reg->mode, val);
4156 
4157 	DBEXIT(BCE_VERBOSE_RESET);
4158 }
4159 
4160 
4161 /****************************************************************************/
4162 /* Halts the RISC processor.                                                */
4163 /*                                                                          */
4164 /* Returns:                                                                 */
4165 /*   Nothing.                                                               */
4166 /****************************************************************************/
4167 static void
4168 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4169 {
4170 	u32 val;
4171 
4172 	DBENTER(BCE_VERBOSE_RESET);
4173 
4174 	/* Halt the CPU. */
4175 	val = REG_RD_IND(sc, cpu_reg->mode);
4176 	val |= cpu_reg->mode_value_halt;
4177 	REG_WR_IND(sc, cpu_reg->mode, val);
4178 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4179 
4180 	DBEXIT(BCE_VERBOSE_RESET);
4181 }
4182 
4183 
4184 /****************************************************************************/
4185 /* Initialize the RX CPU.                                                   */
4186 /*                                                                          */
4187 /* Returns:                                                                 */
4188 /*   Nothing.                                                               */
4189 /****************************************************************************/
4190 static void
4191 bce_start_rxp_cpu(struct bce_softc *sc)
4192 {
4193 	struct cpu_reg cpu_reg;
4194 
4195 	DBENTER(BCE_VERBOSE_RESET);
4196 
4197 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4198 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4199 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4200 	cpu_reg.state = BCE_RXP_CPU_STATE;
4201 	cpu_reg.state_value_clear = 0xffffff;
4202 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4203 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4204 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4205 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4206 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4207 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4208 	cpu_reg.mips_view_base = 0x8000000;
4209 
4210 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4211 	bce_start_cpu(sc, &cpu_reg);
4212 
4213 	DBEXIT(BCE_VERBOSE_RESET);
4214 }
4215 
4216 
4217 /****************************************************************************/
4218 /* Initialize the RX CPU.                                                   */
4219 /*                                                                          */
4220 /* Returns:                                                                 */
4221 /*   Nothing.                                                               */
4222 /****************************************************************************/
4223 static void
4224 bce_init_rxp_cpu(struct bce_softc *sc)
4225 {
4226 	struct cpu_reg cpu_reg;
4227 	struct fw_info fw;
4228 
4229 	DBENTER(BCE_VERBOSE_RESET);
4230 
4231 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4232 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4233 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4234 	cpu_reg.state = BCE_RXP_CPU_STATE;
4235 	cpu_reg.state_value_clear = 0xffffff;
4236 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4237 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4238 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4239 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4240 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4241 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4242 	cpu_reg.mips_view_base = 0x8000000;
4243 
4244 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4245  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
4246 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4247 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
4248 		fw.start_addr = bce_RXP_b09FwStartAddr;
4249 
4250 		fw.text_addr = bce_RXP_b09FwTextAddr;
4251 		fw.text_len = bce_RXP_b09FwTextLen;
4252 		fw.text_index = 0;
4253 		fw.text = bce_RXP_b09FwText;
4254 
4255 		fw.data_addr = bce_RXP_b09FwDataAddr;
4256 		fw.data_len = bce_RXP_b09FwDataLen;
4257 		fw.data_index = 0;
4258 		fw.data = bce_RXP_b09FwData;
4259 
4260 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4261 		fw.sbss_len = bce_RXP_b09FwSbssLen;
4262 		fw.sbss_index = 0;
4263 		fw.sbss = bce_RXP_b09FwSbss;
4264 
4265 		fw.bss_addr = bce_RXP_b09FwBssAddr;
4266 		fw.bss_len = bce_RXP_b09FwBssLen;
4267 		fw.bss_index = 0;
4268 		fw.bss = bce_RXP_b09FwBss;
4269 
4270 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4271 		fw.rodata_len = bce_RXP_b09FwRodataLen;
4272 		fw.rodata_index = 0;
4273 		fw.rodata = bce_RXP_b09FwRodata;
4274 	} else {
4275 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
4276 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4277 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
4278 		fw.start_addr = bce_RXP_b06FwStartAddr;
4279 
4280 		fw.text_addr = bce_RXP_b06FwTextAddr;
4281 		fw.text_len = bce_RXP_b06FwTextLen;
4282 		fw.text_index = 0;
4283 		fw.text = bce_RXP_b06FwText;
4284 
4285 		fw.data_addr = bce_RXP_b06FwDataAddr;
4286 		fw.data_len = bce_RXP_b06FwDataLen;
4287 		fw.data_index = 0;
4288 		fw.data = bce_RXP_b06FwData;
4289 
4290 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4291 		fw.sbss_len = bce_RXP_b06FwSbssLen;
4292 		fw.sbss_index = 0;
4293 		fw.sbss = bce_RXP_b06FwSbss;
4294 
4295 		fw.bss_addr = bce_RXP_b06FwBssAddr;
4296 		fw.bss_len = bce_RXP_b06FwBssLen;
4297 		fw.bss_index = 0;
4298 		fw.bss = bce_RXP_b06FwBss;
4299 
4300 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4301 		fw.rodata_len = bce_RXP_b06FwRodataLen;
4302 		fw.rodata_index = 0;
4303 		fw.rodata = bce_RXP_b06FwRodata;
4304 	}
4305 
4306 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4307 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4308 
4309     /* Delay RXP start until initialization is complete. */
4310 
4311 	DBEXIT(BCE_VERBOSE_RESET);
4312 }
4313 
4314 
4315 /****************************************************************************/
4316 /* Initialize the TX CPU.                                                   */
4317 /*                                                                          */
4318 /* Returns:                                                                 */
4319 /*   Nothing.                                                               */
4320 /****************************************************************************/
4321 static void
4322 bce_init_txp_cpu(struct bce_softc *sc)
4323 {
4324 	struct cpu_reg cpu_reg;
4325 	struct fw_info fw;
4326 
4327 	DBENTER(BCE_VERBOSE_RESET);
4328 
4329 	cpu_reg.mode = BCE_TXP_CPU_MODE;
4330 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4331 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4332 	cpu_reg.state = BCE_TXP_CPU_STATE;
4333 	cpu_reg.state_value_clear = 0xffffff;
4334 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4335 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4336 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4337 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4338 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4339 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
4340 	cpu_reg.mips_view_base = 0x8000000;
4341 
4342 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4343 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
4344 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4345 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
4346 		fw.start_addr = bce_TXP_b09FwStartAddr;
4347 
4348 		fw.text_addr = bce_TXP_b09FwTextAddr;
4349 		fw.text_len = bce_TXP_b09FwTextLen;
4350 		fw.text_index = 0;
4351 		fw.text = bce_TXP_b09FwText;
4352 
4353 		fw.data_addr = bce_TXP_b09FwDataAddr;
4354 		fw.data_len = bce_TXP_b09FwDataLen;
4355 		fw.data_index = 0;
4356 		fw.data = bce_TXP_b09FwData;
4357 
4358 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4359 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4360 		fw.sbss_index = 0;
4361 		fw.sbss = bce_TXP_b09FwSbss;
4362 
4363 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4364 		fw.bss_len = bce_TXP_b09FwBssLen;
4365 		fw.bss_index = 0;
4366 		fw.bss = bce_TXP_b09FwBss;
4367 
4368 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4369 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4370 		fw.rodata_index = 0;
4371 		fw.rodata = bce_TXP_b09FwRodata;
4372 	} else {
4373 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4374 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4375 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4376 		fw.start_addr = bce_TXP_b06FwStartAddr;
4377 
4378 		fw.text_addr = bce_TXP_b06FwTextAddr;
4379 		fw.text_len = bce_TXP_b06FwTextLen;
4380 		fw.text_index = 0;
4381 		fw.text = bce_TXP_b06FwText;
4382 
4383 		fw.data_addr = bce_TXP_b06FwDataAddr;
4384 		fw.data_len = bce_TXP_b06FwDataLen;
4385 		fw.data_index = 0;
4386 		fw.data = bce_TXP_b06FwData;
4387 
4388 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4389 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4390 		fw.sbss_index = 0;
4391 		fw.sbss = bce_TXP_b06FwSbss;
4392 
4393 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4394 		fw.bss_len = bce_TXP_b06FwBssLen;
4395 		fw.bss_index = 0;
4396 		fw.bss = bce_TXP_b06FwBss;
4397 
4398 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4399 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4400 		fw.rodata_index = 0;
4401 		fw.rodata = bce_TXP_b06FwRodata;
4402 	}
4403 
4404 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4405 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4406     bce_start_cpu(sc, &cpu_reg);
4407 
4408 	DBEXIT(BCE_VERBOSE_RESET);
4409 }
4410 
4411 
4412 /****************************************************************************/
4413 /* Initialize the TPAT CPU.                                                 */
4414 /*                                                                          */
4415 /* Returns:                                                                 */
4416 /*   Nothing.                                                               */
4417 /****************************************************************************/
4418 static void
4419 bce_init_tpat_cpu(struct bce_softc *sc)
4420 {
4421 	struct cpu_reg cpu_reg;
4422 	struct fw_info fw;
4423 
4424 	DBENTER(BCE_VERBOSE_RESET);
4425 
4426 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4427 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4428 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4429 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4430 	cpu_reg.state_value_clear = 0xffffff;
4431 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4432 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4433 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4434 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4435 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4436 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4437 	cpu_reg.mips_view_base = 0x8000000;
4438 
4439 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4440 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4441 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4442 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4443 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4444 
4445 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4446 		fw.text_len = bce_TPAT_b09FwTextLen;
4447 		fw.text_index = 0;
4448 		fw.text = bce_TPAT_b09FwText;
4449 
4450 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4451 		fw.data_len = bce_TPAT_b09FwDataLen;
4452 		fw.data_index = 0;
4453 		fw.data = bce_TPAT_b09FwData;
4454 
4455 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4456 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4457 		fw.sbss_index = 0;
4458 		fw.sbss = bce_TPAT_b09FwSbss;
4459 
4460 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4461 		fw.bss_len = bce_TPAT_b09FwBssLen;
4462 		fw.bss_index = 0;
4463 		fw.bss = bce_TPAT_b09FwBss;
4464 
4465 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4466 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4467 		fw.rodata_index = 0;
4468 		fw.rodata = bce_TPAT_b09FwRodata;
4469 	} else {
4470 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4471 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4472 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4473 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4474 
4475 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4476 		fw.text_len = bce_TPAT_b06FwTextLen;
4477 		fw.text_index = 0;
4478 		fw.text = bce_TPAT_b06FwText;
4479 
4480 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4481 		fw.data_len = bce_TPAT_b06FwDataLen;
4482 		fw.data_index = 0;
4483 		fw.data = bce_TPAT_b06FwData;
4484 
4485 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4486 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4487 		fw.sbss_index = 0;
4488 		fw.sbss = bce_TPAT_b06FwSbss;
4489 
4490 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4491 		fw.bss_len = bce_TPAT_b06FwBssLen;
4492 		fw.bss_index = 0;
4493 		fw.bss = bce_TPAT_b06FwBss;
4494 
4495 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4496 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4497 		fw.rodata_index = 0;
4498 		fw.rodata = bce_TPAT_b06FwRodata;
4499 	}
4500 
4501 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4502 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4503 	bce_start_cpu(sc, &cpu_reg);
4504 
4505 	DBEXIT(BCE_VERBOSE_RESET);
4506 }
4507 
4508 
4509 /****************************************************************************/
4510 /* Initialize the CP CPU.                                                   */
4511 /*                                                                          */
4512 /* Returns:                                                                 */
4513 /*   Nothing.                                                               */
4514 /****************************************************************************/
4515 static void
4516 bce_init_cp_cpu(struct bce_softc *sc)
4517 {
4518 	struct cpu_reg cpu_reg;
4519 	struct fw_info fw;
4520 
4521 	DBENTER(BCE_VERBOSE_RESET);
4522 
4523 	cpu_reg.mode = BCE_CP_CPU_MODE;
4524 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4525 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4526 	cpu_reg.state = BCE_CP_CPU_STATE;
4527 	cpu_reg.state_value_clear = 0xffffff;
4528 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4529 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4530 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4531 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4532 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4533 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4534 	cpu_reg.mips_view_base = 0x8000000;
4535 
4536 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4537 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4538 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4539 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4540 		fw.start_addr = bce_CP_b09FwStartAddr;
4541 
4542 		fw.text_addr = bce_CP_b09FwTextAddr;
4543 		fw.text_len = bce_CP_b09FwTextLen;
4544 		fw.text_index = 0;
4545 		fw.text = bce_CP_b09FwText;
4546 
4547 		fw.data_addr = bce_CP_b09FwDataAddr;
4548 		fw.data_len = bce_CP_b09FwDataLen;
4549 		fw.data_index = 0;
4550 		fw.data = bce_CP_b09FwData;
4551 
4552 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4553 		fw.sbss_len = bce_CP_b09FwSbssLen;
4554 		fw.sbss_index = 0;
4555 		fw.sbss = bce_CP_b09FwSbss;
4556 
4557 		fw.bss_addr = bce_CP_b09FwBssAddr;
4558 		fw.bss_len = bce_CP_b09FwBssLen;
4559 		fw.bss_index = 0;
4560 		fw.bss = bce_CP_b09FwBss;
4561 
4562 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4563 		fw.rodata_len = bce_CP_b09FwRodataLen;
4564 		fw.rodata_index = 0;
4565 		fw.rodata = bce_CP_b09FwRodata;
4566 	} else {
4567 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4568 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4569 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4570 		fw.start_addr = bce_CP_b06FwStartAddr;
4571 
4572 		fw.text_addr = bce_CP_b06FwTextAddr;
4573 		fw.text_len = bce_CP_b06FwTextLen;
4574 		fw.text_index = 0;
4575 		fw.text = bce_CP_b06FwText;
4576 
4577 		fw.data_addr = bce_CP_b06FwDataAddr;
4578 		fw.data_len = bce_CP_b06FwDataLen;
4579 		fw.data_index = 0;
4580 		fw.data = bce_CP_b06FwData;
4581 
4582 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4583 		fw.sbss_len = bce_CP_b06FwSbssLen;
4584 		fw.sbss_index = 0;
4585 		fw.sbss = bce_CP_b06FwSbss;
4586 
4587 		fw.bss_addr = bce_CP_b06FwBssAddr;
4588 		fw.bss_len = bce_CP_b06FwBssLen;
4589 		fw.bss_index = 0;
4590 		fw.bss = bce_CP_b06FwBss;
4591 
4592 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4593 		fw.rodata_len = bce_CP_b06FwRodataLen;
4594 		fw.rodata_index = 0;
4595 		fw.rodata = bce_CP_b06FwRodata;
4596 	}
4597 
4598 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4599 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4600 	bce_start_cpu(sc, &cpu_reg);
4601 
4602 	DBEXIT(BCE_VERBOSE_RESET);
4603 }
4604 
4605 
4606 /****************************************************************************/
4607 /* Initialize the COM CPU.                                                 */
4608 /*                                                                          */
4609 /* Returns:                                                                 */
4610 /*   Nothing.                                                               */
4611 /****************************************************************************/
4612 static void
4613 bce_init_com_cpu(struct bce_softc *sc)
4614 {
4615 	struct cpu_reg cpu_reg;
4616 	struct fw_info fw;
4617 
4618 	DBENTER(BCE_VERBOSE_RESET);
4619 
4620 	cpu_reg.mode = BCE_COM_CPU_MODE;
4621 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4622 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4623 	cpu_reg.state = BCE_COM_CPU_STATE;
4624 	cpu_reg.state_value_clear = 0xffffff;
4625 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4626 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4627 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4628 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4629 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4630 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4631 	cpu_reg.mips_view_base = 0x8000000;
4632 
4633 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4634 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4635 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4636 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4637 		fw.start_addr = bce_COM_b09FwStartAddr;
4638 
4639 		fw.text_addr = bce_COM_b09FwTextAddr;
4640 		fw.text_len = bce_COM_b09FwTextLen;
4641 		fw.text_index = 0;
4642 		fw.text = bce_COM_b09FwText;
4643 
4644 		fw.data_addr = bce_COM_b09FwDataAddr;
4645 		fw.data_len = bce_COM_b09FwDataLen;
4646 		fw.data_index = 0;
4647 		fw.data = bce_COM_b09FwData;
4648 
4649 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4650 		fw.sbss_len = bce_COM_b09FwSbssLen;
4651 		fw.sbss_index = 0;
4652 		fw.sbss = bce_COM_b09FwSbss;
4653 
4654 		fw.bss_addr = bce_COM_b09FwBssAddr;
4655 		fw.bss_len = bce_COM_b09FwBssLen;
4656 		fw.bss_index = 0;
4657 		fw.bss = bce_COM_b09FwBss;
4658 
4659 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4660 		fw.rodata_len = bce_COM_b09FwRodataLen;
4661 		fw.rodata_index = 0;
4662 		fw.rodata = bce_COM_b09FwRodata;
4663 	} else {
4664 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4665 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4666 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4667 		fw.start_addr = bce_COM_b06FwStartAddr;
4668 
4669 		fw.text_addr = bce_COM_b06FwTextAddr;
4670 		fw.text_len = bce_COM_b06FwTextLen;
4671 		fw.text_index = 0;
4672 		fw.text = bce_COM_b06FwText;
4673 
4674 		fw.data_addr = bce_COM_b06FwDataAddr;
4675 		fw.data_len = bce_COM_b06FwDataLen;
4676 		fw.data_index = 0;
4677 		fw.data = bce_COM_b06FwData;
4678 
4679 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4680 		fw.sbss_len = bce_COM_b06FwSbssLen;
4681 		fw.sbss_index = 0;
4682 		fw.sbss = bce_COM_b06FwSbss;
4683 
4684 		fw.bss_addr = bce_COM_b06FwBssAddr;
4685 		fw.bss_len = bce_COM_b06FwBssLen;
4686 		fw.bss_index = 0;
4687 		fw.bss = bce_COM_b06FwBss;
4688 
4689 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4690 		fw.rodata_len = bce_COM_b06FwRodataLen;
4691 		fw.rodata_index = 0;
4692 		fw.rodata = bce_COM_b06FwRodata;
4693 	}
4694 
4695 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4696 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4697 	bce_start_cpu(sc, &cpu_reg);
4698 
4699 	DBEXIT(BCE_VERBOSE_RESET);
4700 }
4701 
4702 
4703 /****************************************************************************/
4704 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4705 /*                                                                          */
4706 /* Loads the firmware for each CPU and starts the CPU.                      */
4707 /*                                                                          */
4708 /* Returns:                                                                 */
4709 /*   Nothing.                                                               */
4710 /****************************************************************************/
4711 static void
4712 bce_init_cpus(struct bce_softc *sc)
4713 {
4714 	DBENTER(BCE_VERBOSE_RESET);
4715 
4716 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4717 
4718 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4719 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4720 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4721 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4722 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4723 		} else {
4724 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4725 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4726 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4727 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4728 		}
4729 
4730 	} else {
4731 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4732 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4733 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4734 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4735 	}
4736 
4737 	bce_init_rxp_cpu(sc);
4738 	bce_init_txp_cpu(sc);
4739 	bce_init_tpat_cpu(sc);
4740 	bce_init_com_cpu(sc);
4741 	bce_init_cp_cpu(sc);
4742 
4743 	DBEXIT(BCE_VERBOSE_RESET);
4744 }
4745 
4746 
4747 /****************************************************************************/
4748 /* Initialize context memory.                                               */
4749 /*                                                                          */
4750 /* Clears the memory associated with each Context ID (CID).                 */
4751 /*                                                                          */
4752 /* Returns:                                                                 */
4753 /*   Nothing.                                                               */
4754 /****************************************************************************/
4755 static int
4756 bce_init_ctx(struct bce_softc *sc)
4757 {
4758 	u32 offset, val, vcid_addr;
4759 	int i, j, rc, retry_cnt;
4760 
4761 	rc = 0;
4762 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4763 
4764 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4765 		retry_cnt = CTX_INIT_RETRY_COUNT;
4766 
4767 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4768 
4769 		/*
4770 		 * BCM5709 context memory may be cached
4771 		 * in host memory so prepare the host memory
4772 		 * for access.
4773 		 */
4774 		val = BCE_CTX_COMMAND_ENABLED |
4775 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4776 		val |= (BCM_PAGE_BITS - 8) << 16;
4777 		REG_WR(sc, BCE_CTX_COMMAND, val);
4778 
4779 		/* Wait for mem init command to complete. */
4780 		for (i = 0; i < retry_cnt; i++) {
4781 			val = REG_RD(sc, BCE_CTX_COMMAND);
4782 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4783 				break;
4784 			DELAY(2);
4785 		}
4786 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4787 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4788 			    __FUNCTION__);
4789 			rc = EBUSY;
4790 			goto init_ctx_fail;
4791 		}
4792 
4793 		for (i = 0; i < sc->ctx_pages; i++) {
4794 			/* Set the physical address of the context memory. */
4795 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4796 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4797 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4798 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4799 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4800 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4801 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4802 
4803 			/* Verify the context memory write was successful. */
4804 			for (j = 0; j < retry_cnt; j++) {
4805 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4806 				if ((val &
4807 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4808 					break;
4809 				DELAY(5);
4810 			}
4811 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4812 				BCE_PRINTF("%s(): Failed to initialize "
4813 				    "context page %d!\n", __FUNCTION__, i);
4814 				rc = EBUSY;
4815 				goto init_ctx_fail;
4816 			}
4817 		}
4818 	} else {
4819 
4820 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4821 
4822 		/*
4823 		 * For the 5706/5708, context memory is local to
4824 		 * the controller, so initialize the controller
4825 		 * context memory.
4826 		 */
4827 
4828 		vcid_addr = GET_CID_ADDR(96);
4829 		while (vcid_addr) {
4830 
4831 			vcid_addr -= PHY_CTX_SIZE;
4832 
4833 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4834 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4835 
4836 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4837 				CTX_WR(sc, 0x00, offset, 0);
4838 			}
4839 
4840 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4841 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4842 		}
4843 
4844 	}
4845 init_ctx_fail:
4846 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4847 	return (rc);
4848 }
4849 
4850 
4851 /****************************************************************************/
4852 /* Fetch the permanent MAC address of the controller.                       */
4853 /*                                                                          */
4854 /* Returns:                                                                 */
4855 /*   Nothing.                                                               */
4856 /****************************************************************************/
4857 static void
4858 bce_get_mac_addr(struct bce_softc *sc)
4859 {
4860 	u32 mac_lo = 0, mac_hi = 0;
4861 
4862 	DBENTER(BCE_VERBOSE_RESET);
4863 
4864 	/*
4865 	 * The NetXtreme II bootcode populates various NIC
4866 	 * power-on and runtime configuration items in a
4867 	 * shared memory area.  The factory configured MAC
4868 	 * address is available from both NVRAM and the
4869 	 * shared memory area so we'll read the value from
4870 	 * shared memory for speed.
4871 	 */
4872 
4873 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4874 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4875 
4876 	if ((mac_lo == 0) && (mac_hi == 0)) {
4877 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4878 		    __FILE__, __LINE__);
4879 	} else {
4880 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4881 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4882 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4883 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4884 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4885 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4886 	}
4887 
4888 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4889 	    "address = %6D\n", sc->eaddr, ":");
4890 	DBEXIT(BCE_VERBOSE_RESET);
4891 }
4892 
4893 
4894 /****************************************************************************/
4895 /* Program the MAC address.                                                 */
4896 /*                                                                          */
4897 /* Returns:                                                                 */
4898 /*   Nothing.                                                               */
4899 /****************************************************************************/
4900 static void
4901 bce_set_mac_addr(struct bce_softc *sc)
4902 {
4903 	u32 val;
4904 	u8 *mac_addr = sc->eaddr;
4905 
4906 	/* ToDo: Add support for setting multiple MAC addresses. */
4907 
4908 	DBENTER(BCE_VERBOSE_RESET);
4909 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4910 	    "%6D\n", sc->eaddr, ":");
4911 
4912 	val = (mac_addr[0] << 8) | mac_addr[1];
4913 
4914 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4915 
4916 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4917 	    (mac_addr[4] << 8) | mac_addr[5];
4918 
4919 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4920 
4921 	DBEXIT(BCE_VERBOSE_RESET);
4922 }
4923 
4924 
4925 /****************************************************************************/
4926 /* Stop the controller.                                                     */
4927 /*                                                                          */
4928 /* Returns:                                                                 */
4929 /*   Nothing.                                                               */
4930 /****************************************************************************/
4931 static void
4932 bce_stop(struct bce_softc *sc)
4933 {
4934 	struct ifnet *ifp;
4935 
4936 	DBENTER(BCE_VERBOSE_RESET);
4937 
4938 	BCE_LOCK_ASSERT(sc);
4939 
4940 	ifp = sc->bce_ifp;
4941 
4942 	callout_stop(&sc->bce_tick_callout);
4943 
4944 	/* Disable the transmit/receive blocks. */
4945 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4946 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4947 	DELAY(20);
4948 
4949 	bce_disable_intr(sc);
4950 
4951 	/* Free RX buffers. */
4952 	if (bce_hdr_split == TRUE) {
4953 		bce_free_pg_chain(sc);
4954 	}
4955 	bce_free_rx_chain(sc);
4956 
4957 	/* Free TX buffers. */
4958 	bce_free_tx_chain(sc);
4959 
4960 	sc->watchdog_timer = 0;
4961 
4962 	sc->bce_link_up = FALSE;
4963 
4964 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4965 
4966 	DBEXIT(BCE_VERBOSE_RESET);
4967 }
4968 
4969 
4970 static int
4971 bce_reset(struct bce_softc *sc, u32 reset_code)
4972 {
4973 	u32 emac_mode_save, val;
4974 	int i, rc = 0;
4975 	static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
4976 	    BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
4977 
4978 	DBENTER(BCE_VERBOSE_RESET);
4979 
4980 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4981 	    __FUNCTION__, reset_code);
4982 
4983 	/*
4984 	 * If ASF/IPMI is operational, then the EMAC Mode register already
4985 	 * contains appropriate values for the link settings that have
4986 	 * been auto-negotiated.  Resetting the chip will clobber those
4987 	 * values.  Save the important bits so we can restore them after
4988 	 * the reset.
4989 	 */
4990 	emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
4991 
4992 	/* Wait for pending PCI transactions to complete. */
4993 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4994 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4995 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4996 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4997 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4998 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4999 	DELAY(5);
5000 
5001 	/* Disable DMA */
5002 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5003 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5004 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5005 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5006 	}
5007 
5008 	/* Assume bootcode is running. */
5009 	sc->bce_fw_timed_out = FALSE;
5010 	sc->bce_drv_cardiac_arrest = FALSE;
5011 
5012 	/* Give the firmware a chance to prepare for the reset. */
5013 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
5014 	if (rc)
5015 		goto bce_reset_exit;
5016 
5017 	/* Set a firmware reminder that this is a soft reset. */
5018 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
5019 
5020 	/* Dummy read to force the chip to complete all current transactions. */
5021 	val = REG_RD(sc, BCE_MISC_ID);
5022 
5023 	/* Chip reset. */
5024 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5025 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
5026 		REG_RD(sc, BCE_MISC_COMMAND);
5027 		DELAY(5);
5028 
5029 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5030 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5031 
5032 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
5033 	} else {
5034 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5035 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5036 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5037 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
5038 
5039 		/* Allow up to 30us for reset to complete. */
5040 		for (i = 0; i < 10; i++) {
5041 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
5042 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5043 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
5044 				break;
5045 			}
5046 			DELAY(10);
5047 		}
5048 
5049 		/* Check that reset completed successfully. */
5050 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5051 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
5052 			BCE_PRINTF("%s(%d): Reset failed!\n",
5053 			    __FILE__, __LINE__);
5054 			rc = EBUSY;
5055 			goto bce_reset_exit;
5056 		}
5057 	}
5058 
5059 	/* Make sure byte swapping is properly configured. */
5060 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5061 	if (val != 0x01020304) {
5062 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5063 		    __FILE__, __LINE__);
5064 		rc = ENODEV;
5065 		goto bce_reset_exit;
5066 	}
5067 
5068 	/* Just completed a reset, assume that firmware is running again. */
5069 	sc->bce_fw_timed_out = FALSE;
5070 	sc->bce_drv_cardiac_arrest = FALSE;
5071 
5072 	/* Wait for the firmware to finish its initialization. */
5073 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5074 	if (rc)
5075 		BCE_PRINTF("%s(%d): Firmware did not complete "
5076 		    "initialization!\n", __FILE__, __LINE__);
5077 	/* Get firmware capabilities. */
5078 	bce_fw_cap_init(sc);
5079 
5080 bce_reset_exit:
5081 	/* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
5082 	if (reset_code == BCE_DRV_MSG_CODE_RESET) {
5083 		val = REG_RD(sc, BCE_EMAC_MODE);
5084 		val = (val & ~emac_mode_mask) | emac_mode_save;
5085 		REG_WR(sc, BCE_EMAC_MODE, val);
5086 	}
5087 
5088 	DBEXIT(BCE_VERBOSE_RESET);
5089 	return (rc);
5090 }
5091 
5092 
5093 static int
5094 bce_chipinit(struct bce_softc *sc)
5095 {
5096 	u32 val;
5097 	int rc = 0;
5098 
5099 	DBENTER(BCE_VERBOSE_RESET);
5100 
5101 	bce_disable_intr(sc);
5102 
5103 	/*
5104 	 * Initialize DMA byte/word swapping, configure the number of DMA
5105 	 * channels and PCI clock compensation delay.
5106 	 */
5107 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5108 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
5109 #if BYTE_ORDER == BIG_ENDIAN
5110 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5111 #endif
5112 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5113 	    DMA_READ_CHANS << 12 |
5114 	    DMA_WRITE_CHANS << 16;
5115 
5116 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5117 
5118 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5119 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5120 
5121 	/*
5122 	 * This setting resolves a problem observed on certain Intel PCI
5123 	 * chipsets that cannot handle multiple outstanding DMA operations.
5124 	 * See errata E9_5706A1_65.
5125 	 */
5126 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5127 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5128 	    !(sc->bce_flags & BCE_PCIX_FLAG))
5129 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5130 
5131 	REG_WR(sc, BCE_DMA_CONFIG, val);
5132 
5133 	/* Enable the RX_V2P and Context state machines before access. */
5134 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5135 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5136 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5137 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5138 
5139 	/* Initialize context mapping and zero out the quick contexts. */
5140 	if ((rc = bce_init_ctx(sc)) != 0)
5141 		goto bce_chipinit_exit;
5142 
5143 	/* Initialize the on-boards CPUs */
5144 	bce_init_cpus(sc);
5145 
5146 	/* Enable management frames (NC-SI) to flow to the MCP. */
5147 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5148 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5149 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5150 	}
5151 
5152 	/* Prepare NVRAM for access. */
5153 	if ((rc = bce_init_nvram(sc)) != 0)
5154 		goto bce_chipinit_exit;
5155 
5156 	/* Set the kernel bypass block size */
5157 	val = REG_RD(sc, BCE_MQ_CONFIG);
5158 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5159 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5160 
5161 	/* Enable bins used on the 5709. */
5162 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5163 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5164 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5165 			val |= BCE_MQ_CONFIG_HALT_DIS;
5166 	}
5167 
5168 	REG_WR(sc, BCE_MQ_CONFIG, val);
5169 
5170 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5171 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5172 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5173 
5174 	/* Set the page size and clear the RV2P processor stall bits. */
5175 	val = (BCM_PAGE_BITS - 8) << 24;
5176 	REG_WR(sc, BCE_RV2P_CONFIG, val);
5177 
5178 	/* Configure page size. */
5179 	val = REG_RD(sc, BCE_TBDR_CONFIG);
5180 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5181 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5182 	REG_WR(sc, BCE_TBDR_CONFIG, val);
5183 
5184 	/* Set the perfect match control register to default. */
5185 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5186 
5187 bce_chipinit_exit:
5188 	DBEXIT(BCE_VERBOSE_RESET);
5189 
5190 	return(rc);
5191 }
5192 
5193 
5194 /****************************************************************************/
5195 /* Initialize the controller in preparation to send/receive traffic.        */
5196 /*                                                                          */
5197 /* Returns:                                                                 */
5198 /*   0 for success, positive value for failure.                             */
5199 /****************************************************************************/
5200 static int
5201 bce_blockinit(struct bce_softc *sc)
5202 {
5203 	u32 reg, val;
5204 	int rc = 0;
5205 
5206 	DBENTER(BCE_VERBOSE_RESET);
5207 
5208 	/* Load the hardware default MAC address. */
5209 	bce_set_mac_addr(sc);
5210 
5211 	/* Set the Ethernet backoff seed value */
5212 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5213 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5214 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5215 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5216 
5217 	sc->last_status_idx = 0;
5218 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5219 
5220 	/* Set up link change interrupt generation. */
5221 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5222 
5223 	/* Program the physical address of the status block. */
5224 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5225 	    BCE_ADDR_LO(sc->status_block_paddr));
5226 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5227 	    BCE_ADDR_HI(sc->status_block_paddr));
5228 
5229 	/* Program the physical address of the statistics block. */
5230 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5231 	    BCE_ADDR_LO(sc->stats_block_paddr));
5232 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5233 	    BCE_ADDR_HI(sc->stats_block_paddr));
5234 
5235 	/*
5236 	 * Program various host coalescing parameters.
5237 	 * Trip points control how many BDs should be ready before generating
5238 	 * an interrupt while ticks control how long a BD can sit in the chain
5239 	 * before generating an interrupt.
5240 	 */
5241 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5242 	    (sc->bce_tx_quick_cons_trip_int << 16) |
5243 	    sc->bce_tx_quick_cons_trip);
5244 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5245 	    (sc->bce_rx_quick_cons_trip_int << 16) |
5246 	    sc->bce_rx_quick_cons_trip);
5247 	REG_WR(sc, BCE_HC_TX_TICKS,
5248 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5249 	REG_WR(sc, BCE_HC_RX_TICKS,
5250 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5251 	REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5252 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5253 	/* Not used for L2. */
5254 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5255 	REG_WR(sc, BCE_HC_COM_TICKS, 0);
5256 	REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5257 
5258 	/* Configure the Host Coalescing block. */
5259 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5260 	    BCE_HC_CONFIG_COLLECT_STATS;
5261 
5262 #if 0
5263 	/* ToDo: Add MSI-X support. */
5264 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5265 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5266 		    BCE_HC_SB_CONFIG_1;
5267 
5268 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5269 
5270 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5271 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
5272 
5273 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5274 		    (sc->tx_quick_cons_trip_int << 16) |
5275 		     sc->tx_quick_cons_trip);
5276 
5277 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5278 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
5279 
5280 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5281 	}
5282 
5283 	/*
5284 	 * Tell the HC block to automatically set the
5285 	 * INT_MASK bit after an MSI/MSI-X interrupt
5286 	 * is generated so the driver doesn't have to.
5287 	 */
5288 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5289 		val |= BCE_HC_CONFIG_ONE_SHOT;
5290 
5291 	/* Set the MSI-X status blocks to 128 byte boundaries. */
5292 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5293 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5294 #endif
5295 
5296 	REG_WR(sc, BCE_HC_CONFIG, val);
5297 
5298 	/* Clear the internal statistics counters. */
5299 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5300 
5301 	/* Verify that bootcode is running. */
5302 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5303 
5304 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5305 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5306 	    __FILE__, __LINE__);
5307 	    reg = 0);
5308 
5309 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5310 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
5311 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5312 		    "Expected: 08%08X\n", __FILE__, __LINE__,
5313 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5314 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
5315 		rc = ENODEV;
5316 		goto bce_blockinit_exit;
5317 	}
5318 
5319 	/* Enable DMA */
5320 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5321 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5322 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5323 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5324 	}
5325 
5326 	/* Allow bootcode to apply additional fixes before enabling MAC. */
5327 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5328 	    BCE_DRV_MSG_CODE_RESET);
5329 
5330 	/* Enable link state change interrupt generation. */
5331 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5332 
5333 	/* Enable the RXP. */
5334 	bce_start_rxp_cpu(sc);
5335 
5336 	/* Disable management frames (NC-SI) from flowing to the MCP. */
5337 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5338 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5339 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5340 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5341 	}
5342 
5343 	/* Enable all remaining blocks in the MAC. */
5344 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5345 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5346 		    BCE_MISC_ENABLE_DEFAULT_XI);
5347 	else
5348 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5349 		    BCE_MISC_ENABLE_DEFAULT);
5350 
5351 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5352 	DELAY(20);
5353 
5354 	/* Save the current host coalescing block settings. */
5355 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5356 
5357 bce_blockinit_exit:
5358 	DBEXIT(BCE_VERBOSE_RESET);
5359 
5360 	return (rc);
5361 }
5362 
5363 
5364 /****************************************************************************/
5365 /* Encapsulate an mbuf into the rx_bd chain.                                */
5366 /*                                                                          */
5367 /* Returns:                                                                 */
5368 /*   0 for success, positive value for failure.                             */
5369 /****************************************************************************/
5370 static int
5371 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5372 {
5373 	bus_dma_segment_t segs[1];
5374 	struct mbuf *m_new = NULL;
5375 	struct rx_bd *rxbd;
5376 	int nsegs, error, rc = 0;
5377 #ifdef BCE_DEBUG
5378 	u16 debug_chain_prod = chain_prod;
5379 #endif
5380 
5381 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5382 
5383 	/* Make sure the inputs are valid. */
5384 	DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5385 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5386 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5387 	    chain_prod, (u16)MAX_RX_BD_ALLOC));
5388 
5389 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5390 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5391 	    prod, chain_prod, *prod_bseq);
5392 
5393 	/* Update some debug statistic counters */
5394 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5395 	    sc->rx_low_watermark = sc->free_rx_bd);
5396 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5397 	    sc->rx_empty_count++);
5398 
5399 	/* Simulate an mbuf allocation failure. */
5400 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5401 	    sc->mbuf_alloc_failed_count++;
5402 	    sc->mbuf_alloc_failed_sim_count++;
5403 	    rc = ENOBUFS;
5404 	    goto bce_get_rx_buf_exit);
5405 
5406 	/* This is a new mbuf allocation. */
5407 	if (bce_hdr_split == TRUE)
5408 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
5409 	else
5410 		m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5411 		    sc->rx_bd_mbuf_alloc_size);
5412 
5413 	if (m_new == NULL) {
5414 		sc->mbuf_alloc_failed_count++;
5415 		rc = ENOBUFS;
5416 		goto bce_get_rx_buf_exit;
5417 	}
5418 
5419 	DBRUN(sc->debug_rx_mbuf_alloc++);
5420 
5421 	/* Make sure we have a valid packet header. */
5422 	M_ASSERTPKTHDR(m_new);
5423 
5424 	/* Initialize the mbuf size and pad if necessary for alignment. */
5425 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5426 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5427 
5428 	/* ToDo: Consider calling m_fragment() to test error handling. */
5429 
5430 	/* Map the mbuf cluster into device memory. */
5431 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5432 	    sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5433 
5434 	/* Handle any mapping errors. */
5435 	if (error) {
5436 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5437 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5438 
5439 		sc->dma_map_addr_rx_failed_count++;
5440 		m_freem(m_new);
5441 
5442 		DBRUN(sc->debug_rx_mbuf_alloc--);
5443 
5444 		rc = ENOBUFS;
5445 		goto bce_get_rx_buf_exit;
5446 	}
5447 
5448 	/* All mbufs must map to a single segment. */
5449 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5450 	    __FUNCTION__, nsegs));
5451 
5452 	/* Setup the rx_bd for the segment. */
5453 	rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5454 
5455 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5456 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5457 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5458 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5459 	*prod_bseq += segs[0].ds_len;
5460 
5461 	/* Save the mbuf and update our counter. */
5462 	sc->rx_mbuf_ptr[chain_prod] = m_new;
5463 	sc->free_rx_bd -= nsegs;
5464 
5465 	DBRUNMSG(BCE_INSANE_RECV,
5466 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5467 
5468 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5469 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5470 	    chain_prod, *prod_bseq);
5471 
5472 bce_get_rx_buf_exit:
5473 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5474 
5475 	return(rc);
5476 }
5477 
5478 
5479 /****************************************************************************/
5480 /* Encapsulate an mbuf cluster into the page chain.                         */
5481 /*                                                                          */
5482 /* Returns:                                                                 */
5483 /*   0 for success, positive value for failure.                             */
5484 /****************************************************************************/
5485 static int
5486 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5487 {
5488 	bus_dma_segment_t segs[1];
5489 	struct mbuf *m_new = NULL;
5490 	struct rx_bd *pgbd;
5491 	int error, nsegs, rc = 0;
5492 #ifdef BCE_DEBUG
5493 	u16 debug_prod_idx = prod_idx;
5494 #endif
5495 
5496 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5497 
5498 	/* Make sure the inputs are valid. */
5499 	DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5500 	    BCE_PRINTF("%s(%d): page producer out of range: "
5501 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5502 	    prod_idx, (u16)MAX_PG_BD_ALLOC));
5503 
5504 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5505 	    "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5506 
5507 	/* Update counters if we've hit a new low or run out of pages. */
5508 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5509 	    sc->pg_low_watermark = sc->free_pg_bd);
5510 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5511 
5512 	/* Simulate an mbuf allocation failure. */
5513 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5514 	    sc->mbuf_alloc_failed_count++;
5515 	    sc->mbuf_alloc_failed_sim_count++;
5516 	    rc = ENOBUFS;
5517 	    goto bce_get_pg_buf_exit);
5518 
5519 	/* This is a new mbuf allocation. */
5520 	m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5521 	if (m_new == NULL) {
5522 		sc->mbuf_alloc_failed_count++;
5523 		rc = ENOBUFS;
5524 		goto bce_get_pg_buf_exit;
5525 	}
5526 
5527 	DBRUN(sc->debug_pg_mbuf_alloc++);
5528 
5529 	m_new->m_len = MCLBYTES;
5530 
5531 	/* ToDo: Consider calling m_fragment() to test error handling. */
5532 
5533 	/* Map the mbuf cluster into device memory. */
5534 	error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5535 	    sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5536 
5537 	/* Handle any mapping errors. */
5538 	if (error) {
5539 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5540 		    __FILE__, __LINE__);
5541 
5542 		m_freem(m_new);
5543 		DBRUN(sc->debug_pg_mbuf_alloc--);
5544 
5545 		rc = ENOBUFS;
5546 		goto bce_get_pg_buf_exit;
5547 	}
5548 
5549 	/* All mbufs must map to a single segment. */
5550 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5551 	    __FUNCTION__, nsegs));
5552 
5553 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5554 
5555 	/*
5556 	 * The page chain uses the same rx_bd data structure
5557 	 * as the receive chain but doesn't require a byte sequence (bseq).
5558 	 */
5559 	pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5560 
5561 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5562 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5563 	pgbd->rx_bd_len       = htole32(MCLBYTES);
5564 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5565 
5566 	/* Save the mbuf and update our counter. */
5567 	sc->pg_mbuf_ptr[prod_idx] = m_new;
5568 	sc->free_pg_bd--;
5569 
5570 	DBRUNMSG(BCE_INSANE_RECV,
5571 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5572 
5573 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5574 	    "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5575 
5576 bce_get_pg_buf_exit:
5577 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5578 
5579 	return(rc);
5580 }
5581 
5582 
5583 /****************************************************************************/
5584 /* Initialize the TX context memory.                                        */
5585 /*                                                                          */
5586 /* Returns:                                                                 */
5587 /*   Nothing                                                                */
5588 /****************************************************************************/
5589 static void
5590 bce_init_tx_context(struct bce_softc *sc)
5591 {
5592 	u32 val;
5593 
5594 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5595 
5596 	/* Initialize the context ID for an L2 TX chain. */
5597 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5598 		/* Set the CID type to support an L2 connection. */
5599 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5600 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5601 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5602 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5603 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5604 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5605 
5606 		/* Point the hardware to the first page in the chain. */
5607 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5608 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5609 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5610 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5611 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5612 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5613 	} else {
5614 		/* Set the CID type to support an L2 connection. */
5615 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5616 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5617 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5618 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5619 
5620 		/* Point the hardware to the first page in the chain. */
5621 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5622 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5623 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5624 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5625 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5626 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5627 	}
5628 
5629 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5630 }
5631 
5632 
5633 /****************************************************************************/
5634 /* Allocate memory and initialize the TX data structures.                   */
5635 /*                                                                          */
5636 /* Returns:                                                                 */
5637 /*   0 for success, positive value for failure.                             */
5638 /****************************************************************************/
5639 static int
5640 bce_init_tx_chain(struct bce_softc *sc)
5641 {
5642 	struct tx_bd *txbd;
5643 	int i, rc = 0;
5644 
5645 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5646 
5647 	/* Set the initial TX producer/consumer indices. */
5648 	sc->tx_prod        = 0;
5649 	sc->tx_cons        = 0;
5650 	sc->tx_prod_bseq   = 0;
5651 	sc->used_tx_bd     = 0;
5652 	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5653 	DBRUN(sc->tx_hi_watermark = 0);
5654 	DBRUN(sc->tx_full_count = 0);
5655 
5656 	/*
5657 	 * The NetXtreme II supports a linked-list structre called
5658 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5659 	 * consists of a series of 1 or more chain pages, each of which
5660 	 * consists of a fixed number of BD entries.
5661 	 * The last BD entry on each page is a pointer to the next page
5662 	 * in the chain, and the last pointer in the BD chain
5663 	 * points back to the beginning of the chain.
5664 	 */
5665 
5666 	/* Set the TX next pointer chain entries. */
5667 	for (i = 0; i < sc->tx_pages; i++) {
5668 		int j;
5669 
5670 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5671 
5672 		/* Check if we've reached the last page. */
5673 		if (i == (sc->tx_pages - 1))
5674 			j = 0;
5675 		else
5676 			j = i + 1;
5677 
5678 		txbd->tx_bd_haddr_hi =
5679 		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5680 		txbd->tx_bd_haddr_lo =
5681 		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5682 	}
5683 
5684 	bce_init_tx_context(sc);
5685 
5686 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5687 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5688 
5689 	return(rc);
5690 }
5691 
5692 
5693 /****************************************************************************/
5694 /* Free memory and clear the TX data structures.                            */
5695 /*                                                                          */
5696 /* Returns:                                                                 */
5697 /*   Nothing.                                                               */
5698 /****************************************************************************/
5699 static void
5700 bce_free_tx_chain(struct bce_softc *sc)
5701 {
5702 	int i;
5703 
5704 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5705 
5706 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5707 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5708 		if (sc->tx_mbuf_ptr[i] != NULL) {
5709 			if (sc->tx_mbuf_map[i] != NULL)
5710 				bus_dmamap_sync(sc->tx_mbuf_tag,
5711 				    sc->tx_mbuf_map[i],
5712 				    BUS_DMASYNC_POSTWRITE);
5713 			m_freem(sc->tx_mbuf_ptr[i]);
5714 			sc->tx_mbuf_ptr[i] = NULL;
5715 			DBRUN(sc->debug_tx_mbuf_alloc--);
5716 		}
5717 	}
5718 
5719 	/* Clear each TX chain page. */
5720 	for (i = 0; i < sc->tx_pages; i++)
5721 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5722 
5723 	sc->used_tx_bd = 0;
5724 
5725 	/* Check if we lost any mbufs in the process. */
5726 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5727 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5728 	    "from tx chain!\n",	__FILE__, __LINE__,
5729 	    sc->debug_tx_mbuf_alloc));
5730 
5731 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5732 }
5733 
5734 
5735 /****************************************************************************/
5736 /* Initialize the RX context memory.                                        */
5737 /*                                                                          */
5738 /* Returns:                                                                 */
5739 /*   Nothing                                                                */
5740 /****************************************************************************/
5741 static void
5742 bce_init_rx_context(struct bce_softc *sc)
5743 {
5744 	u32 val;
5745 
5746 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5747 
5748 	/* Init the type, size, and BD cache levels for the RX context. */
5749 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5750 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5751 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5752 
5753 	/*
5754 	 * Set the level for generating pause frames
5755 	 * when the number of available rx_bd's gets
5756 	 * too low (the low watermark) and the level
5757 	 * when pause frames can be stopped (the high
5758 	 * watermark).
5759 	 */
5760 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5761 		u32 lo_water, hi_water;
5762 
5763 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5764 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5765 		} else {
5766 			lo_water = 0;
5767 		}
5768 
5769 		if (lo_water >= USABLE_RX_BD_ALLOC) {
5770 			lo_water = 0;
5771 		}
5772 
5773 		hi_water = USABLE_RX_BD_ALLOC / 4;
5774 
5775 		if (hi_water <= lo_water) {
5776 			lo_water = 0;
5777 		}
5778 
5779 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5780 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5781 
5782 		if (hi_water > 0xf)
5783 			hi_water = 0xf;
5784 		else if (hi_water == 0)
5785 			lo_water = 0;
5786 
5787 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5788 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5789 	}
5790 
5791 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5792 
5793 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5794 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5795 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5796 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5797 	}
5798 
5799 	/* Point the hardware to the first page in the chain. */
5800 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5801 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5802 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5803 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5804 
5805 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5806 }
5807 
5808 
5809 /****************************************************************************/
5810 /* Allocate memory and initialize the RX data structures.                   */
5811 /*                                                                          */
5812 /* Returns:                                                                 */
5813 /*   0 for success, positive value for failure.                             */
5814 /****************************************************************************/
5815 static int
5816 bce_init_rx_chain(struct bce_softc *sc)
5817 {
5818 	struct rx_bd *rxbd;
5819 	int i, rc = 0;
5820 
5821 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5822 	    BCE_VERBOSE_CTX);
5823 
5824 	/* Initialize the RX producer and consumer indices. */
5825 	sc->rx_prod        = 0;
5826 	sc->rx_cons        = 0;
5827 	sc->rx_prod_bseq   = 0;
5828 	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5829 	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5830 
5831 	/* Initialize the RX next pointer chain entries. */
5832 	for (i = 0; i < sc->rx_pages; i++) {
5833 		int j;
5834 
5835 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5836 
5837 		/* Check if we've reached the last page. */
5838 		if (i == (sc->rx_pages - 1))
5839 			j = 0;
5840 		else
5841 			j = i + 1;
5842 
5843 		/* Setup the chain page pointers. */
5844 		rxbd->rx_bd_haddr_hi =
5845 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5846 		rxbd->rx_bd_haddr_lo =
5847 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5848 	}
5849 
5850 	/* Fill up the RX chain. */
5851 	bce_fill_rx_chain(sc);
5852 
5853 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5854 	DBRUN(sc->rx_empty_count = 0);
5855 	for (i = 0; i < sc->rx_pages; i++) {
5856 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5857 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5858 	}
5859 
5860 	bce_init_rx_context(sc);
5861 
5862 	DBRUNMSG(BCE_EXTREME_RECV,
5863 	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5864 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5865 	    BCE_VERBOSE_CTX);
5866 
5867 	/* ToDo: Are there possible failure modes here? */
5868 
5869 	return(rc);
5870 }
5871 
5872 
5873 /****************************************************************************/
5874 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5875 /* occurs.                                                                  */
5876 /*                                                                          */
5877 /* Returns:                                                                 */
5878 /*   Nothing                                                                */
5879 /****************************************************************************/
5880 static void
5881 bce_fill_rx_chain(struct bce_softc *sc)
5882 {
5883 	u16 prod, prod_idx;
5884 	u32 prod_bseq;
5885 
5886 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5887 	    BCE_VERBOSE_CTX);
5888 
5889 	/* Get the RX chain producer indices. */
5890 	prod      = sc->rx_prod;
5891 	prod_bseq = sc->rx_prod_bseq;
5892 
5893 	/* Keep filling the RX chain until it's full. */
5894 	while (sc->free_rx_bd > 0) {
5895 		prod_idx = RX_CHAIN_IDX(prod);
5896 		if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5897 			/* Bail out if we can't add an mbuf to the chain. */
5898 			break;
5899 		}
5900 		prod = NEXT_RX_BD(prod);
5901 	}
5902 
5903 	/* Save the RX chain producer indices. */
5904 	sc->rx_prod      = prod;
5905 	sc->rx_prod_bseq = prod_bseq;
5906 
5907 	/* We should never end up pointing to a next page pointer. */
5908 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5909 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5910 	    __FUNCTION__, rx_prod));
5911 
5912 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5913 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5914 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5915 
5916 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5917 	    BCE_VERBOSE_CTX);
5918 }
5919 
5920 
5921 /****************************************************************************/
5922 /* Free memory and clear the RX data structures.                            */
5923 /*                                                                          */
5924 /* Returns:                                                                 */
5925 /*   Nothing.                                                               */
5926 /****************************************************************************/
5927 static void
5928 bce_free_rx_chain(struct bce_softc *sc)
5929 {
5930 	int i;
5931 
5932 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5933 
5934 	/* Free any mbufs still in the RX mbuf chain. */
5935 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5936 		if (sc->rx_mbuf_ptr[i] != NULL) {
5937 			if (sc->rx_mbuf_map[i] != NULL)
5938 				bus_dmamap_sync(sc->rx_mbuf_tag,
5939 				    sc->rx_mbuf_map[i],
5940 				    BUS_DMASYNC_POSTREAD);
5941 			m_freem(sc->rx_mbuf_ptr[i]);
5942 			sc->rx_mbuf_ptr[i] = NULL;
5943 			DBRUN(sc->debug_rx_mbuf_alloc--);
5944 		}
5945 	}
5946 
5947 	/* Clear each RX chain page. */
5948 	for (i = 0; i < sc->rx_pages; i++)
5949 		if (sc->rx_bd_chain[i] != NULL)
5950 			bzero((char *)sc->rx_bd_chain[i],
5951 			    BCE_RX_CHAIN_PAGE_SZ);
5952 
5953 	sc->free_rx_bd = sc->max_rx_bd;
5954 
5955 	/* Check if we lost any mbufs in the process. */
5956 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5957 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5958 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5959 
5960 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5961 }
5962 
5963 
5964 /****************************************************************************/
5965 /* Allocate memory and initialize the page data structures.                 */
5966 /* Assumes that bce_init_rx_chain() has not already been called.            */
5967 /*                                                                          */
5968 /* Returns:                                                                 */
5969 /*   0 for success, positive value for failure.                             */
5970 /****************************************************************************/
5971 static int
5972 bce_init_pg_chain(struct bce_softc *sc)
5973 {
5974 	struct rx_bd *pgbd;
5975 	int i, rc = 0;
5976 	u32 val;
5977 
5978 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5979 		BCE_VERBOSE_CTX);
5980 
5981 	/* Initialize the page producer and consumer indices. */
5982 	sc->pg_prod        = 0;
5983 	sc->pg_cons        = 0;
5984 	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
5985 	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
5986 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5987 	DBRUN(sc->pg_empty_count = 0);
5988 
5989 	/* Initialize the page next pointer chain entries. */
5990 	for (i = 0; i < sc->pg_pages; i++) {
5991 		int j;
5992 
5993 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5994 
5995 		/* Check if we've reached the last page. */
5996 		if (i == (sc->pg_pages - 1))
5997 			j = 0;
5998 		else
5999 			j = i + 1;
6000 
6001 		/* Setup the chain page pointers. */
6002 		pgbd->rx_bd_haddr_hi =
6003 		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
6004 		pgbd->rx_bd_haddr_lo =
6005 		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
6006 	}
6007 
6008 	/* Setup the MQ BIN mapping for host_pg_bidx. */
6009 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
6010 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
6011 
6012 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
6013 
6014 	/* Configure the rx_bd and page chain mbuf cluster size. */
6015 	val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
6016 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
6017 
6018 	/* Configure the context reserved for jumbo support. */
6019 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
6020 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
6021 
6022 	/* Point the hardware to the first page in the page chain. */
6023 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
6024 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
6025 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
6026 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
6027 
6028 	/* Fill up the page chain. */
6029 	bce_fill_pg_chain(sc);
6030 
6031 	for (i = 0; i < sc->pg_pages; i++) {
6032 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
6033 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6034 	}
6035 
6036 	DBRUNMSG(BCE_EXTREME_RECV,
6037 	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
6038 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6039 		BCE_VERBOSE_CTX);
6040 	return(rc);
6041 }
6042 
6043 
6044 /****************************************************************************/
6045 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
6046 /* occurs.                                                                  */
6047 /*                                                                          */
6048 /* Returns:                                                                 */
6049 /*   Nothing                                                                */
6050 /****************************************************************************/
6051 static void
6052 bce_fill_pg_chain(struct bce_softc *sc)
6053 {
6054 	u16 prod, prod_idx;
6055 
6056 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6057 	    BCE_VERBOSE_CTX);
6058 
6059 	/* Get the page chain prodcuer index. */
6060 	prod = sc->pg_prod;
6061 
6062 	/* Keep filling the page chain until it's full. */
6063 	while (sc->free_pg_bd > 0) {
6064 		prod_idx = PG_CHAIN_IDX(prod);
6065 		if (bce_get_pg_buf(sc, prod, prod_idx)) {
6066 			/* Bail out if we can't add an mbuf to the chain. */
6067 			break;
6068 		}
6069 		prod = NEXT_PG_BD(prod);
6070 	}
6071 
6072 	/* Save the page chain producer index. */
6073 	sc->pg_prod = prod;
6074 
6075 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6076 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6077 	    __FUNCTION__, pg_prod));
6078 
6079 	/*
6080 	 * Write the mailbox and tell the chip about
6081 	 * the new rx_bd's in the page chain.
6082 	 */
6083 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
6084 	    prod);
6085 
6086 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6087 	    BCE_VERBOSE_CTX);
6088 }
6089 
6090 
6091 /****************************************************************************/
6092 /* Free memory and clear the RX data structures.                            */
6093 /*                                                                          */
6094 /* Returns:                                                                 */
6095 /*   Nothing.                                                               */
6096 /****************************************************************************/
6097 static void
6098 bce_free_pg_chain(struct bce_softc *sc)
6099 {
6100 	int i;
6101 
6102 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6103 
6104 	/* Free any mbufs still in the mbuf page chain. */
6105 	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6106 		if (sc->pg_mbuf_ptr[i] != NULL) {
6107 			if (sc->pg_mbuf_map[i] != NULL)
6108 				bus_dmamap_sync(sc->pg_mbuf_tag,
6109 				    sc->pg_mbuf_map[i],
6110 				    BUS_DMASYNC_POSTREAD);
6111 			m_freem(sc->pg_mbuf_ptr[i]);
6112 			sc->pg_mbuf_ptr[i] = NULL;
6113 			DBRUN(sc->debug_pg_mbuf_alloc--);
6114 		}
6115 	}
6116 
6117 	/* Clear each page chain pages. */
6118 	for (i = 0; i < sc->pg_pages; i++)
6119 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6120 
6121 	sc->free_pg_bd = sc->max_pg_bd;
6122 
6123 	/* Check if we lost any mbufs in the process. */
6124 	DBRUNIF((sc->debug_pg_mbuf_alloc),
6125 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6126 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
6127 
6128 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6129 }
6130 
6131 
6132 static u32
6133 bce_get_rphy_link(struct bce_softc *sc)
6134 {
6135 	u32 advertise, link;
6136 	int fdpx;
6137 
6138 	advertise = 0;
6139 	fdpx = 0;
6140 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6141 		link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6142 	else
6143 		link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6144 	if (link & BCE_NETLINK_ANEG_ENB)
6145 		advertise |= BCE_NETLINK_ANEG_ENB;
6146 	if (link & BCE_NETLINK_SPEED_10HALF)
6147 		advertise |= BCE_NETLINK_SPEED_10HALF;
6148 	if (link & BCE_NETLINK_SPEED_10FULL) {
6149 		advertise |= BCE_NETLINK_SPEED_10FULL;
6150 		fdpx++;
6151 	}
6152 	if (link & BCE_NETLINK_SPEED_100HALF)
6153 		advertise |= BCE_NETLINK_SPEED_100HALF;
6154 	if (link & BCE_NETLINK_SPEED_100FULL) {
6155 		advertise |= BCE_NETLINK_SPEED_100FULL;
6156 		fdpx++;
6157 	}
6158 	if (link & BCE_NETLINK_SPEED_1000HALF)
6159 		advertise |= BCE_NETLINK_SPEED_1000HALF;
6160 	if (link & BCE_NETLINK_SPEED_1000FULL) {
6161 		advertise |= BCE_NETLINK_SPEED_1000FULL;
6162 		fdpx++;
6163 	}
6164 	if (link & BCE_NETLINK_SPEED_2500HALF)
6165 		advertise |= BCE_NETLINK_SPEED_2500HALF;
6166 	if (link & BCE_NETLINK_SPEED_2500FULL) {
6167 		advertise |= BCE_NETLINK_SPEED_2500FULL;
6168 		fdpx++;
6169 	}
6170 	if (fdpx)
6171 		advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6172 		    BCE_NETLINK_FC_PAUSE_ASYM;
6173 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6174 		advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6175 		    BCE_NETLINK_ETH_AT_WIRESPEED;
6176 
6177 	return (advertise);
6178 }
6179 
6180 
6181 /****************************************************************************/
6182 /* Set media options.                                                       */
6183 /*                                                                          */
6184 /* Returns:                                                                 */
6185 /*   0 for success, positive value for failure.                             */
6186 /****************************************************************************/
6187 static int
6188 bce_ifmedia_upd(struct ifnet *ifp)
6189 {
6190 	struct bce_softc *sc = ifp->if_softc;
6191 	int error;
6192 
6193 	DBENTER(BCE_VERBOSE);
6194 
6195 	BCE_LOCK(sc);
6196 	error = bce_ifmedia_upd_locked(ifp);
6197 	BCE_UNLOCK(sc);
6198 
6199 	DBEXIT(BCE_VERBOSE);
6200 	return (error);
6201 }
6202 
6203 
6204 /****************************************************************************/
6205 /* Set media options.                                                       */
6206 /*                                                                          */
6207 /* Returns:                                                                 */
6208 /*   Nothing.                                                               */
6209 /****************************************************************************/
6210 static int
6211 bce_ifmedia_upd_locked(struct ifnet *ifp)
6212 {
6213 	struct bce_softc *sc = ifp->if_softc;
6214 	struct mii_data *mii;
6215 	struct mii_softc *miisc;
6216 	struct ifmedia *ifm;
6217 	u32 link;
6218 	int error, fdx;
6219 
6220 	DBENTER(BCE_VERBOSE_PHY);
6221 
6222 	error = 0;
6223 	BCE_LOCK_ASSERT(sc);
6224 
6225 	sc->bce_link_up = FALSE;
6226 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6227 		ifm = &sc->bce_ifmedia;
6228 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6229 			return (EINVAL);
6230 		link = 0;
6231 		fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6232 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
6233 		case IFM_AUTO:
6234 			/*
6235 			 * Check advertised link of remote PHY by reading
6236 			 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6237 			 * Always use the same link type of remote PHY.
6238 			 */
6239 			link = bce_get_rphy_link(sc);
6240 			break;
6241 		case IFM_2500_SX:
6242 			if ((sc->bce_phy_flags &
6243 			    (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6244 			    BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6245 				return (EINVAL);
6246 			/*
6247 			 * XXX
6248 			 * Have to enable forced 2.5Gbps configuration.
6249 			 */
6250 			if (fdx != 0)
6251 				link |= BCE_NETLINK_SPEED_2500FULL;
6252 			else
6253 				link |= BCE_NETLINK_SPEED_2500HALF;
6254 			break;
6255 		case IFM_1000_SX:
6256 			if ((sc->bce_phy_flags &
6257 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6258 				return (EINVAL);
6259 			/*
6260 			 * XXX
6261 			 * Have to disable 2.5Gbps configuration.
6262 			 */
6263 			if (fdx != 0)
6264 				link = BCE_NETLINK_SPEED_1000FULL;
6265 			else
6266 				link = BCE_NETLINK_SPEED_1000HALF;
6267 			break;
6268 		case IFM_1000_T:
6269 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6270 				return (EINVAL);
6271 			if (fdx != 0)
6272 				link = BCE_NETLINK_SPEED_1000FULL;
6273 			else
6274 				link = BCE_NETLINK_SPEED_1000HALF;
6275 			break;
6276 		case IFM_100_TX:
6277 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6278 				return (EINVAL);
6279 			if (fdx != 0)
6280 				link = BCE_NETLINK_SPEED_100FULL;
6281 			else
6282 				link = BCE_NETLINK_SPEED_100HALF;
6283 			break;
6284 		case IFM_10_T:
6285 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6286 				return (EINVAL);
6287 			if (fdx != 0)
6288 				link = BCE_NETLINK_SPEED_10FULL;
6289 			else
6290 				link = BCE_NETLINK_SPEED_10HALF;
6291 			break;
6292 		default:
6293 			return (EINVAL);
6294 		}
6295 		if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6296 			/*
6297 			 * XXX
6298 			 * Advertise pause capability for full-duplex media.
6299 			 */
6300 			if (fdx != 0)
6301 				link |= BCE_NETLINK_FC_PAUSE_SYM |
6302 				    BCE_NETLINK_FC_PAUSE_ASYM;
6303 			if ((sc->bce_phy_flags &
6304 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6305 				link |= BCE_NETLINK_PHY_APP_REMOTE |
6306 				    BCE_NETLINK_ETH_AT_WIRESPEED;
6307 		}
6308 
6309 		bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6310 		error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6311 	} else {
6312 		mii = device_get_softc(sc->bce_miibus);
6313 
6314 		/* Make sure the MII bus has been enumerated. */
6315 		if (mii) {
6316 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6317 				PHY_RESET(miisc);
6318 			error = mii_mediachg(mii);
6319 		}
6320 	}
6321 
6322 	DBEXIT(BCE_VERBOSE_PHY);
6323 	return (error);
6324 }
6325 
6326 
6327 static void
6328 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6329 {
6330 	struct ifnet *ifp;
6331 	u32 link;
6332 
6333 	ifp = sc->bce_ifp;
6334 	BCE_LOCK_ASSERT(sc);
6335 
6336 	ifmr->ifm_status = IFM_AVALID;
6337 	ifmr->ifm_active = IFM_ETHER;
6338 	link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6339 	/* XXX Handle heart beat status? */
6340 	if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6341 		ifmr->ifm_status |= IFM_ACTIVE;
6342 	else {
6343 		ifmr->ifm_active |= IFM_NONE;
6344 		ifp->if_baudrate = 0;
6345 		return;
6346 	}
6347 	switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6348 	case BCE_LINK_STATUS_10HALF:
6349 		ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6350 		ifp->if_baudrate = IF_Mbps(10UL);
6351 		break;
6352 	case BCE_LINK_STATUS_10FULL:
6353 		ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6354 		ifp->if_baudrate = IF_Mbps(10UL);
6355 		break;
6356 	case BCE_LINK_STATUS_100HALF:
6357 		ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6358 		ifp->if_baudrate = IF_Mbps(100UL);
6359 		break;
6360 	case BCE_LINK_STATUS_100FULL:
6361 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6362 		ifp->if_baudrate = IF_Mbps(100UL);
6363 		break;
6364 	case BCE_LINK_STATUS_1000HALF:
6365 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6366 			ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6367 		else
6368 			ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6369 		ifp->if_baudrate = IF_Mbps(1000UL);
6370 		break;
6371 	case BCE_LINK_STATUS_1000FULL:
6372 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6373 			ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6374 		else
6375 			ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6376 		ifp->if_baudrate = IF_Mbps(1000UL);
6377 		break;
6378 	case BCE_LINK_STATUS_2500HALF:
6379 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6380 			ifmr->ifm_active |= IFM_NONE;
6381 			return;
6382 		} else
6383 			ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6384 		ifp->if_baudrate = IF_Mbps(2500UL);
6385 		break;
6386 	case BCE_LINK_STATUS_2500FULL:
6387 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6388 			ifmr->ifm_active |= IFM_NONE;
6389 			return;
6390 		} else
6391 			ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6392 		ifp->if_baudrate = IF_Mbps(2500UL);
6393 		break;
6394 	default:
6395 		ifmr->ifm_active |= IFM_NONE;
6396 		return;
6397 	}
6398 
6399 	if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6400 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6401 	if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6402 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6403 }
6404 
6405 
6406 /****************************************************************************/
6407 /* Reports current media status.                                            */
6408 /*                                                                          */
6409 /* Returns:                                                                 */
6410 /*   Nothing.                                                               */
6411 /****************************************************************************/
6412 static void
6413 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6414 {
6415 	struct bce_softc *sc = ifp->if_softc;
6416 	struct mii_data *mii;
6417 
6418 	DBENTER(BCE_VERBOSE_PHY);
6419 
6420 	BCE_LOCK(sc);
6421 
6422 	if ((ifp->if_flags & IFF_UP) == 0) {
6423 		BCE_UNLOCK(sc);
6424 		return;
6425 	}
6426 
6427 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6428 		bce_ifmedia_sts_rphy(sc, ifmr);
6429 	else {
6430 		mii = device_get_softc(sc->bce_miibus);
6431 		mii_pollstat(mii);
6432 		ifmr->ifm_active = mii->mii_media_active;
6433 		ifmr->ifm_status = mii->mii_media_status;
6434 	}
6435 
6436 	BCE_UNLOCK(sc);
6437 
6438 	DBEXIT(BCE_VERBOSE_PHY);
6439 }
6440 
6441 
6442 /****************************************************************************/
6443 /* Handles PHY generated interrupt events.                                  */
6444 /*                                                                          */
6445 /* Returns:                                                                 */
6446 /*   Nothing.                                                               */
6447 /****************************************************************************/
6448 static void
6449 bce_phy_intr(struct bce_softc *sc)
6450 {
6451 	u32 new_link_state, old_link_state;
6452 
6453 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6454 
6455 	DBRUN(sc->phy_interrupts++);
6456 
6457 	new_link_state = sc->status_block->status_attn_bits &
6458 	    STATUS_ATTN_BITS_LINK_STATE;
6459 	old_link_state = sc->status_block->status_attn_bits_ack &
6460 	    STATUS_ATTN_BITS_LINK_STATE;
6461 
6462 	/* Handle any changes if the link state has changed. */
6463 	if (new_link_state != old_link_state) {
6464 
6465 		/* Update the status_attn_bits_ack field. */
6466 		if (new_link_state) {
6467 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6468 			    STATUS_ATTN_BITS_LINK_STATE);
6469 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6470 			    __FUNCTION__);
6471 		} else {
6472 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6473 			    STATUS_ATTN_BITS_LINK_STATE);
6474 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6475 			    __FUNCTION__);
6476 		}
6477 
6478 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6479 			if (new_link_state) {
6480 				if (bootverbose)
6481 					if_printf(sc->bce_ifp, "link UP\n");
6482 				if_link_state_change(sc->bce_ifp,
6483 				    LINK_STATE_UP);
6484 			} else {
6485 				if (bootverbose)
6486 					if_printf(sc->bce_ifp, "link DOWN\n");
6487 				if_link_state_change(sc->bce_ifp,
6488 				    LINK_STATE_DOWN);
6489 			}
6490 		}
6491 		/*
6492 		 * Assume link is down and allow
6493 		 * tick routine to update the state
6494 		 * based on the actual media state.
6495 		 */
6496 		sc->bce_link_up = FALSE;
6497 		callout_stop(&sc->bce_tick_callout);
6498 		bce_tick(sc);
6499 	}
6500 
6501 	/* Acknowledge the link change interrupt. */
6502 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6503 
6504 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6505 }
6506 
6507 
6508 /****************************************************************************/
6509 /* Reads the receive consumer value from the status block (skipping over    */
6510 /* chain page pointer if necessary).                                        */
6511 /*                                                                          */
6512 /* Returns:                                                                 */
6513 /*   hw_cons                                                                */
6514 /****************************************************************************/
6515 static inline u16
6516 bce_get_hw_rx_cons(struct bce_softc *sc)
6517 {
6518 	u16 hw_cons;
6519 
6520 	rmb();
6521 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6522 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6523 		hw_cons++;
6524 
6525 	return hw_cons;
6526 }
6527 
6528 /****************************************************************************/
6529 /* Handles received frame interrupt events.                                 */
6530 /*                                                                          */
6531 /* Returns:                                                                 */
6532 /*   Nothing.                                                               */
6533 /****************************************************************************/
6534 static void
6535 bce_rx_intr(struct bce_softc *sc)
6536 {
6537 	struct ifnet *ifp = sc->bce_ifp;
6538 	struct l2_fhdr *l2fhdr;
6539 	struct ether_vlan_header *vh;
6540 	unsigned int pkt_len;
6541 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6542 	u32 status;
6543 	unsigned int rem_len;
6544 	u16 sw_pg_cons, sw_pg_cons_idx;
6545 
6546 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6547 	DBRUN(sc->interrupts_rx++);
6548 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6549 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6550 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6551 
6552 	/* Prepare the RX chain pages to be accessed by the host CPU. */
6553 	for (int i = 0; i < sc->rx_pages; i++)
6554 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6555 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6556 
6557 	/* Prepare the page chain pages to be accessed by the host CPU. */
6558 	if (bce_hdr_split == TRUE) {
6559 		for (int i = 0; i < sc->pg_pages; i++)
6560 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6561 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6562 	}
6563 
6564 	/* Get the hardware's view of the RX consumer index. */
6565 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6566 
6567 	/* Get working copies of the driver's view of the consumer indices. */
6568 	sw_rx_cons = sc->rx_cons;
6569 	sw_pg_cons = sc->pg_cons;
6570 
6571 	/* Update some debug statistics counters */
6572 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6573 	    sc->rx_low_watermark = sc->free_rx_bd);
6574 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6575 	    sc->rx_empty_count++);
6576 
6577 	/* Scan through the receive chain as long as there is work to do */
6578 	/* ToDo: Consider setting a limit on the number of packets processed. */
6579 	rmb();
6580 	while (sw_rx_cons != hw_rx_cons) {
6581 		struct mbuf *m0;
6582 
6583 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6584 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6585 
6586 		/* Unmap the mbuf from DMA space. */
6587 		bus_dmamap_sync(sc->rx_mbuf_tag,
6588 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6589 		    BUS_DMASYNC_POSTREAD);
6590 		bus_dmamap_unload(sc->rx_mbuf_tag,
6591 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6592 
6593 		/* Remove the mbuf from the RX chain. */
6594 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6595 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6596 		DBRUN(sc->debug_rx_mbuf_alloc--);
6597 		sc->free_rx_bd++;
6598 
6599 		/*
6600  		 * Frames received on the NetXteme II are prepended
6601  		 * with an l2_fhdr structure which provides status
6602  		 * information about the received frame (including
6603  		 * VLAN tags and checksum info).  The frames are
6604 		 * also automatically adjusted to word align the IP
6605  		 * header (i.e. two null bytes are inserted before
6606  		 * the Ethernet	header).  As a result the data
6607  		 * DMA'd by the controller into	the mbuf looks
6608 		 * like this:
6609 		 *
6610 		 * +---------+-----+---------------------+-----+
6611 		 * | l2_fhdr | pad | packet data         | FCS |
6612 		 * +---------+-----+---------------------+-----+
6613 		 *
6614  		 * The l2_fhdr needs to be checked and skipped and
6615  		 * the FCS needs to be stripped before sending the
6616 		 * packet up the stack.
6617 		 */
6618 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6619 
6620 		/* Get the packet data + FCS length and the status. */
6621 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6622 		status  = l2fhdr->l2_fhdr_status;
6623 
6624 		/*
6625 		 * Skip over the l2_fhdr and pad, resulting in the
6626 		 * following data in the mbuf:
6627 		 * +---------------------+-----+
6628 		 * | packet data         | FCS |
6629 		 * +---------------------+-----+
6630 		 */
6631 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6632 
6633 		/*
6634  		 * When split header mode is used, an ethernet frame
6635  		 * may be split across the receive chain and the
6636  		 * page chain. If that occurs an mbuf cluster must be
6637  		 * reassembled from the individual mbuf pieces.
6638 		 */
6639 		if (bce_hdr_split == TRUE) {
6640 			/*
6641 			 * Check whether the received frame fits in a single
6642 			 * mbuf or not (i.e. packet data + FCS <=
6643 			 * sc->rx_bd_mbuf_data_len bytes).
6644 			 */
6645 			if (pkt_len > m0->m_len) {
6646 				/*
6647 				 * The received frame is larger than a single mbuf.
6648 				 * If the frame was a TCP frame then only the TCP
6649 				 * header is placed in the mbuf, the remaining
6650 				 * payload (including FCS) is placed in the page
6651 				 * chain, the SPLIT flag is set, and the header
6652 				 * length is placed in the IP checksum field.
6653 				 * If the frame is not a TCP frame then the mbuf
6654 				 * is filled and the remaining bytes are placed
6655 				 * in the page chain.
6656 				 */
6657 
6658 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6659 					"packet.\n", __FUNCTION__);
6660 				DBRUN(sc->split_header_frames_rcvd++);
6661 
6662 				/*
6663 				 * When the page chain is enabled and the TCP
6664 				 * header has been split from the TCP payload,
6665 				 * the ip_xsum structure will reflect the length
6666 				 * of the TCP header, not the IP checksum.  Set
6667 				 * the packet length of the mbuf accordingly.
6668 				 */
6669 				if (status & L2_FHDR_STATUS_SPLIT) {
6670 					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6671 					DBRUN(sc->split_header_tcp_frames_rcvd++);
6672 				}
6673 
6674 				rem_len = pkt_len - m0->m_len;
6675 
6676 				/* Pull mbufs off the page chain for any remaining data. */
6677 				while (rem_len > 0) {
6678 					struct mbuf *m_pg;
6679 
6680 					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6681 
6682 					/* Remove the mbuf from the page chain. */
6683 					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6684 					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6685 					DBRUN(sc->debug_pg_mbuf_alloc--);
6686 					sc->free_pg_bd++;
6687 
6688 					/* Unmap the page chain mbuf from DMA space. */
6689 					bus_dmamap_sync(sc->pg_mbuf_tag,
6690 						sc->pg_mbuf_map[sw_pg_cons_idx],
6691 						BUS_DMASYNC_POSTREAD);
6692 					bus_dmamap_unload(sc->pg_mbuf_tag,
6693 						sc->pg_mbuf_map[sw_pg_cons_idx]);
6694 
6695 					/* Adjust the mbuf length. */
6696 					if (rem_len < m_pg->m_len) {
6697 						/* The mbuf chain is complete. */
6698 						m_pg->m_len = rem_len;
6699 						rem_len = 0;
6700 					} else {
6701 						/* More packet data is waiting. */
6702 						rem_len -= m_pg->m_len;
6703 					}
6704 
6705 					/* Concatenate the mbuf cluster to the mbuf. */
6706 					m_cat(m0, m_pg);
6707 
6708 					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6709 				}
6710 
6711 				/* Set the total packet length. */
6712 				m0->m_pkthdr.len = pkt_len;
6713 
6714 			} else {
6715 				/*
6716 				 * The received packet is small and fits in a
6717 				 * single mbuf (i.e. the l2_fhdr + pad + packet +
6718 				 * FCS <= MHLEN).  In other words, the packet is
6719 				 * 154 bytes or less in size.
6720 				 */
6721 
6722 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6723 					"packet.\n", __FUNCTION__);
6724 
6725 				/* Set the total packet length. */
6726 				m0->m_pkthdr.len = m0->m_len = pkt_len;
6727 			}
6728 		} else
6729 			/* Set the total packet length. */
6730 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6731 
6732 		/* Remove the trailing Ethernet FCS. */
6733 		m_adj(m0, -ETHER_CRC_LEN);
6734 
6735 		/* Check that the resulting mbuf chain is valid. */
6736 		DBRUN(m_sanity(m0, FALSE));
6737 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6738 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6739 		    BCE_PRINTF("Invalid Ethernet frame size!\n");
6740 		    m_print(m0, 128));
6741 
6742 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6743 		    sc->l2fhdr_error_sim_count++;
6744 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6745 
6746 		/* Check the received frame for errors. */
6747 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6748 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6749 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6750 
6751 			/* Log the error and release the mbuf. */
6752 			sc->l2fhdr_error_count++;
6753 			m_freem(m0);
6754 			m0 = NULL;
6755 			goto bce_rx_intr_next_rx;
6756 		}
6757 
6758 		/* Send the packet to the appropriate interface. */
6759 		m0->m_pkthdr.rcvif = ifp;
6760 
6761 		/* Assume no hardware checksum. */
6762 		m0->m_pkthdr.csum_flags = 0;
6763 
6764 		/* Validate the checksum if offload enabled. */
6765 		if (ifp->if_capenable & IFCAP_RXCSUM) {
6766 			/* Check for an IP datagram. */
6767 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6768 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6769 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6770 				DBRUN(sc->csum_offload_ip++);
6771 				/* Check if the IP checksum is valid. */
6772 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6773 					m0->m_pkthdr.csum_flags |=
6774 					    CSUM_IP_VALID;
6775 			}
6776 
6777 			/* Check for a valid TCP/UDP frame. */
6778 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6779 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6780 
6781 				/* Check for a good TCP/UDP checksum. */
6782 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6783 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6784 					DBRUN(sc->csum_offload_tcp_udp++);
6785 					m0->m_pkthdr.csum_data =
6786 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6787 					m0->m_pkthdr.csum_flags |=
6788 					    (CSUM_DATA_VALID
6789 					    | CSUM_PSEUDO_HDR);
6790 				}
6791 			}
6792 		}
6793 
6794 		/* Attach the VLAN tag.	*/
6795 		if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6796 		    !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6797 			DBRUN(sc->vlan_tagged_frames_rcvd++);
6798 			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6799 				DBRUN(sc->vlan_tagged_frames_stripped++);
6800 #if __FreeBSD_version < 700000
6801 				VLAN_INPUT_TAG(ifp, m0,
6802 				    l2fhdr->l2_fhdr_vlan_tag, continue);
6803 #else
6804 				m0->m_pkthdr.ether_vtag =
6805 				    l2fhdr->l2_fhdr_vlan_tag;
6806 				m0->m_flags |= M_VLANTAG;
6807 #endif
6808 			} else {
6809 				/*
6810 				 * bce(4) controllers can't disable VLAN
6811 				 * tag stripping if management firmware
6812 				 * (ASF/IPMI/UMP) is running. So we always
6813 				 * strip VLAN tag and manually reconstruct
6814 				 * the VLAN frame by appending stripped
6815 				 * VLAN tag in driver if VLAN tag stripping
6816 				 * was disabled.
6817 				 *
6818 				 * TODO: LLC SNAP handling.
6819 				 */
6820 				bcopy(mtod(m0, uint8_t *),
6821 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6822 				    ETHER_ADDR_LEN * 2);
6823 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6824 				vh = mtod(m0, struct ether_vlan_header *);
6825 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6826 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6827 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6828 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6829 			}
6830 		}
6831 
6832 		/* Increment received packet statistics. */
6833 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
6834 
6835 bce_rx_intr_next_rx:
6836 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6837 
6838 		/* If we have a packet, pass it up the stack */
6839 		if (m0) {
6840 			/* Make sure we don't lose our place when we release the lock. */
6841 			sc->rx_cons = sw_rx_cons;
6842 			sc->pg_cons = sw_pg_cons;
6843 
6844 			BCE_UNLOCK(sc);
6845 			(*ifp->if_input)(ifp, m0);
6846 			BCE_LOCK(sc);
6847 
6848 			/* Recover our place. */
6849 			sw_rx_cons = sc->rx_cons;
6850 			sw_pg_cons = sc->pg_cons;
6851 		}
6852 
6853 		/* Refresh hw_cons to see if there's new work */
6854 		if (sw_rx_cons == hw_rx_cons)
6855 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6856 	}
6857 
6858 	/* No new packets.  Refill the page chain. */
6859 	if (bce_hdr_split == TRUE) {
6860 		sc->pg_cons = sw_pg_cons;
6861 		bce_fill_pg_chain(sc);
6862 	}
6863 
6864 	/* No new packets.  Refill the RX chain. */
6865 	sc->rx_cons = sw_rx_cons;
6866 	bce_fill_rx_chain(sc);
6867 
6868 	/* Prepare the page chain pages to be accessed by the NIC. */
6869 	for (int i = 0; i < sc->rx_pages; i++)
6870 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6871 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6872 
6873 	if (bce_hdr_split == TRUE) {
6874 		for (int i = 0; i < sc->pg_pages; i++)
6875 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6876 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6877 	}
6878 
6879 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6880 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6881 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6882 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6883 }
6884 
6885 
6886 /****************************************************************************/
6887 /* Reads the transmit consumer value from the status block (skipping over   */
6888 /* chain page pointer if necessary).                                        */
6889 /*                                                                          */
6890 /* Returns:                                                                 */
6891 /*   hw_cons                                                                */
6892 /****************************************************************************/
6893 static inline u16
6894 bce_get_hw_tx_cons(struct bce_softc *sc)
6895 {
6896 	u16 hw_cons;
6897 
6898 	mb();
6899 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6900 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6901 		hw_cons++;
6902 
6903 	return hw_cons;
6904 }
6905 
6906 
6907 /****************************************************************************/
6908 /* Handles transmit completion interrupt events.                            */
6909 /*                                                                          */
6910 /* Returns:                                                                 */
6911 /*   Nothing.                                                               */
6912 /****************************************************************************/
6913 static void
6914 bce_tx_intr(struct bce_softc *sc)
6915 {
6916 	struct ifnet *ifp = sc->bce_ifp;
6917 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6918 
6919 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6920 	DBRUN(sc->interrupts_tx++);
6921 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6922 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6923 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6924 
6925 	BCE_LOCK_ASSERT(sc);
6926 
6927 	/* Get the hardware's view of the TX consumer index. */
6928 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6929 	sw_tx_cons = sc->tx_cons;
6930 
6931 	/* Prevent speculative reads of the status block. */
6932 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6933 	    BUS_SPACE_BARRIER_READ);
6934 
6935 	/* Cycle through any completed TX chain page entries. */
6936 	while (sw_tx_cons != hw_tx_cons) {
6937 #ifdef BCE_DEBUG
6938 		struct tx_bd *txbd = NULL;
6939 #endif
6940 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6941 
6942 		DBPRINT(sc, BCE_INFO_SEND,
6943 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6944 		    "sw_tx_chain_cons = 0x%04X\n",
6945 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6946 
6947 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6948 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6949 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6950 		    (int) MAX_TX_BD_ALLOC);
6951 		    bce_breakpoint(sc));
6952 
6953 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6954 		    [TX_IDX(sw_tx_chain_cons)]);
6955 
6956 		DBRUNIF((txbd == NULL),
6957 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6958 		    __FILE__, __LINE__, sw_tx_chain_cons);
6959 		    bce_breakpoint(sc));
6960 
6961 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6962 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6963 
6964 		/*
6965 		 * Free the associated mbuf. Remember
6966 		 * that only the last tx_bd of a packet
6967 		 * has an mbuf pointer and DMA map.
6968 		 */
6969 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6970 
6971 			/* Validate that this is the last tx_bd. */
6972 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6973 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6974 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6975 			    bce_breakpoint(sc));
6976 
6977 			DBRUNMSG(BCE_INFO_SEND,
6978 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6979 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6980 			    sw_tx_chain_cons));
6981 
6982 			/* Unmap the mbuf. */
6983 			bus_dmamap_unload(sc->tx_mbuf_tag,
6984 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6985 
6986 			/* Free the mbuf. */
6987 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6988 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6989 			DBRUN(sc->debug_tx_mbuf_alloc--);
6990 
6991 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
6992 		}
6993 
6994 		sc->used_tx_bd--;
6995 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6996 
6997 		/* Refresh hw_cons to see if there's new work. */
6998 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6999 
7000 		/* Prevent speculative reads of the status block. */
7001 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7002 		    BUS_SPACE_BARRIER_READ);
7003 	}
7004 
7005 	/* Clear the TX timeout timer. */
7006 	sc->watchdog_timer = 0;
7007 
7008 	/* Clear the tx hardware queue full flag. */
7009 	if (sc->used_tx_bd < sc->max_tx_bd) {
7010 		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
7011 		    DBPRINT(sc, BCE_INFO_SEND,
7012 		    "%s(): Open TX chain! %d/%d (used/total)\n",
7013 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
7014 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7015 	}
7016 
7017 	sc->tx_cons = sw_tx_cons;
7018 
7019 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
7020 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
7021 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
7022 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
7023 }
7024 
7025 
7026 /****************************************************************************/
7027 /* Disables interrupt generation.                                           */
7028 /*                                                                          */
7029 /* Returns:                                                                 */
7030 /*   Nothing.                                                               */
7031 /****************************************************************************/
7032 static void
7033 bce_disable_intr(struct bce_softc *sc)
7034 {
7035 	DBENTER(BCE_VERBOSE_INTR);
7036 
7037 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7038 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
7039 
7040 	DBEXIT(BCE_VERBOSE_INTR);
7041 }
7042 
7043 
7044 /****************************************************************************/
7045 /* Enables interrupt generation.                                            */
7046 /*                                                                          */
7047 /* Returns:                                                                 */
7048 /*   Nothing.                                                               */
7049 /****************************************************************************/
7050 static void
7051 bce_enable_intr(struct bce_softc *sc, int coal_now)
7052 {
7053 	DBENTER(BCE_VERBOSE_INTR);
7054 
7055 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7056 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
7057 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
7058 
7059 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7060 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
7061 
7062 	/* Force an immediate interrupt (whether there is new data or not). */
7063 	if (coal_now)
7064 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
7065 
7066 	DBEXIT(BCE_VERBOSE_INTR);
7067 }
7068 
7069 
7070 /****************************************************************************/
7071 /* Handles controller initialization.                                       */
7072 /*                                                                          */
7073 /* Returns:                                                                 */
7074 /*   Nothing.                                                               */
7075 /****************************************************************************/
7076 static void
7077 bce_init_locked(struct bce_softc *sc)
7078 {
7079 	struct ifnet *ifp;
7080 	u32 ether_mtu = 0;
7081 
7082 	DBENTER(BCE_VERBOSE_RESET);
7083 
7084 	BCE_LOCK_ASSERT(sc);
7085 
7086 	ifp = sc->bce_ifp;
7087 
7088 	/* Check if the driver is still running and bail out if it is. */
7089 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7090 		goto bce_init_locked_exit;
7091 
7092 	bce_stop(sc);
7093 
7094 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
7095 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
7096 		    __FILE__, __LINE__);
7097 		goto bce_init_locked_exit;
7098 	}
7099 
7100 	if (bce_chipinit(sc)) {
7101 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
7102 		    __FILE__, __LINE__);
7103 		goto bce_init_locked_exit;
7104 	}
7105 
7106 	if (bce_blockinit(sc)) {
7107 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
7108 		    __FILE__, __LINE__);
7109 		goto bce_init_locked_exit;
7110 	}
7111 
7112 	/* Load our MAC address. */
7113 	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
7114 	bce_set_mac_addr(sc);
7115 
7116 	if (bce_hdr_split == FALSE)
7117 		bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7118 	/*
7119 	 * Calculate and program the hardware Ethernet MTU
7120  	 * size. Be generous on the receive if we have room
7121  	 * and allowed by the user.
7122 	 */
7123 	if (bce_strict_rx_mtu == TRUE)
7124 		ether_mtu = ifp->if_mtu;
7125 	else {
7126 		if (bce_hdr_split == TRUE) {
7127 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES)
7128 				ether_mtu = sc->rx_bd_mbuf_data_len +
7129 				    MCLBYTES;
7130 			else
7131 				ether_mtu = ifp->if_mtu;
7132 		} else {
7133 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
7134 				ether_mtu = sc->rx_bd_mbuf_data_len;
7135 			else
7136 				ether_mtu = ifp->if_mtu;
7137 		}
7138 	}
7139 
7140 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7141 
7142 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7143 	    __FUNCTION__, ether_mtu);
7144 
7145 	/* Program the mtu, enabling jumbo frame support if necessary. */
7146 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7147 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7148 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7149 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7150 	else
7151 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7152 
7153 	/* Program appropriate promiscuous/multicast filtering. */
7154 	bce_set_rx_mode(sc);
7155 
7156 	if (bce_hdr_split == TRUE) {
7157 		/* Init page buffer descriptor chain. */
7158 		bce_init_pg_chain(sc);
7159 	}
7160 
7161 	/* Init RX buffer descriptor chain. */
7162 	bce_init_rx_chain(sc);
7163 
7164 	/* Init TX buffer descriptor chain. */
7165 	bce_init_tx_chain(sc);
7166 
7167 	/* Enable host interrupts. */
7168 	bce_enable_intr(sc, 1);
7169 
7170 	bce_ifmedia_upd_locked(ifp);
7171 
7172 	/* Let the OS know the driver is up and running. */
7173 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
7174 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7175 
7176 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7177 
7178 bce_init_locked_exit:
7179 	DBEXIT(BCE_VERBOSE_RESET);
7180 }
7181 
7182 
7183 /****************************************************************************/
7184 /* Initialize the controller just enough so that any management firmware    */
7185 /* running on the device will continue to operate correctly.                */
7186 /*                                                                          */
7187 /* Returns:                                                                 */
7188 /*   Nothing.                                                               */
7189 /****************************************************************************/
7190 static void
7191 bce_mgmt_init_locked(struct bce_softc *sc)
7192 {
7193 	struct ifnet *ifp;
7194 
7195 	DBENTER(BCE_VERBOSE_RESET);
7196 
7197 	BCE_LOCK_ASSERT(sc);
7198 
7199 	/* Bail out if management firmware is not running. */
7200 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7201 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7202 		    "No management firmware running...\n");
7203 		goto bce_mgmt_init_locked_exit;
7204 	}
7205 
7206 	ifp = sc->bce_ifp;
7207 
7208 	/* Enable all critical blocks in the MAC. */
7209 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7210 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7211 	DELAY(20);
7212 
7213 	bce_ifmedia_upd_locked(ifp);
7214 
7215 bce_mgmt_init_locked_exit:
7216 	DBEXIT(BCE_VERBOSE_RESET);
7217 }
7218 
7219 
7220 /****************************************************************************/
7221 /* Handles controller initialization when called from an unlocked routine.  */
7222 /*                                                                          */
7223 /* Returns:                                                                 */
7224 /*   Nothing.                                                               */
7225 /****************************************************************************/
7226 static void
7227 bce_init(void *xsc)
7228 {
7229 	struct bce_softc *sc = xsc;
7230 
7231 	DBENTER(BCE_VERBOSE_RESET);
7232 
7233 	BCE_LOCK(sc);
7234 	bce_init_locked(sc);
7235 	BCE_UNLOCK(sc);
7236 
7237 	DBEXIT(BCE_VERBOSE_RESET);
7238 }
7239 
7240 
7241 /****************************************************************************/
7242 /* Modifies an mbuf for TSO on the hardware.                                */
7243 /*                                                                          */
7244 /* Returns:                                                                 */
7245 /*   Pointer to a modified mbuf.                                            */
7246 /****************************************************************************/
7247 static struct mbuf *
7248 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7249 {
7250 	struct mbuf *m;
7251 	struct ether_header *eh;
7252 	struct ip *ip;
7253 	struct tcphdr *th;
7254 	u16 etype;
7255 	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7256 
7257 	DBRUN(sc->tso_frames_requested++);
7258 
7259 	/* Controller may modify mbuf chains. */
7260 	if (M_WRITABLE(*m_head) == 0) {
7261 		m = m_dup(*m_head, M_NOWAIT);
7262 		m_freem(*m_head);
7263 		if (m == NULL) {
7264 			sc->mbuf_alloc_failed_count++;
7265 			*m_head = NULL;
7266 			return (NULL);
7267 		}
7268 		*m_head = m;
7269 	}
7270 
7271 	/*
7272 	 * For TSO the controller needs two pieces of info,
7273 	 * the MSS and the IP+TCP options length.
7274 	 */
7275 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7276 	if (m == NULL) {
7277 		*m_head = NULL;
7278 		return (NULL);
7279 	}
7280 	eh = mtod(m, struct ether_header *);
7281 	etype = ntohs(eh->ether_type);
7282 
7283 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
7284 	switch (etype) {
7285 	case ETHERTYPE_IP:
7286 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7287 		/* TSO only supported for TCP protocol. */
7288 		if (ip->ip_p != IPPROTO_TCP) {
7289 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7290 			    __FILE__, __LINE__);
7291 			m_freem(*m_head);
7292 			*m_head = NULL;
7293 			return (NULL);
7294 		}
7295 
7296 		/* Get IP header length in bytes (min 20) */
7297 		ip_hlen = ip->ip_hl << 2;
7298 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7299 		    sizeof(struct tcphdr));
7300 		if (m == NULL) {
7301 			*m_head = NULL;
7302 			return (NULL);
7303 		}
7304 
7305 		/* Get the TCP header length in bytes (min 20) */
7306 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7307 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7308 		tcp_hlen = (th->th_off << 2);
7309 
7310 		/* Make sure all IP/TCP options live in the same buffer. */
7311 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7312 		    tcp_hlen);
7313 		if (m == NULL) {
7314 			*m_head = NULL;
7315 			return (NULL);
7316 		}
7317 
7318 		/* Clear IP header length and checksum, will be calc'd by h/w. */
7319 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7320 		ip_len = ip->ip_len;
7321 		ip->ip_len = 0;
7322 		ip->ip_sum = 0;
7323 		break;
7324 	case ETHERTYPE_IPV6:
7325 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7326 		    __FILE__, __LINE__);
7327 		m_freem(*m_head);
7328 		*m_head = NULL;
7329 		return (NULL);
7330 		/* NOT REACHED */
7331 	default:
7332 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7333 		    __FILE__, __LINE__);
7334 		m_freem(*m_head);
7335 		*m_head = NULL;
7336 		return (NULL);
7337 	}
7338 
7339 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7340 
7341 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7342 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7343 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7344 	    tcp_hlen, ip_len);
7345 
7346 	/* Set the LSO flag in the TX BD */
7347 	*flags |= TX_BD_FLAGS_SW_LSO;
7348 
7349 	/* Set the length of IP + TCP options (in 32 bit words) */
7350 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7351 	    sizeof(struct tcphdr)) >> 2) << 8);
7352 
7353 	DBRUN(sc->tso_frames_completed++);
7354 	return (*m_head);
7355 }
7356 
7357 
7358 /****************************************************************************/
7359 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7360 /* memory visible to the controller.                                        */
7361 /*                                                                          */
7362 /* Returns:                                                                 */
7363 /*   0 for success, positive value for failure.                             */
7364 /* Modified:                                                                */
7365 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7366 /****************************************************************************/
7367 static int
7368 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7369 {
7370 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7371 	bus_dmamap_t map;
7372 	struct tx_bd *txbd = NULL;
7373 	struct mbuf *m0;
7374 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7375 	u32 prod_bseq;
7376 
7377 #ifdef BCE_DEBUG
7378 	u16 debug_prod;
7379 #endif
7380 
7381 	int i, error, nsegs, rc = 0;
7382 
7383 	DBENTER(BCE_VERBOSE_SEND);
7384 
7385 	/* Make sure we have room in the TX chain. */
7386 	if (sc->used_tx_bd >= sc->max_tx_bd)
7387 		goto bce_tx_encap_exit;
7388 
7389 	/* Transfer any checksum offload flags to the bd. */
7390 	m0 = *m_head;
7391 	if (m0->m_pkthdr.csum_flags) {
7392 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7393 			m0 = bce_tso_setup(sc, m_head, &flags);
7394 			if (m0 == NULL) {
7395 				DBRUN(sc->tso_frames_failed++);
7396 				goto bce_tx_encap_exit;
7397 			}
7398 			mss = htole16(m0->m_pkthdr.tso_segsz);
7399 		} else {
7400 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
7401 				flags |= TX_BD_FLAGS_IP_CKSUM;
7402 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7403 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7404 		}
7405 	}
7406 
7407 	/* Transfer any VLAN tags to the bd. */
7408 	if (m0->m_flags & M_VLANTAG) {
7409 		flags |= TX_BD_FLAGS_VLAN_TAG;
7410 		vlan_tag = m0->m_pkthdr.ether_vtag;
7411 	}
7412 
7413 	/* Map the mbuf into DMAable memory. */
7414 	prod = sc->tx_prod;
7415 	chain_prod = TX_CHAIN_IDX(prod);
7416 	map = sc->tx_mbuf_map[chain_prod];
7417 
7418 	/* Map the mbuf into our DMA address space. */
7419 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7420 	    segs, &nsegs, BUS_DMA_NOWAIT);
7421 
7422 	/* Check if the DMA mapping was successful */
7423 	if (error == EFBIG) {
7424 		sc->mbuf_frag_count++;
7425 
7426 		/* Try to defrag the mbuf. */
7427 		m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7428 		if (m0 == NULL) {
7429 			/* Defrag was unsuccessful */
7430 			m_freem(*m_head);
7431 			*m_head = NULL;
7432 			sc->mbuf_alloc_failed_count++;
7433 			rc = ENOBUFS;
7434 			goto bce_tx_encap_exit;
7435 		}
7436 
7437 		/* Defrag was successful, try mapping again */
7438 		*m_head = m0;
7439 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7440 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7441 
7442 		/* Still getting an error after a defrag. */
7443 		if (error == ENOMEM) {
7444 			/* Insufficient DMA buffers available. */
7445 			sc->dma_map_addr_tx_failed_count++;
7446 			rc = error;
7447 			goto bce_tx_encap_exit;
7448 		} else if (error != 0) {
7449 			/* Release it and return an error. */
7450 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7451 			    "TX chain!\n", __FILE__, __LINE__);
7452 			m_freem(m0);
7453 			*m_head = NULL;
7454 			sc->dma_map_addr_tx_failed_count++;
7455 			rc = ENOBUFS;
7456 			goto bce_tx_encap_exit;
7457 		}
7458 	} else if (error == ENOMEM) {
7459 		/* Insufficient DMA buffers available. */
7460 		sc->dma_map_addr_tx_failed_count++;
7461 		rc = error;
7462 		goto bce_tx_encap_exit;
7463 	} else if (error != 0) {
7464 		m_freem(m0);
7465 		*m_head = NULL;
7466 		sc->dma_map_addr_tx_failed_count++;
7467 		rc = error;
7468 		goto bce_tx_encap_exit;
7469 	}
7470 
7471 	/* Make sure there's room in the chain */
7472 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7473 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
7474 		rc = ENOBUFS;
7475 		goto bce_tx_encap_exit;
7476 	}
7477 
7478 	/* prod points to an empty tx_bd at this point. */
7479 	prod_bseq  = sc->tx_prod_bseq;
7480 
7481 #ifdef BCE_DEBUG
7482 	debug_prod = chain_prod;
7483 #endif
7484 
7485 	DBPRINT(sc, BCE_INFO_SEND,
7486 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7487 	    "prod_bseq = 0x%08X\n",
7488 	    __FUNCTION__, prod, chain_prod, prod_bseq);
7489 
7490 	/*
7491 	 * Cycle through each mbuf segment that makes up
7492 	 * the outgoing frame, gathering the mapping info
7493 	 * for that segment and creating a tx_bd for
7494 	 * the mbuf.
7495 	 */
7496 	for (i = 0; i < nsegs ; i++) {
7497 
7498 		chain_prod = TX_CHAIN_IDX(prod);
7499 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7500 		    [TX_IDX(chain_prod)];
7501 
7502 		txbd->tx_bd_haddr_lo =
7503 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
7504 		txbd->tx_bd_haddr_hi =
7505 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
7506 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7507 		    htole16(segs[i].ds_len);
7508 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7509 		txbd->tx_bd_flags = htole16(flags);
7510 		prod_bseq += segs[i].ds_len;
7511 		if (i == 0)
7512 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7513 		prod = NEXT_TX_BD(prod);
7514 	}
7515 
7516 	/* Set the END flag on the last TX buffer descriptor. */
7517 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7518 
7519 	DBRUNMSG(BCE_EXTREME_SEND,
7520 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
7521 
7522 	/*
7523 	 * Ensure that the mbuf pointer for this transmission
7524 	 * is placed at the array index of the last
7525 	 * descriptor in this chain.  This is done
7526 	 * because a single map is used for all
7527 	 * segments of the mbuf and we don't want to
7528 	 * unload the map before all of the segments
7529 	 * have been freed.
7530 	 */
7531 	sc->tx_mbuf_ptr[chain_prod] = m0;
7532 	sc->used_tx_bd += nsegs;
7533 
7534 	/* Update some debug statistic counters */
7535 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7536 	    sc->tx_hi_watermark = sc->used_tx_bd);
7537 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7538 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
7539 
7540 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7541 
7542 	/* prod points to the next free tx_bd at this point. */
7543 	sc->tx_prod = prod;
7544 	sc->tx_prod_bseq = prod_bseq;
7545 
7546 	/* Tell the chip about the waiting TX frames. */
7547 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7548 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7549 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7550 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7551 
7552 bce_tx_encap_exit:
7553 	DBEXIT(BCE_VERBOSE_SEND);
7554 	return(rc);
7555 }
7556 
7557 
7558 /****************************************************************************/
7559 /* Main transmit routine when called from another routine with a lock.      */
7560 /*                                                                          */
7561 /* Returns:                                                                 */
7562 /*   Nothing.                                                               */
7563 /****************************************************************************/
7564 static void
7565 bce_start_locked(struct ifnet *ifp)
7566 {
7567 	struct bce_softc *sc = ifp->if_softc;
7568 	struct mbuf *m_head = NULL;
7569 	int count = 0;
7570 	u16 tx_prod, tx_chain_prod;
7571 
7572 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7573 
7574 	BCE_LOCK_ASSERT(sc);
7575 
7576 	/* prod points to the next free tx_bd. */
7577 	tx_prod = sc->tx_prod;
7578 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7579 
7580 	DBPRINT(sc, BCE_INFO_SEND,
7581 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7582 	    "tx_prod_bseq = 0x%08X\n",
7583 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7584 
7585 	/* If there's no link or the transmit queue is empty then just exit. */
7586 	if (sc->bce_link_up == FALSE) {
7587 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7588 		    __FUNCTION__);
7589 		goto bce_start_locked_exit;
7590 	}
7591 
7592 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7593 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7594 		    __FUNCTION__);
7595 		goto bce_start_locked_exit;
7596 	}
7597 
7598 	/*
7599 	 * Keep adding entries while there is space in the ring.
7600 	 */
7601 	while (sc->used_tx_bd < sc->max_tx_bd) {
7602 
7603 		/* Check for any frames to send. */
7604 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7605 
7606 		/* Stop when the transmit queue is empty. */
7607 		if (m_head == NULL)
7608 			break;
7609 
7610 		/*
7611 		 * Pack the data into the transmit ring. If we
7612 		 * don't have room, place the mbuf back at the
7613 		 * head of the queue and set the OACTIVE flag
7614 		 * to wait for the NIC to drain the chain.
7615 		 */
7616 		if (bce_tx_encap(sc, &m_head)) {
7617 			if (m_head != NULL)
7618 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7619 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7620 			DBPRINT(sc, BCE_INFO_SEND,
7621 			    "TX chain is closed for business! Total "
7622 			    "tx_bd used = %d\n", sc->used_tx_bd);
7623 			break;
7624 		}
7625 
7626 		count++;
7627 
7628 		/* Send a copy of the frame to any BPF listeners. */
7629 		ETHER_BPF_MTAP(ifp, m_head);
7630 	}
7631 
7632 	/* Exit if no packets were dequeued. */
7633 	if (count == 0) {
7634 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7635 		    "dequeued\n", __FUNCTION__);
7636 		goto bce_start_locked_exit;
7637 	}
7638 
7639 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7640 	    "send queue.\n", __FUNCTION__, count);
7641 
7642 	/* Set the tx timeout. */
7643 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7644 
7645 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7646 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7647 
7648 bce_start_locked_exit:
7649 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7650 }
7651 
7652 
7653 /****************************************************************************/
7654 /* Main transmit routine when called from another routine without a lock.   */
7655 /*                                                                          */
7656 /* Returns:                                                                 */
7657 /*   Nothing.                                                               */
7658 /****************************************************************************/
7659 static void
7660 bce_start(struct ifnet *ifp)
7661 {
7662 	struct bce_softc *sc = ifp->if_softc;
7663 
7664 	DBENTER(BCE_VERBOSE_SEND);
7665 
7666 	BCE_LOCK(sc);
7667 	bce_start_locked(ifp);
7668 	BCE_UNLOCK(sc);
7669 
7670 	DBEXIT(BCE_VERBOSE_SEND);
7671 }
7672 
7673 
7674 /****************************************************************************/
7675 /* Handles any IOCTL calls from the operating system.                       */
7676 /*                                                                          */
7677 /* Returns:                                                                 */
7678 /*   0 for success, positive value for failure.                             */
7679 /****************************************************************************/
7680 static int
7681 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7682 {
7683 	struct bce_softc *sc = ifp->if_softc;
7684 	struct ifreq *ifr = (struct ifreq *) data;
7685 	struct mii_data *mii;
7686 	int mask, error = 0;
7687 
7688 	DBENTER(BCE_VERBOSE_MISC);
7689 
7690 	switch(command) {
7691 
7692 	/* Set the interface MTU. */
7693 	case SIOCSIFMTU:
7694 		/* Check that the MTU setting is supported. */
7695 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7696 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7697 			error = EINVAL;
7698 			break;
7699 		}
7700 
7701 		DBPRINT(sc, BCE_INFO_MISC,
7702 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7703 		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7704 
7705 		BCE_LOCK(sc);
7706 		ifp->if_mtu = ifr->ifr_mtu;
7707 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7708 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7709 			bce_init_locked(sc);
7710 		}
7711 		BCE_UNLOCK(sc);
7712 		break;
7713 
7714 	/* Set interface flags. */
7715 	case SIOCSIFFLAGS:
7716 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7717 
7718 		BCE_LOCK(sc);
7719 
7720 		/* Check if the interface is up. */
7721 		if (ifp->if_flags & IFF_UP) {
7722 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7723 				/* Change promiscuous/multicast flags as necessary. */
7724 				bce_set_rx_mode(sc);
7725 			} else {
7726 				/* Start the HW */
7727 				bce_init_locked(sc);
7728 			}
7729 		} else {
7730 			/* The interface is down, check if driver is running. */
7731 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7732 				bce_stop(sc);
7733 
7734 				/* If MFW is running, restart the controller a bit. */
7735 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7736 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7737 					bce_chipinit(sc);
7738 					bce_mgmt_init_locked(sc);
7739 				}
7740 			}
7741 		}
7742 
7743 		BCE_UNLOCK(sc);
7744 		break;
7745 
7746 	/* Add/Delete multicast address */
7747 	case SIOCADDMULTI:
7748 	case SIOCDELMULTI:
7749 		DBPRINT(sc, BCE_VERBOSE_MISC,
7750 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7751 
7752 		BCE_LOCK(sc);
7753 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7754 			bce_set_rx_mode(sc);
7755 		BCE_UNLOCK(sc);
7756 
7757 		break;
7758 
7759 	/* Set/Get Interface media */
7760 	case SIOCSIFMEDIA:
7761 	case SIOCGIFMEDIA:
7762 		DBPRINT(sc, BCE_VERBOSE_MISC,
7763 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7764 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7765 			error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7766 			    command);
7767 		else {
7768 			mii = device_get_softc(sc->bce_miibus);
7769 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7770 			    command);
7771 		}
7772 		break;
7773 
7774 	/* Set interface capability */
7775 	case SIOCSIFCAP:
7776 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7777 		DBPRINT(sc, BCE_INFO_MISC,
7778 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7779 
7780 		/* Toggle the TX checksum capabilities enable flag. */
7781 		if (mask & IFCAP_TXCSUM &&
7782 		    ifp->if_capabilities & IFCAP_TXCSUM) {
7783 			ifp->if_capenable ^= IFCAP_TXCSUM;
7784 			if (IFCAP_TXCSUM & ifp->if_capenable)
7785 				ifp->if_hwassist |= BCE_IF_HWASSIST;
7786 			else
7787 				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7788 		}
7789 
7790 		/* Toggle the RX checksum capabilities enable flag. */
7791 		if (mask & IFCAP_RXCSUM &&
7792 		    ifp->if_capabilities & IFCAP_RXCSUM)
7793 			ifp->if_capenable ^= IFCAP_RXCSUM;
7794 
7795 		/* Toggle the TSO capabilities enable flag. */
7796 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7797 		    ifp->if_capabilities & IFCAP_TSO4) {
7798 			ifp->if_capenable ^= IFCAP_TSO4;
7799 			if (IFCAP_TSO4 & ifp->if_capenable)
7800 				ifp->if_hwassist |= CSUM_TSO;
7801 			else
7802 				ifp->if_hwassist &= ~CSUM_TSO;
7803 		}
7804 
7805 		if (mask & IFCAP_VLAN_HWCSUM &&
7806 		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7807 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7808 
7809 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7810 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7811 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7812 		/*
7813 		 * Don't actually disable VLAN tag stripping as
7814 		 * management firmware (ASF/IPMI/UMP) requires the
7815 		 * feature. If VLAN tag stripping is disabled driver
7816 		 * will manually reconstruct the VLAN frame by
7817 		 * appending stripped VLAN tag.
7818 		 */
7819 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7820 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7821 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7822 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7823 			    == 0)
7824 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7825 		}
7826 		VLAN_CAPABILITIES(ifp);
7827 		break;
7828 	default:
7829 		/* We don't know how to handle the IOCTL, pass it on. */
7830 		error = ether_ioctl(ifp, command, data);
7831 		break;
7832 	}
7833 
7834 	DBEXIT(BCE_VERBOSE_MISC);
7835 	return(error);
7836 }
7837 
7838 
7839 /****************************************************************************/
7840 /* Transmit timeout handler.                                                */
7841 /*                                                                          */
7842 /* Returns:                                                                 */
7843 /*   Nothing.                                                               */
7844 /****************************************************************************/
7845 static void
7846 bce_watchdog(struct bce_softc *sc)
7847 {
7848 	uint32_t status;
7849 
7850 	DBENTER(BCE_EXTREME_SEND);
7851 
7852 	BCE_LOCK_ASSERT(sc);
7853 
7854 	status = 0;
7855 	/* If the watchdog timer hasn't expired then just exit. */
7856 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7857 		goto bce_watchdog_exit;
7858 
7859 	status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7860 	/* If pause frames are active then don't reset the hardware. */
7861 	if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7862 		if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7863 			/*
7864 			 * If link partner has us in XOFF state then wait for
7865 			 * the condition to clear.
7866 			 */
7867 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7868 			goto bce_watchdog_exit;
7869 		} else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7870 			(status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7871 			/*
7872 			 * If we're not currently XOFF'ed but have recently
7873 			 * been XOFF'd/XON'd then assume that's delaying TX
7874 			 * this time around.
7875 			 */
7876 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7877 			goto bce_watchdog_exit;
7878 		}
7879 		/*
7880 		 * Any other condition is unexpected and the controller
7881 		 * should be reset.
7882 		 */
7883 	}
7884 
7885 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7886 	    __FILE__, __LINE__);
7887 
7888 	DBRUNMSG(BCE_INFO,
7889 	    bce_dump_driver_state(sc);
7890 	    bce_dump_status_block(sc);
7891 	    bce_dump_stats_block(sc);
7892 	    bce_dump_ftqs(sc);
7893 	    bce_dump_txp_state(sc, 0);
7894 	    bce_dump_rxp_state(sc, 0);
7895 	    bce_dump_tpat_state(sc, 0);
7896 	    bce_dump_cp_state(sc, 0);
7897 	    bce_dump_com_state(sc, 0));
7898 
7899 	DBRUN(bce_breakpoint(sc));
7900 
7901 	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7902 
7903 	bce_init_locked(sc);
7904 	sc->watchdog_timeouts++;
7905 
7906 bce_watchdog_exit:
7907 	REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7908 	DBEXIT(BCE_EXTREME_SEND);
7909 }
7910 
7911 
7912 /*
7913  * Interrupt handler.
7914  */
7915 /****************************************************************************/
7916 /* Main interrupt entry point.  Verifies that the controller generated the  */
7917 /* interrupt and then calls a separate routine for handle the various       */
7918 /* interrupt causes (PHY, TX, RX).                                          */
7919 /*                                                                          */
7920 /* Returns:                                                                 */
7921 /*   Nothing.                                                               */
7922 /****************************************************************************/
7923 static void
7924 bce_intr(void *xsc)
7925 {
7926 	struct bce_softc *sc;
7927 	struct ifnet *ifp;
7928 	u32 status_attn_bits;
7929 	u16 hw_rx_cons, hw_tx_cons;
7930 
7931 	sc = xsc;
7932 	ifp = sc->bce_ifp;
7933 
7934 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7935 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7936 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7937 
7938 	BCE_LOCK(sc);
7939 
7940 	DBRUN(sc->interrupts_generated++);
7941 
7942 	/* Synchnorize before we read from interface's status block */
7943 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7944 
7945 	/*
7946 	 * If the hardware status block index matches the last value read
7947 	 * by the driver and we haven't asserted our interrupt then there's
7948 	 * nothing to do.  This may only happen in case of INTx due to the
7949 	 * interrupt arriving at the CPU before the status block is updated.
7950 	 */
7951 	if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7952 	    sc->status_block->status_idx == sc->last_status_idx &&
7953 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7954 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7955 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7956 		    __FUNCTION__);
7957 		goto bce_intr_exit;
7958 	}
7959 
7960 	/* Ack the interrupt and stop others from occurring. */
7961 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7962 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7963 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7964 
7965 	/* Check if the hardware has finished any work. */
7966 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7967 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7968 
7969 	/* Keep processing data as long as there is work to do. */
7970 	for (;;) {
7971 
7972 		status_attn_bits = sc->status_block->status_attn_bits;
7973 
7974 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7975 		    BCE_PRINTF("Simulating unexpected status attention "
7976 		    "bit set.");
7977 		    sc->unexpected_attention_sim_count++;
7978 		    status_attn_bits = status_attn_bits |
7979 		    STATUS_ATTN_BITS_PARITY_ERROR);
7980 
7981 		/* Was it a link change interrupt? */
7982 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7983 		    (sc->status_block->status_attn_bits_ack &
7984 		     STATUS_ATTN_BITS_LINK_STATE)) {
7985 			bce_phy_intr(sc);
7986 
7987 			/* Clear transient updates during link state change. */
7988 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7989 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7990 			REG_RD(sc, BCE_HC_COMMAND);
7991 		}
7992 
7993 		/* If any other attention is asserted, the chip is toast. */
7994 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7995 		    (sc->status_block->status_attn_bits_ack &
7996 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7997 
7998 			sc->unexpected_attention_count++;
7999 
8000 			BCE_PRINTF("%s(%d): Fatal attention detected: "
8001 			    "0x%08X\n",	__FILE__, __LINE__,
8002 			    sc->status_block->status_attn_bits);
8003 
8004 			DBRUNMSG(BCE_FATAL,
8005 			    if (unexpected_attention_sim_control == 0)
8006 				bce_breakpoint(sc));
8007 
8008 			bce_init_locked(sc);
8009 			goto bce_intr_exit;
8010 		}
8011 
8012 		/* Check for any completed RX frames. */
8013 		if (hw_rx_cons != sc->hw_rx_cons)
8014 			bce_rx_intr(sc);
8015 
8016 		/* Check for any completed TX frames. */
8017 		if (hw_tx_cons != sc->hw_tx_cons)
8018 			bce_tx_intr(sc);
8019 
8020 		/* Save status block index value for the next interrupt. */
8021 		sc->last_status_idx = sc->status_block->status_idx;
8022 
8023  		/*
8024  		 * Prevent speculative reads from getting
8025  		 * ahead of the status block.
8026 		 */
8027 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
8028 		    BUS_SPACE_BARRIER_READ);
8029 
8030  		/*
8031  		 * If there's no work left then exit the
8032  		 * interrupt service routine.
8033 		 */
8034 		hw_rx_cons = bce_get_hw_rx_cons(sc);
8035 		hw_tx_cons = bce_get_hw_tx_cons(sc);
8036 
8037 		if ((hw_rx_cons == sc->hw_rx_cons) &&
8038 		    (hw_tx_cons == sc->hw_tx_cons))
8039 			break;
8040 	}
8041 
8042 	bus_dmamap_sync(sc->status_tag,	sc->status_map, BUS_DMASYNC_PREREAD);
8043 
8044 	/* Re-enable interrupts. */
8045 	bce_enable_intr(sc, 0);
8046 
8047 	/* Handle any frames that arrived while handling the interrupt. */
8048 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
8049 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
8050 		bce_start_locked(ifp);
8051 
8052 bce_intr_exit:
8053 	BCE_UNLOCK(sc);
8054 
8055 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
8056 }
8057 
8058 
8059 /****************************************************************************/
8060 /* Programs the various packet receive modes (broadcast and multicast).     */
8061 /*                                                                          */
8062 /* Returns:                                                                 */
8063 /*   Nothing.                                                               */
8064 /****************************************************************************/
8065 static void
8066 bce_set_rx_mode(struct bce_softc *sc)
8067 {
8068 	struct ifnet *ifp;
8069 	struct ifmultiaddr *ifma;
8070 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
8071 	u32 rx_mode, sort_mode;
8072 	int h, i;
8073 
8074 	DBENTER(BCE_VERBOSE_MISC);
8075 
8076 	BCE_LOCK_ASSERT(sc);
8077 
8078 	ifp = sc->bce_ifp;
8079 
8080 	/* Initialize receive mode default settings. */
8081 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
8082 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
8083 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
8084 
8085 	/*
8086 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
8087 	 * be enbled.
8088 	 */
8089 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
8090 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
8091 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
8092 
8093 	/*
8094 	 * Check for promiscuous, all multicast, or selected
8095 	 * multicast address filtering.
8096 	 */
8097 	if (ifp->if_flags & IFF_PROMISC) {
8098 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
8099 
8100 		/* Enable promiscuous mode. */
8101 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
8102 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
8103 	} else if (ifp->if_flags & IFF_ALLMULTI) {
8104 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
8105 
8106 		/* Enable all multicast addresses. */
8107 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
8108 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
8109 			    0xffffffff);
8110 		}
8111 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
8112 	} else {
8113 		/* Accept one or more multicast(s). */
8114 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
8115 
8116 		if_maddr_rlock(ifp);
8117 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
8118 			if (ifma->ifma_addr->sa_family != AF_LINK)
8119 				continue;
8120 			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
8121 			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
8122 			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
8123 		}
8124 		if_maddr_runlock(ifp);
8125 
8126 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
8127 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
8128 
8129 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
8130 	}
8131 
8132 	/* Only make changes if the recive mode has actually changed. */
8133 	if (rx_mode != sc->rx_mode) {
8134 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
8135 		    "0x%08X\n", rx_mode);
8136 
8137 		sc->rx_mode = rx_mode;
8138 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
8139 	}
8140 
8141 	/* Disable and clear the exisitng sort before enabling a new sort. */
8142 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
8143 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
8144 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
8145 
8146 	DBEXIT(BCE_VERBOSE_MISC);
8147 }
8148 
8149 
8150 /****************************************************************************/
8151 /* Called periodically to updates statistics from the controllers           */
8152 /* statistics block.                                                        */
8153 /*                                                                          */
8154 /* Returns:                                                                 */
8155 /*   Nothing.                                                               */
8156 /****************************************************************************/
8157 static void
8158 bce_stats_update(struct bce_softc *sc)
8159 {
8160 	struct statistics_block *stats;
8161 
8162 	DBENTER(BCE_EXTREME_MISC);
8163 
8164 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8165 
8166 	stats = (struct statistics_block *) sc->stats_block;
8167 
8168 	/*
8169 	 * Update the sysctl statistics from the
8170 	 * hardware statistics.
8171 	 */
8172 	sc->stat_IfHCInOctets =
8173 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
8174 	     (u64) stats->stat_IfHCInOctets_lo;
8175 
8176 	sc->stat_IfHCInBadOctets =
8177 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8178 	     (u64) stats->stat_IfHCInBadOctets_lo;
8179 
8180 	sc->stat_IfHCOutOctets =
8181 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8182 	     (u64) stats->stat_IfHCOutOctets_lo;
8183 
8184 	sc->stat_IfHCOutBadOctets =
8185 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8186 	     (u64) stats->stat_IfHCOutBadOctets_lo;
8187 
8188 	sc->stat_IfHCInUcastPkts =
8189 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8190 	     (u64) stats->stat_IfHCInUcastPkts_lo;
8191 
8192 	sc->stat_IfHCInMulticastPkts =
8193 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8194 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
8195 
8196 	sc->stat_IfHCInBroadcastPkts =
8197 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8198 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
8199 
8200 	sc->stat_IfHCOutUcastPkts =
8201 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8202 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
8203 
8204 	sc->stat_IfHCOutMulticastPkts =
8205 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8206 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
8207 
8208 	sc->stat_IfHCOutBroadcastPkts =
8209 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8210 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8211 
8212 	/* ToDo: Preserve counters beyond 32 bits? */
8213 	/* ToDo: Read the statistics from auto-clear regs? */
8214 
8215 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8216 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8217 
8218 	sc->stat_Dot3StatsCarrierSenseErrors =
8219 	    stats->stat_Dot3StatsCarrierSenseErrors;
8220 
8221 	sc->stat_Dot3StatsFCSErrors =
8222 	    stats->stat_Dot3StatsFCSErrors;
8223 
8224 	sc->stat_Dot3StatsAlignmentErrors =
8225 	    stats->stat_Dot3StatsAlignmentErrors;
8226 
8227 	sc->stat_Dot3StatsSingleCollisionFrames =
8228 	    stats->stat_Dot3StatsSingleCollisionFrames;
8229 
8230 	sc->stat_Dot3StatsMultipleCollisionFrames =
8231 	    stats->stat_Dot3StatsMultipleCollisionFrames;
8232 
8233 	sc->stat_Dot3StatsDeferredTransmissions =
8234 	    stats->stat_Dot3StatsDeferredTransmissions;
8235 
8236 	sc->stat_Dot3StatsExcessiveCollisions =
8237 	    stats->stat_Dot3StatsExcessiveCollisions;
8238 
8239 	sc->stat_Dot3StatsLateCollisions =
8240 	    stats->stat_Dot3StatsLateCollisions;
8241 
8242 	sc->stat_EtherStatsCollisions =
8243 	    stats->stat_EtherStatsCollisions;
8244 
8245 	sc->stat_EtherStatsFragments =
8246 	    stats->stat_EtherStatsFragments;
8247 
8248 	sc->stat_EtherStatsJabbers =
8249 	    stats->stat_EtherStatsJabbers;
8250 
8251 	sc->stat_EtherStatsUndersizePkts =
8252 	    stats->stat_EtherStatsUndersizePkts;
8253 
8254 	sc->stat_EtherStatsOversizePkts =
8255 	     stats->stat_EtherStatsOversizePkts;
8256 
8257 	sc->stat_EtherStatsPktsRx64Octets =
8258 	    stats->stat_EtherStatsPktsRx64Octets;
8259 
8260 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8261 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8262 
8263 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8264 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8265 
8266 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8267 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8268 
8269 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8270 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8271 
8272 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8273 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8274 
8275 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8276 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8277 
8278 	sc->stat_EtherStatsPktsTx64Octets =
8279 	    stats->stat_EtherStatsPktsTx64Octets;
8280 
8281 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8282 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8283 
8284 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8285 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8286 
8287 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8288 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8289 
8290 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8291 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8292 
8293 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8294 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8295 
8296 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8297 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8298 
8299 	sc->stat_XonPauseFramesReceived =
8300 	    stats->stat_XonPauseFramesReceived;
8301 
8302 	sc->stat_XoffPauseFramesReceived =
8303 	    stats->stat_XoffPauseFramesReceived;
8304 
8305 	sc->stat_OutXonSent =
8306 	    stats->stat_OutXonSent;
8307 
8308 	sc->stat_OutXoffSent =
8309 	    stats->stat_OutXoffSent;
8310 
8311 	sc->stat_FlowControlDone =
8312 	    stats->stat_FlowControlDone;
8313 
8314 	sc->stat_MacControlFramesReceived =
8315 	    stats->stat_MacControlFramesReceived;
8316 
8317 	sc->stat_XoffStateEntered =
8318 	    stats->stat_XoffStateEntered;
8319 
8320 	sc->stat_IfInFramesL2FilterDiscards =
8321 	    stats->stat_IfInFramesL2FilterDiscards;
8322 
8323 	sc->stat_IfInRuleCheckerDiscards =
8324 	    stats->stat_IfInRuleCheckerDiscards;
8325 
8326 	sc->stat_IfInFTQDiscards =
8327 	    stats->stat_IfInFTQDiscards;
8328 
8329 	sc->stat_IfInMBUFDiscards =
8330 	    stats->stat_IfInMBUFDiscards;
8331 
8332 	sc->stat_IfInRuleCheckerP4Hit =
8333 	    stats->stat_IfInRuleCheckerP4Hit;
8334 
8335 	sc->stat_CatchupInRuleCheckerDiscards =
8336 	    stats->stat_CatchupInRuleCheckerDiscards;
8337 
8338 	sc->stat_CatchupInFTQDiscards =
8339 	    stats->stat_CatchupInFTQDiscards;
8340 
8341 	sc->stat_CatchupInMBUFDiscards =
8342 	    stats->stat_CatchupInMBUFDiscards;
8343 
8344 	sc->stat_CatchupInRuleCheckerP4Hit =
8345 	    stats->stat_CatchupInRuleCheckerP4Hit;
8346 
8347 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8348 
8349 	/* ToDo: Add additional statistics? */
8350 
8351 	DBEXIT(BCE_EXTREME_MISC);
8352 }
8353 
8354 static uint64_t
8355 bce_get_counter(struct ifnet *ifp, ift_counter cnt)
8356 {
8357 	struct bce_softc *sc;
8358 	uint64_t rv;
8359 
8360 	sc = if_getsoftc(ifp);
8361 
8362 	switch (cnt) {
8363 	case IFCOUNTER_COLLISIONS:
8364 		return (sc->stat_EtherStatsCollisions);
8365 	case IFCOUNTER_IERRORS:
8366 		return (sc->stat_EtherStatsUndersizePkts +
8367 		    sc->stat_EtherStatsOversizePkts +
8368 		    sc->stat_IfInMBUFDiscards +
8369 		    sc->stat_Dot3StatsAlignmentErrors +
8370 		    sc->stat_Dot3StatsFCSErrors +
8371 		    sc->stat_IfInRuleCheckerDiscards +
8372 		    sc->stat_IfInFTQDiscards +
8373 		    sc->l2fhdr_error_count +
8374 		    sc->com_no_buffers);
8375 	case IFCOUNTER_OERRORS:
8376 		rv = sc->stat_Dot3StatsExcessiveCollisions +
8377 		    sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8378 		    sc->stat_Dot3StatsLateCollisions +
8379 		    sc->watchdog_timeouts;
8380 		/*
8381 		 * Certain controllers don't report
8382 		 * carrier sense errors correctly.
8383 		 * See errata E11_5708CA0_1165.
8384 		 */
8385 		if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8386 		    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8387 			rv += sc->stat_Dot3StatsCarrierSenseErrors;
8388 		return (rv);
8389 	default:
8390 		return (if_get_counter_default(ifp, cnt));
8391 	}
8392 }
8393 
8394 
8395 /****************************************************************************/
8396 /* Periodic function to notify the bootcode that the driver is still        */
8397 /* present.                                                                 */
8398 /*                                                                          */
8399 /* Returns:                                                                 */
8400 /*   Nothing.                                                               */
8401 /****************************************************************************/
8402 static void
8403 bce_pulse(void *xsc)
8404 {
8405 	struct bce_softc *sc = xsc;
8406 	u32 msg;
8407 
8408 	DBENTER(BCE_EXTREME_MISC);
8409 
8410 	BCE_LOCK_ASSERT(sc);
8411 
8412 	/* Tell the firmware that the driver is still running. */
8413 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8414 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8415 
8416 	/* Update the bootcode condition. */
8417 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8418 
8419 	/* Report whether the bootcode still knows the driver is running. */
8420 	if (bce_verbose || bootverbose) {
8421 		if (sc->bce_drv_cardiac_arrest == FALSE) {
8422 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8423 				sc->bce_drv_cardiac_arrest = TRUE;
8424 				BCE_PRINTF("%s(): Warning: bootcode "
8425 				    "thinks driver is absent! "
8426 				    "(bc_state = 0x%08X)\n",
8427 				    __FUNCTION__, sc->bc_state);
8428 			}
8429 		} else {
8430 			/*
8431 			 * Not supported by all bootcode versions.
8432 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
8433 			 * will require the driver to reset the
8434 			 * controller to clear this condition.
8435 			 */
8436 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8437 				sc->bce_drv_cardiac_arrest = FALSE;
8438 				BCE_PRINTF("%s(): Bootcode found the "
8439 				    "driver pulse! (bc_state = 0x%08X)\n",
8440 				    __FUNCTION__, sc->bc_state);
8441 			}
8442 		}
8443 	}
8444 
8445 
8446 	/* Schedule the next pulse. */
8447 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8448 
8449 	DBEXIT(BCE_EXTREME_MISC);
8450 }
8451 
8452 
8453 /****************************************************************************/
8454 /* Periodic function to perform maintenance tasks.                          */
8455 /*                                                                          */
8456 /* Returns:                                                                 */
8457 /*   Nothing.                                                               */
8458 /****************************************************************************/
8459 static void
8460 bce_tick(void *xsc)
8461 {
8462 	struct bce_softc *sc = xsc;
8463 	struct mii_data *mii;
8464 	struct ifnet *ifp;
8465 	struct ifmediareq ifmr;
8466 
8467 	ifp = sc->bce_ifp;
8468 
8469 	DBENTER(BCE_EXTREME_MISC);
8470 
8471 	BCE_LOCK_ASSERT(sc);
8472 
8473 	/* Schedule the next tick. */
8474 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8475 
8476 	/* Update the statistics from the hardware statistics block. */
8477 	bce_stats_update(sc);
8478 
8479  	/* Ensure page and RX chains get refilled in low-memory situations. */
8480 	if (bce_hdr_split == TRUE)
8481 		bce_fill_pg_chain(sc);
8482 	bce_fill_rx_chain(sc);
8483 
8484 	/* Check that chip hasn't hung. */
8485 	bce_watchdog(sc);
8486 
8487 	/* If link is up already up then we're done. */
8488 	if (sc->bce_link_up == TRUE)
8489 		goto bce_tick_exit;
8490 
8491 	/* Link is down.  Check what the PHY's doing. */
8492 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8493 		bzero(&ifmr, sizeof(ifmr));
8494 		bce_ifmedia_sts_rphy(sc, &ifmr);
8495 		if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8496 		    (IFM_ACTIVE | IFM_AVALID)) {
8497 			sc->bce_link_up = TRUE;
8498 			bce_miibus_statchg(sc->bce_dev);
8499 		}
8500 	} else {
8501 		mii = device_get_softc(sc->bce_miibus);
8502 		mii_tick(mii);
8503 		/* Check if the link has come up. */
8504 		if ((mii->mii_media_status & IFM_ACTIVE) &&
8505 		    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8506 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8507 			    __FUNCTION__);
8508 			sc->bce_link_up = TRUE;
8509 			if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8510 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8511 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8512 			    (bce_verbose || bootverbose))
8513 				BCE_PRINTF("Gigabit link up!\n");
8514 		}
8515 
8516 	}
8517 	if (sc->bce_link_up == TRUE) {
8518 		/* Now that link is up, handle any outstanding TX traffic. */
8519 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8520 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8521 			    "pending TX traffic.\n", __FUNCTION__);
8522 			bce_start_locked(ifp);
8523 		}
8524 	}
8525 
8526 bce_tick_exit:
8527 	DBEXIT(BCE_EXTREME_MISC);
8528 }
8529 
8530 static void
8531 bce_fw_cap_init(struct bce_softc *sc)
8532 {
8533 	u32 ack, cap, link;
8534 
8535 	ack = 0;
8536 	cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8537 	if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8538 	    BCE_FW_CAP_SIGNATURE_MAGIC)
8539 		return;
8540 	if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8541 	    (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8542 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8543 		    BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8544 	if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8545 	    (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8546 		sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8547 		sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8548 		link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8549 		if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8550 			sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8551 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8552 		    BCE_FW_CAP_REMOTE_PHY_CAP;
8553 	}
8554 
8555 	if (ack != 0)
8556 		bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8557 }
8558 
8559 
8560 #ifdef BCE_DEBUG
8561 /****************************************************************************/
8562 /* Allows the driver state to be dumped through the sysctl interface.       */
8563 /*                                                                          */
8564 /* Returns:                                                                 */
8565 /*   0 for success, positive value for failure.                             */
8566 /****************************************************************************/
8567 static int
8568 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8569 {
8570 	int error;
8571 	int result;
8572 	struct bce_softc *sc;
8573 
8574 	result = -1;
8575 	error = sysctl_handle_int(oidp, &result, 0, req);
8576 
8577 	if (error || !req->newptr)
8578 		return (error);
8579 
8580 	if (result == 1) {
8581 		sc = (struct bce_softc *)arg1;
8582 		bce_dump_driver_state(sc);
8583 	}
8584 
8585 	return error;
8586 }
8587 
8588 
8589 /****************************************************************************/
8590 /* Allows the hardware state to be dumped through the sysctl interface.     */
8591 /*                                                                          */
8592 /* Returns:                                                                 */
8593 /*   0 for success, positive value for failure.                             */
8594 /****************************************************************************/
8595 static int
8596 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8597 {
8598 	int error;
8599 	int result;
8600 	struct bce_softc *sc;
8601 
8602 	result = -1;
8603 	error = sysctl_handle_int(oidp, &result, 0, req);
8604 
8605 	if (error || !req->newptr)
8606 		return (error);
8607 
8608 	if (result == 1) {
8609 		sc = (struct bce_softc *)arg1;
8610 		bce_dump_hw_state(sc);
8611 	}
8612 
8613 	return error;
8614 }
8615 
8616 
8617 /****************************************************************************/
8618 /* Allows the status block to be dumped through the sysctl interface.       */
8619 /*                                                                          */
8620 /* Returns:                                                                 */
8621 /*   0 for success, positive value for failure.                             */
8622 /****************************************************************************/
8623 static int
8624 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8625 {
8626 	int error;
8627 	int result;
8628 	struct bce_softc *sc;
8629 
8630 	result = -1;
8631 	error = sysctl_handle_int(oidp, &result, 0, req);
8632 
8633 	if (error || !req->newptr)
8634 		return (error);
8635 
8636 	if (result == 1) {
8637 		sc = (struct bce_softc *)arg1;
8638 		bce_dump_status_block(sc);
8639 	}
8640 
8641 	return error;
8642 }
8643 
8644 
8645 /****************************************************************************/
8646 /* Allows the stats block to be dumped through the sysctl interface.        */
8647 /*                                                                          */
8648 /* Returns:                                                                 */
8649 /*   0 for success, positive value for failure.                             */
8650 /****************************************************************************/
8651 static int
8652 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8653 {
8654 	int error;
8655 	int result;
8656 	struct bce_softc *sc;
8657 
8658 	result = -1;
8659 	error = sysctl_handle_int(oidp, &result, 0, req);
8660 
8661 	if (error || !req->newptr)
8662 		return (error);
8663 
8664 	if (result == 1) {
8665 		sc = (struct bce_softc *)arg1;
8666 		bce_dump_stats_block(sc);
8667 	}
8668 
8669 	return error;
8670 }
8671 
8672 
8673 /****************************************************************************/
8674 /* Allows the stat counters to be cleared without unloading/reloading the   */
8675 /* driver.                                                                  */
8676 /*                                                                          */
8677 /* Returns:                                                                 */
8678 /*   0 for success, positive value for failure.                             */
8679 /****************************************************************************/
8680 static int
8681 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8682 {
8683 	int error;
8684 	int result;
8685 	struct bce_softc *sc;
8686 
8687 	result = -1;
8688 	error = sysctl_handle_int(oidp, &result, 0, req);
8689 
8690 	if (error || !req->newptr)
8691 		return (error);
8692 
8693 	if (result == 1) {
8694 		sc = (struct bce_softc *)arg1;
8695 		struct statistics_block *stats;
8696 
8697 		stats = (struct statistics_block *) sc->stats_block;
8698 		bzero(stats, sizeof(struct statistics_block));
8699 		bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8700 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8701 
8702 		/* Clear the internal H/W statistics counters. */
8703 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8704 
8705 		/* Reset the driver maintained statistics. */
8706 		sc->interrupts_rx =
8707 		    sc->interrupts_tx = 0;
8708 		sc->tso_frames_requested =
8709 		    sc->tso_frames_completed =
8710 		    sc->tso_frames_failed = 0;
8711 		sc->rx_empty_count =
8712 		    sc->tx_full_count = 0;
8713 		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8714 		sc->tx_hi_watermark = 0;
8715 		sc->l2fhdr_error_count =
8716 		    sc->l2fhdr_error_sim_count = 0;
8717 		sc->mbuf_alloc_failed_count =
8718 		    sc->mbuf_alloc_failed_sim_count = 0;
8719 		sc->dma_map_addr_rx_failed_count =
8720 		    sc->dma_map_addr_tx_failed_count = 0;
8721 		sc->mbuf_frag_count = 0;
8722 		sc->csum_offload_tcp_udp =
8723 		    sc->csum_offload_ip = 0;
8724 		sc->vlan_tagged_frames_rcvd =
8725 		    sc->vlan_tagged_frames_stripped = 0;
8726 		sc->split_header_frames_rcvd =
8727 		    sc->split_header_tcp_frames_rcvd = 0;
8728 
8729 		/* Clear firmware maintained statistics. */
8730 		REG_WR_IND(sc, 0x120084, 0);
8731 	}
8732 
8733 	return error;
8734 }
8735 
8736 
8737 /****************************************************************************/
8738 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8739 /* interface.                                                               */
8740 /*                                                                          */
8741 /* Returns:                                                                 */
8742 /*   0 for success, positive value for failure.                             */
8743 /****************************************************************************/
8744 static int
8745 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8746 {
8747 	int error;
8748 	int result;
8749 	struct bce_softc *sc;
8750 
8751 	result = -1;
8752 	error = sysctl_handle_int(oidp, &result, 0, req);
8753 
8754 	if (error || !req->newptr)
8755 		return (error);
8756 
8757 	if (result == 1) {
8758 		sc = (struct bce_softc *)arg1;
8759 		bce_dump_shmem_state(sc);
8760 	}
8761 
8762 	return error;
8763 }
8764 
8765 
8766 /****************************************************************************/
8767 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8768 /*                                                                          */
8769 /* Returns:                                                                 */
8770 /*   0 for success, positive value for failure.                             */
8771 /****************************************************************************/
8772 static int
8773 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8774 {
8775 	int error;
8776 	int result;
8777 	struct bce_softc *sc;
8778 
8779 	result = -1;
8780 	error = sysctl_handle_int(oidp, &result, 0, req);
8781 
8782 	if (error || !req->newptr)
8783 		return (error);
8784 
8785 	if (result == 1) {
8786 		sc = (struct bce_softc *)arg1;
8787 		bce_dump_bc_state(sc);
8788 	}
8789 
8790 	return error;
8791 }
8792 
8793 
8794 /****************************************************************************/
8795 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8796 /*                                                                          */
8797 /* Returns:                                                                 */
8798 /*   0 for success, positive value for failure.                             */
8799 /****************************************************************************/
8800 static int
8801 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8802 {
8803 	int error;
8804 	int result;
8805 	struct bce_softc *sc;
8806 
8807 	result = -1;
8808 	error = sysctl_handle_int(oidp, &result, 0, req);
8809 
8810 	if (error || !req->newptr)
8811 		return (error);
8812 
8813 	if (result == 1) {
8814 		sc = (struct bce_softc *)arg1;
8815 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8816 	}
8817 
8818 	return error;
8819 }
8820 
8821 
8822 /****************************************************************************/
8823 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8824 /*                                                                          */
8825 /* Returns:                                                                 */
8826 /*   0 for success, positive value for failure.                             */
8827 /****************************************************************************/
8828 static int
8829 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8830 {
8831 	int error;
8832 	int result;
8833 	struct bce_softc *sc;
8834 
8835 	result = -1;
8836 	error = sysctl_handle_int(oidp, &result, 0, req);
8837 
8838 	if (error || !req->newptr)
8839 		return (error);
8840 
8841 	if (result == 1) {
8842 		sc = (struct bce_softc *)arg1;
8843 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8844 	}
8845 
8846 	return error;
8847 }
8848 
8849 
8850 /****************************************************************************/
8851 /* Provides a sysctl interface to allow dumping the TX chain.               */
8852 /*                                                                          */
8853 /* Returns:                                                                 */
8854 /*   0 for success, positive value for failure.                             */
8855 /****************************************************************************/
8856 static int
8857 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8858 {
8859 	int error;
8860 	int result;
8861 	struct bce_softc *sc;
8862 
8863 	result = -1;
8864 	error = sysctl_handle_int(oidp, &result, 0, req);
8865 
8866 	if (error || !req->newptr)
8867 		return (error);
8868 
8869 	if (result == 1) {
8870 		sc = (struct bce_softc *)arg1;
8871 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8872 	}
8873 
8874 	return error;
8875 }
8876 
8877 
8878 /****************************************************************************/
8879 /* Provides a sysctl interface to allow dumping the page chain.             */
8880 /*                                                                          */
8881 /* Returns:                                                                 */
8882 /*   0 for success, positive value for failure.                             */
8883 /****************************************************************************/
8884 static int
8885 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8886 {
8887 	int error;
8888 	int result;
8889 	struct bce_softc *sc;
8890 
8891 	result = -1;
8892 	error = sysctl_handle_int(oidp, &result, 0, req);
8893 
8894 	if (error || !req->newptr)
8895 		return (error);
8896 
8897 	if (result == 1) {
8898 		sc = (struct bce_softc *)arg1;
8899 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8900 	}
8901 
8902 	return error;
8903 }
8904 
8905 /****************************************************************************/
8906 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8907 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8908 /*                                                                          */
8909 /* Returns:                                                                 */
8910 /*   0 for success, positive value for failure.                             */
8911 /****************************************************************************/
8912 static int
8913 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8914 {
8915 	struct bce_softc *sc = (struct bce_softc *)arg1;
8916 	int error;
8917 	u32 result;
8918 	u32 val[1];
8919 	u8 *data = (u8 *) val;
8920 
8921 	result = -1;
8922 	error = sysctl_handle_int(oidp, &result, 0, req);
8923 	if (error || (req->newptr == NULL))
8924 		return (error);
8925 
8926 	error = bce_nvram_read(sc, result, data, 4);
8927 
8928 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8929 
8930 	return (error);
8931 }
8932 
8933 
8934 /****************************************************************************/
8935 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8936 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8937 /*                                                                          */
8938 /* Returns:                                                                 */
8939 /*   0 for success, positive value for failure.                             */
8940 /****************************************************************************/
8941 static int
8942 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8943 {
8944 	struct bce_softc *sc = (struct bce_softc *)arg1;
8945 	int error;
8946 	u32 val, result;
8947 
8948 	result = -1;
8949 	error = sysctl_handle_int(oidp, &result, 0, req);
8950 	if (error || (req->newptr == NULL))
8951 		return (error);
8952 
8953 	/* Make sure the register is accessible. */
8954 	if (result < 0x8000) {
8955 		val = REG_RD(sc, result);
8956 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8957 	} else if (result < 0x0280000) {
8958 		val = REG_RD_IND(sc, result);
8959 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8960 	}
8961 
8962 	return (error);
8963 }
8964 
8965 
8966 /****************************************************************************/
8967 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8968 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8969 /*                                                                          */
8970 /* Returns:                                                                 */
8971 /*   0 for success, positive value for failure.                             */
8972 /****************************************************************************/
8973 static int
8974 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8975 {
8976 	struct bce_softc *sc;
8977 	device_t dev;
8978 	int error, result;
8979 	u16 val;
8980 
8981 	result = -1;
8982 	error = sysctl_handle_int(oidp, &result, 0, req);
8983 	if (error || (req->newptr == NULL))
8984 		return (error);
8985 
8986 	/* Make sure the register is accessible. */
8987 	if (result < 0x20) {
8988 		sc = (struct bce_softc *)arg1;
8989 		dev = sc->bce_dev;
8990 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8991 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8992 	}
8993 	return (error);
8994 }
8995 
8996 
8997 /****************************************************************************/
8998 /* Provides a sysctl interface for dumping the nvram contents.              */
8999 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
9000 /*									    */
9001 /* Returns:								    */
9002 /*   0 for success, positive errno for failure.				    */
9003 /****************************************************************************/
9004 static int
9005 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
9006 {
9007 	struct bce_softc *sc = (struct bce_softc *)arg1;
9008 	int error, i;
9009 
9010 	if (sc->nvram_buf == NULL)
9011 		sc->nvram_buf = malloc(sc->bce_flash_size,
9012 				    M_TEMP, M_ZERO | M_WAITOK);
9013 
9014 	error = 0;
9015 	if (req->oldlen == sc->bce_flash_size) {
9016 		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
9017 			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
9018 	}
9019 
9020 	if (error == 0)
9021 		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
9022 
9023 	return error;
9024 }
9025 
9026 #ifdef BCE_NVRAM_WRITE_SUPPORT
9027 /****************************************************************************/
9028 /* Provides a sysctl interface for writing to nvram.                        */
9029 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
9030 /*									    */
9031 /* Returns:								    */
9032 /*   0 for success, positive errno for failure.				    */
9033 /****************************************************************************/
9034 static int
9035 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
9036 {
9037 	struct bce_softc *sc = (struct bce_softc *)arg1;
9038 	int error;
9039 
9040 	if (sc->nvram_buf == NULL)
9041 		sc->nvram_buf = malloc(sc->bce_flash_size,
9042 				    M_TEMP, M_ZERO | M_WAITOK);
9043 	else
9044 		bzero(sc->nvram_buf, sc->bce_flash_size);
9045 
9046 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
9047 	if (error == 0)
9048 		return (error);
9049 
9050 	if (req->newlen == sc->bce_flash_size)
9051 		error = bce_nvram_write(sc, 0, sc->nvram_buf,
9052 			    sc->bce_flash_size);
9053 
9054 
9055 	return error;
9056 }
9057 #endif
9058 
9059 
9060 /****************************************************************************/
9061 /* Provides a sysctl interface to allow reading a CID.                      */
9062 /*                                                                          */
9063 /* Returns:                                                                 */
9064 /*   0 for success, positive value for failure.                             */
9065 /****************************************************************************/
9066 static int
9067 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
9068 {
9069 	struct bce_softc *sc;
9070 	int error, result;
9071 
9072 	result = -1;
9073 	error = sysctl_handle_int(oidp, &result, 0, req);
9074 	if (error || (req->newptr == NULL))
9075 		return (error);
9076 
9077 	/* Make sure the register is accessible. */
9078 	if (result <= TX_CID) {
9079 		sc = (struct bce_softc *)arg1;
9080 		bce_dump_ctx(sc, result);
9081 	}
9082 
9083 	return (error);
9084 }
9085 
9086 
9087 /****************************************************************************/
9088 /* Provides a sysctl interface to forcing the driver to dump state and      */
9089 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
9090 /*                                                                          */
9091 /* Returns:                                                                 */
9092 /*   0 for success, positive value for failure.                             */
9093 /****************************************************************************/
9094 static int
9095 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
9096 {
9097 	int error;
9098 	int result;
9099 	struct bce_softc *sc;
9100 
9101 	result = -1;
9102 	error = sysctl_handle_int(oidp, &result, 0, req);
9103 
9104 	if (error || !req->newptr)
9105 		return (error);
9106 
9107 	if (result == 1) {
9108 		sc = (struct bce_softc *)arg1;
9109 		bce_breakpoint(sc);
9110 	}
9111 
9112 	return error;
9113 }
9114 #endif
9115 
9116 /****************************************************************************/
9117 /* Adds any sysctl parameters for tuning or debugging purposes.             */
9118 /*                                                                          */
9119 /* Returns:                                                                 */
9120 /*   0 for success, positive value for failure.                             */
9121 /****************************************************************************/
9122 static void
9123 bce_add_sysctls(struct bce_softc *sc)
9124 {
9125 	struct sysctl_ctx_list *ctx;
9126 	struct sysctl_oid_list *children;
9127 
9128 	DBENTER(BCE_VERBOSE_MISC);
9129 
9130 	ctx = device_get_sysctl_ctx(sc->bce_dev);
9131 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
9132 
9133 #ifdef BCE_DEBUG
9134 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9135 	    "l2fhdr_error_sim_control",
9136 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
9137 	    0, "Debug control to force l2fhdr errors");
9138 
9139 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9140 	    "l2fhdr_error_sim_count",
9141 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
9142 	    0, "Number of simulated l2_fhdr errors");
9143 #endif
9144 
9145 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9146 	    "l2fhdr_error_count",
9147 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
9148 	    0, "Number of l2_fhdr errors");
9149 
9150 #ifdef BCE_DEBUG
9151 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9152 	    "mbuf_alloc_failed_sim_control",
9153 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
9154 	    0, "Debug control to force mbuf allocation failures");
9155 
9156 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9157 	    "mbuf_alloc_failed_sim_count",
9158 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
9159 	    0, "Number of simulated mbuf cluster allocation failures");
9160 #endif
9161 
9162 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9163 	    "mbuf_alloc_failed_count",
9164 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
9165 	    0, "Number of mbuf allocation failures");
9166 
9167 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9168 	    "mbuf_frag_count",
9169 	    CTLFLAG_RD, &sc->mbuf_frag_count,
9170 	    0, "Number of fragmented mbufs");
9171 
9172 #ifdef BCE_DEBUG
9173 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9174 	    "dma_map_addr_failed_sim_control",
9175 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9176 	    0, "Debug control to force DMA mapping failures");
9177 
9178 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9179 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9180 	    "dma_map_addr_failed_sim_count",
9181 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9182 	    0, "Number of simulated DMA mapping failures");
9183 
9184 #endif
9185 
9186 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9187 	    "dma_map_addr_rx_failed_count",
9188 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9189 	    0, "Number of RX DMA mapping failures");
9190 
9191 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9192 	    "dma_map_addr_tx_failed_count",
9193 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9194 	    0, "Number of TX DMA mapping failures");
9195 
9196 #ifdef BCE_DEBUG
9197 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9198 	    "unexpected_attention_sim_control",
9199 	    CTLFLAG_RW, &unexpected_attention_sim_control,
9200 	    0, "Debug control to simulate unexpected attentions");
9201 
9202 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9203 	    "unexpected_attention_sim_count",
9204 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9205 	    0, "Number of simulated unexpected attentions");
9206 #endif
9207 
9208 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9209 	    "unexpected_attention_count",
9210 	    CTLFLAG_RW, &sc->unexpected_attention_count,
9211 	    0, "Number of unexpected attentions");
9212 
9213 #ifdef BCE_DEBUG
9214 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9215 	    "debug_bootcode_running_failure",
9216 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
9217 	    0, "Debug control to force bootcode running failures");
9218 
9219 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9220 	    "rx_low_watermark",
9221 	    CTLFLAG_RD, &sc->rx_low_watermark,
9222 	    0, "Lowest level of free rx_bd's");
9223 
9224 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9225 	    "rx_empty_count",
9226 	    CTLFLAG_RD, &sc->rx_empty_count,
9227 	    "Number of times the RX chain was empty");
9228 
9229 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9230 	    "tx_hi_watermark",
9231 	    CTLFLAG_RD, &sc->tx_hi_watermark,
9232 	    0, "Highest level of used tx_bd's");
9233 
9234 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9235 	    "tx_full_count",
9236 	    CTLFLAG_RD, &sc->tx_full_count,
9237 	    "Number of times the TX chain was full");
9238 
9239 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9240 	    "tso_frames_requested",
9241 	    CTLFLAG_RD, &sc->tso_frames_requested,
9242 	    "Number of TSO frames requested");
9243 
9244 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9245 	    "tso_frames_completed",
9246 	    CTLFLAG_RD, &sc->tso_frames_completed,
9247 	    "Number of TSO frames completed");
9248 
9249 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9250 	    "tso_frames_failed",
9251 	    CTLFLAG_RD, &sc->tso_frames_failed,
9252 	    "Number of TSO frames failed");
9253 
9254 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9255 	    "csum_offload_ip",
9256 	    CTLFLAG_RD, &sc->csum_offload_ip,
9257 	    "Number of IP checksum offload frames");
9258 
9259 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9260 	    "csum_offload_tcp_udp",
9261 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9262 	    "Number of TCP/UDP checksum offload frames");
9263 
9264 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9265 	    "vlan_tagged_frames_rcvd",
9266 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9267 	    "Number of VLAN tagged frames received");
9268 
9269 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9270 	    "vlan_tagged_frames_stripped",
9271 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9272 	    "Number of VLAN tagged frames stripped");
9273 
9274 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9275 	    "interrupts_rx",
9276 	    CTLFLAG_RD, &sc->interrupts_rx,
9277 	    "Number of RX interrupts");
9278 
9279 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9280 	    "interrupts_tx",
9281 	    CTLFLAG_RD, &sc->interrupts_tx,
9282 	    "Number of TX interrupts");
9283 
9284 	if (bce_hdr_split == TRUE) {
9285 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9286 		    "split_header_frames_rcvd",
9287 		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
9288 		    "Number of split header frames received");
9289 
9290 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9291 		    "split_header_tcp_frames_rcvd",
9292 		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9293 		    "Number of split header TCP frames received");
9294 	}
9295 
9296 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9297 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
9298 	    (void *)sc, 0,
9299 	    bce_sysctl_nvram_dump, "S", "");
9300 
9301 #ifdef BCE_NVRAM_WRITE_SUPPORT
9302 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9303 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
9304 	    (void *)sc, 0,
9305 	    bce_sysctl_nvram_write, "S", "");
9306 #endif
9307 #endif /* BCE_DEBUG */
9308 
9309 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9310 	    "stat_IfHcInOctets",
9311 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
9312 	    "Bytes received");
9313 
9314 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9315 	    "stat_IfHCInBadOctets",
9316 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9317 	    "Bad bytes received");
9318 
9319 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9320 	    "stat_IfHCOutOctets",
9321 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9322 	    "Bytes sent");
9323 
9324 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9325 	    "stat_IfHCOutBadOctets",
9326 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9327 	    "Bad bytes sent");
9328 
9329 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9330 	    "stat_IfHCInUcastPkts",
9331 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9332 	    "Unicast packets received");
9333 
9334 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9335 	    "stat_IfHCInMulticastPkts",
9336 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9337 	    "Multicast packets received");
9338 
9339 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9340 	    "stat_IfHCInBroadcastPkts",
9341 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9342 	    "Broadcast packets received");
9343 
9344 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9345 	    "stat_IfHCOutUcastPkts",
9346 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9347 	    "Unicast packets sent");
9348 
9349 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9350 	    "stat_IfHCOutMulticastPkts",
9351 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9352 	    "Multicast packets sent");
9353 
9354 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9355 	    "stat_IfHCOutBroadcastPkts",
9356 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9357 	    "Broadcast packets sent");
9358 
9359 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9360 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9361 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9362 	    0, "Internal MAC transmit errors");
9363 
9364 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9365 	    "stat_Dot3StatsCarrierSenseErrors",
9366 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9367 	    0, "Carrier sense errors");
9368 
9369 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9370 	    "stat_Dot3StatsFCSErrors",
9371 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9372 	    0, "Frame check sequence errors");
9373 
9374 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9375 	    "stat_Dot3StatsAlignmentErrors",
9376 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9377 	    0, "Alignment errors");
9378 
9379 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9380 	    "stat_Dot3StatsSingleCollisionFrames",
9381 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9382 	    0, "Single Collision Frames");
9383 
9384 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9385 	    "stat_Dot3StatsMultipleCollisionFrames",
9386 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9387 	    0, "Multiple Collision Frames");
9388 
9389 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9390 	    "stat_Dot3StatsDeferredTransmissions",
9391 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9392 	    0, "Deferred Transmissions");
9393 
9394 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9395 	    "stat_Dot3StatsExcessiveCollisions",
9396 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9397 	    0, "Excessive Collisions");
9398 
9399 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9400 	    "stat_Dot3StatsLateCollisions",
9401 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9402 	    0, "Late Collisions");
9403 
9404 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9405 	    "stat_EtherStatsCollisions",
9406 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9407 	    0, "Collisions");
9408 
9409 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9410 	    "stat_EtherStatsFragments",
9411 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9412 	    0, "Fragments");
9413 
9414 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9415 	    "stat_EtherStatsJabbers",
9416 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9417 	    0, "Jabbers");
9418 
9419 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9420 	    "stat_EtherStatsUndersizePkts",
9421 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9422 	    0, "Undersize packets");
9423 
9424 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9425 	    "stat_EtherStatsOversizePkts",
9426 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9427 	    0, "stat_EtherStatsOversizePkts");
9428 
9429 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9430 	    "stat_EtherStatsPktsRx64Octets",
9431 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9432 	    0, "Bytes received in 64 byte packets");
9433 
9434 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9435 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
9436 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9437 	    0, "Bytes received in 65 to 127 byte packets");
9438 
9439 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9440 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
9441 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9442 	    0, "Bytes received in 128 to 255 byte packets");
9443 
9444 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9445 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
9446 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9447 	    0, "Bytes received in 256 to 511 byte packets");
9448 
9449 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9450 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
9451 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9452 	    0, "Bytes received in 512 to 1023 byte packets");
9453 
9454 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9455 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9456 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9457 	    0, "Bytes received in 1024 t0 1522 byte packets");
9458 
9459 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9460 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9461 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9462 	    0, "Bytes received in 1523 to 9022 byte packets");
9463 
9464 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9465 	    "stat_EtherStatsPktsTx64Octets",
9466 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9467 	    0, "Bytes sent in 64 byte packets");
9468 
9469 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9470 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
9471 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9472 	    0, "Bytes sent in 65 to 127 byte packets");
9473 
9474 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9475 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
9476 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9477 	    0, "Bytes sent in 128 to 255 byte packets");
9478 
9479 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9480 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
9481 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9482 	    0, "Bytes sent in 256 to 511 byte packets");
9483 
9484 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9485 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
9486 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9487 	    0, "Bytes sent in 512 to 1023 byte packets");
9488 
9489 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9490 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9491 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9492 	    0, "Bytes sent in 1024 to 1522 byte packets");
9493 
9494 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9495 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9496 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9497 	    0, "Bytes sent in 1523 to 9022 byte packets");
9498 
9499 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9500 	    "stat_XonPauseFramesReceived",
9501 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9502 	    0, "XON pause frames receved");
9503 
9504 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9505 	    "stat_XoffPauseFramesReceived",
9506 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9507 	    0, "XOFF pause frames received");
9508 
9509 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9510 	    "stat_OutXonSent",
9511 	    CTLFLAG_RD, &sc->stat_OutXonSent,
9512 	    0, "XON pause frames sent");
9513 
9514 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9515 	    "stat_OutXoffSent",
9516 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
9517 	    0, "XOFF pause frames sent");
9518 
9519 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9520 	    "stat_FlowControlDone",
9521 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
9522 	    0, "Flow control done");
9523 
9524 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9525 	    "stat_MacControlFramesReceived",
9526 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9527 	    0, "MAC control frames received");
9528 
9529 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9530 	    "stat_XoffStateEntered",
9531 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
9532 	    0, "XOFF state entered");
9533 
9534 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9535 	    "stat_IfInFramesL2FilterDiscards",
9536 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9537 	    0, "Received L2 packets discarded");
9538 
9539 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9540 	    "stat_IfInRuleCheckerDiscards",
9541 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9542 	    0, "Received packets discarded by rule");
9543 
9544 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9545 	    "stat_IfInFTQDiscards",
9546 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9547 	    0, "Received packet FTQ discards");
9548 
9549 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9550 	    "stat_IfInMBUFDiscards",
9551 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9552 	    0, "Received packets discarded due to lack "
9553 	    "of controller buffer memory");
9554 
9555 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9556 	    "stat_IfInRuleCheckerP4Hit",
9557 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9558 	    0, "Received packets rule checker hits");
9559 
9560 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9561 	    "stat_CatchupInRuleCheckerDiscards",
9562 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9563 	    0, "Received packets discarded in Catchup path");
9564 
9565 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9566 	    "stat_CatchupInFTQDiscards",
9567 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9568 	    0, "Received packets discarded in FTQ in Catchup path");
9569 
9570 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9571 	    "stat_CatchupInMBUFDiscards",
9572 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9573 	    0, "Received packets discarded in controller "
9574 	    "buffer memory in Catchup path");
9575 
9576 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9577 	    "stat_CatchupInRuleCheckerP4Hit",
9578 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9579 	    0, "Received packets rule checker hits in Catchup path");
9580 
9581 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9582 	    "com_no_buffers",
9583 	    CTLFLAG_RD, &sc->com_no_buffers,
9584 	    0, "Valid packets received but no RX buffers available");
9585 
9586 #ifdef BCE_DEBUG
9587 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9588 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9589 	    (void *)sc, 0,
9590 	    bce_sysctl_driver_state, "I", "Drive state information");
9591 
9592 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9593 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9594 	    (void *)sc, 0,
9595 	    bce_sysctl_hw_state, "I", "Hardware state information");
9596 
9597 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9598 	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
9599 	    (void *)sc, 0,
9600 	    bce_sysctl_status_block, "I", "Dump status block");
9601 
9602 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9603 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9604 	    (void *)sc, 0,
9605 	    bce_sysctl_stats_block, "I", "Dump statistics block");
9606 
9607 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9608 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9609 	    (void *)sc, 0,
9610 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
9611 
9612 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9613 	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9614 	    (void *)sc, 0,
9615 	    bce_sysctl_shmem_state, "I", "Shared memory state information");
9616 
9617 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9618 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9619 	    (void *)sc, 0,
9620 	    bce_sysctl_bc_state, "I", "Bootcode state information");
9621 
9622 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9623 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9624 	    (void *)sc, 0,
9625 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9626 
9627 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9628 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9629 	    (void *)sc, 0,
9630 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9631 
9632 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9633 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9634 	    (void *)sc, 0,
9635 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9636 
9637 	if (bce_hdr_split == TRUE) {
9638 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9639 		    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9640 		    (void *)sc, 0,
9641 		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9642 	}
9643 
9644 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9645 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9646 	    (void *)sc, 0,
9647 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
9648 
9649 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9650 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9651 	    (void *)sc, 0,
9652 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
9653 
9654 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9655 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9656 	    (void *)sc, 0,
9657 	    bce_sysctl_reg_read, "I", "Register read");
9658 
9659 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9660 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9661 	    (void *)sc, 0,
9662 	    bce_sysctl_nvram_read, "I", "NVRAM read");
9663 
9664 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9665 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9666 	    (void *)sc, 0,
9667 	    bce_sysctl_phy_read, "I", "PHY register read");
9668 
9669 #endif
9670 
9671 	DBEXIT(BCE_VERBOSE_MISC);
9672 }
9673 
9674 
9675 /****************************************************************************/
9676 /* BCE Debug Routines                                                       */
9677 /****************************************************************************/
9678 #ifdef BCE_DEBUG
9679 
9680 /****************************************************************************/
9681 /* Freezes the controller to allow for a cohesive state dump.               */
9682 /*                                                                          */
9683 /* Returns:                                                                 */
9684 /*   Nothing.                                                               */
9685 /****************************************************************************/
9686 static __attribute__ ((noinline)) void
9687 bce_freeze_controller(struct bce_softc *sc)
9688 {
9689 	u32 val;
9690 	val = REG_RD(sc, BCE_MISC_COMMAND);
9691 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9692 	REG_WR(sc, BCE_MISC_COMMAND, val);
9693 }
9694 
9695 
9696 /****************************************************************************/
9697 /* Unfreezes the controller after a freeze operation.  This may not always  */
9698 /* work and the controller will require a reset!                            */
9699 /*                                                                          */
9700 /* Returns:                                                                 */
9701 /*   Nothing.                                                               */
9702 /****************************************************************************/
9703 static __attribute__ ((noinline)) void
9704 bce_unfreeze_controller(struct bce_softc *sc)
9705 {
9706 	u32 val;
9707 	val = REG_RD(sc, BCE_MISC_COMMAND);
9708 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9709 	REG_WR(sc, BCE_MISC_COMMAND, val);
9710 }
9711 
9712 
9713 /****************************************************************************/
9714 /* Prints out Ethernet frame information from an mbuf.                      */
9715 /*                                                                          */
9716 /* Partially decode an Ethernet frame to look at some important headers.    */
9717 /*                                                                          */
9718 /* Returns:                                                                 */
9719 /*   Nothing.                                                               */
9720 /****************************************************************************/
9721 static __attribute__ ((noinline)) void
9722 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9723 {
9724 	struct ether_vlan_header *eh;
9725 	u16 etype;
9726 	int ehlen;
9727 	struct ip *ip;
9728 	struct tcphdr *th;
9729 	struct udphdr *uh;
9730 	struct arphdr *ah;
9731 
9732 	BCE_PRINTF(
9733 	    "-----------------------------"
9734 	    " Frame Decode "
9735 	    "-----------------------------\n");
9736 
9737 	eh = mtod(m, struct ether_vlan_header *);
9738 
9739 	/* Handle VLAN encapsulation if present. */
9740 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9741 		etype = ntohs(eh->evl_proto);
9742 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9743 	} else {
9744 		etype = ntohs(eh->evl_encap_proto);
9745 		ehlen = ETHER_HDR_LEN;
9746 	}
9747 
9748 	/* ToDo: Add VLAN output. */
9749 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9750 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9751 
9752 	switch (etype) {
9753 	case ETHERTYPE_IP:
9754 		ip = (struct ip *)(m->m_data + ehlen);
9755 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9756 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9757 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9758 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9759 
9760 		switch (ip->ip_p) {
9761 		case IPPROTO_TCP:
9762 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9763 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9764 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9765 			    ntohs(th->th_dport), ntohs(th->th_sport),
9766 			    (th->th_off << 2), th->th_flags,
9767 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9768 			    "\02SYN\01FIN", ntohs(th->th_sum));
9769 			break;
9770 		case IPPROTO_UDP:
9771 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9772 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9773 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9774 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9775 			    ntohs(uh->uh_sum));
9776 			break;
9777 		case IPPROTO_ICMP:
9778 			BCE_PRINTF("icmp:\n");
9779 			break;
9780 		default:
9781 			BCE_PRINTF("----: Other IP protocol.\n");
9782 			}
9783 		break;
9784 	case ETHERTYPE_IPV6:
9785 		BCE_PRINTF("ipv6: No decode supported.\n");
9786 		break;
9787 	case ETHERTYPE_ARP:
9788 		BCE_PRINTF("-arp: ");
9789 		ah = (struct arphdr *) (m->m_data + ehlen);
9790 		switch (ntohs(ah->ar_op)) {
9791 		case ARPOP_REVREQUEST:
9792 			printf("reverse ARP request\n");
9793 			break;
9794 		case ARPOP_REVREPLY:
9795 			printf("reverse ARP reply\n");
9796 			break;
9797 		case ARPOP_REQUEST:
9798 			printf("ARP request\n");
9799 			break;
9800 		case ARPOP_REPLY:
9801 			printf("ARP reply\n");
9802 			break;
9803 		default:
9804 			printf("other ARP operation\n");
9805 		}
9806 		break;
9807 	default:
9808 		BCE_PRINTF("----: Other protocol.\n");
9809 	}
9810 
9811 	BCE_PRINTF(
9812 		"-----------------------------"
9813 		"--------------"
9814 		"-----------------------------\n");
9815 }
9816 
9817 
9818 /****************************************************************************/
9819 /* Prints out information about an mbuf.                                    */
9820 /*                                                                          */
9821 /* Returns:                                                                 */
9822 /*   Nothing.                                                               */
9823 /****************************************************************************/
9824 static __attribute__ ((noinline)) void
9825 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9826 {
9827 	struct mbuf *mp = m;
9828 
9829 	if (m == NULL) {
9830 		BCE_PRINTF("mbuf: null pointer\n");
9831 		return;
9832 	}
9833 
9834 	while (mp) {
9835 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9836 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9837 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9838 
9839 		if (mp->m_flags & M_PKTHDR) {
9840 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9841 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9842 			    mp->m_flags, M_FLAG_PRINTF,
9843 			    mp->m_pkthdr.csum_flags, CSUM_BITS);
9844 		}
9845 
9846 		if (mp->m_flags & M_EXT) {
9847 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9848 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9849 			switch (mp->m_ext.ext_type) {
9850 			case EXT_CLUSTER:
9851 				printf("EXT_CLUSTER\n"); break;
9852 			case EXT_SFBUF:
9853 				printf("EXT_SFBUF\n"); break;
9854 			case EXT_JUMBO9:
9855 				printf("EXT_JUMBO9\n"); break;
9856 			case EXT_JUMBO16:
9857 				printf("EXT_JUMBO16\n"); break;
9858 			case EXT_PACKET:
9859 				printf("EXT_PACKET\n"); break;
9860 			case EXT_MBUF:
9861 				printf("EXT_MBUF\n"); break;
9862 			case EXT_NET_DRV:
9863 				printf("EXT_NET_DRV\n"); break;
9864 			case EXT_MOD_TYPE:
9865 				printf("EXT_MDD_TYPE\n"); break;
9866 			case EXT_DISPOSABLE:
9867 				printf("EXT_DISPOSABLE\n"); break;
9868 			case EXT_EXTREF:
9869 				printf("EXT_EXTREF\n"); break;
9870 			default:
9871 				printf("UNKNOWN\n");
9872 			}
9873 		}
9874 
9875 		mp = mp->m_next;
9876 	}
9877 }
9878 
9879 
9880 /****************************************************************************/
9881 /* Prints out the mbufs in the TX mbuf chain.                               */
9882 /*                                                                          */
9883 /* Returns:                                                                 */
9884 /*   Nothing.                                                               */
9885 /****************************************************************************/
9886 static __attribute__ ((noinline)) void
9887 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9888 {
9889 	struct mbuf *m;
9890 
9891 	BCE_PRINTF(
9892 		"----------------------------"
9893 		"  tx mbuf data  "
9894 		"----------------------------\n");
9895 
9896 	for (int i = 0; i < count; i++) {
9897 	 	m = sc->tx_mbuf_ptr[chain_prod];
9898 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9899 		bce_dump_mbuf(sc, m);
9900 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9901 	}
9902 
9903 	BCE_PRINTF(
9904 		"----------------------------"
9905 		"----------------"
9906 		"----------------------------\n");
9907 }
9908 
9909 
9910 /****************************************************************************/
9911 /* Prints out the mbufs in the RX mbuf chain.                               */
9912 /*                                                                          */
9913 /* Returns:                                                                 */
9914 /*   Nothing.                                                               */
9915 /****************************************************************************/
9916 static __attribute__ ((noinline)) void
9917 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9918 {
9919 	struct mbuf *m;
9920 
9921 	BCE_PRINTF(
9922 		"----------------------------"
9923 		"  rx mbuf data  "
9924 		"----------------------------\n");
9925 
9926 	for (int i = 0; i < count; i++) {
9927 	 	m = sc->rx_mbuf_ptr[chain_prod];
9928 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9929 		bce_dump_mbuf(sc, m);
9930 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9931 	}
9932 
9933 
9934 	BCE_PRINTF(
9935 		"----------------------------"
9936 		"----------------"
9937 		"----------------------------\n");
9938 }
9939 
9940 
9941 /****************************************************************************/
9942 /* Prints out the mbufs in the mbuf page chain.                             */
9943 /*                                                                          */
9944 /* Returns:                                                                 */
9945 /*   Nothing.                                                               */
9946 /****************************************************************************/
9947 static __attribute__ ((noinline)) void
9948 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9949 {
9950 	struct mbuf *m;
9951 
9952 	BCE_PRINTF(
9953 		"----------------------------"
9954 		"  pg mbuf data  "
9955 		"----------------------------\n");
9956 
9957 	for (int i = 0; i < count; i++) {
9958 	 	m = sc->pg_mbuf_ptr[chain_prod];
9959 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9960 		bce_dump_mbuf(sc, m);
9961 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9962 	}
9963 
9964 
9965 	BCE_PRINTF(
9966 		"----------------------------"
9967 		"----------------"
9968 		"----------------------------\n");
9969 }
9970 
9971 
9972 /****************************************************************************/
9973 /* Prints out a tx_bd structure.                                            */
9974 /*                                                                          */
9975 /* Returns:                                                                 */
9976 /*   Nothing.                                                               */
9977 /****************************************************************************/
9978 static __attribute__ ((noinline)) void
9979 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9980 {
9981 	int i = 0;
9982 
9983 	if (idx > MAX_TX_BD_ALLOC)
9984 		/* Index out of range. */
9985 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9986 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9987 		/* TX Chain page pointer. */
9988 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9989 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9990 		    txbd->tx_bd_haddr_lo);
9991 	else {
9992 		/* Normal tx_bd entry. */
9993 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9994 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9995 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9996 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9997 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9998 
9999 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
10000 			if (i>0)
10001 				printf("|");
10002 			printf("CONN_FAULT");
10003 			i++;
10004 		}
10005 
10006 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
10007 			if (i>0)
10008 				printf("|");
10009 			printf("TCP_UDP_CKSUM");
10010 			i++;
10011 		}
10012 
10013 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
10014 			if (i>0)
10015 				printf("|");
10016 			printf("IP_CKSUM");
10017 			i++;
10018 		}
10019 
10020 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
10021 			if (i>0)
10022 				printf("|");
10023 			printf("VLAN");
10024 			i++;
10025 		}
10026 
10027 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
10028 			if (i>0)
10029 				printf("|");
10030 			printf("COAL_NOW");
10031 			i++;
10032 		}
10033 
10034 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
10035 			if (i>0)
10036 				printf("|");
10037 			printf("DONT_GEN_CRC");
10038 			i++;
10039 		}
10040 
10041 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
10042 			if (i>0)
10043 				printf("|");
10044 			printf("START");
10045 			i++;
10046 		}
10047 
10048 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
10049 			if (i>0)
10050 				printf("|");
10051 			printf("END");
10052 			i++;
10053 		}
10054 
10055 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
10056 			if (i>0)
10057 				printf("|");
10058 			printf("LSO");
10059 			i++;
10060 		}
10061 
10062 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
10063 			if (i>0)
10064 				printf("|");
10065 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
10066 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
10067 		}
10068 
10069 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
10070 			if (i>0)
10071 				printf("|");
10072 			printf("SW_FLAGS");
10073 			i++;
10074 		}
10075 
10076 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
10077 			if (i>0)
10078 				printf("|");
10079 			printf("SNAP)");
10080 		} else {
10081 			printf(")\n");
10082 		}
10083 	}
10084 }
10085 
10086 
10087 /****************************************************************************/
10088 /* Prints out a rx_bd structure.                                            */
10089 /*                                                                          */
10090 /* Returns:                                                                 */
10091 /*   Nothing.                                                               */
10092 /****************************************************************************/
10093 static __attribute__ ((noinline)) void
10094 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
10095 {
10096 	if (idx > MAX_RX_BD_ALLOC)
10097 		/* Index out of range. */
10098 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
10099 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
10100 		/* RX Chain page pointer. */
10101 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10102 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
10103 		    rxbd->rx_bd_haddr_lo);
10104 	else
10105 		/* Normal rx_bd entry. */
10106 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
10107 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
10108 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
10109 		    rxbd->rx_bd_flags);
10110 }
10111 
10112 
10113 /****************************************************************************/
10114 /* Prints out a rx_bd structure in the page chain.                          */
10115 /*                                                                          */
10116 /* Returns:                                                                 */
10117 /*   Nothing.                                                               */
10118 /****************************************************************************/
10119 static __attribute__ ((noinline)) void
10120 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
10121 {
10122 	if (idx > MAX_PG_BD_ALLOC)
10123 		/* Index out of range. */
10124 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
10125 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
10126 		/* Page Chain page pointer. */
10127 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
10128 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
10129 	else
10130 		/* Normal rx_bd entry. */
10131 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
10132 			"flags = 0x%08X\n", idx,
10133 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
10134 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
10135 }
10136 
10137 
10138 /****************************************************************************/
10139 /* Prints out a l2_fhdr structure.                                          */
10140 /*                                                                          */
10141 /* Returns:                                                                 */
10142 /*   Nothing.                                                               */
10143 /****************************************************************************/
10144 static __attribute__ ((noinline)) void
10145 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
10146 {
10147 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
10148 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
10149 		"tcp_udp_xsum = 0x%04X\n", idx,
10150 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
10151 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
10152 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
10153 }
10154 
10155 
10156 /****************************************************************************/
10157 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
10158 /*                                                                          */
10159 /* Returns:                                                                 */
10160 /*   Nothing.                                                               */
10161 /****************************************************************************/
10162 static __attribute__ ((noinline)) void
10163 bce_dump_ctx(struct bce_softc *sc, u16 cid)
10164 {
10165 	if (cid > TX_CID) {
10166 		BCE_PRINTF(" Unknown CID\n");
10167 		return;
10168 	}
10169 
10170 	BCE_PRINTF(
10171 	    "----------------------------"
10172 	    "    CTX Data    "
10173 	    "----------------------------\n");
10174 
10175 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
10176 
10177 	if (cid == RX_CID) {
10178 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10179 		   "producer index\n",
10180 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10181 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10182 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10183 		    BCE_L2CTX_RX_HOST_BSEQ));
10184 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10185 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10186 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10187 		    "descriptor address\n",
10188  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10189 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10190 		    "descriptor address\n",
10191 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10192 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10193 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10194 		    BCE_L2CTX_RX_NX_BDIDX));
10195 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10196 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10197 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
10198 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10199 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10200 		    BCE_L2CTX_RX_PG_BUF_SIZE));
10201 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10202 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10203 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10204 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10205 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10206 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10207 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10208 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
10209 		    BCE_L2CTX_RX_NX_PG_BDIDX));
10210 	} else if (cid == TX_CID) {
10211 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10212 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10213 			    CTX_RD(sc, GET_CID_ADDR(cid),
10214 			    BCE_L2CTX_TX_TYPE_XI));
10215 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10216 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10217 			    BCE_L2CTX_TX_CMD_TYPE_XI));
10218 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10219 			    "h/w buffer descriptor address\n",
10220 			    CTX_RD(sc, GET_CID_ADDR(cid),
10221 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10222 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10223 			    "h/w buffer	descriptor address\n",
10224 			    CTX_RD(sc, GET_CID_ADDR(cid),
10225 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10226 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10227 			    "host producer index\n",
10228 			    CTX_RD(sc, GET_CID_ADDR(cid),
10229 			    BCE_L2CTX_TX_HOST_BIDX_XI));
10230 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10231 			    "host byte sequence\n",
10232 			    CTX_RD(sc, GET_CID_ADDR(cid),
10233 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
10234 		} else {
10235 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10236 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10237 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10238 			    CTX_RD(sc, GET_CID_ADDR(cid),
10239 			    BCE_L2CTX_TX_CMD_TYPE));
10240 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10241 			    "h/w buffer	descriptor address\n",
10242 			    CTX_RD(sc, GET_CID_ADDR(cid),
10243 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
10244 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10245 			    "h/w buffer	descriptor address\n",
10246 			    CTX_RD(sc, GET_CID_ADDR(cid),
10247 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
10248 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10249 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10250 			    BCE_L2CTX_TX_HOST_BIDX));
10251 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10252 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10253 			    BCE_L2CTX_TX_HOST_BSEQ));
10254 		}
10255 	}
10256 
10257 	BCE_PRINTF(
10258 	   "----------------------------"
10259 	   "    Raw CTX     "
10260 	   "----------------------------\n");
10261 
10262 	for (int i = 0x0; i < 0x300; i += 0x10) {
10263 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10264 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
10265 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10266 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10267 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10268 	}
10269 
10270 
10271 	BCE_PRINTF(
10272 	   "----------------------------"
10273 	   "----------------"
10274 	   "----------------------------\n");
10275 }
10276 
10277 
10278 /****************************************************************************/
10279 /* Prints out the FTQ data.                                                 */
10280 /*                                                                          */
10281 /* Returns:                                                                */
10282 /*   Nothing.                                                               */
10283 /****************************************************************************/
10284 static __attribute__ ((noinline)) void
10285 bce_dump_ftqs(struct bce_softc *sc)
10286 {
10287 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10288 
10289 	BCE_PRINTF(
10290 	    "----------------------------"
10291 	    "    FTQ Data    "
10292 	    "----------------------------\n");
10293 
10294 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10295 	    "Max_Depth  Valid_Cnt \n");
10296 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
10297 	    "---------- ----------\n");
10298 
10299 	/* Setup the generic statistic counters for the FTQ valid count. */
10300 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10301 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10302 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10303 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10304 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10305 
10306 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10307 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10308 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10309 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10310 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10311 
10312 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10313 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10314 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10315 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10316 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10317 
10318 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10319 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10320 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10321 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10322 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10323 
10324 	/* Input queue to the Receive Lookup state machine */
10325 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10326 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10327 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10328 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10329 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10330 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10331 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10332 
10333 	/* Input queue to the Receive Processor */
10334 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10335 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10336 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10337 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10338 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10339 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10340 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10341 
10342 	/* Input queue to the Recevie Processor */
10343 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10344 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10345 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10346 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10347 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10348 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10349 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10350 
10351 	/* Input queue to the Receive Virtual to Physical state machine */
10352 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10353 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10354 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10355 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10356 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10357 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10358 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10359 
10360 	/* Input queue to the Recevie Virtual to Physical state machine */
10361 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10362 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10363 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10364 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10365 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10366 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10367 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10368 
10369 	/* Input queue to the Receive Virtual to Physical state machine */
10370 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10371 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10372 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10373 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10374 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10375 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10376 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10377 
10378 	/* Input queue to the Receive DMA state machine */
10379 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10380 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10381 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10382 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10383 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10384 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10385 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10386 
10387 	/* Input queue to the Transmit Scheduler state machine */
10388 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10389 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10390 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10391 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10392 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10393 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10394 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10395 
10396 	/* Input queue to the Transmit Buffer Descriptor state machine */
10397 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10398 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10399 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10400 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10401 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10402 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10403 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10404 
10405 	/* Input queue to the Transmit Processor */
10406 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10407 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10408 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10409 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10410 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10411 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10412 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10413 
10414 	/* Input queue to the Transmit DMA state machine */
10415 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10416 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10417 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10418 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10419 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10420 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10421 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10422 
10423 	/* Input queue to the Transmit Patch-Up Processor */
10424 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10425 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10426 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10427 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10428 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10429 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10430 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10431 
10432 	/* Input queue to the Transmit Assembler state machine */
10433 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10434 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10435 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10436 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10437 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10438 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10439 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10440 
10441 	/* Input queue to the Completion Processor */
10442 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10443 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10444 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10445 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10446 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10447 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10448 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10449 
10450 	/* Input queue to the Completion Processor */
10451 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10452 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10453 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10454 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10455 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10456 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10457 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10458 
10459 	/* Input queue to the Completion Processor */
10460 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10461 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10462 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10463 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10464 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10465 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10466 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10467 
10468 	/* Setup the generic statistic counters for the FTQ valid count. */
10469 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10470 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10471 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10472 
10473 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10474 		val = val |
10475 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10476 		     24);
10477 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10478 
10479 	/* Input queue to the Management Control Processor */
10480 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10481 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10482 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10483 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10484 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10485 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10486 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10487 
10488 	/* Input queue to the Command Processor */
10489 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10490 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10491 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10492 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10493 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10494 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10495 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10496 
10497 	/* Input queue to the Completion Scheduler state machine */
10498 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10499 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10500 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10501 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10502 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10503 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10504 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10505 
10506 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10507 		/* Input queue to the RV2P Command Scheduler */
10508 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10509 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10510 		cur_depth = (ctl & 0xFFC00000) >> 22;
10511 		max_depth = (ctl & 0x003FF000) >> 12;
10512 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10513 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10514 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
10515 	}
10516 
10517 	BCE_PRINTF(
10518 	    "----------------------------"
10519 	    "----------------"
10520 	    "----------------------------\n");
10521 }
10522 
10523 
10524 /****************************************************************************/
10525 /* Prints out the TX chain.                                                 */
10526 /*                                                                          */
10527 /* Returns:                                                                 */
10528 /*   Nothing.                                                               */
10529 /****************************************************************************/
10530 static __attribute__ ((noinline)) void
10531 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10532 {
10533 	struct tx_bd *txbd;
10534 
10535 	/* First some info about the tx_bd chain structure. */
10536 	BCE_PRINTF(
10537 	    "----------------------------"
10538 	    "  tx_bd  chain  "
10539 	    "----------------------------\n");
10540 
10541 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10542 	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10543 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10544 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10545 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10546 
10547 	BCE_PRINTF(
10548 	    "----------------------------"
10549 	    "   tx_bd data   "
10550 	    "----------------------------\n");
10551 
10552 	/* Now print out a decoded list of TX buffer descriptors. */
10553 	for (int i = 0; i < count; i++) {
10554 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10555 		bce_dump_txbd(sc, tx_prod, txbd);
10556 		tx_prod++;
10557 	}
10558 
10559 	BCE_PRINTF(
10560 	    "----------------------------"
10561 	    "----------------"
10562 	    "----------------------------\n");
10563 }
10564 
10565 
10566 /****************************************************************************/
10567 /* Prints out the RX chain.                                                 */
10568 /*                                                                          */
10569 /* Returns:                                                                 */
10570 /*   Nothing.                                                               */
10571 /****************************************************************************/
10572 static __attribute__ ((noinline)) void
10573 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10574 {
10575 	struct rx_bd *rxbd;
10576 
10577 	/* First some info about the rx_bd chain structure. */
10578 	BCE_PRINTF(
10579 	    "----------------------------"
10580 	    "  rx_bd  chain  "
10581 	    "----------------------------\n");
10582 
10583 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10584 	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10585 
10586 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10587 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10588 
10589 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10590 
10591 	BCE_PRINTF(
10592 	    "----------------------------"
10593 	    "   rx_bd data   "
10594 	    "----------------------------\n");
10595 
10596 	/* Now print out the rx_bd's themselves. */
10597 	for (int i = 0; i < count; i++) {
10598 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10599 		bce_dump_rxbd(sc, rx_prod, rxbd);
10600 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10601 	}
10602 
10603 	BCE_PRINTF(
10604 	    "----------------------------"
10605 	    "----------------"
10606 	    "----------------------------\n");
10607 }
10608 
10609 
10610 /****************************************************************************/
10611 /* Prints out the page chain.                                               */
10612 /*                                                                          */
10613 /* Returns:                                                                 */
10614 /*   Nothing.                                                               */
10615 /****************************************************************************/
10616 static __attribute__ ((noinline)) void
10617 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10618 {
10619 	struct rx_bd *pgbd;
10620 
10621 	/* First some info about the page chain structure. */
10622 	BCE_PRINTF(
10623 	    "----------------------------"
10624 	    "   page chain   "
10625 	    "----------------------------\n");
10626 
10627 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10628 	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10629 
10630 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10631 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10632 
10633 	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10634 
10635 	BCE_PRINTF(
10636 	    "----------------------------"
10637 	    "   page data    "
10638 	    "----------------------------\n");
10639 
10640 	/* Now print out the rx_bd's themselves. */
10641 	for (int i = 0; i < count; i++) {
10642 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10643 		bce_dump_pgbd(sc, pg_prod, pgbd);
10644 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10645 	}
10646 
10647 	BCE_PRINTF(
10648 	    "----------------------------"
10649 	    "----------------"
10650 	    "----------------------------\n");
10651 }
10652 
10653 
10654 #define BCE_PRINT_RX_CONS(arg)						\
10655 if (sblk->status_rx_quick_consumer_index##arg)				\
10656 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
10657 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10658 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10659 	    arg);
10660 
10661 
10662 #define BCE_PRINT_TX_CONS(arg)						\
10663 if (sblk->status_tx_quick_consumer_index##arg)				\
10664 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10665 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10666 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10667 	    arg);
10668 
10669 /****************************************************************************/
10670 /* Prints out the status block from host memory.                            */
10671 /*                                                                          */
10672 /* Returns:                                                                 */
10673 /*   Nothing.                                                               */
10674 /****************************************************************************/
10675 static __attribute__ ((noinline)) void
10676 bce_dump_status_block(struct bce_softc *sc)
10677 {
10678 	struct status_block *sblk;
10679 
10680 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10681 
10682 	sblk = sc->status_block;
10683 
10684 	BCE_PRINTF(
10685 	    "----------------------------"
10686 	    "  Status Block  "
10687 	    "----------------------------\n");
10688 
10689 	/* Theses indices are used for normal L2 drivers. */
10690 	BCE_PRINTF("    0x%08X - attn_bits\n",
10691 	    sblk->status_attn_bits);
10692 
10693 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10694 	    sblk->status_attn_bits_ack);
10695 
10696 	BCE_PRINT_RX_CONS(0);
10697 	BCE_PRINT_TX_CONS(0)
10698 
10699 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10700 
10701 	/* Theses indices are not used for normal L2 drivers. */
10702 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10703 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10704 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10705 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10706 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10707 
10708 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10709 
10710 	if (sblk->status_completion_producer_index ||
10711 	    sblk->status_cmd_consumer_index)
10712 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10713 		    sblk->status_completion_producer_index,
10714 		    sblk->status_cmd_consumer_index);
10715 
10716 	BCE_PRINTF(
10717 	    "----------------------------"
10718 	    "----------------"
10719 	    "----------------------------\n");
10720 }
10721 
10722 
10723 #define BCE_PRINT_64BIT_STAT(arg) 				\
10724 if (sblk->arg##_lo || sblk->arg##_hi)				\
10725 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10726 	    sblk->arg##_lo, #arg);
10727 
10728 #define BCE_PRINT_32BIT_STAT(arg)				\
10729 if (sblk->arg)							\
10730 	BCE_PRINTF("         0x%08X : %s\n", 			\
10731 	    sblk->arg, #arg);
10732 
10733 /****************************************************************************/
10734 /* Prints out the statistics block from host memory.                        */
10735 /*                                                                          */
10736 /* Returns:                                                                 */
10737 /*   Nothing.                                                               */
10738 /****************************************************************************/
10739 static __attribute__ ((noinline)) void
10740 bce_dump_stats_block(struct bce_softc *sc)
10741 {
10742 	struct statistics_block *sblk;
10743 
10744 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10745 
10746 	sblk = sc->stats_block;
10747 
10748 	BCE_PRINTF(
10749 	    "---------------"
10750 	    " Stats Block  (All Stats Not Shown Are 0) "
10751 	    "---------------\n");
10752 
10753 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10754 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10755 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10756 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10757 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10758 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10759 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10760 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10761 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10762 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10763 	BCE_PRINT_32BIT_STAT(
10764 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10765 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10766 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10767 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10768 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10769 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10770 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10771 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10772 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10773 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10774 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10775 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10776 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10777 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10778 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10779 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10780 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10781 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10782 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10783 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10784 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10785 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10786 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10787 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10788 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10789 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10790 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10791 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10792 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10793 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10794 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10795 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10796 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10797 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10798 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10799 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10800 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10801 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10802 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10803 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10804 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10805 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10806 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10807 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10808 
10809 	BCE_PRINTF(
10810 	    "----------------------------"
10811 	    "----------------"
10812 	    "----------------------------\n");
10813 }
10814 
10815 
10816 /****************************************************************************/
10817 /* Prints out a summary of the driver state.                                */
10818 /*                                                                          */
10819 /* Returns:                                                                 */
10820 /*   Nothing.                                                               */
10821 /****************************************************************************/
10822 static __attribute__ ((noinline)) void
10823 bce_dump_driver_state(struct bce_softc *sc)
10824 {
10825 	u32 val_hi, val_lo;
10826 
10827 	BCE_PRINTF(
10828 	    "-----------------------------"
10829 	    " Driver State "
10830 	    "-----------------------------\n");
10831 
10832 	val_hi = BCE_ADDR_HI(sc);
10833 	val_lo = BCE_ADDR_LO(sc);
10834 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10835 	    "address\n", val_hi, val_lo);
10836 
10837 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10838 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10839 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10840 	    "address\n", val_hi, val_lo);
10841 
10842 	val_hi = BCE_ADDR_HI(sc->status_block);
10843 	val_lo = BCE_ADDR_LO(sc->status_block);
10844 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10845 	    "virtual address\n",	val_hi, val_lo);
10846 
10847 	val_hi = BCE_ADDR_HI(sc->stats_block);
10848 	val_lo = BCE_ADDR_LO(sc->stats_block);
10849 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10850 	    "virtual address\n", val_hi, val_lo);
10851 
10852 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10853 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10854 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10855 	    "virtual adddress\n", val_hi, val_lo);
10856 
10857 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10858 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10859 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10860 	    "virtual address\n", val_hi, val_lo);
10861 
10862 	if (bce_hdr_split == TRUE) {
10863 		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10864 		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10865 		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10866 		    "virtual address\n", val_hi, val_lo);
10867 	}
10868 
10869 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10870 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10871 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10872 	    "virtual address\n",	val_hi, val_lo);
10873 
10874 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10875 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10876 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10877 	    "virtual address\n", val_hi, val_lo);
10878 
10879 	if (bce_hdr_split == TRUE) {
10880 		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10881 		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10882 		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10883 		    "virtual address\n", val_hi, val_lo);
10884 	}
10885 
10886 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10887 	    "h/w intrs\n",
10888 	    (long long unsigned int) sc->interrupts_generated);
10889 
10890 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10891 	    "rx interrupts handled\n",
10892 	    (long long unsigned int) sc->interrupts_rx);
10893 
10894 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10895 	    "tx interrupts handled\n",
10896 	    (long long unsigned int) sc->interrupts_tx);
10897 
10898 	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10899 	    "phy interrupts handled\n",
10900 	    (long long unsigned int) sc->phy_interrupts);
10901 
10902 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10903 	    "status block index\n", sc->last_status_idx);
10904 
10905 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10906 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10907 
10908 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10909 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10910 
10911 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10912 	    "byte seq index\n",	sc->tx_prod_bseq);
10913 
10914 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10915 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10916 
10917 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10918 	    "tx_bd's\n", sc->used_tx_bd);
10919 
10920 	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10921 	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10922 
10923 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10924 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10925 
10926 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10927 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10928 
10929 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10930 	    "byte seq index\n",	sc->rx_prod_bseq);
10931 
10932 	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10933 		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10934 
10935 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10936 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10937 
10938 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10939 	    "rx_bd's\n", sc->free_rx_bd);
10940 
10941 	if (bce_hdr_split == TRUE) {
10942 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10943 		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10944 
10945 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10946 		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10947 
10948 		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10949 		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10950 	}
10951 
10952 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10953 	    "rx_bd's\n", sc->free_pg_bd);
10954 
10955 	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10956 	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10957 
10958 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10959 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10960 
10961 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10962 	    "bce mac flags\n", sc->bce_flags);
10963 
10964 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10965 	    "bce phy flags\n", sc->bce_phy_flags);
10966 
10967 	BCE_PRINTF(
10968 	    "----------------------------"
10969 	    "----------------"
10970 	    "----------------------------\n");
10971 }
10972 
10973 
10974 /****************************************************************************/
10975 /* Prints out the hardware state through a summary of important register,   */
10976 /* followed by a complete register dump.                                    */
10977 /*                                                                          */
10978 /* Returns:                                                                 */
10979 /*   Nothing.                                                               */
10980 /****************************************************************************/
10981 static __attribute__ ((noinline)) void
10982 bce_dump_hw_state(struct bce_softc *sc)
10983 {
10984 	u32 val;
10985 
10986 	BCE_PRINTF(
10987 	    "----------------------------"
10988 	    " Hardware State "
10989 	    "----------------------------\n");
10990 
10991 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10992 
10993 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10994 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10995 	    val, BCE_MISC_ENABLE_STATUS_BITS);
10996 
10997 	val = REG_RD(sc, BCE_DMA_STATUS);
10998 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10999 	    val, BCE_DMA_STATUS);
11000 
11001 	val = REG_RD(sc, BCE_CTX_STATUS);
11002 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
11003 	    val, BCE_CTX_STATUS);
11004 
11005 	val = REG_RD(sc, BCE_EMAC_STATUS);
11006 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
11007 	    val, BCE_EMAC_STATUS);
11008 
11009 	val = REG_RD(sc, BCE_RPM_STATUS);
11010 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
11011 	    val, BCE_RPM_STATUS);
11012 
11013 	/* ToDo: Create a #define for this constant. */
11014 	val = REG_RD(sc, 0x2004);
11015 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
11016 	    val, 0x2004);
11017 
11018 	val = REG_RD(sc, BCE_RV2P_STATUS);
11019 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
11020 	    val, BCE_RV2P_STATUS);
11021 
11022 	/* ToDo: Create a #define for this constant. */
11023 	val = REG_RD(sc, 0x2c04);
11024 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
11025 	    val, 0x2c04);
11026 
11027 	val = REG_RD(sc, BCE_TBDR_STATUS);
11028 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
11029 	    val, BCE_TBDR_STATUS);
11030 
11031 	val = REG_RD(sc, BCE_TDMA_STATUS);
11032 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
11033 	    val, BCE_TDMA_STATUS);
11034 
11035 	val = REG_RD(sc, BCE_HC_STATUS);
11036 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
11037 	    val, BCE_HC_STATUS);
11038 
11039 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11040 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11041 	    val, BCE_TXP_CPU_STATE);
11042 
11043 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11044 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11045 	    val, BCE_TPAT_CPU_STATE);
11046 
11047 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11048 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11049 	    val, BCE_RXP_CPU_STATE);
11050 
11051 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11052 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11053 	    val, BCE_COM_CPU_STATE);
11054 
11055 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
11056 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
11057 	    val, BCE_MCP_CPU_STATE);
11058 
11059 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11060 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11061 	    val, BCE_CP_CPU_STATE);
11062 
11063 	BCE_PRINTF(
11064 	    "----------------------------"
11065 	    "----------------"
11066 	    "----------------------------\n");
11067 
11068 	BCE_PRINTF(
11069 	    "----------------------------"
11070 	    " Register  Dump "
11071 	    "----------------------------\n");
11072 
11073 	for (int i = 0x400; i < 0x8000; i += 0x10) {
11074 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11075 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11076 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11077 	}
11078 
11079 	BCE_PRINTF(
11080 	    "----------------------------"
11081 	    "----------------"
11082 	    "----------------------------\n");
11083 }
11084 
11085 
11086 /****************************************************************************/
11087 /* Prints out the contentst of shared memory which is used for host driver  */
11088 /* to bootcode firmware communication.                                      */
11089 /*                                                                          */
11090 /* Returns:                                                                 */
11091 /*   Nothing.                                                               */
11092 /****************************************************************************/
11093 static __attribute__ ((noinline)) void
11094 bce_dump_shmem_state(struct bce_softc *sc)
11095 {
11096 	BCE_PRINTF(
11097 	    "----------------------------"
11098 	    " Hardware State "
11099 	    "----------------------------\n");
11100 
11101 	BCE_PRINTF("0x%08X - Shared memory base address\n",
11102 	    sc->bce_shmem_base);
11103 	BCE_PRINTF("%s - bootcode version\n",
11104 	    sc->bce_bc_ver);
11105 
11106 	BCE_PRINTF(
11107 	    "----------------------------"
11108 	    "   Shared Mem   "
11109 	    "----------------------------\n");
11110 
11111 	for (int i = 0x0; i < 0x200; i += 0x10) {
11112 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11113 		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
11114 		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
11115 	}
11116 
11117 	BCE_PRINTF(
11118 	    "----------------------------"
11119 	    "----------------"
11120 	    "----------------------------\n");
11121 }
11122 
11123 
11124 /****************************************************************************/
11125 /* Prints out the mailbox queue registers.                                  */
11126 /*                                                                          */
11127 /* Returns:                                                                 */
11128 /*   Nothing.                                                               */
11129 /****************************************************************************/
11130 static __attribute__ ((noinline)) void
11131 bce_dump_mq_regs(struct bce_softc *sc)
11132 {
11133 	BCE_PRINTF(
11134 	    "----------------------------"
11135 	    "    MQ Regs     "
11136 	    "----------------------------\n");
11137 
11138 	BCE_PRINTF(
11139 	    "----------------------------"
11140 	    "----------------"
11141 	    "----------------------------\n");
11142 
11143 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
11144 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11145 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11146 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11147 	}
11148 
11149 	BCE_PRINTF(
11150 	    "----------------------------"
11151 	    "----------------"
11152 	    "----------------------------\n");
11153 }
11154 
11155 
11156 /****************************************************************************/
11157 /* Prints out the bootcode state.                                           */
11158 /*                                                                          */
11159 /* Returns:                                                                 */
11160 /*   Nothing.                                                               */
11161 /****************************************************************************/
11162 static __attribute__ ((noinline)) void
11163 bce_dump_bc_state(struct bce_softc *sc)
11164 {
11165 	u32 val;
11166 
11167 	BCE_PRINTF(
11168 	    "----------------------------"
11169 	    " Bootcode State "
11170 	    "----------------------------\n");
11171 
11172 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11173 
11174 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
11175 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
11176 	    val, BCE_BC_RESET_TYPE);
11177 
11178 	val = bce_shmem_rd(sc, BCE_BC_STATE);
11179 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
11180 	    val, BCE_BC_STATE);
11181 
11182 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
11183 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
11184 	    val, BCE_BC_STATE_CONDITION);
11185 
11186 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
11187 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
11188 	    val, BCE_BC_STATE_DEBUG_CMD);
11189 
11190 	BCE_PRINTF(
11191 	    "----------------------------"
11192 	    "----------------"
11193 	    "----------------------------\n");
11194 }
11195 
11196 
11197 /****************************************************************************/
11198 /* Prints out the TXP processor state.                                      */
11199 /*                                                                          */
11200 /* Returns:                                                                 */
11201 /*   Nothing.                                                               */
11202 /****************************************************************************/
11203 static __attribute__ ((noinline)) void
11204 bce_dump_txp_state(struct bce_softc *sc, int regs)
11205 {
11206 	u32 val;
11207 	u32 fw_version[3];
11208 
11209 	BCE_PRINTF(
11210 	    "----------------------------"
11211 	    "   TXP  State   "
11212 	    "----------------------------\n");
11213 
11214 	for (int i = 0; i < 3; i++)
11215 		fw_version[i] = htonl(REG_RD_IND(sc,
11216 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11217 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11218 
11219 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11220 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11221 	    val, BCE_TXP_CPU_MODE);
11222 
11223 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11224 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11225 	    val, BCE_TXP_CPU_STATE);
11226 
11227 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11228 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11229 	    val, BCE_TXP_CPU_EVENT_MASK);
11230 
11231 	if (regs) {
11232 		BCE_PRINTF(
11233 		    "----------------------------"
11234 		    " Register  Dump "
11235 		    "----------------------------\n");
11236 
11237 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11238 			/* Skip the big blank spaces */
11239 			if (i < 0x454000 && i > 0x5ffff)
11240 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11241 				    "0x%08X 0x%08X\n", i,
11242 				    REG_RD_IND(sc, i),
11243 				    REG_RD_IND(sc, i + 0x4),
11244 				    REG_RD_IND(sc, i + 0x8),
11245 				    REG_RD_IND(sc, i + 0xC));
11246 		}
11247 	}
11248 
11249 	BCE_PRINTF(
11250 	    "----------------------------"
11251 	    "----------------"
11252 	    "----------------------------\n");
11253 }
11254 
11255 
11256 /****************************************************************************/
11257 /* Prints out the RXP processor state.                                      */
11258 /*                                                                          */
11259 /* Returns:                                                                 */
11260 /*   Nothing.                                                               */
11261 /****************************************************************************/
11262 static __attribute__ ((noinline)) void
11263 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11264 {
11265 	u32 val;
11266 	u32 fw_version[3];
11267 
11268 	BCE_PRINTF(
11269 	    "----------------------------"
11270 	    "   RXP  State   "
11271 	    "----------------------------\n");
11272 
11273 	for (int i = 0; i < 3; i++)
11274 		fw_version[i] = htonl(REG_RD_IND(sc,
11275 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11276 
11277 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11278 
11279 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11280 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11281 	    val, BCE_RXP_CPU_MODE);
11282 
11283 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11284 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11285 	    val, BCE_RXP_CPU_STATE);
11286 
11287 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11288 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11289 	    val, BCE_RXP_CPU_EVENT_MASK);
11290 
11291 	if (regs) {
11292 		BCE_PRINTF(
11293 		    "----------------------------"
11294 		    " Register  Dump "
11295 		    "----------------------------\n");
11296 
11297 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11298 			/* Skip the big blank sapces */
11299 			if (i < 0xc5400 && i > 0xdffff)
11300 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11301 				    "0x%08X 0x%08X\n", i,
11302 				    REG_RD_IND(sc, i),
11303 				    REG_RD_IND(sc, i + 0x4),
11304 				    REG_RD_IND(sc, i + 0x8),
11305 				    REG_RD_IND(sc, i + 0xC));
11306 		}
11307 	}
11308 
11309 	BCE_PRINTF(
11310 	    "----------------------------"
11311 	    "----------------"
11312 	    "----------------------------\n");
11313 }
11314 
11315 
11316 /****************************************************************************/
11317 /* Prints out the TPAT processor state.                                     */
11318 /*                                                                          */
11319 /* Returns:                                                                 */
11320 /*   Nothing.                                                               */
11321 /****************************************************************************/
11322 static __attribute__ ((noinline)) void
11323 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11324 {
11325 	u32 val;
11326 	u32 fw_version[3];
11327 
11328 	BCE_PRINTF(
11329 	    "----------------------------"
11330 	    "   TPAT State   "
11331 	    "----------------------------\n");
11332 
11333 	for (int i = 0; i < 3; i++)
11334 		fw_version[i] = htonl(REG_RD_IND(sc,
11335 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11336 
11337 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11338 
11339 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11340 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11341 	    val, BCE_TPAT_CPU_MODE);
11342 
11343 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11344 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11345 	    val, BCE_TPAT_CPU_STATE);
11346 
11347 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11348 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11349 	    val, BCE_TPAT_CPU_EVENT_MASK);
11350 
11351 	if (regs) {
11352 		BCE_PRINTF(
11353 		    "----------------------------"
11354 		    " Register  Dump "
11355 		    "----------------------------\n");
11356 
11357 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11358 			/* Skip the big blank spaces */
11359 			if (i < 0x854000 && i > 0x9ffff)
11360 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11361 				    "0x%08X 0x%08X\n", i,
11362 				    REG_RD_IND(sc, i),
11363 				    REG_RD_IND(sc, i + 0x4),
11364 				    REG_RD_IND(sc, i + 0x8),
11365 				    REG_RD_IND(sc, i + 0xC));
11366 		}
11367 	}
11368 
11369 	BCE_PRINTF(
11370 		"----------------------------"
11371 		"----------------"
11372 		"----------------------------\n");
11373 }
11374 
11375 
11376 /****************************************************************************/
11377 /* Prints out the Command Procesor (CP) state.                              */
11378 /*                                                                          */
11379 /* Returns:                                                                 */
11380 /*   Nothing.                                                               */
11381 /****************************************************************************/
11382 static __attribute__ ((noinline)) void
11383 bce_dump_cp_state(struct bce_softc *sc, int regs)
11384 {
11385 	u32 val;
11386 	u32 fw_version[3];
11387 
11388 	BCE_PRINTF(
11389 	    "----------------------------"
11390 	    "    CP State    "
11391 	    "----------------------------\n");
11392 
11393 	for (int i = 0; i < 3; i++)
11394 		fw_version[i] = htonl(REG_RD_IND(sc,
11395 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
11396 
11397 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11398 
11399 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11400 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11401 	    val, BCE_CP_CPU_MODE);
11402 
11403 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11404 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11405 	    val, BCE_CP_CPU_STATE);
11406 
11407 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11408 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11409 	    BCE_CP_CPU_EVENT_MASK);
11410 
11411 	if (regs) {
11412 		BCE_PRINTF(
11413 		    "----------------------------"
11414 		    " Register  Dump "
11415 		    "----------------------------\n");
11416 
11417 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11418 			/* Skip the big blank spaces */
11419 			if (i < 0x185400 && i > 0x19ffff)
11420 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11421 				    "0x%08X 0x%08X\n", i,
11422 				    REG_RD_IND(sc, i),
11423 				    REG_RD_IND(sc, i + 0x4),
11424 				    REG_RD_IND(sc, i + 0x8),
11425 				    REG_RD_IND(sc, i + 0xC));
11426 		}
11427 	}
11428 
11429 	BCE_PRINTF(
11430 	    "----------------------------"
11431 	    "----------------"
11432 	    "----------------------------\n");
11433 }
11434 
11435 
11436 /****************************************************************************/
11437 /* Prints out the Completion Procesor (COM) state.                          */
11438 /*                                                                          */
11439 /* Returns:                                                                 */
11440 /*   Nothing.                                                               */
11441 /****************************************************************************/
11442 static __attribute__ ((noinline)) void
11443 bce_dump_com_state(struct bce_softc *sc, int regs)
11444 {
11445 	u32 val;
11446 	u32 fw_version[4];
11447 
11448 	BCE_PRINTF(
11449 	    "----------------------------"
11450 	    "   COM State    "
11451 	    "----------------------------\n");
11452 
11453 	for (int i = 0; i < 3; i++)
11454 		fw_version[i] = htonl(REG_RD_IND(sc,
11455 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
11456 
11457 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11458 
11459 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11460 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11461 	    val, BCE_COM_CPU_MODE);
11462 
11463 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11464 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11465 	    val, BCE_COM_CPU_STATE);
11466 
11467 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11468 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11469 	    BCE_COM_CPU_EVENT_MASK);
11470 
11471 	if (regs) {
11472 		BCE_PRINTF(
11473 		    "----------------------------"
11474 		    " Register  Dump "
11475 		    "----------------------------\n");
11476 
11477 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11478 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11479 			    "0x%08X 0x%08X\n", i,
11480 			    REG_RD_IND(sc, i),
11481 			    REG_RD_IND(sc, i + 0x4),
11482 			    REG_RD_IND(sc, i + 0x8),
11483 			    REG_RD_IND(sc, i + 0xC));
11484 		}
11485 	}
11486 
11487 	BCE_PRINTF(
11488 		"----------------------------"
11489 		"----------------"
11490 		"----------------------------\n");
11491 }
11492 
11493 
11494 /****************************************************************************/
11495 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11496 /*                                                                          */
11497 /* Returns:                                                                 */
11498 /*   Nothing.                                                               */
11499 /****************************************************************************/
11500 static __attribute__ ((noinline)) void
11501 bce_dump_rv2p_state(struct bce_softc *sc)
11502 {
11503 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11504 
11505 	BCE_PRINTF(
11506 	    "----------------------------"
11507 	    "   RV2P State   "
11508 	    "----------------------------\n");
11509 
11510 	/* Stall the RV2P processors. */
11511 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11512 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11513 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11514 
11515 	/* Read the firmware version. */
11516 	val = 0x00000001;
11517 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11518 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11519 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11520 	    BCE_RV2P_INSTR_HIGH_HIGH;
11521 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11522 	    fw_ver_high, fw_ver_low);
11523 
11524 	val = 0x00000001;
11525 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11526 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11527 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11528 	    BCE_RV2P_INSTR_HIGH_HIGH;
11529 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11530 	    fw_ver_high, fw_ver_low);
11531 
11532 	/* Resume the RV2P processors. */
11533 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11534 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11535 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11536 
11537 	/* Fetch the program counter value. */
11538 	val = 0x68007800;
11539 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11540 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11541 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11542 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11543 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11544 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11545 
11546 	/* Fetch the program counter value again to see if it is advancing. */
11547 	val = 0x68007800;
11548 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11549 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11550 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11551 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11552 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11553 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11554 
11555 	BCE_PRINTF(
11556 	    "----------------------------"
11557 	    "----------------"
11558 	    "----------------------------\n");
11559 }
11560 
11561 
11562 /****************************************************************************/
11563 /* Prints out the driver state and then enters the debugger.                */
11564 /*                                                                          */
11565 /* Returns:                                                                 */
11566 /*   Nothing.                                                               */
11567 /****************************************************************************/
11568 static __attribute__ ((noinline)) void
11569 bce_breakpoint(struct bce_softc *sc)
11570 {
11571 
11572 	/*
11573 	 * Unreachable code to silence compiler warnings
11574 	 * about unused functions.
11575 	 */
11576 	if (0) {
11577 		bce_freeze_controller(sc);
11578 		bce_unfreeze_controller(sc);
11579 		bce_dump_enet(sc, NULL);
11580 		bce_dump_txbd(sc, 0, NULL);
11581 		bce_dump_rxbd(sc, 0, NULL);
11582 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11583 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11584 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11585 		bce_dump_l2fhdr(sc, 0, NULL);
11586 		bce_dump_ctx(sc, RX_CID);
11587 		bce_dump_ftqs(sc);
11588 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11589 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11590 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11591 		bce_dump_status_block(sc);
11592 		bce_dump_stats_block(sc);
11593 		bce_dump_driver_state(sc);
11594 		bce_dump_hw_state(sc);
11595 		bce_dump_bc_state(sc);
11596 		bce_dump_txp_state(sc, 0);
11597 		bce_dump_rxp_state(sc, 0);
11598 		bce_dump_tpat_state(sc, 0);
11599 		bce_dump_cp_state(sc, 0);
11600 		bce_dump_com_state(sc, 0);
11601 		bce_dump_rv2p_state(sc);
11602 		bce_dump_pgbd(sc, 0, NULL);
11603 	}
11604 
11605 	bce_dump_status_block(sc);
11606 	bce_dump_driver_state(sc);
11607 
11608 	/* Call the debugger. */
11609 	breakpoint();
11610 }
11611 #endif
11612