xref: /freebsd/sys/dev/bge/if_bge.c (revision 206b73d0)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 /*
40  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
41  *
42  * The Broadcom BCM5700 is based on technology originally developed by
43  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
44  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
45  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
46  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
47  * frames, highly configurable RX filtering, and 16 RX and TX queues
48  * (which, along with RX filter rules, can be used for QOS applications).
49  * Other features, such as TCP segmentation, may be available as part
50  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
51  * firmware images can be stored in hardware and need not be compiled
52  * into the driver.
53  *
54  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
55  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
56  *
57  * The BCM5701 is a single-chip solution incorporating both the BCM5700
58  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
59  * does not support external SSRAM.
60  *
61  * Broadcom also produces a variation of the BCM5700 under the "Altima"
62  * brand name, which is functionally similar but lacks PCI-X support.
63  *
64  * Without external SSRAM, you can only have at most 4 TX rings,
65  * and the use of the mini RX ring is disabled. This seems to imply
66  * that these features are simply not available on the BCM5701. As a
67  * result, this driver does not implement any support for the mini RX
68  * ring.
69  */
70 
71 #ifdef HAVE_KERNEL_OPTION_HEADERS
72 #include "opt_device_polling.h"
73 #endif
74 
75 #include <sys/param.h>
76 #include <sys/endian.h>
77 #include <sys/systm.h>
78 #include <sys/sockio.h>
79 #include <sys/mbuf.h>
80 #include <sys/malloc.h>
81 #include <sys/kernel.h>
82 #include <sys/module.h>
83 #include <sys/socket.h>
84 #include <sys/sysctl.h>
85 #include <sys/taskqueue.h>
86 
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 
94 #include <net/bpf.h>
95 
96 #include <net/if_types.h>
97 #include <net/if_vlan_var.h>
98 
99 #include <netinet/in_systm.h>
100 #include <netinet/in.h>
101 #include <netinet/ip.h>
102 #include <netinet/tcp.h>
103 #include <netinet/netdump/netdump.h>
104 
105 #include <machine/bus.h>
106 #include <machine/resource.h>
107 #include <sys/bus.h>
108 #include <sys/rman.h>
109 
110 #include <dev/mii/mii.h>
111 #include <dev/mii/miivar.h>
112 #include "miidevs.h"
113 #include <dev/mii/brgphyreg.h>
114 
115 #ifdef __sparc64__
116 #include <dev/ofw/ofw_bus.h>
117 #include <dev/ofw/openfirm.h>
118 #include <machine/ofw_machdep.h>
119 #include <machine/ver.h>
120 #endif
121 
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 
125 #include <dev/bge/if_bgereg.h>
126 
127 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
128 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
129 
130 MODULE_DEPEND(bge, pci, 1, 1, 1);
131 MODULE_DEPEND(bge, ether, 1, 1, 1);
132 MODULE_DEPEND(bge, miibus, 1, 1, 1);
133 
134 /* "device miibus" required.  See GENERIC if you get errors here. */
135 #include "miibus_if.h"
136 
137 /*
138  * Various supported device vendors/types and their names. Note: the
139  * spec seems to indicate that the hardware still has Alteon's vendor
140  * ID burned into it, though it will always be overriden by the vendor
141  * ID in the EEPROM. Just to be safe, we cover all possibilities.
142  */
143 static const struct bge_type {
144 	uint16_t	bge_vid;
145 	uint16_t	bge_did;
146 } bge_devs[] = {
147 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
148 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
149 
150 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
151 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
152 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
153 
154 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
155 
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717C },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5725 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5727 },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5762 },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
227 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
228 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57764 },
229 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
230 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
231 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57767 },
232 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
233 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
234 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57782 },
235 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
236 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57786 },
237 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57787 },
238 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
239 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
240 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
241 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
242 
243 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
244 
245 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
246 
247 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
248 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
249 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
250 
251 	{ 0, 0 }
252 };
253 
254 static const struct bge_vendor {
255 	uint16_t	v_id;
256 	const char	*v_name;
257 } bge_vendors[] = {
258 	{ ALTEON_VENDORID,	"Alteon" },
259 	{ ALTIMA_VENDORID,	"Altima" },
260 	{ APPLE_VENDORID,	"Apple" },
261 	{ BCOM_VENDORID,	"Broadcom" },
262 	{ SK_VENDORID,		"SysKonnect" },
263 	{ TC_VENDORID,		"3Com" },
264 	{ FJTSU_VENDORID,	"Fujitsu" },
265 
266 	{ 0, NULL }
267 };
268 
269 static const struct bge_revision {
270 	uint32_t	br_chipid;
271 	const char	*br_name;
272 } bge_revisions[] = {
273 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
274 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
275 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
276 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
277 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
278 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
279 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
280 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
281 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
282 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
283 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
284 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
285 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
286 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
287 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
288 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
289 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
290 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
291 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
292 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
293 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
294 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
295 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
296 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
297 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
298 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
299 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
300 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
301 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
302 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
303 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
304 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
305 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
306 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
307 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
308 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
309 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
310 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
311 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
312 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
313 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
314 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
315 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
316 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
317 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
318 	{ BGE_CHIPID_BCM5717_C0,	"BCM5717 C0" },
319 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
320 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
321 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
322 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
323 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
324 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
325 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
326 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
327 	{ BGE_CHIPID_BCM5762_A0,	"BCM5762 A0" },
328 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
329 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
330 	/* 5754 and 5787 share the same ASIC ID */
331 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
332 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
333 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
334 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
335 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
336 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
337 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
338 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
339 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
340 
341 	{ 0, NULL }
342 };
343 
344 /*
345  * Some defaults for major revisions, so that newer steppings
346  * that we don't know about have a shot at working.
347  */
348 static const struct bge_revision bge_majorrevs[] = {
349 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
350 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
351 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
352 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
353 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
354 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
355 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
356 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
357 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
358 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
359 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
360 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
361 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
362 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
363 	/* 5754 and 5787 share the same ASIC ID */
364 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
365 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
366 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
367 	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
368 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
369 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
370 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
371 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
372 	{ BGE_ASICREV_BCM5762,		"unknown BCM5762" },
373 
374 	{ 0, NULL }
375 };
376 
377 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
378 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
379 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
380 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
381 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
382 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
383 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
384 #define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
385 
386 static uint32_t bge_chipid(device_t);
387 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
388 static const struct bge_revision * bge_lookup_rev(uint32_t);
389 
390 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
391 
392 static int bge_probe(device_t);
393 static int bge_attach(device_t);
394 static int bge_detach(device_t);
395 static int bge_suspend(device_t);
396 static int bge_resume(device_t);
397 static void bge_release_resources(struct bge_softc *);
398 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
399 static int bge_dma_alloc(struct bge_softc *);
400 static void bge_dma_free(struct bge_softc *);
401 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
402     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
403 
404 static void bge_devinfo(struct bge_softc *);
405 static int bge_mbox_reorder(struct bge_softc *);
406 
407 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
408 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
409 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
410 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
411 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
412 
413 static void bge_txeof(struct bge_softc *, uint16_t);
414 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
415 static int bge_rxeof(struct bge_softc *, uint16_t, int);
416 
417 static void bge_asf_driver_up (struct bge_softc *);
418 static void bge_tick(void *);
419 static void bge_stats_clear_regs(struct bge_softc *);
420 static void bge_stats_update(struct bge_softc *);
421 static void bge_stats_update_regs(struct bge_softc *);
422 static struct mbuf *bge_check_short_dma(struct mbuf *);
423 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
424     uint16_t *, uint16_t *);
425 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
426 
427 static void bge_intr(void *);
428 static int bge_msi_intr(void *);
429 static void bge_intr_task(void *, int);
430 static void bge_start(if_t);
431 static void bge_start_locked(if_t);
432 static void bge_start_tx(struct bge_softc *, uint32_t);
433 static int bge_ioctl(if_t, u_long, caddr_t);
434 static void bge_init_locked(struct bge_softc *);
435 static void bge_init(void *);
436 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
437 static void bge_stop(struct bge_softc *);
438 static void bge_watchdog(struct bge_softc *);
439 static int bge_shutdown(device_t);
440 static int bge_ifmedia_upd_locked(if_t);
441 static int bge_ifmedia_upd(if_t);
442 static void bge_ifmedia_sts(if_t, struct ifmediareq *);
443 static uint64_t bge_get_counter(if_t, ift_counter);
444 
445 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
446 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
447 
448 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
449 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
450 
451 static void bge_setpromisc(struct bge_softc *);
452 static void bge_setmulti(struct bge_softc *);
453 static void bge_setvlan(struct bge_softc *);
454 
455 static __inline void bge_rxreuse_std(struct bge_softc *, int);
456 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
457 static int bge_newbuf_std(struct bge_softc *, int);
458 static int bge_newbuf_jumbo(struct bge_softc *, int);
459 static int bge_init_rx_ring_std(struct bge_softc *);
460 static void bge_free_rx_ring_std(struct bge_softc *);
461 static int bge_init_rx_ring_jumbo(struct bge_softc *);
462 static void bge_free_rx_ring_jumbo(struct bge_softc *);
463 static void bge_free_tx_ring(struct bge_softc *);
464 static int bge_init_tx_ring(struct bge_softc *);
465 
466 static int bge_chipinit(struct bge_softc *);
467 static int bge_blockinit(struct bge_softc *);
468 static uint32_t bge_dma_swap_options(struct bge_softc *);
469 
470 static int bge_has_eaddr(struct bge_softc *);
471 static uint32_t bge_readmem_ind(struct bge_softc *, int);
472 static void bge_writemem_ind(struct bge_softc *, int, int);
473 static void bge_writembx(struct bge_softc *, int, int);
474 #ifdef notdef
475 static uint32_t bge_readreg_ind(struct bge_softc *, int);
476 #endif
477 static void bge_writemem_direct(struct bge_softc *, int, int);
478 static void bge_writereg_ind(struct bge_softc *, int, int);
479 
480 static int bge_miibus_readreg(device_t, int, int);
481 static int bge_miibus_writereg(device_t, int, int, int);
482 static void bge_miibus_statchg(device_t);
483 #ifdef DEVICE_POLLING
484 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
485 #endif
486 
487 #define	BGE_RESET_SHUTDOWN	0
488 #define	BGE_RESET_START		1
489 #define	BGE_RESET_SUSPEND	2
490 static void bge_sig_post_reset(struct bge_softc *, int);
491 static void bge_sig_legacy(struct bge_softc *, int);
492 static void bge_sig_pre_reset(struct bge_softc *, int);
493 static void bge_stop_fw(struct bge_softc *);
494 static int bge_reset(struct bge_softc *);
495 static void bge_link_upd(struct bge_softc *);
496 
497 static void bge_ape_lock_init(struct bge_softc *);
498 static void bge_ape_read_fw_ver(struct bge_softc *);
499 static int bge_ape_lock(struct bge_softc *, int);
500 static void bge_ape_unlock(struct bge_softc *, int);
501 static void bge_ape_send_event(struct bge_softc *, uint32_t);
502 static void bge_ape_driver_state_change(struct bge_softc *, int);
503 
504 /*
505  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
506  * leak information to untrusted users.  It is also known to cause alignment
507  * traps on certain architectures.
508  */
509 #ifdef BGE_REGISTER_DEBUG
510 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
511 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
512 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
513 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
514 #endif
515 static void bge_add_sysctls(struct bge_softc *);
516 static void bge_add_sysctl_stats_regs(struct bge_softc *,
517     struct sysctl_ctx_list *, struct sysctl_oid_list *);
518 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
519     struct sysctl_oid_list *);
520 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
521 
522 NETDUMP_DEFINE(bge);
523 
524 static device_method_t bge_methods[] = {
525 	/* Device interface */
526 	DEVMETHOD(device_probe,		bge_probe),
527 	DEVMETHOD(device_attach,	bge_attach),
528 	DEVMETHOD(device_detach,	bge_detach),
529 	DEVMETHOD(device_shutdown,	bge_shutdown),
530 	DEVMETHOD(device_suspend,	bge_suspend),
531 	DEVMETHOD(device_resume,	bge_resume),
532 
533 	/* MII interface */
534 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
535 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
536 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
537 
538 	DEVMETHOD_END
539 };
540 
541 static driver_t bge_driver = {
542 	"bge",
543 	bge_methods,
544 	sizeof(struct bge_softc)
545 };
546 
547 static devclass_t bge_devclass;
548 
549 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
550 MODULE_PNP_INFO("U16:vendor;U16:device", pci, bge, bge_devs,
551     nitems(bge_devs) - 1);
552 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
553 
554 static int bge_allow_asf = 1;
555 
556 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
557 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
558 	"Allow ASF mode if available");
559 
560 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
561 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
562 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
563 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
564 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
565 
566 static int
567 bge_has_eaddr(struct bge_softc *sc)
568 {
569 #ifdef __sparc64__
570 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
571 	device_t dev;
572 	uint32_t subvendor;
573 
574 	dev = sc->bge_dev;
575 
576 	/*
577 	 * The on-board BGEs found in sun4u machines aren't fitted with
578 	 * an EEPROM which means that we have to obtain the MAC address
579 	 * via OFW and that some tests will always fail.  We distinguish
580 	 * such BGEs by the subvendor ID, which also has to be obtained
581 	 * from OFW instead of the PCI configuration space as the latter
582 	 * indicates Broadcom as the subvendor of the netboot interface.
583 	 * For early Blade 1500 and 2500 we even have to check the OFW
584 	 * device path as the subvendor ID always defaults to Broadcom
585 	 * there.
586 	 */
587 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
588 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
589 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
590 		return (0);
591 	memset(buf, 0, sizeof(buf));
592 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
593 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
594 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
595 			return (0);
596 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
597 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
598 			return (0);
599 	}
600 #endif
601 	return (1);
602 }
603 
604 static uint32_t
605 bge_readmem_ind(struct bge_softc *sc, int off)
606 {
607 	device_t dev;
608 	uint32_t val;
609 
610 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
611 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
612 		return (0);
613 
614 	dev = sc->bge_dev;
615 
616 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
617 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
618 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
619 	return (val);
620 }
621 
622 static void
623 bge_writemem_ind(struct bge_softc *sc, int off, int val)
624 {
625 	device_t dev;
626 
627 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
628 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
629 		return;
630 
631 	dev = sc->bge_dev;
632 
633 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
634 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
635 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
636 }
637 
638 #ifdef notdef
639 static uint32_t
640 bge_readreg_ind(struct bge_softc *sc, int off)
641 {
642 	device_t dev;
643 
644 	dev = sc->bge_dev;
645 
646 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
647 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
648 }
649 #endif
650 
651 static void
652 bge_writereg_ind(struct bge_softc *sc, int off, int val)
653 {
654 	device_t dev;
655 
656 	dev = sc->bge_dev;
657 
658 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
659 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
660 }
661 
662 static void
663 bge_writemem_direct(struct bge_softc *sc, int off, int val)
664 {
665 	CSR_WRITE_4(sc, off, val);
666 }
667 
668 static void
669 bge_writembx(struct bge_softc *sc, int off, int val)
670 {
671 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
672 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
673 
674 	CSR_WRITE_4(sc, off, val);
675 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
676 		CSR_READ_4(sc, off);
677 }
678 
679 /*
680  * Clear all stale locks and select the lock for this driver instance.
681  */
682 static void
683 bge_ape_lock_init(struct bge_softc *sc)
684 {
685 	uint32_t bit, regbase;
686 	int i;
687 
688 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
689 		regbase = BGE_APE_LOCK_GRANT;
690 	else
691 		regbase = BGE_APE_PER_LOCK_GRANT;
692 
693 	/* Clear any stale locks. */
694 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
695 		switch (i) {
696 		case BGE_APE_LOCK_PHY0:
697 		case BGE_APE_LOCK_PHY1:
698 		case BGE_APE_LOCK_PHY2:
699 		case BGE_APE_LOCK_PHY3:
700 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
701 			break;
702 		default:
703 			if (sc->bge_func_addr == 0)
704 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
705 			else
706 				bit = (1 << sc->bge_func_addr);
707 		}
708 		APE_WRITE_4(sc, regbase + 4 * i, bit);
709 	}
710 
711 	/* Select the PHY lock based on the device's function number. */
712 	switch (sc->bge_func_addr) {
713 	case 0:
714 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
715 		break;
716 	case 1:
717 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
718 		break;
719 	case 2:
720 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
721 		break;
722 	case 3:
723 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
724 		break;
725 	default:
726 		device_printf(sc->bge_dev,
727 		    "PHY lock not supported on this function\n");
728 	}
729 }
730 
731 /*
732  * Check for APE firmware, set flags, and print version info.
733  */
734 static void
735 bge_ape_read_fw_ver(struct bge_softc *sc)
736 {
737 	const char *fwtype;
738 	uint32_t apedata, features;
739 
740 	/* Check for a valid APE signature in shared memory. */
741 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
742 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
743 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
744 		return;
745 	}
746 
747 	/* Check if APE firmware is running. */
748 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
749 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
750 		device_printf(sc->bge_dev, "APE signature found "
751 		    "but FW status not ready! 0x%08x\n", apedata);
752 		return;
753 	}
754 
755 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
756 
757 	/* Fetch the APE firwmare type and version. */
758 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
759 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
760 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
761 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
762 		fwtype = "NCSI";
763 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
764 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
765 		fwtype = "DASH";
766 	} else
767 		fwtype = "UNKN";
768 
769 	/* Print the APE firmware version. */
770 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
771 	    fwtype,
772 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
773 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
774 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
775 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
776 }
777 
778 static int
779 bge_ape_lock(struct bge_softc *sc, int locknum)
780 {
781 	uint32_t bit, gnt, req, status;
782 	int i, off;
783 
784 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
785 		return (0);
786 
787 	/* Lock request/grant registers have different bases. */
788 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
789 		req = BGE_APE_LOCK_REQ;
790 		gnt = BGE_APE_LOCK_GRANT;
791 	} else {
792 		req = BGE_APE_PER_LOCK_REQ;
793 		gnt = BGE_APE_PER_LOCK_GRANT;
794 	}
795 
796 	off = 4 * locknum;
797 
798 	switch (locknum) {
799 	case BGE_APE_LOCK_GPIO:
800 		/* Lock required when using GPIO. */
801 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
802 			return (0);
803 		if (sc->bge_func_addr == 0)
804 			bit = BGE_APE_LOCK_REQ_DRIVER0;
805 		else
806 			bit = (1 << sc->bge_func_addr);
807 		break;
808 	case BGE_APE_LOCK_GRC:
809 		/* Lock required to reset the device. */
810 		if (sc->bge_func_addr == 0)
811 			bit = BGE_APE_LOCK_REQ_DRIVER0;
812 		else
813 			bit = (1 << sc->bge_func_addr);
814 		break;
815 	case BGE_APE_LOCK_MEM:
816 		/* Lock required when accessing certain APE memory. */
817 		if (sc->bge_func_addr == 0)
818 			bit = BGE_APE_LOCK_REQ_DRIVER0;
819 		else
820 			bit = (1 << sc->bge_func_addr);
821 		break;
822 	case BGE_APE_LOCK_PHY0:
823 	case BGE_APE_LOCK_PHY1:
824 	case BGE_APE_LOCK_PHY2:
825 	case BGE_APE_LOCK_PHY3:
826 		/* Lock required when accessing PHYs. */
827 		bit = BGE_APE_LOCK_REQ_DRIVER0;
828 		break;
829 	default:
830 		return (EINVAL);
831 	}
832 
833 	/* Request a lock. */
834 	APE_WRITE_4(sc, req + off, bit);
835 
836 	/* Wait up to 1 second to acquire lock. */
837 	for (i = 0; i < 20000; i++) {
838 		status = APE_READ_4(sc, gnt + off);
839 		if (status == bit)
840 			break;
841 		DELAY(50);
842 	}
843 
844 	/* Handle any errors. */
845 	if (status != bit) {
846 		device_printf(sc->bge_dev, "APE lock %d request failed! "
847 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
848 		    locknum, req + off, bit & 0xFFFF, gnt + off,
849 		    status & 0xFFFF);
850 		/* Revoke the lock request. */
851 		APE_WRITE_4(sc, gnt + off, bit);
852 		return (EBUSY);
853 	}
854 
855 	return (0);
856 }
857 
858 static void
859 bge_ape_unlock(struct bge_softc *sc, int locknum)
860 {
861 	uint32_t bit, gnt;
862 	int off;
863 
864 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
865 		return;
866 
867 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
868 		gnt = BGE_APE_LOCK_GRANT;
869 	else
870 		gnt = BGE_APE_PER_LOCK_GRANT;
871 
872 	off = 4 * locknum;
873 
874 	switch (locknum) {
875 	case BGE_APE_LOCK_GPIO:
876 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
877 			return;
878 		if (sc->bge_func_addr == 0)
879 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
880 		else
881 			bit = (1 << sc->bge_func_addr);
882 		break;
883 	case BGE_APE_LOCK_GRC:
884 		if (sc->bge_func_addr == 0)
885 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
886 		else
887 			bit = (1 << sc->bge_func_addr);
888 		break;
889 	case BGE_APE_LOCK_MEM:
890 		if (sc->bge_func_addr == 0)
891 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
892 		else
893 			bit = (1 << sc->bge_func_addr);
894 		break;
895 	case BGE_APE_LOCK_PHY0:
896 	case BGE_APE_LOCK_PHY1:
897 	case BGE_APE_LOCK_PHY2:
898 	case BGE_APE_LOCK_PHY3:
899 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
900 		break;
901 	default:
902 		return;
903 	}
904 
905 	APE_WRITE_4(sc, gnt + off, bit);
906 }
907 
908 /*
909  * Send an event to the APE firmware.
910  */
911 static void
912 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
913 {
914 	uint32_t apedata;
915 	int i;
916 
917 	/* NCSI does not support APE events. */
918 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
919 		return;
920 
921 	/* Wait up to 1ms for APE to service previous event. */
922 	for (i = 10; i > 0; i--) {
923 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
924 			break;
925 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
926 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
927 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
928 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
929 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
930 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
931 			break;
932 		}
933 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
934 		DELAY(100);
935 	}
936 	if (i == 0)
937 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
938 		    event);
939 }
940 
941 static void
942 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
943 {
944 	uint32_t apedata, event;
945 
946 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
947 		return;
948 
949 	switch (kind) {
950 	case BGE_RESET_START:
951 		/* If this is the first load, clear the load counter. */
952 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
953 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
954 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
955 		else {
956 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
957 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
958 		}
959 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
960 		    BGE_APE_HOST_SEG_SIG_MAGIC);
961 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
962 		    BGE_APE_HOST_SEG_LEN_MAGIC);
963 
964 		/* Add some version info if bge(4) supports it. */
965 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
966 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
967 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
968 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
969 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
970 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
971 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
972 		    BGE_APE_HOST_DRVR_STATE_START);
973 		event = BGE_APE_EVENT_STATUS_STATE_START;
974 		break;
975 	case BGE_RESET_SHUTDOWN:
976 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
977 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
978 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
979 		break;
980 	case BGE_RESET_SUSPEND:
981 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
982 		break;
983 	default:
984 		return;
985 	}
986 
987 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
988 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
989 }
990 
991 /*
992  * Map a single buffer address.
993  */
994 
995 static void
996 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
997 {
998 	struct bge_dmamap_arg *ctx;
999 
1000 	if (error)
1001 		return;
1002 
1003 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
1004 
1005 	ctx = arg;
1006 	ctx->bge_busaddr = segs->ds_addr;
1007 }
1008 
1009 static uint8_t
1010 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1011 {
1012 	uint32_t access, byte = 0;
1013 	int i;
1014 
1015 	/* Lock. */
1016 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1017 	for (i = 0; i < 8000; i++) {
1018 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1019 			break;
1020 		DELAY(20);
1021 	}
1022 	if (i == 8000)
1023 		return (1);
1024 
1025 	/* Enable access. */
1026 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1027 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1028 
1029 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1030 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1031 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1032 		DELAY(10);
1033 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1034 			DELAY(10);
1035 			break;
1036 		}
1037 	}
1038 
1039 	if (i == BGE_TIMEOUT * 10) {
1040 		if_printf(sc->bge_ifp, "nvram read timed out\n");
1041 		return (1);
1042 	}
1043 
1044 	/* Get result. */
1045 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1046 
1047 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1048 
1049 	/* Disable access. */
1050 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1051 
1052 	/* Unlock. */
1053 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1054 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1055 
1056 	return (0);
1057 }
1058 
1059 /*
1060  * Read a sequence of bytes from NVRAM.
1061  */
1062 static int
1063 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1064 {
1065 	int err = 0, i;
1066 	uint8_t byte = 0;
1067 
1068 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1069 		return (1);
1070 
1071 	for (i = 0; i < cnt; i++) {
1072 		err = bge_nvram_getbyte(sc, off + i, &byte);
1073 		if (err)
1074 			break;
1075 		*(dest + i) = byte;
1076 	}
1077 
1078 	return (err ? 1 : 0);
1079 }
1080 
1081 /*
1082  * Read a byte of data stored in the EEPROM at address 'addr.' The
1083  * BCM570x supports both the traditional bitbang interface and an
1084  * auto access interface for reading the EEPROM. We use the auto
1085  * access method.
1086  */
1087 static uint8_t
1088 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1089 {
1090 	int i;
1091 	uint32_t byte = 0;
1092 
1093 	/*
1094 	 * Enable use of auto EEPROM access so we can avoid
1095 	 * having to use the bitbang method.
1096 	 */
1097 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1098 
1099 	/* Reset the EEPROM, load the clock period. */
1100 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1101 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1102 	DELAY(20);
1103 
1104 	/* Issue the read EEPROM command. */
1105 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1106 
1107 	/* Wait for completion */
1108 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1109 		DELAY(10);
1110 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1111 			break;
1112 	}
1113 
1114 	if (i == BGE_TIMEOUT * 10) {
1115 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1116 		return (1);
1117 	}
1118 
1119 	/* Get result. */
1120 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1121 
1122 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1123 
1124 	return (0);
1125 }
1126 
1127 /*
1128  * Read a sequence of bytes from the EEPROM.
1129  */
1130 static int
1131 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1132 {
1133 	int i, error = 0;
1134 	uint8_t byte = 0;
1135 
1136 	for (i = 0; i < cnt; i++) {
1137 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1138 		if (error)
1139 			break;
1140 		*(dest + i) = byte;
1141 	}
1142 
1143 	return (error ? 1 : 0);
1144 }
1145 
1146 static int
1147 bge_miibus_readreg(device_t dev, int phy, int reg)
1148 {
1149 	struct bge_softc *sc;
1150 	uint32_t val;
1151 	int i;
1152 
1153 	sc = device_get_softc(dev);
1154 
1155 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1156 		return (0);
1157 
1158 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1159 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1160 		CSR_WRITE_4(sc, BGE_MI_MODE,
1161 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1162 		DELAY(80);
1163 	}
1164 
1165 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1166 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1167 
1168 	/* Poll for the PHY register access to complete. */
1169 	for (i = 0; i < BGE_TIMEOUT; i++) {
1170 		DELAY(10);
1171 		val = CSR_READ_4(sc, BGE_MI_COMM);
1172 		if ((val & BGE_MICOMM_BUSY) == 0) {
1173 			DELAY(5);
1174 			val = CSR_READ_4(sc, BGE_MI_COMM);
1175 			break;
1176 		}
1177 	}
1178 
1179 	if (i == BGE_TIMEOUT) {
1180 		device_printf(sc->bge_dev,
1181 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1182 		    phy, reg, val);
1183 		val = 0;
1184 	}
1185 
1186 	/* Restore the autopoll bit if necessary. */
1187 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1188 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1189 		DELAY(80);
1190 	}
1191 
1192 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1193 
1194 	if (val & BGE_MICOMM_READFAIL)
1195 		return (0);
1196 
1197 	return (val & 0xFFFF);
1198 }
1199 
1200 static int
1201 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1202 {
1203 	struct bge_softc *sc;
1204 	int i;
1205 
1206 	sc = device_get_softc(dev);
1207 
1208 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1209 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1210 		return (0);
1211 
1212 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1213 		return (0);
1214 
1215 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1216 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1217 		CSR_WRITE_4(sc, BGE_MI_MODE,
1218 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1219 		DELAY(80);
1220 	}
1221 
1222 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1223 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1224 
1225 	for (i = 0; i < BGE_TIMEOUT; i++) {
1226 		DELAY(10);
1227 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1228 			DELAY(5);
1229 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1230 			break;
1231 		}
1232 	}
1233 
1234 	/* Restore the autopoll bit if necessary. */
1235 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1236 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1237 		DELAY(80);
1238 	}
1239 
1240 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1241 
1242 	if (i == BGE_TIMEOUT)
1243 		device_printf(sc->bge_dev,
1244 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1245 		    phy, reg, val);
1246 
1247 	return (0);
1248 }
1249 
1250 static void
1251 bge_miibus_statchg(device_t dev)
1252 {
1253 	struct bge_softc *sc;
1254 	struct mii_data *mii;
1255 	uint32_t mac_mode, rx_mode, tx_mode;
1256 
1257 	sc = device_get_softc(dev);
1258 	if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
1259 		return;
1260 	mii = device_get_softc(sc->bge_miibus);
1261 
1262 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1263 	    (IFM_ACTIVE | IFM_AVALID)) {
1264 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1265 		case IFM_10_T:
1266 		case IFM_100_TX:
1267 			sc->bge_link = 1;
1268 			break;
1269 		case IFM_1000_T:
1270 		case IFM_1000_SX:
1271 		case IFM_2500_SX:
1272 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1273 				sc->bge_link = 1;
1274 			else
1275 				sc->bge_link = 0;
1276 			break;
1277 		default:
1278 			sc->bge_link = 0;
1279 			break;
1280 		}
1281 	} else
1282 		sc->bge_link = 0;
1283 	if (sc->bge_link == 0)
1284 		return;
1285 
1286 	/*
1287 	 * APE firmware touches these registers to keep the MAC
1288 	 * connected to the outside world.  Try to keep the
1289 	 * accesses atomic.
1290 	 */
1291 
1292 	/* Set the port mode (MII/GMII) to match the link speed. */
1293 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1294 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1295 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1296 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1297 
1298 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1299 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1300 		mac_mode |= BGE_PORTMODE_GMII;
1301 	else
1302 		mac_mode |= BGE_PORTMODE_MII;
1303 
1304 	/* Set MAC flow control behavior to match link flow control settings. */
1305 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1306 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1307 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1308 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1309 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1310 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1311 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1312 	} else
1313 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1314 
1315 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1316 	DELAY(40);
1317 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1318 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1319 }
1320 
1321 /*
1322  * Intialize a standard receive ring descriptor.
1323  */
1324 static int
1325 bge_newbuf_std(struct bge_softc *sc, int i)
1326 {
1327 	struct mbuf *m;
1328 	struct bge_rx_bd *r;
1329 	bus_dma_segment_t segs[1];
1330 	bus_dmamap_t map;
1331 	int error, nsegs;
1332 
1333 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1334 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
1335 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1336 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1337 		if (m == NULL)
1338 			return (ENOBUFS);
1339 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1340 	} else {
1341 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1342 		if (m == NULL)
1343 			return (ENOBUFS);
1344 		m->m_len = m->m_pkthdr.len = MCLBYTES;
1345 	}
1346 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1347 		m_adj(m, ETHER_ALIGN);
1348 
1349 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1350 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1351 	if (error != 0) {
1352 		m_freem(m);
1353 		return (error);
1354 	}
1355 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1356 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1357 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1358 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1359 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1360 	}
1361 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1362 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1363 	sc->bge_cdata.bge_rx_std_sparemap = map;
1364 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1365 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1366 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1367 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1368 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1369 	r->bge_flags = BGE_RXBDFLAG_END;
1370 	r->bge_len = segs[0].ds_len;
1371 	r->bge_idx = i;
1372 
1373 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1374 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1375 
1376 	return (0);
1377 }
1378 
1379 /*
1380  * Initialize a jumbo receive ring descriptor. This allocates
1381  * a jumbo buffer from the pool managed internally by the driver.
1382  */
1383 static int
1384 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1385 {
1386 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1387 	bus_dmamap_t map;
1388 	struct bge_extrx_bd *r;
1389 	struct mbuf *m;
1390 	int error, nsegs;
1391 
1392 	MGETHDR(m, M_NOWAIT, MT_DATA);
1393 	if (m == NULL)
1394 		return (ENOBUFS);
1395 
1396 	if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) {
1397 		m_freem(m);
1398 		return (ENOBUFS);
1399 	}
1400 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1401 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1402 		m_adj(m, ETHER_ALIGN);
1403 
1404 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1405 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1406 	if (error != 0) {
1407 		m_freem(m);
1408 		return (error);
1409 	}
1410 
1411 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1412 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1413 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1414 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1415 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1416 	}
1417 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1418 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1419 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1420 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1421 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1422 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1423 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1424 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1425 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1426 
1427 	/*
1428 	 * Fill in the extended RX buffer descriptor.
1429 	 */
1430 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1431 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1432 	r->bge_idx = i;
1433 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1434 	switch (nsegs) {
1435 	case 4:
1436 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1437 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1438 		r->bge_len3 = segs[3].ds_len;
1439 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1440 	case 3:
1441 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1442 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1443 		r->bge_len2 = segs[2].ds_len;
1444 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1445 	case 2:
1446 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1447 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1448 		r->bge_len1 = segs[1].ds_len;
1449 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1450 	case 1:
1451 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1452 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1453 		r->bge_len0 = segs[0].ds_len;
1454 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1455 		break;
1456 	default:
1457 		panic("%s: %d segments\n", __func__, nsegs);
1458 	}
1459 
1460 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1461 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1462 
1463 	return (0);
1464 }
1465 
1466 static int
1467 bge_init_rx_ring_std(struct bge_softc *sc)
1468 {
1469 	int error, i;
1470 
1471 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1472 	sc->bge_std = 0;
1473 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1474 		if ((error = bge_newbuf_std(sc, i)) != 0)
1475 			return (error);
1476 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1477 	}
1478 
1479 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1480 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1481 
1482 	sc->bge_std = 0;
1483 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1484 
1485 	return (0);
1486 }
1487 
1488 static void
1489 bge_free_rx_ring_std(struct bge_softc *sc)
1490 {
1491 	int i;
1492 
1493 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1494 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1495 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1496 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1497 			    BUS_DMASYNC_POSTREAD);
1498 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1499 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1500 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1501 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1502 		}
1503 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1504 		    sizeof(struct bge_rx_bd));
1505 	}
1506 }
1507 
1508 static int
1509 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1510 {
1511 	struct bge_rcb *rcb;
1512 	int error, i;
1513 
1514 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1515 	sc->bge_jumbo = 0;
1516 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1517 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1518 			return (error);
1519 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1520 	}
1521 
1522 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1523 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1524 
1525 	sc->bge_jumbo = 0;
1526 
1527 	/* Enable the jumbo receive producer ring. */
1528 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1529 	rcb->bge_maxlen_flags =
1530 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1531 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1532 
1533 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1534 
1535 	return (0);
1536 }
1537 
1538 static void
1539 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1540 {
1541 	int i;
1542 
1543 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1544 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1545 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1546 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1547 			    BUS_DMASYNC_POSTREAD);
1548 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1549 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1550 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1551 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1552 		}
1553 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1554 		    sizeof(struct bge_extrx_bd));
1555 	}
1556 }
1557 
1558 static void
1559 bge_free_tx_ring(struct bge_softc *sc)
1560 {
1561 	int i;
1562 
1563 	if (sc->bge_ldata.bge_tx_ring == NULL)
1564 		return;
1565 
1566 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1567 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1568 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1569 			    sc->bge_cdata.bge_tx_dmamap[i],
1570 			    BUS_DMASYNC_POSTWRITE);
1571 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1572 			    sc->bge_cdata.bge_tx_dmamap[i]);
1573 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1574 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1575 		}
1576 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1577 		    sizeof(struct bge_tx_bd));
1578 	}
1579 }
1580 
1581 static int
1582 bge_init_tx_ring(struct bge_softc *sc)
1583 {
1584 	sc->bge_txcnt = 0;
1585 	sc->bge_tx_saved_considx = 0;
1586 
1587 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1588 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1589 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1590 
1591 	/* Initialize transmit producer index for host-memory send ring. */
1592 	sc->bge_tx_prodidx = 0;
1593 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1594 
1595 	/* 5700 b2 errata */
1596 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1597 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1598 
1599 	/* NIC-memory send ring not used; initialize to zero. */
1600 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1601 	/* 5700 b2 errata */
1602 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1603 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1604 
1605 	return (0);
1606 }
1607 
1608 static void
1609 bge_setpromisc(struct bge_softc *sc)
1610 {
1611 	if_t ifp;
1612 
1613 	BGE_LOCK_ASSERT(sc);
1614 
1615 	ifp = sc->bge_ifp;
1616 
1617 	/* Enable or disable promiscuous mode as needed. */
1618 	if (if_getflags(ifp) & IFF_PROMISC)
1619 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1620 	else
1621 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1622 }
1623 
1624 static void
1625 bge_setmulti(struct bge_softc *sc)
1626 {
1627 	if_t ifp;
1628 	int mc_count = 0;
1629 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1630 	int h, i, mcnt;
1631 	unsigned char *mta;
1632 
1633 	BGE_LOCK_ASSERT(sc);
1634 
1635 	ifp = sc->bge_ifp;
1636 
1637 	mc_count = if_multiaddr_count(ifp, -1);
1638 	mta = malloc(sizeof(unsigned char) *  ETHER_ADDR_LEN *
1639 	    mc_count, M_DEVBUF, M_NOWAIT);
1640 
1641 	if(mta == NULL) {
1642 		device_printf(sc->bge_dev,
1643 		    "Failed to allocated temp mcast list\n");
1644 		return;
1645 	}
1646 
1647 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
1648 		for (i = 0; i < 4; i++)
1649 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1650 		free(mta, M_DEVBUF);
1651 		return;
1652 	}
1653 
1654 	/* First, zot all the existing filters. */
1655 	for (i = 0; i < 4; i++)
1656 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1657 
1658 	if_multiaddr_array(ifp, mta, &mcnt, mc_count);
1659 	for(i = 0; i < mcnt; i++) {
1660 		h = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
1661 		    ETHER_ADDR_LEN) & 0x7F;
1662 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1663 	}
1664 
1665 	for (i = 0; i < 4; i++)
1666 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1667 
1668 	free(mta, M_DEVBUF);
1669 }
1670 
1671 static void
1672 bge_setvlan(struct bge_softc *sc)
1673 {
1674 	if_t ifp;
1675 
1676 	BGE_LOCK_ASSERT(sc);
1677 
1678 	ifp = sc->bge_ifp;
1679 
1680 	/* Enable or disable VLAN tag stripping as needed. */
1681 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
1682 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1683 	else
1684 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1685 }
1686 
1687 static void
1688 bge_sig_pre_reset(struct bge_softc *sc, int type)
1689 {
1690 
1691 	/*
1692 	 * Some chips don't like this so only do this if ASF is enabled
1693 	 */
1694 	if (sc->bge_asf_mode)
1695 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1696 
1697 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1698 		switch (type) {
1699 		case BGE_RESET_START:
1700 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1701 			    BGE_FW_DRV_STATE_START);
1702 			break;
1703 		case BGE_RESET_SHUTDOWN:
1704 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1705 			    BGE_FW_DRV_STATE_UNLOAD);
1706 			break;
1707 		case BGE_RESET_SUSPEND:
1708 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1709 			    BGE_FW_DRV_STATE_SUSPEND);
1710 			break;
1711 		}
1712 	}
1713 
1714 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1715 		bge_ape_driver_state_change(sc, type);
1716 }
1717 
1718 static void
1719 bge_sig_post_reset(struct bge_softc *sc, int type)
1720 {
1721 
1722 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1723 		switch (type) {
1724 		case BGE_RESET_START:
1725 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1726 			    BGE_FW_DRV_STATE_START_DONE);
1727 			/* START DONE */
1728 			break;
1729 		case BGE_RESET_SHUTDOWN:
1730 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1731 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1732 			break;
1733 		}
1734 	}
1735 	if (type == BGE_RESET_SHUTDOWN)
1736 		bge_ape_driver_state_change(sc, type);
1737 }
1738 
1739 static void
1740 bge_sig_legacy(struct bge_softc *sc, int type)
1741 {
1742 
1743 	if (sc->bge_asf_mode) {
1744 		switch (type) {
1745 		case BGE_RESET_START:
1746 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1747 			    BGE_FW_DRV_STATE_START);
1748 			break;
1749 		case BGE_RESET_SHUTDOWN:
1750 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1751 			    BGE_FW_DRV_STATE_UNLOAD);
1752 			break;
1753 		}
1754 	}
1755 }
1756 
1757 static void
1758 bge_stop_fw(struct bge_softc *sc)
1759 {
1760 	int i;
1761 
1762 	if (sc->bge_asf_mode) {
1763 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1764 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1765 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1766 
1767 		for (i = 0; i < 100; i++ ) {
1768 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1769 			    BGE_RX_CPU_DRV_EVENT))
1770 				break;
1771 			DELAY(10);
1772 		}
1773 	}
1774 }
1775 
1776 static uint32_t
1777 bge_dma_swap_options(struct bge_softc *sc)
1778 {
1779 	uint32_t dma_options;
1780 
1781 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1782 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1783 #if BYTE_ORDER == BIG_ENDIAN
1784 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1785 #endif
1786 	return (dma_options);
1787 }
1788 
1789 /*
1790  * Do endian, PCI and DMA initialization.
1791  */
1792 static int
1793 bge_chipinit(struct bge_softc *sc)
1794 {
1795 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1796 	uint16_t val;
1797 	int i;
1798 
1799 	/* Set endianness before we access any non-PCI registers. */
1800 	misc_ctl = BGE_INIT;
1801 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1802 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1803 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1804 
1805 	/*
1806 	 * Clear the MAC statistics block in the NIC's
1807 	 * internal memory.
1808 	 */
1809 	for (i = BGE_STATS_BLOCK;
1810 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1811 		BGE_MEMWIN_WRITE(sc, i, 0);
1812 
1813 	for (i = BGE_STATUS_BLOCK;
1814 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1815 		BGE_MEMWIN_WRITE(sc, i, 0);
1816 
1817 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1818 		/*
1819 		 *  Fix data corruption caused by non-qword write with WB.
1820 		 *  Fix master abort in PCI mode.
1821 		 *  Fix PCI latency timer.
1822 		 */
1823 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1824 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1825 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1826 	}
1827 
1828 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1829 	    sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1830 		/*
1831 		 * For the 57766 and non Ax versions of 57765, bootcode
1832 		 * needs to setup the PCIE Fast Training Sequence (FTS)
1833 		 * value to prevent transmit hangs.
1834 		 */
1835 		if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1836 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1837 			    CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1838 			    BGE_CPMU_PADRNG_CTL_RDIV2);
1839 		}
1840 	}
1841 
1842 	/*
1843 	 * Set up the PCI DMA control register.
1844 	 */
1845 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1846 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1847 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1848 		if (sc->bge_mps >= 256)
1849 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1850 		else
1851 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1852 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1853 		if (BGE_IS_5714_FAMILY(sc)) {
1854 			/* 256 bytes for read and write. */
1855 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1856 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1857 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1858 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1859 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1860 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1861 			/*
1862 			 * In the BCM5703, the DMA read watermark should
1863 			 * be set to less than or equal to the maximum
1864 			 * memory read byte count of the PCI-X command
1865 			 * register.
1866 			 */
1867 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1868 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1869 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1870 			/* 1536 bytes for read, 384 bytes for write. */
1871 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1872 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1873 		} else {
1874 			/* 384 bytes for read and write. */
1875 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1876 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1877 			    0x0F;
1878 		}
1879 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1880 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1881 			uint32_t tmp;
1882 
1883 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1884 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1885 			if (tmp == 6 || tmp == 7)
1886 				dma_rw_ctl |=
1887 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1888 
1889 			/* Set PCI-X DMA write workaround. */
1890 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1891 		}
1892 	} else {
1893 		/* Conventional PCI bus: 256 bytes for read and write. */
1894 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1895 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1896 
1897 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1898 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1899 			dma_rw_ctl |= 0x0F;
1900 	}
1901 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1902 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1903 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1904 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1905 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1906 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1907 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1908 	if (BGE_IS_5717_PLUS(sc)) {
1909 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1910 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1911 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1912 		/*
1913 		 * Enable HW workaround for controllers that misinterpret
1914 		 * a status tag update and leave interrupts permanently
1915 		 * disabled.
1916 		 */
1917 		if (!BGE_IS_57765_PLUS(sc) &&
1918 		    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1919 		    sc->bge_asicrev != BGE_ASICREV_BCM5762)
1920 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1921 	}
1922 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1923 
1924 	/*
1925 	 * Set up general mode register.
1926 	 */
1927 	mode_ctl = bge_dma_swap_options(sc);
1928 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1929 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1930 		/* Retain Host-2-BMC settings written by APE firmware. */
1931 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1932 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1933 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1934 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1935 	}
1936 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1937 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1938 
1939 	/*
1940 	 * BCM5701 B5 have a bug causing data corruption when using
1941 	 * 64-bit DMA reads, which can be terminated early and then
1942 	 * completed later as 32-bit accesses, in combination with
1943 	 * certain bridges.
1944 	 */
1945 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1946 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1947 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1948 
1949 	/*
1950 	 * Tell the firmware the driver is running
1951 	 */
1952 	if (sc->bge_asf_mode & ASF_STACKUP)
1953 		mode_ctl |= BGE_MODECTL_STACKUP;
1954 
1955 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1956 
1957 	/*
1958 	 * Disable memory write invalidate.  Apparently it is not supported
1959 	 * properly by these devices.
1960 	 */
1961 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1962 
1963 	/* Set the timer prescaler (always 66 MHz). */
1964 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1965 
1966 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1967 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1968 		DELAY(40);	/* XXX */
1969 
1970 		/* Put PHY into ready state */
1971 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1972 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1973 		DELAY(40);
1974 	}
1975 
1976 	return (0);
1977 }
1978 
1979 static int
1980 bge_blockinit(struct bge_softc *sc)
1981 {
1982 	struct bge_rcb *rcb;
1983 	bus_size_t vrcb;
1984 	bge_hostaddr taddr;
1985 	uint32_t dmactl, rdmareg, val;
1986 	int i, limit;
1987 
1988 	/*
1989 	 * Initialize the memory window pointer register so that
1990 	 * we can access the first 32K of internal NIC RAM. This will
1991 	 * allow us to set up the TX send ring RCBs and the RX return
1992 	 * ring RCBs, plus other things which live in NIC memory.
1993 	 */
1994 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1995 
1996 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1997 
1998 	if (!(BGE_IS_5705_PLUS(sc))) {
1999 		/* Configure mbuf memory pool */
2000 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2001 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
2002 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2003 		else
2004 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2005 
2006 		/* Configure DMA resource pool */
2007 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2008 		    BGE_DMA_DESCRIPTORS);
2009 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2010 	}
2011 
2012 	/* Configure mbuf pool watermarks */
2013 	if (BGE_IS_5717_PLUS(sc)) {
2014 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2015 		if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
2016 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2017 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2018 		} else {
2019 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2020 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2021 		}
2022 	} else if (!BGE_IS_5705_PLUS(sc)) {
2023 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2024 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2025 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2026 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2027 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2028 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2029 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2030 	} else {
2031 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2032 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2033 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2034 	}
2035 
2036 	/* Configure DMA resource watermarks */
2037 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2038 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2039 
2040 	/* Enable buffer manager */
2041 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2042 	/*
2043 	 * Change the arbitration algorithm of TXMBUF read request to
2044 	 * round-robin instead of priority based for BCM5719.  When
2045 	 * TXFIFO is almost empty, RDMA will hold its request until
2046 	 * TXFIFO is not almost empty.
2047 	 */
2048 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2049 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2050 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2051 
2052 	/* Poll for buffer manager start indication */
2053 	for (i = 0; i < BGE_TIMEOUT; i++) {
2054 		DELAY(10);
2055 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2056 			break;
2057 	}
2058 
2059 	if (i == BGE_TIMEOUT) {
2060 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2061 		return (ENXIO);
2062 	}
2063 
2064 	/* Enable flow-through queues */
2065 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2066 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2067 
2068 	/* Wait until queue initialization is complete */
2069 	for (i = 0; i < BGE_TIMEOUT; i++) {
2070 		DELAY(10);
2071 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2072 			break;
2073 	}
2074 
2075 	if (i == BGE_TIMEOUT) {
2076 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2077 		return (ENXIO);
2078 	}
2079 
2080 	/*
2081 	 * Summary of rings supported by the controller:
2082 	 *
2083 	 * Standard Receive Producer Ring
2084 	 * - This ring is used to feed receive buffers for "standard"
2085 	 *   sized frames (typically 1536 bytes) to the controller.
2086 	 *
2087 	 * Jumbo Receive Producer Ring
2088 	 * - This ring is used to feed receive buffers for jumbo sized
2089 	 *   frames (i.e. anything bigger than the "standard" frames)
2090 	 *   to the controller.
2091 	 *
2092 	 * Mini Receive Producer Ring
2093 	 * - This ring is used to feed receive buffers for "mini"
2094 	 *   sized frames to the controller.
2095 	 * - This feature required external memory for the controller
2096 	 *   but was never used in a production system.  Should always
2097 	 *   be disabled.
2098 	 *
2099 	 * Receive Return Ring
2100 	 * - After the controller has placed an incoming frame into a
2101 	 *   receive buffer that buffer is moved into a receive return
2102 	 *   ring.  The driver is then responsible to passing the
2103 	 *   buffer up to the stack.  Many versions of the controller
2104 	 *   support multiple RR rings.
2105 	 *
2106 	 * Send Ring
2107 	 * - This ring is used for outgoing frames.  Many versions of
2108 	 *   the controller support multiple send rings.
2109 	 */
2110 
2111 	/* Initialize the standard receive producer ring control block. */
2112 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2113 	rcb->bge_hostaddr.bge_addr_lo =
2114 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2115 	rcb->bge_hostaddr.bge_addr_hi =
2116 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2117 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2118 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2119 	if (BGE_IS_5717_PLUS(sc)) {
2120 		/*
2121 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2122 		 * Bits 15-2 : Maximum RX frame size
2123 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2124 		 * Bit 0     : Reserved
2125 		 */
2126 		rcb->bge_maxlen_flags =
2127 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2128 	} else if (BGE_IS_5705_PLUS(sc)) {
2129 		/*
2130 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2131 		 * Bits 15-2 : Reserved (should be 0)
2132 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2133 		 * Bit 0     : Reserved
2134 		 */
2135 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2136 	} else {
2137 		/*
2138 		 * Ring size is always XXX entries
2139 		 * Bits 31-16: Maximum RX frame size
2140 		 * Bits 15-2 : Reserved (should be 0)
2141 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2142 		 * Bit 0     : Reserved
2143 		 */
2144 		rcb->bge_maxlen_flags =
2145 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2146 	}
2147 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2148 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2149 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2150 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2151 	else
2152 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2153 	/* Write the standard receive producer ring control block. */
2154 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2155 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2156 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2157 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2158 
2159 	/* Reset the standard receive producer ring producer index. */
2160 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2161 
2162 	/*
2163 	 * Initialize the jumbo RX producer ring control
2164 	 * block.  We set the 'ring disabled' bit in the
2165 	 * flags field until we're actually ready to start
2166 	 * using this ring (i.e. once we set the MTU
2167 	 * high enough to require it).
2168 	 */
2169 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2170 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2171 		/* Get the jumbo receive producer ring RCB parameters. */
2172 		rcb->bge_hostaddr.bge_addr_lo =
2173 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2174 		rcb->bge_hostaddr.bge_addr_hi =
2175 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2176 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2177 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2178 		    BUS_DMASYNC_PREREAD);
2179 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2180 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2181 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2182 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2183 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2184 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2185 		else
2186 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2187 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2188 		    rcb->bge_hostaddr.bge_addr_hi);
2189 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2190 		    rcb->bge_hostaddr.bge_addr_lo);
2191 		/* Program the jumbo receive producer ring RCB parameters. */
2192 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2193 		    rcb->bge_maxlen_flags);
2194 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2195 		/* Reset the jumbo receive producer ring producer index. */
2196 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2197 	}
2198 
2199 	/* Disable the mini receive producer ring RCB. */
2200 	if (BGE_IS_5700_FAMILY(sc)) {
2201 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2202 		rcb->bge_maxlen_flags =
2203 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2204 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2205 		    rcb->bge_maxlen_flags);
2206 		/* Reset the mini receive producer ring producer index. */
2207 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2208 	}
2209 
2210 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2211 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2212 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2213 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2214 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2215 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2216 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2217 	}
2218 	/*
2219 	 * The BD ring replenish thresholds control how often the
2220 	 * hardware fetches new BD's from the producer rings in host
2221 	 * memory.  Setting the value too low on a busy system can
2222 	 * starve the hardware and recue the throughpout.
2223 	 *
2224 	 * Set the BD ring replentish thresholds. The recommended
2225 	 * values are 1/8th the number of descriptors allocated to
2226 	 * each ring.
2227 	 * XXX The 5754 requires a lower threshold, so it might be a
2228 	 * requirement of all 575x family chips.  The Linux driver sets
2229 	 * the lower threshold for all 5705 family chips as well, but there
2230 	 * are reports that it might not need to be so strict.
2231 	 *
2232 	 * XXX Linux does some extra fiddling here for the 5906 parts as
2233 	 * well.
2234 	 */
2235 	if (BGE_IS_5705_PLUS(sc))
2236 		val = 8;
2237 	else
2238 		val = BGE_STD_RX_RING_CNT / 8;
2239 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2240 	if (BGE_IS_JUMBO_CAPABLE(sc))
2241 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2242 		    BGE_JUMBO_RX_RING_CNT/8);
2243 	if (BGE_IS_5717_PLUS(sc)) {
2244 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2245 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2246 	}
2247 
2248 	/*
2249 	 * Disable all send rings by setting the 'ring disabled' bit
2250 	 * in the flags field of all the TX send ring control blocks,
2251 	 * located in NIC memory.
2252 	 */
2253 	if (!BGE_IS_5705_PLUS(sc))
2254 		/* 5700 to 5704 had 16 send rings. */
2255 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2256 	else if (BGE_IS_57765_PLUS(sc) ||
2257 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2258 		limit = 2;
2259 	else if (BGE_IS_5717_PLUS(sc))
2260 		limit = 4;
2261 	else
2262 		limit = 1;
2263 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2264 	for (i = 0; i < limit; i++) {
2265 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2266 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2267 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2268 		vrcb += sizeof(struct bge_rcb);
2269 	}
2270 
2271 	/* Configure send ring RCB 0 (we use only the first ring) */
2272 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2273 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2274 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2275 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2276 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2277 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2278 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2279 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2280 	else
2281 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2282 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2283 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2284 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2285 
2286 	/*
2287 	 * Disable all receive return rings by setting the
2288 	 * 'ring diabled' bit in the flags field of all the receive
2289 	 * return ring control blocks, located in NIC memory.
2290 	 */
2291 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2292 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2293 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2294 		/* Should be 17, use 16 until we get an SRAM map. */
2295 		limit = 16;
2296 	} else if (!BGE_IS_5705_PLUS(sc))
2297 		limit = BGE_RX_RINGS_MAX;
2298 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2299 	    sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2300 	    BGE_IS_57765_PLUS(sc))
2301 		limit = 4;
2302 	else
2303 		limit = 1;
2304 	/* Disable all receive return rings. */
2305 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2306 	for (i = 0; i < limit; i++) {
2307 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2308 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2309 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2310 		    BGE_RCB_FLAG_RING_DISABLED);
2311 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2312 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2313 		    (i * (sizeof(uint64_t))), 0);
2314 		vrcb += sizeof(struct bge_rcb);
2315 	}
2316 
2317 	/*
2318 	 * Set up receive return ring 0.  Note that the NIC address
2319 	 * for RX return rings is 0x0.  The return rings live entirely
2320 	 * within the host, so the nicaddr field in the RCB isn't used.
2321 	 */
2322 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2323 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2324 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2325 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2326 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2327 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2328 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2329 
2330 	/* Set random backoff seed for TX */
2331 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2332 	    (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2333 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2334 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2335 	    BGE_TX_BACKOFF_SEED_MASK);
2336 
2337 	/* Set inter-packet gap */
2338 	val = 0x2620;
2339 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2340 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2341 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2342 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2343 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2344 
2345 	/*
2346 	 * Specify which ring to use for packets that don't match
2347 	 * any RX rules.
2348 	 */
2349 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2350 
2351 	/*
2352 	 * Configure number of RX lists. One interrupt distribution
2353 	 * list, sixteen active lists, one bad frames class.
2354 	 */
2355 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2356 
2357 	/* Inialize RX list placement stats mask. */
2358 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2359 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2360 
2361 	/* Disable host coalescing until we get it set up */
2362 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2363 
2364 	/* Poll to make sure it's shut down. */
2365 	for (i = 0; i < BGE_TIMEOUT; i++) {
2366 		DELAY(10);
2367 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2368 			break;
2369 	}
2370 
2371 	if (i == BGE_TIMEOUT) {
2372 		device_printf(sc->bge_dev,
2373 		    "host coalescing engine failed to idle\n");
2374 		return (ENXIO);
2375 	}
2376 
2377 	/* Set up host coalescing defaults */
2378 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2379 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2380 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2381 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2382 	if (!(BGE_IS_5705_PLUS(sc))) {
2383 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2384 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2385 	}
2386 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2387 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2388 
2389 	/* Set up address of statistics block */
2390 	if (!(BGE_IS_5705_PLUS(sc))) {
2391 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2392 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2393 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2394 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2395 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2396 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2397 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2398 	}
2399 
2400 	/* Set up address of status block */
2401 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2402 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2403 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2404 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2405 
2406 	/* Set up status block size. */
2407 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2408 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2409 		val = BGE_STATBLKSZ_FULL;
2410 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2411 	} else {
2412 		val = BGE_STATBLKSZ_32BYTE;
2413 		bzero(sc->bge_ldata.bge_status_block, 32);
2414 	}
2415 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2416 	    sc->bge_cdata.bge_status_map,
2417 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2418 
2419 	/* Turn on host coalescing state machine */
2420 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2421 
2422 	/* Turn on RX BD completion state machine and enable attentions */
2423 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2424 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2425 
2426 	/* Turn on RX list placement state machine */
2427 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2428 
2429 	/* Turn on RX list selector state machine. */
2430 	if (!(BGE_IS_5705_PLUS(sc)))
2431 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2432 
2433 	/* Turn on DMA, clear stats. */
2434 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2435 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2436 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2437 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2438 
2439 	if (sc->bge_flags & BGE_FLAG_TBI)
2440 		val |= BGE_PORTMODE_TBI;
2441 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2442 		val |= BGE_PORTMODE_GMII;
2443 	else
2444 		val |= BGE_PORTMODE_MII;
2445 
2446 	/* Allow APE to send/receive frames. */
2447 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2448 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2449 
2450 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2451 	DELAY(40);
2452 
2453 	/* Set misc. local control, enable interrupts on attentions */
2454 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2455 
2456 #ifdef notdef
2457 	/* Assert GPIO pins for PHY reset */
2458 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2459 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2460 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2461 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2462 #endif
2463 
2464 	/* Turn on DMA completion state machine */
2465 	if (!(BGE_IS_5705_PLUS(sc)))
2466 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2467 
2468 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2469 
2470 	/* Enable host coalescing bug fix. */
2471 	if (BGE_IS_5755_PLUS(sc))
2472 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2473 
2474 	/* Request larger DMA burst size to get better performance. */
2475 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2476 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2477 
2478 	/* Turn on write DMA state machine */
2479 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2480 	DELAY(40);
2481 
2482 	/* Turn on read DMA state machine */
2483 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2484 
2485 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2486 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2487 
2488 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2489 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2490 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2491 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2492 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2493 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2494 	if (sc->bge_flags & BGE_FLAG_PCIE)
2495 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2496 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2497 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2498 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2499 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2500 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2501 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2502 	}
2503 
2504 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2505 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2506 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2507 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2508 		/*
2509 		 * Allow multiple outstanding read requests from
2510 		 * non-LSO read DMA engine.
2511 		 */
2512 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2513 	}
2514 
2515 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2516 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2517 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2518 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2519 	    BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2520 		if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2521 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2522 		else
2523 			rdmareg = BGE_RDMA_RSRVCTRL;
2524 		dmactl = CSR_READ_4(sc, rdmareg);
2525 		/*
2526 		 * Adjust tx margin to prevent TX data corruption and
2527 		 * fix internal FIFO overflow.
2528 		 */
2529 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2530 		    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2531 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2532 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2533 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2534 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2535 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2536 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2537 		}
2538 		/*
2539 		 * Enable fix for read DMA FIFO overruns.
2540 		 * The fix is to limit the number of RX BDs
2541 		 * the hardware would fetch at a fime.
2542 		 */
2543 		CSR_WRITE_4(sc, rdmareg, dmactl |
2544 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2545 	}
2546 
2547 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2548 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2549 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2550 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2551 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2552 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2553 		/*
2554 		 * Allow 4KB burst length reads for non-LSO frames.
2555 		 * Enable 512B burst length reads for buffer descriptors.
2556 		 */
2557 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2558 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2559 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2560 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2561 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2562 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2563 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2564 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2565 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2566 	}
2567 
2568 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2569 	DELAY(40);
2570 
2571 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2572 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2573 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2574 			if ((val & 0xFFFF) > BGE_FRAMELEN)
2575 				break;
2576 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2577 				break;
2578 		}
2579 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2580 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2581 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2582 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2583 			else
2584 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2585 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2586 		}
2587 	}
2588 
2589 	/* Turn on RX data completion state machine */
2590 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2591 
2592 	/* Turn on RX BD initiator state machine */
2593 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2594 
2595 	/* Turn on RX data and RX BD initiator state machine */
2596 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2597 
2598 	/* Turn on Mbuf cluster free state machine */
2599 	if (!(BGE_IS_5705_PLUS(sc)))
2600 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2601 
2602 	/* Turn on send BD completion state machine */
2603 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2604 
2605 	/* Turn on send data completion state machine */
2606 	val = BGE_SDCMODE_ENABLE;
2607 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2608 		val |= BGE_SDCMODE_CDELAY;
2609 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2610 
2611 	/* Turn on send data initiator state machine */
2612 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2613 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2614 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2615 	else
2616 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2617 
2618 	/* Turn on send BD initiator state machine */
2619 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2620 
2621 	/* Turn on send BD selector state machine */
2622 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2623 
2624 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2625 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2626 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2627 
2628 	/* ack/clear link change events */
2629 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2630 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2631 	    BGE_MACSTAT_LINK_CHANGED);
2632 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2633 
2634 	/*
2635 	 * Enable attention when the link has changed state for
2636 	 * devices that use auto polling.
2637 	 */
2638 	if (sc->bge_flags & BGE_FLAG_TBI) {
2639 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2640 	} else {
2641 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2642 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2643 			DELAY(80);
2644 		}
2645 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2646 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2647 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2648 			    BGE_EVTENB_MI_INTERRUPT);
2649 	}
2650 
2651 	/*
2652 	 * Clear any pending link state attention.
2653 	 * Otherwise some link state change events may be lost until attention
2654 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2655 	 * It's not necessary on newer BCM chips - perhaps enabling link
2656 	 * state change attentions implies clearing pending attention.
2657 	 */
2658 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2659 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2660 	    BGE_MACSTAT_LINK_CHANGED);
2661 
2662 	/* Enable link state change attentions. */
2663 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2664 
2665 	return (0);
2666 }
2667 
2668 static const struct bge_revision *
2669 bge_lookup_rev(uint32_t chipid)
2670 {
2671 	const struct bge_revision *br;
2672 
2673 	for (br = bge_revisions; br->br_name != NULL; br++) {
2674 		if (br->br_chipid == chipid)
2675 			return (br);
2676 	}
2677 
2678 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2679 		if (br->br_chipid == BGE_ASICREV(chipid))
2680 			return (br);
2681 	}
2682 
2683 	return (NULL);
2684 }
2685 
2686 static const struct bge_vendor *
2687 bge_lookup_vendor(uint16_t vid)
2688 {
2689 	const struct bge_vendor *v;
2690 
2691 	for (v = bge_vendors; v->v_name != NULL; v++)
2692 		if (v->v_id == vid)
2693 			return (v);
2694 
2695 	return (NULL);
2696 }
2697 
2698 static uint32_t
2699 bge_chipid(device_t dev)
2700 {
2701 	uint32_t id;
2702 
2703 	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2704 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2705 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2706 		/*
2707 		 * Find the ASCI revision.  Different chips use different
2708 		 * registers.
2709 		 */
2710 		switch (pci_get_device(dev)) {
2711 		case BCOM_DEVICEID_BCM5717C:
2712 			/* 5717 C0 seems to belong to 5720 line. */
2713 			id = BGE_CHIPID_BCM5720_A0;
2714 			break;
2715 		case BCOM_DEVICEID_BCM5717:
2716 		case BCOM_DEVICEID_BCM5718:
2717 		case BCOM_DEVICEID_BCM5719:
2718 		case BCOM_DEVICEID_BCM5720:
2719 		case BCOM_DEVICEID_BCM5725:
2720 		case BCOM_DEVICEID_BCM5727:
2721 		case BCOM_DEVICEID_BCM5762:
2722 		case BCOM_DEVICEID_BCM57764:
2723 		case BCOM_DEVICEID_BCM57767:
2724 		case BCOM_DEVICEID_BCM57787:
2725 			id = pci_read_config(dev,
2726 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2727 			break;
2728 		case BCOM_DEVICEID_BCM57761:
2729 		case BCOM_DEVICEID_BCM57762:
2730 		case BCOM_DEVICEID_BCM57765:
2731 		case BCOM_DEVICEID_BCM57766:
2732 		case BCOM_DEVICEID_BCM57781:
2733 		case BCOM_DEVICEID_BCM57782:
2734 		case BCOM_DEVICEID_BCM57785:
2735 		case BCOM_DEVICEID_BCM57786:
2736 		case BCOM_DEVICEID_BCM57791:
2737 		case BCOM_DEVICEID_BCM57795:
2738 			id = pci_read_config(dev,
2739 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2740 			break;
2741 		default:
2742 			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2743 		}
2744 	}
2745 	return (id);
2746 }
2747 
2748 /*
2749  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2750  * against our list and return its name if we find a match.
2751  *
2752  * Note that since the Broadcom controller contains VPD support, we
2753  * try to get the device name string from the controller itself instead
2754  * of the compiled-in string. It guarantees we'll always announce the
2755  * right product name. We fall back to the compiled-in string when
2756  * VPD is unavailable or corrupt.
2757  */
2758 static int
2759 bge_probe(device_t dev)
2760 {
2761 	char buf[96];
2762 	char model[64];
2763 	const struct bge_revision *br;
2764 	const char *pname;
2765 	struct bge_softc *sc;
2766 	const struct bge_type *t = bge_devs;
2767 	const struct bge_vendor *v;
2768 	uint32_t id;
2769 	uint16_t did, vid;
2770 
2771 	sc = device_get_softc(dev);
2772 	sc->bge_dev = dev;
2773 	vid = pci_get_vendor(dev);
2774 	did = pci_get_device(dev);
2775 	while(t->bge_vid != 0) {
2776 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2777 			id = bge_chipid(dev);
2778 			br = bge_lookup_rev(id);
2779 			if (bge_has_eaddr(sc) &&
2780 			    pci_get_vpd_ident(dev, &pname) == 0)
2781 				snprintf(model, sizeof(model), "%s", pname);
2782 			else {
2783 				v = bge_lookup_vendor(vid);
2784 				snprintf(model, sizeof(model), "%s %s",
2785 				    v != NULL ? v->v_name : "Unknown",
2786 				    br != NULL ? br->br_name :
2787 				    "NetXtreme/NetLink Ethernet Controller");
2788 			}
2789 			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2790 			    model, br != NULL ? "" : "unknown ", id);
2791 			device_set_desc_copy(dev, buf);
2792 			return (BUS_PROBE_DEFAULT);
2793 		}
2794 		t++;
2795 	}
2796 
2797 	return (ENXIO);
2798 }
2799 
2800 static void
2801 bge_dma_free(struct bge_softc *sc)
2802 {
2803 	int i;
2804 
2805 	/* Destroy DMA maps for RX buffers. */
2806 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2807 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2808 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2809 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2810 	}
2811 	if (sc->bge_cdata.bge_rx_std_sparemap)
2812 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2813 		    sc->bge_cdata.bge_rx_std_sparemap);
2814 
2815 	/* Destroy DMA maps for jumbo RX buffers. */
2816 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2817 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2818 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2819 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2820 	}
2821 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2822 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2823 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2824 
2825 	/* Destroy DMA maps for TX buffers. */
2826 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2827 		if (sc->bge_cdata.bge_tx_dmamap[i])
2828 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2829 			    sc->bge_cdata.bge_tx_dmamap[i]);
2830 	}
2831 
2832 	if (sc->bge_cdata.bge_rx_mtag)
2833 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2834 	if (sc->bge_cdata.bge_mtag_jumbo)
2835 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2836 	if (sc->bge_cdata.bge_tx_mtag)
2837 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2838 
2839 	/* Destroy standard RX ring. */
2840 	if (sc->bge_ldata.bge_rx_std_ring_paddr)
2841 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2842 		    sc->bge_cdata.bge_rx_std_ring_map);
2843 	if (sc->bge_ldata.bge_rx_std_ring)
2844 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2845 		    sc->bge_ldata.bge_rx_std_ring,
2846 		    sc->bge_cdata.bge_rx_std_ring_map);
2847 
2848 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2849 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2850 
2851 	/* Destroy jumbo RX ring. */
2852 	if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
2853 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2854 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2855 
2856 	if (sc->bge_ldata.bge_rx_jumbo_ring)
2857 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2858 		    sc->bge_ldata.bge_rx_jumbo_ring,
2859 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2860 
2861 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2862 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2863 
2864 	/* Destroy RX return ring. */
2865 	if (sc->bge_ldata.bge_rx_return_ring_paddr)
2866 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2867 		    sc->bge_cdata.bge_rx_return_ring_map);
2868 
2869 	if (sc->bge_ldata.bge_rx_return_ring)
2870 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2871 		    sc->bge_ldata.bge_rx_return_ring,
2872 		    sc->bge_cdata.bge_rx_return_ring_map);
2873 
2874 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2875 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2876 
2877 	/* Destroy TX ring. */
2878 	if (sc->bge_ldata.bge_tx_ring_paddr)
2879 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2880 		    sc->bge_cdata.bge_tx_ring_map);
2881 
2882 	if (sc->bge_ldata.bge_tx_ring)
2883 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2884 		    sc->bge_ldata.bge_tx_ring,
2885 		    sc->bge_cdata.bge_tx_ring_map);
2886 
2887 	if (sc->bge_cdata.bge_tx_ring_tag)
2888 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2889 
2890 	/* Destroy status block. */
2891 	if (sc->bge_ldata.bge_status_block_paddr)
2892 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2893 		    sc->bge_cdata.bge_status_map);
2894 
2895 	if (sc->bge_ldata.bge_status_block)
2896 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2897 		    sc->bge_ldata.bge_status_block,
2898 		    sc->bge_cdata.bge_status_map);
2899 
2900 	if (sc->bge_cdata.bge_status_tag)
2901 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2902 
2903 	/* Destroy statistics block. */
2904 	if (sc->bge_ldata.bge_stats_paddr)
2905 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2906 		    sc->bge_cdata.bge_stats_map);
2907 
2908 	if (sc->bge_ldata.bge_stats)
2909 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2910 		    sc->bge_ldata.bge_stats,
2911 		    sc->bge_cdata.bge_stats_map);
2912 
2913 	if (sc->bge_cdata.bge_stats_tag)
2914 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2915 
2916 	if (sc->bge_cdata.bge_buffer_tag)
2917 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2918 
2919 	/* Destroy the parent tag. */
2920 	if (sc->bge_cdata.bge_parent_tag)
2921 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2922 }
2923 
2924 static int
2925 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2926     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2927     bus_addr_t *paddr, const char *msg)
2928 {
2929 	struct bge_dmamap_arg ctx;
2930 	bus_addr_t lowaddr;
2931 	bus_size_t ring_end;
2932 	int error;
2933 
2934 	lowaddr = BUS_SPACE_MAXADDR;
2935 again:
2936 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2937 	    alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2938 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2939 	if (error != 0) {
2940 		device_printf(sc->bge_dev,
2941 		    "could not create %s dma tag\n", msg);
2942 		return (ENOMEM);
2943 	}
2944 	/* Allocate DMA'able memory for ring. */
2945 	error = bus_dmamem_alloc(*tag, (void **)ring,
2946 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2947 	if (error != 0) {
2948 		device_printf(sc->bge_dev,
2949 		    "could not allocate DMA'able memory for %s\n", msg);
2950 		return (ENOMEM);
2951 	}
2952 	/* Load the address of the ring. */
2953 	ctx.bge_busaddr = 0;
2954 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2955 	    &ctx, BUS_DMA_NOWAIT);
2956 	if (error != 0) {
2957 		device_printf(sc->bge_dev,
2958 		    "could not load DMA'able memory for %s\n", msg);
2959 		return (ENOMEM);
2960 	}
2961 	*paddr = ctx.bge_busaddr;
2962 	ring_end = *paddr + maxsize;
2963 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 &&
2964 	    BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) {
2965 		/*
2966 		 * 4GB boundary crossed.  Limit maximum allowable DMA
2967 		 * address space to 32bit and try again.
2968 		 */
2969 		bus_dmamap_unload(*tag, *map);
2970 		bus_dmamem_free(*tag, *ring, *map);
2971 		bus_dma_tag_destroy(*tag);
2972 		if (bootverbose)
2973 			device_printf(sc->bge_dev, "4GB boundary crossed, "
2974 			    "limit DMA address space to 32bit for %s\n", msg);
2975 		*ring = NULL;
2976 		*tag = NULL;
2977 		*map = NULL;
2978 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
2979 		goto again;
2980 	}
2981 	return (0);
2982 }
2983 
2984 static int
2985 bge_dma_alloc(struct bge_softc *sc)
2986 {
2987 	bus_addr_t lowaddr;
2988 	bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz;
2989 	int i, error;
2990 
2991 	lowaddr = BUS_SPACE_MAXADDR;
2992 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2993 		lowaddr = BGE_DMA_MAXADDR;
2994 	/*
2995 	 * Allocate the parent bus DMA tag appropriate for PCI.
2996 	 */
2997 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2998 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2999 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3000 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
3001 	if (error != 0) {
3002 		device_printf(sc->bge_dev,
3003 		    "could not allocate parent dma tag\n");
3004 		return (ENOMEM);
3005 	}
3006 
3007 	/* Create tag for standard RX ring. */
3008 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
3009 	    &sc->bge_cdata.bge_rx_std_ring_tag,
3010 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
3011 	    &sc->bge_cdata.bge_rx_std_ring_map,
3012 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
3013 	if (error)
3014 		return (error);
3015 
3016 	/* Create tag for RX return ring. */
3017 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
3018 	    &sc->bge_cdata.bge_rx_return_ring_tag,
3019 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
3020 	    &sc->bge_cdata.bge_rx_return_ring_map,
3021 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
3022 	if (error)
3023 		return (error);
3024 
3025 	/* Create tag for TX ring. */
3026 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
3027 	    &sc->bge_cdata.bge_tx_ring_tag,
3028 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
3029 	    &sc->bge_cdata.bge_tx_ring_map,
3030 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
3031 	if (error)
3032 		return (error);
3033 
3034 	/*
3035 	 * Create tag for status block.
3036 	 * Because we only use single Tx/Rx/Rx return ring, use
3037 	 * minimum status block size except BCM5700 AX/BX which
3038 	 * seems to want to see full status block size regardless
3039 	 * of configured number of ring.
3040 	 */
3041 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3042 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
3043 		sbsz = BGE_STATUS_BLK_SZ;
3044 	else
3045 		sbsz = 32;
3046 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3047 	    &sc->bge_cdata.bge_status_tag,
3048 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
3049 	    &sc->bge_cdata.bge_status_map,
3050 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
3051 	if (error)
3052 		return (error);
3053 
3054 	/* Create tag for statistics block. */
3055 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3056 	    &sc->bge_cdata.bge_stats_tag,
3057 	    (uint8_t **)&sc->bge_ldata.bge_stats,
3058 	    &sc->bge_cdata.bge_stats_map,
3059 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
3060 	if (error)
3061 		return (error);
3062 
3063 	/* Create tag for jumbo RX ring. */
3064 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3065 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3066 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3067 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3068 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
3069 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3070 		if (error)
3071 			return (error);
3072 	}
3073 
3074 	/* Create parent tag for buffers. */
3075 	boundary = 0;
3076 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3077 		boundary = BGE_DMA_BNDRY;
3078 		/*
3079 		 * XXX
3080 		 * watchdog timeout issue was observed on BCM5704 which
3081 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3082 		 * Both limiting DMA address space to 32bits and flushing
3083 		 * mailbox write seem to address the issue.
3084 		 */
3085 		if (sc->bge_pcixcap != 0)
3086 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
3087 	}
3088 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
3089 	    1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL,
3090 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3091 	    0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag);
3092 	if (error != 0) {
3093 		device_printf(sc->bge_dev,
3094 		    "could not allocate buffer dma tag\n");
3095 		return (ENOMEM);
3096 	}
3097 	/* Create tag for Tx mbufs. */
3098 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3099 		txsegsz = BGE_TSOSEG_SZ;
3100 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3101 	} else {
3102 		txsegsz = MCLBYTES;
3103 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3104 	}
3105 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3106 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3107 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3108 	    &sc->bge_cdata.bge_tx_mtag);
3109 
3110 	if (error) {
3111 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3112 		return (ENOMEM);
3113 	}
3114 
3115 	/* Create tag for Rx mbufs. */
3116 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3117 		rxmaxsegsz = MJUM9BYTES;
3118 	else
3119 		rxmaxsegsz = MCLBYTES;
3120 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3121 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3122 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3123 
3124 	if (error) {
3125 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3126 		return (ENOMEM);
3127 	}
3128 
3129 	/* Create DMA maps for RX buffers. */
3130 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3131 	    &sc->bge_cdata.bge_rx_std_sparemap);
3132 	if (error) {
3133 		device_printf(sc->bge_dev,
3134 		    "can't create spare DMA map for RX\n");
3135 		return (ENOMEM);
3136 	}
3137 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3138 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3139 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3140 		if (error) {
3141 			device_printf(sc->bge_dev,
3142 			    "can't create DMA map for RX\n");
3143 			return (ENOMEM);
3144 		}
3145 	}
3146 
3147 	/* Create DMA maps for TX buffers. */
3148 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3149 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3150 			    &sc->bge_cdata.bge_tx_dmamap[i]);
3151 		if (error) {
3152 			device_printf(sc->bge_dev,
3153 			    "can't create DMA map for TX\n");
3154 			return (ENOMEM);
3155 		}
3156 	}
3157 
3158 	/* Create tags for jumbo RX buffers. */
3159 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3160 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3161 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3162 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3163 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3164 		if (error) {
3165 			device_printf(sc->bge_dev,
3166 			    "could not allocate jumbo dma tag\n");
3167 			return (ENOMEM);
3168 		}
3169 		/* Create DMA maps for jumbo RX buffers. */
3170 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3171 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3172 		if (error) {
3173 			device_printf(sc->bge_dev,
3174 			    "can't create spare DMA map for jumbo RX\n");
3175 			return (ENOMEM);
3176 		}
3177 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3178 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3179 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3180 			if (error) {
3181 				device_printf(sc->bge_dev,
3182 				    "can't create DMA map for jumbo RX\n");
3183 				return (ENOMEM);
3184 			}
3185 		}
3186 	}
3187 
3188 	return (0);
3189 }
3190 
3191 /*
3192  * Return true if this device has more than one port.
3193  */
3194 static int
3195 bge_has_multiple_ports(struct bge_softc *sc)
3196 {
3197 	device_t dev = sc->bge_dev;
3198 	u_int b, d, f, fscan, s;
3199 
3200 	d = pci_get_domain(dev);
3201 	b = pci_get_bus(dev);
3202 	s = pci_get_slot(dev);
3203 	f = pci_get_function(dev);
3204 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3205 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3206 			return (1);
3207 	return (0);
3208 }
3209 
3210 /*
3211  * Return true if MSI can be used with this device.
3212  */
3213 static int
3214 bge_can_use_msi(struct bge_softc *sc)
3215 {
3216 	int can_use_msi = 0;
3217 
3218 	if (sc->bge_msi == 0)
3219 		return (0);
3220 
3221 	/* Disable MSI for polling(4). */
3222 #ifdef DEVICE_POLLING
3223 	return (0);
3224 #endif
3225 	switch (sc->bge_asicrev) {
3226 	case BGE_ASICREV_BCM5714_A0:
3227 	case BGE_ASICREV_BCM5714:
3228 		/*
3229 		 * Apparently, MSI doesn't work when these chips are
3230 		 * configured in single-port mode.
3231 		 */
3232 		if (bge_has_multiple_ports(sc))
3233 			can_use_msi = 1;
3234 		break;
3235 	case BGE_ASICREV_BCM5750:
3236 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3237 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3238 			can_use_msi = 1;
3239 		break;
3240 	case BGE_ASICREV_BCM5784:
3241 		/*
3242 		 * Prevent infinite "watchdog timeout" errors
3243 		 * in some MacBook Pro and make it work out-of-the-box.
3244 		 */
3245 		if (sc->bge_chiprev == BGE_CHIPREV_5784_AX)
3246 			break;
3247 		/* FALLTHROUGH */
3248 	default:
3249 		if (BGE_IS_575X_PLUS(sc))
3250 			can_use_msi = 1;
3251 	}
3252 	return (can_use_msi);
3253 }
3254 
3255 static int
3256 bge_mbox_reorder(struct bge_softc *sc)
3257 {
3258 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3259 	static const struct mbox_reorder {
3260 		const uint16_t vendor;
3261 		const uint16_t device;
3262 		const char *desc;
3263 	} mbox_reorder_lists[] = {
3264 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3265 	};
3266 	devclass_t pci, pcib;
3267 	device_t bus, dev;
3268 	int i;
3269 
3270 	pci = devclass_find("pci");
3271 	pcib = devclass_find("pcib");
3272 	dev = sc->bge_dev;
3273 	bus = device_get_parent(dev);
3274 	for (;;) {
3275 		dev = device_get_parent(bus);
3276 		bus = device_get_parent(dev);
3277 		if (device_get_devclass(dev) != pcib)
3278 			break;
3279 		if (device_get_devclass(bus) != pci)
3280 			break;
3281 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3282 			if (pci_get_vendor(dev) ==
3283 			    mbox_reorder_lists[i].vendor &&
3284 			    pci_get_device(dev) ==
3285 			    mbox_reorder_lists[i].device) {
3286 				device_printf(sc->bge_dev,
3287 				    "enabling MBOX workaround for %s\n",
3288 				    mbox_reorder_lists[i].desc);
3289 				return (1);
3290 			}
3291 		}
3292 	}
3293 	return (0);
3294 }
3295 
3296 static void
3297 bge_devinfo(struct bge_softc *sc)
3298 {
3299 	uint32_t cfg, clk;
3300 
3301 	device_printf(sc->bge_dev,
3302 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3303 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3304 	if (sc->bge_flags & BGE_FLAG_PCIE)
3305 		printf("PCI-E\n");
3306 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3307 		printf("PCI-X ");
3308 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3309 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3310 			clk = 133;
3311 		else {
3312 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3313 			switch (clk) {
3314 			case 0:
3315 				clk = 33;
3316 				break;
3317 			case 2:
3318 				clk = 50;
3319 				break;
3320 			case 4:
3321 				clk = 66;
3322 				break;
3323 			case 6:
3324 				clk = 100;
3325 				break;
3326 			case 7:
3327 				clk = 133;
3328 				break;
3329 			}
3330 		}
3331 		printf("%u MHz\n", clk);
3332 	} else {
3333 		if (sc->bge_pcixcap != 0)
3334 			printf("PCI on PCI-X ");
3335 		else
3336 			printf("PCI ");
3337 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3338 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3339 			clk = 66;
3340 		else
3341 			clk = 33;
3342 		if (cfg & BGE_PCISTATE_32BIT_BUS)
3343 			printf("%u MHz; 32bit\n", clk);
3344 		else
3345 			printf("%u MHz; 64bit\n", clk);
3346 	}
3347 }
3348 
3349 static int
3350 bge_attach(device_t dev)
3351 {
3352 	if_t ifp;
3353 	struct bge_softc *sc;
3354 	uint32_t hwcfg = 0, misccfg, pcistate;
3355 	u_char eaddr[ETHER_ADDR_LEN];
3356 	int capmask, error, reg, rid, trys;
3357 
3358 	sc = device_get_softc(dev);
3359 	sc->bge_dev = dev;
3360 
3361 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3362 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3363 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3364 
3365 	pci_enable_busmaster(dev);
3366 
3367 	/*
3368 	 * Allocate control/status registers.
3369 	 */
3370 	rid = PCIR_BAR(0);
3371 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3372 	    RF_ACTIVE);
3373 
3374 	if (sc->bge_res == NULL) {
3375 		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3376 		error = ENXIO;
3377 		goto fail;
3378 	}
3379 
3380 	/* Save various chip information. */
3381 	sc->bge_func_addr = pci_get_function(dev);
3382 	sc->bge_chipid = bge_chipid(dev);
3383 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3384 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3385 
3386 	/* Set default PHY address. */
3387 	sc->bge_phy_addr = 1;
3388 	 /*
3389 	  * PHY address mapping for various devices.
3390 	  *
3391 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3392 	  * ---------+-------+-------+-------+-------+
3393 	  * BCM57XX  |   1   |   X   |   X   |   X   |
3394 	  * BCM5704  |   1   |   X   |   1   |   X   |
3395 	  * BCM5717  |   1   |   8   |   2   |   9   |
3396 	  * BCM5719  |   1   |   8   |   2   |   9   |
3397 	  * BCM5720  |   1   |   8   |   2   |   9   |
3398 	  *
3399 	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3400 	  * ---------+-------+-------+-------+-------+
3401 	  * BCM57XX  |   X   |   X   |   X   |   X   |
3402 	  * BCM5704  |   X   |   X   |   X   |   X   |
3403 	  * BCM5717  |   X   |   X   |   X   |   X   |
3404 	  * BCM5719  |   3   |   10  |   4   |   11  |
3405 	  * BCM5720  |   X   |   X   |   X   |   X   |
3406 	  *
3407 	  * Other addresses may respond but they are not
3408 	  * IEEE compliant PHYs and should be ignored.
3409 	  */
3410 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3411 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3412 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3413 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3414 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3415 			    BGE_SGDIGSTS_IS_SERDES)
3416 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3417 			else
3418 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3419 		} else {
3420 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3421 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3422 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3423 			else
3424 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3425 		}
3426 	}
3427 
3428 	if (bge_has_eaddr(sc))
3429 		sc->bge_flags |= BGE_FLAG_EADDR;
3430 
3431 	/* Save chipset family. */
3432 	switch (sc->bge_asicrev) {
3433 	case BGE_ASICREV_BCM5762:
3434 	case BGE_ASICREV_BCM57765:
3435 	case BGE_ASICREV_BCM57766:
3436 		sc->bge_flags |= BGE_FLAG_57765_PLUS;
3437 		/* FALLTHROUGH */
3438 	case BGE_ASICREV_BCM5717:
3439 	case BGE_ASICREV_BCM5719:
3440 	case BGE_ASICREV_BCM5720:
3441 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3442 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3443 		    BGE_FLAG_JUMBO_FRAME;
3444 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3445 		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3446 			/*
3447 			 * Enable work around for DMA engine miscalculation
3448 			 * of TXMBUF available space.
3449 			 */
3450 			sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3451 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3452 			    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3453 				/* Jumbo frame on BCM5719 A0 does not work. */
3454 				sc->bge_flags &= ~BGE_FLAG_JUMBO;
3455 			}
3456 		}
3457 		break;
3458 	case BGE_ASICREV_BCM5755:
3459 	case BGE_ASICREV_BCM5761:
3460 	case BGE_ASICREV_BCM5784:
3461 	case BGE_ASICREV_BCM5785:
3462 	case BGE_ASICREV_BCM5787:
3463 	case BGE_ASICREV_BCM57780:
3464 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3465 		    BGE_FLAG_5705_PLUS;
3466 		break;
3467 	case BGE_ASICREV_BCM5700:
3468 	case BGE_ASICREV_BCM5701:
3469 	case BGE_ASICREV_BCM5703:
3470 	case BGE_ASICREV_BCM5704:
3471 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3472 		break;
3473 	case BGE_ASICREV_BCM5714_A0:
3474 	case BGE_ASICREV_BCM5780:
3475 	case BGE_ASICREV_BCM5714:
3476 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3477 		/* FALLTHROUGH */
3478 	case BGE_ASICREV_BCM5750:
3479 	case BGE_ASICREV_BCM5752:
3480 	case BGE_ASICREV_BCM5906:
3481 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3482 		/* FALLTHROUGH */
3483 	case BGE_ASICREV_BCM5705:
3484 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3485 		break;
3486 	}
3487 
3488 	/* Identify chips with APE processor. */
3489 	switch (sc->bge_asicrev) {
3490 	case BGE_ASICREV_BCM5717:
3491 	case BGE_ASICREV_BCM5719:
3492 	case BGE_ASICREV_BCM5720:
3493 	case BGE_ASICREV_BCM5761:
3494 	case BGE_ASICREV_BCM5762:
3495 		sc->bge_flags |= BGE_FLAG_APE;
3496 		break;
3497 	}
3498 
3499 	/* Chips with APE need BAR2 access for APE registers/memory. */
3500 	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3501 		rid = PCIR_BAR(2);
3502 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3503 		    RF_ACTIVE);
3504 		if (sc->bge_res2 == NULL) {
3505 			device_printf (sc->bge_dev,
3506 			    "couldn't map BAR2 memory\n");
3507 			error = ENXIO;
3508 			goto fail;
3509 		}
3510 
3511 		/* Enable APE register/memory access by host driver. */
3512 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3513 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3514 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3515 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3516 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3517 
3518 		bge_ape_lock_init(sc);
3519 		bge_ape_read_fw_ver(sc);
3520 	}
3521 
3522 	/* Add SYSCTLs, requires the chipset family to be set. */
3523 	bge_add_sysctls(sc);
3524 
3525 	/* Identify the chips that use an CPMU. */
3526 	if (BGE_IS_5717_PLUS(sc) ||
3527 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3528 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3529 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3530 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3531 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3532 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3533 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3534 	else
3535 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3536 	/* Enable auto polling for BCM570[0-5]. */
3537 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3538 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3539 
3540 	/*
3541 	 * All Broadcom controllers have 4GB boundary DMA bug.
3542 	 * Whenever an address crosses a multiple of the 4GB boundary
3543 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3544 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3545 	 * state machine will lockup and cause the device to hang.
3546 	 */
3547 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3548 
3549 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3550 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3551 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3552 
3553 	/*
3554 	 * BCM5719 cannot handle DMA requests for DMA segments that
3555 	 * have larger than 4KB in size.  However the maximum DMA
3556 	 * segment size created in DMA tag is 4KB for TSO, so we
3557 	 * wouldn't encounter the issue here.
3558 	 */
3559 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3560 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3561 
3562 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3563 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3564 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3565 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3566 			sc->bge_flags |= BGE_FLAG_5788;
3567 	}
3568 
3569 	capmask = BMSR_DEFCAPMASK;
3570 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3571 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3572 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3573 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3574 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3575 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3576 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3577 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3578 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3579 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3580 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3581 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3582 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3583 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3584 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3585 		/* These chips are 10/100 only. */
3586 		capmask &= ~BMSR_EXTSTAT;
3587 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3588 	}
3589 
3590 	/*
3591 	 * Some controllers seem to require a special firmware to use
3592 	 * TSO. But the firmware is not available to FreeBSD and Linux
3593 	 * claims that the TSO performed by the firmware is slower than
3594 	 * hardware based TSO. Moreover the firmware based TSO has one
3595 	 * known bug which can't handle TSO if Ethernet header + IP/TCP
3596 	 * header is greater than 80 bytes. A workaround for the TSO
3597 	 * bug exist but it seems it's too expensive than not using
3598 	 * TSO at all. Some hardwares also have the TSO bug so limit
3599 	 * the TSO to the controllers that are not affected TSO issues
3600 	 * (e.g. 5755 or higher).
3601 	 */
3602 	if (BGE_IS_5717_PLUS(sc)) {
3603 		/* BCM5717 requires different TSO configuration. */
3604 		sc->bge_flags |= BGE_FLAG_TSO3;
3605 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3606 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3607 			/* TSO on BCM5719 A0 does not work. */
3608 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3609 		}
3610 	} else if (BGE_IS_5755_PLUS(sc)) {
3611 		/*
3612 		 * BCM5754 and BCM5787 shares the same ASIC id so
3613 		 * explicit device id check is required.
3614 		 * Due to unknown reason TSO does not work on BCM5755M.
3615 		 */
3616 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3617 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3618 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3619 			sc->bge_flags |= BGE_FLAG_TSO;
3620 	}
3621 
3622 	/*
3623 	 * Check if this is a PCI-X or PCI Express device.
3624 	 */
3625 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3626 		/*
3627 		 * Found a PCI Express capabilities register, this
3628 		 * must be a PCI Express device.
3629 		 */
3630 		sc->bge_flags |= BGE_FLAG_PCIE;
3631 		sc->bge_expcap = reg;
3632 		/* Extract supported maximum payload size. */
3633 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3634 		    PCIER_DEVICE_CAP, 2);
3635 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3636 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3637 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3638 			sc->bge_expmrq = 2048;
3639 		else
3640 			sc->bge_expmrq = 4096;
3641 		pci_set_max_read_req(dev, sc->bge_expmrq);
3642 	} else {
3643 		/*
3644 		 * Check if the device is in PCI-X Mode.
3645 		 * (This bit is not valid on PCI Express controllers.)
3646 		 */
3647 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3648 			sc->bge_pcixcap = reg;
3649 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3650 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3651 			sc->bge_flags |= BGE_FLAG_PCIX;
3652 	}
3653 
3654 	/*
3655 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3656 	 * not actually a MAC controller bug but an issue with the embedded
3657 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3658 	 */
3659 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3660 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3661 	/*
3662 	 * Some PCI-X bridges are known to trigger write reordering to
3663 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3664 	 * caused by out-of-order TX completions.  Enable workaround for
3665 	 * PCI-X devices that live behind these bridges.
3666 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3667 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3668 	 */
3669 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3670 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3671 	/*
3672 	 * Allocate the interrupt, using MSI if possible.  These devices
3673 	 * support 8 MSI messages, but only the first one is used in
3674 	 * normal operation.
3675 	 */
3676 	rid = 0;
3677 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3678 		sc->bge_msicap = reg;
3679 		reg = 1;
3680 		if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3681 			rid = 1;
3682 			sc->bge_flags |= BGE_FLAG_MSI;
3683 		}
3684 	}
3685 
3686 	/*
3687 	 * All controllers except BCM5700 supports tagged status but
3688 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3689 	 * MSI on BCM5717 does not work.
3690 	 */
3691 #ifndef DEVICE_POLLING
3692 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3693 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3694 #endif
3695 
3696 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3697 	    RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3698 
3699 	if (sc->bge_irq == NULL) {
3700 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3701 		error = ENXIO;
3702 		goto fail;
3703 	}
3704 
3705 	bge_devinfo(sc);
3706 
3707 	sc->bge_asf_mode = 0;
3708 	/* No ASF if APE present. */
3709 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3710 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3711 		    BGE_SRAM_DATA_SIG_MAGIC)) {
3712 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3713 			    BGE_HWCFG_ASF) {
3714 				sc->bge_asf_mode |= ASF_ENABLE;
3715 				sc->bge_asf_mode |= ASF_STACKUP;
3716 				if (BGE_IS_575X_PLUS(sc))
3717 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3718 			}
3719 		}
3720 	}
3721 
3722 	bge_stop_fw(sc);
3723 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3724 	if (bge_reset(sc)) {
3725 		device_printf(sc->bge_dev, "chip reset failed\n");
3726 		error = ENXIO;
3727 		goto fail;
3728 	}
3729 
3730 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3731 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3732 
3733 	if (bge_chipinit(sc)) {
3734 		device_printf(sc->bge_dev, "chip initialization failed\n");
3735 		error = ENXIO;
3736 		goto fail;
3737 	}
3738 
3739 	error = bge_get_eaddr(sc, eaddr);
3740 	if (error) {
3741 		device_printf(sc->bge_dev,
3742 		    "failed to read station address\n");
3743 		error = ENXIO;
3744 		goto fail;
3745 	}
3746 
3747 	/* 5705 limits RX return ring to 512 entries. */
3748 	if (BGE_IS_5717_PLUS(sc))
3749 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3750 	else if (BGE_IS_5705_PLUS(sc))
3751 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3752 	else
3753 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3754 
3755 	if (bge_dma_alloc(sc)) {
3756 		device_printf(sc->bge_dev,
3757 		    "failed to allocate DMA resources\n");
3758 		error = ENXIO;
3759 		goto fail;
3760 	}
3761 
3762 	/* Set default tuneable values. */
3763 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3764 	sc->bge_rx_coal_ticks = 150;
3765 	sc->bge_tx_coal_ticks = 150;
3766 	sc->bge_rx_max_coal_bds = 10;
3767 	sc->bge_tx_max_coal_bds = 10;
3768 
3769 	/* Initialize checksum features to use. */
3770 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3771 	if (sc->bge_forced_udpcsum != 0)
3772 		sc->bge_csum_features |= CSUM_UDP;
3773 
3774 	/* Set up ifnet structure */
3775 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3776 	if (ifp == NULL) {
3777 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3778 		error = ENXIO;
3779 		goto fail;
3780 	}
3781 	if_setsoftc(ifp, sc);
3782 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3783 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
3784 	if_setioctlfn(ifp, bge_ioctl);
3785 	if_setstartfn(ifp, bge_start);
3786 	if_setinitfn(ifp, bge_init);
3787 	if_setgetcounterfn(ifp, bge_get_counter);
3788 	if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
3789 	if_setsendqready(ifp);
3790 	if_sethwassist(ifp, sc->bge_csum_features);
3791 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3792 	    IFCAP_VLAN_MTU);
3793 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3794 		if_sethwassistbits(ifp, CSUM_TSO, 0);
3795 		if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
3796 	}
3797 #ifdef IFCAP_VLAN_HWCSUM
3798 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
3799 #endif
3800 	if_setcapenable(ifp, if_getcapabilities(ifp));
3801 #ifdef DEVICE_POLLING
3802 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
3803 #endif
3804 
3805 	/*
3806 	 * 5700 B0 chips do not support checksumming correctly due
3807 	 * to hardware bugs.
3808 	 */
3809 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3810 		if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
3811 		if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
3812 		if_sethwassist(ifp, 0);
3813 	}
3814 
3815 	/*
3816 	 * Figure out what sort of media we have by checking the
3817 	 * hardware config word in the first 32k of NIC internal memory,
3818 	 * or fall back to examining the EEPROM if necessary.
3819 	 * Note: on some BCM5700 cards, this value appears to be unset.
3820 	 * If that's the case, we have to rely on identifying the NIC
3821 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3822 	 * SK-9D41.
3823 	 */
3824 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3825 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3826 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3827 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3828 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3829 		    sizeof(hwcfg))) {
3830 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3831 			error = ENXIO;
3832 			goto fail;
3833 		}
3834 		hwcfg = ntohl(hwcfg);
3835 	}
3836 
3837 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3838 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3839 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3840 		if (BGE_IS_5705_PLUS(sc)) {
3841 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3842 			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3843 		} else
3844 			sc->bge_flags |= BGE_FLAG_TBI;
3845 	}
3846 
3847 	/* Set various PHY bug flags. */
3848 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3849 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3850 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3851 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3852 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3853 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3854 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3855 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3856 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3857 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3858 	if ((BGE_IS_5705_PLUS(sc)) &&
3859 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3860 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3861 	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3862 	    !BGE_IS_5717_PLUS(sc)) {
3863 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3864 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3865 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3866 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3867 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3868 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3869 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3870 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3871 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3872 		} else
3873 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3874 	}
3875 
3876 	/*
3877 	 * Don't enable Ethernet@WireSpeed for the 5700 or the
3878 	 * 5705 A0 and A1 chips.
3879 	 */
3880 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3881 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3882 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3883 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3884 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3885 
3886 	if (sc->bge_flags & BGE_FLAG_TBI) {
3887 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3888 		    bge_ifmedia_sts);
3889 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3890 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3891 		    0, NULL);
3892 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3893 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3894 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3895 	} else {
3896 		/*
3897 		 * Do transceiver setup and tell the firmware the
3898 		 * driver is down so we can try to get access the
3899 		 * probe if ASF is running.  Retry a couple of times
3900 		 * if we get a conflict with the ASF firmware accessing
3901 		 * the PHY.
3902 		 */
3903 		trys = 0;
3904 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3905 again:
3906 		bge_asf_driver_up(sc);
3907 
3908 		error = mii_attach(dev, &sc->bge_miibus, ifp,
3909 		    (ifm_change_cb_t)bge_ifmedia_upd,
3910 		    (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr,
3911 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
3912 		if (error != 0) {
3913 			if (trys++ < 4) {
3914 				device_printf(sc->bge_dev, "Try again\n");
3915 				bge_miibus_writereg(sc->bge_dev,
3916 				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3917 				goto again;
3918 			}
3919 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3920 			goto fail;
3921 		}
3922 
3923 		/*
3924 		 * Now tell the firmware we are going up after probing the PHY
3925 		 */
3926 		if (sc->bge_asf_mode & ASF_STACKUP)
3927 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3928 	}
3929 
3930 	/*
3931 	 * When using the BCM5701 in PCI-X mode, data corruption has
3932 	 * been observed in the first few bytes of some received packets.
3933 	 * Aligning the packet buffer in memory eliminates the corruption.
3934 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3935 	 * which do not support unaligned accesses, we will realign the
3936 	 * payloads by copying the received packets.
3937 	 */
3938 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3939 	    sc->bge_flags & BGE_FLAG_PCIX)
3940                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3941 
3942 	/*
3943 	 * Call MI attach routine.
3944 	 */
3945 	ether_ifattach(ifp, eaddr);
3946 
3947 	/* Tell upper layer we support long frames. */
3948 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
3949 
3950 	/*
3951 	 * Hookup IRQ last.
3952 	 */
3953 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3954 		/* Take advantage of single-shot MSI. */
3955 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3956 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3957 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3958 		    taskqueue_thread_enqueue, &sc->bge_tq);
3959 		if (sc->bge_tq == NULL) {
3960 			device_printf(dev, "could not create taskqueue.\n");
3961 			ether_ifdetach(ifp);
3962 			error = ENOMEM;
3963 			goto fail;
3964 		}
3965 		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3966 		    "%s taskq", device_get_nameunit(sc->bge_dev));
3967 		if (error != 0) {
3968 			device_printf(dev, "could not start threads.\n");
3969 			ether_ifdetach(ifp);
3970 			goto fail;
3971 		}
3972 		error = bus_setup_intr(dev, sc->bge_irq,
3973 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3974 		    &sc->bge_intrhand);
3975 	} else
3976 		error = bus_setup_intr(dev, sc->bge_irq,
3977 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3978 		    &sc->bge_intrhand);
3979 
3980 	if (error) {
3981 		ether_ifdetach(ifp);
3982 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3983 		goto fail;
3984 	}
3985 
3986 	/* Attach driver netdump methods. */
3987 	NETDUMP_SET(ifp, bge);
3988 
3989 fail:
3990 	if (error)
3991 		bge_detach(dev);
3992 	return (error);
3993 }
3994 
3995 static int
3996 bge_detach(device_t dev)
3997 {
3998 	struct bge_softc *sc;
3999 	if_t ifp;
4000 
4001 	sc = device_get_softc(dev);
4002 	ifp = sc->bge_ifp;
4003 
4004 #ifdef DEVICE_POLLING
4005 	if (if_getcapenable(ifp) & IFCAP_POLLING)
4006 		ether_poll_deregister(ifp);
4007 #endif
4008 
4009 	if (device_is_attached(dev)) {
4010 		ether_ifdetach(ifp);
4011 		BGE_LOCK(sc);
4012 		bge_stop(sc);
4013 		BGE_UNLOCK(sc);
4014 		callout_drain(&sc->bge_stat_ch);
4015 	}
4016 
4017 	if (sc->bge_tq)
4018 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
4019 
4020 	if (sc->bge_flags & BGE_FLAG_TBI)
4021 		ifmedia_removeall(&sc->bge_ifmedia);
4022 	else if (sc->bge_miibus != NULL) {
4023 		bus_generic_detach(dev);
4024 		device_delete_child(dev, sc->bge_miibus);
4025 	}
4026 
4027 	bge_release_resources(sc);
4028 
4029 	return (0);
4030 }
4031 
4032 static void
4033 bge_release_resources(struct bge_softc *sc)
4034 {
4035 	device_t dev;
4036 
4037 	dev = sc->bge_dev;
4038 
4039 	if (sc->bge_tq != NULL)
4040 		taskqueue_free(sc->bge_tq);
4041 
4042 	if (sc->bge_intrhand != NULL)
4043 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
4044 
4045 	if (sc->bge_irq != NULL) {
4046 		bus_release_resource(dev, SYS_RES_IRQ,
4047 		    rman_get_rid(sc->bge_irq), sc->bge_irq);
4048 		pci_release_msi(dev);
4049 	}
4050 
4051 	if (sc->bge_res != NULL)
4052 		bus_release_resource(dev, SYS_RES_MEMORY,
4053 		    rman_get_rid(sc->bge_res), sc->bge_res);
4054 
4055 	if (sc->bge_res2 != NULL)
4056 		bus_release_resource(dev, SYS_RES_MEMORY,
4057 		    rman_get_rid(sc->bge_res2), sc->bge_res2);
4058 
4059 	if (sc->bge_ifp != NULL)
4060 		if_free(sc->bge_ifp);
4061 
4062 	bge_dma_free(sc);
4063 
4064 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
4065 		BGE_LOCK_DESTROY(sc);
4066 }
4067 
4068 static int
4069 bge_reset(struct bge_softc *sc)
4070 {
4071 	device_t dev;
4072 	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4073 	void (*write_op)(struct bge_softc *, int, int);
4074 	uint16_t devctl;
4075 	int i;
4076 
4077 	dev = sc->bge_dev;
4078 
4079 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4080 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4081 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4082 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4083 
4084 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4085 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4086 		if (sc->bge_flags & BGE_FLAG_PCIE)
4087 			write_op = bge_writemem_direct;
4088 		else
4089 			write_op = bge_writemem_ind;
4090 	} else
4091 		write_op = bge_writereg_ind;
4092 
4093 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4094 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4095 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4096 		for (i = 0; i < 8000; i++) {
4097 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4098 			    BGE_NVRAMSWARB_GNT1)
4099 				break;
4100 			DELAY(20);
4101 		}
4102 		if (i == 8000) {
4103 			if (bootverbose)
4104 				device_printf(dev, "NVRAM lock timedout!\n");
4105 		}
4106 	}
4107 	/* Take APE lock when performing reset. */
4108 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4109 
4110 	/* Save some important PCI state. */
4111 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4112 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
4113 
4114 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4115 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4116 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4117 
4118 	/* Disable fastboot on controllers that support it. */
4119 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4120 	    BGE_IS_5755_PLUS(sc)) {
4121 		if (bootverbose)
4122 			device_printf(dev, "Disabling fastboot\n");
4123 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4124 	}
4125 
4126 	/*
4127 	 * Write the magic number to SRAM at offset 0xB50.
4128 	 * When firmware finishes its initialization it will
4129 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4130 	 */
4131 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4132 
4133 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4134 
4135 	/* XXX: Broadcom Linux driver. */
4136 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4137 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4138 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4139 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
4140 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
4141 		}
4142 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4143 			/* Prevent PCIE link training during global reset */
4144 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4145 			reset |= 1 << 29;
4146 		}
4147 	}
4148 
4149 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4150 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4151 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4152 		    val | BGE_VCPU_STATUS_DRV_RESET);
4153 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4154 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4155 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4156 	}
4157 
4158 	/*
4159 	 * Set GPHY Power Down Override to leave GPHY
4160 	 * powered up in D0 uninitialized.
4161 	 */
4162 	if (BGE_IS_5705_PLUS(sc) &&
4163 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4164 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4165 
4166 	/* Issue global reset */
4167 	write_op(sc, BGE_MISC_CFG, reset);
4168 
4169 	if (sc->bge_flags & BGE_FLAG_PCIE)
4170 		DELAY(100 * 1000);
4171 	else
4172 		DELAY(1000);
4173 
4174 	/* XXX: Broadcom Linux driver. */
4175 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4176 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4177 			DELAY(500000); /* wait for link training to complete */
4178 			val = pci_read_config(dev, 0xC4, 4);
4179 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4180 		}
4181 		devctl = pci_read_config(dev,
4182 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4183 		/* Clear enable no snoop and disable relaxed ordering. */
4184 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4185 		    PCIEM_CTL_NOSNOOP_ENABLE);
4186 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4187 		    devctl, 2);
4188 		pci_set_max_read_req(dev, sc->bge_expmrq);
4189 		/* Clear error status. */
4190 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4191 		    PCIEM_STA_CORRECTABLE_ERROR |
4192 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4193 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4194 	}
4195 
4196 	/* Reset some of the PCI state that got zapped by reset. */
4197 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4198 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4199 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4200 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4201 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4202 	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4203 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4204 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4205 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4206 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4207 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4208 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4209 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4210 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4211 	/*
4212 	 * Disable PCI-X relaxed ordering to ensure status block update
4213 	 * comes first then packet buffer DMA. Otherwise driver may
4214 	 * read stale status block.
4215 	 */
4216 	if (sc->bge_flags & BGE_FLAG_PCIX) {
4217 		devctl = pci_read_config(dev,
4218 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4219 		devctl &= ~PCIXM_COMMAND_ERO;
4220 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4221 			devctl &= ~PCIXM_COMMAND_MAX_READ;
4222 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4223 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4224 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4225 			    PCIXM_COMMAND_MAX_READ);
4226 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4227 		}
4228 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4229 		    devctl, 2);
4230 	}
4231 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4232 	if (BGE_IS_5714_FAMILY(sc)) {
4233 		/* This chip disables MSI on reset. */
4234 		if (sc->bge_flags & BGE_FLAG_MSI) {
4235 			val = pci_read_config(dev,
4236 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4237 			pci_write_config(dev,
4238 			    sc->bge_msicap + PCIR_MSI_CTRL,
4239 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4240 			val = CSR_READ_4(sc, BGE_MSI_MODE);
4241 			CSR_WRITE_4(sc, BGE_MSI_MODE,
4242 			    val | BGE_MSIMODE_ENABLE);
4243 		}
4244 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4245 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4246 	} else
4247 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4248 
4249 	/* Fix up byte swapping. */
4250 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4251 
4252 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4253 	val = (val & ~mac_mode_mask) | mac_mode;
4254 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4255 	DELAY(40);
4256 
4257 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4258 
4259 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4260 		for (i = 0; i < BGE_TIMEOUT; i++) {
4261 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4262 			if (val & BGE_VCPU_STATUS_INIT_DONE)
4263 				break;
4264 			DELAY(100);
4265 		}
4266 		if (i == BGE_TIMEOUT) {
4267 			device_printf(dev, "reset timed out\n");
4268 			return (1);
4269 		}
4270 	} else {
4271 		/*
4272 		 * Poll until we see the 1's complement of the magic number.
4273 		 * This indicates that the firmware initialization is complete.
4274 		 * We expect this to fail if no chip containing the Ethernet
4275 		 * address is fitted though.
4276 		 */
4277 		for (i = 0; i < BGE_TIMEOUT; i++) {
4278 			DELAY(10);
4279 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4280 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4281 				break;
4282 		}
4283 
4284 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4285 			device_printf(dev,
4286 			    "firmware handshake timed out, found 0x%08x\n",
4287 			    val);
4288 		/* BCM57765 A0 needs additional time before accessing. */
4289 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4290 			DELAY(10 * 1000);	/* XXX */
4291 	}
4292 
4293 	/*
4294 	 * The 5704 in TBI mode apparently needs some special
4295 	 * adjustment to insure the SERDES drive level is set
4296 	 * to 1.2V.
4297 	 */
4298 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4299 	    sc->bge_flags & BGE_FLAG_TBI) {
4300 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4301 		val = (val & ~0xFFF) | 0x880;
4302 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4303 	}
4304 
4305 	/* XXX: Broadcom Linux driver. */
4306 	if (sc->bge_flags & BGE_FLAG_PCIE &&
4307 	    !BGE_IS_5717_PLUS(sc) &&
4308 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4309 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4310 		/* Enable Data FIFO protection. */
4311 		val = CSR_READ_4(sc, 0x7C00);
4312 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4313 	}
4314 
4315 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4316 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4317 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4318 
4319 	return (0);
4320 }
4321 
4322 static __inline void
4323 bge_rxreuse_std(struct bge_softc *sc, int i)
4324 {
4325 	struct bge_rx_bd *r;
4326 
4327 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4328 	r->bge_flags = BGE_RXBDFLAG_END;
4329 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4330 	r->bge_idx = i;
4331 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4332 }
4333 
4334 static __inline void
4335 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4336 {
4337 	struct bge_extrx_bd *r;
4338 
4339 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4340 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4341 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4342 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4343 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4344 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4345 	r->bge_idx = i;
4346 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4347 }
4348 
4349 /*
4350  * Frame reception handling. This is called if there's a frame
4351  * on the receive return list.
4352  *
4353  * Note: we have to be able to handle two possibilities here:
4354  * 1) the frame is from the jumbo receive ring
4355  * 2) the frame is from the standard receive ring
4356  */
4357 
4358 static int
4359 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4360 {
4361 	if_t ifp;
4362 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4363 	uint16_t rx_cons;
4364 
4365 	rx_cons = sc->bge_rx_saved_considx;
4366 
4367 	/* Nothing to do. */
4368 	if (rx_cons == rx_prod)
4369 		return (rx_npkts);
4370 
4371 	ifp = sc->bge_ifp;
4372 
4373 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4374 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4375 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4376 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4377 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4378 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
4379 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
4380 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4381 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4382 
4383 	while (rx_cons != rx_prod) {
4384 		struct bge_rx_bd	*cur_rx;
4385 		uint32_t		rxidx;
4386 		struct mbuf		*m = NULL;
4387 		uint16_t		vlan_tag = 0;
4388 		int			have_tag = 0;
4389 
4390 #ifdef DEVICE_POLLING
4391 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
4392 			if (sc->rxcycles <= 0)
4393 				break;
4394 			sc->rxcycles--;
4395 		}
4396 #endif
4397 
4398 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4399 
4400 		rxidx = cur_rx->bge_idx;
4401 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4402 
4403 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4404 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4405 			have_tag = 1;
4406 			vlan_tag = cur_rx->bge_vlan_tag;
4407 		}
4408 
4409 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4410 			jumbocnt++;
4411 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4412 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4413 				bge_rxreuse_jumbo(sc, rxidx);
4414 				continue;
4415 			}
4416 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4417 				bge_rxreuse_jumbo(sc, rxidx);
4418 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4419 				continue;
4420 			}
4421 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4422 		} else {
4423 			stdcnt++;
4424 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4425 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4426 				bge_rxreuse_std(sc, rxidx);
4427 				continue;
4428 			}
4429 			if (bge_newbuf_std(sc, rxidx) != 0) {
4430 				bge_rxreuse_std(sc, rxidx);
4431 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4432 				continue;
4433 			}
4434 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4435 		}
4436 
4437 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
4438 #ifndef __NO_STRICT_ALIGNMENT
4439 		/*
4440 		 * For architectures with strict alignment we must make sure
4441 		 * the payload is aligned.
4442 		 */
4443 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4444 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4445 			    cur_rx->bge_len);
4446 			m->m_data += ETHER_ALIGN;
4447 		}
4448 #endif
4449 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4450 		m->m_pkthdr.rcvif = ifp;
4451 
4452 		if (if_getcapenable(ifp) & IFCAP_RXCSUM)
4453 			bge_rxcsum(sc, cur_rx, m);
4454 
4455 		/*
4456 		 * If we received a packet with a vlan tag,
4457 		 * attach that information to the packet.
4458 		 */
4459 		if (have_tag) {
4460 			m->m_pkthdr.ether_vtag = vlan_tag;
4461 			m->m_flags |= M_VLANTAG;
4462 		}
4463 
4464 		if (holdlck != 0) {
4465 			BGE_UNLOCK(sc);
4466 			if_input(ifp, m);
4467 			BGE_LOCK(sc);
4468 		} else
4469 			if_input(ifp, m);
4470 		rx_npkts++;
4471 
4472 		if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4473 			return (rx_npkts);
4474 	}
4475 
4476 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4477 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4478 	if (stdcnt > 0)
4479 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4480 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4481 
4482 	if (jumbocnt > 0)
4483 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4484 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4485 
4486 	sc->bge_rx_saved_considx = rx_cons;
4487 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4488 	if (stdcnt)
4489 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4490 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4491 	if (jumbocnt)
4492 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4493 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4494 #ifdef notyet
4495 	/*
4496 	 * This register wraps very quickly under heavy packet drops.
4497 	 * If you need correct statistics, you can enable this check.
4498 	 */
4499 	if (BGE_IS_5705_PLUS(sc))
4500 		if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4501 #endif
4502 	return (rx_npkts);
4503 }
4504 
4505 static void
4506 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4507 {
4508 
4509 	if (BGE_IS_5717_PLUS(sc)) {
4510 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4511 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4512 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4513 				if ((cur_rx->bge_error_flag &
4514 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4515 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4516 			}
4517 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4518 				m->m_pkthdr.csum_data =
4519 				    cur_rx->bge_tcp_udp_csum;
4520 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4521 				    CSUM_PSEUDO_HDR;
4522 			}
4523 		}
4524 	} else {
4525 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4526 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4527 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4528 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4529 		}
4530 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4531 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4532 			m->m_pkthdr.csum_data =
4533 			    cur_rx->bge_tcp_udp_csum;
4534 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4535 			    CSUM_PSEUDO_HDR;
4536 		}
4537 	}
4538 }
4539 
4540 static void
4541 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4542 {
4543 	struct bge_tx_bd *cur_tx;
4544 	if_t ifp;
4545 
4546 	BGE_LOCK_ASSERT(sc);
4547 
4548 	/* Nothing to do. */
4549 	if (sc->bge_tx_saved_considx == tx_cons)
4550 		return;
4551 
4552 	ifp = sc->bge_ifp;
4553 
4554 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4555 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4556 	/*
4557 	 * Go through our tx ring and free mbufs for those
4558 	 * frames that have been sent.
4559 	 */
4560 	while (sc->bge_tx_saved_considx != tx_cons) {
4561 		uint32_t		idx;
4562 
4563 		idx = sc->bge_tx_saved_considx;
4564 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4565 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4566 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4567 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4568 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4569 			    sc->bge_cdata.bge_tx_dmamap[idx],
4570 			    BUS_DMASYNC_POSTWRITE);
4571 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4572 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4573 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4574 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4575 		}
4576 		sc->bge_txcnt--;
4577 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4578 	}
4579 
4580 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4581 	if (sc->bge_txcnt == 0)
4582 		sc->bge_timer = 0;
4583 }
4584 
4585 #ifdef DEVICE_POLLING
4586 static int
4587 bge_poll(if_t ifp, enum poll_cmd cmd, int count)
4588 {
4589 	struct bge_softc *sc = if_getsoftc(ifp);
4590 	uint16_t rx_prod, tx_cons;
4591 	uint32_t statusword;
4592 	int rx_npkts = 0;
4593 
4594 	BGE_LOCK(sc);
4595 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4596 		BGE_UNLOCK(sc);
4597 		return (rx_npkts);
4598 	}
4599 
4600 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4601 	    sc->bge_cdata.bge_status_map,
4602 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4603 	/* Fetch updates from the status block. */
4604 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4605 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4606 
4607 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4608 	/* Clear the status so the next pass only sees the changes. */
4609 	sc->bge_ldata.bge_status_block->bge_status = 0;
4610 
4611 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4612 	    sc->bge_cdata.bge_status_map,
4613 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4614 
4615 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4616 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4617 		sc->bge_link_evt++;
4618 
4619 	if (cmd == POLL_AND_CHECK_STATUS)
4620 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4621 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4622 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4623 			bge_link_upd(sc);
4624 
4625 	sc->rxcycles = count;
4626 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4627 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4628 		BGE_UNLOCK(sc);
4629 		return (rx_npkts);
4630 	}
4631 	bge_txeof(sc, tx_cons);
4632 	if (!if_sendq_empty(ifp))
4633 		bge_start_locked(ifp);
4634 
4635 	BGE_UNLOCK(sc);
4636 	return (rx_npkts);
4637 }
4638 #endif /* DEVICE_POLLING */
4639 
4640 static int
4641 bge_msi_intr(void *arg)
4642 {
4643 	struct bge_softc *sc;
4644 
4645 	sc = (struct bge_softc *)arg;
4646 	/*
4647 	 * This interrupt is not shared and controller already
4648 	 * disabled further interrupt.
4649 	 */
4650 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4651 	return (FILTER_HANDLED);
4652 }
4653 
4654 static void
4655 bge_intr_task(void *arg, int pending)
4656 {
4657 	struct bge_softc *sc;
4658 	if_t ifp;
4659 	uint32_t status, status_tag;
4660 	uint16_t rx_prod, tx_cons;
4661 
4662 	sc = (struct bge_softc *)arg;
4663 	ifp = sc->bge_ifp;
4664 
4665 	BGE_LOCK(sc);
4666 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4667 		BGE_UNLOCK(sc);
4668 		return;
4669 	}
4670 
4671 	/* Get updated status block. */
4672 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4673 	    sc->bge_cdata.bge_status_map,
4674 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4675 
4676 	/* Save producer/consumer indices. */
4677 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4678 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4679 	status = sc->bge_ldata.bge_status_block->bge_status;
4680 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4681 	/* Dirty the status flag. */
4682 	sc->bge_ldata.bge_status_block->bge_status = 0;
4683 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4684 	    sc->bge_cdata.bge_status_map,
4685 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4686 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4687 		status_tag = 0;
4688 
4689 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4690 		bge_link_upd(sc);
4691 
4692 	/* Let controller work. */
4693 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4694 
4695 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4696 	    sc->bge_rx_saved_considx != rx_prod) {
4697 		/* Check RX return ring producer/consumer. */
4698 		BGE_UNLOCK(sc);
4699 		bge_rxeof(sc, rx_prod, 0);
4700 		BGE_LOCK(sc);
4701 	}
4702 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4703 		/* Check TX ring producer/consumer. */
4704 		bge_txeof(sc, tx_cons);
4705 		if (!if_sendq_empty(ifp))
4706 			bge_start_locked(ifp);
4707 	}
4708 	BGE_UNLOCK(sc);
4709 }
4710 
4711 static void
4712 bge_intr(void *xsc)
4713 {
4714 	struct bge_softc *sc;
4715 	if_t ifp;
4716 	uint32_t statusword;
4717 	uint16_t rx_prod, tx_cons;
4718 
4719 	sc = xsc;
4720 
4721 	BGE_LOCK(sc);
4722 
4723 	ifp = sc->bge_ifp;
4724 
4725 #ifdef DEVICE_POLLING
4726 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
4727 		BGE_UNLOCK(sc);
4728 		return;
4729 	}
4730 #endif
4731 
4732 	/*
4733 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4734 	 * disable interrupts by writing nonzero like we used to, since with
4735 	 * our current organization this just gives complications and
4736 	 * pessimizations for re-enabling interrupts.  We used to have races
4737 	 * instead of the necessary complications.  Disabling interrupts
4738 	 * would just reduce the chance of a status update while we are
4739 	 * running (by switching to the interrupt-mode coalescence
4740 	 * parameters), but this chance is already very low so it is more
4741 	 * efficient to get another interrupt than prevent it.
4742 	 *
4743 	 * We do the ack first to ensure another interrupt if there is a
4744 	 * status update after the ack.  We don't check for the status
4745 	 * changing later because it is more efficient to get another
4746 	 * interrupt than prevent it, not quite as above (not checking is
4747 	 * a smaller optimization than not toggling the interrupt enable,
4748 	 * since checking doesn't involve PCI accesses and toggling require
4749 	 * the status check).  So toggling would probably be a pessimization
4750 	 * even with MSI.  It would only be needed for using a task queue.
4751 	 */
4752 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4753 
4754 	/*
4755 	 * Do the mandatory PCI flush as well as get the link status.
4756 	 */
4757 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4758 
4759 	/* Make sure the descriptor ring indexes are coherent. */
4760 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4761 	    sc->bge_cdata.bge_status_map,
4762 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4763 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4764 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4765 	sc->bge_ldata.bge_status_block->bge_status = 0;
4766 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4767 	    sc->bge_cdata.bge_status_map,
4768 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4769 
4770 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4771 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4772 	    statusword || sc->bge_link_evt)
4773 		bge_link_upd(sc);
4774 
4775 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4776 		/* Check RX return ring producer/consumer. */
4777 		bge_rxeof(sc, rx_prod, 1);
4778 	}
4779 
4780 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4781 		/* Check TX ring producer/consumer. */
4782 		bge_txeof(sc, tx_cons);
4783 	}
4784 
4785 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4786 	    !if_sendq_empty(ifp))
4787 		bge_start_locked(ifp);
4788 
4789 	BGE_UNLOCK(sc);
4790 }
4791 
4792 static void
4793 bge_asf_driver_up(struct bge_softc *sc)
4794 {
4795 	if (sc->bge_asf_mode & ASF_STACKUP) {
4796 		/* Send ASF heartbeat aprox. every 2s */
4797 		if (sc->bge_asf_count)
4798 			sc->bge_asf_count --;
4799 		else {
4800 			sc->bge_asf_count = 2;
4801 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4802 			    BGE_FW_CMD_DRV_ALIVE);
4803 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4804 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4805 			    BGE_FW_HB_TIMEOUT_SEC);
4806 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4807 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4808 			    BGE_RX_CPU_DRV_EVENT);
4809 		}
4810 	}
4811 }
4812 
4813 static void
4814 bge_tick(void *xsc)
4815 {
4816 	struct bge_softc *sc = xsc;
4817 	struct mii_data *mii = NULL;
4818 
4819 	BGE_LOCK_ASSERT(sc);
4820 
4821 	/* Synchronize with possible callout reset/stop. */
4822 	if (callout_pending(&sc->bge_stat_ch) ||
4823 	    !callout_active(&sc->bge_stat_ch))
4824 		return;
4825 
4826 	if (BGE_IS_5705_PLUS(sc))
4827 		bge_stats_update_regs(sc);
4828 	else
4829 		bge_stats_update(sc);
4830 
4831 	/* XXX Add APE heartbeat check here? */
4832 
4833 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4834 		mii = device_get_softc(sc->bge_miibus);
4835 		/*
4836 		 * Do not touch PHY if we have link up. This could break
4837 		 * IPMI/ASF mode or produce extra input errors
4838 		 * (extra errors was reported for bcm5701 & bcm5704).
4839 		 */
4840 		if (!sc->bge_link)
4841 			mii_tick(mii);
4842 	} else {
4843 		/*
4844 		 * Since in TBI mode auto-polling can't be used we should poll
4845 		 * link status manually. Here we register pending link event
4846 		 * and trigger interrupt.
4847 		 */
4848 #ifdef DEVICE_POLLING
4849 		/* In polling mode we poll link state in bge_poll(). */
4850 		if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
4851 #endif
4852 		{
4853 		sc->bge_link_evt++;
4854 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4855 		    sc->bge_flags & BGE_FLAG_5788)
4856 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4857 		else
4858 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4859 		}
4860 	}
4861 
4862 	bge_asf_driver_up(sc);
4863 	bge_watchdog(sc);
4864 
4865 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4866 }
4867 
4868 static void
4869 bge_stats_update_regs(struct bge_softc *sc)
4870 {
4871 	if_t ifp;
4872 	struct bge_mac_stats *stats;
4873 	uint32_t val;
4874 
4875 	ifp = sc->bge_ifp;
4876 	stats = &sc->bge_mac_stats;
4877 
4878 	stats->ifHCOutOctets +=
4879 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4880 	stats->etherStatsCollisions +=
4881 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4882 	stats->outXonSent +=
4883 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4884 	stats->outXoffSent +=
4885 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4886 	stats->dot3StatsInternalMacTransmitErrors +=
4887 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4888 	stats->dot3StatsSingleCollisionFrames +=
4889 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4890 	stats->dot3StatsMultipleCollisionFrames +=
4891 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4892 	stats->dot3StatsDeferredTransmissions +=
4893 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4894 	stats->dot3StatsExcessiveCollisions +=
4895 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4896 	stats->dot3StatsLateCollisions +=
4897 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4898 	stats->ifHCOutUcastPkts +=
4899 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4900 	stats->ifHCOutMulticastPkts +=
4901 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4902 	stats->ifHCOutBroadcastPkts +=
4903 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4904 
4905 	stats->ifHCInOctets +=
4906 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4907 	stats->etherStatsFragments +=
4908 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4909 	stats->ifHCInUcastPkts +=
4910 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4911 	stats->ifHCInMulticastPkts +=
4912 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4913 	stats->ifHCInBroadcastPkts +=
4914 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4915 	stats->dot3StatsFCSErrors +=
4916 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4917 	stats->dot3StatsAlignmentErrors +=
4918 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4919 	stats->xonPauseFramesReceived +=
4920 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4921 	stats->xoffPauseFramesReceived +=
4922 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4923 	stats->macControlFramesReceived +=
4924 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4925 	stats->xoffStateEntered +=
4926 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4927 	stats->dot3StatsFramesTooLong +=
4928 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4929 	stats->etherStatsJabbers +=
4930 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4931 	stats->etherStatsUndersizePkts +=
4932 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4933 
4934 	stats->FramesDroppedDueToFilters +=
4935 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4936 	stats->DmaWriteQueueFull +=
4937 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4938 	stats->DmaWriteHighPriQueueFull +=
4939 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4940 	stats->NoMoreRxBDs +=
4941 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4942 	/*
4943 	 * XXX
4944 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4945 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4946 	 * includes number of unwanted multicast frames.  This comes
4947 	 * from silicon bug and known workaround to get rough(not
4948 	 * exact) counter is to enable interrupt on MBUF low water
4949 	 * attention.  This can be accomplished by setting
4950 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4951 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4952 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4953 	 * However that change would generate more interrupts and
4954 	 * there are still possibilities of losing multiple frames
4955 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4956 	 * Given that the workaround still would not get correct
4957 	 * counter I don't think it's worth to implement it.  So
4958 	 * ignore reading the counter on controllers that have the
4959 	 * silicon bug.
4960 	 */
4961 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4962 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4963 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4964 		stats->InputDiscards +=
4965 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4966 	stats->InputErrors +=
4967 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4968 	stats->RecvThresholdHit +=
4969 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4970 
4971 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4972 		/*
4973 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4974 		 * frames, it's safe to disable workaround for DMA engine's
4975 		 * miscalculation of TXMBUF space.
4976 		 */
4977 		if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4978 		    stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4979 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4980 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4981 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4982 			else
4983 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4984 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4985 			sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4986 		}
4987 	}
4988 }
4989 
4990 static void
4991 bge_stats_clear_regs(struct bge_softc *sc)
4992 {
4993 
4994 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4995 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4996 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4997 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4998 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4999 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
5000 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
5001 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
5002 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
5003 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
5004 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
5005 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
5006 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
5007 
5008 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
5009 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
5010 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
5011 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
5012 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
5013 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
5014 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
5015 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
5016 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
5017 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
5018 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
5019 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
5020 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
5021 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
5022 
5023 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
5024 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
5025 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
5026 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
5027 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
5028 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
5029 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
5030 }
5031 
5032 static void
5033 bge_stats_update(struct bge_softc *sc)
5034 {
5035 	if_t ifp;
5036 	bus_size_t stats;
5037 	uint32_t cnt;	/* current register value */
5038 
5039 	ifp = sc->bge_ifp;
5040 
5041 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
5042 
5043 #define	READ_STAT(sc, stats, stat) \
5044 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
5045 
5046 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
5047 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
5048 	sc->bge_tx_collisions = cnt;
5049 
5050 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
5051 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
5052 	sc->bge_rx_nobds = cnt;
5053 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
5054 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
5055 	sc->bge_rx_inerrs = cnt;
5056 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5057 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
5058 	sc->bge_rx_discards = cnt;
5059 
5060 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5061 	if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
5062 	sc->bge_tx_discards = cnt;
5063 
5064 #undef	READ_STAT
5065 }
5066 
5067 /*
5068  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5069  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5070  * but when such padded frames employ the bge IP/TCP checksum offload,
5071  * the hardware checksum assist gives incorrect results (possibly
5072  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5073  * If we pad such runts with zeros, the onboard checksum comes out correct.
5074  */
5075 static __inline int
5076 bge_cksum_pad(struct mbuf *m)
5077 {
5078 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5079 	struct mbuf *last;
5080 
5081 	/* If there's only the packet-header and we can pad there, use it. */
5082 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5083 	    M_TRAILINGSPACE(m) >= padlen) {
5084 		last = m;
5085 	} else {
5086 		/*
5087 		 * Walk packet chain to find last mbuf. We will either
5088 		 * pad there, or append a new mbuf and pad it.
5089 		 */
5090 		for (last = m; last->m_next != NULL; last = last->m_next);
5091 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5092 			/* Allocate new empty mbuf, pad it. Compact later. */
5093 			struct mbuf *n;
5094 
5095 			MGET(n, M_NOWAIT, MT_DATA);
5096 			if (n == NULL)
5097 				return (ENOBUFS);
5098 			n->m_len = 0;
5099 			last->m_next = n;
5100 			last = n;
5101 		}
5102 	}
5103 
5104 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
5105 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5106 	last->m_len += padlen;
5107 	m->m_pkthdr.len += padlen;
5108 
5109 	return (0);
5110 }
5111 
5112 static struct mbuf *
5113 bge_check_short_dma(struct mbuf *m)
5114 {
5115 	struct mbuf *n;
5116 	int found;
5117 
5118 	/*
5119 	 * If device receive two back-to-back send BDs with less than
5120 	 * or equal to 8 total bytes then the device may hang.  The two
5121 	 * back-to-back send BDs must in the same frame for this failure
5122 	 * to occur.  Scan mbuf chains and see whether two back-to-back
5123 	 * send BDs are there. If this is the case, allocate new mbuf
5124 	 * and copy the frame to workaround the silicon bug.
5125 	 */
5126 	for (n = m, found = 0; n != NULL; n = n->m_next) {
5127 		if (n->m_len < 8) {
5128 			found++;
5129 			if (found > 1)
5130 				break;
5131 			continue;
5132 		}
5133 		found = 0;
5134 	}
5135 
5136 	if (found > 1) {
5137 		n = m_defrag(m, M_NOWAIT);
5138 		if (n == NULL)
5139 			m_freem(m);
5140 	} else
5141 		n = m;
5142 	return (n);
5143 }
5144 
5145 static struct mbuf *
5146 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5147     uint16_t *flags)
5148 {
5149 	struct ip *ip;
5150 	struct tcphdr *tcp;
5151 	struct mbuf *n;
5152 	uint16_t hlen;
5153 	uint32_t poff;
5154 
5155 	if (M_WRITABLE(m) == 0) {
5156 		/* Get a writable copy. */
5157 		n = m_dup(m, M_NOWAIT);
5158 		m_freem(m);
5159 		if (n == NULL)
5160 			return (NULL);
5161 		m = n;
5162 	}
5163 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5164 	if (m == NULL)
5165 		return (NULL);
5166 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5167 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5168 	m = m_pullup(m, poff + sizeof(struct tcphdr));
5169 	if (m == NULL)
5170 		return (NULL);
5171 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5172 	m = m_pullup(m, poff + (tcp->th_off << 2));
5173 	if (m == NULL)
5174 		return (NULL);
5175 	/*
5176 	 * It seems controller doesn't modify IP length and TCP pseudo
5177 	 * checksum. These checksum computed by upper stack should be 0.
5178 	 */
5179 	*mss = m->m_pkthdr.tso_segsz;
5180 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5181 	ip->ip_sum = 0;
5182 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5183 	/* Clear pseudo checksum computed by TCP stack. */
5184 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5185 	tcp->th_sum = 0;
5186 	/*
5187 	 * Broadcom controllers uses different descriptor format for
5188 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5189 	 * license issue and lower performance of firmware based TSO
5190 	 * we only support hardware based TSO.
5191 	 */
5192 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5193 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5194 	if (sc->bge_flags & BGE_FLAG_TSO3) {
5195 		/*
5196 		 * For BCM5717 and newer controllers, hardware based TSO
5197 		 * uses the 14 lower bits of the bge_mss field to store the
5198 		 * MSS and the upper 2 bits to store the lowest 2 bits of
5199 		 * the IP/TCP header length.  The upper 6 bits of the header
5200 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5201 		 * frames are supported.
5202 		 */
5203 		*mss |= ((hlen & 0x3) << 14);
5204 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5205 	} else {
5206 		/*
5207 		 * For BCM5755 and newer controllers, hardware based TSO uses
5208 		 * the lower 11	bits to store the MSS and the upper 5 bits to
5209 		 * store the IP/TCP header length. Jumbo frames are not
5210 		 * supported.
5211 		 */
5212 		*mss |= (hlen << 11);
5213 	}
5214 	return (m);
5215 }
5216 
5217 /*
5218  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5219  * pointers to descriptors.
5220  */
5221 static int
5222 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5223 {
5224 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5225 	bus_dmamap_t		map;
5226 	struct bge_tx_bd	*d;
5227 	struct mbuf		*m = *m_head;
5228 	uint32_t		idx = *txidx;
5229 	uint16_t		csum_flags, mss, vlan_tag;
5230 	int			nsegs, i, error;
5231 
5232 	csum_flags = 0;
5233 	mss = 0;
5234 	vlan_tag = 0;
5235 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5236 	    m->m_next != NULL) {
5237 		*m_head = bge_check_short_dma(m);
5238 		if (*m_head == NULL)
5239 			return (ENOBUFS);
5240 		m = *m_head;
5241 	}
5242 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5243 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5244 		if (*m_head == NULL)
5245 			return (ENOBUFS);
5246 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5247 		    BGE_TXBDFLAG_CPU_POST_DMA;
5248 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5249 		if (m->m_pkthdr.csum_flags & CSUM_IP)
5250 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5251 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5252 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5253 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5254 			    (error = bge_cksum_pad(m)) != 0) {
5255 				m_freem(m);
5256 				*m_head = NULL;
5257 				return (error);
5258 			}
5259 		}
5260 	}
5261 
5262 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5263 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5264 		    m->m_pkthdr.len > ETHER_MAX_LEN)
5265 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5266 		if (sc->bge_forced_collapse > 0 &&
5267 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5268 			/*
5269 			 * Forcedly collapse mbuf chains to overcome hardware
5270 			 * limitation which only support a single outstanding
5271 			 * DMA read operation.
5272 			 */
5273 			if (sc->bge_forced_collapse == 1)
5274 				m = m_defrag(m, M_NOWAIT);
5275 			else
5276 				m = m_collapse(m, M_NOWAIT,
5277 				    sc->bge_forced_collapse);
5278 			if (m == NULL)
5279 				m = *m_head;
5280 			*m_head = m;
5281 		}
5282 	}
5283 
5284 	map = sc->bge_cdata.bge_tx_dmamap[idx];
5285 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5286 	    &nsegs, BUS_DMA_NOWAIT);
5287 	if (error == EFBIG) {
5288 		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5289 		if (m == NULL) {
5290 			m_freem(*m_head);
5291 			*m_head = NULL;
5292 			return (ENOBUFS);
5293 		}
5294 		*m_head = m;
5295 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5296 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5297 		if (error) {
5298 			m_freem(m);
5299 			*m_head = NULL;
5300 			return (error);
5301 		}
5302 	} else if (error != 0)
5303 		return (error);
5304 
5305 	/* Check if we have enough free send BDs. */
5306 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5307 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5308 		return (ENOBUFS);
5309 	}
5310 
5311 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5312 
5313 	if (m->m_flags & M_VLANTAG) {
5314 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5315 		vlan_tag = m->m_pkthdr.ether_vtag;
5316 	}
5317 
5318 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5319 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5320 		/*
5321 		 * 5725 family of devices corrupts TSO packets when TSO DMA
5322 		 * buffers cross into regions which are within MSS bytes of
5323 		 * a 4GB boundary.  If we encounter the condition, drop the
5324 		 * packet.
5325 		 */
5326 		for (i = 0; ; i++) {
5327 			d = &sc->bge_ldata.bge_tx_ring[idx];
5328 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5329 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5330 			d->bge_len = segs[i].ds_len;
5331 			if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5332 			    d->bge_addr.bge_addr_lo)
5333 				break;
5334 			d->bge_flags = csum_flags;
5335 			d->bge_vlan_tag = vlan_tag;
5336 			d->bge_mss = mss;
5337 			if (i == nsegs - 1)
5338 				break;
5339 			BGE_INC(idx, BGE_TX_RING_CNT);
5340 		}
5341 		if (i != nsegs - 1) {
5342 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5343 			    BUS_DMASYNC_POSTWRITE);
5344 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5345 			m_freem(*m_head);
5346 			*m_head = NULL;
5347 			return (EIO);
5348 		}
5349 	} else {
5350 		for (i = 0; ; i++) {
5351 			d = &sc->bge_ldata.bge_tx_ring[idx];
5352 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5353 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5354 			d->bge_len = segs[i].ds_len;
5355 			d->bge_flags = csum_flags;
5356 			d->bge_vlan_tag = vlan_tag;
5357 			d->bge_mss = mss;
5358 			if (i == nsegs - 1)
5359 				break;
5360 			BGE_INC(idx, BGE_TX_RING_CNT);
5361 		}
5362 	}
5363 
5364 	/* Mark the last segment as end of packet... */
5365 	d->bge_flags |= BGE_TXBDFLAG_END;
5366 
5367 	/*
5368 	 * Insure that the map for this transmission
5369 	 * is placed at the array index of the last descriptor
5370 	 * in this chain.
5371 	 */
5372 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5373 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5374 	sc->bge_cdata.bge_tx_chain[idx] = m;
5375 	sc->bge_txcnt += nsegs;
5376 
5377 	BGE_INC(idx, BGE_TX_RING_CNT);
5378 	*txidx = idx;
5379 
5380 	return (0);
5381 }
5382 
5383 /*
5384  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5385  * to the mbuf data regions directly in the transmit descriptors.
5386  */
5387 static void
5388 bge_start_locked(if_t ifp)
5389 {
5390 	struct bge_softc *sc;
5391 	struct mbuf *m_head;
5392 	uint32_t prodidx;
5393 	int count;
5394 
5395 	sc = if_getsoftc(ifp);
5396 	BGE_LOCK_ASSERT(sc);
5397 
5398 	if (!sc->bge_link ||
5399 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5400 	    IFF_DRV_RUNNING)
5401 		return;
5402 
5403 	prodidx = sc->bge_tx_prodidx;
5404 
5405 	for (count = 0; !if_sendq_empty(ifp);) {
5406 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5407 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5408 			break;
5409 		}
5410 		m_head = if_dequeue(ifp);
5411 		if (m_head == NULL)
5412 			break;
5413 
5414 		/*
5415 		 * Pack the data into the transmit ring. If we
5416 		 * don't have room, set the OACTIVE flag and wait
5417 		 * for the NIC to drain the ring.
5418 		 */
5419 		if (bge_encap(sc, &m_head, &prodidx)) {
5420 			if (m_head == NULL)
5421 				break;
5422 			if_sendq_prepend(ifp, m_head);
5423 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5424 			break;
5425 		}
5426 		++count;
5427 
5428 		/*
5429 		 * If there's a BPF listener, bounce a copy of this frame
5430 		 * to him.
5431 		 */
5432 		if_bpfmtap(ifp, m_head);
5433 	}
5434 
5435 	if (count > 0)
5436 		bge_start_tx(sc, prodidx);
5437 }
5438 
5439 static void
5440 bge_start_tx(struct bge_softc *sc, uint32_t prodidx)
5441 {
5442 
5443 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5444 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5445 	/* Transmit. */
5446 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5447 	/* 5700 b2 errata */
5448 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5449 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5450 
5451 	sc->bge_tx_prodidx = prodidx;
5452 
5453 	/* Set a timeout in case the chip goes out to lunch. */
5454 	sc->bge_timer = BGE_TX_TIMEOUT;
5455 }
5456 
5457 /*
5458  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5459  * to the mbuf data regions directly in the transmit descriptors.
5460  */
5461 static void
5462 bge_start(if_t ifp)
5463 {
5464 	struct bge_softc *sc;
5465 
5466 	sc = if_getsoftc(ifp);
5467 	BGE_LOCK(sc);
5468 	bge_start_locked(ifp);
5469 	BGE_UNLOCK(sc);
5470 }
5471 
5472 static void
5473 bge_init_locked(struct bge_softc *sc)
5474 {
5475 	if_t ifp;
5476 	uint16_t *m;
5477 	uint32_t mode;
5478 
5479 	BGE_LOCK_ASSERT(sc);
5480 
5481 	ifp = sc->bge_ifp;
5482 
5483 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5484 		return;
5485 
5486 	/* Cancel pending I/O and flush buffers. */
5487 	bge_stop(sc);
5488 
5489 	bge_stop_fw(sc);
5490 	bge_sig_pre_reset(sc, BGE_RESET_START);
5491 	bge_reset(sc);
5492 	bge_sig_legacy(sc, BGE_RESET_START);
5493 	bge_sig_post_reset(sc, BGE_RESET_START);
5494 
5495 	bge_chipinit(sc);
5496 
5497 	/*
5498 	 * Init the various state machines, ring
5499 	 * control blocks and firmware.
5500 	 */
5501 	if (bge_blockinit(sc)) {
5502 		device_printf(sc->bge_dev, "initialization failure\n");
5503 		return;
5504 	}
5505 
5506 	ifp = sc->bge_ifp;
5507 
5508 	/* Specify MTU. */
5509 	CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
5510 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5511 	    (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5512 
5513 	/* Load our MAC address. */
5514 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5515 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5516 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5517 
5518 	/* Program promiscuous mode. */
5519 	bge_setpromisc(sc);
5520 
5521 	/* Program multicast filter. */
5522 	bge_setmulti(sc);
5523 
5524 	/* Program VLAN tag stripping. */
5525 	bge_setvlan(sc);
5526 
5527 	/* Override UDP checksum offloading. */
5528 	if (sc->bge_forced_udpcsum == 0)
5529 		sc->bge_csum_features &= ~CSUM_UDP;
5530 	else
5531 		sc->bge_csum_features |= CSUM_UDP;
5532 	if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
5533 	    if_getcapenable(ifp) & IFCAP_TXCSUM) {
5534 		if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
5535 		if_sethwassistbits(ifp, sc->bge_csum_features, 0);
5536 	}
5537 
5538 	/* Init RX ring. */
5539 	if (bge_init_rx_ring_std(sc) != 0) {
5540 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5541 		bge_stop(sc);
5542 		return;
5543 	}
5544 
5545 	/*
5546 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5547 	 * memory to insure that the chip has in fact read the first
5548 	 * entry of the ring.
5549 	 */
5550 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5551 		uint32_t		v, i;
5552 		for (i = 0; i < 10; i++) {
5553 			DELAY(20);
5554 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5555 			if (v == (MCLBYTES - ETHER_ALIGN))
5556 				break;
5557 		}
5558 		if (i == 10)
5559 			device_printf (sc->bge_dev,
5560 			    "5705 A0 chip failed to load RX ring\n");
5561 	}
5562 
5563 	/* Init jumbo RX ring. */
5564 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5565 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
5566      	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
5567 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5568 			device_printf(sc->bge_dev,
5569 			    "no memory for jumbo Rx buffers.\n");
5570 			bge_stop(sc);
5571 			return;
5572 		}
5573 	}
5574 
5575 	/* Init our RX return ring index. */
5576 	sc->bge_rx_saved_considx = 0;
5577 
5578 	/* Init our RX/TX stat counters. */
5579 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5580 
5581 	/* Init TX ring. */
5582 	bge_init_tx_ring(sc);
5583 
5584 	/* Enable TX MAC state machine lockup fix. */
5585 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5586 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5587 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5588 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5589 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5590 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5591 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5592 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5593 	}
5594 	/* Turn on transmitter. */
5595 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5596 	DELAY(100);
5597 
5598 	/* Turn on receiver. */
5599 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5600 	if (BGE_IS_5755_PLUS(sc))
5601 		mode |= BGE_RXMODE_IPV6_ENABLE;
5602 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5603 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5604 	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5605 	DELAY(10);
5606 
5607 	/*
5608 	 * Set the number of good frames to receive after RX MBUF
5609 	 * Low Watermark has been reached. After the RX MAC receives
5610 	 * this number of frames, it will drop subsequent incoming
5611 	 * frames until the MBUF High Watermark is reached.
5612 	 */
5613 	if (BGE_IS_57765_PLUS(sc))
5614 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5615 	else
5616 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5617 
5618 	/* Clear MAC statistics. */
5619 	if (BGE_IS_5705_PLUS(sc))
5620 		bge_stats_clear_regs(sc);
5621 
5622 	/* Tell firmware we're alive. */
5623 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5624 
5625 #ifdef DEVICE_POLLING
5626 	/* Disable interrupts if we are polling. */
5627 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
5628 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5629 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5630 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5631 	} else
5632 #endif
5633 
5634 	/* Enable host interrupts. */
5635 	{
5636 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5637 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5638 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5639 	}
5640 
5641 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
5642 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
5643 
5644 	bge_ifmedia_upd_locked(ifp);
5645 
5646 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5647 }
5648 
5649 static void
5650 bge_init(void *xsc)
5651 {
5652 	struct bge_softc *sc = xsc;
5653 
5654 	BGE_LOCK(sc);
5655 	bge_init_locked(sc);
5656 	BGE_UNLOCK(sc);
5657 }
5658 
5659 /*
5660  * Set media options.
5661  */
5662 static int
5663 bge_ifmedia_upd(if_t ifp)
5664 {
5665 	struct bge_softc *sc = if_getsoftc(ifp);
5666 	int res;
5667 
5668 	BGE_LOCK(sc);
5669 	res = bge_ifmedia_upd_locked(ifp);
5670 	BGE_UNLOCK(sc);
5671 
5672 	return (res);
5673 }
5674 
5675 static int
5676 bge_ifmedia_upd_locked(if_t ifp)
5677 {
5678 	struct bge_softc *sc = if_getsoftc(ifp);
5679 	struct mii_data *mii;
5680 	struct mii_softc *miisc;
5681 	struct ifmedia *ifm;
5682 
5683 	BGE_LOCK_ASSERT(sc);
5684 
5685 	ifm = &sc->bge_ifmedia;
5686 
5687 	/* If this is a 1000baseX NIC, enable the TBI port. */
5688 	if (sc->bge_flags & BGE_FLAG_TBI) {
5689 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5690 			return (EINVAL);
5691 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5692 		case IFM_AUTO:
5693 			/*
5694 			 * The BCM5704 ASIC appears to have a special
5695 			 * mechanism for programming the autoneg
5696 			 * advertisement registers in TBI mode.
5697 			 */
5698 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5699 				uint32_t sgdig;
5700 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5701 				if (sgdig & BGE_SGDIGSTS_DONE) {
5702 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5703 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5704 					sgdig |= BGE_SGDIGCFG_AUTO |
5705 					    BGE_SGDIGCFG_PAUSE_CAP |
5706 					    BGE_SGDIGCFG_ASYM_PAUSE;
5707 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5708 					    sgdig | BGE_SGDIGCFG_SEND);
5709 					DELAY(5);
5710 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5711 				}
5712 			}
5713 			break;
5714 		case IFM_1000_SX:
5715 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5716 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5717 				    BGE_MACMODE_HALF_DUPLEX);
5718 			} else {
5719 				BGE_SETBIT(sc, BGE_MAC_MODE,
5720 				    BGE_MACMODE_HALF_DUPLEX);
5721 			}
5722 			DELAY(40);
5723 			break;
5724 		default:
5725 			return (EINVAL);
5726 		}
5727 		return (0);
5728 	}
5729 
5730 	sc->bge_link_evt++;
5731 	mii = device_get_softc(sc->bge_miibus);
5732 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5733 		PHY_RESET(miisc);
5734 	mii_mediachg(mii);
5735 
5736 	/*
5737 	 * Force an interrupt so that we will call bge_link_upd
5738 	 * if needed and clear any pending link state attention.
5739 	 * Without this we are not getting any further interrupts
5740 	 * for link state changes and thus will not UP the link and
5741 	 * not be able to send in bge_start_locked. The only
5742 	 * way to get things working was to receive a packet and
5743 	 * get an RX intr.
5744 	 * bge_tick should help for fiber cards and we might not
5745 	 * need to do this here if BGE_FLAG_TBI is set but as
5746 	 * we poll for fiber anyway it should not harm.
5747 	 */
5748 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5749 	    sc->bge_flags & BGE_FLAG_5788)
5750 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5751 	else
5752 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5753 
5754 	return (0);
5755 }
5756 
5757 /*
5758  * Report current media status.
5759  */
5760 static void
5761 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
5762 {
5763 	struct bge_softc *sc = if_getsoftc(ifp);
5764 	struct mii_data *mii;
5765 
5766 	BGE_LOCK(sc);
5767 
5768 	if ((if_getflags(ifp) & IFF_UP) == 0) {
5769 		BGE_UNLOCK(sc);
5770 		return;
5771 	}
5772 	if (sc->bge_flags & BGE_FLAG_TBI) {
5773 		ifmr->ifm_status = IFM_AVALID;
5774 		ifmr->ifm_active = IFM_ETHER;
5775 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5776 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5777 			ifmr->ifm_status |= IFM_ACTIVE;
5778 		else {
5779 			ifmr->ifm_active |= IFM_NONE;
5780 			BGE_UNLOCK(sc);
5781 			return;
5782 		}
5783 		ifmr->ifm_active |= IFM_1000_SX;
5784 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5785 			ifmr->ifm_active |= IFM_HDX;
5786 		else
5787 			ifmr->ifm_active |= IFM_FDX;
5788 		BGE_UNLOCK(sc);
5789 		return;
5790 	}
5791 
5792 	mii = device_get_softc(sc->bge_miibus);
5793 	mii_pollstat(mii);
5794 	ifmr->ifm_active = mii->mii_media_active;
5795 	ifmr->ifm_status = mii->mii_media_status;
5796 
5797 	BGE_UNLOCK(sc);
5798 }
5799 
5800 static int
5801 bge_ioctl(if_t ifp, u_long command, caddr_t data)
5802 {
5803 	struct bge_softc *sc = if_getsoftc(ifp);
5804 	struct ifreq *ifr = (struct ifreq *) data;
5805 	struct mii_data *mii;
5806 	int flags, mask, error = 0;
5807 
5808 	switch (command) {
5809 	case SIOCSIFMTU:
5810 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5811 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5812 			if (ifr->ifr_mtu < ETHERMIN ||
5813 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5814 				error = EINVAL;
5815 				break;
5816 			}
5817 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5818 			error = EINVAL;
5819 			break;
5820 		}
5821 		BGE_LOCK(sc);
5822 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
5823 			if_setmtu(ifp, ifr->ifr_mtu);
5824 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5825 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5826 				bge_init_locked(sc);
5827 			}
5828 		}
5829 		BGE_UNLOCK(sc);
5830 		break;
5831 	case SIOCSIFFLAGS:
5832 		BGE_LOCK(sc);
5833 		if (if_getflags(ifp) & IFF_UP) {
5834 			/*
5835 			 * If only the state of the PROMISC flag changed,
5836 			 * then just use the 'set promisc mode' command
5837 			 * instead of reinitializing the entire NIC. Doing
5838 			 * a full re-init means reloading the firmware and
5839 			 * waiting for it to start up, which may take a
5840 			 * second or two.  Similarly for ALLMULTI.
5841 			 */
5842 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5843 				flags = if_getflags(ifp) ^ sc->bge_if_flags;
5844 				if (flags & IFF_PROMISC)
5845 					bge_setpromisc(sc);
5846 				if (flags & IFF_ALLMULTI)
5847 					bge_setmulti(sc);
5848 			} else
5849 				bge_init_locked(sc);
5850 		} else {
5851 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5852 				bge_stop(sc);
5853 			}
5854 		}
5855 		sc->bge_if_flags = if_getflags(ifp);
5856 		BGE_UNLOCK(sc);
5857 		error = 0;
5858 		break;
5859 	case SIOCADDMULTI:
5860 	case SIOCDELMULTI:
5861 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5862 			BGE_LOCK(sc);
5863 			bge_setmulti(sc);
5864 			BGE_UNLOCK(sc);
5865 			error = 0;
5866 		}
5867 		break;
5868 	case SIOCSIFMEDIA:
5869 	case SIOCGIFMEDIA:
5870 		if (sc->bge_flags & BGE_FLAG_TBI) {
5871 			error = ifmedia_ioctl(ifp, ifr,
5872 			    &sc->bge_ifmedia, command);
5873 		} else {
5874 			mii = device_get_softc(sc->bge_miibus);
5875 			error = ifmedia_ioctl(ifp, ifr,
5876 			    &mii->mii_media, command);
5877 		}
5878 		break;
5879 	case SIOCSIFCAP:
5880 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
5881 #ifdef DEVICE_POLLING
5882 		if (mask & IFCAP_POLLING) {
5883 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5884 				error = ether_poll_register(bge_poll, ifp);
5885 				if (error)
5886 					return (error);
5887 				BGE_LOCK(sc);
5888 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5889 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5890 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5891 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
5892 				BGE_UNLOCK(sc);
5893 			} else {
5894 				error = ether_poll_deregister(ifp);
5895 				/* Enable interrupt even in error case */
5896 				BGE_LOCK(sc);
5897 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5898 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5899 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5900 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
5901 				BGE_UNLOCK(sc);
5902 			}
5903 		}
5904 #endif
5905 		if ((mask & IFCAP_TXCSUM) != 0 &&
5906 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
5907 			if_togglecapenable(ifp, IFCAP_TXCSUM);
5908 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
5909 				if_sethwassistbits(ifp,
5910 				    sc->bge_csum_features, 0);
5911 			else
5912 				if_sethwassistbits(ifp, 0,
5913 				    sc->bge_csum_features);
5914 		}
5915 
5916 		if ((mask & IFCAP_RXCSUM) != 0 &&
5917 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
5918 			if_togglecapenable(ifp, IFCAP_RXCSUM);
5919 
5920 		if ((mask & IFCAP_TSO4) != 0 &&
5921 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
5922 			if_togglecapenable(ifp, IFCAP_TSO4);
5923 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
5924 				if_sethwassistbits(ifp, CSUM_TSO, 0);
5925 			else
5926 				if_sethwassistbits(ifp, 0, CSUM_TSO);
5927 		}
5928 
5929 		if (mask & IFCAP_VLAN_MTU) {
5930 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
5931 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5932 			bge_init(sc);
5933 		}
5934 
5935 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5936 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
5937 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
5938 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5939 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
5940 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
5941 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
5942 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
5943 			BGE_LOCK(sc);
5944 			bge_setvlan(sc);
5945 			BGE_UNLOCK(sc);
5946 		}
5947 #ifdef VLAN_CAPABILITIES
5948 		if_vlancap(ifp);
5949 #endif
5950 		break;
5951 	default:
5952 		error = ether_ioctl(ifp, command, data);
5953 		break;
5954 	}
5955 
5956 	return (error);
5957 }
5958 
5959 static void
5960 bge_watchdog(struct bge_softc *sc)
5961 {
5962 	if_t ifp;
5963 	uint32_t status;
5964 
5965 	BGE_LOCK_ASSERT(sc);
5966 
5967 	if (sc->bge_timer == 0 || --sc->bge_timer)
5968 		return;
5969 
5970 	/* If pause frames are active then don't reset the hardware. */
5971 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5972 		status = CSR_READ_4(sc, BGE_RX_STS);
5973 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5974 			/*
5975 			 * If link partner has us in XOFF state then wait for
5976 			 * the condition to clear.
5977 			 */
5978 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5979 			sc->bge_timer = BGE_TX_TIMEOUT;
5980 			return;
5981 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5982 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5983 			/*
5984 			 * If link partner has us in XOFF state then wait for
5985 			 * the condition to clear.
5986 			 */
5987 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5988 			sc->bge_timer = BGE_TX_TIMEOUT;
5989 			return;
5990 		}
5991 		/*
5992 		 * Any other condition is unexpected and the controller
5993 		 * should be reset.
5994 		 */
5995 	}
5996 
5997 	ifp = sc->bge_ifp;
5998 
5999 	if_printf(ifp, "watchdog timeout -- resetting\n");
6000 
6001 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6002 	bge_init_locked(sc);
6003 
6004 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
6005 }
6006 
6007 static void
6008 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
6009 {
6010 	int i;
6011 
6012 	BGE_CLRBIT(sc, reg, bit);
6013 
6014 	for (i = 0; i < BGE_TIMEOUT; i++) {
6015 		if ((CSR_READ_4(sc, reg) & bit) == 0)
6016 			return;
6017 		DELAY(100);
6018         }
6019 }
6020 
6021 /*
6022  * Stop the adapter and free any mbufs allocated to the
6023  * RX and TX lists.
6024  */
6025 static void
6026 bge_stop(struct bge_softc *sc)
6027 {
6028 	if_t ifp;
6029 
6030 	BGE_LOCK_ASSERT(sc);
6031 
6032 	ifp = sc->bge_ifp;
6033 
6034 	callout_stop(&sc->bge_stat_ch);
6035 
6036 	/* Disable host interrupts. */
6037 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
6038 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
6039 
6040 	/*
6041 	 * Tell firmware we're shutting down.
6042 	 */
6043 	bge_stop_fw(sc);
6044 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6045 
6046 	/*
6047 	 * Disable all of the receiver blocks.
6048 	 */
6049 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6050 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6051 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6052 	if (BGE_IS_5700_FAMILY(sc))
6053 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6054 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6055 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6056 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6057 
6058 	/*
6059 	 * Disable all of the transmit blocks.
6060 	 */
6061 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6062 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6063 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6064 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6065 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6066 	if (BGE_IS_5700_FAMILY(sc))
6067 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6068 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6069 
6070 	/*
6071 	 * Shut down all of the memory managers and related
6072 	 * state machines.
6073 	 */
6074 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6075 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6076 	if (BGE_IS_5700_FAMILY(sc))
6077 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6078 
6079 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6080 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6081 	if (!(BGE_IS_5705_PLUS(sc))) {
6082 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6083 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6084 	}
6085 	/* Update MAC statistics. */
6086 	if (BGE_IS_5705_PLUS(sc))
6087 		bge_stats_update_regs(sc);
6088 
6089 	bge_reset(sc);
6090 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6091 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6092 
6093 	/*
6094 	 * Keep the ASF firmware running if up.
6095 	 */
6096 	if (sc->bge_asf_mode & ASF_STACKUP)
6097 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6098 	else
6099 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6100 
6101 	/* Free the RX lists. */
6102 	bge_free_rx_ring_std(sc);
6103 
6104 	/* Free jumbo RX list. */
6105 	if (BGE_IS_JUMBO_CAPABLE(sc))
6106 		bge_free_rx_ring_jumbo(sc);
6107 
6108 	/* Free TX buffers. */
6109 	bge_free_tx_ring(sc);
6110 
6111 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6112 
6113 	/* Clear MAC's link state (PHY may still have link UP). */
6114 	if (bootverbose && sc->bge_link)
6115 		if_printf(sc->bge_ifp, "link DOWN\n");
6116 	sc->bge_link = 0;
6117 
6118 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
6119 }
6120 
6121 /*
6122  * Stop all chip I/O so that the kernel's probe routines don't
6123  * get confused by errant DMAs when rebooting.
6124  */
6125 static int
6126 bge_shutdown(device_t dev)
6127 {
6128 	struct bge_softc *sc;
6129 
6130 	sc = device_get_softc(dev);
6131 	BGE_LOCK(sc);
6132 	bge_stop(sc);
6133 	BGE_UNLOCK(sc);
6134 
6135 	return (0);
6136 }
6137 
6138 static int
6139 bge_suspend(device_t dev)
6140 {
6141 	struct bge_softc *sc;
6142 
6143 	sc = device_get_softc(dev);
6144 	BGE_LOCK(sc);
6145 	bge_stop(sc);
6146 	BGE_UNLOCK(sc);
6147 
6148 	return (0);
6149 }
6150 
6151 static int
6152 bge_resume(device_t dev)
6153 {
6154 	struct bge_softc *sc;
6155 	if_t ifp;
6156 
6157 	sc = device_get_softc(dev);
6158 	BGE_LOCK(sc);
6159 	ifp = sc->bge_ifp;
6160 	if (if_getflags(ifp) & IFF_UP) {
6161 		bge_init_locked(sc);
6162 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6163 			bge_start_locked(ifp);
6164 	}
6165 	BGE_UNLOCK(sc);
6166 
6167 	return (0);
6168 }
6169 
6170 static void
6171 bge_link_upd(struct bge_softc *sc)
6172 {
6173 	struct mii_data *mii;
6174 	uint32_t link, status;
6175 
6176 	BGE_LOCK_ASSERT(sc);
6177 
6178 	/* Clear 'pending link event' flag. */
6179 	sc->bge_link_evt = 0;
6180 
6181 	/*
6182 	 * Process link state changes.
6183 	 * Grrr. The link status word in the status block does
6184 	 * not work correctly on the BCM5700 rev AX and BX chips,
6185 	 * according to all available information. Hence, we have
6186 	 * to enable MII interrupts in order to properly obtain
6187 	 * async link changes. Unfortunately, this also means that
6188 	 * we have to read the MAC status register to detect link
6189 	 * changes, thereby adding an additional register access to
6190 	 * the interrupt handler.
6191 	 *
6192 	 * XXX: perhaps link state detection procedure used for
6193 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6194 	 */
6195 
6196 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6197 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6198 		status = CSR_READ_4(sc, BGE_MAC_STS);
6199 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6200 			mii = device_get_softc(sc->bge_miibus);
6201 			mii_pollstat(mii);
6202 			if (!sc->bge_link &&
6203 			    mii->mii_media_status & IFM_ACTIVE &&
6204 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6205 				sc->bge_link++;
6206 				if (bootverbose)
6207 					if_printf(sc->bge_ifp, "link UP\n");
6208 			} else if (sc->bge_link &&
6209 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6210 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6211 				sc->bge_link = 0;
6212 				if (bootverbose)
6213 					if_printf(sc->bge_ifp, "link DOWN\n");
6214 			}
6215 
6216 			/* Clear the interrupt. */
6217 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6218 			    BGE_EVTENB_MI_INTERRUPT);
6219 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6220 			    BRGPHY_MII_ISR);
6221 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6222 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6223 		}
6224 		return;
6225 	}
6226 
6227 	if (sc->bge_flags & BGE_FLAG_TBI) {
6228 		status = CSR_READ_4(sc, BGE_MAC_STS);
6229 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6230 			if (!sc->bge_link) {
6231 				sc->bge_link++;
6232 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6233 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6234 					    BGE_MACMODE_TBI_SEND_CFGS);
6235 					DELAY(40);
6236 				}
6237 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6238 				if (bootverbose)
6239 					if_printf(sc->bge_ifp, "link UP\n");
6240 				if_link_state_change(sc->bge_ifp,
6241 				    LINK_STATE_UP);
6242 			}
6243 		} else if (sc->bge_link) {
6244 			sc->bge_link = 0;
6245 			if (bootverbose)
6246 				if_printf(sc->bge_ifp, "link DOWN\n");
6247 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6248 		}
6249 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6250 		/*
6251 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6252 		 * in status word always set. Workaround this bug by reading
6253 		 * PHY link status directly.
6254 		 */
6255 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6256 
6257 		if (link != sc->bge_link ||
6258 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6259 			mii = device_get_softc(sc->bge_miibus);
6260 			mii_pollstat(mii);
6261 			if (!sc->bge_link &&
6262 			    mii->mii_media_status & IFM_ACTIVE &&
6263 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6264 				sc->bge_link++;
6265 				if (bootverbose)
6266 					if_printf(sc->bge_ifp, "link UP\n");
6267 			} else if (sc->bge_link &&
6268 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6269 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6270 				sc->bge_link = 0;
6271 				if (bootverbose)
6272 					if_printf(sc->bge_ifp, "link DOWN\n");
6273 			}
6274 		}
6275 	} else {
6276 		/*
6277 		 * For controllers that call mii_tick, we have to poll
6278 		 * link status.
6279 		 */
6280 		mii = device_get_softc(sc->bge_miibus);
6281 		mii_pollstat(mii);
6282 		bge_miibus_statchg(sc->bge_dev);
6283 	}
6284 
6285 	/* Disable MAC attention when link is up. */
6286 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6287 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6288 	    BGE_MACSTAT_LINK_CHANGED);
6289 }
6290 
6291 static void
6292 bge_add_sysctls(struct bge_softc *sc)
6293 {
6294 	struct sysctl_ctx_list *ctx;
6295 	struct sysctl_oid_list *children;
6296 	int unit;
6297 
6298 	ctx = device_get_sysctl_ctx(sc->bge_dev);
6299 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6300 
6301 #ifdef BGE_REGISTER_DEBUG
6302 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6303 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6304 	    "Debug Information");
6305 
6306 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6307 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6308 	    "MAC Register Read");
6309 
6310 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6311 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6312 	    "APE Register Read");
6313 
6314 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6315 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6316 	    "Memory Read");
6317 
6318 #endif
6319 
6320 	unit = device_get_unit(sc->bge_dev);
6321 	/*
6322 	 * A common design characteristic for many Broadcom client controllers
6323 	 * is that they only support a single outstanding DMA read operation
6324 	 * on the PCIe bus. This means that it will take twice as long to fetch
6325 	 * a TX frame that is split into header and payload buffers as it does
6326 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6327 	 * these controllers, coalescing buffers to reduce the number of memory
6328 	 * reads is effective way to get maximum performance(about 940Mbps).
6329 	 * Without collapsing TX buffers the maximum TCP bulk transfer
6330 	 * performance is about 850Mbps. However forcing coalescing mbufs
6331 	 * consumes a lot of CPU cycles, so leave it off by default.
6332 	 */
6333 	sc->bge_forced_collapse = 0;
6334 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6335 	    CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
6336 	    "Number of fragmented TX buffers of a frame allowed before "
6337 	    "forced collapsing");
6338 
6339 	sc->bge_msi = 1;
6340 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6341 	    CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
6342 
6343 	/*
6344 	 * It seems all Broadcom controllers have a bug that can generate UDP
6345 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6346 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6347 	 * Even though the probability of generating such UDP datagrams is
6348 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6349 	 * into network so disable UDP checksum offloading by default.  Users
6350 	 * still override this behavior by setting a sysctl variable,
6351 	 * dev.bge.0.forced_udpcsum.
6352 	 */
6353 	sc->bge_forced_udpcsum = 0;
6354 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6355 	    CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
6356 	    "Enable UDP checksum offloading even if controller can "
6357 	    "generate UDP checksum value 0");
6358 
6359 	if (BGE_IS_5705_PLUS(sc))
6360 		bge_add_sysctl_stats_regs(sc, ctx, children);
6361 	else
6362 		bge_add_sysctl_stats(sc, ctx, children);
6363 }
6364 
6365 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6366 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6367 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6368 	    desc)
6369 
6370 static void
6371 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6372     struct sysctl_oid_list *parent)
6373 {
6374 	struct sysctl_oid *tree;
6375 	struct sysctl_oid_list *children, *schildren;
6376 
6377 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6378 	    NULL, "BGE Statistics");
6379 	schildren = children = SYSCTL_CHILDREN(tree);
6380 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6381 	    children, COSFramesDroppedDueToFilters,
6382 	    "FramesDroppedDueToFilters");
6383 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6384 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6385 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6386 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6387 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6388 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6389 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6390 	    children, ifInDiscards, "InputDiscards");
6391 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6392 	    children, ifInErrors, "InputErrors");
6393 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6394 	    children, nicRecvThresholdHit, "RecvThresholdHit");
6395 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6396 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6397 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6398 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6399 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6400 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6401 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6402 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6403 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6404 	    children, nicRingStatusUpdate, "RingStatusUpdate");
6405 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6406 	    children, nicInterrupts, "Interrupts");
6407 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6408 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6409 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6410 	    children, nicSendThresholdHit, "SendThresholdHit");
6411 
6412 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6413 	    NULL, "BGE RX Statistics");
6414 	children = SYSCTL_CHILDREN(tree);
6415 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6416 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6417 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6418 	    children, rxstats.etherStatsFragments, "Fragments");
6419 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6420 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6421 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6422 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6423 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6424 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6425 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6426 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6427 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6428 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6429 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6430 	    children, rxstats.xoffPauseFramesReceived,
6431 	    "xoffPauseFramesReceived");
6432 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6433 	    children, rxstats.macControlFramesReceived,
6434 	    "ControlFramesReceived");
6435 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6436 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6437 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6438 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6439 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6440 	    children, rxstats.etherStatsJabbers, "Jabbers");
6441 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6442 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6443 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6444 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6445 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6446 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6447 
6448 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6449 	    NULL, "BGE TX Statistics");
6450 	children = SYSCTL_CHILDREN(tree);
6451 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6452 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6453 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6454 	    children, txstats.etherStatsCollisions, "Collisions");
6455 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6456 	    children, txstats.outXonSent, "XonSent");
6457 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6458 	    children, txstats.outXoffSent, "XoffSent");
6459 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6460 	    children, txstats.flowControlDone, "flowControlDone");
6461 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6462 	    children, txstats.dot3StatsInternalMacTransmitErrors,
6463 	    "InternalMacTransmitErrors");
6464 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6465 	    children, txstats.dot3StatsSingleCollisionFrames,
6466 	    "SingleCollisionFrames");
6467 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6468 	    children, txstats.dot3StatsMultipleCollisionFrames,
6469 	    "MultipleCollisionFrames");
6470 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6471 	    children, txstats.dot3StatsDeferredTransmissions,
6472 	    "DeferredTransmissions");
6473 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6474 	    children, txstats.dot3StatsExcessiveCollisions,
6475 	    "ExcessiveCollisions");
6476 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6477 	    children, txstats.dot3StatsLateCollisions,
6478 	    "LateCollisions");
6479 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6480 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6481 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6482 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6483 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6484 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6485 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6486 	    children, txstats.dot3StatsCarrierSenseErrors,
6487 	    "CarrierSenseErrors");
6488 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6489 	    children, txstats.ifOutDiscards, "Discards");
6490 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6491 	    children, txstats.ifOutErrors, "Errors");
6492 }
6493 
6494 #undef BGE_SYSCTL_STAT
6495 
6496 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6497 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6498 
6499 static void
6500 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6501     struct sysctl_oid_list *parent)
6502 {
6503 	struct sysctl_oid *tree;
6504 	struct sysctl_oid_list *child, *schild;
6505 	struct bge_mac_stats *stats;
6506 
6507 	stats = &sc->bge_mac_stats;
6508 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6509 	    NULL, "BGE Statistics");
6510 	schild = child = SYSCTL_CHILDREN(tree);
6511 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6512 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6513 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6514 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6515 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6516 	    &stats->DmaWriteHighPriQueueFull,
6517 	    "NIC DMA Write High Priority Queue Full");
6518 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6519 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6520 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6521 	    &stats->InputDiscards, "Discarded Input Frames");
6522 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6523 	    &stats->InputErrors, "Input Errors");
6524 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6525 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6526 
6527 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6528 	    NULL, "BGE RX Statistics");
6529 	child = SYSCTL_CHILDREN(tree);
6530 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6531 	    &stats->ifHCInOctets, "Inbound Octets");
6532 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6533 	    &stats->etherStatsFragments, "Fragments");
6534 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6535 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6536 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6537 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6538 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6539 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6540 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6541 	    &stats->dot3StatsFCSErrors, "FCS Errors");
6542 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6543 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6544 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6545 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6546 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6547 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6548 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6549 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6550 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6551 	    &stats->xoffStateEntered, "XOFF State Entered");
6552 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6553 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6554 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6555 	    &stats->etherStatsJabbers, "Jabbers");
6556 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6557 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6558 
6559 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6560 	    NULL, "BGE TX Statistics");
6561 	child = SYSCTL_CHILDREN(tree);
6562 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6563 	    &stats->ifHCOutOctets, "Outbound Octets");
6564 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6565 	    &stats->etherStatsCollisions, "TX Collisions");
6566 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6567 	    &stats->outXonSent, "XON Sent");
6568 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6569 	    &stats->outXoffSent, "XOFF Sent");
6570 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6571 	    &stats->dot3StatsInternalMacTransmitErrors,
6572 	    "Internal MAC TX Errors");
6573 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6574 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6575 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6576 	    &stats->dot3StatsMultipleCollisionFrames,
6577 	    "Multiple Collision Frames");
6578 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6579 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6580 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6581 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6582 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6583 	    &stats->dot3StatsLateCollisions, "Late Collisions");
6584 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6585 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6586 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6587 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6588 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6589 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6590 }
6591 
6592 #undef	BGE_SYSCTL_STAT_ADD64
6593 
6594 static int
6595 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6596 {
6597 	struct bge_softc *sc;
6598 	uint32_t result;
6599 	int offset;
6600 
6601 	sc = (struct bge_softc *)arg1;
6602 	offset = arg2;
6603 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6604 	    offsetof(bge_hostaddr, bge_addr_lo));
6605 	return (sysctl_handle_int(oidp, &result, 0, req));
6606 }
6607 
6608 #ifdef BGE_REGISTER_DEBUG
6609 static int
6610 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6611 {
6612 	struct bge_softc *sc;
6613 	uint16_t *sbdata;
6614 	int error, result, sbsz;
6615 	int i, j;
6616 
6617 	result = -1;
6618 	error = sysctl_handle_int(oidp, &result, 0, req);
6619 	if (error || (req->newptr == NULL))
6620 		return (error);
6621 
6622 	if (result == 1) {
6623 		sc = (struct bge_softc *)arg1;
6624 
6625 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6626 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6627 			sbsz = BGE_STATUS_BLK_SZ;
6628 		else
6629 			sbsz = 32;
6630 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6631 		printf("Status Block:\n");
6632 		BGE_LOCK(sc);
6633 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6634 		    sc->bge_cdata.bge_status_map,
6635 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6636 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6637 			printf("%06x:", i);
6638 			for (j = 0; j < 8; j++)
6639 				printf(" %04x", sbdata[i++]);
6640 			printf("\n");
6641 		}
6642 
6643 		printf("Registers:\n");
6644 		for (i = 0x800; i < 0xA00; ) {
6645 			printf("%06x:", i);
6646 			for (j = 0; j < 8; j++) {
6647 				printf(" %08x", CSR_READ_4(sc, i));
6648 				i += 4;
6649 			}
6650 			printf("\n");
6651 		}
6652 		BGE_UNLOCK(sc);
6653 
6654 		printf("Hardware Flags:\n");
6655 		if (BGE_IS_5717_PLUS(sc))
6656 			printf(" - 5717 Plus\n");
6657 		if (BGE_IS_5755_PLUS(sc))
6658 			printf(" - 5755 Plus\n");
6659 		if (BGE_IS_575X_PLUS(sc))
6660 			printf(" - 575X Plus\n");
6661 		if (BGE_IS_5705_PLUS(sc))
6662 			printf(" - 5705 Plus\n");
6663 		if (BGE_IS_5714_FAMILY(sc))
6664 			printf(" - 5714 Family\n");
6665 		if (BGE_IS_5700_FAMILY(sc))
6666 			printf(" - 5700 Family\n");
6667 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6668 			printf(" - Supports Jumbo Frames\n");
6669 		if (sc->bge_flags & BGE_FLAG_PCIX)
6670 			printf(" - PCI-X Bus\n");
6671 		if (sc->bge_flags & BGE_FLAG_PCIE)
6672 			printf(" - PCI Express Bus\n");
6673 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6674 			printf(" - No 3 LEDs\n");
6675 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6676 			printf(" - RX Alignment Bug\n");
6677 	}
6678 
6679 	return (error);
6680 }
6681 
6682 static int
6683 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6684 {
6685 	struct bge_softc *sc;
6686 	int error;
6687 	uint16_t result;
6688 	uint32_t val;
6689 
6690 	result = -1;
6691 	error = sysctl_handle_int(oidp, &result, 0, req);
6692 	if (error || (req->newptr == NULL))
6693 		return (error);
6694 
6695 	if (result < 0x8000) {
6696 		sc = (struct bge_softc *)arg1;
6697 		val = CSR_READ_4(sc, result);
6698 		printf("reg 0x%06X = 0x%08X\n", result, val);
6699 	}
6700 
6701 	return (error);
6702 }
6703 
6704 static int
6705 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6706 {
6707 	struct bge_softc *sc;
6708 	int error;
6709 	uint16_t result;
6710 	uint32_t val;
6711 
6712 	result = -1;
6713 	error = sysctl_handle_int(oidp, &result, 0, req);
6714 	if (error || (req->newptr == NULL))
6715 		return (error);
6716 
6717 	if (result < 0x8000) {
6718 		sc = (struct bge_softc *)arg1;
6719 		val = APE_READ_4(sc, result);
6720 		printf("reg 0x%06X = 0x%08X\n", result, val);
6721 	}
6722 
6723 	return (error);
6724 }
6725 
6726 static int
6727 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6728 {
6729 	struct bge_softc *sc;
6730 	int error;
6731 	uint16_t result;
6732 	uint32_t val;
6733 
6734 	result = -1;
6735 	error = sysctl_handle_int(oidp, &result, 0, req);
6736 	if (error || (req->newptr == NULL))
6737 		return (error);
6738 
6739 	if (result < 0x8000) {
6740 		sc = (struct bge_softc *)arg1;
6741 		val = bge_readmem_ind(sc, result);
6742 		printf("mem 0x%06X = 0x%08X\n", result, val);
6743 	}
6744 
6745 	return (error);
6746 }
6747 #endif
6748 
6749 static int
6750 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6751 {
6752 #ifdef __sparc64__
6753 	if (sc->bge_flags & BGE_FLAG_EADDR)
6754 		return (1);
6755 
6756 	OF_getetheraddr(sc->bge_dev, ether_addr);
6757 	return (0);
6758 #else
6759 	return (1);
6760 #endif
6761 }
6762 
6763 static int
6764 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6765 {
6766 	uint32_t mac_addr;
6767 
6768 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6769 	if ((mac_addr >> 16) == 0x484b) {
6770 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6771 		ether_addr[1] = (uint8_t)mac_addr;
6772 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6773 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6774 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6775 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6776 		ether_addr[5] = (uint8_t)mac_addr;
6777 		return (0);
6778 	}
6779 	return (1);
6780 }
6781 
6782 static int
6783 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6784 {
6785 	int mac_offset = BGE_EE_MAC_OFFSET;
6786 
6787 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6788 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6789 
6790 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6791 	    ETHER_ADDR_LEN));
6792 }
6793 
6794 static int
6795 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6796 {
6797 
6798 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6799 		return (1);
6800 
6801 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6802 	   ETHER_ADDR_LEN));
6803 }
6804 
6805 static int
6806 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6807 {
6808 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6809 		/* NOTE: Order is critical */
6810 		bge_get_eaddr_fw,
6811 		bge_get_eaddr_mem,
6812 		bge_get_eaddr_nvram,
6813 		bge_get_eaddr_eeprom,
6814 		NULL
6815 	};
6816 	const bge_eaddr_fcn_t *func;
6817 
6818 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6819 		if ((*func)(sc, eaddr) == 0)
6820 			break;
6821 	}
6822 	return (*func == NULL ? ENXIO : 0);
6823 }
6824 
6825 static uint64_t
6826 bge_get_counter(if_t ifp, ift_counter cnt)
6827 {
6828 	struct bge_softc *sc;
6829 	struct bge_mac_stats *stats;
6830 
6831 	sc = if_getsoftc(ifp);
6832 	if (!BGE_IS_5705_PLUS(sc))
6833 		return (if_get_counter_default(ifp, cnt));
6834 	stats = &sc->bge_mac_stats;
6835 
6836 	switch (cnt) {
6837 	case IFCOUNTER_IERRORS:
6838 		return (stats->NoMoreRxBDs + stats->InputDiscards +
6839 		    stats->InputErrors);
6840 	case IFCOUNTER_COLLISIONS:
6841 		return (stats->etherStatsCollisions);
6842 	default:
6843 		return (if_get_counter_default(ifp, cnt));
6844 	}
6845 }
6846 
6847 #ifdef NETDUMP
6848 static void
6849 bge_netdump_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
6850 {
6851 	struct bge_softc *sc;
6852 
6853 	sc = if_getsoftc(ifp);
6854 	BGE_LOCK(sc);
6855 	*nrxr = sc->bge_return_ring_cnt;
6856 	*ncl = NETDUMP_MAX_IN_FLIGHT;
6857 	if ((sc->bge_flags & BGE_FLAG_JUMBO_STD) != 0 &&
6858 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
6859 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)))
6860 		*clsize = MJUM9BYTES;
6861 	else
6862 		*clsize = MCLBYTES;
6863 	BGE_UNLOCK(sc);
6864 }
6865 
6866 static void
6867 bge_netdump_event(if_t ifp __unused, enum netdump_ev event __unused)
6868 {
6869 }
6870 
6871 static int
6872 bge_netdump_transmit(if_t ifp, struct mbuf *m)
6873 {
6874 	struct bge_softc *sc;
6875 	uint32_t prodidx;
6876 	int error;
6877 
6878 	sc = if_getsoftc(ifp);
6879 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
6880 	    IFF_DRV_RUNNING)
6881 		return (1);
6882 
6883 	prodidx = sc->bge_tx_prodidx;
6884 	error = bge_encap(sc, &m, &prodidx);
6885 	if (error == 0)
6886 		bge_start_tx(sc, prodidx);
6887 	return (error);
6888 }
6889 
6890 static int
6891 bge_netdump_poll(if_t ifp, int count)
6892 {
6893 	struct bge_softc *sc;
6894 	uint32_t rx_prod, tx_cons;
6895 
6896 	sc = if_getsoftc(ifp);
6897 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
6898 	    IFF_DRV_RUNNING)
6899 		return (1);
6900 
6901 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6902 	    sc->bge_cdata.bge_status_map,
6903 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6904 
6905 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
6906 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
6907 
6908 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6909 	    sc->bge_cdata.bge_status_map,
6910 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6911 
6912 	(void)bge_rxeof(sc, rx_prod, 0);
6913 	bge_txeof(sc, tx_cons);
6914 	return (0);
6915 }
6916 #endif /* NETDUMP */
6917