xref: /freebsd/sys/dev/bge/if_bge.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100 
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #include <dev/bge/if_bgereg.h>
122 
123 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
124 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140 	uint16_t	bge_vid;
141 	uint16_t	bge_did;
142 } const bge_devs[] = {
143 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145 
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149 
150 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151 
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
220 
221 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
222 
223 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
224 
225 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
226 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
227 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
228 
229 	{ 0, 0 }
230 };
231 
232 static const struct bge_vendor {
233 	uint16_t	v_id;
234 	const char	*v_name;
235 } const bge_vendors[] = {
236 	{ ALTEON_VENDORID,	"Alteon" },
237 	{ ALTIMA_VENDORID,	"Altima" },
238 	{ APPLE_VENDORID,	"Apple" },
239 	{ BCOM_VENDORID,	"Broadcom" },
240 	{ SK_VENDORID,		"SysKonnect" },
241 	{ TC_VENDORID,		"3Com" },
242 	{ FJTSU_VENDORID,	"Fujitsu" },
243 
244 	{ 0, NULL }
245 };
246 
247 static const struct bge_revision {
248 	uint32_t	br_chipid;
249 	const char	*br_name;
250 } const bge_revisions[] = {
251 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
252 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
253 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
254 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
255 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
256 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
257 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
258 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
259 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
260 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
261 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
262 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
263 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
264 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
265 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
266 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
267 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
268 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
269 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
270 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
271 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
272 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
273 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
274 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
275 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
276 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
277 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
278 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
279 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
280 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
281 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
282 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
283 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
284 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
285 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
286 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
287 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
288 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
289 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
290 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
291 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
292 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
293 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
294 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
295 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
296 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
297 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
298 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
299 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
300 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
301 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
302 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
303 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
304 	/* 5754 and 5787 share the same ASIC ID */
305 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
306 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
307 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
308 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
309 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
310 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
311 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
312 
313 	{ 0, NULL }
314 };
315 
316 /*
317  * Some defaults for major revisions, so that newer steppings
318  * that we don't know about have a shot at working.
319  */
320 static const struct bge_revision const bge_majorrevs[] = {
321 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
322 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
323 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
324 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
325 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
326 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
327 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
328 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
329 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
330 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
331 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
332 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
333 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
334 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
335 	/* 5754 and 5787 share the same ASIC ID */
336 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
337 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
338 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
339 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
340 
341 	{ 0, NULL }
342 };
343 
344 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
345 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
346 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
347 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
348 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
349 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
350 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
351 
352 const struct bge_revision * bge_lookup_rev(uint32_t);
353 const struct bge_vendor * bge_lookup_vendor(uint16_t);
354 
355 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
356 
357 static int bge_probe(device_t);
358 static int bge_attach(device_t);
359 static int bge_detach(device_t);
360 static int bge_suspend(device_t);
361 static int bge_resume(device_t);
362 static void bge_release_resources(struct bge_softc *);
363 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
364 static int bge_dma_alloc(struct bge_softc *);
365 static void bge_dma_free(struct bge_softc *);
366 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
367     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
368 
369 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
370 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
371 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
372 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
373 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
374 
375 static void bge_txeof(struct bge_softc *, uint16_t);
376 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
377 static int bge_rxeof(struct bge_softc *, uint16_t, int);
378 
379 static void bge_asf_driver_up (struct bge_softc *);
380 static void bge_tick(void *);
381 static void bge_stats_clear_regs(struct bge_softc *);
382 static void bge_stats_update(struct bge_softc *);
383 static void bge_stats_update_regs(struct bge_softc *);
384 static struct mbuf *bge_check_short_dma(struct mbuf *);
385 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
386     uint16_t *, uint16_t *);
387 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
388 
389 static void bge_intr(void *);
390 static int bge_msi_intr(void *);
391 static void bge_intr_task(void *, int);
392 static void bge_start_locked(struct ifnet *);
393 static void bge_start(struct ifnet *);
394 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
395 static void bge_init_locked(struct bge_softc *);
396 static void bge_init(void *);
397 static void bge_stop(struct bge_softc *);
398 static void bge_watchdog(struct bge_softc *);
399 static int bge_shutdown(device_t);
400 static int bge_ifmedia_upd_locked(struct ifnet *);
401 static int bge_ifmedia_upd(struct ifnet *);
402 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
403 
404 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
405 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
406 
407 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
408 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
409 
410 static void bge_setpromisc(struct bge_softc *);
411 static void bge_setmulti(struct bge_softc *);
412 static void bge_setvlan(struct bge_softc *);
413 
414 static __inline void bge_rxreuse_std(struct bge_softc *, int);
415 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
416 static int bge_newbuf_std(struct bge_softc *, int);
417 static int bge_newbuf_jumbo(struct bge_softc *, int);
418 static int bge_init_rx_ring_std(struct bge_softc *);
419 static void bge_free_rx_ring_std(struct bge_softc *);
420 static int bge_init_rx_ring_jumbo(struct bge_softc *);
421 static void bge_free_rx_ring_jumbo(struct bge_softc *);
422 static void bge_free_tx_ring(struct bge_softc *);
423 static int bge_init_tx_ring(struct bge_softc *);
424 
425 static int bge_chipinit(struct bge_softc *);
426 static int bge_blockinit(struct bge_softc *);
427 
428 static int bge_has_eaddr(struct bge_softc *);
429 static uint32_t bge_readmem_ind(struct bge_softc *, int);
430 static void bge_writemem_ind(struct bge_softc *, int, int);
431 static void bge_writembx(struct bge_softc *, int, int);
432 #ifdef notdef
433 static uint32_t bge_readreg_ind(struct bge_softc *, int);
434 #endif
435 static void bge_writemem_direct(struct bge_softc *, int, int);
436 static void bge_writereg_ind(struct bge_softc *, int, int);
437 
438 static int bge_miibus_readreg(device_t, int, int);
439 static int bge_miibus_writereg(device_t, int, int, int);
440 static void bge_miibus_statchg(device_t);
441 #ifdef DEVICE_POLLING
442 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
443 #endif
444 
445 #define	BGE_RESET_START 1
446 #define	BGE_RESET_STOP  2
447 static void bge_sig_post_reset(struct bge_softc *, int);
448 static void bge_sig_legacy(struct bge_softc *, int);
449 static void bge_sig_pre_reset(struct bge_softc *, int);
450 static void bge_stop_fw(struct bge_softc *);
451 static int bge_reset(struct bge_softc *);
452 static void bge_link_upd(struct bge_softc *);
453 
454 /*
455  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
456  * leak information to untrusted users.  It is also known to cause alignment
457  * traps on certain architectures.
458  */
459 #ifdef BGE_REGISTER_DEBUG
460 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
461 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
462 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
463 #endif
464 static void bge_add_sysctls(struct bge_softc *);
465 static void bge_add_sysctl_stats_regs(struct bge_softc *,
466     struct sysctl_ctx_list *, struct sysctl_oid_list *);
467 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
468     struct sysctl_oid_list *);
469 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
470 
471 static device_method_t bge_methods[] = {
472 	/* Device interface */
473 	DEVMETHOD(device_probe,		bge_probe),
474 	DEVMETHOD(device_attach,	bge_attach),
475 	DEVMETHOD(device_detach,	bge_detach),
476 	DEVMETHOD(device_shutdown,	bge_shutdown),
477 	DEVMETHOD(device_suspend,	bge_suspend),
478 	DEVMETHOD(device_resume,	bge_resume),
479 
480 	/* bus interface */
481 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
482 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
483 
484 	/* MII interface */
485 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
486 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
487 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
488 
489 	{ 0, 0 }
490 };
491 
492 static driver_t bge_driver = {
493 	"bge",
494 	bge_methods,
495 	sizeof(struct bge_softc)
496 };
497 
498 static devclass_t bge_devclass;
499 
500 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
501 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
502 
503 static int bge_allow_asf = 1;
504 
505 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
506 
507 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
508 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
509 	"Allow ASF mode if available");
510 
511 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
512 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
513 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
514 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
515 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
516 
517 static int
518 bge_has_eaddr(struct bge_softc *sc)
519 {
520 #ifdef __sparc64__
521 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
522 	device_t dev;
523 	uint32_t subvendor;
524 
525 	dev = sc->bge_dev;
526 
527 	/*
528 	 * The on-board BGEs found in sun4u machines aren't fitted with
529 	 * an EEPROM which means that we have to obtain the MAC address
530 	 * via OFW and that some tests will always fail.  We distinguish
531 	 * such BGEs by the subvendor ID, which also has to be obtained
532 	 * from OFW instead of the PCI configuration space as the latter
533 	 * indicates Broadcom as the subvendor of the netboot interface.
534 	 * For early Blade 1500 and 2500 we even have to check the OFW
535 	 * device path as the subvendor ID always defaults to Broadcom
536 	 * there.
537 	 */
538 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
539 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
540 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
541 		return (0);
542 	memset(buf, 0, sizeof(buf));
543 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
544 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
545 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
546 			return (0);
547 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
548 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
549 			return (0);
550 	}
551 #endif
552 	return (1);
553 }
554 
555 static uint32_t
556 bge_readmem_ind(struct bge_softc *sc, int off)
557 {
558 	device_t dev;
559 	uint32_t val;
560 
561 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
562 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
563 		return (0);
564 
565 	dev = sc->bge_dev;
566 
567 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
568 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
569 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
570 	return (val);
571 }
572 
573 static void
574 bge_writemem_ind(struct bge_softc *sc, int off, int val)
575 {
576 	device_t dev;
577 
578 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
579 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
580 		return;
581 
582 	dev = sc->bge_dev;
583 
584 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
585 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
586 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
587 }
588 
589 #ifdef notdef
590 static uint32_t
591 bge_readreg_ind(struct bge_softc *sc, int off)
592 {
593 	device_t dev;
594 
595 	dev = sc->bge_dev;
596 
597 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
598 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
599 }
600 #endif
601 
602 static void
603 bge_writereg_ind(struct bge_softc *sc, int off, int val)
604 {
605 	device_t dev;
606 
607 	dev = sc->bge_dev;
608 
609 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
610 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
611 }
612 
613 static void
614 bge_writemem_direct(struct bge_softc *sc, int off, int val)
615 {
616 	CSR_WRITE_4(sc, off, val);
617 }
618 
619 static void
620 bge_writembx(struct bge_softc *sc, int off, int val)
621 {
622 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
623 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
624 
625 	CSR_WRITE_4(sc, off, val);
626 }
627 
628 /*
629  * Map a single buffer address.
630  */
631 
632 static void
633 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
634 {
635 	struct bge_dmamap_arg *ctx;
636 
637 	if (error)
638 		return;
639 
640 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
641 
642 	ctx = arg;
643 	ctx->bge_busaddr = segs->ds_addr;
644 }
645 
646 static uint8_t
647 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
648 {
649 	uint32_t access, byte = 0;
650 	int i;
651 
652 	/* Lock. */
653 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
654 	for (i = 0; i < 8000; i++) {
655 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
656 			break;
657 		DELAY(20);
658 	}
659 	if (i == 8000)
660 		return (1);
661 
662 	/* Enable access. */
663 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
664 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
665 
666 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
667 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
668 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
669 		DELAY(10);
670 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
671 			DELAY(10);
672 			break;
673 		}
674 	}
675 
676 	if (i == BGE_TIMEOUT * 10) {
677 		if_printf(sc->bge_ifp, "nvram read timed out\n");
678 		return (1);
679 	}
680 
681 	/* Get result. */
682 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
683 
684 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
685 
686 	/* Disable access. */
687 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
688 
689 	/* Unlock. */
690 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
691 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
692 
693 	return (0);
694 }
695 
696 /*
697  * Read a sequence of bytes from NVRAM.
698  */
699 static int
700 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
701 {
702 	int err = 0, i;
703 	uint8_t byte = 0;
704 
705 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
706 		return (1);
707 
708 	for (i = 0; i < cnt; i++) {
709 		err = bge_nvram_getbyte(sc, off + i, &byte);
710 		if (err)
711 			break;
712 		*(dest + i) = byte;
713 	}
714 
715 	return (err ? 1 : 0);
716 }
717 
718 /*
719  * Read a byte of data stored in the EEPROM at address 'addr.' The
720  * BCM570x supports both the traditional bitbang interface and an
721  * auto access interface for reading the EEPROM. We use the auto
722  * access method.
723  */
724 static uint8_t
725 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
726 {
727 	int i;
728 	uint32_t byte = 0;
729 
730 	/*
731 	 * Enable use of auto EEPROM access so we can avoid
732 	 * having to use the bitbang method.
733 	 */
734 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
735 
736 	/* Reset the EEPROM, load the clock period. */
737 	CSR_WRITE_4(sc, BGE_EE_ADDR,
738 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
739 	DELAY(20);
740 
741 	/* Issue the read EEPROM command. */
742 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
743 
744 	/* Wait for completion */
745 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
746 		DELAY(10);
747 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
748 			break;
749 	}
750 
751 	if (i == BGE_TIMEOUT * 10) {
752 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
753 		return (1);
754 	}
755 
756 	/* Get result. */
757 	byte = CSR_READ_4(sc, BGE_EE_DATA);
758 
759 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
760 
761 	return (0);
762 }
763 
764 /*
765  * Read a sequence of bytes from the EEPROM.
766  */
767 static int
768 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
769 {
770 	int i, error = 0;
771 	uint8_t byte = 0;
772 
773 	for (i = 0; i < cnt; i++) {
774 		error = bge_eeprom_getbyte(sc, off + i, &byte);
775 		if (error)
776 			break;
777 		*(dest + i) = byte;
778 	}
779 
780 	return (error ? 1 : 0);
781 }
782 
783 static int
784 bge_miibus_readreg(device_t dev, int phy, int reg)
785 {
786 	struct bge_softc *sc;
787 	uint32_t val;
788 	int i;
789 
790 	sc = device_get_softc(dev);
791 
792 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
793 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
794 		CSR_WRITE_4(sc, BGE_MI_MODE,
795 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
796 		DELAY(80);
797 	}
798 
799 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
800 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
801 
802 	/* Poll for the PHY register access to complete. */
803 	for (i = 0; i < BGE_TIMEOUT; i++) {
804 		DELAY(10);
805 		val = CSR_READ_4(sc, BGE_MI_COMM);
806 		if ((val & BGE_MICOMM_BUSY) == 0) {
807 			DELAY(5);
808 			val = CSR_READ_4(sc, BGE_MI_COMM);
809 			break;
810 		}
811 	}
812 
813 	if (i == BGE_TIMEOUT) {
814 		device_printf(sc->bge_dev,
815 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
816 		    phy, reg, val);
817 		val = 0;
818 	}
819 
820 	/* Restore the autopoll bit if necessary. */
821 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
822 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
823 		DELAY(80);
824 	}
825 
826 	if (val & BGE_MICOMM_READFAIL)
827 		return (0);
828 
829 	return (val & 0xFFFF);
830 }
831 
832 static int
833 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
834 {
835 	struct bge_softc *sc;
836 	int i;
837 
838 	sc = device_get_softc(dev);
839 
840 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
841 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
842 		return (0);
843 
844 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
845 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
846 		CSR_WRITE_4(sc, BGE_MI_MODE,
847 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
848 		DELAY(80);
849 	}
850 
851 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
852 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
853 
854 	for (i = 0; i < BGE_TIMEOUT; i++) {
855 		DELAY(10);
856 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
857 			DELAY(5);
858 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
859 			break;
860 		}
861 	}
862 
863 	/* Restore the autopoll bit if necessary. */
864 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
865 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
866 		DELAY(80);
867 	}
868 
869 	if (i == BGE_TIMEOUT)
870 		device_printf(sc->bge_dev,
871 		    "PHY write timed out (phy %d, reg %d, val %d)\n",
872 		    phy, reg, val);
873 
874 	return (0);
875 }
876 
877 static void
878 bge_miibus_statchg(device_t dev)
879 {
880 	struct bge_softc *sc;
881 	struct mii_data *mii;
882 	sc = device_get_softc(dev);
883 	mii = device_get_softc(sc->bge_miibus);
884 
885 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
886 	    (IFM_ACTIVE | IFM_AVALID)) {
887 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
888 		case IFM_10_T:
889 		case IFM_100_TX:
890 			sc->bge_link = 1;
891 			break;
892 		case IFM_1000_T:
893 		case IFM_1000_SX:
894 		case IFM_2500_SX:
895 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
896 				sc->bge_link = 1;
897 			else
898 				sc->bge_link = 0;
899 			break;
900 		default:
901 			sc->bge_link = 0;
902 			break;
903 		}
904 	} else
905 		sc->bge_link = 0;
906 	if (sc->bge_link == 0)
907 		return;
908 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
909 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
910 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
911 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
912 	else
913 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
914 
915 	if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) {
916 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
917 		if ((IFM_OPTIONS(mii->mii_media_active) &
918 		    IFM_ETH_TXPAUSE) != 0)
919 			BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
920 		else
921 			BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
922 		if ((IFM_OPTIONS(mii->mii_media_active) &
923 		    IFM_ETH_RXPAUSE) != 0)
924 			BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
925 		else
926 			BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
927 	} else {
928 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
929 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
930 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
931 	}
932 }
933 
934 /*
935  * Intialize a standard receive ring descriptor.
936  */
937 static int
938 bge_newbuf_std(struct bge_softc *sc, int i)
939 {
940 	struct mbuf *m;
941 	struct bge_rx_bd *r;
942 	bus_dma_segment_t segs[1];
943 	bus_dmamap_t map;
944 	int error, nsegs;
945 
946 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
947 	if (m == NULL)
948 		return (ENOBUFS);
949 	m->m_len = m->m_pkthdr.len = MCLBYTES;
950 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
951 		m_adj(m, ETHER_ALIGN);
952 
953 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
954 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
955 	if (error != 0) {
956 		m_freem(m);
957 		return (error);
958 	}
959 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
960 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
961 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
962 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
963 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
964 	}
965 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
966 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
967 	sc->bge_cdata.bge_rx_std_sparemap = map;
968 	sc->bge_cdata.bge_rx_std_chain[i] = m;
969 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
970 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
971 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
972 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
973 	r->bge_flags = BGE_RXBDFLAG_END;
974 	r->bge_len = segs[0].ds_len;
975 	r->bge_idx = i;
976 
977 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
978 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
979 
980 	return (0);
981 }
982 
983 /*
984  * Initialize a jumbo receive ring descriptor. This allocates
985  * a jumbo buffer from the pool managed internally by the driver.
986  */
987 static int
988 bge_newbuf_jumbo(struct bge_softc *sc, int i)
989 {
990 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
991 	bus_dmamap_t map;
992 	struct bge_extrx_bd *r;
993 	struct mbuf *m;
994 	int error, nsegs;
995 
996 	MGETHDR(m, M_DONTWAIT, MT_DATA);
997 	if (m == NULL)
998 		return (ENOBUFS);
999 
1000 	m_cljget(m, M_DONTWAIT, MJUM9BYTES);
1001 	if (!(m->m_flags & M_EXT)) {
1002 		m_freem(m);
1003 		return (ENOBUFS);
1004 	}
1005 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1006 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1007 		m_adj(m, ETHER_ALIGN);
1008 
1009 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1010 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1011 	if (error != 0) {
1012 		m_freem(m);
1013 		return (error);
1014 	}
1015 
1016 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] == NULL) {
1017 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1018 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1019 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1020 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1021 	}
1022 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1023 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1024 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1025 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1026 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1027 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1028 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1029 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1030 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1031 
1032 	/*
1033 	 * Fill in the extended RX buffer descriptor.
1034 	 */
1035 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1036 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1037 	r->bge_idx = i;
1038 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1039 	switch (nsegs) {
1040 	case 4:
1041 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1042 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1043 		r->bge_len3 = segs[3].ds_len;
1044 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1045 	case 3:
1046 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1047 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1048 		r->bge_len2 = segs[2].ds_len;
1049 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1050 	case 2:
1051 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1052 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1053 		r->bge_len1 = segs[1].ds_len;
1054 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1055 	case 1:
1056 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1057 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1058 		r->bge_len0 = segs[0].ds_len;
1059 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1060 		break;
1061 	default:
1062 		panic("%s: %d segments\n", __func__, nsegs);
1063 	}
1064 
1065 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1066 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1067 
1068 	return (0);
1069 }
1070 
1071 static int
1072 bge_init_rx_ring_std(struct bge_softc *sc)
1073 {
1074 	int error, i;
1075 
1076 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1077 	sc->bge_std = 0;
1078 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1079 		if ((error = bge_newbuf_std(sc, i)) != 0)
1080 			return (error);
1081 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1082 	}
1083 
1084 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1085 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1086 
1087 	sc->bge_std = 0;
1088 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1089 
1090 	return (0);
1091 }
1092 
1093 static void
1094 bge_free_rx_ring_std(struct bge_softc *sc)
1095 {
1096 	int i;
1097 
1098 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1099 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1100 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1101 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1102 			    BUS_DMASYNC_POSTREAD);
1103 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1104 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1105 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1106 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1107 		}
1108 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1109 		    sizeof(struct bge_rx_bd));
1110 	}
1111 }
1112 
1113 static int
1114 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1115 {
1116 	struct bge_rcb *rcb;
1117 	int error, i;
1118 
1119 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1120 	sc->bge_jumbo = 0;
1121 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1122 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1123 			return (error);
1124 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1125 	}
1126 
1127 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1128 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1129 
1130 	sc->bge_jumbo = 0;
1131 
1132 	/* Enable the jumbo receive producer ring. */
1133 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1134 	rcb->bge_maxlen_flags =
1135 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1136 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1137 
1138 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1139 
1140 	return (0);
1141 }
1142 
1143 static void
1144 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1145 {
1146 	int i;
1147 
1148 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1149 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1150 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1151 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1152 			    BUS_DMASYNC_POSTREAD);
1153 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1154 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1155 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1156 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1157 		}
1158 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1159 		    sizeof(struct bge_extrx_bd));
1160 	}
1161 }
1162 
1163 static void
1164 bge_free_tx_ring(struct bge_softc *sc)
1165 {
1166 	int i;
1167 
1168 	if (sc->bge_ldata.bge_tx_ring == NULL)
1169 		return;
1170 
1171 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1172 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1173 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1174 			    sc->bge_cdata.bge_tx_dmamap[i],
1175 			    BUS_DMASYNC_POSTWRITE);
1176 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1177 			    sc->bge_cdata.bge_tx_dmamap[i]);
1178 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1179 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1180 		}
1181 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1182 		    sizeof(struct bge_tx_bd));
1183 	}
1184 }
1185 
1186 static int
1187 bge_init_tx_ring(struct bge_softc *sc)
1188 {
1189 	sc->bge_txcnt = 0;
1190 	sc->bge_tx_saved_considx = 0;
1191 
1192 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1193 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1194 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1195 
1196 	/* Initialize transmit producer index for host-memory send ring. */
1197 	sc->bge_tx_prodidx = 0;
1198 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1199 
1200 	/* 5700 b2 errata */
1201 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1202 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1203 
1204 	/* NIC-memory send ring not used; initialize to zero. */
1205 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1206 	/* 5700 b2 errata */
1207 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1208 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1209 
1210 	return (0);
1211 }
1212 
1213 static void
1214 bge_setpromisc(struct bge_softc *sc)
1215 {
1216 	struct ifnet *ifp;
1217 
1218 	BGE_LOCK_ASSERT(sc);
1219 
1220 	ifp = sc->bge_ifp;
1221 
1222 	/* Enable or disable promiscuous mode as needed. */
1223 	if (ifp->if_flags & IFF_PROMISC)
1224 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1225 	else
1226 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1227 }
1228 
1229 static void
1230 bge_setmulti(struct bge_softc *sc)
1231 {
1232 	struct ifnet *ifp;
1233 	struct ifmultiaddr *ifma;
1234 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1235 	int h, i;
1236 
1237 	BGE_LOCK_ASSERT(sc);
1238 
1239 	ifp = sc->bge_ifp;
1240 
1241 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1242 		for (i = 0; i < 4; i++)
1243 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1244 		return;
1245 	}
1246 
1247 	/* First, zot all the existing filters. */
1248 	for (i = 0; i < 4; i++)
1249 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1250 
1251 	/* Now program new ones. */
1252 	if_maddr_rlock(ifp);
1253 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1254 		if (ifma->ifma_addr->sa_family != AF_LINK)
1255 			continue;
1256 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1257 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1258 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1259 	}
1260 	if_maddr_runlock(ifp);
1261 
1262 	for (i = 0; i < 4; i++)
1263 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1264 }
1265 
1266 static void
1267 bge_setvlan(struct bge_softc *sc)
1268 {
1269 	struct ifnet *ifp;
1270 
1271 	BGE_LOCK_ASSERT(sc);
1272 
1273 	ifp = sc->bge_ifp;
1274 
1275 	/* Enable or disable VLAN tag stripping as needed. */
1276 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1277 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1278 	else
1279 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1280 }
1281 
1282 static void
1283 bge_sig_pre_reset(struct bge_softc *sc, int type)
1284 {
1285 
1286 	/*
1287 	 * Some chips don't like this so only do this if ASF is enabled
1288 	 */
1289 	if (sc->bge_asf_mode)
1290 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1291 
1292 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1293 		switch (type) {
1294 		case BGE_RESET_START:
1295 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1296 			break;
1297 		case BGE_RESET_STOP:
1298 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1299 			break;
1300 		}
1301 	}
1302 }
1303 
1304 static void
1305 bge_sig_post_reset(struct bge_softc *sc, int type)
1306 {
1307 
1308 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1309 		switch (type) {
1310 		case BGE_RESET_START:
1311 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1312 			/* START DONE */
1313 			break;
1314 		case BGE_RESET_STOP:
1315 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1316 			break;
1317 		}
1318 	}
1319 }
1320 
1321 static void
1322 bge_sig_legacy(struct bge_softc *sc, int type)
1323 {
1324 
1325 	if (sc->bge_asf_mode) {
1326 		switch (type) {
1327 		case BGE_RESET_START:
1328 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1329 			break;
1330 		case BGE_RESET_STOP:
1331 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1332 			break;
1333 		}
1334 	}
1335 }
1336 
1337 static void
1338 bge_stop_fw(struct bge_softc *sc)
1339 {
1340 	int i;
1341 
1342 	if (sc->bge_asf_mode) {
1343 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1344 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1345 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1346 
1347 		for (i = 0; i < 100; i++ ) {
1348 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1349 				break;
1350 			DELAY(10);
1351 		}
1352 	}
1353 }
1354 
1355 /*
1356  * Do endian, PCI and DMA initialization.
1357  */
1358 static int
1359 bge_chipinit(struct bge_softc *sc)
1360 {
1361 	uint32_t dma_rw_ctl, misc_ctl;
1362 	uint16_t val;
1363 	int i;
1364 
1365 	/* Set endianness before we access any non-PCI registers. */
1366 	misc_ctl = BGE_INIT;
1367 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1368 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1369 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1370 
1371 	/* Clear the MAC control register */
1372 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1373 
1374 	/*
1375 	 * Clear the MAC statistics block in the NIC's
1376 	 * internal memory.
1377 	 */
1378 	for (i = BGE_STATS_BLOCK;
1379 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1380 		BGE_MEMWIN_WRITE(sc, i, 0);
1381 
1382 	for (i = BGE_STATUS_BLOCK;
1383 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1384 		BGE_MEMWIN_WRITE(sc, i, 0);
1385 
1386 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1387 		/*
1388 		 *  Fix data corruption caused by non-qword write with WB.
1389 		 *  Fix master abort in PCI mode.
1390 		 *  Fix PCI latency timer.
1391 		 */
1392 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1393 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1394 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1395 	}
1396 
1397 	/*
1398 	 * Set up the PCI DMA control register.
1399 	 */
1400 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1401 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1402 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1403 		/* Read watermark not used, 128 bytes for write. */
1404 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1405 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1406 		if (BGE_IS_5714_FAMILY(sc)) {
1407 			/* 256 bytes for read and write. */
1408 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1409 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1410 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1411 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1412 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1413 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1414 			/*
1415 			 * In the BCM5703, the DMA read watermark should
1416 			 * be set to less than or equal to the maximum
1417 			 * memory read byte count of the PCI-X command
1418 			 * register.
1419 			 */
1420 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1421 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1422 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1423 			/* 1536 bytes for read, 384 bytes for write. */
1424 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1425 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1426 		} else {
1427 			/* 384 bytes for read and write. */
1428 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1429 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1430 			    0x0F;
1431 		}
1432 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1433 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1434 			uint32_t tmp;
1435 
1436 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1437 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1438 			if (tmp == 6 || tmp == 7)
1439 				dma_rw_ctl |=
1440 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1441 
1442 			/* Set PCI-X DMA write workaround. */
1443 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1444 		}
1445 	} else {
1446 		/* Conventional PCI bus: 256 bytes for read and write. */
1447 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1448 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1449 
1450 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1451 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1452 			dma_rw_ctl |= 0x0F;
1453 	}
1454 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1455 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1456 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1457 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1458 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1459 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1460 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1461 	if (BGE_IS_5717_PLUS(sc))
1462 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1463 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1464 
1465 	/*
1466 	 * Set up general mode register.
1467 	 */
1468 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1469 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1470 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1471 
1472 	/*
1473 	 * BCM5701 B5 have a bug causing data corruption when using
1474 	 * 64-bit DMA reads, which can be terminated early and then
1475 	 * completed later as 32-bit accesses, in combination with
1476 	 * certain bridges.
1477 	 */
1478 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1479 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1480 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1481 
1482 	/*
1483 	 * Tell the firmware the driver is running
1484 	 */
1485 	if (sc->bge_asf_mode & ASF_STACKUP)
1486 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1487 
1488 	/*
1489 	 * Disable memory write invalidate.  Apparently it is not supported
1490 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1491 	 * as these chips need it even when using MSI.
1492 	 */
1493 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1494 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1495 
1496 	/* Set the timer prescaler (always 66Mhz) */
1497 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1498 
1499 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1500 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1501 		DELAY(40);	/* XXX */
1502 
1503 		/* Put PHY into ready state */
1504 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1505 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1506 		DELAY(40);
1507 	}
1508 
1509 	return (0);
1510 }
1511 
1512 static int
1513 bge_blockinit(struct bge_softc *sc)
1514 {
1515 	struct bge_rcb *rcb;
1516 	bus_size_t vrcb;
1517 	bge_hostaddr taddr;
1518 	uint32_t val;
1519 	int i, limit;
1520 
1521 	/*
1522 	 * Initialize the memory window pointer register so that
1523 	 * we can access the first 32K of internal NIC RAM. This will
1524 	 * allow us to set up the TX send ring RCBs and the RX return
1525 	 * ring RCBs, plus other things which live in NIC memory.
1526 	 */
1527 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1528 
1529 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1530 
1531 	if (!(BGE_IS_5705_PLUS(sc))) {
1532 		/* Configure mbuf memory pool */
1533 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1534 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1535 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1536 		else
1537 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1538 
1539 		/* Configure DMA resource pool */
1540 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1541 		    BGE_DMA_DESCRIPTORS);
1542 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1543 	}
1544 
1545 	/* Configure mbuf pool watermarks */
1546 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717) {
1547 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1548 		if (sc->bge_ifp->if_mtu > ETHERMTU) {
1549 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1550 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1551 		} else {
1552 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1553 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1554 		}
1555 	} else if (!BGE_IS_5705_PLUS(sc)) {
1556 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1557 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1558 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1559 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1560 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1561 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1562 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1563 	} else {
1564 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1565 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1566 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1567 	}
1568 
1569 	/* Configure DMA resource watermarks */
1570 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1571 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1572 
1573 	/* Enable buffer manager */
1574 	if (!(BGE_IS_5705_PLUS(sc))) {
1575 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1576 		    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1577 
1578 		/* Poll for buffer manager start indication */
1579 		for (i = 0; i < BGE_TIMEOUT; i++) {
1580 			DELAY(10);
1581 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1582 				break;
1583 		}
1584 
1585 		if (i == BGE_TIMEOUT) {
1586 			device_printf(sc->bge_dev,
1587 			    "buffer manager failed to start\n");
1588 			return (ENXIO);
1589 		}
1590 	}
1591 
1592 	/* Enable flow-through queues */
1593 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1594 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1595 
1596 	/* Wait until queue initialization is complete */
1597 	for (i = 0; i < BGE_TIMEOUT; i++) {
1598 		DELAY(10);
1599 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1600 			break;
1601 	}
1602 
1603 	if (i == BGE_TIMEOUT) {
1604 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
1605 		return (ENXIO);
1606 	}
1607 
1608 	/*
1609 	 * Summary of rings supported by the controller:
1610 	 *
1611 	 * Standard Receive Producer Ring
1612 	 * - This ring is used to feed receive buffers for "standard"
1613 	 *   sized frames (typically 1536 bytes) to the controller.
1614 	 *
1615 	 * Jumbo Receive Producer Ring
1616 	 * - This ring is used to feed receive buffers for jumbo sized
1617 	 *   frames (i.e. anything bigger than the "standard" frames)
1618 	 *   to the controller.
1619 	 *
1620 	 * Mini Receive Producer Ring
1621 	 * - This ring is used to feed receive buffers for "mini"
1622 	 *   sized frames to the controller.
1623 	 * - This feature required external memory for the controller
1624 	 *   but was never used in a production system.  Should always
1625 	 *   be disabled.
1626 	 *
1627 	 * Receive Return Ring
1628 	 * - After the controller has placed an incoming frame into a
1629 	 *   receive buffer that buffer is moved into a receive return
1630 	 *   ring.  The driver is then responsible to passing the
1631 	 *   buffer up to the stack.  Many versions of the controller
1632 	 *   support multiple RR rings.
1633 	 *
1634 	 * Send Ring
1635 	 * - This ring is used for outgoing frames.  Many versions of
1636 	 *   the controller support multiple send rings.
1637 	 */
1638 
1639 	/* Initialize the standard receive producer ring control block. */
1640 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1641 	rcb->bge_hostaddr.bge_addr_lo =
1642 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1643 	rcb->bge_hostaddr.bge_addr_hi =
1644 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1645 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1646 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1647 	if (BGE_IS_5717_PLUS(sc)) {
1648 		/*
1649 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
1650 		 * Bits 15-2 : Maximum RX frame size
1651 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
1652 		 * Bit 0     : Reserved
1653 		 */
1654 		rcb->bge_maxlen_flags =
1655 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
1656 	} else if (BGE_IS_5705_PLUS(sc)) {
1657 		/*
1658 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1659 		 * Bits 15-2 : Reserved (should be 0)
1660 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1661 		 * Bit 0     : Reserved
1662 		 */
1663 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1664 	} else {
1665 		/*
1666 		 * Ring size is always XXX entries
1667 		 * Bits 31-16: Maximum RX frame size
1668 		 * Bits 15-2 : Reserved (should be 0)
1669 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1670 		 * Bit 0     : Reserved
1671 		 */
1672 		rcb->bge_maxlen_flags =
1673 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1674 	}
1675 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
1676 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
1677 	else
1678 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1679 	/* Write the standard receive producer ring control block. */
1680 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1681 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1682 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1683 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1684 
1685 	/* Reset the standard receive producer ring producer index. */
1686 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1687 
1688 	/*
1689 	 * Initialize the jumbo RX producer ring control
1690 	 * block.  We set the 'ring disabled' bit in the
1691 	 * flags field until we're actually ready to start
1692 	 * using this ring (i.e. once we set the MTU
1693 	 * high enough to require it).
1694 	 */
1695 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1696 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1697 		/* Get the jumbo receive producer ring RCB parameters. */
1698 		rcb->bge_hostaddr.bge_addr_lo =
1699 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1700 		rcb->bge_hostaddr.bge_addr_hi =
1701 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1702 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1703 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1704 		    BUS_DMASYNC_PREREAD);
1705 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1706 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1707 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
1708 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
1709 		else
1710 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1711 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1712 		    rcb->bge_hostaddr.bge_addr_hi);
1713 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1714 		    rcb->bge_hostaddr.bge_addr_lo);
1715 		/* Program the jumbo receive producer ring RCB parameters. */
1716 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1717 		    rcb->bge_maxlen_flags);
1718 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1719 		/* Reset the jumbo receive producer ring producer index. */
1720 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1721 	}
1722 
1723 	/* Disable the mini receive producer ring RCB. */
1724 	if (BGE_IS_5700_FAMILY(sc)) {
1725 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1726 		rcb->bge_maxlen_flags =
1727 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1728 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1729 		    rcb->bge_maxlen_flags);
1730 		/* Reset the mini receive producer ring producer index. */
1731 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1732 	}
1733 
1734 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1735 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1736 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1737 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1738 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
1739 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1740 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1741 	}
1742 	/*
1743 	 * The BD ring replenish thresholds control how often the
1744 	 * hardware fetches new BD's from the producer rings in host
1745 	 * memory.  Setting the value too low on a busy system can
1746 	 * starve the hardware and recue the throughpout.
1747 	 *
1748 	 * Set the BD ring replentish thresholds. The recommended
1749 	 * values are 1/8th the number of descriptors allocated to
1750 	 * each ring.
1751 	 * XXX The 5754 requires a lower threshold, so it might be a
1752 	 * requirement of all 575x family chips.  The Linux driver sets
1753 	 * the lower threshold for all 5705 family chips as well, but there
1754 	 * are reports that it might not need to be so strict.
1755 	 *
1756 	 * XXX Linux does some extra fiddling here for the 5906 parts as
1757 	 * well.
1758 	 */
1759 	if (BGE_IS_5705_PLUS(sc))
1760 		val = 8;
1761 	else
1762 		val = BGE_STD_RX_RING_CNT / 8;
1763 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1764 	if (BGE_IS_JUMBO_CAPABLE(sc))
1765 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1766 		    BGE_JUMBO_RX_RING_CNT/8);
1767 	if (BGE_IS_5717_PLUS(sc)) {
1768 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
1769 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
1770 	}
1771 
1772 	/*
1773 	 * Disable all send rings by setting the 'ring disabled' bit
1774 	 * in the flags field of all the TX send ring control blocks,
1775 	 * located in NIC memory.
1776 	 */
1777 	if (!BGE_IS_5705_PLUS(sc))
1778 		/* 5700 to 5704 had 16 send rings. */
1779 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1780 	else
1781 		limit = 1;
1782 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1783 	for (i = 0; i < limit; i++) {
1784 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1785 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1786 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1787 		vrcb += sizeof(struct bge_rcb);
1788 	}
1789 
1790 	/* Configure send ring RCB 0 (we use only the first ring) */
1791 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1792 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1793 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1794 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1795 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
1796 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
1797 	else
1798 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1799 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1800 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1801 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1802 
1803 	/*
1804 	 * Disable all receive return rings by setting the
1805 	 * 'ring diabled' bit in the flags field of all the receive
1806 	 * return ring control blocks, located in NIC memory.
1807 	 */
1808 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717) {
1809 		/* Should be 17, use 16 until we get an SRAM map. */
1810 		limit = 16;
1811 	} else if (!BGE_IS_5705_PLUS(sc))
1812 		limit = BGE_RX_RINGS_MAX;
1813 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1814 		limit = 4;
1815 	else
1816 		limit = 1;
1817 	/* Disable all receive return rings. */
1818 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1819 	for (i = 0; i < limit; i++) {
1820 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1821 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1822 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1823 		    BGE_RCB_FLAG_RING_DISABLED);
1824 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1825 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1826 		    (i * (sizeof(uint64_t))), 0);
1827 		vrcb += sizeof(struct bge_rcb);
1828 	}
1829 
1830 	/*
1831 	 * Set up receive return ring 0.  Note that the NIC address
1832 	 * for RX return rings is 0x0.  The return rings live entirely
1833 	 * within the host, so the nicaddr field in the RCB isn't used.
1834 	 */
1835 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1836 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1837 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1838 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1839 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1840 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1841 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1842 
1843 	/* Set random backoff seed for TX */
1844 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1845 	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1846 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1847 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1848 	    BGE_TX_BACKOFF_SEED_MASK);
1849 
1850 	/* Set inter-packet gap */
1851 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1852 
1853 	/*
1854 	 * Specify which ring to use for packets that don't match
1855 	 * any RX rules.
1856 	 */
1857 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1858 
1859 	/*
1860 	 * Configure number of RX lists. One interrupt distribution
1861 	 * list, sixteen active lists, one bad frames class.
1862 	 */
1863 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1864 
1865 	/* Inialize RX list placement stats mask. */
1866 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1867 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1868 
1869 	/* Disable host coalescing until we get it set up */
1870 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1871 
1872 	/* Poll to make sure it's shut down. */
1873 	for (i = 0; i < BGE_TIMEOUT; i++) {
1874 		DELAY(10);
1875 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1876 			break;
1877 	}
1878 
1879 	if (i == BGE_TIMEOUT) {
1880 		device_printf(sc->bge_dev,
1881 		    "host coalescing engine failed to idle\n");
1882 		return (ENXIO);
1883 	}
1884 
1885 	/* Set up host coalescing defaults */
1886 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1887 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1888 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1889 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1890 	if (!(BGE_IS_5705_PLUS(sc))) {
1891 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1892 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1893 	}
1894 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1895 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1896 
1897 	/* Set up address of statistics block */
1898 	if (!(BGE_IS_5705_PLUS(sc))) {
1899 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1900 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1901 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1902 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1903 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1904 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1905 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1906 	}
1907 
1908 	/* Set up address of status block */
1909 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1910 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1911 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1912 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1913 
1914 	/* Set up status block size. */
1915 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1916 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1917 		val = BGE_STATBLKSZ_FULL;
1918 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1919 	} else {
1920 		val = BGE_STATBLKSZ_32BYTE;
1921 		bzero(sc->bge_ldata.bge_status_block, 32);
1922 	}
1923 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
1924 	    sc->bge_cdata.bge_status_map,
1925 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1926 
1927 	/* Turn on host coalescing state machine */
1928 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1929 
1930 	/* Turn on RX BD completion state machine and enable attentions */
1931 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1932 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
1933 
1934 	/* Turn on RX list placement state machine */
1935 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1936 
1937 	/* Turn on RX list selector state machine. */
1938 	if (!(BGE_IS_5705_PLUS(sc)))
1939 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1940 
1941 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1942 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1943 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1944 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1945 
1946 	if (sc->bge_flags & BGE_FLAG_TBI)
1947 		val |= BGE_PORTMODE_TBI;
1948 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1949 		val |= BGE_PORTMODE_GMII;
1950 	else
1951 		val |= BGE_PORTMODE_MII;
1952 
1953 	/* Turn on DMA, clear stats */
1954 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1955 
1956 	/* Set misc. local control, enable interrupts on attentions */
1957 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1958 
1959 #ifdef notdef
1960 	/* Assert GPIO pins for PHY reset */
1961 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
1962 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
1963 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
1964 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
1965 #endif
1966 
1967 	/* Turn on DMA completion state machine */
1968 	if (!(BGE_IS_5705_PLUS(sc)))
1969 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1970 
1971 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
1972 
1973 	/* Enable host coalescing bug fix. */
1974 	if (BGE_IS_5755_PLUS(sc))
1975 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1976 
1977 	/* Request larger DMA burst size to get better performance. */
1978 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
1979 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
1980 
1981 	/* Turn on write DMA state machine */
1982 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1983 	DELAY(40);
1984 
1985 	/* Turn on read DMA state machine */
1986 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1987 
1988 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
1989 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
1990 
1991 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1992 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1993 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
1994 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1995 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1996 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1997 	if (sc->bge_flags & BGE_FLAG_PCIE)
1998 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1999 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2000 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2001 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2002 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2003 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2004 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2005 	}
2006 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2007 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2008 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2009 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2010 	    BGE_IS_5717_PLUS(sc)) {
2011 		/*
2012 		 * Enable fix for read DMA FIFO overruns.
2013 		 * The fix is to limit the number of RX BDs
2014 		 * the hardware would fetch at a fime.
2015 		 */
2016 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
2017 		    CSR_READ_4(sc, BGE_RDMA_RSRVCTRL) |
2018 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2019 	}
2020 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2021 	DELAY(40);
2022 
2023 	/* Turn on RX data completion state machine */
2024 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2025 
2026 	/* Turn on RX BD initiator state machine */
2027 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2028 
2029 	/* Turn on RX data and RX BD initiator state machine */
2030 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2031 
2032 	/* Turn on Mbuf cluster free state machine */
2033 	if (!(BGE_IS_5705_PLUS(sc)))
2034 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2035 
2036 	/* Turn on send BD completion state machine */
2037 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2038 
2039 	/* Turn on send data completion state machine */
2040 	val = BGE_SDCMODE_ENABLE;
2041 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2042 		val |= BGE_SDCMODE_CDELAY;
2043 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2044 
2045 	/* Turn on send data initiator state machine */
2046 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2047 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2048 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2049 	else
2050 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2051 
2052 	/* Turn on send BD initiator state machine */
2053 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2054 
2055 	/* Turn on send BD selector state machine */
2056 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2057 
2058 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2059 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2060 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2061 
2062 	/* ack/clear link change events */
2063 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2064 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2065 	    BGE_MACSTAT_LINK_CHANGED);
2066 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2067 
2068 	/*
2069 	 * Enable attention when the link has changed state for
2070 	 * devices that use auto polling.
2071 	 */
2072 	if (sc->bge_flags & BGE_FLAG_TBI) {
2073 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2074 	} else {
2075 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2076 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2077 			DELAY(80);
2078 		}
2079 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2080 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2081 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2082 			    BGE_EVTENB_MI_INTERRUPT);
2083 	}
2084 
2085 	/*
2086 	 * Clear any pending link state attention.
2087 	 * Otherwise some link state change events may be lost until attention
2088 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2089 	 * It's not necessary on newer BCM chips - perhaps enabling link
2090 	 * state change attentions implies clearing pending attention.
2091 	 */
2092 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2093 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2094 	    BGE_MACSTAT_LINK_CHANGED);
2095 
2096 	/* Enable link state change attentions. */
2097 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2098 
2099 	return (0);
2100 }
2101 
2102 const struct bge_revision *
2103 bge_lookup_rev(uint32_t chipid)
2104 {
2105 	const struct bge_revision *br;
2106 
2107 	for (br = bge_revisions; br->br_name != NULL; br++) {
2108 		if (br->br_chipid == chipid)
2109 			return (br);
2110 	}
2111 
2112 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2113 		if (br->br_chipid == BGE_ASICREV(chipid))
2114 			return (br);
2115 	}
2116 
2117 	return (NULL);
2118 }
2119 
2120 const struct bge_vendor *
2121 bge_lookup_vendor(uint16_t vid)
2122 {
2123 	const struct bge_vendor *v;
2124 
2125 	for (v = bge_vendors; v->v_name != NULL; v++)
2126 		if (v->v_id == vid)
2127 			return (v);
2128 
2129 	panic("%s: unknown vendor %d", __func__, vid);
2130 	return (NULL);
2131 }
2132 
2133 /*
2134  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2135  * against our list and return its name if we find a match.
2136  *
2137  * Note that since the Broadcom controller contains VPD support, we
2138  * try to get the device name string from the controller itself instead
2139  * of the compiled-in string. It guarantees we'll always announce the
2140  * right product name. We fall back to the compiled-in string when
2141  * VPD is unavailable or corrupt.
2142  */
2143 static int
2144 bge_probe(device_t dev)
2145 {
2146 	char buf[96];
2147 	char model[64];
2148 	const struct bge_revision *br;
2149 	const char *pname;
2150 	struct bge_softc *sc = device_get_softc(dev);
2151 	const struct bge_type *t = bge_devs;
2152 	const struct bge_vendor *v;
2153 	uint32_t id;
2154 	uint16_t did, vid;
2155 
2156 	sc->bge_dev = dev;
2157 	vid = pci_get_vendor(dev);
2158 	did = pci_get_device(dev);
2159 	while(t->bge_vid != 0) {
2160 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2161 			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2162 			    BGE_PCIMISCCTL_ASICREV_SHIFT;
2163 			if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2164 				/*
2165 				 * Find the ASCI revision.  Different chips
2166 				 * use different registers.
2167 				 */
2168 				switch (pci_get_device(dev)) {
2169 				case BCOM_DEVICEID_BCM5717:
2170 				case BCOM_DEVICEID_BCM5718:
2171 					id = pci_read_config(dev,
2172 					    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2173 					break;
2174 				default:
2175 					id = pci_read_config(dev,
2176 					    BGE_PCI_PRODID_ASICREV, 4);
2177 				}
2178 			}
2179 			br = bge_lookup_rev(id);
2180 			v = bge_lookup_vendor(vid);
2181 			if (bge_has_eaddr(sc) &&
2182 			    pci_get_vpd_ident(dev, &pname) == 0)
2183 				snprintf(model, 64, "%s", pname);
2184 			else
2185 				snprintf(model, 64, "%s %s", v->v_name,
2186 				    br != NULL ? br->br_name :
2187 				    "NetXtreme Ethernet Controller");
2188 			snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
2189 			    br != NULL ? "" : "unknown ", id);
2190 			device_set_desc_copy(dev, buf);
2191 			return (0);
2192 		}
2193 		t++;
2194 	}
2195 
2196 	return (ENXIO);
2197 }
2198 
2199 static void
2200 bge_dma_free(struct bge_softc *sc)
2201 {
2202 	int i;
2203 
2204 	/* Destroy DMA maps for RX buffers. */
2205 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2206 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2207 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2208 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2209 	}
2210 	if (sc->bge_cdata.bge_rx_std_sparemap)
2211 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2212 		    sc->bge_cdata.bge_rx_std_sparemap);
2213 
2214 	/* Destroy DMA maps for jumbo RX buffers. */
2215 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2216 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2217 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2218 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2219 	}
2220 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2221 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2222 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2223 
2224 	/* Destroy DMA maps for TX buffers. */
2225 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2226 		if (sc->bge_cdata.bge_tx_dmamap[i])
2227 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2228 			    sc->bge_cdata.bge_tx_dmamap[i]);
2229 	}
2230 
2231 	if (sc->bge_cdata.bge_rx_mtag)
2232 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2233 	if (sc->bge_cdata.bge_tx_mtag)
2234 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2235 
2236 
2237 	/* Destroy standard RX ring. */
2238 	if (sc->bge_cdata.bge_rx_std_ring_map)
2239 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2240 		    sc->bge_cdata.bge_rx_std_ring_map);
2241 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2242 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2243 		    sc->bge_ldata.bge_rx_std_ring,
2244 		    sc->bge_cdata.bge_rx_std_ring_map);
2245 
2246 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2247 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2248 
2249 	/* Destroy jumbo RX ring. */
2250 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2251 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2252 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2253 
2254 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2255 	    sc->bge_ldata.bge_rx_jumbo_ring)
2256 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2257 		    sc->bge_ldata.bge_rx_jumbo_ring,
2258 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2259 
2260 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2261 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2262 
2263 	/* Destroy RX return ring. */
2264 	if (sc->bge_cdata.bge_rx_return_ring_map)
2265 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2266 		    sc->bge_cdata.bge_rx_return_ring_map);
2267 
2268 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2269 	    sc->bge_ldata.bge_rx_return_ring)
2270 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2271 		    sc->bge_ldata.bge_rx_return_ring,
2272 		    sc->bge_cdata.bge_rx_return_ring_map);
2273 
2274 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2275 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2276 
2277 	/* Destroy TX ring. */
2278 	if (sc->bge_cdata.bge_tx_ring_map)
2279 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2280 		    sc->bge_cdata.bge_tx_ring_map);
2281 
2282 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2283 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2284 		    sc->bge_ldata.bge_tx_ring,
2285 		    sc->bge_cdata.bge_tx_ring_map);
2286 
2287 	if (sc->bge_cdata.bge_tx_ring_tag)
2288 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2289 
2290 	/* Destroy status block. */
2291 	if (sc->bge_cdata.bge_status_map)
2292 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2293 		    sc->bge_cdata.bge_status_map);
2294 
2295 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2296 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2297 		    sc->bge_ldata.bge_status_block,
2298 		    sc->bge_cdata.bge_status_map);
2299 
2300 	if (sc->bge_cdata.bge_status_tag)
2301 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2302 
2303 	/* Destroy statistics block. */
2304 	if (sc->bge_cdata.bge_stats_map)
2305 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2306 		    sc->bge_cdata.bge_stats_map);
2307 
2308 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2309 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2310 		    sc->bge_ldata.bge_stats,
2311 		    sc->bge_cdata.bge_stats_map);
2312 
2313 	if (sc->bge_cdata.bge_stats_tag)
2314 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2315 
2316 	if (sc->bge_cdata.bge_buffer_tag)
2317 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2318 
2319 	/* Destroy the parent tag. */
2320 	if (sc->bge_cdata.bge_parent_tag)
2321 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2322 }
2323 
2324 static int
2325 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2326     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2327     bus_addr_t *paddr, const char *msg)
2328 {
2329 	struct bge_dmamap_arg ctx;
2330 	bus_addr_t lowaddr;
2331 	bus_size_t ring_end;
2332 	int error;
2333 
2334 	lowaddr = BUS_SPACE_MAXADDR;
2335 again:
2336 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2337 	    alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2338 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2339 	if (error != 0) {
2340 		device_printf(sc->bge_dev,
2341 		    "could not create %s dma tag\n", msg);
2342 		return (ENOMEM);
2343 	}
2344 	/* Allocate DMA'able memory for ring. */
2345 	error = bus_dmamem_alloc(*tag, (void **)ring,
2346 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2347 	if (error != 0) {
2348 		device_printf(sc->bge_dev,
2349 		    "could not allocate DMA'able memory for %s\n", msg);
2350 		return (ENOMEM);
2351 	}
2352 	/* Load the address of the ring. */
2353 	ctx.bge_busaddr = 0;
2354 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2355 	    &ctx, BUS_DMA_NOWAIT);
2356 	if (error != 0) {
2357 		device_printf(sc->bge_dev,
2358 		    "could not load DMA'able memory for %s\n", msg);
2359 		return (ENOMEM);
2360 	}
2361 	*paddr = ctx.bge_busaddr;
2362 	ring_end = *paddr + maxsize;
2363 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 &&
2364 	    BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) {
2365 		/*
2366 		 * 4GB boundary crossed.  Limit maximum allowable DMA
2367 		 * address space to 32bit and try again.
2368 		 */
2369 		bus_dmamap_unload(*tag, *map);
2370 		bus_dmamem_free(*tag, *ring, *map);
2371 		bus_dma_tag_destroy(*tag);
2372 		if (bootverbose)
2373 			device_printf(sc->bge_dev, "4GB boundary crossed, "
2374 			    "limit DMA address space to 32bit for %s\n", msg);
2375 		*ring = NULL;
2376 		*tag = NULL;
2377 		*map = NULL;
2378 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
2379 		goto again;
2380 	}
2381 	return (0);
2382 }
2383 
2384 static int
2385 bge_dma_alloc(struct bge_softc *sc)
2386 {
2387 	bus_addr_t lowaddr;
2388 	bus_size_t boundary, sbsz, txsegsz, txmaxsegsz;
2389 	int i, error;
2390 
2391 	lowaddr = BUS_SPACE_MAXADDR;
2392 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2393 		lowaddr = BGE_DMA_MAXADDR;
2394 	/*
2395 	 * Allocate the parent bus DMA tag appropriate for PCI.
2396 	 */
2397 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2398 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2399 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2400 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2401 	if (error != 0) {
2402 		device_printf(sc->bge_dev,
2403 		    "could not allocate parent dma tag\n");
2404 		return (ENOMEM);
2405 	}
2406 
2407 	/* Create tag for standard RX ring. */
2408 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2409 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2410 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2411 	    &sc->bge_cdata.bge_rx_std_ring_map,
2412 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2413 	if (error)
2414 		return (error);
2415 
2416 	/* Create tag for RX return ring. */
2417 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2418 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2419 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2420 	    &sc->bge_cdata.bge_rx_return_ring_map,
2421 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2422 	if (error)
2423 		return (error);
2424 
2425 	/* Create tag for TX ring. */
2426 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2427 	    &sc->bge_cdata.bge_tx_ring_tag,
2428 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2429 	    &sc->bge_cdata.bge_tx_ring_map,
2430 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2431 	if (error)
2432 		return (error);
2433 
2434 	/*
2435 	 * Create tag for status block.
2436 	 * Because we only use single Tx/Rx/Rx return ring, use
2437 	 * minimum status block size except BCM5700 AX/BX which
2438 	 * seems to want to see full status block size regardless
2439 	 * of configured number of ring.
2440 	 */
2441 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2442 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2443 		sbsz = BGE_STATUS_BLK_SZ;
2444 	else
2445 		sbsz = 32;
2446 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2447 	    &sc->bge_cdata.bge_status_tag,
2448 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
2449 	    &sc->bge_cdata.bge_status_map,
2450 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
2451 	if (error)
2452 		return (error);
2453 
2454 	/* Create tag for statistics block. */
2455 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
2456 	    &sc->bge_cdata.bge_stats_tag,
2457 	    (uint8_t **)&sc->bge_ldata.bge_stats,
2458 	    &sc->bge_cdata.bge_stats_map,
2459 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
2460 	if (error)
2461 		return (error);
2462 
2463 	/* Create tag for jumbo RX ring. */
2464 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2465 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
2466 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
2467 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
2468 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
2469 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
2470 		if (error)
2471 			return (error);
2472 	}
2473 
2474 	/* Create parent tag for buffers. */
2475 	boundary = 0;
2476 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
2477 		boundary = BGE_DMA_BNDRY;
2478 		/*
2479 		 * XXX
2480 		 * watchdog timeout issue was observed on BCM5704 which
2481 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
2482 		 * Limiting DMA address space to 32bits seems to address
2483 		 * it.
2484 		 */
2485 		if (sc->bge_flags & BGE_FLAG_PCIX)
2486 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
2487 	}
2488 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2489 	    1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL,
2490 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2491 	    0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag);
2492 	if (error != 0) {
2493 		device_printf(sc->bge_dev,
2494 		    "could not allocate buffer dma tag\n");
2495 		return (ENOMEM);
2496 	}
2497 	/* Create tag for Tx mbufs. */
2498 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2499 		txsegsz = BGE_TSOSEG_SZ;
2500 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2501 	} else {
2502 		txsegsz = MCLBYTES;
2503 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2504 	}
2505 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
2506 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2507 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2508 	    &sc->bge_cdata.bge_tx_mtag);
2509 
2510 	if (error) {
2511 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2512 		return (ENOMEM);
2513 	}
2514 
2515 	/* Create tag for Rx mbufs. */
2516 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
2517 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
2518 	    MCLBYTES, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2519 
2520 	if (error) {
2521 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2522 		return (ENOMEM);
2523 	}
2524 
2525 	/* Create DMA maps for RX buffers. */
2526 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2527 	    &sc->bge_cdata.bge_rx_std_sparemap);
2528 	if (error) {
2529 		device_printf(sc->bge_dev,
2530 		    "can't create spare DMA map for RX\n");
2531 		return (ENOMEM);
2532 	}
2533 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2534 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2535 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
2536 		if (error) {
2537 			device_printf(sc->bge_dev,
2538 			    "can't create DMA map for RX\n");
2539 			return (ENOMEM);
2540 		}
2541 	}
2542 
2543 	/* Create DMA maps for TX buffers. */
2544 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2545 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2546 			    &sc->bge_cdata.bge_tx_dmamap[i]);
2547 		if (error) {
2548 			device_printf(sc->bge_dev,
2549 			    "can't create DMA map for TX\n");
2550 			return (ENOMEM);
2551 		}
2552 	}
2553 
2554 	/* Create tags for jumbo RX buffers. */
2555 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2556 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
2557 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2558 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2559 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2560 		if (error) {
2561 			device_printf(sc->bge_dev,
2562 			    "could not allocate jumbo dma tag\n");
2563 			return (ENOMEM);
2564 		}
2565 		/* Create DMA maps for jumbo RX buffers. */
2566 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2567 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2568 		if (error) {
2569 			device_printf(sc->bge_dev,
2570 			    "can't create spare DMA map for jumbo RX\n");
2571 			return (ENOMEM);
2572 		}
2573 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2574 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2575 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2576 			if (error) {
2577 				device_printf(sc->bge_dev,
2578 				    "can't create DMA map for jumbo RX\n");
2579 				return (ENOMEM);
2580 			}
2581 		}
2582 	}
2583 
2584 	return (0);
2585 }
2586 
2587 /*
2588  * Return true if this device has more than one port.
2589  */
2590 static int
2591 bge_has_multiple_ports(struct bge_softc *sc)
2592 {
2593 	device_t dev = sc->bge_dev;
2594 	u_int b, d, f, fscan, s;
2595 
2596 	d = pci_get_domain(dev);
2597 	b = pci_get_bus(dev);
2598 	s = pci_get_slot(dev);
2599 	f = pci_get_function(dev);
2600 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2601 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2602 			return (1);
2603 	return (0);
2604 }
2605 
2606 /*
2607  * Return true if MSI can be used with this device.
2608  */
2609 static int
2610 bge_can_use_msi(struct bge_softc *sc)
2611 {
2612 	int can_use_msi = 0;
2613 
2614 	/* Disable MSI for polling(4). */
2615 #ifdef DEVICE_POLLING
2616 	return (0);
2617 #endif
2618 	switch (sc->bge_asicrev) {
2619 	case BGE_ASICREV_BCM5714_A0:
2620 	case BGE_ASICREV_BCM5714:
2621 		/*
2622 		 * Apparently, MSI doesn't work when these chips are
2623 		 * configured in single-port mode.
2624 		 */
2625 		if (bge_has_multiple_ports(sc))
2626 			can_use_msi = 1;
2627 		break;
2628 	case BGE_ASICREV_BCM5750:
2629 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2630 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2631 			can_use_msi = 1;
2632 		break;
2633 	default:
2634 		if (BGE_IS_575X_PLUS(sc))
2635 			can_use_msi = 1;
2636 	}
2637 	return (can_use_msi);
2638 }
2639 
2640 static int
2641 bge_attach(device_t dev)
2642 {
2643 	struct ifnet *ifp;
2644 	struct bge_softc *sc;
2645 	uint32_t hwcfg = 0, misccfg;
2646 	u_char eaddr[ETHER_ADDR_LEN];
2647 	int capmask, error, f, msicount, phy_addr, reg, rid, trys;
2648 
2649 	sc = device_get_softc(dev);
2650 	sc->bge_dev = dev;
2651 
2652 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2653 
2654 	/*
2655 	 * Map control/status registers.
2656 	 */
2657 	pci_enable_busmaster(dev);
2658 
2659 	rid = PCIR_BAR(0);
2660 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2661 	    RF_ACTIVE);
2662 
2663 	if (sc->bge_res == NULL) {
2664 		device_printf (sc->bge_dev, "couldn't map memory\n");
2665 		error = ENXIO;
2666 		goto fail;
2667 	}
2668 
2669 	/* Save various chip information. */
2670 	sc->bge_chipid =
2671 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2672 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2673 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2674 		/*
2675 		 * Find the ASCI revision.  Different chips use different
2676 		 * registers.
2677 		 */
2678 		switch (pci_get_device(dev)) {
2679 		case BCOM_DEVICEID_BCM5717:
2680 		case BCOM_DEVICEID_BCM5718:
2681 			sc->bge_chipid = pci_read_config(dev,
2682 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2683 			break;
2684 		default:
2685 			sc->bge_chipid = pci_read_config(dev,
2686 			    BGE_PCI_PRODID_ASICREV, 4);
2687 		}
2688 	}
2689 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2690 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2691 
2692 	/* Set default PHY address. */
2693 	phy_addr = 1;
2694 	 /*
2695 	  * PHY address mapping for various devices.
2696 	  *
2697 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2698 	  * ---------+-------+-------+-------+-------+
2699 	  * BCM57XX  |   1   |   X   |   X   |   X   |
2700 	  * BCM5704  |   1   |   X   |   1   |   X   |
2701 	  * BCM5717  |   1   |   8   |   2   |   9   |
2702 	  *
2703 	  * Other addresses may respond but they are not
2704 	  * IEEE compliant PHYs and should be ignored.
2705 	  */
2706 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717) {
2707 		f = pci_get_function(dev);
2708 		if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2709 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
2710 			    BGE_SGDIGSTS_IS_SERDES)
2711 				phy_addr = f + 8;
2712 			else
2713 				phy_addr = f + 1;
2714 		} else if (sc->bge_chipid == BGE_CHIPID_BCM5717_B0) {
2715 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2716 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
2717 				phy_addr = f + 8;
2718 			else
2719 				phy_addr = f + 1;
2720 		}
2721 	}
2722 
2723 	/*
2724 	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2725 	 * 5705 A0 and A1 chips.
2726 	 */
2727 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2728 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2729 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2730 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1 &&
2731 	    !BGE_IS_5717_PLUS(sc))
2732 		sc->bge_phy_flags |= BGE_PHY_WIRESPEED;
2733 
2734 	if (bge_has_eaddr(sc))
2735 		sc->bge_flags |= BGE_FLAG_EADDR;
2736 
2737 	/* Save chipset family. */
2738 	switch (sc->bge_asicrev) {
2739 	case BGE_ASICREV_BCM5717:
2740 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
2741 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
2742 		    BGE_FLAG_SHORT_DMA_BUG | BGE_FLAG_JUMBO_FRAME;
2743 		break;
2744 	case BGE_ASICREV_BCM5755:
2745 	case BGE_ASICREV_BCM5761:
2746 	case BGE_ASICREV_BCM5784:
2747 	case BGE_ASICREV_BCM5785:
2748 	case BGE_ASICREV_BCM5787:
2749 	case BGE_ASICREV_BCM57780:
2750 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2751 		    BGE_FLAG_5705_PLUS;
2752 		break;
2753 	case BGE_ASICREV_BCM5700:
2754 	case BGE_ASICREV_BCM5701:
2755 	case BGE_ASICREV_BCM5703:
2756 	case BGE_ASICREV_BCM5704:
2757 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2758 		break;
2759 	case BGE_ASICREV_BCM5714_A0:
2760 	case BGE_ASICREV_BCM5780:
2761 	case BGE_ASICREV_BCM5714:
2762 		sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */;
2763 		/* FALLTHROUGH */
2764 	case BGE_ASICREV_BCM5750:
2765 	case BGE_ASICREV_BCM5752:
2766 	case BGE_ASICREV_BCM5906:
2767 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2768 		if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2769 			sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
2770 		/* FALLTHROUGH */
2771 	case BGE_ASICREV_BCM5705:
2772 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2773 		break;
2774 	}
2775 
2776 	/* Set various PHY bug flags. */
2777 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2778 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2779 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
2780 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2781 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2782 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
2783 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2784 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
2785 	if (pci_get_subvendor(dev) == DELL_VENDORID)
2786 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
2787 	if ((BGE_IS_5705_PLUS(sc)) &&
2788 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2789 	    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
2790 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2791 	    sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2792 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2793 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2794 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2795 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2796 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
2797 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
2798 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
2799 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
2800 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
2801 		} else
2802 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
2803 	}
2804 
2805 	/* Identify the chips that use an CPMU. */
2806 	if (BGE_IS_5717_PLUS(sc) ||
2807 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2808 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2809 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2810 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2811 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
2812 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
2813 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2814 	else
2815 		sc->bge_mi_mode = BGE_MIMODE_BASE;
2816 	/* Enable auto polling for BCM570[0-5]. */
2817 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
2818 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2819 
2820 	/*
2821 	 * All controllers that are not 5755 or higher have 4GB
2822 	 * boundary DMA bug.
2823 	 * Whenever an address crosses a multiple of the 4GB boundary
2824 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
2825 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
2826 	 * state machine will lockup and cause the device to hang.
2827 	 */
2828 	if (BGE_IS_5755_PLUS(sc) == 0)
2829 		sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
2830 
2831 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID;
2832 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2833 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2834 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
2835 			sc->bge_flags |= BGE_FLAG_5788;
2836 	}
2837 
2838 	capmask = BMSR_DEFCAPMASK;
2839 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2840 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
2841 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2842 	    pci_get_vendor(dev) == BCOM_VENDORID &&
2843 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
2844 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
2845 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
2846 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
2847 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
2848 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
2849 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
2850 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
2851 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2852 		/* These chips are 10/100 only. */
2853 		capmask &= ~BMSR_EXTSTAT;
2854 	}
2855 
2856 	/*
2857 	 * Some controllers seem to require a special firmware to use
2858 	 * TSO. But the firmware is not available to FreeBSD and Linux
2859 	 * claims that the TSO performed by the firmware is slower than
2860 	 * hardware based TSO. Moreover the firmware based TSO has one
2861 	 * known bug which can't handle TSO if ethernet header + IP/TCP
2862 	 * header is greater than 80 bytes. The workaround for the TSO
2863 	 * bug exist but it seems it's too expensive than not using
2864 	 * TSO at all. Some hardwares also have the TSO bug so limit
2865 	 * the TSO to the controllers that are not affected TSO issues
2866 	 * (e.g. 5755 or higher).
2867 	 */
2868 	if (BGE_IS_5717_PLUS(sc)) {
2869 		/* BCM5717 requires different TSO configuration. */
2870 		sc->bge_flags |= BGE_FLAG_TSO3;
2871 	} else if (BGE_IS_5755_PLUS(sc)) {
2872 		/*
2873 		 * BCM5754 and BCM5787 shares the same ASIC id so
2874 		 * explicit device id check is required.
2875 		 * Due to unknown reason TSO does not work on BCM5755M.
2876 		 */
2877 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
2878 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
2879 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
2880 			sc->bge_flags |= BGE_FLAG_TSO;
2881 	}
2882 
2883   	/*
2884 	 * Check if this is a PCI-X or PCI Express device.
2885   	 */
2886 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
2887 		/*
2888 		 * Found a PCI Express capabilities register, this
2889 		 * must be a PCI Express device.
2890 		 */
2891 		sc->bge_flags |= BGE_FLAG_PCIE;
2892 		sc->bge_expcap = reg;
2893 		if (pci_get_max_read_req(dev) != 4096)
2894 			pci_set_max_read_req(dev, 4096);
2895 	} else {
2896 		/*
2897 		 * Check if the device is in PCI-X Mode.
2898 		 * (This bit is not valid on PCI Express controllers.)
2899 		 */
2900 		if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0)
2901 			sc->bge_pcixcap = reg;
2902 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
2903 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
2904 			sc->bge_flags |= BGE_FLAG_PCIX;
2905 	}
2906 
2907 	/*
2908 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2909 	 * not actually a MAC controller bug but an issue with the embedded
2910 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2911 	 */
2912 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
2913 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
2914 	/*
2915 	 * Allocate the interrupt, using MSI if possible.  These devices
2916 	 * support 8 MSI messages, but only the first one is used in
2917 	 * normal operation.
2918 	 */
2919 	rid = 0;
2920 	if (pci_find_extcap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
2921 		sc->bge_msicap = reg;
2922 		if (bge_can_use_msi(sc)) {
2923 			msicount = pci_msi_count(dev);
2924 			if (msicount > 1)
2925 				msicount = 1;
2926 		} else
2927 			msicount = 0;
2928 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
2929 			rid = 1;
2930 			sc->bge_flags |= BGE_FLAG_MSI;
2931 		}
2932 	}
2933 
2934 	/*
2935 	 * All controllers except BCM5700 supports tagged status but
2936 	 * we use tagged status only for MSI case on BCM5717. Otherwise
2937 	 * MSI on BCM5717 does not work.
2938 	 */
2939 #ifndef DEVICE_POLLING
2940 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
2941 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
2942 #endif
2943 
2944 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2945 	    RF_SHAREABLE | RF_ACTIVE);
2946 
2947 	if (sc->bge_irq == NULL) {
2948 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
2949 		error = ENXIO;
2950 		goto fail;
2951 	}
2952 
2953 	device_printf(dev,
2954 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2955 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2956 	    (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" :
2957 	    ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI"));
2958 
2959 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
2960 
2961 	/* Try to reset the chip. */
2962 	if (bge_reset(sc)) {
2963 		device_printf(sc->bge_dev, "chip reset failed\n");
2964 		error = ENXIO;
2965 		goto fail;
2966 	}
2967 
2968 	sc->bge_asf_mode = 0;
2969 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2970 	    == BGE_MAGIC_NUMBER)) {
2971 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2972 		    & BGE_HWCFG_ASF) {
2973 			sc->bge_asf_mode |= ASF_ENABLE;
2974 			sc->bge_asf_mode |= ASF_STACKUP;
2975 			if (BGE_IS_575X_PLUS(sc))
2976 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2977 		}
2978 	}
2979 
2980 	/* Try to reset the chip again the nice way. */
2981 	bge_stop_fw(sc);
2982 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
2983 	if (bge_reset(sc)) {
2984 		device_printf(sc->bge_dev, "chip reset failed\n");
2985 		error = ENXIO;
2986 		goto fail;
2987 	}
2988 
2989 	bge_sig_legacy(sc, BGE_RESET_STOP);
2990 	bge_sig_post_reset(sc, BGE_RESET_STOP);
2991 
2992 	if (bge_chipinit(sc)) {
2993 		device_printf(sc->bge_dev, "chip initialization failed\n");
2994 		error = ENXIO;
2995 		goto fail;
2996 	}
2997 
2998 	error = bge_get_eaddr(sc, eaddr);
2999 	if (error) {
3000 		device_printf(sc->bge_dev,
3001 		    "failed to read station address\n");
3002 		error = ENXIO;
3003 		goto fail;
3004 	}
3005 
3006 	/* 5705 limits RX return ring to 512 entries. */
3007 	if (BGE_IS_5717_PLUS(sc))
3008 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3009 	else if (BGE_IS_5705_PLUS(sc))
3010 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3011 	else
3012 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3013 
3014 	if (bge_dma_alloc(sc)) {
3015 		device_printf(sc->bge_dev,
3016 		    "failed to allocate DMA resources\n");
3017 		error = ENXIO;
3018 		goto fail;
3019 	}
3020 
3021 	bge_add_sysctls(sc);
3022 
3023 	/* Set default tuneable values. */
3024 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3025 	sc->bge_rx_coal_ticks = 150;
3026 	sc->bge_tx_coal_ticks = 150;
3027 	sc->bge_rx_max_coal_bds = 10;
3028 	sc->bge_tx_max_coal_bds = 10;
3029 
3030 	/* Initialize checksum features to use. */
3031 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3032 	if (sc->bge_forced_udpcsum != 0)
3033 		sc->bge_csum_features |= CSUM_UDP;
3034 
3035 	/* Set up ifnet structure */
3036 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3037 	if (ifp == NULL) {
3038 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3039 		error = ENXIO;
3040 		goto fail;
3041 	}
3042 	ifp->if_softc = sc;
3043 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3044 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3045 	ifp->if_ioctl = bge_ioctl;
3046 	ifp->if_start = bge_start;
3047 	ifp->if_init = bge_init;
3048 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3049 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3050 	IFQ_SET_READY(&ifp->if_snd);
3051 	ifp->if_hwassist = sc->bge_csum_features;
3052 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3053 	    IFCAP_VLAN_MTU;
3054 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3055 		ifp->if_hwassist |= CSUM_TSO;
3056 		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3057 	}
3058 #ifdef IFCAP_VLAN_HWCSUM
3059 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3060 #endif
3061 	ifp->if_capenable = ifp->if_capabilities;
3062 #ifdef DEVICE_POLLING
3063 	ifp->if_capabilities |= IFCAP_POLLING;
3064 #endif
3065 
3066 	/*
3067 	 * 5700 B0 chips do not support checksumming correctly due
3068 	 * to hardware bugs.
3069 	 */
3070 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3071 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
3072 		ifp->if_capenable &= ~IFCAP_HWCSUM;
3073 		ifp->if_hwassist = 0;
3074 	}
3075 
3076 	/*
3077 	 * Figure out what sort of media we have by checking the
3078 	 * hardware config word in the first 32k of NIC internal memory,
3079 	 * or fall back to examining the EEPROM if necessary.
3080 	 * Note: on some BCM5700 cards, this value appears to be unset.
3081 	 * If that's the case, we have to rely on identifying the NIC
3082 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3083 	 * SK-9D41.
3084 	 */
3085 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
3086 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
3087 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3088 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3089 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3090 		    sizeof(hwcfg))) {
3091 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3092 			error = ENXIO;
3093 			goto fail;
3094 		}
3095 		hwcfg = ntohl(hwcfg);
3096 	}
3097 
3098 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3099 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3100 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3101 		if (BGE_IS_5714_FAMILY(sc))
3102 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3103 		else
3104 			sc->bge_flags |= BGE_FLAG_TBI;
3105 	}
3106 
3107 	if (sc->bge_flags & BGE_FLAG_TBI) {
3108 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3109 		    bge_ifmedia_sts);
3110 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3111 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3112 		    0, NULL);
3113 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3114 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3115 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3116 	} else {
3117 		/*
3118 		 * Do transceiver setup and tell the firmware the
3119 		 * driver is down so we can try to get access the
3120 		 * probe if ASF is running.  Retry a couple of times
3121 		 * if we get a conflict with the ASF firmware accessing
3122 		 * the PHY.
3123 		 */
3124 		trys = 0;
3125 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3126 again:
3127 		bge_asf_driver_up(sc);
3128 
3129 		error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3130 		    bge_ifmedia_sts, capmask, phy_addr, MII_OFFSET_ANY,
3131 		    MIIF_DOPAUSE);
3132 		if (error != 0) {
3133 			if (trys++ < 4) {
3134 				device_printf(sc->bge_dev, "Try again\n");
3135 				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
3136 				    BMCR_RESET);
3137 				goto again;
3138 			}
3139 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3140 			goto fail;
3141 		}
3142 
3143 		/*
3144 		 * Now tell the firmware we are going up after probing the PHY
3145 		 */
3146 		if (sc->bge_asf_mode & ASF_STACKUP)
3147 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3148 	}
3149 
3150 	/*
3151 	 * When using the BCM5701 in PCI-X mode, data corruption has
3152 	 * been observed in the first few bytes of some received packets.
3153 	 * Aligning the packet buffer in memory eliminates the corruption.
3154 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3155 	 * which do not support unaligned accesses, we will realign the
3156 	 * payloads by copying the received packets.
3157 	 */
3158 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3159 	    sc->bge_flags & BGE_FLAG_PCIX)
3160                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3161 
3162 	/*
3163 	 * Call MI attach routine.
3164 	 */
3165 	ether_ifattach(ifp, eaddr);
3166 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3167 
3168 	/* Tell upper layer we support long frames. */
3169 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3170 
3171 	/*
3172 	 * Hookup IRQ last.
3173 	 */
3174 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3175 		/* Take advantage of single-shot MSI. */
3176 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3177 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3178 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3179 		    taskqueue_thread_enqueue, &sc->bge_tq);
3180 		if (sc->bge_tq == NULL) {
3181 			device_printf(dev, "could not create taskqueue.\n");
3182 			ether_ifdetach(ifp);
3183 			error = ENXIO;
3184 			goto fail;
3185 		}
3186 		taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
3187 		    device_get_nameunit(sc->bge_dev));
3188 		error = bus_setup_intr(dev, sc->bge_irq,
3189 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3190 		    &sc->bge_intrhand);
3191 		if (error)
3192 			ether_ifdetach(ifp);
3193 	} else
3194 		error = bus_setup_intr(dev, sc->bge_irq,
3195 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3196 		    &sc->bge_intrhand);
3197 
3198 	if (error) {
3199 		bge_detach(dev);
3200 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3201 	}
3202 
3203 	return (0);
3204 
3205 fail:
3206 	bge_release_resources(sc);
3207 
3208 	return (error);
3209 }
3210 
3211 static int
3212 bge_detach(device_t dev)
3213 {
3214 	struct bge_softc *sc;
3215 	struct ifnet *ifp;
3216 
3217 	sc = device_get_softc(dev);
3218 	ifp = sc->bge_ifp;
3219 
3220 #ifdef DEVICE_POLLING
3221 	if (ifp->if_capenable & IFCAP_POLLING)
3222 		ether_poll_deregister(ifp);
3223 #endif
3224 
3225 	BGE_LOCK(sc);
3226 	bge_stop(sc);
3227 	bge_reset(sc);
3228 	BGE_UNLOCK(sc);
3229 
3230 	callout_drain(&sc->bge_stat_ch);
3231 
3232 	if (sc->bge_tq)
3233 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3234 	ether_ifdetach(ifp);
3235 
3236 	if (sc->bge_flags & BGE_FLAG_TBI) {
3237 		ifmedia_removeall(&sc->bge_ifmedia);
3238 	} else {
3239 		bus_generic_detach(dev);
3240 		device_delete_child(dev, sc->bge_miibus);
3241 	}
3242 
3243 	bge_release_resources(sc);
3244 
3245 	return (0);
3246 }
3247 
3248 static void
3249 bge_release_resources(struct bge_softc *sc)
3250 {
3251 	device_t dev;
3252 
3253 	dev = sc->bge_dev;
3254 
3255 	if (sc->bge_tq != NULL)
3256 		taskqueue_free(sc->bge_tq);
3257 
3258 	if (sc->bge_intrhand != NULL)
3259 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3260 
3261 	if (sc->bge_irq != NULL)
3262 		bus_release_resource(dev, SYS_RES_IRQ,
3263 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3264 
3265 	if (sc->bge_flags & BGE_FLAG_MSI)
3266 		pci_release_msi(dev);
3267 
3268 	if (sc->bge_res != NULL)
3269 		bus_release_resource(dev, SYS_RES_MEMORY,
3270 		    PCIR_BAR(0), sc->bge_res);
3271 
3272 	if (sc->bge_ifp != NULL)
3273 		if_free(sc->bge_ifp);
3274 
3275 	bge_dma_free(sc);
3276 
3277 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3278 		BGE_LOCK_DESTROY(sc);
3279 }
3280 
3281 static int
3282 bge_reset(struct bge_softc *sc)
3283 {
3284 	device_t dev;
3285 	uint32_t cachesize, command, pcistate, reset, val;
3286 	void (*write_op)(struct bge_softc *, int, int);
3287 	uint16_t devctl;
3288 	int i;
3289 
3290 	dev = sc->bge_dev;
3291 
3292 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3293 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3294 		if (sc->bge_flags & BGE_FLAG_PCIE)
3295 			write_op = bge_writemem_direct;
3296 		else
3297 			write_op = bge_writemem_ind;
3298 	} else
3299 		write_op = bge_writereg_ind;
3300 
3301 	/* Save some important PCI state. */
3302 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3303 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3304 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3305 
3306 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3307 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3308 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3309 
3310 	/* Disable fastboot on controllers that support it. */
3311 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3312 	    BGE_IS_5755_PLUS(sc)) {
3313 		if (bootverbose)
3314 			device_printf(dev, "Disabling fastboot\n");
3315 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3316 	}
3317 
3318 	/*
3319 	 * Write the magic number to SRAM at offset 0xB50.
3320 	 * When firmware finishes its initialization it will
3321 	 * write ~BGE_MAGIC_NUMBER to the same location.
3322 	 */
3323 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3324 
3325 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3326 
3327 	/* XXX: Broadcom Linux driver. */
3328 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3329 		if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
3330 			CSR_WRITE_4(sc, 0x7E2C, 0x20);
3331 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3332 			/* Prevent PCIE link training during global reset */
3333 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3334 			reset |= 1 << 29;
3335 		}
3336 	}
3337 
3338 	/*
3339 	 * Set GPHY Power Down Override to leave GPHY
3340 	 * powered up in D0 uninitialized.
3341 	 */
3342 	if (BGE_IS_5705_PLUS(sc))
3343 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3344 
3345 	/* Issue global reset */
3346 	write_op(sc, BGE_MISC_CFG, reset);
3347 
3348 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3349 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3350 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3351 		    val | BGE_VCPU_STATUS_DRV_RESET);
3352 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3353 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3354 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3355 	}
3356 
3357 	DELAY(1000);
3358 
3359 	/* XXX: Broadcom Linux driver. */
3360 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3361 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3362 			DELAY(500000); /* wait for link training to complete */
3363 			val = pci_read_config(dev, 0xC4, 4);
3364 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3365 		}
3366 		devctl = pci_read_config(dev,
3367 		    sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
3368 		/* Clear enable no snoop and disable relaxed ordering. */
3369 		devctl &= ~(PCIM_EXP_CTL_RELAXED_ORD_ENABLE |
3370 		    PCIM_EXP_CTL_NOSNOOP_ENABLE);
3371 		/* Set PCIE max payload size to 128. */
3372 		devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD;
3373 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
3374 		    devctl, 2);
3375 		/* Clear error status. */
3376 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA,
3377 		    PCIM_EXP_STA_CORRECTABLE_ERROR |
3378 		    PCIM_EXP_STA_NON_FATAL_ERROR | PCIM_EXP_STA_FATAL_ERROR |
3379 		    PCIM_EXP_STA_UNSUPPORTED_REQ, 2);
3380 	}
3381 
3382 	/* Reset some of the PCI state that got zapped by reset. */
3383 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3384 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3385 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3386 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3387 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
3388 	write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3389 	/*
3390 	 * Disable PCI-X relaxed ordering to ensure status block update
3391 	 * comes first then packet buffer DMA. Otherwise driver may
3392 	 * read stale status block.
3393 	 */
3394 	if (sc->bge_flags & BGE_FLAG_PCIX) {
3395 		devctl = pci_read_config(dev,
3396 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
3397 		devctl &= ~PCIXM_COMMAND_ERO;
3398 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
3399 			devctl &= ~PCIXM_COMMAND_MAX_READ;
3400 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3401 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3402 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
3403 			    PCIXM_COMMAND_MAX_READ);
3404 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3405 		}
3406 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
3407 		    devctl, 2);
3408 	}
3409 	/* Re-enable MSI, if neccesary, and enable the memory arbiter. */
3410 	if (BGE_IS_5714_FAMILY(sc)) {
3411 		/* This chip disables MSI on reset. */
3412 		if (sc->bge_flags & BGE_FLAG_MSI) {
3413 			val = pci_read_config(dev,
3414 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
3415 			pci_write_config(dev,
3416 			    sc->bge_msicap + PCIR_MSI_CTRL,
3417 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
3418 			val = CSR_READ_4(sc, BGE_MSI_MODE);
3419 			CSR_WRITE_4(sc, BGE_MSI_MODE,
3420 			    val | BGE_MSIMODE_ENABLE);
3421 		}
3422 		val = CSR_READ_4(sc, BGE_MARB_MODE);
3423 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3424 	} else
3425 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3426 
3427 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3428 		for (i = 0; i < BGE_TIMEOUT; i++) {
3429 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3430 			if (val & BGE_VCPU_STATUS_INIT_DONE)
3431 				break;
3432 			DELAY(100);
3433 		}
3434 		if (i == BGE_TIMEOUT) {
3435 			device_printf(dev, "reset timed out\n");
3436 			return (1);
3437 		}
3438 	} else {
3439 		/*
3440 		 * Poll until we see the 1's complement of the magic number.
3441 		 * This indicates that the firmware initialization is complete.
3442 		 * We expect this to fail if no chip containing the Ethernet
3443 		 * address is fitted though.
3444 		 */
3445 		for (i = 0; i < BGE_TIMEOUT; i++) {
3446 			DELAY(10);
3447 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3448 			if (val == ~BGE_MAGIC_NUMBER)
3449 				break;
3450 		}
3451 
3452 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3453 			device_printf(dev,
3454 			    "firmware handshake timed out, found 0x%08x\n",
3455 			    val);
3456 	}
3457 
3458 	/*
3459 	 * XXX Wait for the value of the PCISTATE register to
3460 	 * return to its original pre-reset state. This is a
3461 	 * fairly good indicator of reset completion. If we don't
3462 	 * wait for the reset to fully complete, trying to read
3463 	 * from the device's non-PCI registers may yield garbage
3464 	 * results.
3465 	 */
3466 	for (i = 0; i < BGE_TIMEOUT; i++) {
3467 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3468 			break;
3469 		DELAY(10);
3470 	}
3471 
3472 	/* Fix up byte swapping. */
3473 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
3474 	    BGE_MODECTL_BYTESWAP_DATA);
3475 
3476 	/* Tell the ASF firmware we are up */
3477 	if (sc->bge_asf_mode & ASF_STACKUP)
3478 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3479 
3480 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3481 
3482 	/*
3483 	 * The 5704 in TBI mode apparently needs some special
3484 	 * adjustment to insure the SERDES drive level is set
3485 	 * to 1.2V.
3486 	 */
3487 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3488 	    sc->bge_flags & BGE_FLAG_TBI) {
3489 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
3490 		val = (val & ~0xFFF) | 0x880;
3491 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3492 	}
3493 
3494 	/* XXX: Broadcom Linux driver. */
3495 	if (sc->bge_flags & BGE_FLAG_PCIE &&
3496 	    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
3497 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3498 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
3499 		/* Enable Data FIFO protection. */
3500 		val = CSR_READ_4(sc, 0x7C00);
3501 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3502 	}
3503 	DELAY(10000);
3504 
3505 	return (0);
3506 }
3507 
3508 static __inline void
3509 bge_rxreuse_std(struct bge_softc *sc, int i)
3510 {
3511 	struct bge_rx_bd *r;
3512 
3513 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
3514 	r->bge_flags = BGE_RXBDFLAG_END;
3515 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
3516 	r->bge_idx = i;
3517 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3518 }
3519 
3520 static __inline void
3521 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
3522 {
3523 	struct bge_extrx_bd *r;
3524 
3525 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
3526 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
3527 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
3528 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
3529 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
3530 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
3531 	r->bge_idx = i;
3532 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3533 }
3534 
3535 /*
3536  * Frame reception handling. This is called if there's a frame
3537  * on the receive return list.
3538  *
3539  * Note: we have to be able to handle two possibilities here:
3540  * 1) the frame is from the jumbo receive ring
3541  * 2) the frame is from the standard receive ring
3542  */
3543 
3544 static int
3545 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3546 {
3547 	struct ifnet *ifp;
3548 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3549 	uint16_t rx_cons;
3550 
3551 	rx_cons = sc->bge_rx_saved_considx;
3552 
3553 	/* Nothing to do. */
3554 	if (rx_cons == rx_prod)
3555 		return (rx_npkts);
3556 
3557 	ifp = sc->bge_ifp;
3558 
3559 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3560 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3561 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3562 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3563 	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3564 	    (MCLBYTES - ETHER_ALIGN))
3565 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3566 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3567 
3568 	while (rx_cons != rx_prod) {
3569 		struct bge_rx_bd	*cur_rx;
3570 		uint32_t		rxidx;
3571 		struct mbuf		*m = NULL;
3572 		uint16_t		vlan_tag = 0;
3573 		int			have_tag = 0;
3574 
3575 #ifdef DEVICE_POLLING
3576 		if (ifp->if_capenable & IFCAP_POLLING) {
3577 			if (sc->rxcycles <= 0)
3578 				break;
3579 			sc->rxcycles--;
3580 		}
3581 #endif
3582 
3583 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3584 
3585 		rxidx = cur_rx->bge_idx;
3586 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3587 
3588 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3589 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3590 			have_tag = 1;
3591 			vlan_tag = cur_rx->bge_vlan_tag;
3592 		}
3593 
3594 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3595 			jumbocnt++;
3596 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3597 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3598 				bge_rxreuse_jumbo(sc, rxidx);
3599 				continue;
3600 			}
3601 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3602 				bge_rxreuse_jumbo(sc, rxidx);
3603 				ifp->if_iqdrops++;
3604 				continue;
3605 			}
3606 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3607 		} else {
3608 			stdcnt++;
3609 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3610 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3611 				bge_rxreuse_std(sc, rxidx);
3612 				continue;
3613 			}
3614 			if (bge_newbuf_std(sc, rxidx) != 0) {
3615 				bge_rxreuse_std(sc, rxidx);
3616 				ifp->if_iqdrops++;
3617 				continue;
3618 			}
3619 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3620 		}
3621 
3622 		ifp->if_ipackets++;
3623 #ifndef __NO_STRICT_ALIGNMENT
3624 		/*
3625 		 * For architectures with strict alignment we must make sure
3626 		 * the payload is aligned.
3627 		 */
3628 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3629 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3630 			    cur_rx->bge_len);
3631 			m->m_data += ETHER_ALIGN;
3632 		}
3633 #endif
3634 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3635 		m->m_pkthdr.rcvif = ifp;
3636 
3637 		if (ifp->if_capenable & IFCAP_RXCSUM)
3638 			bge_rxcsum(sc, cur_rx, m);
3639 
3640 		/*
3641 		 * If we received a packet with a vlan tag,
3642 		 * attach that information to the packet.
3643 		 */
3644 		if (have_tag) {
3645 			m->m_pkthdr.ether_vtag = vlan_tag;
3646 			m->m_flags |= M_VLANTAG;
3647 		}
3648 
3649 		if (holdlck != 0) {
3650 			BGE_UNLOCK(sc);
3651 			(*ifp->if_input)(ifp, m);
3652 			BGE_LOCK(sc);
3653 		} else
3654 			(*ifp->if_input)(ifp, m);
3655 		rx_npkts++;
3656 
3657 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3658 			return (rx_npkts);
3659 	}
3660 
3661 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3662 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3663 	if (stdcnt > 0)
3664 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3665 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3666 
3667 	if (jumbocnt > 0)
3668 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3669 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3670 
3671 	sc->bge_rx_saved_considx = rx_cons;
3672 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3673 	if (stdcnt)
3674 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
3675 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
3676 	if (jumbocnt)
3677 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
3678 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
3679 #ifdef notyet
3680 	/*
3681 	 * This register wraps very quickly under heavy packet drops.
3682 	 * If you need correct statistics, you can enable this check.
3683 	 */
3684 	if (BGE_IS_5705_PLUS(sc))
3685 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3686 #endif
3687 	return (rx_npkts);
3688 }
3689 
3690 static void
3691 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
3692 {
3693 
3694 	if (BGE_IS_5717_PLUS(sc)) {
3695 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
3696 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3697 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3698 				if ((cur_rx->bge_error_flag &
3699 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
3700 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3701 			}
3702 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
3703 				m->m_pkthdr.csum_data =
3704 				    cur_rx->bge_tcp_udp_csum;
3705 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3706 				    CSUM_PSEUDO_HDR;
3707 			}
3708 		}
3709 	} else {
3710 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3711 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3712 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3713 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3714 		}
3715 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3716 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3717 			m->m_pkthdr.csum_data =
3718 			    cur_rx->bge_tcp_udp_csum;
3719 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3720 			    CSUM_PSEUDO_HDR;
3721 		}
3722 	}
3723 }
3724 
3725 static void
3726 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3727 {
3728 	struct bge_tx_bd *cur_tx;
3729 	struct ifnet *ifp;
3730 
3731 	BGE_LOCK_ASSERT(sc);
3732 
3733 	/* Nothing to do. */
3734 	if (sc->bge_tx_saved_considx == tx_cons)
3735 		return;
3736 
3737 	ifp = sc->bge_ifp;
3738 
3739 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
3740 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
3741 	/*
3742 	 * Go through our tx ring and free mbufs for those
3743 	 * frames that have been sent.
3744 	 */
3745 	while (sc->bge_tx_saved_considx != tx_cons) {
3746 		uint32_t		idx;
3747 
3748 		idx = sc->bge_tx_saved_considx;
3749 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
3750 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3751 			ifp->if_opackets++;
3752 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3753 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
3754 			    sc->bge_cdata.bge_tx_dmamap[idx],
3755 			    BUS_DMASYNC_POSTWRITE);
3756 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3757 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3758 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3759 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3760 		}
3761 		sc->bge_txcnt--;
3762 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3763 	}
3764 
3765 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3766 	if (sc->bge_txcnt == 0)
3767 		sc->bge_timer = 0;
3768 }
3769 
3770 #ifdef DEVICE_POLLING
3771 static int
3772 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3773 {
3774 	struct bge_softc *sc = ifp->if_softc;
3775 	uint16_t rx_prod, tx_cons;
3776 	uint32_t statusword;
3777 	int rx_npkts = 0;
3778 
3779 	BGE_LOCK(sc);
3780 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3781 		BGE_UNLOCK(sc);
3782 		return (rx_npkts);
3783 	}
3784 
3785 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3786 	    sc->bge_cdata.bge_status_map,
3787 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3788 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3789 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3790 
3791 	statusword = sc->bge_ldata.bge_status_block->bge_status;
3792 	sc->bge_ldata.bge_status_block->bge_status = 0;
3793 
3794 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3795 	    sc->bge_cdata.bge_status_map,
3796 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3797 
3798 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
3799 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
3800 		sc->bge_link_evt++;
3801 
3802 	if (cmd == POLL_AND_CHECK_STATUS)
3803 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3804 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3805 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
3806 			bge_link_upd(sc);
3807 
3808 	sc->rxcycles = count;
3809 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
3810 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3811 		BGE_UNLOCK(sc);
3812 		return (rx_npkts);
3813 	}
3814 	bge_txeof(sc, tx_cons);
3815 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3816 		bge_start_locked(ifp);
3817 
3818 	BGE_UNLOCK(sc);
3819 	return (rx_npkts);
3820 }
3821 #endif /* DEVICE_POLLING */
3822 
3823 static int
3824 bge_msi_intr(void *arg)
3825 {
3826 	struct bge_softc *sc;
3827 
3828 	sc = (struct bge_softc *)arg;
3829 	/*
3830 	 * This interrupt is not shared and controller already
3831 	 * disabled further interrupt.
3832 	 */
3833 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
3834 	return (FILTER_HANDLED);
3835 }
3836 
3837 static void
3838 bge_intr_task(void *arg, int pending)
3839 {
3840 	struct bge_softc *sc;
3841 	struct ifnet *ifp;
3842 	uint32_t status, status_tag;
3843 	uint16_t rx_prod, tx_cons;
3844 
3845 	sc = (struct bge_softc *)arg;
3846 	ifp = sc->bge_ifp;
3847 
3848 	BGE_LOCK(sc);
3849 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3850 		BGE_UNLOCK(sc);
3851 		return;
3852 	}
3853 
3854 	/* Get updated status block. */
3855 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3856 	    sc->bge_cdata.bge_status_map,
3857 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3858 
3859 	/* Save producer/consumer indexess. */
3860 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3861 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3862 	status = sc->bge_ldata.bge_status_block->bge_status;
3863 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
3864 	sc->bge_ldata.bge_status_block->bge_status = 0;
3865 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3866 	    sc->bge_cdata.bge_status_map,
3867 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3868 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
3869 		status_tag = 0;
3870 
3871 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
3872 		bge_link_upd(sc);
3873 
3874 	/* Let controller work. */
3875 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
3876 
3877 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3878 	    sc->bge_rx_saved_considx != rx_prod) {
3879 		/* Check RX return ring producer/consumer. */
3880 		BGE_UNLOCK(sc);
3881 		bge_rxeof(sc, rx_prod, 0);
3882 		BGE_LOCK(sc);
3883 	}
3884 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3885 		/* Check TX ring producer/consumer. */
3886 		bge_txeof(sc, tx_cons);
3887 	    	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3888 			bge_start_locked(ifp);
3889 	}
3890 	BGE_UNLOCK(sc);
3891 }
3892 
3893 static void
3894 bge_intr(void *xsc)
3895 {
3896 	struct bge_softc *sc;
3897 	struct ifnet *ifp;
3898 	uint32_t statusword;
3899 	uint16_t rx_prod, tx_cons;
3900 
3901 	sc = xsc;
3902 
3903 	BGE_LOCK(sc);
3904 
3905 	ifp = sc->bge_ifp;
3906 
3907 #ifdef DEVICE_POLLING
3908 	if (ifp->if_capenable & IFCAP_POLLING) {
3909 		BGE_UNLOCK(sc);
3910 		return;
3911 	}
3912 #endif
3913 
3914 	/*
3915 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3916 	 * disable interrupts by writing nonzero like we used to, since with
3917 	 * our current organization this just gives complications and
3918 	 * pessimizations for re-enabling interrupts.  We used to have races
3919 	 * instead of the necessary complications.  Disabling interrupts
3920 	 * would just reduce the chance of a status update while we are
3921 	 * running (by switching to the interrupt-mode coalescence
3922 	 * parameters), but this chance is already very low so it is more
3923 	 * efficient to get another interrupt than prevent it.
3924 	 *
3925 	 * We do the ack first to ensure another interrupt if there is a
3926 	 * status update after the ack.  We don't check for the status
3927 	 * changing later because it is more efficient to get another
3928 	 * interrupt than prevent it, not quite as above (not checking is
3929 	 * a smaller optimization than not toggling the interrupt enable,
3930 	 * since checking doesn't involve PCI accesses and toggling require
3931 	 * the status check).  So toggling would probably be a pessimization
3932 	 * even with MSI.  It would only be needed for using a task queue.
3933 	 */
3934 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3935 
3936 	/*
3937 	 * Do the mandatory PCI flush as well as get the link status.
3938 	 */
3939 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
3940 
3941 	/* Make sure the descriptor ring indexes are coherent. */
3942 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3943 	    sc->bge_cdata.bge_status_map,
3944 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3945 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3946 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3947 	sc->bge_ldata.bge_status_block->bge_status = 0;
3948 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3949 	    sc->bge_cdata.bge_status_map,
3950 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3951 
3952 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3953 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3954 	    statusword || sc->bge_link_evt)
3955 		bge_link_upd(sc);
3956 
3957 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3958 		/* Check RX return ring producer/consumer. */
3959 		bge_rxeof(sc, rx_prod, 1);
3960 	}
3961 
3962 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3963 		/* Check TX ring producer/consumer. */
3964 		bge_txeof(sc, tx_cons);
3965 	}
3966 
3967 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3968 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3969 		bge_start_locked(ifp);
3970 
3971 	BGE_UNLOCK(sc);
3972 }
3973 
3974 static void
3975 bge_asf_driver_up(struct bge_softc *sc)
3976 {
3977 	if (sc->bge_asf_mode & ASF_STACKUP) {
3978 		/* Send ASF heartbeat aprox. every 2s */
3979 		if (sc->bge_asf_count)
3980 			sc->bge_asf_count --;
3981 		else {
3982 			sc->bge_asf_count = 2;
3983 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3984 			    BGE_FW_DRV_ALIVE);
3985 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3986 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3987 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
3988 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3989 		}
3990 	}
3991 }
3992 
3993 static void
3994 bge_tick(void *xsc)
3995 {
3996 	struct bge_softc *sc = xsc;
3997 	struct mii_data *mii = NULL;
3998 
3999 	BGE_LOCK_ASSERT(sc);
4000 
4001 	/* Synchronize with possible callout reset/stop. */
4002 	if (callout_pending(&sc->bge_stat_ch) ||
4003 	    !callout_active(&sc->bge_stat_ch))
4004 	    	return;
4005 
4006 	if (BGE_IS_5705_PLUS(sc))
4007 		bge_stats_update_regs(sc);
4008 	else
4009 		bge_stats_update(sc);
4010 
4011 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4012 		mii = device_get_softc(sc->bge_miibus);
4013 		/*
4014 		 * Do not touch PHY if we have link up. This could break
4015 		 * IPMI/ASF mode or produce extra input errors
4016 		 * (extra errors was reported for bcm5701 & bcm5704).
4017 		 */
4018 		if (!sc->bge_link)
4019 			mii_tick(mii);
4020 	} else {
4021 		/*
4022 		 * Since in TBI mode auto-polling can't be used we should poll
4023 		 * link status manually. Here we register pending link event
4024 		 * and trigger interrupt.
4025 		 */
4026 #ifdef DEVICE_POLLING
4027 		/* In polling mode we poll link state in bge_poll(). */
4028 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4029 #endif
4030 		{
4031 		sc->bge_link_evt++;
4032 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4033 		    sc->bge_flags & BGE_FLAG_5788)
4034 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4035 		else
4036 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4037 		}
4038 	}
4039 
4040 	bge_asf_driver_up(sc);
4041 	bge_watchdog(sc);
4042 
4043 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4044 }
4045 
4046 static void
4047 bge_stats_update_regs(struct bge_softc *sc)
4048 {
4049 	struct ifnet *ifp;
4050 	struct bge_mac_stats *stats;
4051 
4052 	ifp = sc->bge_ifp;
4053 	stats = &sc->bge_mac_stats;
4054 
4055 	stats->ifHCOutOctets +=
4056 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4057 	stats->etherStatsCollisions +=
4058 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4059 	stats->outXonSent +=
4060 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4061 	stats->outXoffSent +=
4062 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4063 	stats->dot3StatsInternalMacTransmitErrors +=
4064 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4065 	stats->dot3StatsSingleCollisionFrames +=
4066 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4067 	stats->dot3StatsMultipleCollisionFrames +=
4068 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4069 	stats->dot3StatsDeferredTransmissions +=
4070 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4071 	stats->dot3StatsExcessiveCollisions +=
4072 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4073 	stats->dot3StatsLateCollisions +=
4074 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4075 	stats->ifHCOutUcastPkts +=
4076 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4077 	stats->ifHCOutMulticastPkts +=
4078 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4079 	stats->ifHCOutBroadcastPkts +=
4080 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4081 
4082 	stats->ifHCInOctets +=
4083 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4084 	stats->etherStatsFragments +=
4085 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4086 	stats->ifHCInUcastPkts +=
4087 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4088 	stats->ifHCInMulticastPkts +=
4089 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4090 	stats->ifHCInBroadcastPkts +=
4091 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4092 	stats->dot3StatsFCSErrors +=
4093 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4094 	stats->dot3StatsAlignmentErrors +=
4095 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4096 	stats->xonPauseFramesReceived +=
4097 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4098 	stats->xoffPauseFramesReceived +=
4099 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4100 	stats->macControlFramesReceived +=
4101 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4102 	stats->xoffStateEntered +=
4103 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4104 	stats->dot3StatsFramesTooLong +=
4105 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4106 	stats->etherStatsJabbers +=
4107 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4108 	stats->etherStatsUndersizePkts +=
4109 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4110 
4111 	stats->FramesDroppedDueToFilters +=
4112 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4113 	stats->DmaWriteQueueFull +=
4114 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4115 	stats->DmaWriteHighPriQueueFull +=
4116 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4117 	stats->NoMoreRxBDs +=
4118 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4119 	stats->InputDiscards +=
4120 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4121 	stats->InputErrors +=
4122 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4123 	stats->RecvThresholdHit +=
4124 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4125 
4126 	ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4127 	ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4128 	    stats->InputErrors);
4129 }
4130 
4131 static void
4132 bge_stats_clear_regs(struct bge_softc *sc)
4133 {
4134 
4135 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4136 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4137 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4138 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4139 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4140 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4141 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4142 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4143 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4144 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4145 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4146 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4147 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4148 
4149 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4150 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4151 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4152 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4153 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4154 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4155 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4156 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4157 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4158 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4159 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4160 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4161 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4162 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4163 
4164 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4165 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4166 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4167 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4168 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4169 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4170 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4171 }
4172 
4173 static void
4174 bge_stats_update(struct bge_softc *sc)
4175 {
4176 	struct ifnet *ifp;
4177 	bus_size_t stats;
4178 	uint32_t cnt;	/* current register value */
4179 
4180 	ifp = sc->bge_ifp;
4181 
4182 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4183 
4184 #define	READ_STAT(sc, stats, stat) \
4185 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4186 
4187 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4188 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4189 	sc->bge_tx_collisions = cnt;
4190 
4191 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
4192 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
4193 	sc->bge_rx_discards = cnt;
4194 
4195 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
4196 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
4197 	sc->bge_tx_discards = cnt;
4198 
4199 #undef	READ_STAT
4200 }
4201 
4202 /*
4203  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4204  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4205  * but when such padded frames employ the bge IP/TCP checksum offload,
4206  * the hardware checksum assist gives incorrect results (possibly
4207  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4208  * If we pad such runts with zeros, the onboard checksum comes out correct.
4209  */
4210 static __inline int
4211 bge_cksum_pad(struct mbuf *m)
4212 {
4213 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
4214 	struct mbuf *last;
4215 
4216 	/* If there's only the packet-header and we can pad there, use it. */
4217 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
4218 	    M_TRAILINGSPACE(m) >= padlen) {
4219 		last = m;
4220 	} else {
4221 		/*
4222 		 * Walk packet chain to find last mbuf. We will either
4223 		 * pad there, or append a new mbuf and pad it.
4224 		 */
4225 		for (last = m; last->m_next != NULL; last = last->m_next);
4226 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
4227 			/* Allocate new empty mbuf, pad it. Compact later. */
4228 			struct mbuf *n;
4229 
4230 			MGET(n, M_DONTWAIT, MT_DATA);
4231 			if (n == NULL)
4232 				return (ENOBUFS);
4233 			n->m_len = 0;
4234 			last->m_next = n;
4235 			last = n;
4236 		}
4237 	}
4238 
4239 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
4240 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
4241 	last->m_len += padlen;
4242 	m->m_pkthdr.len += padlen;
4243 
4244 	return (0);
4245 }
4246 
4247 static struct mbuf *
4248 bge_check_short_dma(struct mbuf *m)
4249 {
4250 	struct mbuf *n;
4251 	int found;
4252 
4253 	/*
4254 	 * If device receive two back-to-back send BDs with less than
4255 	 * or equal to 8 total bytes then the device may hang.  The two
4256 	 * back-to-back send BDs must in the same frame for this failure
4257 	 * to occur.  Scan mbuf chains and see whether two back-to-back
4258 	 * send BDs are there. If this is the case, allocate new mbuf
4259 	 * and copy the frame to workaround the silicon bug.
4260 	 */
4261 	for (n = m, found = 0; n != NULL; n = n->m_next) {
4262 		if (n->m_len < 8) {
4263 			found++;
4264 			if (found > 1)
4265 				break;
4266 			continue;
4267 		}
4268 		found = 0;
4269 	}
4270 
4271 	if (found > 1) {
4272 		n = m_defrag(m, M_DONTWAIT);
4273 		if (n == NULL)
4274 			m_freem(m);
4275 	} else
4276 		n = m;
4277 	return (n);
4278 }
4279 
4280 static struct mbuf *
4281 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
4282     uint16_t *flags)
4283 {
4284 	struct ip *ip;
4285 	struct tcphdr *tcp;
4286 	struct mbuf *n;
4287 	uint16_t hlen;
4288 	uint32_t poff;
4289 
4290 	if (M_WRITABLE(m) == 0) {
4291 		/* Get a writable copy. */
4292 		n = m_dup(m, M_DONTWAIT);
4293 		m_freem(m);
4294 		if (n == NULL)
4295 			return (NULL);
4296 		m = n;
4297 	}
4298 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
4299 	if (m == NULL)
4300 		return (NULL);
4301 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4302 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
4303 	m = m_pullup(m, poff + sizeof(struct tcphdr));
4304 	if (m == NULL)
4305 		return (NULL);
4306 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4307 	m = m_pullup(m, poff + (tcp->th_off << 2));
4308 	if (m == NULL)
4309 		return (NULL);
4310 	/*
4311 	 * It seems controller doesn't modify IP length and TCP pseudo
4312 	 * checksum. These checksum computed by upper stack should be 0.
4313 	 */
4314 	*mss = m->m_pkthdr.tso_segsz;
4315 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4316 	ip->ip_sum = 0;
4317 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
4318 	/* Clear pseudo checksum computed by TCP stack. */
4319 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4320 	tcp->th_sum = 0;
4321 	/*
4322 	 * Broadcom controllers uses different descriptor format for
4323 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
4324 	 * license issue and lower performance of firmware based TSO
4325 	 * we only support hardware based TSO.
4326 	 */
4327 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
4328 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
4329 	if (sc->bge_flags & BGE_FLAG_TSO3) {
4330 		/*
4331 		 * For BCM5717 and newer controllers, hardware based TSO
4332 		 * uses the 14 lower bits of the bge_mss field to store the
4333 		 * MSS and the upper 2 bits to store the lowest 2 bits of
4334 		 * the IP/TCP header length.  The upper 6 bits of the header
4335 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
4336 		 * frames are supported.
4337 		 */
4338 		*mss |= ((hlen & 0x3) << 14);
4339 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
4340 	} else {
4341 		/*
4342 		 * For BCM5755 and newer controllers, hardware based TSO uses
4343 		 * the lower 11	bits to store the MSS and the upper 5 bits to
4344 		 * store the IP/TCP header length. Jumbo frames are not
4345 		 * supported.
4346 		 */
4347 		*mss |= (hlen << 11);
4348 	}
4349 	return (m);
4350 }
4351 
4352 /*
4353  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
4354  * pointers to descriptors.
4355  */
4356 static int
4357 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
4358 {
4359 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
4360 	bus_dmamap_t		map;
4361 	struct bge_tx_bd	*d;
4362 	struct mbuf		*m = *m_head;
4363 	uint32_t		idx = *txidx;
4364 	uint16_t		csum_flags, mss, vlan_tag;
4365 	int			nsegs, i, error;
4366 
4367 	csum_flags = 0;
4368 	mss = 0;
4369 	vlan_tag = 0;
4370 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
4371 	    m->m_next != NULL) {
4372 		*m_head = bge_check_short_dma(m);
4373 		if (*m_head == NULL)
4374 			return (ENOBUFS);
4375 		m = *m_head;
4376 	}
4377 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
4378 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
4379 		if (*m_head == NULL)
4380 			return (ENOBUFS);
4381 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
4382 		    BGE_TXBDFLAG_CPU_POST_DMA;
4383 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
4384 		if (m->m_pkthdr.csum_flags & CSUM_IP)
4385 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4386 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
4387 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4388 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
4389 			    (error = bge_cksum_pad(m)) != 0) {
4390 				m_freem(m);
4391 				*m_head = NULL;
4392 				return (error);
4393 			}
4394 		}
4395 		if (m->m_flags & M_LASTFRAG)
4396 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
4397 		else if (m->m_flags & M_FRAG)
4398 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
4399 	}
4400 
4401 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
4402 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
4403 		    m->m_pkthdr.len > ETHER_MAX_LEN)
4404 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
4405 		if (sc->bge_forced_collapse > 0 &&
4406 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
4407 			/*
4408 			 * Forcedly collapse mbuf chains to overcome hardware
4409 			 * limitation which only support a single outstanding
4410 			 * DMA read operation.
4411 			 */
4412 			if (sc->bge_forced_collapse == 1)
4413 				m = m_defrag(m, M_DONTWAIT);
4414 			else
4415 				m = m_collapse(m, M_DONTWAIT,
4416 				    sc->bge_forced_collapse);
4417 			if (m == NULL)
4418 				m = *m_head;
4419 			*m_head = m;
4420 		}
4421 	}
4422 
4423 	map = sc->bge_cdata.bge_tx_dmamap[idx];
4424 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
4425 	    &nsegs, BUS_DMA_NOWAIT);
4426 	if (error == EFBIG) {
4427 		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
4428 		if (m == NULL) {
4429 			m_freem(*m_head);
4430 			*m_head = NULL;
4431 			return (ENOBUFS);
4432 		}
4433 		*m_head = m;
4434 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
4435 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
4436 		if (error) {
4437 			m_freem(m);
4438 			*m_head = NULL;
4439 			return (error);
4440 		}
4441 	} else if (error != 0)
4442 		return (error);
4443 
4444 	/* Check if we have enough free send BDs. */
4445 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
4446 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
4447 		return (ENOBUFS);
4448 	}
4449 
4450 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
4451 
4452 	if (m->m_flags & M_VLANTAG) {
4453 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
4454 		vlan_tag = m->m_pkthdr.ether_vtag;
4455 	}
4456 	for (i = 0; ; i++) {
4457 		d = &sc->bge_ldata.bge_tx_ring[idx];
4458 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
4459 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
4460 		d->bge_len = segs[i].ds_len;
4461 		d->bge_flags = csum_flags;
4462 		d->bge_vlan_tag = vlan_tag;
4463 		d->bge_mss = mss;
4464 		if (i == nsegs - 1)
4465 			break;
4466 		BGE_INC(idx, BGE_TX_RING_CNT);
4467 	}
4468 
4469 	/* Mark the last segment as end of packet... */
4470 	d->bge_flags |= BGE_TXBDFLAG_END;
4471 
4472 	/*
4473 	 * Insure that the map for this transmission
4474 	 * is placed at the array index of the last descriptor
4475 	 * in this chain.
4476 	 */
4477 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
4478 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
4479 	sc->bge_cdata.bge_tx_chain[idx] = m;
4480 	sc->bge_txcnt += nsegs;
4481 
4482 	BGE_INC(idx, BGE_TX_RING_CNT);
4483 	*txidx = idx;
4484 
4485 	return (0);
4486 }
4487 
4488 /*
4489  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4490  * to the mbuf data regions directly in the transmit descriptors.
4491  */
4492 static void
4493 bge_start_locked(struct ifnet *ifp)
4494 {
4495 	struct bge_softc *sc;
4496 	struct mbuf *m_head;
4497 	uint32_t prodidx;
4498 	int count;
4499 
4500 	sc = ifp->if_softc;
4501 	BGE_LOCK_ASSERT(sc);
4502 
4503 	if (!sc->bge_link ||
4504 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4505 	    IFF_DRV_RUNNING)
4506 		return;
4507 
4508 	prodidx = sc->bge_tx_prodidx;
4509 
4510 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4511 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4512 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4513 			break;
4514 		}
4515 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4516 		if (m_head == NULL)
4517 			break;
4518 
4519 		/*
4520 		 * XXX
4521 		 * The code inside the if() block is never reached since we
4522 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4523 		 * requests to checksum TCP/UDP in a fragmented packet.
4524 		 *
4525 		 * XXX
4526 		 * safety overkill.  If this is a fragmented packet chain
4527 		 * with delayed TCP/UDP checksums, then only encapsulate
4528 		 * it if we have enough descriptors to handle the entire
4529 		 * chain at once.
4530 		 * (paranoia -- may not actually be needed)
4531 		 */
4532 		if (m_head->m_flags & M_FIRSTFRAG &&
4533 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4534 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4535 			    m_head->m_pkthdr.csum_data + 16) {
4536 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4537 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4538 				break;
4539 			}
4540 		}
4541 
4542 		/*
4543 		 * Pack the data into the transmit ring. If we
4544 		 * don't have room, set the OACTIVE flag and wait
4545 		 * for the NIC to drain the ring.
4546 		 */
4547 		if (bge_encap(sc, &m_head, &prodidx)) {
4548 			if (m_head == NULL)
4549 				break;
4550 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4551 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4552 			break;
4553 		}
4554 		++count;
4555 
4556 		/*
4557 		 * If there's a BPF listener, bounce a copy of this frame
4558 		 * to him.
4559 		 */
4560 #ifdef ETHER_BPF_MTAP
4561 		ETHER_BPF_MTAP(ifp, m_head);
4562 #else
4563 		BPF_MTAP(ifp, m_head);
4564 #endif
4565 	}
4566 
4567 	if (count > 0) {
4568 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4569 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4570 		/* Transmit. */
4571 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4572 		/* 5700 b2 errata */
4573 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4574 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4575 
4576 		sc->bge_tx_prodidx = prodidx;
4577 
4578 		/*
4579 		 * Set a timeout in case the chip goes out to lunch.
4580 		 */
4581 		sc->bge_timer = 5;
4582 	}
4583 }
4584 
4585 /*
4586  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4587  * to the mbuf data regions directly in the transmit descriptors.
4588  */
4589 static void
4590 bge_start(struct ifnet *ifp)
4591 {
4592 	struct bge_softc *sc;
4593 
4594 	sc = ifp->if_softc;
4595 	BGE_LOCK(sc);
4596 	bge_start_locked(ifp);
4597 	BGE_UNLOCK(sc);
4598 }
4599 
4600 static void
4601 bge_init_locked(struct bge_softc *sc)
4602 {
4603 	struct ifnet *ifp;
4604 	uint16_t *m;
4605 	uint32_t mode;
4606 
4607 	BGE_LOCK_ASSERT(sc);
4608 
4609 	ifp = sc->bge_ifp;
4610 
4611 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4612 		return;
4613 
4614 	/* Cancel pending I/O and flush buffers. */
4615 	bge_stop(sc);
4616 
4617 	bge_stop_fw(sc);
4618 	bge_sig_pre_reset(sc, BGE_RESET_START);
4619 	bge_reset(sc);
4620 	bge_sig_legacy(sc, BGE_RESET_START);
4621 	bge_sig_post_reset(sc, BGE_RESET_START);
4622 
4623 	bge_chipinit(sc);
4624 
4625 	/*
4626 	 * Init the various state machines, ring
4627 	 * control blocks and firmware.
4628 	 */
4629 	if (bge_blockinit(sc)) {
4630 		device_printf(sc->bge_dev, "initialization failure\n");
4631 		return;
4632 	}
4633 
4634 	ifp = sc->bge_ifp;
4635 
4636 	/* Specify MTU. */
4637 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4638 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
4639 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4640 
4641 	/* Load our MAC address. */
4642 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4643 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4644 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4645 
4646 	/* Program promiscuous mode. */
4647 	bge_setpromisc(sc);
4648 
4649 	/* Program multicast filter. */
4650 	bge_setmulti(sc);
4651 
4652 	/* Program VLAN tag stripping. */
4653 	bge_setvlan(sc);
4654 
4655 	/* Override UDP checksum offloading. */
4656 	if (sc->bge_forced_udpcsum == 0)
4657 		sc->bge_csum_features &= ~CSUM_UDP;
4658 	else
4659 		sc->bge_csum_features |= CSUM_UDP;
4660 	if (ifp->if_capabilities & IFCAP_TXCSUM &&
4661 	    ifp->if_capenable & IFCAP_TXCSUM) {
4662 		ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
4663 		ifp->if_hwassist |= sc->bge_csum_features;
4664 	}
4665 
4666 	/* Init RX ring. */
4667 	if (bge_init_rx_ring_std(sc) != 0) {
4668 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4669 		bge_stop(sc);
4670 		return;
4671 	}
4672 
4673 	/*
4674 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4675 	 * memory to insure that the chip has in fact read the first
4676 	 * entry of the ring.
4677 	 */
4678 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4679 		uint32_t		v, i;
4680 		for (i = 0; i < 10; i++) {
4681 			DELAY(20);
4682 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4683 			if (v == (MCLBYTES - ETHER_ALIGN))
4684 				break;
4685 		}
4686 		if (i == 10)
4687 			device_printf (sc->bge_dev,
4688 			    "5705 A0 chip failed to load RX ring\n");
4689 	}
4690 
4691 	/* Init jumbo RX ring. */
4692 	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4693 	    (MCLBYTES - ETHER_ALIGN)) {
4694 		if (bge_init_rx_ring_jumbo(sc) != 0) {
4695 			device_printf(sc->bge_dev,
4696 			    "no memory for jumbo Rx buffers.\n");
4697 			bge_stop(sc);
4698 			return;
4699 		}
4700 	}
4701 
4702 	/* Init our RX return ring index. */
4703 	sc->bge_rx_saved_considx = 0;
4704 
4705 	/* Init our RX/TX stat counters. */
4706 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
4707 
4708 	/* Init TX ring. */
4709 	bge_init_tx_ring(sc);
4710 
4711 	/* Enable TX MAC state machine lockup fix. */
4712 	mode = CSR_READ_4(sc, BGE_TX_MODE);
4713 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
4714 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
4715 	/* Turn on transmitter. */
4716 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
4717 
4718 	/* Turn on receiver. */
4719 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4720 
4721 	/*
4722 	 * Set the number of good frames to receive after RX MBUF
4723 	 * Low Watermark has been reached. After the RX MAC receives
4724 	 * this number of frames, it will drop subsequent incoming
4725 	 * frames until the MBUF High Watermark is reached.
4726 	 */
4727 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4728 
4729 	/* Clear MAC statistics. */
4730 	if (BGE_IS_5705_PLUS(sc))
4731 		bge_stats_clear_regs(sc);
4732 
4733 	/* Tell firmware we're alive. */
4734 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4735 
4736 #ifdef DEVICE_POLLING
4737 	/* Disable interrupts if we are polling. */
4738 	if (ifp->if_capenable & IFCAP_POLLING) {
4739 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4740 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
4741 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4742 	} else
4743 #endif
4744 
4745 	/* Enable host interrupts. */
4746 	{
4747 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4748 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4749 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4750 	}
4751 
4752 	bge_ifmedia_upd_locked(ifp);
4753 
4754 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4755 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4756 
4757 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4758 }
4759 
4760 static void
4761 bge_init(void *xsc)
4762 {
4763 	struct bge_softc *sc = xsc;
4764 
4765 	BGE_LOCK(sc);
4766 	bge_init_locked(sc);
4767 	BGE_UNLOCK(sc);
4768 }
4769 
4770 /*
4771  * Set media options.
4772  */
4773 static int
4774 bge_ifmedia_upd(struct ifnet *ifp)
4775 {
4776 	struct bge_softc *sc = ifp->if_softc;
4777 	int res;
4778 
4779 	BGE_LOCK(sc);
4780 	res = bge_ifmedia_upd_locked(ifp);
4781 	BGE_UNLOCK(sc);
4782 
4783 	return (res);
4784 }
4785 
4786 static int
4787 bge_ifmedia_upd_locked(struct ifnet *ifp)
4788 {
4789 	struct bge_softc *sc = ifp->if_softc;
4790 	struct mii_data *mii;
4791 	struct mii_softc *miisc;
4792 	struct ifmedia *ifm;
4793 
4794 	BGE_LOCK_ASSERT(sc);
4795 
4796 	ifm = &sc->bge_ifmedia;
4797 
4798 	/* If this is a 1000baseX NIC, enable the TBI port. */
4799 	if (sc->bge_flags & BGE_FLAG_TBI) {
4800 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4801 			return (EINVAL);
4802 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
4803 		case IFM_AUTO:
4804 			/*
4805 			 * The BCM5704 ASIC appears to have a special
4806 			 * mechanism for programming the autoneg
4807 			 * advertisement registers in TBI mode.
4808 			 */
4809 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4810 				uint32_t sgdig;
4811 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4812 				if (sgdig & BGE_SGDIGSTS_DONE) {
4813 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4814 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4815 					sgdig |= BGE_SGDIGCFG_AUTO |
4816 					    BGE_SGDIGCFG_PAUSE_CAP |
4817 					    BGE_SGDIGCFG_ASYM_PAUSE;
4818 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4819 					    sgdig | BGE_SGDIGCFG_SEND);
4820 					DELAY(5);
4821 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4822 				}
4823 			}
4824 			break;
4825 		case IFM_1000_SX:
4826 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4827 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4828 				    BGE_MACMODE_HALF_DUPLEX);
4829 			} else {
4830 				BGE_SETBIT(sc, BGE_MAC_MODE,
4831 				    BGE_MACMODE_HALF_DUPLEX);
4832 			}
4833 			break;
4834 		default:
4835 			return (EINVAL);
4836 		}
4837 		return (0);
4838 	}
4839 
4840 	sc->bge_link_evt++;
4841 	mii = device_get_softc(sc->bge_miibus);
4842 	if (mii->mii_instance)
4843 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4844 			mii_phy_reset(miisc);
4845 	mii_mediachg(mii);
4846 
4847 	/*
4848 	 * Force an interrupt so that we will call bge_link_upd
4849 	 * if needed and clear any pending link state attention.
4850 	 * Without this we are not getting any further interrupts
4851 	 * for link state changes and thus will not UP the link and
4852 	 * not be able to send in bge_start_locked. The only
4853 	 * way to get things working was to receive a packet and
4854 	 * get an RX intr.
4855 	 * bge_tick should help for fiber cards and we might not
4856 	 * need to do this here if BGE_FLAG_TBI is set but as
4857 	 * we poll for fiber anyway it should not harm.
4858 	 */
4859 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4860 	    sc->bge_flags & BGE_FLAG_5788)
4861 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4862 	else
4863 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4864 
4865 	return (0);
4866 }
4867 
4868 /*
4869  * Report current media status.
4870  */
4871 static void
4872 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4873 {
4874 	struct bge_softc *sc = ifp->if_softc;
4875 	struct mii_data *mii;
4876 
4877 	BGE_LOCK(sc);
4878 
4879 	if (sc->bge_flags & BGE_FLAG_TBI) {
4880 		ifmr->ifm_status = IFM_AVALID;
4881 		ifmr->ifm_active = IFM_ETHER;
4882 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4883 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4884 			ifmr->ifm_status |= IFM_ACTIVE;
4885 		else {
4886 			ifmr->ifm_active |= IFM_NONE;
4887 			BGE_UNLOCK(sc);
4888 			return;
4889 		}
4890 		ifmr->ifm_active |= IFM_1000_SX;
4891 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4892 			ifmr->ifm_active |= IFM_HDX;
4893 		else
4894 			ifmr->ifm_active |= IFM_FDX;
4895 		BGE_UNLOCK(sc);
4896 		return;
4897 	}
4898 
4899 	mii = device_get_softc(sc->bge_miibus);
4900 	mii_pollstat(mii);
4901 	ifmr->ifm_active = mii->mii_media_active;
4902 	ifmr->ifm_status = mii->mii_media_status;
4903 
4904 	BGE_UNLOCK(sc);
4905 }
4906 
4907 static int
4908 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
4909 {
4910 	struct bge_softc *sc = ifp->if_softc;
4911 	struct ifreq *ifr = (struct ifreq *) data;
4912 	struct mii_data *mii;
4913 	int flags, mask, error = 0;
4914 
4915 	switch (command) {
4916 	case SIOCSIFMTU:
4917 		BGE_LOCK(sc);
4918 		if (ifr->ifr_mtu < ETHERMIN ||
4919 		    ((BGE_IS_JUMBO_CAPABLE(sc)) &&
4920 		    ifr->ifr_mtu > BGE_JUMBO_MTU) ||
4921 		    ((!BGE_IS_JUMBO_CAPABLE(sc)) &&
4922 		    ifr->ifr_mtu > ETHERMTU))
4923 			error = EINVAL;
4924 		else if (ifp->if_mtu != ifr->ifr_mtu) {
4925 			ifp->if_mtu = ifr->ifr_mtu;
4926 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4927 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4928 				bge_init_locked(sc);
4929 			}
4930 		}
4931 		BGE_UNLOCK(sc);
4932 		break;
4933 	case SIOCSIFFLAGS:
4934 		BGE_LOCK(sc);
4935 		if (ifp->if_flags & IFF_UP) {
4936 			/*
4937 			 * If only the state of the PROMISC flag changed,
4938 			 * then just use the 'set promisc mode' command
4939 			 * instead of reinitializing the entire NIC. Doing
4940 			 * a full re-init means reloading the firmware and
4941 			 * waiting for it to start up, which may take a
4942 			 * second or two.  Similarly for ALLMULTI.
4943 			 */
4944 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4945 				flags = ifp->if_flags ^ sc->bge_if_flags;
4946 				if (flags & IFF_PROMISC)
4947 					bge_setpromisc(sc);
4948 				if (flags & IFF_ALLMULTI)
4949 					bge_setmulti(sc);
4950 			} else
4951 				bge_init_locked(sc);
4952 		} else {
4953 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4954 				bge_stop(sc);
4955 			}
4956 		}
4957 		sc->bge_if_flags = ifp->if_flags;
4958 		BGE_UNLOCK(sc);
4959 		error = 0;
4960 		break;
4961 	case SIOCADDMULTI:
4962 	case SIOCDELMULTI:
4963 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4964 			BGE_LOCK(sc);
4965 			bge_setmulti(sc);
4966 			BGE_UNLOCK(sc);
4967 			error = 0;
4968 		}
4969 		break;
4970 	case SIOCSIFMEDIA:
4971 	case SIOCGIFMEDIA:
4972 		if (sc->bge_flags & BGE_FLAG_TBI) {
4973 			error = ifmedia_ioctl(ifp, ifr,
4974 			    &sc->bge_ifmedia, command);
4975 		} else {
4976 			mii = device_get_softc(sc->bge_miibus);
4977 			error = ifmedia_ioctl(ifp, ifr,
4978 			    &mii->mii_media, command);
4979 		}
4980 		break;
4981 	case SIOCSIFCAP:
4982 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4983 #ifdef DEVICE_POLLING
4984 		if (mask & IFCAP_POLLING) {
4985 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
4986 				error = ether_poll_register(bge_poll, ifp);
4987 				if (error)
4988 					return (error);
4989 				BGE_LOCK(sc);
4990 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4991 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4992 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4993 				ifp->if_capenable |= IFCAP_POLLING;
4994 				BGE_UNLOCK(sc);
4995 			} else {
4996 				error = ether_poll_deregister(ifp);
4997 				/* Enable interrupt even in error case */
4998 				BGE_LOCK(sc);
4999 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5000 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5001 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5002 				ifp->if_capenable &= ~IFCAP_POLLING;
5003 				BGE_UNLOCK(sc);
5004 			}
5005 		}
5006 #endif
5007 		if ((mask & IFCAP_TXCSUM) != 0 &&
5008 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5009 			ifp->if_capenable ^= IFCAP_TXCSUM;
5010 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5011 				ifp->if_hwassist |= sc->bge_csum_features;
5012 			else
5013 				ifp->if_hwassist &= ~sc->bge_csum_features;
5014 		}
5015 
5016 		if ((mask & IFCAP_RXCSUM) != 0 &&
5017 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5018 			ifp->if_capenable ^= IFCAP_RXCSUM;
5019 
5020 		if ((mask & IFCAP_TSO4) != 0 &&
5021 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5022 			ifp->if_capenable ^= IFCAP_TSO4;
5023 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5024 				ifp->if_hwassist |= CSUM_TSO;
5025 			else
5026 				ifp->if_hwassist &= ~CSUM_TSO;
5027 		}
5028 
5029 		if (mask & IFCAP_VLAN_MTU) {
5030 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
5031 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5032 			bge_init(sc);
5033 		}
5034 
5035 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5036 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5037 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5038 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5039 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5040 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5041 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5042 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5043 			BGE_LOCK(sc);
5044 			bge_setvlan(sc);
5045 			BGE_UNLOCK(sc);
5046 		}
5047 #ifdef VLAN_CAPABILITIES
5048 		VLAN_CAPABILITIES(ifp);
5049 #endif
5050 		break;
5051 	default:
5052 		error = ether_ioctl(ifp, command, data);
5053 		break;
5054 	}
5055 
5056 	return (error);
5057 }
5058 
5059 static void
5060 bge_watchdog(struct bge_softc *sc)
5061 {
5062 	struct ifnet *ifp;
5063 
5064 	BGE_LOCK_ASSERT(sc);
5065 
5066 	if (sc->bge_timer == 0 || --sc->bge_timer)
5067 		return;
5068 
5069 	ifp = sc->bge_ifp;
5070 
5071 	if_printf(ifp, "watchdog timeout -- resetting\n");
5072 
5073 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5074 	bge_init_locked(sc);
5075 
5076 	ifp->if_oerrors++;
5077 }
5078 
5079 /*
5080  * Stop the adapter and free any mbufs allocated to the
5081  * RX and TX lists.
5082  */
5083 static void
5084 bge_stop(struct bge_softc *sc)
5085 {
5086 	struct ifnet *ifp;
5087 
5088 	BGE_LOCK_ASSERT(sc);
5089 
5090 	ifp = sc->bge_ifp;
5091 
5092 	callout_stop(&sc->bge_stat_ch);
5093 
5094 	/* Disable host interrupts. */
5095 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5096 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5097 
5098 	/*
5099 	 * Tell firmware we're shutting down.
5100 	 */
5101 	bge_stop_fw(sc);
5102 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
5103 
5104 	/*
5105 	 * Disable all of the receiver blocks.
5106 	 */
5107 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5108 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5109 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5110 	if (!(BGE_IS_5705_PLUS(sc)))
5111 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5112 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5113 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5114 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5115 
5116 	/*
5117 	 * Disable all of the transmit blocks.
5118 	 */
5119 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5120 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5121 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5122 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5123 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5124 	if (!(BGE_IS_5705_PLUS(sc)))
5125 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5126 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5127 
5128 	/*
5129 	 * Shut down all of the memory managers and related
5130 	 * state machines.
5131 	 */
5132 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5133 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5134 	if (!(BGE_IS_5705_PLUS(sc)))
5135 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5136 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5137 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5138 	if (!(BGE_IS_5705_PLUS(sc))) {
5139 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5140 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5141 	}
5142 	/* Update MAC statistics. */
5143 	if (BGE_IS_5705_PLUS(sc))
5144 		bge_stats_update_regs(sc);
5145 
5146 	bge_reset(sc);
5147 	bge_sig_legacy(sc, BGE_RESET_STOP);
5148 	bge_sig_post_reset(sc, BGE_RESET_STOP);
5149 
5150 	/*
5151 	 * Keep the ASF firmware running if up.
5152 	 */
5153 	if (sc->bge_asf_mode & ASF_STACKUP)
5154 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5155 	else
5156 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5157 
5158 	/* Free the RX lists. */
5159 	bge_free_rx_ring_std(sc);
5160 
5161 	/* Free jumbo RX list. */
5162 	if (BGE_IS_JUMBO_CAPABLE(sc))
5163 		bge_free_rx_ring_jumbo(sc);
5164 
5165 	/* Free TX buffers. */
5166 	bge_free_tx_ring(sc);
5167 
5168 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5169 
5170 	/* Clear MAC's link state (PHY may still have link UP). */
5171 	if (bootverbose && sc->bge_link)
5172 		if_printf(sc->bge_ifp, "link DOWN\n");
5173 	sc->bge_link = 0;
5174 
5175 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5176 }
5177 
5178 /*
5179  * Stop all chip I/O so that the kernel's probe routines don't
5180  * get confused by errant DMAs when rebooting.
5181  */
5182 static int
5183 bge_shutdown(device_t dev)
5184 {
5185 	struct bge_softc *sc;
5186 
5187 	sc = device_get_softc(dev);
5188 	BGE_LOCK(sc);
5189 	bge_stop(sc);
5190 	bge_reset(sc);
5191 	BGE_UNLOCK(sc);
5192 
5193 	return (0);
5194 }
5195 
5196 static int
5197 bge_suspend(device_t dev)
5198 {
5199 	struct bge_softc *sc;
5200 
5201 	sc = device_get_softc(dev);
5202 	BGE_LOCK(sc);
5203 	bge_stop(sc);
5204 	BGE_UNLOCK(sc);
5205 
5206 	return (0);
5207 }
5208 
5209 static int
5210 bge_resume(device_t dev)
5211 {
5212 	struct bge_softc *sc;
5213 	struct ifnet *ifp;
5214 
5215 	sc = device_get_softc(dev);
5216 	BGE_LOCK(sc);
5217 	ifp = sc->bge_ifp;
5218 	if (ifp->if_flags & IFF_UP) {
5219 		bge_init_locked(sc);
5220 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5221 			bge_start_locked(ifp);
5222 	}
5223 	BGE_UNLOCK(sc);
5224 
5225 	return (0);
5226 }
5227 
5228 static void
5229 bge_link_upd(struct bge_softc *sc)
5230 {
5231 	struct mii_data *mii;
5232 	uint32_t link, status;
5233 
5234 	BGE_LOCK_ASSERT(sc);
5235 
5236 	/* Clear 'pending link event' flag. */
5237 	sc->bge_link_evt = 0;
5238 
5239 	/*
5240 	 * Process link state changes.
5241 	 * Grrr. The link status word in the status block does
5242 	 * not work correctly on the BCM5700 rev AX and BX chips,
5243 	 * according to all available information. Hence, we have
5244 	 * to enable MII interrupts in order to properly obtain
5245 	 * async link changes. Unfortunately, this also means that
5246 	 * we have to read the MAC status register to detect link
5247 	 * changes, thereby adding an additional register access to
5248 	 * the interrupt handler.
5249 	 *
5250 	 * XXX: perhaps link state detection procedure used for
5251 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
5252 	 */
5253 
5254 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
5255 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
5256 		status = CSR_READ_4(sc, BGE_MAC_STS);
5257 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
5258 			mii = device_get_softc(sc->bge_miibus);
5259 			mii_pollstat(mii);
5260 			if (!sc->bge_link &&
5261 			    mii->mii_media_status & IFM_ACTIVE &&
5262 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5263 				sc->bge_link++;
5264 				if (bootverbose)
5265 					if_printf(sc->bge_ifp, "link UP\n");
5266 			} else if (sc->bge_link &&
5267 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5268 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5269 				sc->bge_link = 0;
5270 				if (bootverbose)
5271 					if_printf(sc->bge_ifp, "link DOWN\n");
5272 			}
5273 
5274 			/* Clear the interrupt. */
5275 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5276 			    BGE_EVTENB_MI_INTERRUPT);
5277 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
5278 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
5279 			    BRGPHY_INTRS);
5280 		}
5281 		return;
5282 	}
5283 
5284 	if (sc->bge_flags & BGE_FLAG_TBI) {
5285 		status = CSR_READ_4(sc, BGE_MAC_STS);
5286 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5287 			if (!sc->bge_link) {
5288 				sc->bge_link++;
5289 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
5290 					BGE_CLRBIT(sc, BGE_MAC_MODE,
5291 					    BGE_MACMODE_TBI_SEND_CFGS);
5292 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5293 				if (bootverbose)
5294 					if_printf(sc->bge_ifp, "link UP\n");
5295 				if_link_state_change(sc->bge_ifp,
5296 				    LINK_STATE_UP);
5297 			}
5298 		} else if (sc->bge_link) {
5299 			sc->bge_link = 0;
5300 			if (bootverbose)
5301 				if_printf(sc->bge_ifp, "link DOWN\n");
5302 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
5303 		}
5304 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
5305 		/*
5306 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
5307 		 * in status word always set. Workaround this bug by reading
5308 		 * PHY link status directly.
5309 		 */
5310 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
5311 
5312 		if (link != sc->bge_link ||
5313 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
5314 			mii = device_get_softc(sc->bge_miibus);
5315 			mii_pollstat(mii);
5316 			if (!sc->bge_link &&
5317 			    mii->mii_media_status & IFM_ACTIVE &&
5318 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5319 				sc->bge_link++;
5320 				if (bootverbose)
5321 					if_printf(sc->bge_ifp, "link UP\n");
5322 			} else if (sc->bge_link &&
5323 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5324 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5325 				sc->bge_link = 0;
5326 				if (bootverbose)
5327 					if_printf(sc->bge_ifp, "link DOWN\n");
5328 			}
5329 		}
5330 	} else {
5331 		/*
5332 		 * For controllers that call mii_tick, we have to poll
5333 		 * link status.
5334 		 */
5335 		mii = device_get_softc(sc->bge_miibus);
5336 		mii_pollstat(mii);
5337 		bge_miibus_statchg(sc->bge_dev);
5338 	}
5339 
5340 	/* Clear the attention. */
5341 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
5342 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
5343 	    BGE_MACSTAT_LINK_CHANGED);
5344 }
5345 
5346 static void
5347 bge_add_sysctls(struct bge_softc *sc)
5348 {
5349 	struct sysctl_ctx_list *ctx;
5350 	struct sysctl_oid_list *children;
5351 	char tn[32];
5352 	int unit;
5353 
5354 	ctx = device_get_sysctl_ctx(sc->bge_dev);
5355 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
5356 
5357 #ifdef BGE_REGISTER_DEBUG
5358 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
5359 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
5360 	    "Debug Information");
5361 
5362 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
5363 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
5364 	    "Register Read");
5365 
5366 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
5367 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
5368 	    "Memory Read");
5369 
5370 #endif
5371 
5372 	unit = device_get_unit(sc->bge_dev);
5373 	/*
5374 	 * A common design characteristic for many Broadcom client controllers
5375 	 * is that they only support a single outstanding DMA read operation
5376 	 * on the PCIe bus. This means that it will take twice as long to fetch
5377 	 * a TX frame that is split into header and payload buffers as it does
5378 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
5379 	 * these controllers, coalescing buffers to reduce the number of memory
5380 	 * reads is effective way to get maximum performance(about 940Mbps).
5381 	 * Without collapsing TX buffers the maximum TCP bulk transfer
5382 	 * performance is about 850Mbps. However forcing coalescing mbufs
5383 	 * consumes a lot of CPU cycles, so leave it off by default.
5384 	 */
5385 	sc->bge_forced_collapse = 0;
5386 	snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
5387 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
5388 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
5389 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
5390 	    "Number of fragmented TX buffers of a frame allowed before "
5391 	    "forced collapsing");
5392 
5393 	/*
5394 	 * It seems all Broadcom controllers have a bug that can generate UDP
5395 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
5396 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
5397 	 * Even though the probability of generating such UDP datagrams is
5398 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
5399 	 * into network so disable UDP checksum offloading by default.  Users
5400 	 * still override this behavior by setting a sysctl variable,
5401 	 * dev.bge.0.forced_udpcsum.
5402 	 */
5403 	sc->bge_forced_udpcsum = 0;
5404 	snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
5405 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
5406 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
5407 	    CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
5408 	    "Enable UDP checksum offloading even if controller can "
5409 	    "generate UDP checksum value 0");
5410 
5411 	if (BGE_IS_5705_PLUS(sc))
5412 		bge_add_sysctl_stats_regs(sc, ctx, children);
5413 	else
5414 		bge_add_sysctl_stats(sc, ctx, children);
5415 }
5416 
5417 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
5418 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
5419 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
5420 	    desc)
5421 
5422 static void
5423 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5424     struct sysctl_oid_list *parent)
5425 {
5426 	struct sysctl_oid *tree;
5427 	struct sysctl_oid_list *children, *schildren;
5428 
5429 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5430 	    NULL, "BGE Statistics");
5431 	schildren = children = SYSCTL_CHILDREN(tree);
5432 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
5433 	    children, COSFramesDroppedDueToFilters,
5434 	    "FramesDroppedDueToFilters");
5435 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
5436 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
5437 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
5438 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
5439 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
5440 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
5441 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
5442 	    children, ifInDiscards, "InputDiscards");
5443 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
5444 	    children, ifInErrors, "InputErrors");
5445 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
5446 	    children, nicRecvThresholdHit, "RecvThresholdHit");
5447 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
5448 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
5449 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
5450 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
5451 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
5452 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
5453 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
5454 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
5455 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
5456 	    children, nicRingStatusUpdate, "RingStatusUpdate");
5457 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
5458 	    children, nicInterrupts, "Interrupts");
5459 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
5460 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
5461 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
5462 	    children, nicSendThresholdHit, "SendThresholdHit");
5463 
5464 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
5465 	    NULL, "BGE RX Statistics");
5466 	children = SYSCTL_CHILDREN(tree);
5467 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
5468 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
5469 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
5470 	    children, rxstats.etherStatsFragments, "Fragments");
5471 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
5472 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
5473 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
5474 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
5475 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
5476 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
5477 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
5478 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
5479 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
5480 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
5481 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
5482 	    children, rxstats.xoffPauseFramesReceived,
5483 	    "xoffPauseFramesReceived");
5484 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
5485 	    children, rxstats.macControlFramesReceived,
5486 	    "ControlFramesReceived");
5487 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
5488 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
5489 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
5490 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
5491 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
5492 	    children, rxstats.etherStatsJabbers, "Jabbers");
5493 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
5494 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
5495 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
5496 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
5497 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
5498 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
5499 
5500 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
5501 	    NULL, "BGE TX Statistics");
5502 	children = SYSCTL_CHILDREN(tree);
5503 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
5504 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
5505 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
5506 	    children, txstats.etherStatsCollisions, "Collisions");
5507 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
5508 	    children, txstats.outXonSent, "XonSent");
5509 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
5510 	    children, txstats.outXoffSent, "XoffSent");
5511 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
5512 	    children, txstats.flowControlDone, "flowControlDone");
5513 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
5514 	    children, txstats.dot3StatsInternalMacTransmitErrors,
5515 	    "InternalMacTransmitErrors");
5516 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
5517 	    children, txstats.dot3StatsSingleCollisionFrames,
5518 	    "SingleCollisionFrames");
5519 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
5520 	    children, txstats.dot3StatsMultipleCollisionFrames,
5521 	    "MultipleCollisionFrames");
5522 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
5523 	    children, txstats.dot3StatsDeferredTransmissions,
5524 	    "DeferredTransmissions");
5525 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
5526 	    children, txstats.dot3StatsExcessiveCollisions,
5527 	    "ExcessiveCollisions");
5528 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
5529 	    children, txstats.dot3StatsLateCollisions,
5530 	    "LateCollisions");
5531 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
5532 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
5533 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
5534 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
5535 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
5536 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
5537 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
5538 	    children, txstats.dot3StatsCarrierSenseErrors,
5539 	    "CarrierSenseErrors");
5540 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
5541 	    children, txstats.ifOutDiscards, "Discards");
5542 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
5543 	    children, txstats.ifOutErrors, "Errors");
5544 }
5545 
5546 #undef BGE_SYSCTL_STAT
5547 
5548 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
5549 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
5550 
5551 static void
5552 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5553     struct sysctl_oid_list *parent)
5554 {
5555 	struct sysctl_oid *tree;
5556 	struct sysctl_oid_list *child, *schild;
5557 	struct bge_mac_stats *stats;
5558 
5559 	stats = &sc->bge_mac_stats;
5560 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5561 	    NULL, "BGE Statistics");
5562 	schild = child = SYSCTL_CHILDREN(tree);
5563 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
5564 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
5565 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
5566 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
5567 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
5568 	    &stats->DmaWriteHighPriQueueFull,
5569 	    "NIC DMA Write High Priority Queue Full");
5570 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
5571 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
5572 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
5573 	    &stats->InputDiscards, "Discarded Input Frames");
5574 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
5575 	    &stats->InputErrors, "Input Errors");
5576 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
5577 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
5578 
5579 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
5580 	    NULL, "BGE RX Statistics");
5581 	child = SYSCTL_CHILDREN(tree);
5582 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
5583 	    &stats->ifHCInOctets, "Inbound Octets");
5584 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
5585 	    &stats->etherStatsFragments, "Fragments");
5586 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5587 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
5588 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5589 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
5590 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5591 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
5592 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
5593 	    &stats->dot3StatsFCSErrors, "FCS Errors");
5594 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
5595 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
5596 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
5597 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
5598 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
5599 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
5600 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
5601 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
5602 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
5603 	    &stats->xoffStateEntered, "XOFF State Entered");
5604 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
5605 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
5606 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
5607 	    &stats->etherStatsJabbers, "Jabbers");
5608 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
5609 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
5610 
5611 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
5612 	    NULL, "BGE TX Statistics");
5613 	child = SYSCTL_CHILDREN(tree);
5614 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
5615 	    &stats->ifHCOutOctets, "Outbound Octets");
5616 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
5617 	    &stats->etherStatsCollisions, "TX Collisions");
5618 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
5619 	    &stats->outXonSent, "XON Sent");
5620 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
5621 	    &stats->outXoffSent, "XOFF Sent");
5622 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
5623 	    &stats->dot3StatsInternalMacTransmitErrors,
5624 	    "Internal MAC TX Errors");
5625 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
5626 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
5627 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
5628 	    &stats->dot3StatsMultipleCollisionFrames,
5629 	    "Multiple Collision Frames");
5630 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
5631 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
5632 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
5633 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
5634 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
5635 	    &stats->dot3StatsLateCollisions, "Late Collisions");
5636 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5637 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
5638 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5639 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
5640 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5641 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
5642 }
5643 
5644 #undef	BGE_SYSCTL_STAT_ADD64
5645 
5646 static int
5647 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
5648 {
5649 	struct bge_softc *sc;
5650 	uint32_t result;
5651 	int offset;
5652 
5653 	sc = (struct bge_softc *)arg1;
5654 	offset = arg2;
5655 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
5656 	    offsetof(bge_hostaddr, bge_addr_lo));
5657 	return (sysctl_handle_int(oidp, &result, 0, req));
5658 }
5659 
5660 #ifdef BGE_REGISTER_DEBUG
5661 static int
5662 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5663 {
5664 	struct bge_softc *sc;
5665 	uint16_t *sbdata;
5666 	int error;
5667 	int result;
5668 	int i, j;
5669 
5670 	result = -1;
5671 	error = sysctl_handle_int(oidp, &result, 0, req);
5672 	if (error || (req->newptr == NULL))
5673 		return (error);
5674 
5675 	if (result == 1) {
5676 		sc = (struct bge_softc *)arg1;
5677 
5678 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
5679 		printf("Status Block:\n");
5680 		for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
5681 			printf("%06x:", i);
5682 			for (j = 0; j < 8; j++) {
5683 				printf(" %04x", sbdata[i]);
5684 				i += 4;
5685 			}
5686 			printf("\n");
5687 		}
5688 
5689 		printf("Registers:\n");
5690 		for (i = 0x800; i < 0xA00; ) {
5691 			printf("%06x:", i);
5692 			for (j = 0; j < 8; j++) {
5693 				printf(" %08x", CSR_READ_4(sc, i));
5694 				i += 4;
5695 			}
5696 			printf("\n");
5697 		}
5698 
5699 		printf("Hardware Flags:\n");
5700 		if (BGE_IS_5755_PLUS(sc))
5701 			printf(" - 5755 Plus\n");
5702 		if (BGE_IS_575X_PLUS(sc))
5703 			printf(" - 575X Plus\n");
5704 		if (BGE_IS_5705_PLUS(sc))
5705 			printf(" - 5705 Plus\n");
5706 		if (BGE_IS_5714_FAMILY(sc))
5707 			printf(" - 5714 Family\n");
5708 		if (BGE_IS_5700_FAMILY(sc))
5709 			printf(" - 5700 Family\n");
5710 		if (sc->bge_flags & BGE_FLAG_JUMBO)
5711 			printf(" - Supports Jumbo Frames\n");
5712 		if (sc->bge_flags & BGE_FLAG_PCIX)
5713 			printf(" - PCI-X Bus\n");
5714 		if (sc->bge_flags & BGE_FLAG_PCIE)
5715 			printf(" - PCI Express Bus\n");
5716 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
5717 			printf(" - No 3 LEDs\n");
5718 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
5719 			printf(" - RX Alignment Bug\n");
5720 	}
5721 
5722 	return (error);
5723 }
5724 
5725 static int
5726 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
5727 {
5728 	struct bge_softc *sc;
5729 	int error;
5730 	uint16_t result;
5731 	uint32_t val;
5732 
5733 	result = -1;
5734 	error = sysctl_handle_int(oidp, &result, 0, req);
5735 	if (error || (req->newptr == NULL))
5736 		return (error);
5737 
5738 	if (result < 0x8000) {
5739 		sc = (struct bge_softc *)arg1;
5740 		val = CSR_READ_4(sc, result);
5741 		printf("reg 0x%06X = 0x%08X\n", result, val);
5742 	}
5743 
5744 	return (error);
5745 }
5746 
5747 static int
5748 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
5749 {
5750 	struct bge_softc *sc;
5751 	int error;
5752 	uint16_t result;
5753 	uint32_t val;
5754 
5755 	result = -1;
5756 	error = sysctl_handle_int(oidp, &result, 0, req);
5757 	if (error || (req->newptr == NULL))
5758 		return (error);
5759 
5760 	if (result < 0x8000) {
5761 		sc = (struct bge_softc *)arg1;
5762 		val = bge_readmem_ind(sc, result);
5763 		printf("mem 0x%06X = 0x%08X\n", result, val);
5764 	}
5765 
5766 	return (error);
5767 }
5768 #endif
5769 
5770 static int
5771 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5772 {
5773 
5774 	if (sc->bge_flags & BGE_FLAG_EADDR)
5775 		return (1);
5776 
5777 #ifdef __sparc64__
5778 	OF_getetheraddr(sc->bge_dev, ether_addr);
5779 	return (0);
5780 #endif
5781 	return (1);
5782 }
5783 
5784 static int
5785 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5786 {
5787 	uint32_t mac_addr;
5788 
5789 	mac_addr = bge_readmem_ind(sc, 0x0c14);
5790 	if ((mac_addr >> 16) == 0x484b) {
5791 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
5792 		ether_addr[1] = (uint8_t)mac_addr;
5793 		mac_addr = bge_readmem_ind(sc, 0x0c18);
5794 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
5795 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
5796 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
5797 		ether_addr[5] = (uint8_t)mac_addr;
5798 		return (0);
5799 	}
5800 	return (1);
5801 }
5802 
5803 static int
5804 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5805 {
5806 	int mac_offset = BGE_EE_MAC_OFFSET;
5807 
5808 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5809 		mac_offset = BGE_EE_MAC_OFFSET_5906;
5810 
5811 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5812 	    ETHER_ADDR_LEN));
5813 }
5814 
5815 static int
5816 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5817 {
5818 
5819 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5820 		return (1);
5821 
5822 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5823 	   ETHER_ADDR_LEN));
5824 }
5825 
5826 static int
5827 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5828 {
5829 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5830 		/* NOTE: Order is critical */
5831 		bge_get_eaddr_fw,
5832 		bge_get_eaddr_mem,
5833 		bge_get_eaddr_nvram,
5834 		bge_get_eaddr_eeprom,
5835 		NULL
5836 	};
5837 	const bge_eaddr_fcn_t *func;
5838 
5839 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5840 		if ((*func)(sc, eaddr) == 0)
5841 			break;
5842 	}
5843 	return (*func == NULL ? ENXIO : 0);
5844 }
5845