xref: /freebsd/sys/dev/bwi/if_bwi.c (revision aa0a1e58)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 
43 #include <sys/param.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/bus.h>
47 #include <sys/malloc.h>
48 #include <sys/proc.h>
49 #include <sys/rman.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/taskqueue.h>
55 
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 #include <net/if_arp.h>
61 #include <net/ethernet.h>
62 #include <net/if_llc.h>
63 
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66 #include <net80211/ieee80211_regdomain.h>
67 #include <net80211/ieee80211_phy.h>
68 #include <net80211/ieee80211_ratectl.h>
69 
70 #include <net/bpf.h>
71 
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/if_ether.h>
75 #endif
76 
77 #include <machine/bus.h>
78 
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcireg.h>
81 
82 #include <dev/bwi/bitops.h>
83 #include <dev/bwi/if_bwireg.h>
84 #include <dev/bwi/if_bwivar.h>
85 #include <dev/bwi/bwimac.h>
86 #include <dev/bwi/bwirf.h>
87 
88 struct bwi_clock_freq {
89 	u_int		clkfreq_min;
90 	u_int		clkfreq_max;
91 };
92 
93 struct bwi_myaddr_bssid {
94 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
95 	uint8_t		bssid[IEEE80211_ADDR_LEN];
96 } __packed;
97 
98 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
99 		   const char [IFNAMSIZ], int, int, int,
100 		   const uint8_t [IEEE80211_ADDR_LEN],
101 		   const uint8_t [IEEE80211_ADDR_LEN]);
102 static void	bwi_vap_delete(struct ieee80211vap *);
103 static void	bwi_init(void *);
104 static int	bwi_ioctl(struct ifnet *, u_long, caddr_t);
105 static void	bwi_start(struct ifnet *);
106 static void	bwi_start_locked(struct ifnet *);
107 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
108 			const struct ieee80211_bpf_params *);
109 static void	bwi_watchdog(void *);
110 static void	bwi_scan_start(struct ieee80211com *);
111 static void	bwi_set_channel(struct ieee80211com *);
112 static void	bwi_scan_end(struct ieee80211com *);
113 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
114 static void	bwi_updateslot(struct ifnet *);
115 static int	bwi_media_change(struct ifnet *);
116 
117 static void	bwi_calibrate(void *);
118 
119 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
120 static int	bwi_calc_noise(struct bwi_softc *);
121 static __inline uint8_t bwi_ofdm_plcp2rate(const uint32_t *);
122 static __inline uint8_t bwi_ds_plcp2rate(const struct ieee80211_ds_plcp_hdr *);
123 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
124 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
125 
126 static void	bwi_restart(void *, int);
127 static void	bwi_init_statechg(struct bwi_softc *, int);
128 static void	bwi_stop(struct bwi_softc *, int);
129 static void	bwi_stop_locked(struct bwi_softc *, int);
130 static int	bwi_newbuf(struct bwi_softc *, int, int);
131 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
132 			  struct ieee80211_node *);
133 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
134 			  struct ieee80211_node *,
135 			  const struct ieee80211_bpf_params *);
136 
137 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
138 				       bus_addr_t, int, int);
139 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
140 
141 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
142 static int	bwi_init_rx_ring32(struct bwi_softc *);
143 static int	bwi_init_txstats32(struct bwi_softc *);
144 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
145 static void	bwi_free_rx_ring32(struct bwi_softc *);
146 static void	bwi_free_txstats32(struct bwi_softc *);
147 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
148 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
149 				    int, bus_addr_t, int);
150 static int	bwi_rxeof32(struct bwi_softc *);
151 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
152 static void	bwi_txeof_status32(struct bwi_softc *);
153 
154 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
155 static int	bwi_init_rx_ring64(struct bwi_softc *);
156 static int	bwi_init_txstats64(struct bwi_softc *);
157 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
158 static void	bwi_free_rx_ring64(struct bwi_softc *);
159 static void	bwi_free_txstats64(struct bwi_softc *);
160 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
161 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
162 				    int, bus_addr_t, int);
163 static int	bwi_rxeof64(struct bwi_softc *);
164 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
165 static void	bwi_txeof_status64(struct bwi_softc *);
166 
167 static int	bwi_rxeof(struct bwi_softc *, int);
168 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
169 static void	bwi_txeof(struct bwi_softc *);
170 static void	bwi_txeof_status(struct bwi_softc *, int);
171 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
172 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
173 
174 static int	bwi_dma_alloc(struct bwi_softc *);
175 static void	bwi_dma_free(struct bwi_softc *);
176 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
177 				   struct bwi_ring_data *, bus_size_t,
178 				   uint32_t);
179 static int	bwi_dma_mbuf_create(struct bwi_softc *);
180 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
181 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
182 static void	bwi_dma_txstats_free(struct bwi_softc *);
183 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
184 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
185 				 bus_size_t, int);
186 
187 static void	bwi_power_on(struct bwi_softc *, int);
188 static int	bwi_power_off(struct bwi_softc *, int);
189 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
190 static int	bwi_set_clock_delay(struct bwi_softc *);
191 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
192 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
193 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
194 				    const uint8_t *);
195 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
196 
197 static void	bwi_get_card_flags(struct bwi_softc *);
198 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
199 
200 static int	bwi_bus_attach(struct bwi_softc *);
201 static int	bwi_bbp_attach(struct bwi_softc *);
202 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
203 static void	bwi_bbp_power_off(struct bwi_softc *);
204 
205 static const char *bwi_regwin_name(const struct bwi_regwin *);
206 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
207 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
208 static int	bwi_regwin_select(struct bwi_softc *, int);
209 
210 static void	bwi_led_attach(struct bwi_softc *);
211 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
212 static void	bwi_led_event(struct bwi_softc *, int);
213 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
214 static void	bwi_led_blink_next(void *);
215 static void	bwi_led_blink_end(void *);
216 
217 static const struct {
218 	uint16_t	did_min;
219 	uint16_t	did_max;
220 	uint16_t	bbp_id;
221 } bwi_bbpid_map[] = {
222 	{ 0x4301, 0x4301, 0x4301 },
223 	{ 0x4305, 0x4307, 0x4307 },
224 	{ 0x4403, 0x4403, 0x4402 },
225 	{ 0x4610, 0x4615, 0x4610 },
226 	{ 0x4710, 0x4715, 0x4710 },
227 	{ 0x4720, 0x4725, 0x4309 }
228 };
229 
230 static const struct {
231 	uint16_t	bbp_id;
232 	int		nregwin;
233 } bwi_regwin_count[] = {
234 	{ 0x4301, 5 },
235 	{ 0x4306, 6 },
236 	{ 0x4307, 5 },
237 	{ 0x4310, 8 },
238 	{ 0x4401, 3 },
239 	{ 0x4402, 3 },
240 	{ 0x4610, 9 },
241 	{ 0x4704, 9 },
242 	{ 0x4710, 9 },
243 	{ 0x5365, 7 }
244 };
245 
246 #define CLKSRC(src) 				\
247 [BWI_CLKSRC_ ## src] = {			\
248 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
249 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
250 }
251 
252 static const struct {
253 	u_int	freq_min;
254 	u_int	freq_max;
255 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
256 	CLKSRC(LP_OSC),
257 	CLKSRC(CS_OSC),
258 	CLKSRC(PCI)
259 };
260 
261 #undef CLKSRC
262 
263 #define VENDOR_LED_ACT(vendor)				\
264 {							\
265 	.vid = PCI_VENDOR_##vendor,			\
266 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
267 }
268 
269 static const struct {
270 #define	PCI_VENDOR_COMPAQ	0x0e11
271 #define	PCI_VENDOR_LINKSYS	0x1737
272 	uint16_t	vid;
273 	uint8_t		led_act[BWI_LED_MAX];
274 } bwi_vendor_led_act[] = {
275 	VENDOR_LED_ACT(COMPAQ),
276 	VENDOR_LED_ACT(LINKSYS)
277 #undef PCI_VENDOR_LINKSYS
278 #undef PCI_VENDOR_COMPAQ
279 };
280 
281 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
282 	{ BWI_VENDOR_LED_ACT_DEFAULT };
283 
284 #undef VENDOR_LED_ACT
285 
286 static const struct {
287 	int	on_dur;
288 	int	off_dur;
289 } bwi_led_duration[109] = {
290 	[0]	= { 400, 100 },
291 	[2]	= { 150, 75 },
292 	[4]	= { 90, 45 },
293 	[11]	= { 66, 34 },
294 	[12]	= { 53, 26 },
295 	[18]	= { 42, 21 },
296 	[22]	= { 35, 17 },
297 	[24]	= { 32, 16 },
298 	[36]	= { 21, 10 },
299 	[48]	= { 16, 8 },
300 	[72]	= { 11, 5 },
301 	[96]	= { 9, 4 },
302 	[108]	= { 7, 3 }
303 };
304 
305 #ifdef BWI_DEBUG
306 #ifdef BWI_DEBUG_VERBOSE
307 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
308 #else
309 static uint32_t	bwi_debug;
310 #endif
311 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
312 #endif	/* BWI_DEBUG */
313 
314 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
315 
316 uint16_t
317 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
318 {
319 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
320 }
321 
322 static __inline void
323 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
324 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
325 		 int tx)
326 {
327 	struct bwi_desc32 *desc = &desc_array[desc_idx];
328 	uint32_t ctrl, addr, addr_hi, addr_lo;
329 
330 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
331 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
332 
333 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
334 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
335 
336 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
337 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
338 	if (desc_idx == ndesc - 1)
339 		ctrl |= BWI_DESC32_C_EOR;
340 	if (tx) {
341 		/* XXX */
342 		ctrl |= BWI_DESC32_C_FRAME_START |
343 			BWI_DESC32_C_FRAME_END |
344 			BWI_DESC32_C_INTR;
345 	}
346 
347 	desc->addr = htole32(addr);
348 	desc->ctrl = htole32(ctrl);
349 }
350 
351 int
352 bwi_attach(struct bwi_softc *sc)
353 {
354 	struct ieee80211com *ic;
355 	device_t dev = sc->sc_dev;
356 	struct ifnet *ifp;
357 	struct bwi_mac *mac;
358 	struct bwi_phy *phy;
359 	int i, error;
360 	uint8_t bands;
361 	uint8_t macaddr[IEEE80211_ADDR_LEN];
362 
363 	BWI_LOCK_INIT(sc);
364 
365 	/*
366 	 * Initialize taskq and various tasks
367 	 */
368 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
369 		taskqueue_thread_enqueue, &sc->sc_tq);
370 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
371 		device_get_nameunit(dev));
372 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
373 
374 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
375 
376 	/*
377 	 * Initialize sysctl variables
378 	 */
379 	sc->sc_fw_version = BWI_FW_VERSION3;
380 	sc->sc_led_idle = (2350 * hz) / 1000;
381 	sc->sc_led_blink = 1;
382 	sc->sc_txpwr_calib = 1;
383 #ifdef BWI_DEBUG
384 	sc->sc_debug = bwi_debug;
385 #endif
386 	bwi_power_on(sc, 1);
387 
388 	error = bwi_bbp_attach(sc);
389 	if (error)
390 		goto fail;
391 
392 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
393 	if (error)
394 		goto fail;
395 
396 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
397 		error = bwi_set_clock_delay(sc);
398 		if (error)
399 			goto fail;
400 
401 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
402 		if (error)
403 			goto fail;
404 
405 		error = bwi_get_pwron_delay(sc);
406 		if (error)
407 			goto fail;
408 	}
409 
410 	error = bwi_bus_attach(sc);
411 	if (error)
412 		goto fail;
413 
414 	bwi_get_card_flags(sc);
415 
416 	bwi_led_attach(sc);
417 
418 	for (i = 0; i < sc->sc_nmac; ++i) {
419 		struct bwi_regwin *old;
420 
421 		mac = &sc->sc_mac[i];
422 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
423 		if (error)
424 			goto fail;
425 
426 		error = bwi_mac_lateattach(mac);
427 		if (error)
428 			goto fail;
429 
430 		error = bwi_regwin_switch(sc, old, NULL);
431 		if (error)
432 			goto fail;
433 	}
434 
435 	/*
436 	 * XXX First MAC is known to exist
437 	 * TODO2
438 	 */
439 	mac = &sc->sc_mac[0];
440 	phy = &mac->mac_phy;
441 
442 	bwi_bbp_power_off(sc);
443 
444 	error = bwi_dma_alloc(sc);
445 	if (error)
446 		goto fail;
447 
448 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
449 	if (ifp == NULL) {
450 		device_printf(dev, "can not if_alloc()\n");
451 		error = ENOSPC;
452 		goto fail;
453 	}
454 	ic = ifp->if_l2com;
455 
456 	/* set these up early for if_printf use */
457 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
458 
459 	ifp->if_softc = sc;
460 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
461 	ifp->if_init = bwi_init;
462 	ifp->if_ioctl = bwi_ioctl;
463 	ifp->if_start = bwi_start;
464 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
465 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
466 	IFQ_SET_READY(&ifp->if_snd);
467 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
468 
469 	/*
470 	 * Setup ratesets, phytype, channels and get MAC address
471 	 */
472 	bands = 0;
473 	if (phy->phy_mode == IEEE80211_MODE_11B ||
474 	    phy->phy_mode == IEEE80211_MODE_11G) {
475 		setbit(&bands, IEEE80211_MODE_11B);
476 		if (phy->phy_mode == IEEE80211_MODE_11B) {
477 			ic->ic_phytype = IEEE80211_T_DS;
478 		} else {
479 			ic->ic_phytype = IEEE80211_T_OFDM;
480 			setbit(&bands, IEEE80211_MODE_11G);
481 		}
482 
483 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, macaddr);
484 		if (IEEE80211_IS_MULTICAST(macaddr)) {
485 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, macaddr);
486 			if (IEEE80211_IS_MULTICAST(macaddr)) {
487 				device_printf(dev,
488 				    "invalid MAC address: %6D\n",
489 				    macaddr, ":");
490 			}
491 		}
492 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
493 		/* TODO:11A */
494 		setbit(&bands, IEEE80211_MODE_11A);
495 		error = ENXIO;
496 		goto fail;
497 	} else {
498 		panic("unknown phymode %d\n", phy->phy_mode);
499 	}
500 
501 	/* Get locale */
502 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
503 				   BWI_SPROM_CARD_INFO_LOCALE);
504 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
505 	/* XXX use locale */
506 	ieee80211_init_channels(ic, NULL, &bands);
507 
508 	ic->ic_ifp = ifp;
509 	ic->ic_caps = IEEE80211_C_STA |
510 		      IEEE80211_C_SHSLOT |
511 		      IEEE80211_C_SHPREAMBLE |
512 		      IEEE80211_C_WPA |
513 		      IEEE80211_C_BGSCAN |
514 		      IEEE80211_C_MONITOR;
515 	ic->ic_opmode = IEEE80211_M_STA;
516 	ieee80211_ifattach(ic, macaddr);
517 
518 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
519 
520 	/* override default methods */
521 	ic->ic_vap_create = bwi_vap_create;
522 	ic->ic_vap_delete = bwi_vap_delete;
523 	ic->ic_raw_xmit = bwi_raw_xmit;
524 	ic->ic_updateslot = bwi_updateslot;
525 	ic->ic_scan_start = bwi_scan_start;
526 	ic->ic_scan_end = bwi_scan_end;
527 	ic->ic_set_channel = bwi_set_channel;
528 
529 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
530 
531 	ieee80211_radiotap_attach(ic,
532 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
533 		BWI_TX_RADIOTAP_PRESENT,
534 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
535 		BWI_RX_RADIOTAP_PRESENT);
536 
537 	/*
538 	 * Add sysctl nodes
539 	 */
540 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
541 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
542 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
543 		        "Firmware version");
544 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
545 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
546 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
547 		        "# ticks before LED enters idle state");
548 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
549 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
550 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
551 		       "Allow LED to blink");
552 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
553 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
554 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
555 		       "Enable software TX power calibration");
556 #ifdef BWI_DEBUG
557 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
558 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
559 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
560 #endif
561 	if (bootverbose)
562 		ieee80211_announce(ic);
563 
564 	return (0);
565 fail:
566 	BWI_LOCK_DESTROY(sc);
567 	return (error);
568 }
569 
570 int
571 bwi_detach(struct bwi_softc *sc)
572 {
573 	struct ifnet *ifp = sc->sc_ifp;
574 	struct ieee80211com *ic = ifp->if_l2com;
575 	int i;
576 
577 	bwi_stop(sc, 1);
578 	callout_drain(&sc->sc_led_blink_ch);
579 	callout_drain(&sc->sc_calib_ch);
580 	callout_drain(&sc->sc_watchdog_timer);
581 	ieee80211_ifdetach(ic);
582 
583 	for (i = 0; i < sc->sc_nmac; ++i)
584 		bwi_mac_detach(&sc->sc_mac[i]);
585 	bwi_dma_free(sc);
586 	if_free(ifp);
587 	taskqueue_free(sc->sc_tq);
588 
589 	BWI_LOCK_DESTROY(sc);
590 
591 	return (0);
592 }
593 
594 static struct ieee80211vap *
595 bwi_vap_create(struct ieee80211com *ic,
596 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
597 	const uint8_t bssid[IEEE80211_ADDR_LEN],
598 	const uint8_t mac[IEEE80211_ADDR_LEN])
599 {
600 	struct bwi_vap *bvp;
601 	struct ieee80211vap *vap;
602 
603 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
604 		return NULL;
605 	bvp = (struct bwi_vap *) malloc(sizeof(struct bwi_vap),
606 	    M_80211_VAP, M_WAITOK | M_ZERO);
607 	if (bvp == NULL)
608 		return NULL;
609 	vap = &bvp->bv_vap;
610 	/* enable s/w bmiss handling for sta mode */
611 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
612 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
613 
614 	/* override default methods */
615 	bvp->bv_newstate = vap->iv_newstate;
616 	vap->iv_newstate = bwi_newstate;
617 #if 0
618 	vap->iv_update_beacon = bwi_beacon_update;
619 #endif
620 	ieee80211_ratectl_init(vap);
621 
622 	/* complete setup */
623 	ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status);
624 	ic->ic_opmode = opmode;
625 	return vap;
626 }
627 
628 static void
629 bwi_vap_delete(struct ieee80211vap *vap)
630 {
631 	struct bwi_vap *bvp = BWI_VAP(vap);
632 
633 	ieee80211_ratectl_deinit(vap);
634 	ieee80211_vap_detach(vap);
635 	free(bvp, M_80211_VAP);
636 }
637 
638 void
639 bwi_suspend(struct bwi_softc *sc)
640 {
641 	bwi_stop(sc, 1);
642 }
643 
644 void
645 bwi_resume(struct bwi_softc *sc)
646 {
647 	struct ifnet *ifp = sc->sc_ifp;
648 
649 	if (ifp->if_flags & IFF_UP)
650 		bwi_init(sc);
651 }
652 
653 int
654 bwi_shutdown(struct bwi_softc *sc)
655 {
656 	bwi_stop(sc, 1);
657 	return 0;
658 }
659 
660 static void
661 bwi_power_on(struct bwi_softc *sc, int with_pll)
662 {
663 	uint32_t gpio_in, gpio_out, gpio_en;
664 	uint16_t status;
665 
666 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
667 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
668 		goto back;
669 
670 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
671 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
672 
673 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
674 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
675 	if (with_pll) {
676 		/* Turn off PLL first */
677 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
678 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
679 	}
680 
681 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
682 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
683 	DELAY(1000);
684 
685 	if (with_pll) {
686 		/* Turn on PLL */
687 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
688 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
689 		DELAY(5000);
690 	}
691 
692 back:
693 	/* Clear "Signaled Target Abort" */
694 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
695 	status &= ~PCIM_STATUS_STABORT;
696 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
697 }
698 
699 static int
700 bwi_power_off(struct bwi_softc *sc, int with_pll)
701 {
702 	uint32_t gpio_out, gpio_en;
703 
704 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
705 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
706 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
707 
708 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
709 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
710 	if (with_pll) {
711 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
712 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
713 	}
714 
715 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
716 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
717 	return 0;
718 }
719 
720 int
721 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
722 		  struct bwi_regwin **old_rw)
723 {
724 	int error;
725 
726 	if (old_rw != NULL)
727 		*old_rw = NULL;
728 
729 	if (!BWI_REGWIN_EXIST(rw))
730 		return EINVAL;
731 
732 	if (sc->sc_cur_regwin != rw) {
733 		error = bwi_regwin_select(sc, rw->rw_id);
734 		if (error) {
735 			device_printf(sc->sc_dev, "can't select regwin %d\n",
736 				  rw->rw_id);
737 			return error;
738 		}
739 	}
740 
741 	if (old_rw != NULL)
742 		*old_rw = sc->sc_cur_regwin;
743 	sc->sc_cur_regwin = rw;
744 	return 0;
745 }
746 
747 static int
748 bwi_regwin_select(struct bwi_softc *sc, int id)
749 {
750 	uint32_t win = BWI_PCIM_REGWIN(id);
751 	int i;
752 
753 #define RETRY_MAX	50
754 	for (i = 0; i < RETRY_MAX; ++i) {
755 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
756 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
757 			return 0;
758 		DELAY(10);
759 	}
760 #undef RETRY_MAX
761 
762 	return ENXIO;
763 }
764 
765 static void
766 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
767 {
768 	uint32_t val;
769 
770 	val = CSR_READ_4(sc, BWI_ID_HI);
771 	*type = BWI_ID_HI_REGWIN_TYPE(val);
772 	*rev = BWI_ID_HI_REGWIN_REV(val);
773 
774 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
775 		"vendor 0x%04x\n", *type, *rev,
776 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
777 }
778 
779 static int
780 bwi_bbp_attach(struct bwi_softc *sc)
781 {
782 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
783 	uint16_t bbp_id, rw_type;
784 	uint8_t rw_rev;
785 	uint32_t info;
786 	int error, nregwin, i;
787 
788 	/*
789 	 * Get 0th regwin information
790 	 * NOTE: 0th regwin should exist
791 	 */
792 	error = bwi_regwin_select(sc, 0);
793 	if (error) {
794 		device_printf(sc->sc_dev, "can't select regwin 0\n");
795 		return error;
796 	}
797 	bwi_regwin_info(sc, &rw_type, &rw_rev);
798 
799 	/*
800 	 * Find out BBP id
801 	 */
802 	bbp_id = 0;
803 	info = 0;
804 	if (rw_type == BWI_REGWIN_T_COM) {
805 		info = CSR_READ_4(sc, BWI_INFO);
806 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
807 
808 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
809 
810 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
811 	} else {
812 		for (i = 0; i < N(bwi_bbpid_map); ++i) {
813 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
814 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
815 				bbp_id = bwi_bbpid_map[i].bbp_id;
816 				break;
817 			}
818 		}
819 		if (bbp_id == 0) {
820 			device_printf(sc->sc_dev, "no BBP id for device id "
821 				      "0x%04x\n", sc->sc_pci_did);
822 			return ENXIO;
823 		}
824 
825 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
826 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
827 	}
828 
829 	/*
830 	 * Find out number of regwins
831 	 */
832 	nregwin = 0;
833 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
834 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
835 	} else {
836 		for (i = 0; i < N(bwi_regwin_count); ++i) {
837 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
838 				nregwin = bwi_regwin_count[i].nregwin;
839 				break;
840 			}
841 		}
842 		if (nregwin == 0) {
843 			device_printf(sc->sc_dev, "no number of win for "
844 				      "BBP id 0x%04x\n", bbp_id);
845 			return ENXIO;
846 		}
847 	}
848 
849 	/* Record BBP id/rev for later using */
850 	sc->sc_bbp_id = bbp_id;
851 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
852 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
853 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
854 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
855 
856 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
857 		nregwin, sc->sc_cap);
858 
859 	/*
860 	 * Create rest of the regwins
861 	 */
862 
863 	/* Don't re-create common regwin, if it is already created */
864 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
865 
866 	for (; i < nregwin; ++i) {
867 		/*
868 		 * Get regwin information
869 		 */
870 		error = bwi_regwin_select(sc, i);
871 		if (error) {
872 			device_printf(sc->sc_dev,
873 				      "can't select regwin %d\n", i);
874 			return error;
875 		}
876 		bwi_regwin_info(sc, &rw_type, &rw_rev);
877 
878 		/*
879 		 * Try attach:
880 		 * 1) Bus (PCI/PCIE) regwin
881 		 * 2) MAC regwin
882 		 * Ignore rest types of regwin
883 		 */
884 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
885 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
886 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
887 				device_printf(sc->sc_dev,
888 					      "bus regwin already exists\n");
889 			} else {
890 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
891 						  rw_type, rw_rev);
892 			}
893 		} else if (rw_type == BWI_REGWIN_T_MAC) {
894 			/* XXX ignore return value */
895 			bwi_mac_attach(sc, i, rw_rev);
896 		}
897 	}
898 
899 	/* At least one MAC shold exist */
900 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
901 		device_printf(sc->sc_dev, "no MAC was found\n");
902 		return ENXIO;
903 	}
904 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
905 
906 	/* Bus regwin must exist */
907 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
908 		device_printf(sc->sc_dev, "no bus regwin was found\n");
909 		return ENXIO;
910 	}
911 
912 	/* Start with first MAC */
913 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
914 	if (error)
915 		return error;
916 
917 	return 0;
918 #undef N
919 }
920 
921 int
922 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
923 {
924 	struct bwi_regwin *old, *bus;
925 	uint32_t val;
926 	int error;
927 
928 	bus = &sc->sc_bus_regwin;
929 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
930 
931 	/*
932 	 * Tell bus to generate requested interrupts
933 	 */
934 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
935 		/*
936 		 * NOTE: Read BWI_FLAGS from MAC regwin
937 		 */
938 		val = CSR_READ_4(sc, BWI_FLAGS);
939 
940 		error = bwi_regwin_switch(sc, bus, &old);
941 		if (error)
942 			return error;
943 
944 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
945 	} else {
946 		uint32_t mac_mask;
947 
948 		mac_mask = 1 << mac->mac_id;
949 
950 		error = bwi_regwin_switch(sc, bus, &old);
951 		if (error)
952 			return error;
953 
954 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
955 		val |= mac_mask << 8;
956 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
957 	}
958 
959 	if (sc->sc_flags & BWI_F_BUS_INITED)
960 		goto back;
961 
962 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
963 		/*
964 		 * Enable prefetch and burst
965 		 */
966 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
967 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
968 
969 		if (bus->rw_rev < 5) {
970 			struct bwi_regwin *com = &sc->sc_com_regwin;
971 
972 			/*
973 			 * Configure timeouts for bus operation
974 			 */
975 
976 			/*
977 			 * Set service timeout and request timeout
978 			 */
979 			CSR_SETBITS_4(sc, BWI_CONF_LO,
980 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
981 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
982 
983 			/*
984 			 * If there is common regwin, we switch to that regwin
985 			 * and switch back to bus regwin once we have done.
986 			 */
987 			if (BWI_REGWIN_EXIST(com)) {
988 				error = bwi_regwin_switch(sc, com, NULL);
989 				if (error)
990 					return error;
991 			}
992 
993 			/* Let bus know what we have changed */
994 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
995 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
996 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
997 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
998 
999 			if (BWI_REGWIN_EXIST(com)) {
1000 				error = bwi_regwin_switch(sc, bus, NULL);
1001 				if (error)
1002 					return error;
1003 			}
1004 		} else if (bus->rw_rev >= 11) {
1005 			/*
1006 			 * Enable memory read multiple
1007 			 */
1008 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
1009 		}
1010 	} else {
1011 		/* TODO:PCIE */
1012 	}
1013 
1014 	sc->sc_flags |= BWI_F_BUS_INITED;
1015 back:
1016 	return bwi_regwin_switch(sc, old, NULL);
1017 }
1018 
1019 static void
1020 bwi_get_card_flags(struct bwi_softc *sc)
1021 {
1022 #define	PCI_VENDOR_APPLE 0x106b
1023 #define	PCI_VENDOR_DELL  0x1028
1024 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1025 	if (sc->sc_card_flags == 0xffff)
1026 		sc->sc_card_flags = 0;
1027 
1028 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1029 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1030 	    sc->sc_pci_revid == 0x74)
1031 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1032 
1033 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1034 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1035 	    sc->sc_pci_revid > 0x40)
1036 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1037 
1038 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1039 #undef PCI_VENDOR_DELL
1040 #undef PCI_VENDOR_APPLE
1041 }
1042 
1043 static void
1044 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1045 {
1046 	int i;
1047 
1048 	for (i = 0; i < 3; ++i) {
1049 		*((uint16_t *)eaddr + i) =
1050 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1051 	}
1052 }
1053 
1054 static void
1055 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1056 {
1057 	struct bwi_regwin *com;
1058 	uint32_t val;
1059 	u_int div;
1060 	int src;
1061 
1062 	bzero(freq, sizeof(*freq));
1063 	com = &sc->sc_com_regwin;
1064 
1065 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1066 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1067 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1068 
1069 	/*
1070 	 * Calculate clock frequency
1071 	 */
1072 	src = -1;
1073 	div = 0;
1074 	if (com->rw_rev < 6) {
1075 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1076 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1077 			src = BWI_CLKSRC_PCI;
1078 			div = 64;
1079 		} else {
1080 			src = BWI_CLKSRC_CS_OSC;
1081 			div = 32;
1082 		}
1083 	} else if (com->rw_rev < 10) {
1084 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1085 
1086 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1087 		if (src == BWI_CLKSRC_LP_OSC) {
1088 			div = 1;
1089 		} else {
1090 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1091 
1092 			/* Unknown source */
1093 			if (src >= BWI_CLKSRC_MAX)
1094 				src = BWI_CLKSRC_CS_OSC;
1095 		}
1096 	} else {
1097 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1098 
1099 		src = BWI_CLKSRC_CS_OSC;
1100 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1101 	}
1102 
1103 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1104 	KASSERT(div != 0, ("div zero"));
1105 
1106 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1107 		src == BWI_CLKSRC_PCI ? "PCI" :
1108 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1109 
1110 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1111 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1112 
1113 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1114 		freq->clkfreq_min, freq->clkfreq_max);
1115 }
1116 
1117 static int
1118 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1119 {
1120 	struct bwi_regwin *old, *com;
1121 	uint32_t clk_ctrl, clk_src;
1122 	int error, pwr_off = 0;
1123 
1124 	com = &sc->sc_com_regwin;
1125 	if (!BWI_REGWIN_EXIST(com))
1126 		return 0;
1127 
1128 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1129 		return 0;
1130 
1131 	/*
1132 	 * For common regwin whose rev is [6, 10), the chip
1133 	 * must be capable to change clock mode.
1134 	 */
1135 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1136 		return 0;
1137 
1138 	error = bwi_regwin_switch(sc, com, &old);
1139 	if (error)
1140 		return error;
1141 
1142 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1143 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1144 
1145 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1146 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1147 
1148 	switch (clk_mode) {
1149 	case BWI_CLOCK_MODE_FAST:
1150 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1151 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1152 		break;
1153 	case BWI_CLOCK_MODE_SLOW:
1154 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1155 		break;
1156 	case BWI_CLOCK_MODE_DYN:
1157 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1158 			      BWI_CLOCK_CTRL_IGNPLL |
1159 			      BWI_CLOCK_CTRL_NODYN);
1160 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1161 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1162 			pwr_off = 1;
1163 		}
1164 		break;
1165 	}
1166 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1167 
1168 	if (pwr_off)
1169 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1170 
1171 	return bwi_regwin_switch(sc, old, NULL);
1172 }
1173 
1174 static int
1175 bwi_set_clock_delay(struct bwi_softc *sc)
1176 {
1177 	struct bwi_regwin *old, *com;
1178 	int error;
1179 
1180 	com = &sc->sc_com_regwin;
1181 	if (!BWI_REGWIN_EXIST(com))
1182 		return 0;
1183 
1184 	error = bwi_regwin_switch(sc, com, &old);
1185 	if (error)
1186 		return error;
1187 
1188 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1189 		if (sc->sc_bbp_rev == 0)
1190 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1191 		else if (sc->sc_bbp_rev == 1)
1192 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1193 	}
1194 
1195 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1196 		if (com->rw_rev >= 10) {
1197 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1198 		} else {
1199 			struct bwi_clock_freq freq;
1200 
1201 			bwi_get_clock_freq(sc, &freq);
1202 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1203 				howmany(freq.clkfreq_max * 150, 1000000));
1204 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1205 				howmany(freq.clkfreq_max * 15, 1000000));
1206 		}
1207 	}
1208 
1209 	return bwi_regwin_switch(sc, old, NULL);
1210 }
1211 
1212 static void
1213 bwi_init(void *xsc)
1214 {
1215 	struct bwi_softc *sc = xsc;
1216 	struct ifnet *ifp = sc->sc_ifp;
1217 	struct ieee80211com *ic = ifp->if_l2com;
1218 
1219 	BWI_LOCK(sc);
1220 	bwi_init_statechg(sc, 1);
1221 	BWI_UNLOCK(sc);
1222 
1223 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1224 		ieee80211_start_all(ic);		/* start all vap's */
1225 }
1226 
1227 static void
1228 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1229 {
1230 	struct ifnet *ifp = sc->sc_ifp;
1231 	struct bwi_mac *mac;
1232 	int error;
1233 
1234 	bwi_stop_locked(sc, statechg);
1235 
1236 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1237 
1238 	/* TODO: 2 MAC */
1239 
1240 	mac = &sc->sc_mac[0];
1241 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1242 	if (error) {
1243 		if_printf(ifp, "%s: error %d on regwin switch\n",
1244 		    __func__, error);
1245 		goto bad;
1246 	}
1247 	error = bwi_mac_init(mac);
1248 	if (error) {
1249 		if_printf(ifp, "%s: error %d on MAC init\n", __func__, error);
1250 		goto bad;
1251 	}
1252 
1253 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1254 
1255 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1256 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, IF_LLADDR(ifp));
1257 
1258 	bwi_mac_reset_hwkeys(mac);
1259 
1260 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1261 		int i;
1262 
1263 #define NRETRY	1000
1264 		/*
1265 		 * Drain any possible pending TX status
1266 		 */
1267 		for (i = 0; i < NRETRY; ++i) {
1268 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1269 			     BWI_TXSTATUS0_VALID) == 0)
1270 				break;
1271 			CSR_READ_4(sc, BWI_TXSTATUS1);
1272 		}
1273 		if (i == NRETRY)
1274 			if_printf(ifp, "%s: can't drain TX status\n", __func__);
1275 #undef NRETRY
1276 	}
1277 
1278 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1279 		bwi_mac_updateslot(mac, 1);
1280 
1281 	/* Start MAC */
1282 	error = bwi_mac_start(mac);
1283 	if (error) {
1284 		if_printf(ifp, "%s: error %d starting MAC\n", __func__, error);
1285 		goto bad;
1286 	}
1287 
1288 	/* Clear stop flag before enabling interrupt */
1289 	sc->sc_flags &= ~BWI_F_STOP;
1290 
1291 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1292 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1293 
1294 	/* Enable intrs */
1295 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1296 	return;
1297 bad:
1298 	bwi_stop_locked(sc, 1);
1299 }
1300 
1301 static int
1302 bwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1303 {
1304 #define	IS_RUNNING(ifp) \
1305 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1306 	struct bwi_softc *sc = ifp->if_softc;
1307 	struct ieee80211com *ic = ifp->if_l2com;
1308 	struct ifreq *ifr = (struct ifreq *) data;
1309 	int error = 0, startall = 0;
1310 
1311 	switch (cmd) {
1312 	case SIOCSIFFLAGS:
1313 		BWI_LOCK(sc);
1314 		if (IS_RUNNING(ifp)) {
1315 			struct bwi_mac *mac;
1316 			int promisc = -1;
1317 
1318 			KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1319 			    ("current regwin type %d",
1320 			    sc->sc_cur_regwin->rw_type));
1321 			mac = (struct bwi_mac *)sc->sc_cur_regwin;
1322 
1323 			if ((ifp->if_flags & IFF_PROMISC) &&
1324 			    (sc->sc_flags & BWI_F_PROMISC) == 0) {
1325 				promisc = 1;
1326 				sc->sc_flags |= BWI_F_PROMISC;
1327 			} else if ((ifp->if_flags & IFF_PROMISC) == 0 &&
1328 				   (sc->sc_flags & BWI_F_PROMISC)) {
1329 				promisc = 0;
1330 				sc->sc_flags &= ~BWI_F_PROMISC;
1331 			}
1332 
1333 			if (promisc >= 0)
1334 				bwi_mac_set_promisc(mac, promisc);
1335 		}
1336 
1337 		if (ifp->if_flags & IFF_UP) {
1338 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1339 				bwi_init_statechg(sc, 1);
1340 				startall = 1;
1341 			}
1342 		} else {
1343 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1344 				bwi_stop_locked(sc, 1);
1345 		}
1346 		BWI_UNLOCK(sc);
1347 		if (startall)
1348 			ieee80211_start_all(ic);
1349 		break;
1350 	case SIOCGIFMEDIA:
1351 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1352 		break;
1353 	case SIOCGIFADDR:
1354 		error = ether_ioctl(ifp, cmd, data);
1355 		break;
1356 	default:
1357 		error = EINVAL;
1358 		break;
1359 	}
1360 	return error;
1361 #undef IS_RUNNING
1362 }
1363 
1364 static void
1365 bwi_start(struct ifnet *ifp)
1366 {
1367 	struct bwi_softc *sc = ifp->if_softc;
1368 
1369 	BWI_LOCK(sc);
1370 	bwi_start_locked(ifp);
1371 	BWI_UNLOCK(sc);
1372 }
1373 
1374 static void
1375 bwi_start_locked(struct ifnet *ifp)
1376 {
1377 	struct bwi_softc *sc = ifp->if_softc;
1378 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1379 	struct ieee80211_frame *wh;
1380 	struct ieee80211_node *ni;
1381 	struct ieee80211_key *k;
1382 	struct mbuf *m;
1383 	int trans, idx;
1384 
1385 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1386 		return;
1387 
1388 	trans = 0;
1389 	idx = tbd->tbd_idx;
1390 
1391 	while (tbd->tbd_buf[idx].tb_mbuf == NULL) {
1392 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1393 		if (m == NULL)
1394 			break;
1395 
1396 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1397 		wh = mtod(m, struct ieee80211_frame *);
1398 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1399 			k = ieee80211_crypto_encap(ni, m);
1400 			if (k == NULL) {
1401 				ieee80211_free_node(ni);
1402 				m_freem(m);
1403 				ifp->if_oerrors++;
1404 				continue;
1405 			}
1406 		}
1407 		wh = NULL;	/* Catch any invalid use */
1408 
1409 		if (bwi_encap(sc, idx, m, ni) != 0) {
1410 			/* 'm' is freed in bwi_encap() if we reach here */
1411 			if (ni != NULL)
1412 				ieee80211_free_node(ni);
1413 			ifp->if_oerrors++;
1414 			continue;
1415 		}
1416 
1417 		trans = 1;
1418 		tbd->tbd_used++;
1419 		idx = (idx + 1) % BWI_TX_NDESC;
1420 
1421 		ifp->if_opackets++;
1422 
1423 		if (tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC) {
1424 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1425 			break;
1426 		}
1427 	}
1428 	tbd->tbd_idx = idx;
1429 
1430 	if (trans)
1431 		sc->sc_tx_timer = 5;
1432 }
1433 
1434 static int
1435 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1436 	const struct ieee80211_bpf_params *params)
1437 {
1438 	struct ieee80211com *ic = ni->ni_ic;
1439 	struct ifnet *ifp = ic->ic_ifp;
1440 	struct bwi_softc *sc = ifp->if_softc;
1441 	/* XXX wme? */
1442 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1443 	int idx, error;
1444 
1445 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1446 		ieee80211_free_node(ni);
1447 		m_freem(m);
1448 		return ENETDOWN;
1449 	}
1450 
1451 	BWI_LOCK(sc);
1452 	idx = tbd->tbd_idx;
1453 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1454 	if (params == NULL) {
1455 		/*
1456 		 * Legacy path; interpret frame contents to decide
1457 		 * precisely how to send the frame.
1458 		 */
1459 		error = bwi_encap(sc, idx, m, ni);
1460 	} else {
1461 		/*
1462 		 * Caller supplied explicit parameters to use in
1463 		 * sending the frame.
1464 		 */
1465 		error = bwi_encap_raw(sc, idx, m, ni, params);
1466 	}
1467 	if (error == 0) {
1468 		ifp->if_opackets++;
1469 		if (++tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC)
1470 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1471 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1472 		sc->sc_tx_timer = 5;
1473 	} else {
1474 		/* NB: m is reclaimed on encap failure */
1475 		ieee80211_free_node(ni);
1476 		ifp->if_oerrors++;
1477 	}
1478 	BWI_UNLOCK(sc);
1479 	return error;
1480 }
1481 
1482 static void
1483 bwi_watchdog(void *arg)
1484 {
1485 	struct bwi_softc *sc;
1486 	struct ifnet *ifp;
1487 
1488 	sc = arg;
1489 	ifp = sc->sc_ifp;
1490 	BWI_ASSERT_LOCKED(sc);
1491 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1492 		if_printf(ifp, "watchdog timeout\n");
1493 		ifp->if_oerrors++;
1494 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1495 	}
1496 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1497 }
1498 
1499 static void
1500 bwi_stop(struct bwi_softc *sc, int statechg)
1501 {
1502 	BWI_LOCK(sc);
1503 	bwi_stop_locked(sc, statechg);
1504 	BWI_UNLOCK(sc);
1505 }
1506 
1507 static void
1508 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1509 {
1510 	struct ifnet *ifp = sc->sc_ifp;
1511 	struct bwi_mac *mac;
1512 	int i, error, pwr_off = 0;
1513 
1514 	BWI_ASSERT_LOCKED(sc);
1515 
1516 	callout_stop(&sc->sc_calib_ch);
1517 	callout_stop(&sc->sc_led_blink_ch);
1518 	sc->sc_led_blinking = 0;
1519 	sc->sc_flags |= BWI_F_STOP;
1520 
1521 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1522 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1523 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1524 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1525 
1526 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1527 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1528 		bwi_mac_stop(mac);
1529 	}
1530 
1531 	for (i = 0; i < sc->sc_nmac; ++i) {
1532 		struct bwi_regwin *old_rw;
1533 
1534 		mac = &sc->sc_mac[i];
1535 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1536 			continue;
1537 
1538 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1539 		if (error)
1540 			continue;
1541 
1542 		bwi_mac_shutdown(mac);
1543 		pwr_off = 1;
1544 
1545 		bwi_regwin_switch(sc, old_rw, NULL);
1546 	}
1547 
1548 	if (pwr_off)
1549 		bwi_bbp_power_off(sc);
1550 
1551 	sc->sc_tx_timer = 0;
1552 	callout_stop(&sc->sc_watchdog_timer);
1553 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1554 }
1555 
1556 void
1557 bwi_intr(void *xsc)
1558 {
1559 	struct bwi_softc *sc = xsc;
1560 	struct ifnet *ifp = sc->sc_ifp;
1561 	struct bwi_mac *mac;
1562 	uint32_t intr_status;
1563 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1564 	int i, txrx_error, tx = 0, rx_data = -1;
1565 
1566 	BWI_LOCK(sc);
1567 
1568 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1569 	    (sc->sc_flags & BWI_F_STOP)) {
1570 		BWI_UNLOCK(sc);
1571 		return;
1572 	}
1573 	/*
1574 	 * Get interrupt status
1575 	 */
1576 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1577 	if (intr_status == 0xffffffff) {	/* Not for us */
1578 		BWI_UNLOCK(sc);
1579 		return;
1580 	}
1581 
1582 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1583 
1584 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1585 	if (intr_status == 0) {		/* Nothing is interesting */
1586 		BWI_UNLOCK(sc);
1587 		return;
1588 	}
1589 
1590 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1591 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1592 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1593 
1594 	txrx_error = 0;
1595 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1596 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1597 		uint32_t mask;
1598 
1599 		if (BWI_TXRX_IS_RX(i))
1600 			mask = BWI_TXRX_RX_INTRS;
1601 		else
1602 			mask = BWI_TXRX_TX_INTRS;
1603 
1604 		txrx_intr_status[i] =
1605 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1606 
1607 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1608 			 i, txrx_intr_status[i]);
1609 
1610 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1611 			if_printf(ifp,
1612 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1613 			    __func__, i, txrx_intr_status[i]);
1614 			txrx_error = 1;
1615 		}
1616 	}
1617 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1618 
1619 	/*
1620 	 * Acknowledge interrupt
1621 	 */
1622 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1623 
1624 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1625 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1626 
1627 	/* Disable all interrupts */
1628 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1629 
1630 	/*
1631 	 * http://bcm-specs.sipsolutions.net/Interrupts
1632 	 * Says for this bit (0x800):
1633 	 * "Fatal Error
1634 	 *
1635 	 * We got this one while testing things when by accident the
1636 	 * template ram wasn't set to big endian when it should have
1637 	 * been after writing the initial values. It keeps on being
1638 	 * triggered, the only way to stop it seems to shut down the
1639 	 * chip."
1640 	 *
1641 	 * Suggesting that we should never get it and if we do we're not
1642 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1643 	 * it is valid only on mac version 5 and higher, but I couldn't
1644 	 * find a reference for that...  Since I see them from time to time
1645 	 * on my card, this suggests an error in the tx path still...
1646 	 */
1647 	if (intr_status & BWI_INTR_PHY_TXERR) {
1648 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1649 			if_printf(ifp, "%s: intr PHY TX error\n", __func__);
1650 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1651 			BWI_UNLOCK(sc);
1652 			return;
1653 		}
1654 	}
1655 
1656 	if (txrx_error) {
1657 		/* TODO: reset device */
1658 	}
1659 
1660 	if (intr_status & BWI_INTR_TBTT)
1661 		bwi_mac_config_ps(mac);
1662 
1663 	if (intr_status & BWI_INTR_EO_ATIM)
1664 		if_printf(ifp, "EO_ATIM\n");
1665 
1666 	if (intr_status & BWI_INTR_PMQ) {
1667 		for (;;) {
1668 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1669 				break;
1670 		}
1671 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1672 	}
1673 
1674 	if (intr_status & BWI_INTR_NOISE)
1675 		if_printf(ifp, "intr noise\n");
1676 
1677 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1678 		rx_data = sc->sc_rxeof(sc);
1679 		if (sc->sc_flags & BWI_F_STOP) {
1680 			BWI_UNLOCK(sc);
1681 			return;
1682 		}
1683 	}
1684 
1685 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1686 		sc->sc_txeof_status(sc);
1687 		tx = 1;
1688 	}
1689 
1690 	if (intr_status & BWI_INTR_TX_DONE) {
1691 		bwi_txeof(sc);
1692 		tx = 1;
1693 	}
1694 
1695 	/* Re-enable interrupts */
1696 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1697 
1698 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1699 		int evt = BWI_LED_EVENT_NONE;
1700 
1701 		if (tx && rx_data > 0) {
1702 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1703 				evt = BWI_LED_EVENT_RX;
1704 			else
1705 				evt = BWI_LED_EVENT_TX;
1706 		} else if (tx) {
1707 			evt = BWI_LED_EVENT_TX;
1708 		} else if (rx_data > 0) {
1709 			evt = BWI_LED_EVENT_RX;
1710 		} else if (rx_data == 0) {
1711 			evt = BWI_LED_EVENT_POLL;
1712 		}
1713 
1714 		if (evt != BWI_LED_EVENT_NONE)
1715 			bwi_led_event(sc, evt);
1716 	}
1717 
1718 	BWI_UNLOCK(sc);
1719 }
1720 
1721 static void
1722 bwi_scan_start(struct ieee80211com *ic)
1723 {
1724 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1725 
1726 	BWI_LOCK(sc);
1727 	/* Enable MAC beacon promiscuity */
1728 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1729 	BWI_UNLOCK(sc);
1730 }
1731 
1732 static void
1733 bwi_set_channel(struct ieee80211com *ic)
1734 {
1735 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1736 	struct ieee80211_channel *c = ic->ic_curchan;
1737 	struct bwi_mac *mac;
1738 
1739 	BWI_LOCK(sc);
1740 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1741 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1742 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1743 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1744 
1745 	sc->sc_rates = ieee80211_get_ratetable(c);
1746 
1747 	/*
1748 	 * Setup radio tap channel freq and flags
1749 	 */
1750 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
1751 		htole16(c->ic_freq);
1752 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
1753 		htole16(c->ic_flags & 0xffff);
1754 
1755 	BWI_UNLOCK(sc);
1756 }
1757 
1758 static void
1759 bwi_scan_end(struct ieee80211com *ic)
1760 {
1761 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1762 
1763 	BWI_LOCK(sc);
1764 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1765 	BWI_UNLOCK(sc);
1766 }
1767 
1768 static int
1769 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1770 {
1771 	struct bwi_vap *bvp = BWI_VAP(vap);
1772 	struct ieee80211com *ic= vap->iv_ic;
1773 	struct ifnet *ifp = ic->ic_ifp;
1774 	enum ieee80211_state ostate = vap->iv_state;
1775 	struct bwi_softc *sc = ifp->if_softc;
1776 	struct bwi_mac *mac;
1777 	int error;
1778 
1779 	BWI_LOCK(sc);
1780 
1781 	callout_stop(&sc->sc_calib_ch);
1782 
1783 	if (nstate == IEEE80211_S_INIT)
1784 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1785 
1786 	bwi_led_newstate(sc, nstate);
1787 
1788 	error = bvp->bv_newstate(vap, nstate, arg);
1789 	if (error != 0)
1790 		goto back;
1791 
1792 	/*
1793 	 * Clear the BSSID when we stop a STA
1794 	 */
1795 	if (vap->iv_opmode == IEEE80211_M_STA) {
1796 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1797 			/*
1798 			 * Clear out the BSSID.  If we reassociate to
1799 			 * the same AP, this will reinialize things
1800 			 * correctly...
1801 			 */
1802 			if (ic->ic_opmode == IEEE80211_M_STA &&
1803 			    !(sc->sc_flags & BWI_F_STOP))
1804 				bwi_set_bssid(sc, bwi_zero_addr);
1805 		}
1806 	}
1807 
1808 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1809 		/* Nothing to do */
1810 	} else if (nstate == IEEE80211_S_RUN) {
1811 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1812 
1813 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1814 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1815 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1816 
1817 		/* Initial TX power calibration */
1818 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1819 #ifdef notyet
1820 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1821 #else
1822 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1823 #endif
1824 
1825 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1826 	}
1827 back:
1828 	BWI_UNLOCK(sc);
1829 
1830 	return error;
1831 }
1832 
1833 static int
1834 bwi_media_change(struct ifnet *ifp)
1835 {
1836 	int error = ieee80211_media_change(ifp);
1837 	/* NB: only the fixed rate can change and that doesn't need a reset */
1838 	return (error == ENETRESET ? 0 : error);
1839 }
1840 
1841 static int
1842 bwi_dma_alloc(struct bwi_softc *sc)
1843 {
1844 	int error, i, has_txstats;
1845 	bus_addr_t lowaddr = 0;
1846 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1847 	uint32_t txrx_ctrl_step = 0;
1848 
1849 	has_txstats = 0;
1850 	for (i = 0; i < sc->sc_nmac; ++i) {
1851 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1852 			has_txstats = 1;
1853 			break;
1854 		}
1855 	}
1856 
1857 	switch (sc->sc_bus_space) {
1858 	case BWI_BUS_SPACE_30BIT:
1859 	case BWI_BUS_SPACE_32BIT:
1860 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1861 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1862 		else
1863 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1864 		desc_sz = sizeof(struct bwi_desc32);
1865 		txrx_ctrl_step = 0x20;
1866 
1867 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1868 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1869 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1870 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1871 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1872 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1873 		sc->sc_rxeof = bwi_rxeof32;
1874 		sc->sc_start_tx = bwi_start_tx32;
1875 		if (has_txstats) {
1876 			sc->sc_init_txstats = bwi_init_txstats32;
1877 			sc->sc_free_txstats = bwi_free_txstats32;
1878 			sc->sc_txeof_status = bwi_txeof_status32;
1879 		}
1880 		break;
1881 
1882 	case BWI_BUS_SPACE_64BIT:
1883 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1884 		desc_sz = sizeof(struct bwi_desc64);
1885 		txrx_ctrl_step = 0x40;
1886 
1887 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1888 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1889 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1890 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1891 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1892 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1893 		sc->sc_rxeof = bwi_rxeof64;
1894 		sc->sc_start_tx = bwi_start_tx64;
1895 		if (has_txstats) {
1896 			sc->sc_init_txstats = bwi_init_txstats64;
1897 			sc->sc_free_txstats = bwi_free_txstats64;
1898 			sc->sc_txeof_status = bwi_txeof_status64;
1899 		}
1900 		break;
1901 	}
1902 
1903 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1904 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1905 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1906 
1907 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1908 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1909 
1910 	/*
1911 	 * Create top level DMA tag
1912 	 */
1913 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1914 			       BWI_ALIGN, 0,		/* alignment, bounds */
1915 			       lowaddr,			/* lowaddr */
1916 			       BUS_SPACE_MAXADDR,	/* highaddr */
1917 			       NULL, NULL,		/* filter, filterarg */
1918 			       MAXBSIZE,		/* maxsize */
1919 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1920 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1921 			       BUS_DMA_ALLOCNOW,	/* flags */
1922 			       NULL, NULL,		/* lockfunc, lockarg */
1923 			       &sc->sc_parent_dtag);
1924 	if (error) {
1925 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1926 		return error;
1927 	}
1928 
1929 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1930 
1931 	/*
1932 	 * Create TX ring DMA stuffs
1933 	 */
1934 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1935 				BWI_RING_ALIGN, 0,
1936 				BUS_SPACE_MAXADDR,
1937 				BUS_SPACE_MAXADDR,
1938 				NULL, NULL,
1939 				tx_ring_sz,
1940 				1,
1941 				BUS_SPACE_MAXSIZE_32BIT,
1942 				BUS_DMA_ALLOCNOW,
1943 				NULL, NULL,
1944 				&sc->sc_txring_dtag);
1945 	if (error) {
1946 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1947 		return error;
1948 	}
1949 
1950 	for (i = 0; i < BWI_TX_NRING; ++i) {
1951 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1952 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1953 					   TXRX_CTRL(i));
1954 		if (error) {
1955 			device_printf(sc->sc_dev, "%dth TX ring "
1956 				      "DMA alloc failed\n", i);
1957 			return error;
1958 		}
1959 	}
1960 
1961 	/*
1962 	 * Create RX ring DMA stuffs
1963 	 */
1964 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1965 				BWI_RING_ALIGN, 0,
1966 				BUS_SPACE_MAXADDR,
1967 				BUS_SPACE_MAXADDR,
1968 				NULL, NULL,
1969 				rx_ring_sz,
1970 				1,
1971 				BUS_SPACE_MAXSIZE_32BIT,
1972 				BUS_DMA_ALLOCNOW,
1973 				NULL, NULL,
1974 				&sc->sc_rxring_dtag);
1975 	if (error) {
1976 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1977 		return error;
1978 	}
1979 
1980 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1981 				   rx_ring_sz, TXRX_CTRL(0));
1982 	if (error) {
1983 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1984 		return error;
1985 	}
1986 
1987 	if (has_txstats) {
1988 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1989 		if (error) {
1990 			device_printf(sc->sc_dev,
1991 				      "TX stats DMA alloc failed\n");
1992 			return error;
1993 		}
1994 	}
1995 
1996 #undef TXRX_CTRL
1997 
1998 	return bwi_dma_mbuf_create(sc);
1999 }
2000 
2001 static void
2002 bwi_dma_free(struct bwi_softc *sc)
2003 {
2004 	if (sc->sc_txring_dtag != NULL) {
2005 		int i;
2006 
2007 		for (i = 0; i < BWI_TX_NRING; ++i) {
2008 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
2009 
2010 			if (rd->rdata_desc != NULL) {
2011 				bus_dmamap_unload(sc->sc_txring_dtag,
2012 						  rd->rdata_dmap);
2013 				bus_dmamem_free(sc->sc_txring_dtag,
2014 						rd->rdata_desc,
2015 						rd->rdata_dmap);
2016 			}
2017 		}
2018 		bus_dma_tag_destroy(sc->sc_txring_dtag);
2019 	}
2020 
2021 	if (sc->sc_rxring_dtag != NULL) {
2022 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2023 
2024 		if (rd->rdata_desc != NULL) {
2025 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
2026 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
2027 					rd->rdata_dmap);
2028 		}
2029 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
2030 	}
2031 
2032 	bwi_dma_txstats_free(sc);
2033 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
2034 
2035 	if (sc->sc_parent_dtag != NULL)
2036 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2037 }
2038 
2039 static int
2040 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2041 		   struct bwi_ring_data *rd, bus_size_t size,
2042 		   uint32_t txrx_ctrl)
2043 {
2044 	int error;
2045 
2046 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2047 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2048 				 &rd->rdata_dmap);
2049 	if (error) {
2050 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2051 		return error;
2052 	}
2053 
2054 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2055 				bwi_dma_ring_addr, &rd->rdata_paddr,
2056 				BUS_DMA_NOWAIT);
2057 	if (error) {
2058 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2059 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2060 		rd->rdata_desc = NULL;
2061 		return error;
2062 	}
2063 
2064 	rd->rdata_txrx_ctrl = txrx_ctrl;
2065 	return 0;
2066 }
2067 
2068 static int
2069 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2070 		      bus_size_t desc_sz)
2071 {
2072 	struct bwi_txstats_data *st;
2073 	bus_size_t dma_size;
2074 	int error;
2075 
2076 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2077 	if (st == NULL) {
2078 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2079 		return ENOMEM;
2080 	}
2081 	sc->sc_txstats = st;
2082 
2083 	/*
2084 	 * Create TX stats descriptor DMA stuffs
2085 	 */
2086 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2087 
2088 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2089 				BWI_RING_ALIGN,
2090 				0,
2091 				BUS_SPACE_MAXADDR,
2092 				BUS_SPACE_MAXADDR,
2093 				NULL, NULL,
2094 				dma_size,
2095 				1,
2096 				BUS_SPACE_MAXSIZE_32BIT,
2097 				BUS_DMA_ALLOCNOW,
2098 				NULL, NULL,
2099 				&st->stats_ring_dtag);
2100 	if (error) {
2101 		device_printf(sc->sc_dev, "can't create txstats ring "
2102 			      "DMA tag\n");
2103 		return error;
2104 	}
2105 
2106 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2107 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2108 				 &st->stats_ring_dmap);
2109 	if (error) {
2110 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2111 			      "DMA mem\n");
2112 		bus_dma_tag_destroy(st->stats_ring_dtag);
2113 		st->stats_ring_dtag = NULL;
2114 		return error;
2115 	}
2116 
2117 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2118 				st->stats_ring, dma_size,
2119 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2120 				BUS_DMA_NOWAIT);
2121 	if (error) {
2122 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2123 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2124 				st->stats_ring_dmap);
2125 		bus_dma_tag_destroy(st->stats_ring_dtag);
2126 		st->stats_ring_dtag = NULL;
2127 		return error;
2128 	}
2129 
2130 	/*
2131 	 * Create TX stats DMA stuffs
2132 	 */
2133 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2134 			   BWI_ALIGN);
2135 
2136 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2137 				BWI_ALIGN,
2138 				0,
2139 				BUS_SPACE_MAXADDR,
2140 				BUS_SPACE_MAXADDR,
2141 				NULL, NULL,
2142 				dma_size,
2143 				1,
2144 				BUS_SPACE_MAXSIZE_32BIT,
2145 				BUS_DMA_ALLOCNOW,
2146 				NULL, NULL,
2147 				&st->stats_dtag);
2148 	if (error) {
2149 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2150 		return error;
2151 	}
2152 
2153 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2154 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2155 				 &st->stats_dmap);
2156 	if (error) {
2157 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2158 		bus_dma_tag_destroy(st->stats_dtag);
2159 		st->stats_dtag = NULL;
2160 		return error;
2161 	}
2162 
2163 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2164 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2165 				BUS_DMA_NOWAIT);
2166 	if (error) {
2167 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2168 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2169 		bus_dma_tag_destroy(st->stats_dtag);
2170 		st->stats_dtag = NULL;
2171 		return error;
2172 	}
2173 
2174 	st->stats_ctrl_base = ctrl_base;
2175 	return 0;
2176 }
2177 
2178 static void
2179 bwi_dma_txstats_free(struct bwi_softc *sc)
2180 {
2181 	struct bwi_txstats_data *st;
2182 
2183 	if (sc->sc_txstats == NULL)
2184 		return;
2185 	st = sc->sc_txstats;
2186 
2187 	if (st->stats_ring_dtag != NULL) {
2188 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2189 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2190 				st->stats_ring_dmap);
2191 		bus_dma_tag_destroy(st->stats_ring_dtag);
2192 	}
2193 
2194 	if (st->stats_dtag != NULL) {
2195 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2196 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2197 		bus_dma_tag_destroy(st->stats_dtag);
2198 	}
2199 
2200 	free(st, M_DEVBUF);
2201 }
2202 
2203 static void
2204 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2205 {
2206 	KASSERT(nseg == 1, ("too many segments\n"));
2207 	*((bus_addr_t *)arg) = seg->ds_addr;
2208 }
2209 
2210 static int
2211 bwi_dma_mbuf_create(struct bwi_softc *sc)
2212 {
2213 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2214 	int i, j, k, ntx, error;
2215 
2216 	/*
2217 	 * Create TX/RX mbuf DMA tag
2218 	 */
2219 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2220 				1,
2221 				0,
2222 				BUS_SPACE_MAXADDR,
2223 				BUS_SPACE_MAXADDR,
2224 				NULL, NULL,
2225 				MCLBYTES,
2226 				1,
2227 				BUS_SPACE_MAXSIZE_32BIT,
2228 				BUS_DMA_ALLOCNOW,
2229 				NULL, NULL,
2230 				&sc->sc_buf_dtag);
2231 	if (error) {
2232 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2233 		return error;
2234 	}
2235 
2236 	ntx = 0;
2237 
2238 	/*
2239 	 * Create TX mbuf DMA map
2240 	 */
2241 	for (i = 0; i < BWI_TX_NRING; ++i) {
2242 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2243 
2244 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2245 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2246 						  &tbd->tbd_buf[j].tb_dmap);
2247 			if (error) {
2248 				device_printf(sc->sc_dev, "can't create "
2249 					      "%dth tbd, %dth DMA map\n", i, j);
2250 
2251 				ntx = i;
2252 				for (k = 0; k < j; ++k) {
2253 					bus_dmamap_destroy(sc->sc_buf_dtag,
2254 						tbd->tbd_buf[k].tb_dmap);
2255 				}
2256 				goto fail;
2257 			}
2258 		}
2259 	}
2260 	ntx = BWI_TX_NRING;
2261 
2262 	/*
2263 	 * Create RX mbuf DMA map and a spare DMA map
2264 	 */
2265 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2266 				  &rbd->rbd_tmp_dmap);
2267 	if (error) {
2268 		device_printf(sc->sc_dev,
2269 			      "can't create spare RX buf DMA map\n");
2270 		goto fail;
2271 	}
2272 
2273 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2274 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2275 					  &rbd->rbd_buf[j].rb_dmap);
2276 		if (error) {
2277 			device_printf(sc->sc_dev, "can't create %dth "
2278 				      "RX buf DMA map\n", j);
2279 
2280 			for (k = 0; k < j; ++k) {
2281 				bus_dmamap_destroy(sc->sc_buf_dtag,
2282 					rbd->rbd_buf[j].rb_dmap);
2283 			}
2284 			bus_dmamap_destroy(sc->sc_buf_dtag,
2285 					   rbd->rbd_tmp_dmap);
2286 			goto fail;
2287 		}
2288 	}
2289 
2290 	return 0;
2291 fail:
2292 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2293 	return error;
2294 }
2295 
2296 static void
2297 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2298 {
2299 	int i, j;
2300 
2301 	if (sc->sc_buf_dtag == NULL)
2302 		return;
2303 
2304 	for (i = 0; i < ntx; ++i) {
2305 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2306 
2307 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2308 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2309 
2310 			if (tb->tb_mbuf != NULL) {
2311 				bus_dmamap_unload(sc->sc_buf_dtag,
2312 						  tb->tb_dmap);
2313 				m_freem(tb->tb_mbuf);
2314 			}
2315 			if (tb->tb_ni != NULL)
2316 				ieee80211_free_node(tb->tb_ni);
2317 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2318 		}
2319 	}
2320 
2321 	if (nrx) {
2322 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2323 
2324 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2325 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2326 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2327 
2328 			if (rb->rb_mbuf != NULL) {
2329 				bus_dmamap_unload(sc->sc_buf_dtag,
2330 						  rb->rb_dmap);
2331 				m_freem(rb->rb_mbuf);
2332 			}
2333 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2334 		}
2335 	}
2336 
2337 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2338 	sc->sc_buf_dtag = NULL;
2339 }
2340 
2341 static void
2342 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2343 {
2344 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2345 }
2346 
2347 static void
2348 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2349 {
2350 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2351 }
2352 
2353 static int
2354 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2355 {
2356 	struct bwi_ring_data *rd;
2357 	struct bwi_txbuf_data *tbd;
2358 	uint32_t val, addr_hi, addr_lo;
2359 
2360 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2361 	rd = &sc->sc_tx_rdata[ring_idx];
2362 	tbd = &sc->sc_tx_bdata[ring_idx];
2363 
2364 	tbd->tbd_idx = 0;
2365 	tbd->tbd_used = 0;
2366 
2367 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2368 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2369 			BUS_DMASYNC_PREWRITE);
2370 
2371 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2372 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2373 
2374 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2375 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2376 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2377 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2378 
2379 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2380 	      BWI_TXRX32_CTRL_ENABLE;
2381 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2382 
2383 	return 0;
2384 }
2385 
2386 static void
2387 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2388 		       bus_addr_t paddr, int hdr_size, int ndesc)
2389 {
2390 	uint32_t val, addr_hi, addr_lo;
2391 
2392 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2393 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2394 
2395 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2396 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2397 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2398 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2399 
2400 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2401 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2402 	      BWI_TXRX32_CTRL_ENABLE;
2403 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2404 
2405 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2406 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2407 }
2408 
2409 static int
2410 bwi_init_rx_ring32(struct bwi_softc *sc)
2411 {
2412 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2413 	int i, error;
2414 
2415 	sc->sc_rx_bdata.rbd_idx = 0;
2416 
2417 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2418 		error = bwi_newbuf(sc, i, 1);
2419 		if (error) {
2420 			device_printf(sc->sc_dev,
2421 				  "can't allocate %dth RX buffer\n", i);
2422 			return error;
2423 		}
2424 	}
2425 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2426 			BUS_DMASYNC_PREWRITE);
2427 
2428 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2429 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2430 	return 0;
2431 }
2432 
2433 static int
2434 bwi_init_txstats32(struct bwi_softc *sc)
2435 {
2436 	struct bwi_txstats_data *st = sc->sc_txstats;
2437 	bus_addr_t stats_paddr;
2438 	int i;
2439 
2440 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2441 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2442 
2443 	st->stats_idx = 0;
2444 
2445 	stats_paddr = st->stats_paddr;
2446 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2447 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2448 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2449 		stats_paddr += sizeof(struct bwi_txstats);
2450 	}
2451 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2452 			BUS_DMASYNC_PREWRITE);
2453 
2454 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2455 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2456 	return 0;
2457 }
2458 
2459 static void
2460 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2461 		    int buf_len)
2462 {
2463 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2464 
2465 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2466 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2467 			 paddr, buf_len, 0);
2468 }
2469 
2470 static void
2471 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2472 		    int buf_idx, bus_addr_t paddr, int buf_len)
2473 {
2474 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2475 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2476 			 paddr, buf_len, 1);
2477 }
2478 
2479 static int
2480 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2481 {
2482 	/* TODO:64 */
2483 	return EOPNOTSUPP;
2484 }
2485 
2486 static int
2487 bwi_init_rx_ring64(struct bwi_softc *sc)
2488 {
2489 	/* TODO:64 */
2490 	return EOPNOTSUPP;
2491 }
2492 
2493 static int
2494 bwi_init_txstats64(struct bwi_softc *sc)
2495 {
2496 	/* TODO:64 */
2497 	return EOPNOTSUPP;
2498 }
2499 
2500 static void
2501 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2502 		    int buf_len)
2503 {
2504 	/* TODO:64 */
2505 }
2506 
2507 static void
2508 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2509 		    int buf_idx, bus_addr_t paddr, int buf_len)
2510 {
2511 	/* TODO:64 */
2512 }
2513 
2514 static void
2515 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2516 		 bus_size_t mapsz __unused, int error)
2517 {
2518         if (!error) {
2519 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2520 		*((bus_addr_t *)arg) = seg->ds_addr;
2521 	}
2522 }
2523 
2524 static int
2525 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2526 {
2527 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2528 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2529 	struct bwi_rxbuf_hdr *hdr;
2530 	bus_dmamap_t map;
2531 	bus_addr_t paddr;
2532 	struct mbuf *m;
2533 	int error;
2534 
2535 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2536 
2537 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2538 	if (m == NULL) {
2539 		error = ENOBUFS;
2540 
2541 		/*
2542 		 * If the NIC is up and running, we need to:
2543 		 * - Clear RX buffer's header.
2544 		 * - Restore RX descriptor settings.
2545 		 */
2546 		if (init)
2547 			return error;
2548 		else
2549 			goto back;
2550 	}
2551 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2552 
2553 	/*
2554 	 * Try to load RX buf into temporary DMA map
2555 	 */
2556 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2557 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2558 	if (error) {
2559 		m_freem(m);
2560 
2561 		/*
2562 		 * See the comment above
2563 		 */
2564 		if (init)
2565 			return error;
2566 		else
2567 			goto back;
2568 	}
2569 
2570 	if (!init)
2571 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2572 	rxbuf->rb_mbuf = m;
2573 	rxbuf->rb_paddr = paddr;
2574 
2575 	/*
2576 	 * Swap RX buf's DMA map with the loaded temporary one
2577 	 */
2578 	map = rxbuf->rb_dmap;
2579 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2580 	rbd->rbd_tmp_dmap = map;
2581 
2582 back:
2583 	/*
2584 	 * Clear RX buf header
2585 	 */
2586 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2587 	bzero(hdr, sizeof(*hdr));
2588 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2589 
2590 	/*
2591 	 * Setup RX buf descriptor
2592 	 */
2593 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2594 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2595 	return error;
2596 }
2597 
2598 static void
2599 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2600 		    const uint8_t *addr)
2601 {
2602 	int i;
2603 
2604 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2605 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2606 
2607 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2608 		uint16_t addr_val;
2609 
2610 		addr_val = (uint16_t)addr[i * 2] |
2611 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2612 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2613 	}
2614 }
2615 
2616 static int
2617 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2618 {
2619 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2620 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2621 	struct ifnet *ifp = sc->sc_ifp;
2622 	struct ieee80211com *ic = ifp->if_l2com;
2623 	int idx, rx_data = 0;
2624 
2625 	idx = rbd->rbd_idx;
2626 	while (idx != end_idx) {
2627 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2628 		struct bwi_rxbuf_hdr *hdr;
2629 		struct ieee80211_frame_min *wh;
2630 		struct ieee80211_node *ni;
2631 		struct mbuf *m;
2632 		const void *plcp;
2633 		uint16_t flags2;
2634 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2635 
2636 		m = rb->rb_mbuf;
2637 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2638 				BUS_DMASYNC_POSTREAD);
2639 
2640 		if (bwi_newbuf(sc, idx, 0)) {
2641 			ifp->if_ierrors++;
2642 			goto next;
2643 		}
2644 
2645 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2646 		flags2 = le16toh(hdr->rxh_flags2);
2647 
2648 		hdr_extra = 0;
2649 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2650 			hdr_extra = 2;
2651 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2652 
2653 		buflen = le16toh(hdr->rxh_buflen);
2654 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2655 			if_printf(ifp, "%s: zero length data, hdr_extra %d\n",
2656 				  __func__, hdr_extra);
2657 			ifp->if_ierrors++;
2658 			m_freem(m);
2659 			goto next;
2660 		}
2661 
2662 		plcp = ((const uint8_t *)(hdr + 1) + hdr_extra);
2663 		rssi = bwi_calc_rssi(sc, hdr);
2664 		noise = bwi_calc_noise(sc);
2665 
2666 		m->m_pkthdr.rcvif = ifp;
2667 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2668 		m_adj(m, sizeof(*hdr) + wh_ofs);
2669 
2670 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2671 			rate = bwi_ofdm_plcp2rate(plcp);
2672 		else
2673 			rate = bwi_ds_plcp2rate(plcp);
2674 
2675 		/* RX radio tap */
2676 		if (ieee80211_radiotap_active(ic))
2677 			bwi_rx_radiotap(sc, m, hdr, plcp, rate, rssi, noise);
2678 
2679 		m_adj(m, -IEEE80211_CRC_LEN);
2680 
2681 		BWI_UNLOCK(sc);
2682 
2683 		wh = mtod(m, struct ieee80211_frame_min *);
2684 		ni = ieee80211_find_rxnode(ic, wh);
2685 		if (ni != NULL) {
2686 			type = ieee80211_input(ni, m, rssi - noise, noise);
2687 			ieee80211_free_node(ni);
2688 		} else
2689 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2690 		if (type == IEEE80211_FC0_TYPE_DATA) {
2691 			rx_data = 1;
2692 			sc->sc_rx_rate = rate;
2693 		}
2694 
2695 		BWI_LOCK(sc);
2696 next:
2697 		idx = (idx + 1) % BWI_RX_NDESC;
2698 
2699 		if (sc->sc_flags & BWI_F_STOP) {
2700 			/*
2701 			 * Take the fast lane, don't do
2702 			 * any damage to softc
2703 			 */
2704 			return -1;
2705 		}
2706 	}
2707 
2708 	rbd->rbd_idx = idx;
2709 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2710 			BUS_DMASYNC_PREWRITE);
2711 
2712 	return rx_data;
2713 }
2714 
2715 static int
2716 bwi_rxeof32(struct bwi_softc *sc)
2717 {
2718 	uint32_t val, rx_ctrl;
2719 	int end_idx, rx_data;
2720 
2721 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2722 
2723 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2724 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2725 		  sizeof(struct bwi_desc32);
2726 
2727 	rx_data = bwi_rxeof(sc, end_idx);
2728 	if (rx_data >= 0) {
2729 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2730 			    end_idx * sizeof(struct bwi_desc32));
2731 	}
2732 	return rx_data;
2733 }
2734 
2735 static int
2736 bwi_rxeof64(struct bwi_softc *sc)
2737 {
2738 	/* TODO:64 */
2739 	return 0;
2740 }
2741 
2742 static void
2743 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2744 {
2745 	int i;
2746 
2747 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2748 
2749 #define NRETRY 10
2750 
2751 	for (i = 0; i < NRETRY; ++i) {
2752 		uint32_t status;
2753 
2754 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2755 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2756 		    BWI_RX32_STATUS_STATE_DISABLED)
2757 			break;
2758 
2759 		DELAY(1000);
2760 	}
2761 	if (i == NRETRY)
2762 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2763 
2764 #undef NRETRY
2765 
2766 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2767 }
2768 
2769 static void
2770 bwi_free_txstats32(struct bwi_softc *sc)
2771 {
2772 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2773 }
2774 
2775 static void
2776 bwi_free_rx_ring32(struct bwi_softc *sc)
2777 {
2778 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2779 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2780 	int i;
2781 
2782 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2783 
2784 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2785 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2786 
2787 		if (rb->rb_mbuf != NULL) {
2788 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2789 			m_freem(rb->rb_mbuf);
2790 			rb->rb_mbuf = NULL;
2791 		}
2792 	}
2793 }
2794 
2795 static void
2796 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2797 {
2798 	struct bwi_ring_data *rd;
2799 	struct bwi_txbuf_data *tbd;
2800 	struct ifnet *ifp = sc->sc_ifp;
2801 	uint32_t state, val;
2802 	int i;
2803 
2804 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2805 	rd = &sc->sc_tx_rdata[ring_idx];
2806 	tbd = &sc->sc_tx_bdata[ring_idx];
2807 
2808 #define NRETRY 10
2809 
2810 	for (i = 0; i < NRETRY; ++i) {
2811 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2812 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2813 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2814 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2815 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2816 			break;
2817 
2818 		DELAY(1000);
2819 	}
2820 	if (i == NRETRY) {
2821 		if_printf(ifp, "%s: wait for TX ring(%d) stable timed out\n",
2822 			  __func__, ring_idx);
2823 	}
2824 
2825 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2826 	for (i = 0; i < NRETRY; ++i) {
2827 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2828 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2829 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2830 			break;
2831 
2832 		DELAY(1000);
2833 	}
2834 	if (i == NRETRY)
2835 		if_printf(ifp, "%s: reset TX ring (%d) timed out\n",
2836 		     __func__, ring_idx);
2837 
2838 #undef NRETRY
2839 
2840 	DELAY(1000);
2841 
2842 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2843 
2844 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2845 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2846 
2847 		if (tb->tb_mbuf != NULL) {
2848 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2849 			m_freem(tb->tb_mbuf);
2850 			tb->tb_mbuf = NULL;
2851 		}
2852 		if (tb->tb_ni != NULL) {
2853 			ieee80211_free_node(tb->tb_ni);
2854 			tb->tb_ni = NULL;
2855 		}
2856 	}
2857 }
2858 
2859 static void
2860 bwi_free_txstats64(struct bwi_softc *sc)
2861 {
2862 	/* TODO:64 */
2863 }
2864 
2865 static void
2866 bwi_free_rx_ring64(struct bwi_softc *sc)
2867 {
2868 	/* TODO:64 */
2869 }
2870 
2871 static void
2872 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2873 {
2874 	/* TODO:64 */
2875 }
2876 
2877 /* XXX does not belong here */
2878 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2879 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2880 
2881 static __inline void
2882 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2883 {
2884 	uint32_t plcp;
2885 
2886 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2887 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2888 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2889 	*plcp0 = htole32(plcp);
2890 }
2891 
2892 static __inline void
2893 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2894 		   uint8_t rate)
2895 {
2896 	int len, service, pkt_bitlen;
2897 
2898 	pkt_bitlen = pkt_len * NBBY;
2899 	len = howmany(pkt_bitlen * 2, rate);
2900 
2901 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2902 	if (rate == (11 * 2)) {
2903 		int pkt_bitlen1;
2904 
2905 		/*
2906 		 * PLCP service field needs to be adjusted,
2907 		 * if TX rate is 11Mbytes/s
2908 		 */
2909 		pkt_bitlen1 = len * 11;
2910 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2911 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2912 	}
2913 
2914 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2915 	plcp->i_service = service;
2916 	plcp->i_length = htole16(len);
2917 	/* NOTE: do NOT touch i_crc */
2918 }
2919 
2920 static __inline void
2921 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2922 	void *plcp, int pkt_len, uint8_t rate)
2923 {
2924 	enum ieee80211_phytype modtype;
2925 
2926 	/*
2927 	 * Assume caller has zeroed 'plcp'
2928 	 */
2929 	modtype = ieee80211_rate2phytype(rt, rate);
2930 	if (modtype == IEEE80211_T_OFDM)
2931 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2932 	else if (modtype == IEEE80211_T_DS)
2933 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2934 	else
2935 		panic("unsupport modulation type %u\n", modtype);
2936 }
2937 
2938 static int
2939 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2940 	  struct ieee80211_node *ni)
2941 {
2942 	struct ieee80211vap *vap = ni->ni_vap;
2943 	struct ifnet *ifp = sc->sc_ifp;
2944 	struct ieee80211com *ic = ifp->if_l2com;
2945 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2946 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2947 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2948 	struct bwi_mac *mac;
2949 	struct bwi_txbuf_hdr *hdr;
2950 	struct ieee80211_frame *wh;
2951 	const struct ieee80211_txparam *tp;
2952 	uint8_t rate, rate_fb;
2953 	uint32_t mac_ctrl;
2954 	uint16_t phy_ctrl;
2955 	bus_addr_t paddr;
2956 	int type, ismcast, pkt_len, error, rix;
2957 #if 0
2958 	const uint8_t *p;
2959 	int i;
2960 #endif
2961 
2962 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2963 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2964 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2965 
2966 	wh = mtod(m, struct ieee80211_frame *);
2967 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2968 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2969 
2970 	/* Get 802.11 frame len before prepending TX header */
2971 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2972 
2973 	/*
2974 	 * Find TX rate
2975 	 */
2976 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2977 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2978 		rate = rate_fb = tp->mgmtrate;
2979 	} else if (ismcast) {
2980 		rate = rate_fb = tp->mcastrate;
2981 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2982 		rate = rate_fb = tp->ucastrate;
2983 	} else {
2984 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2985 		rate = ni->ni_txrate;
2986 
2987 		if (rix > 0) {
2988 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2989 				  IEEE80211_RATE_VAL;
2990 		} else {
2991 			rate_fb = rate;
2992 		}
2993 	}
2994 	tb->tb_rate[0] = rate;
2995 	tb->tb_rate[1] = rate_fb;
2996 	sc->sc_tx_rate = rate;
2997 
2998 	/*
2999 	 * TX radio tap
3000 	 */
3001 	if (ieee80211_radiotap_active_vap(vap)) {
3002 		sc->sc_tx_th.wt_flags = 0;
3003 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3004 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3005 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
3006 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3007 		    rate != (1 * 2)) {
3008 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3009 		}
3010 		sc->sc_tx_th.wt_rate = rate;
3011 
3012 		ieee80211_radiotap_tx(vap, m);
3013 	}
3014 
3015 	/*
3016 	 * Setup the embedded TX header
3017 	 */
3018 	M_PREPEND(m, sizeof(*hdr), M_DONTWAIT);
3019 	if (m == NULL) {
3020 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3021 		return ENOBUFS;
3022 	}
3023 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3024 
3025 	bzero(hdr, sizeof(*hdr));
3026 
3027 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3028 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3029 
3030 	if (!ismcast) {
3031 		uint16_t dur;
3032 
3033 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
3034 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
3035 
3036 		hdr->txh_fb_duration = htole16(dur);
3037 	}
3038 
3039 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3040 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3041 
3042 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3043 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3044 
3045 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3046 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3047 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3048 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3049 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3050 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3051 
3052 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3053 	if (!ismcast)
3054 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3055 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3056 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3057 
3058 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3059 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3060 
3061 	/* Catch any further usage */
3062 	hdr = NULL;
3063 	wh = NULL;
3064 
3065 	/* DMA load */
3066 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3067 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3068 	if (error && error != EFBIG) {
3069 		if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3070 		    __func__, error);
3071 		goto back;
3072 	}
3073 
3074 	if (error) {	/* error == EFBIG */
3075 		struct mbuf *m_new;
3076 
3077 		m_new = m_defrag(m, M_DONTWAIT);
3078 		if (m_new == NULL) {
3079 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3080 			    __func__);
3081 			error = ENOBUFS;
3082 			goto back;
3083 		} else {
3084 			m = m_new;
3085 		}
3086 
3087 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3088 					     bwi_dma_buf_addr, &paddr,
3089 					     BUS_DMA_NOWAIT);
3090 		if (error) {
3091 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3092 			    __func__, error);
3093 			goto back;
3094 		}
3095 	}
3096 	error = 0;
3097 
3098 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3099 
3100 	tb->tb_mbuf = m;
3101 	tb->tb_ni = ni;
3102 
3103 #if 0
3104 	p = mtod(m, const uint8_t *);
3105 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3106 		if (i != 0 && i % 8 == 0)
3107 			printf("\n");
3108 		printf("%02x ", p[i]);
3109 	}
3110 	printf("\n");
3111 #endif
3112 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3113 		idx, pkt_len, m->m_pkthdr.len);
3114 
3115 	/* Setup TX descriptor */
3116 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3117 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3118 			BUS_DMASYNC_PREWRITE);
3119 
3120 	/* Kick start */
3121 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3122 
3123 back:
3124 	if (error)
3125 		m_freem(m);
3126 	return error;
3127 }
3128 
3129 static int
3130 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3131 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3132 {
3133 	struct ifnet *ifp = sc->sc_ifp;
3134 	struct ieee80211vap *vap = ni->ni_vap;
3135 	struct ieee80211com *ic = ni->ni_ic;
3136 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3137 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3138 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3139 	struct bwi_mac *mac;
3140 	struct bwi_txbuf_hdr *hdr;
3141 	struct ieee80211_frame *wh;
3142 	uint8_t rate, rate_fb;
3143 	uint32_t mac_ctrl;
3144 	uint16_t phy_ctrl;
3145 	bus_addr_t paddr;
3146 	int ismcast, pkt_len, error;
3147 
3148 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3149 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3150 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3151 
3152 	wh = mtod(m, struct ieee80211_frame *);
3153 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3154 
3155 	/* Get 802.11 frame len before prepending TX header */
3156 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3157 
3158 	/*
3159 	 * Find TX rate
3160 	 */
3161 	rate = params->ibp_rate0;
3162 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3163 		/* XXX fall back to mcast/mgmt rate? */
3164 		m_freem(m);
3165 		return EINVAL;
3166 	}
3167 	if (params->ibp_try1 != 0) {
3168 		rate_fb = params->ibp_rate1;
3169 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3170 			/* XXX fall back to rate0? */
3171 			m_freem(m);
3172 			return EINVAL;
3173 		}
3174 	} else
3175 		rate_fb = rate;
3176 	tb->tb_rate[0] = rate;
3177 	tb->tb_rate[1] = rate_fb;
3178 	sc->sc_tx_rate = rate;
3179 
3180 	/*
3181 	 * TX radio tap
3182 	 */
3183 	if (ieee80211_radiotap_active_vap(vap)) {
3184 		sc->sc_tx_th.wt_flags = 0;
3185 		/* XXX IEEE80211_BPF_CRYPTO */
3186 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3187 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3188 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3189 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3190 		sc->sc_tx_th.wt_rate = rate;
3191 
3192 		ieee80211_radiotap_tx(vap, m);
3193 	}
3194 
3195 	/*
3196 	 * Setup the embedded TX header
3197 	 */
3198 	M_PREPEND(m, sizeof(*hdr), M_DONTWAIT);
3199 	if (m == NULL) {
3200 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3201 		return ENOBUFS;
3202 	}
3203 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3204 
3205 	bzero(hdr, sizeof(*hdr));
3206 
3207 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3208 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3209 
3210 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3211 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3212 		uint16_t dur;
3213 
3214 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3215 
3216 		hdr->txh_fb_duration = htole16(dur);
3217 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3218 	}
3219 
3220 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3221 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3222 
3223 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3224 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3225 
3226 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3227 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3228 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3229 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3230 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3231 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3232 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3233 
3234 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3235 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3236 
3237 	/* Catch any further usage */
3238 	hdr = NULL;
3239 	wh = NULL;
3240 
3241 	/* DMA load */
3242 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3243 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3244 	if (error != 0) {
3245 		struct mbuf *m_new;
3246 
3247 		if (error != EFBIG) {
3248 			if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3249 			    __func__, error);
3250 			goto back;
3251 		}
3252 		m_new = m_defrag(m, M_DONTWAIT);
3253 		if (m_new == NULL) {
3254 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3255 			    __func__);
3256 			error = ENOBUFS;
3257 			goto back;
3258 		}
3259 		m = m_new;
3260 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3261 					     bwi_dma_buf_addr, &paddr,
3262 					     BUS_DMA_NOWAIT);
3263 		if (error) {
3264 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3265 			    __func__, error);
3266 			goto back;
3267 		}
3268 	}
3269 
3270 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3271 
3272 	tb->tb_mbuf = m;
3273 	tb->tb_ni = ni;
3274 
3275 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3276 		idx, pkt_len, m->m_pkthdr.len);
3277 
3278 	/* Setup TX descriptor */
3279 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3280 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3281 			BUS_DMASYNC_PREWRITE);
3282 
3283 	/* Kick start */
3284 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3285 back:
3286 	if (error)
3287 		m_freem(m);
3288 	return error;
3289 }
3290 
3291 static void
3292 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3293 {
3294 	idx = (idx + 1) % BWI_TX_NDESC;
3295 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3296 		    idx * sizeof(struct bwi_desc32));
3297 }
3298 
3299 static void
3300 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3301 {
3302 	/* TODO:64 */
3303 }
3304 
3305 static void
3306 bwi_txeof_status32(struct bwi_softc *sc)
3307 {
3308 	struct ifnet *ifp = sc->sc_ifp;
3309 	uint32_t val, ctrl_base;
3310 	int end_idx;
3311 
3312 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3313 
3314 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3315 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3316 		  sizeof(struct bwi_desc32);
3317 
3318 	bwi_txeof_status(sc, end_idx);
3319 
3320 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3321 		    end_idx * sizeof(struct bwi_desc32));
3322 
3323 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3324 		ifp->if_start(ifp);
3325 }
3326 
3327 static void
3328 bwi_txeof_status64(struct bwi_softc *sc)
3329 {
3330 	/* TODO:64 */
3331 }
3332 
3333 static void
3334 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3335 {
3336 	struct ifnet *ifp = sc->sc_ifp;
3337 	struct bwi_txbuf_data *tbd;
3338 	struct bwi_txbuf *tb;
3339 	int ring_idx, buf_idx;
3340 	struct ieee80211_node *ni;
3341 	struct ieee80211vap *vap;
3342 
3343 	if (tx_id == 0) {
3344 		if_printf(ifp, "%s: zero tx id\n", __func__);
3345 		return;
3346 	}
3347 
3348 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3349 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3350 
3351 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3352 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3353 
3354 	tbd = &sc->sc_tx_bdata[ring_idx];
3355 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3356 	tbd->tbd_used--;
3357 
3358 	tb = &tbd->tbd_buf[buf_idx];
3359 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3360 		"acked %d, data_txcnt %d, ni %p\n",
3361 		buf_idx, acked, data_txcnt, tb->tb_ni);
3362 
3363 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3364 
3365 	ni = tb->tb_ni;
3366 	if (tb->tb_ni != NULL) {
3367 		const struct bwi_txbuf_hdr *hdr =
3368 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3369 		vap = ni->ni_vap;
3370 
3371 		/* NB: update rate control only for unicast frames */
3372 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3373 			/*
3374 			 * Feed back 'acked and data_txcnt'.  Note that the
3375 			 * generic AMRR code only understands one tx rate
3376 			 * and the estimator doesn't handle real retry counts
3377 			 * well so to avoid over-aggressive downshifting we
3378 			 * treat any number of retries as "1".
3379 			 */
3380 			ieee80211_ratectl_tx_complete(vap, ni,
3381 			    (data_txcnt > 1) ? IEEE80211_RATECTL_TX_SUCCESS :
3382 			        IEEE80211_RATECTL_TX_FAILURE, &acked, NULL);
3383 		}
3384 
3385 		/*
3386 		 * Do any tx complete callback.  Note this must
3387 		 * be done before releasing the node reference.
3388 		 */
3389 		if (tb->tb_mbuf->m_flags & M_TXCB)
3390 			ieee80211_process_callback(ni, tb->tb_mbuf, !acked);
3391 
3392 		ieee80211_free_node(tb->tb_ni);
3393 		tb->tb_ni = NULL;
3394 	}
3395 	m_freem(tb->tb_mbuf);
3396 	tb->tb_mbuf = NULL;
3397 
3398 	if (tbd->tbd_used == 0)
3399 		sc->sc_tx_timer = 0;
3400 
3401 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3402 }
3403 
3404 static void
3405 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3406 {
3407 	struct bwi_txstats_data *st = sc->sc_txstats;
3408 	int idx;
3409 
3410 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3411 
3412 	idx = st->stats_idx;
3413 	while (idx != end_idx) {
3414 		const struct bwi_txstats *stats = &st->stats[idx];
3415 
3416 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3417 			int data_txcnt;
3418 
3419 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3420 						BWI_TXS_TXCNT_DATA);
3421 			_bwi_txeof(sc, le16toh(stats->txs_id),
3422 				   stats->txs_flags & BWI_TXS_F_ACKED,
3423 				   data_txcnt);
3424 		}
3425 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3426 	}
3427 	st->stats_idx = idx;
3428 }
3429 
3430 static void
3431 bwi_txeof(struct bwi_softc *sc)
3432 {
3433 	struct ifnet *ifp = sc->sc_ifp;
3434 
3435 	for (;;) {
3436 		uint32_t tx_status0, tx_status1;
3437 		uint16_t tx_id;
3438 		int data_txcnt;
3439 
3440 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3441 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3442 			break;
3443 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3444 
3445 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3446 		data_txcnt = __SHIFTOUT(tx_status0,
3447 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3448 
3449 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3450 			continue;
3451 
3452 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3453 		    data_txcnt);
3454 	}
3455 
3456 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3457 		ifp->if_start(ifp);
3458 }
3459 
3460 static int
3461 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3462 {
3463 	bwi_power_on(sc, 1);
3464 	return bwi_set_clock_mode(sc, clk_mode);
3465 }
3466 
3467 static void
3468 bwi_bbp_power_off(struct bwi_softc *sc)
3469 {
3470 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3471 	bwi_power_off(sc, 1);
3472 }
3473 
3474 static int
3475 bwi_get_pwron_delay(struct bwi_softc *sc)
3476 {
3477 	struct bwi_regwin *com, *old;
3478 	struct bwi_clock_freq freq;
3479 	uint32_t val;
3480 	int error;
3481 
3482 	com = &sc->sc_com_regwin;
3483 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3484 
3485 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3486 		return 0;
3487 
3488 	error = bwi_regwin_switch(sc, com, &old);
3489 	if (error)
3490 		return error;
3491 
3492 	bwi_get_clock_freq(sc, &freq);
3493 
3494 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3495 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3496 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3497 
3498 	return bwi_regwin_switch(sc, old, NULL);
3499 }
3500 
3501 static int
3502 bwi_bus_attach(struct bwi_softc *sc)
3503 {
3504 	struct bwi_regwin *bus, *old;
3505 	int error;
3506 
3507 	bus = &sc->sc_bus_regwin;
3508 
3509 	error = bwi_regwin_switch(sc, bus, &old);
3510 	if (error)
3511 		return error;
3512 
3513 	if (!bwi_regwin_is_enabled(sc, bus))
3514 		bwi_regwin_enable(sc, bus, 0);
3515 
3516 	/* Disable interripts */
3517 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3518 
3519 	return bwi_regwin_switch(sc, old, NULL);
3520 }
3521 
3522 static const char *
3523 bwi_regwin_name(const struct bwi_regwin *rw)
3524 {
3525 	switch (rw->rw_type) {
3526 	case BWI_REGWIN_T_COM:
3527 		return "COM";
3528 	case BWI_REGWIN_T_BUSPCI:
3529 		return "PCI";
3530 	case BWI_REGWIN_T_MAC:
3531 		return "MAC";
3532 	case BWI_REGWIN_T_BUSPCIE:
3533 		return "PCIE";
3534 	}
3535 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3536 	return NULL;
3537 }
3538 
3539 static uint32_t
3540 bwi_regwin_disable_bits(struct bwi_softc *sc)
3541 {
3542 	uint32_t busrev;
3543 
3544 	/* XXX cache this */
3545 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3546 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3547 		"bus rev %u\n", busrev);
3548 
3549 	if (busrev == BWI_BUSREV_0)
3550 		return BWI_STATE_LO_DISABLE1;
3551 	else if (busrev == BWI_BUSREV_1)
3552 		return BWI_STATE_LO_DISABLE2;
3553 	else
3554 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3555 }
3556 
3557 int
3558 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3559 {
3560 	uint32_t val, disable_bits;
3561 
3562 	disable_bits = bwi_regwin_disable_bits(sc);
3563 	val = CSR_READ_4(sc, BWI_STATE_LO);
3564 
3565 	if ((val & (BWI_STATE_LO_CLOCK |
3566 		    BWI_STATE_LO_RESET |
3567 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3568 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3569 			bwi_regwin_name(rw));
3570 		return 1;
3571 	} else {
3572 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3573 			bwi_regwin_name(rw));
3574 		return 0;
3575 	}
3576 }
3577 
3578 void
3579 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3580 {
3581 	uint32_t state_lo, disable_bits;
3582 	int i;
3583 
3584 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3585 
3586 	/*
3587 	 * If current regwin is in 'reset' state, it was already disabled.
3588 	 */
3589 	if (state_lo & BWI_STATE_LO_RESET) {
3590 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3591 			"%s was already disabled\n", bwi_regwin_name(rw));
3592 		return;
3593 	}
3594 
3595 	disable_bits = bwi_regwin_disable_bits(sc);
3596 
3597 	/*
3598 	 * Disable normal clock
3599 	 */
3600 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3601 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3602 
3603 	/*
3604 	 * Wait until normal clock is disabled
3605 	 */
3606 #define NRETRY	1000
3607 	for (i = 0; i < NRETRY; ++i) {
3608 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3609 		if (state_lo & disable_bits)
3610 			break;
3611 		DELAY(10);
3612 	}
3613 	if (i == NRETRY) {
3614 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3615 			      bwi_regwin_name(rw));
3616 	}
3617 
3618 	for (i = 0; i < NRETRY; ++i) {
3619 		uint32_t state_hi;
3620 
3621 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3622 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3623 			break;
3624 		DELAY(10);
3625 	}
3626 	if (i == NRETRY) {
3627 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3628 			      bwi_regwin_name(rw));
3629 	}
3630 #undef NRETRY
3631 
3632 	/*
3633 	 * Reset and disable regwin with gated clock
3634 	 */
3635 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3636 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3637 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3638 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3639 
3640 	/* Flush pending bus write */
3641 	CSR_READ_4(sc, BWI_STATE_LO);
3642 	DELAY(1);
3643 
3644 	/* Reset and disable regwin */
3645 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3646 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3647 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3648 
3649 	/* Flush pending bus write */
3650 	CSR_READ_4(sc, BWI_STATE_LO);
3651 	DELAY(1);
3652 }
3653 
3654 void
3655 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3656 {
3657 	uint32_t state_lo, state_hi, imstate;
3658 
3659 	bwi_regwin_disable(sc, rw, flags);
3660 
3661 	/* Reset regwin with gated clock */
3662 	state_lo = BWI_STATE_LO_RESET |
3663 		   BWI_STATE_LO_CLOCK |
3664 		   BWI_STATE_LO_GATED_CLOCK |
3665 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3666 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3667 
3668 	/* Flush pending bus write */
3669 	CSR_READ_4(sc, BWI_STATE_LO);
3670 	DELAY(1);
3671 
3672 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3673 	if (state_hi & BWI_STATE_HI_SERROR)
3674 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3675 
3676 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3677 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3678 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3679 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3680 	}
3681 
3682 	/* Enable regwin with gated clock */
3683 	state_lo = BWI_STATE_LO_CLOCK |
3684 		   BWI_STATE_LO_GATED_CLOCK |
3685 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3686 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3687 
3688 	/* Flush pending bus write */
3689 	CSR_READ_4(sc, BWI_STATE_LO);
3690 	DELAY(1);
3691 
3692 	/* Enable regwin with normal clock */
3693 	state_lo = BWI_STATE_LO_CLOCK |
3694 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3695 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3696 
3697 	/* Flush pending bus write */
3698 	CSR_READ_4(sc, BWI_STATE_LO);
3699 	DELAY(1);
3700 }
3701 
3702 static void
3703 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3704 {
3705 	struct ifnet *ifp = sc->sc_ifp;
3706 	struct bwi_mac *mac;
3707 	struct bwi_myaddr_bssid buf;
3708 	const uint8_t *p;
3709 	uint32_t val;
3710 	int n, i;
3711 
3712 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3713 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3714 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3715 
3716 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3717 
3718 	bcopy(IF_LLADDR(ifp), buf.myaddr, sizeof(buf.myaddr));
3719 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3720 
3721 	n = sizeof(buf) / sizeof(val);
3722 	p = (const uint8_t *)&buf;
3723 	for (i = 0; i < n; ++i) {
3724 		int j;
3725 
3726 		val = 0;
3727 		for (j = 0; j < sizeof(val); ++j)
3728 			val |= ((uint32_t)(*p++)) << (j * 8);
3729 
3730 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3731 	}
3732 }
3733 
3734 static void
3735 bwi_updateslot(struct ifnet *ifp)
3736 {
3737 	struct bwi_softc *sc = ifp->if_softc;
3738 	struct ieee80211com *ic = ifp->if_l2com;
3739 	struct bwi_mac *mac;
3740 
3741 	BWI_LOCK(sc);
3742 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3743 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3744 
3745 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3746 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3747 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3748 
3749 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3750 	}
3751 	BWI_UNLOCK(sc);
3752 }
3753 
3754 static void
3755 bwi_calibrate(void *xsc)
3756 {
3757 	struct bwi_softc *sc = xsc;
3758 #ifdef INVARIANTS
3759 	struct ifnet *ifp = sc->sc_ifp;
3760 	struct ieee80211com *ic = ifp->if_l2com;
3761 #endif
3762 	struct bwi_mac *mac;
3763 
3764 	BWI_ASSERT_LOCKED(sc);
3765 
3766 	KASSERT(ic->ic_opmode != IEEE80211_M_MONITOR,
3767 	    ("opmode %d", ic->ic_opmode));
3768 
3769 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3770 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3771 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3772 
3773 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3774 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3775 
3776 	/* XXX 15 seconds */
3777 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3778 }
3779 
3780 static int
3781 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3782 {
3783 	struct bwi_mac *mac;
3784 
3785 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3786 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3787 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3788 
3789 	return bwi_rf_calc_rssi(mac, hdr);
3790 }
3791 
3792 static int
3793 bwi_calc_noise(struct bwi_softc *sc)
3794 {
3795 	struct bwi_mac *mac;
3796 
3797 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3798 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3799 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3800 
3801 	return bwi_rf_calc_noise(mac);
3802 }
3803 
3804 static __inline uint8_t
3805 bwi_ofdm_plcp2rate(const uint32_t *plcp0)
3806 {
3807 	uint32_t plcp;
3808 	uint8_t plcp_rate;
3809 
3810 	plcp = le32toh(*plcp0);
3811 	plcp_rate = __SHIFTOUT(plcp, IEEE80211_OFDM_PLCP_RATE_MASK);
3812 	return ieee80211_plcp2rate(plcp_rate, IEEE80211_T_OFDM);
3813 }
3814 
3815 static __inline uint8_t
3816 bwi_ds_plcp2rate(const struct ieee80211_ds_plcp_hdr *hdr)
3817 {
3818 	return ieee80211_plcp2rate(hdr->i_signal, IEEE80211_T_DS);
3819 }
3820 
3821 static void
3822 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3823     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3824 {
3825 	const struct ieee80211_frame_min *wh;
3826 
3827 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3828 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3829 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3830 
3831 	wh = mtod(m, const struct ieee80211_frame_min *);
3832 	if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3833 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3834 
3835 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian convertion */
3836 	sc->sc_rx_th.wr_rate = rate;
3837 	sc->sc_rx_th.wr_antsignal = rssi;
3838 	sc->sc_rx_th.wr_antnoise = noise;
3839 }
3840 
3841 static void
3842 bwi_led_attach(struct bwi_softc *sc)
3843 {
3844 	const uint8_t *led_act = NULL;
3845 	uint16_t gpio, val[BWI_LED_MAX];
3846 	int i;
3847 
3848 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
3849 
3850 	for (i = 0; i < N(bwi_vendor_led_act); ++i) {
3851 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3852 			led_act = bwi_vendor_led_act[i].led_act;
3853 			break;
3854 		}
3855 	}
3856 	if (led_act == NULL)
3857 		led_act = bwi_default_led_act;
3858 
3859 #undef N
3860 
3861 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3862 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3863 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3864 
3865 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3866 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3867 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3868 
3869 	for (i = 0; i < BWI_LED_MAX; ++i) {
3870 		struct bwi_led *led = &sc->sc_leds[i];
3871 
3872 		if (val[i] == 0xff) {
3873 			led->l_act = led_act[i];
3874 		} else {
3875 			if (val[i] & BWI_LED_ACT_LOW)
3876 				led->l_flags |= BWI_LED_F_ACTLOW;
3877 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3878 		}
3879 		led->l_mask = (1 << i);
3880 
3881 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3882 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3883 		    led->l_act == BWI_LED_ACT_BLINK) {
3884 			led->l_flags |= BWI_LED_F_BLINK;
3885 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3886 				led->l_flags |= BWI_LED_F_POLLABLE;
3887 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3888 				led->l_flags |= BWI_LED_F_SLOW;
3889 
3890 			if (sc->sc_blink_led == NULL) {
3891 				sc->sc_blink_led = led;
3892 				if (led->l_flags & BWI_LED_F_SLOW)
3893 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3894 			}
3895 		}
3896 
3897 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3898 			"%dth led, act %d, lowact %d\n", i,
3899 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3900 	}
3901 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3902 }
3903 
3904 static __inline uint16_t
3905 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3906 {
3907 	if (led->l_flags & BWI_LED_F_ACTLOW)
3908 		on = !on;
3909 	if (on)
3910 		val |= led->l_mask;
3911 	else
3912 		val &= ~led->l_mask;
3913 	return val;
3914 }
3915 
3916 static void
3917 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3918 {
3919 	struct ifnet *ifp = sc->sc_ifp;
3920 	struct ieee80211com *ic = ifp->if_l2com;
3921 	uint16_t val;
3922 	int i;
3923 
3924 	if (nstate == IEEE80211_S_INIT) {
3925 		callout_stop(&sc->sc_led_blink_ch);
3926 		sc->sc_led_blinking = 0;
3927 	}
3928 
3929 	if ((ic->ic_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3930 		return;
3931 
3932 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3933 	for (i = 0; i < BWI_LED_MAX; ++i) {
3934 		struct bwi_led *led = &sc->sc_leds[i];
3935 		int on;
3936 
3937 		if (led->l_act == BWI_LED_ACT_UNKN ||
3938 		    led->l_act == BWI_LED_ACT_NULL)
3939 			continue;
3940 
3941 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3942 		    nstate != IEEE80211_S_INIT)
3943 		    	continue;
3944 
3945 		switch (led->l_act) {
3946 		case BWI_LED_ACT_ON:	/* Always on */
3947 			on = 1;
3948 			break;
3949 		case BWI_LED_ACT_OFF:	/* Always off */
3950 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3951 			on = 0;
3952 			break;
3953 		default:
3954 			on = 1;
3955 			switch (nstate) {
3956 			case IEEE80211_S_INIT:
3957 				on = 0;
3958 				break;
3959 			case IEEE80211_S_RUN:
3960 				if (led->l_act == BWI_LED_ACT_11G &&
3961 				    ic->ic_curmode != IEEE80211_MODE_11G)
3962 					on = 0;
3963 				break;
3964 			default:
3965 				if (led->l_act == BWI_LED_ACT_ASSOC)
3966 					on = 0;
3967 				break;
3968 			}
3969 			break;
3970 		}
3971 
3972 		val = bwi_led_onoff(led, val, on);
3973 	}
3974 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3975 }
3976 static void
3977 bwi_led_event(struct bwi_softc *sc, int event)
3978 {
3979 	struct bwi_led *led = sc->sc_blink_led;
3980 	int rate;
3981 
3982 	if (event == BWI_LED_EVENT_POLL) {
3983 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3984 			return;
3985 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3986 			return;
3987 	}
3988 
3989 	sc->sc_led_ticks = ticks;
3990 	if (sc->sc_led_blinking)
3991 		return;
3992 
3993 	switch (event) {
3994 	case BWI_LED_EVENT_RX:
3995 		rate = sc->sc_rx_rate;
3996 		break;
3997 	case BWI_LED_EVENT_TX:
3998 		rate = sc->sc_tx_rate;
3999 		break;
4000 	case BWI_LED_EVENT_POLL:
4001 		rate = 0;
4002 		break;
4003 	default:
4004 		panic("unknown LED event %d\n", event);
4005 		break;
4006 	}
4007 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
4008 	    bwi_led_duration[rate].off_dur);
4009 }
4010 
4011 static void
4012 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
4013 {
4014 	struct bwi_led *led = sc->sc_blink_led;
4015 	uint16_t val;
4016 
4017 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4018 	val = bwi_led_onoff(led, val, 1);
4019 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4020 
4021 	if (led->l_flags & BWI_LED_F_SLOW) {
4022 		BWI_LED_SLOWDOWN(on_dur);
4023 		BWI_LED_SLOWDOWN(off_dur);
4024 	}
4025 
4026 	sc->sc_led_blinking = 1;
4027 	sc->sc_led_blink_offdur = off_dur;
4028 
4029 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
4030 }
4031 
4032 static void
4033 bwi_led_blink_next(void *xsc)
4034 {
4035 	struct bwi_softc *sc = xsc;
4036 	uint16_t val;
4037 
4038 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4039 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
4040 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4041 
4042 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
4043 	    bwi_led_blink_end, sc);
4044 }
4045 
4046 static void
4047 bwi_led_blink_end(void *xsc)
4048 {
4049 	struct bwi_softc *sc = xsc;
4050 	sc->sc_led_blinking = 0;
4051 }
4052 
4053 static void
4054 bwi_restart(void *xsc, int pending)
4055 {
4056 	struct bwi_softc *sc = xsc;
4057 	struct ifnet *ifp = sc->sc_ifp;
4058 
4059 	if_printf(ifp, "%s begin, help!\n", __func__);
4060 	BWI_LOCK(sc);
4061 	bwi_init_statechg(xsc, 0);
4062 #if 0
4063 	bwi_start_locked(ifp);
4064 #endif
4065 	BWI_UNLOCK(sc);
4066 }
4067