xref: /freebsd/sys/dev/bwi/if_bwi.c (revision e28a4053)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 
43 #include <sys/param.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/bus.h>
47 #include <sys/malloc.h>
48 #include <sys/proc.h>
49 #include <sys/rman.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/taskqueue.h>
55 
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 #include <net/if_arp.h>
61 #include <net/ethernet.h>
62 #include <net/if_llc.h>
63 
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66 #include <net80211/ieee80211_regdomain.h>
67 #include <net80211/ieee80211_phy.h>
68 #include <net80211/ieee80211_ratectl.h>
69 
70 #include <net/bpf.h>
71 
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/if_ether.h>
75 #endif
76 
77 #include <machine/bus.h>
78 
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcireg.h>
81 
82 #include <dev/bwi/bitops.h>
83 #include <dev/bwi/if_bwireg.h>
84 #include <dev/bwi/if_bwivar.h>
85 #include <dev/bwi/bwimac.h>
86 #include <dev/bwi/bwirf.h>
87 
88 struct bwi_clock_freq {
89 	u_int		clkfreq_min;
90 	u_int		clkfreq_max;
91 };
92 
93 struct bwi_myaddr_bssid {
94 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
95 	uint8_t		bssid[IEEE80211_ADDR_LEN];
96 } __packed;
97 
98 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
99 		   const char [IFNAMSIZ], int, int, int,
100 		   const uint8_t [IEEE80211_ADDR_LEN],
101 		   const uint8_t [IEEE80211_ADDR_LEN]);
102 static void	bwi_vap_delete(struct ieee80211vap *);
103 static void	bwi_init(void *);
104 static int	bwi_ioctl(struct ifnet *, u_long, caddr_t);
105 static void	bwi_start(struct ifnet *);
106 static void	bwi_start_locked(struct ifnet *);
107 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
108 			const struct ieee80211_bpf_params *);
109 static void	bwi_watchdog(void *);
110 static void	bwi_scan_start(struct ieee80211com *);
111 static void	bwi_set_channel(struct ieee80211com *);
112 static void	bwi_scan_end(struct ieee80211com *);
113 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
114 static void	bwi_updateslot(struct ifnet *);
115 static int	bwi_media_change(struct ifnet *);
116 
117 static void	bwi_calibrate(void *);
118 
119 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
120 static int	bwi_calc_noise(struct bwi_softc *);
121 static __inline uint8_t bwi_ofdm_plcp2rate(const uint32_t *);
122 static __inline uint8_t bwi_ds_plcp2rate(const struct ieee80211_ds_plcp_hdr *);
123 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
124 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
125 
126 static void	bwi_restart(void *, int);
127 static void	bwi_init_statechg(struct bwi_softc *, int);
128 static void	bwi_stop(struct bwi_softc *, int);
129 static void	bwi_stop_locked(struct bwi_softc *, int);
130 static int	bwi_newbuf(struct bwi_softc *, int, int);
131 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
132 			  struct ieee80211_node *);
133 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
134 			  struct ieee80211_node *,
135 			  const struct ieee80211_bpf_params *);
136 
137 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
138 				       bus_addr_t, int, int);
139 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
140 
141 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
142 static int	bwi_init_rx_ring32(struct bwi_softc *);
143 static int	bwi_init_txstats32(struct bwi_softc *);
144 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
145 static void	bwi_free_rx_ring32(struct bwi_softc *);
146 static void	bwi_free_txstats32(struct bwi_softc *);
147 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
148 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
149 				    int, bus_addr_t, int);
150 static int	bwi_rxeof32(struct bwi_softc *);
151 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
152 static void	bwi_txeof_status32(struct bwi_softc *);
153 
154 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
155 static int	bwi_init_rx_ring64(struct bwi_softc *);
156 static int	bwi_init_txstats64(struct bwi_softc *);
157 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
158 static void	bwi_free_rx_ring64(struct bwi_softc *);
159 static void	bwi_free_txstats64(struct bwi_softc *);
160 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
161 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
162 				    int, bus_addr_t, int);
163 static int	bwi_rxeof64(struct bwi_softc *);
164 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
165 static void	bwi_txeof_status64(struct bwi_softc *);
166 
167 static int	bwi_rxeof(struct bwi_softc *, int);
168 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
169 static void	bwi_txeof(struct bwi_softc *);
170 static void	bwi_txeof_status(struct bwi_softc *, int);
171 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
172 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
173 
174 static int	bwi_dma_alloc(struct bwi_softc *);
175 static void	bwi_dma_free(struct bwi_softc *);
176 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
177 				   struct bwi_ring_data *, bus_size_t,
178 				   uint32_t);
179 static int	bwi_dma_mbuf_create(struct bwi_softc *);
180 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
181 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
182 static void	bwi_dma_txstats_free(struct bwi_softc *);
183 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
184 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
185 				 bus_size_t, int);
186 
187 static void	bwi_power_on(struct bwi_softc *, int);
188 static int	bwi_power_off(struct bwi_softc *, int);
189 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
190 static int	bwi_set_clock_delay(struct bwi_softc *);
191 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
192 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
193 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
194 				    const uint8_t *);
195 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
196 
197 static void	bwi_get_card_flags(struct bwi_softc *);
198 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
199 
200 static int	bwi_bus_attach(struct bwi_softc *);
201 static int	bwi_bbp_attach(struct bwi_softc *);
202 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
203 static void	bwi_bbp_power_off(struct bwi_softc *);
204 
205 static const char *bwi_regwin_name(const struct bwi_regwin *);
206 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
207 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
208 static int	bwi_regwin_select(struct bwi_softc *, int);
209 
210 static void	bwi_led_attach(struct bwi_softc *);
211 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
212 static void	bwi_led_event(struct bwi_softc *, int);
213 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
214 static void	bwi_led_blink_next(void *);
215 static void	bwi_led_blink_end(void *);
216 
217 static const struct {
218 	uint16_t	did_min;
219 	uint16_t	did_max;
220 	uint16_t	bbp_id;
221 } bwi_bbpid_map[] = {
222 	{ 0x4301, 0x4301, 0x4301 },
223 	{ 0x4305, 0x4307, 0x4307 },
224 	{ 0x4403, 0x4403, 0x4402 },
225 	{ 0x4610, 0x4615, 0x4610 },
226 	{ 0x4710, 0x4715, 0x4710 },
227 	{ 0x4720, 0x4725, 0x4309 }
228 };
229 
230 static const struct {
231 	uint16_t	bbp_id;
232 	int		nregwin;
233 } bwi_regwin_count[] = {
234 	{ 0x4301, 5 },
235 	{ 0x4306, 6 },
236 	{ 0x4307, 5 },
237 	{ 0x4310, 8 },
238 	{ 0x4401, 3 },
239 	{ 0x4402, 3 },
240 	{ 0x4610, 9 },
241 	{ 0x4704, 9 },
242 	{ 0x4710, 9 },
243 	{ 0x5365, 7 }
244 };
245 
246 #define CLKSRC(src) 				\
247 [BWI_CLKSRC_ ## src] = {			\
248 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
249 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
250 }
251 
252 static const struct {
253 	u_int	freq_min;
254 	u_int	freq_max;
255 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
256 	CLKSRC(LP_OSC),
257 	CLKSRC(CS_OSC),
258 	CLKSRC(PCI)
259 };
260 
261 #undef CLKSRC
262 
263 #define VENDOR_LED_ACT(vendor)				\
264 {							\
265 	.vid = PCI_VENDOR_##vendor,			\
266 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
267 }
268 
269 static const struct {
270 #define	PCI_VENDOR_COMPAQ	0x0e11
271 #define	PCI_VENDOR_LINKSYS	0x1737
272 	uint16_t	vid;
273 	uint8_t		led_act[BWI_LED_MAX];
274 } bwi_vendor_led_act[] = {
275 	VENDOR_LED_ACT(COMPAQ),
276 	VENDOR_LED_ACT(LINKSYS)
277 #undef PCI_VENDOR_LINKSYS
278 #undef PCI_VENDOR_COMPAQ
279 };
280 
281 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
282 	{ BWI_VENDOR_LED_ACT_DEFAULT };
283 
284 #undef VENDOR_LED_ACT
285 
286 static const struct {
287 	int	on_dur;
288 	int	off_dur;
289 } bwi_led_duration[109] = {
290 	[0]	= { 400, 100 },
291 	[2]	= { 150, 75 },
292 	[4]	= { 90, 45 },
293 	[11]	= { 66, 34 },
294 	[12]	= { 53, 26 },
295 	[18]	= { 42, 21 },
296 	[22]	= { 35, 17 },
297 	[24]	= { 32, 16 },
298 	[36]	= { 21, 10 },
299 	[48]	= { 16, 8 },
300 	[72]	= { 11, 5 },
301 	[96]	= { 9, 4 },
302 	[108]	= { 7, 3 }
303 };
304 
305 #ifdef BWI_DEBUG
306 #ifdef BWI_DEBUG_VERBOSE
307 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
308 #else
309 static uint32_t	bwi_debug;
310 #endif
311 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
312 #endif	/* BWI_DEBUG */
313 
314 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
315 
316 uint16_t
317 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
318 {
319 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
320 }
321 
322 static __inline void
323 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
324 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
325 		 int tx)
326 {
327 	struct bwi_desc32 *desc = &desc_array[desc_idx];
328 	uint32_t ctrl, addr, addr_hi, addr_lo;
329 
330 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
331 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
332 
333 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
334 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
335 
336 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
337 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
338 	if (desc_idx == ndesc - 1)
339 		ctrl |= BWI_DESC32_C_EOR;
340 	if (tx) {
341 		/* XXX */
342 		ctrl |= BWI_DESC32_C_FRAME_START |
343 			BWI_DESC32_C_FRAME_END |
344 			BWI_DESC32_C_INTR;
345 	}
346 
347 	desc->addr = htole32(addr);
348 	desc->ctrl = htole32(ctrl);
349 }
350 
351 int
352 bwi_attach(struct bwi_softc *sc)
353 {
354 	struct ieee80211com *ic;
355 	device_t dev = sc->sc_dev;
356 	struct ifnet *ifp;
357 	struct bwi_mac *mac;
358 	struct bwi_phy *phy;
359 	int i, error;
360 	uint8_t bands;
361 	uint8_t macaddr[IEEE80211_ADDR_LEN];
362 
363 	BWI_LOCK_INIT(sc);
364 
365 	/*
366 	 * Initialize taskq and various tasks
367 	 */
368 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
369 		taskqueue_thread_enqueue, &sc->sc_tq);
370 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
371 		device_get_nameunit(dev));
372 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
373 
374 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
375 
376 	/*
377 	 * Initialize sysctl variables
378 	 */
379 	sc->sc_fw_version = BWI_FW_VERSION3;
380 	sc->sc_led_idle = (2350 * hz) / 1000;
381 	sc->sc_led_blink = 1;
382 	sc->sc_txpwr_calib = 1;
383 #ifdef BWI_DEBUG
384 	sc->sc_debug = bwi_debug;
385 #endif
386 	bwi_power_on(sc, 1);
387 
388 	error = bwi_bbp_attach(sc);
389 	if (error)
390 		goto fail;
391 
392 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
393 	if (error)
394 		goto fail;
395 
396 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
397 		error = bwi_set_clock_delay(sc);
398 		if (error)
399 			goto fail;
400 
401 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
402 		if (error)
403 			goto fail;
404 
405 		error = bwi_get_pwron_delay(sc);
406 		if (error)
407 			goto fail;
408 	}
409 
410 	error = bwi_bus_attach(sc);
411 	if (error)
412 		goto fail;
413 
414 	bwi_get_card_flags(sc);
415 
416 	bwi_led_attach(sc);
417 
418 	for (i = 0; i < sc->sc_nmac; ++i) {
419 		struct bwi_regwin *old;
420 
421 		mac = &sc->sc_mac[i];
422 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
423 		if (error)
424 			goto fail;
425 
426 		error = bwi_mac_lateattach(mac);
427 		if (error)
428 			goto fail;
429 
430 		error = bwi_regwin_switch(sc, old, NULL);
431 		if (error)
432 			goto fail;
433 	}
434 
435 	/*
436 	 * XXX First MAC is known to exist
437 	 * TODO2
438 	 */
439 	mac = &sc->sc_mac[0];
440 	phy = &mac->mac_phy;
441 
442 	bwi_bbp_power_off(sc);
443 
444 	error = bwi_dma_alloc(sc);
445 	if (error)
446 		goto fail;
447 
448 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
449 	if (ifp == NULL) {
450 		device_printf(dev, "can not if_alloc()\n");
451 		error = ENOSPC;
452 		goto fail;
453 	}
454 	ic = ifp->if_l2com;
455 
456 	/* set these up early for if_printf use */
457 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
458 
459 	ifp->if_softc = sc;
460 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
461 	ifp->if_init = bwi_init;
462 	ifp->if_ioctl = bwi_ioctl;
463 	ifp->if_start = bwi_start;
464 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
465 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
466 	IFQ_SET_READY(&ifp->if_snd);
467 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
468 
469 	/*
470 	 * Setup ratesets, phytype, channels and get MAC address
471 	 */
472 	bands = 0;
473 	if (phy->phy_mode == IEEE80211_MODE_11B ||
474 	    phy->phy_mode == IEEE80211_MODE_11G) {
475 		setbit(&bands, IEEE80211_MODE_11B);
476 		if (phy->phy_mode == IEEE80211_MODE_11B) {
477 			ic->ic_phytype = IEEE80211_T_DS;
478 		} else {
479 			ic->ic_phytype = IEEE80211_T_OFDM;
480 			setbit(&bands, IEEE80211_MODE_11G);
481 		}
482 
483 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, macaddr);
484 		if (IEEE80211_IS_MULTICAST(macaddr)) {
485 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, macaddr);
486 			if (IEEE80211_IS_MULTICAST(macaddr)) {
487 				device_printf(dev,
488 				    "invalid MAC address: %6D\n",
489 				    macaddr, ":");
490 			}
491 		}
492 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
493 		/* TODO:11A */
494 		setbit(&bands, IEEE80211_MODE_11A);
495 		error = ENXIO;
496 		goto fail;
497 	} else {
498 		panic("unknown phymode %d\n", phy->phy_mode);
499 	}
500 
501 	/* Get locale */
502 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
503 				   BWI_SPROM_CARD_INFO_LOCALE);
504 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
505 	/* XXX use locale */
506 	ieee80211_init_channels(ic, NULL, &bands);
507 
508 	ic->ic_ifp = ifp;
509 	ic->ic_caps = IEEE80211_C_STA |
510 		      IEEE80211_C_SHSLOT |
511 		      IEEE80211_C_SHPREAMBLE |
512 		      IEEE80211_C_WPA |
513 		      IEEE80211_C_BGSCAN |
514 		      IEEE80211_C_MONITOR |
515 		      IEEE80211_C_RATECTL;
516 	ic->ic_opmode = IEEE80211_M_STA;
517 	ieee80211_ifattach(ic, macaddr);
518 
519 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
520 
521 	/* override default methods */
522 	ic->ic_vap_create = bwi_vap_create;
523 	ic->ic_vap_delete = bwi_vap_delete;
524 	ic->ic_raw_xmit = bwi_raw_xmit;
525 	ic->ic_updateslot = bwi_updateslot;
526 	ic->ic_scan_start = bwi_scan_start;
527 	ic->ic_scan_end = bwi_scan_end;
528 	ic->ic_set_channel = bwi_set_channel;
529 
530 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
531 
532 	ieee80211_radiotap_attach(ic,
533 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
534 		BWI_TX_RADIOTAP_PRESENT,
535 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
536 		BWI_RX_RADIOTAP_PRESENT);
537 
538 	/*
539 	 * Add sysctl nodes
540 	 */
541 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
542 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
543 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
544 		        "Firmware version");
545 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
546 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
547 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
548 		        "# ticks before LED enters idle state");
549 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
550 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
551 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
552 		       "Allow LED to blink");
553 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
554 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
555 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
556 		       "Enable software TX power calibration");
557 #ifdef BWI_DEBUG
558 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
559 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
560 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
561 #endif
562 	if (bootverbose)
563 		ieee80211_announce(ic);
564 
565 	return (0);
566 fail:
567 	BWI_LOCK_DESTROY(sc);
568 	return (error);
569 }
570 
571 int
572 bwi_detach(struct bwi_softc *sc)
573 {
574 	struct ifnet *ifp = sc->sc_ifp;
575 	struct ieee80211com *ic = ifp->if_l2com;
576 	int i;
577 
578 	bwi_stop(sc, 1);
579 	callout_drain(&sc->sc_led_blink_ch);
580 	callout_drain(&sc->sc_calib_ch);
581 	callout_drain(&sc->sc_watchdog_timer);
582 	ieee80211_ifdetach(ic);
583 
584 	for (i = 0; i < sc->sc_nmac; ++i)
585 		bwi_mac_detach(&sc->sc_mac[i]);
586 	bwi_dma_free(sc);
587 	if_free(ifp);
588 	taskqueue_free(sc->sc_tq);
589 
590 	BWI_LOCK_DESTROY(sc);
591 
592 	return (0);
593 }
594 
595 static struct ieee80211vap *
596 bwi_vap_create(struct ieee80211com *ic,
597 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
598 	const uint8_t bssid[IEEE80211_ADDR_LEN],
599 	const uint8_t mac[IEEE80211_ADDR_LEN])
600 {
601 	struct bwi_vap *bvp;
602 	struct ieee80211vap *vap;
603 
604 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
605 		return NULL;
606 	bvp = (struct bwi_vap *) malloc(sizeof(struct bwi_vap),
607 	    M_80211_VAP, M_WAITOK | M_ZERO);
608 	if (bvp == NULL)
609 		return NULL;
610 	vap = &bvp->bv_vap;
611 	/* enable s/w bmiss handling for sta mode */
612 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
613 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
614 
615 	/* override default methods */
616 	bvp->bv_newstate = vap->iv_newstate;
617 	vap->iv_newstate = bwi_newstate;
618 #if 0
619 	vap->iv_update_beacon = bwi_beacon_update;
620 #endif
621 	ieee80211_ratectl_init(vap);
622 
623 	/* complete setup */
624 	ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status);
625 	ic->ic_opmode = opmode;
626 	return vap;
627 }
628 
629 static void
630 bwi_vap_delete(struct ieee80211vap *vap)
631 {
632 	struct bwi_vap *bvp = BWI_VAP(vap);
633 
634 	ieee80211_ratectl_deinit(vap);
635 	ieee80211_vap_detach(vap);
636 	free(bvp, M_80211_VAP);
637 }
638 
639 void
640 bwi_suspend(struct bwi_softc *sc)
641 {
642 	bwi_stop(sc, 1);
643 }
644 
645 void
646 bwi_resume(struct bwi_softc *sc)
647 {
648 	struct ifnet *ifp = sc->sc_ifp;
649 
650 	if (ifp->if_flags & IFF_UP)
651 		bwi_init(sc);
652 }
653 
654 int
655 bwi_shutdown(struct bwi_softc *sc)
656 {
657 	bwi_stop(sc, 1);
658 	return 0;
659 }
660 
661 static void
662 bwi_power_on(struct bwi_softc *sc, int with_pll)
663 {
664 	uint32_t gpio_in, gpio_out, gpio_en;
665 	uint16_t status;
666 
667 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
668 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
669 		goto back;
670 
671 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
672 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
673 
674 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
675 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
676 	if (with_pll) {
677 		/* Turn off PLL first */
678 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
679 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
680 	}
681 
682 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
683 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
684 	DELAY(1000);
685 
686 	if (with_pll) {
687 		/* Turn on PLL */
688 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
689 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
690 		DELAY(5000);
691 	}
692 
693 back:
694 	/* Clear "Signaled Target Abort" */
695 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
696 	status &= ~PCIM_STATUS_STABORT;
697 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
698 }
699 
700 static int
701 bwi_power_off(struct bwi_softc *sc, int with_pll)
702 {
703 	uint32_t gpio_out, gpio_en;
704 
705 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
706 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
707 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
708 
709 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
710 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
711 	if (with_pll) {
712 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
713 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
714 	}
715 
716 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
717 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
718 	return 0;
719 }
720 
721 int
722 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
723 		  struct bwi_regwin **old_rw)
724 {
725 	int error;
726 
727 	if (old_rw != NULL)
728 		*old_rw = NULL;
729 
730 	if (!BWI_REGWIN_EXIST(rw))
731 		return EINVAL;
732 
733 	if (sc->sc_cur_regwin != rw) {
734 		error = bwi_regwin_select(sc, rw->rw_id);
735 		if (error) {
736 			device_printf(sc->sc_dev, "can't select regwin %d\n",
737 				  rw->rw_id);
738 			return error;
739 		}
740 	}
741 
742 	if (old_rw != NULL)
743 		*old_rw = sc->sc_cur_regwin;
744 	sc->sc_cur_regwin = rw;
745 	return 0;
746 }
747 
748 static int
749 bwi_regwin_select(struct bwi_softc *sc, int id)
750 {
751 	uint32_t win = BWI_PCIM_REGWIN(id);
752 	int i;
753 
754 #define RETRY_MAX	50
755 	for (i = 0; i < RETRY_MAX; ++i) {
756 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
757 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
758 			return 0;
759 		DELAY(10);
760 	}
761 #undef RETRY_MAX
762 
763 	return ENXIO;
764 }
765 
766 static void
767 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
768 {
769 	uint32_t val;
770 
771 	val = CSR_READ_4(sc, BWI_ID_HI);
772 	*type = BWI_ID_HI_REGWIN_TYPE(val);
773 	*rev = BWI_ID_HI_REGWIN_REV(val);
774 
775 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
776 		"vendor 0x%04x\n", *type, *rev,
777 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
778 }
779 
780 static int
781 bwi_bbp_attach(struct bwi_softc *sc)
782 {
783 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
784 	uint16_t bbp_id, rw_type;
785 	uint8_t rw_rev;
786 	uint32_t info;
787 	int error, nregwin, i;
788 
789 	/*
790 	 * Get 0th regwin information
791 	 * NOTE: 0th regwin should exist
792 	 */
793 	error = bwi_regwin_select(sc, 0);
794 	if (error) {
795 		device_printf(sc->sc_dev, "can't select regwin 0\n");
796 		return error;
797 	}
798 	bwi_regwin_info(sc, &rw_type, &rw_rev);
799 
800 	/*
801 	 * Find out BBP id
802 	 */
803 	bbp_id = 0;
804 	info = 0;
805 	if (rw_type == BWI_REGWIN_T_COM) {
806 		info = CSR_READ_4(sc, BWI_INFO);
807 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
808 
809 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
810 
811 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
812 	} else {
813 		for (i = 0; i < N(bwi_bbpid_map); ++i) {
814 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
815 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
816 				bbp_id = bwi_bbpid_map[i].bbp_id;
817 				break;
818 			}
819 		}
820 		if (bbp_id == 0) {
821 			device_printf(sc->sc_dev, "no BBP id for device id "
822 				      "0x%04x\n", sc->sc_pci_did);
823 			return ENXIO;
824 		}
825 
826 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
827 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
828 	}
829 
830 	/*
831 	 * Find out number of regwins
832 	 */
833 	nregwin = 0;
834 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
835 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
836 	} else {
837 		for (i = 0; i < N(bwi_regwin_count); ++i) {
838 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
839 				nregwin = bwi_regwin_count[i].nregwin;
840 				break;
841 			}
842 		}
843 		if (nregwin == 0) {
844 			device_printf(sc->sc_dev, "no number of win for "
845 				      "BBP id 0x%04x\n", bbp_id);
846 			return ENXIO;
847 		}
848 	}
849 
850 	/* Record BBP id/rev for later using */
851 	sc->sc_bbp_id = bbp_id;
852 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
853 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
854 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
855 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
856 
857 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
858 		nregwin, sc->sc_cap);
859 
860 	/*
861 	 * Create rest of the regwins
862 	 */
863 
864 	/* Don't re-create common regwin, if it is already created */
865 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
866 
867 	for (; i < nregwin; ++i) {
868 		/*
869 		 * Get regwin information
870 		 */
871 		error = bwi_regwin_select(sc, i);
872 		if (error) {
873 			device_printf(sc->sc_dev,
874 				      "can't select regwin %d\n", i);
875 			return error;
876 		}
877 		bwi_regwin_info(sc, &rw_type, &rw_rev);
878 
879 		/*
880 		 * Try attach:
881 		 * 1) Bus (PCI/PCIE) regwin
882 		 * 2) MAC regwin
883 		 * Ignore rest types of regwin
884 		 */
885 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
886 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
887 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
888 				device_printf(sc->sc_dev,
889 					      "bus regwin already exists\n");
890 			} else {
891 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
892 						  rw_type, rw_rev);
893 			}
894 		} else if (rw_type == BWI_REGWIN_T_MAC) {
895 			/* XXX ignore return value */
896 			bwi_mac_attach(sc, i, rw_rev);
897 		}
898 	}
899 
900 	/* At least one MAC shold exist */
901 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
902 		device_printf(sc->sc_dev, "no MAC was found\n");
903 		return ENXIO;
904 	}
905 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
906 
907 	/* Bus regwin must exist */
908 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
909 		device_printf(sc->sc_dev, "no bus regwin was found\n");
910 		return ENXIO;
911 	}
912 
913 	/* Start with first MAC */
914 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
915 	if (error)
916 		return error;
917 
918 	return 0;
919 #undef N
920 }
921 
922 int
923 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
924 {
925 	struct bwi_regwin *old, *bus;
926 	uint32_t val;
927 	int error;
928 
929 	bus = &sc->sc_bus_regwin;
930 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
931 
932 	/*
933 	 * Tell bus to generate requested interrupts
934 	 */
935 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
936 		/*
937 		 * NOTE: Read BWI_FLAGS from MAC regwin
938 		 */
939 		val = CSR_READ_4(sc, BWI_FLAGS);
940 
941 		error = bwi_regwin_switch(sc, bus, &old);
942 		if (error)
943 			return error;
944 
945 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
946 	} else {
947 		uint32_t mac_mask;
948 
949 		mac_mask = 1 << mac->mac_id;
950 
951 		error = bwi_regwin_switch(sc, bus, &old);
952 		if (error)
953 			return error;
954 
955 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
956 		val |= mac_mask << 8;
957 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
958 	}
959 
960 	if (sc->sc_flags & BWI_F_BUS_INITED)
961 		goto back;
962 
963 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
964 		/*
965 		 * Enable prefetch and burst
966 		 */
967 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
968 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
969 
970 		if (bus->rw_rev < 5) {
971 			struct bwi_regwin *com = &sc->sc_com_regwin;
972 
973 			/*
974 			 * Configure timeouts for bus operation
975 			 */
976 
977 			/*
978 			 * Set service timeout and request timeout
979 			 */
980 			CSR_SETBITS_4(sc, BWI_CONF_LO,
981 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
982 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
983 
984 			/*
985 			 * If there is common regwin, we switch to that regwin
986 			 * and switch back to bus regwin once we have done.
987 			 */
988 			if (BWI_REGWIN_EXIST(com)) {
989 				error = bwi_regwin_switch(sc, com, NULL);
990 				if (error)
991 					return error;
992 			}
993 
994 			/* Let bus know what we have changed */
995 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
996 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
997 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
998 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
999 
1000 			if (BWI_REGWIN_EXIST(com)) {
1001 				error = bwi_regwin_switch(sc, bus, NULL);
1002 				if (error)
1003 					return error;
1004 			}
1005 		} else if (bus->rw_rev >= 11) {
1006 			/*
1007 			 * Enable memory read multiple
1008 			 */
1009 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
1010 		}
1011 	} else {
1012 		/* TODO:PCIE */
1013 	}
1014 
1015 	sc->sc_flags |= BWI_F_BUS_INITED;
1016 back:
1017 	return bwi_regwin_switch(sc, old, NULL);
1018 }
1019 
1020 static void
1021 bwi_get_card_flags(struct bwi_softc *sc)
1022 {
1023 #define	PCI_VENDOR_APPLE 0x106b
1024 #define	PCI_VENDOR_DELL  0x1028
1025 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1026 	if (sc->sc_card_flags == 0xffff)
1027 		sc->sc_card_flags = 0;
1028 
1029 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1030 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1031 	    sc->sc_pci_revid == 0x74)
1032 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1033 
1034 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1035 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1036 	    sc->sc_pci_revid > 0x40)
1037 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1038 
1039 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1040 #undef PCI_VENDOR_DELL
1041 #undef PCI_VENDOR_APPLE
1042 }
1043 
1044 static void
1045 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1046 {
1047 	int i;
1048 
1049 	for (i = 0; i < 3; ++i) {
1050 		*((uint16_t *)eaddr + i) =
1051 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1052 	}
1053 }
1054 
1055 static void
1056 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1057 {
1058 	struct bwi_regwin *com;
1059 	uint32_t val;
1060 	u_int div;
1061 	int src;
1062 
1063 	bzero(freq, sizeof(*freq));
1064 	com = &sc->sc_com_regwin;
1065 
1066 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1067 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1068 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1069 
1070 	/*
1071 	 * Calculate clock frequency
1072 	 */
1073 	src = -1;
1074 	div = 0;
1075 	if (com->rw_rev < 6) {
1076 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1077 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1078 			src = BWI_CLKSRC_PCI;
1079 			div = 64;
1080 		} else {
1081 			src = BWI_CLKSRC_CS_OSC;
1082 			div = 32;
1083 		}
1084 	} else if (com->rw_rev < 10) {
1085 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1086 
1087 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1088 		if (src == BWI_CLKSRC_LP_OSC) {
1089 			div = 1;
1090 		} else {
1091 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1092 
1093 			/* Unknown source */
1094 			if (src >= BWI_CLKSRC_MAX)
1095 				src = BWI_CLKSRC_CS_OSC;
1096 		}
1097 	} else {
1098 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1099 
1100 		src = BWI_CLKSRC_CS_OSC;
1101 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1102 	}
1103 
1104 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1105 	KASSERT(div != 0, ("div zero"));
1106 
1107 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1108 		src == BWI_CLKSRC_PCI ? "PCI" :
1109 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1110 
1111 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1112 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1113 
1114 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1115 		freq->clkfreq_min, freq->clkfreq_max);
1116 }
1117 
1118 static int
1119 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1120 {
1121 	struct bwi_regwin *old, *com;
1122 	uint32_t clk_ctrl, clk_src;
1123 	int error, pwr_off = 0;
1124 
1125 	com = &sc->sc_com_regwin;
1126 	if (!BWI_REGWIN_EXIST(com))
1127 		return 0;
1128 
1129 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1130 		return 0;
1131 
1132 	/*
1133 	 * For common regwin whose rev is [6, 10), the chip
1134 	 * must be capable to change clock mode.
1135 	 */
1136 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1137 		return 0;
1138 
1139 	error = bwi_regwin_switch(sc, com, &old);
1140 	if (error)
1141 		return error;
1142 
1143 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1144 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1145 
1146 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1147 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1148 
1149 	switch (clk_mode) {
1150 	case BWI_CLOCK_MODE_FAST:
1151 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1152 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1153 		break;
1154 	case BWI_CLOCK_MODE_SLOW:
1155 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1156 		break;
1157 	case BWI_CLOCK_MODE_DYN:
1158 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1159 			      BWI_CLOCK_CTRL_IGNPLL |
1160 			      BWI_CLOCK_CTRL_NODYN);
1161 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1162 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1163 			pwr_off = 1;
1164 		}
1165 		break;
1166 	}
1167 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1168 
1169 	if (pwr_off)
1170 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1171 
1172 	return bwi_regwin_switch(sc, old, NULL);
1173 }
1174 
1175 static int
1176 bwi_set_clock_delay(struct bwi_softc *sc)
1177 {
1178 	struct bwi_regwin *old, *com;
1179 	int error;
1180 
1181 	com = &sc->sc_com_regwin;
1182 	if (!BWI_REGWIN_EXIST(com))
1183 		return 0;
1184 
1185 	error = bwi_regwin_switch(sc, com, &old);
1186 	if (error)
1187 		return error;
1188 
1189 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1190 		if (sc->sc_bbp_rev == 0)
1191 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1192 		else if (sc->sc_bbp_rev == 1)
1193 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1194 	}
1195 
1196 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1197 		if (com->rw_rev >= 10) {
1198 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1199 		} else {
1200 			struct bwi_clock_freq freq;
1201 
1202 			bwi_get_clock_freq(sc, &freq);
1203 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1204 				howmany(freq.clkfreq_max * 150, 1000000));
1205 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1206 				howmany(freq.clkfreq_max * 15, 1000000));
1207 		}
1208 	}
1209 
1210 	return bwi_regwin_switch(sc, old, NULL);
1211 }
1212 
1213 static void
1214 bwi_init(void *xsc)
1215 {
1216 	struct bwi_softc *sc = xsc;
1217 	struct ifnet *ifp = sc->sc_ifp;
1218 	struct ieee80211com *ic = ifp->if_l2com;
1219 
1220 	BWI_LOCK(sc);
1221 	bwi_init_statechg(sc, 1);
1222 	BWI_UNLOCK(sc);
1223 
1224 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1225 		ieee80211_start_all(ic);		/* start all vap's */
1226 }
1227 
1228 static void
1229 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1230 {
1231 	struct ifnet *ifp = sc->sc_ifp;
1232 	struct bwi_mac *mac;
1233 	int error;
1234 
1235 	bwi_stop_locked(sc, statechg);
1236 
1237 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1238 
1239 	/* TODO: 2 MAC */
1240 
1241 	mac = &sc->sc_mac[0];
1242 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1243 	if (error) {
1244 		if_printf(ifp, "%s: error %d on regwin switch\n",
1245 		    __func__, error);
1246 		goto bad;
1247 	}
1248 	error = bwi_mac_init(mac);
1249 	if (error) {
1250 		if_printf(ifp, "%s: error %d on MAC init\n", __func__, error);
1251 		goto bad;
1252 	}
1253 
1254 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1255 
1256 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1257 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, IF_LLADDR(ifp));
1258 
1259 	bwi_mac_reset_hwkeys(mac);
1260 
1261 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1262 		int i;
1263 
1264 #define NRETRY	1000
1265 		/*
1266 		 * Drain any possible pending TX status
1267 		 */
1268 		for (i = 0; i < NRETRY; ++i) {
1269 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1270 			     BWI_TXSTATUS0_VALID) == 0)
1271 				break;
1272 			CSR_READ_4(sc, BWI_TXSTATUS1);
1273 		}
1274 		if (i == NRETRY)
1275 			if_printf(ifp, "%s: can't drain TX status\n", __func__);
1276 #undef NRETRY
1277 	}
1278 
1279 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1280 		bwi_mac_updateslot(mac, 1);
1281 
1282 	/* Start MAC */
1283 	error = bwi_mac_start(mac);
1284 	if (error) {
1285 		if_printf(ifp, "%s: error %d starting MAC\n", __func__, error);
1286 		goto bad;
1287 	}
1288 
1289 	/* Clear stop flag before enabling interrupt */
1290 	sc->sc_flags &= ~BWI_F_STOP;
1291 
1292 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1293 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1294 
1295 	/* Enable intrs */
1296 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1297 	return;
1298 bad:
1299 	bwi_stop_locked(sc, 1);
1300 }
1301 
1302 static int
1303 bwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1304 {
1305 #define	IS_RUNNING(ifp) \
1306 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1307 	struct bwi_softc *sc = ifp->if_softc;
1308 	struct ieee80211com *ic = ifp->if_l2com;
1309 	struct ifreq *ifr = (struct ifreq *) data;
1310 	int error = 0, startall = 0;
1311 
1312 	switch (cmd) {
1313 	case SIOCSIFFLAGS:
1314 		BWI_LOCK(sc);
1315 		if (IS_RUNNING(ifp)) {
1316 			struct bwi_mac *mac;
1317 			int promisc = -1;
1318 
1319 			KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1320 			    ("current regwin type %d",
1321 			    sc->sc_cur_regwin->rw_type));
1322 			mac = (struct bwi_mac *)sc->sc_cur_regwin;
1323 
1324 			if ((ifp->if_flags & IFF_PROMISC) &&
1325 			    (sc->sc_flags & BWI_F_PROMISC) == 0) {
1326 				promisc = 1;
1327 				sc->sc_flags |= BWI_F_PROMISC;
1328 			} else if ((ifp->if_flags & IFF_PROMISC) == 0 &&
1329 				   (sc->sc_flags & BWI_F_PROMISC)) {
1330 				promisc = 0;
1331 				sc->sc_flags &= ~BWI_F_PROMISC;
1332 			}
1333 
1334 			if (promisc >= 0)
1335 				bwi_mac_set_promisc(mac, promisc);
1336 		}
1337 
1338 		if (ifp->if_flags & IFF_UP) {
1339 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1340 				bwi_init_statechg(sc, 1);
1341 				startall = 1;
1342 			}
1343 		} else {
1344 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1345 				bwi_stop_locked(sc, 1);
1346 		}
1347 		BWI_UNLOCK(sc);
1348 		if (startall)
1349 			ieee80211_start_all(ic);
1350 		break;
1351 	case SIOCGIFMEDIA:
1352 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1353 		break;
1354 	case SIOCGIFADDR:
1355 		error = ether_ioctl(ifp, cmd, data);
1356 		break;
1357 	default:
1358 		error = EINVAL;
1359 		break;
1360 	}
1361 	return error;
1362 #undef IS_RUNNING
1363 }
1364 
1365 static void
1366 bwi_start(struct ifnet *ifp)
1367 {
1368 	struct bwi_softc *sc = ifp->if_softc;
1369 
1370 	BWI_LOCK(sc);
1371 	bwi_start_locked(ifp);
1372 	BWI_UNLOCK(sc);
1373 }
1374 
1375 static void
1376 bwi_start_locked(struct ifnet *ifp)
1377 {
1378 	struct bwi_softc *sc = ifp->if_softc;
1379 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1380 	struct ieee80211_frame *wh;
1381 	struct ieee80211_node *ni;
1382 	struct ieee80211_key *k;
1383 	struct mbuf *m;
1384 	int trans, idx;
1385 
1386 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1387 		return;
1388 
1389 	trans = 0;
1390 	idx = tbd->tbd_idx;
1391 
1392 	while (tbd->tbd_buf[idx].tb_mbuf == NULL) {
1393 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1394 		if (m == NULL)
1395 			break;
1396 
1397 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1398 		wh = mtod(m, struct ieee80211_frame *);
1399 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1400 			k = ieee80211_crypto_encap(ni, m);
1401 			if (k == NULL) {
1402 				ieee80211_free_node(ni);
1403 				m_freem(m);
1404 				ifp->if_oerrors++;
1405 				continue;
1406 			}
1407 		}
1408 		wh = NULL;	/* Catch any invalid use */
1409 
1410 		if (bwi_encap(sc, idx, m, ni) != 0) {
1411 			/* 'm' is freed in bwi_encap() if we reach here */
1412 			if (ni != NULL)
1413 				ieee80211_free_node(ni);
1414 			ifp->if_oerrors++;
1415 			continue;
1416 		}
1417 
1418 		trans = 1;
1419 		tbd->tbd_used++;
1420 		idx = (idx + 1) % BWI_TX_NDESC;
1421 
1422 		ifp->if_opackets++;
1423 
1424 		if (tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC) {
1425 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1426 			break;
1427 		}
1428 	}
1429 	tbd->tbd_idx = idx;
1430 
1431 	if (trans)
1432 		sc->sc_tx_timer = 5;
1433 }
1434 
1435 static int
1436 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1437 	const struct ieee80211_bpf_params *params)
1438 {
1439 	struct ieee80211com *ic = ni->ni_ic;
1440 	struct ifnet *ifp = ic->ic_ifp;
1441 	struct bwi_softc *sc = ifp->if_softc;
1442 	/* XXX wme? */
1443 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1444 	int idx, error;
1445 
1446 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1447 		ieee80211_free_node(ni);
1448 		m_freem(m);
1449 		return ENETDOWN;
1450 	}
1451 
1452 	BWI_LOCK(sc);
1453 	idx = tbd->tbd_idx;
1454 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1455 	if (params == NULL) {
1456 		/*
1457 		 * Legacy path; interpret frame contents to decide
1458 		 * precisely how to send the frame.
1459 		 */
1460 		error = bwi_encap(sc, idx, m, ni);
1461 	} else {
1462 		/*
1463 		 * Caller supplied explicit parameters to use in
1464 		 * sending the frame.
1465 		 */
1466 		error = bwi_encap_raw(sc, idx, m, ni, params);
1467 	}
1468 	if (error == 0) {
1469 		ifp->if_opackets++;
1470 		if (++tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC)
1471 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1472 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1473 		sc->sc_tx_timer = 5;
1474 	} else {
1475 		/* NB: m is reclaimed on encap failure */
1476 		ieee80211_free_node(ni);
1477 		ifp->if_oerrors++;
1478 	}
1479 	BWI_UNLOCK(sc);
1480 	return error;
1481 }
1482 
1483 static void
1484 bwi_watchdog(void *arg)
1485 {
1486 	struct bwi_softc *sc;
1487 	struct ifnet *ifp;
1488 
1489 	sc = arg;
1490 	ifp = sc->sc_ifp;
1491 	BWI_ASSERT_LOCKED(sc);
1492 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1493 		if_printf(ifp, "watchdog timeout\n");
1494 		ifp->if_oerrors++;
1495 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1496 	}
1497 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1498 }
1499 
1500 static void
1501 bwi_stop(struct bwi_softc *sc, int statechg)
1502 {
1503 	BWI_LOCK(sc);
1504 	bwi_stop_locked(sc, statechg);
1505 	BWI_UNLOCK(sc);
1506 }
1507 
1508 static void
1509 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1510 {
1511 	struct ifnet *ifp = sc->sc_ifp;
1512 	struct bwi_mac *mac;
1513 	int i, error, pwr_off = 0;
1514 
1515 	BWI_ASSERT_LOCKED(sc);
1516 
1517 	callout_stop(&sc->sc_calib_ch);
1518 	callout_stop(&sc->sc_led_blink_ch);
1519 	sc->sc_led_blinking = 0;
1520 	sc->sc_flags |= BWI_F_STOP;
1521 
1522 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1523 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1524 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1525 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1526 
1527 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1528 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1529 		bwi_mac_stop(mac);
1530 	}
1531 
1532 	for (i = 0; i < sc->sc_nmac; ++i) {
1533 		struct bwi_regwin *old_rw;
1534 
1535 		mac = &sc->sc_mac[i];
1536 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1537 			continue;
1538 
1539 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1540 		if (error)
1541 			continue;
1542 
1543 		bwi_mac_shutdown(mac);
1544 		pwr_off = 1;
1545 
1546 		bwi_regwin_switch(sc, old_rw, NULL);
1547 	}
1548 
1549 	if (pwr_off)
1550 		bwi_bbp_power_off(sc);
1551 
1552 	sc->sc_tx_timer = 0;
1553 	callout_stop(&sc->sc_watchdog_timer);
1554 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1555 }
1556 
1557 void
1558 bwi_intr(void *xsc)
1559 {
1560 	struct bwi_softc *sc = xsc;
1561 	struct ifnet *ifp = sc->sc_ifp;
1562 	struct bwi_mac *mac;
1563 	uint32_t intr_status;
1564 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1565 	int i, txrx_error, tx = 0, rx_data = -1;
1566 
1567 	BWI_LOCK(sc);
1568 
1569 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1570 	    (sc->sc_flags & BWI_F_STOP)) {
1571 		BWI_UNLOCK(sc);
1572 		return;
1573 	}
1574 	/*
1575 	 * Get interrupt status
1576 	 */
1577 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1578 	if (intr_status == 0xffffffff) {	/* Not for us */
1579 		BWI_UNLOCK(sc);
1580 		return;
1581 	}
1582 
1583 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1584 
1585 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1586 	if (intr_status == 0) {		/* Nothing is interesting */
1587 		BWI_UNLOCK(sc);
1588 		return;
1589 	}
1590 
1591 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1592 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1593 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1594 
1595 	txrx_error = 0;
1596 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1597 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1598 		uint32_t mask;
1599 
1600 		if (BWI_TXRX_IS_RX(i))
1601 			mask = BWI_TXRX_RX_INTRS;
1602 		else
1603 			mask = BWI_TXRX_TX_INTRS;
1604 
1605 		txrx_intr_status[i] =
1606 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1607 
1608 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1609 			 i, txrx_intr_status[i]);
1610 
1611 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1612 			if_printf(ifp,
1613 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1614 			    __func__, i, txrx_intr_status[i]);
1615 			txrx_error = 1;
1616 		}
1617 	}
1618 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1619 
1620 	/*
1621 	 * Acknowledge interrupt
1622 	 */
1623 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1624 
1625 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1626 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1627 
1628 	/* Disable all interrupts */
1629 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1630 
1631 	/*
1632 	 * http://bcm-specs.sipsolutions.net/Interrupts
1633 	 * Says for this bit (0x800):
1634 	 * "Fatal Error
1635 	 *
1636 	 * We got this one while testing things when by accident the
1637 	 * template ram wasn't set to big endian when it should have
1638 	 * been after writing the initial values. It keeps on being
1639 	 * triggered, the only way to stop it seems to shut down the
1640 	 * chip."
1641 	 *
1642 	 * Suggesting that we should never get it and if we do we're not
1643 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1644 	 * it is valid only on mac version 5 and higher, but I couldn't
1645 	 * find a reference for that...  Since I see them from time to time
1646 	 * on my card, this suggests an error in the tx path still...
1647 	 */
1648 	if (intr_status & BWI_INTR_PHY_TXERR) {
1649 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1650 			if_printf(ifp, "%s: intr PHY TX error\n", __func__);
1651 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1652 			BWI_UNLOCK(sc);
1653 			return;
1654 		}
1655 	}
1656 
1657 	if (txrx_error) {
1658 		/* TODO: reset device */
1659 	}
1660 
1661 	if (intr_status & BWI_INTR_TBTT)
1662 		bwi_mac_config_ps(mac);
1663 
1664 	if (intr_status & BWI_INTR_EO_ATIM)
1665 		if_printf(ifp, "EO_ATIM\n");
1666 
1667 	if (intr_status & BWI_INTR_PMQ) {
1668 		for (;;) {
1669 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1670 				break;
1671 		}
1672 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1673 	}
1674 
1675 	if (intr_status & BWI_INTR_NOISE)
1676 		if_printf(ifp, "intr noise\n");
1677 
1678 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1679 		rx_data = sc->sc_rxeof(sc);
1680 		if (sc->sc_flags & BWI_F_STOP) {
1681 			BWI_UNLOCK(sc);
1682 			return;
1683 		}
1684 	}
1685 
1686 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1687 		sc->sc_txeof_status(sc);
1688 		tx = 1;
1689 	}
1690 
1691 	if (intr_status & BWI_INTR_TX_DONE) {
1692 		bwi_txeof(sc);
1693 		tx = 1;
1694 	}
1695 
1696 	/* Re-enable interrupts */
1697 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1698 
1699 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1700 		int evt = BWI_LED_EVENT_NONE;
1701 
1702 		if (tx && rx_data > 0) {
1703 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1704 				evt = BWI_LED_EVENT_RX;
1705 			else
1706 				evt = BWI_LED_EVENT_TX;
1707 		} else if (tx) {
1708 			evt = BWI_LED_EVENT_TX;
1709 		} else if (rx_data > 0) {
1710 			evt = BWI_LED_EVENT_RX;
1711 		} else if (rx_data == 0) {
1712 			evt = BWI_LED_EVENT_POLL;
1713 		}
1714 
1715 		if (evt != BWI_LED_EVENT_NONE)
1716 			bwi_led_event(sc, evt);
1717 	}
1718 
1719 	BWI_UNLOCK(sc);
1720 }
1721 
1722 static void
1723 bwi_scan_start(struct ieee80211com *ic)
1724 {
1725 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1726 
1727 	BWI_LOCK(sc);
1728 	/* Enable MAC beacon promiscuity */
1729 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1730 	BWI_UNLOCK(sc);
1731 }
1732 
1733 static void
1734 bwi_set_channel(struct ieee80211com *ic)
1735 {
1736 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1737 	struct ieee80211_channel *c = ic->ic_curchan;
1738 	struct bwi_mac *mac;
1739 
1740 	BWI_LOCK(sc);
1741 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1742 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1743 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1744 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1745 
1746 	sc->sc_rates = ieee80211_get_ratetable(c);
1747 
1748 	/*
1749 	 * Setup radio tap channel freq and flags
1750 	 */
1751 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
1752 		htole16(c->ic_freq);
1753 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
1754 		htole16(c->ic_flags & 0xffff);
1755 
1756 	BWI_UNLOCK(sc);
1757 }
1758 
1759 static void
1760 bwi_scan_end(struct ieee80211com *ic)
1761 {
1762 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1763 
1764 	BWI_LOCK(sc);
1765 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1766 	BWI_UNLOCK(sc);
1767 }
1768 
1769 static int
1770 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1771 {
1772 	struct bwi_vap *bvp = BWI_VAP(vap);
1773 	const struct ieee80211_txparam *tp;
1774 	struct ieee80211com *ic= vap->iv_ic;
1775 	struct ifnet *ifp = ic->ic_ifp;
1776 	enum ieee80211_state ostate = vap->iv_state;
1777 	struct bwi_softc *sc = ifp->if_softc;
1778 	struct bwi_mac *mac;
1779 	int error;
1780 
1781 	BWI_LOCK(sc);
1782 
1783 	callout_stop(&sc->sc_calib_ch);
1784 
1785 	if (nstate == IEEE80211_S_INIT)
1786 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1787 
1788 	bwi_led_newstate(sc, nstate);
1789 
1790 	error = bvp->bv_newstate(vap, nstate, arg);
1791 	if (error != 0)
1792 		goto back;
1793 
1794 	/*
1795 	 * Clear the BSSID when we stop a STA
1796 	 */
1797 	if (vap->iv_opmode == IEEE80211_M_STA) {
1798 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1799 			/*
1800 			 * Clear out the BSSID.  If we reassociate to
1801 			 * the same AP, this will reinialize things
1802 			 * correctly...
1803 			 */
1804 			if (ic->ic_opmode == IEEE80211_M_STA &&
1805 			    !(sc->sc_flags & BWI_F_STOP))
1806 				bwi_set_bssid(sc, bwi_zero_addr);
1807 		}
1808 	}
1809 
1810 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1811 		/* Nothing to do */
1812 	} else if (nstate == IEEE80211_S_RUN) {
1813 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1814 
1815 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1816 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1817 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1818 
1819 		/* Initial TX power calibration */
1820 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1821 #ifdef notyet
1822 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1823 #else
1824 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1825 #endif
1826 
1827 		/* Initializes ratectl for a node. */
1828 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1829 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
1830 			ieee80211_ratectl_node_init(vap->iv_bss);
1831 
1832 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1833 	}
1834 back:
1835 	BWI_UNLOCK(sc);
1836 
1837 	return error;
1838 }
1839 
1840 static int
1841 bwi_media_change(struct ifnet *ifp)
1842 {
1843 	int error = ieee80211_media_change(ifp);
1844 	/* NB: only the fixed rate can change and that doesn't need a reset */
1845 	return (error == ENETRESET ? 0 : error);
1846 }
1847 
1848 static int
1849 bwi_dma_alloc(struct bwi_softc *sc)
1850 {
1851 	int error, i, has_txstats;
1852 	bus_addr_t lowaddr = 0;
1853 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1854 	uint32_t txrx_ctrl_step = 0;
1855 
1856 	has_txstats = 0;
1857 	for (i = 0; i < sc->sc_nmac; ++i) {
1858 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1859 			has_txstats = 1;
1860 			break;
1861 		}
1862 	}
1863 
1864 	switch (sc->sc_bus_space) {
1865 	case BWI_BUS_SPACE_30BIT:
1866 	case BWI_BUS_SPACE_32BIT:
1867 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1868 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1869 		else
1870 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1871 		desc_sz = sizeof(struct bwi_desc32);
1872 		txrx_ctrl_step = 0x20;
1873 
1874 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1875 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1876 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1877 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1878 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1879 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1880 		sc->sc_rxeof = bwi_rxeof32;
1881 		sc->sc_start_tx = bwi_start_tx32;
1882 		if (has_txstats) {
1883 			sc->sc_init_txstats = bwi_init_txstats32;
1884 			sc->sc_free_txstats = bwi_free_txstats32;
1885 			sc->sc_txeof_status = bwi_txeof_status32;
1886 		}
1887 		break;
1888 
1889 	case BWI_BUS_SPACE_64BIT:
1890 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1891 		desc_sz = sizeof(struct bwi_desc64);
1892 		txrx_ctrl_step = 0x40;
1893 
1894 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1895 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1896 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1897 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1898 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1899 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1900 		sc->sc_rxeof = bwi_rxeof64;
1901 		sc->sc_start_tx = bwi_start_tx64;
1902 		if (has_txstats) {
1903 			sc->sc_init_txstats = bwi_init_txstats64;
1904 			sc->sc_free_txstats = bwi_free_txstats64;
1905 			sc->sc_txeof_status = bwi_txeof_status64;
1906 		}
1907 		break;
1908 	}
1909 
1910 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1911 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1912 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1913 
1914 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1915 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1916 
1917 	/*
1918 	 * Create top level DMA tag
1919 	 */
1920 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1921 			       BWI_ALIGN, 0,		/* alignment, bounds */
1922 			       lowaddr,			/* lowaddr */
1923 			       BUS_SPACE_MAXADDR,	/* highaddr */
1924 			       NULL, NULL,		/* filter, filterarg */
1925 			       MAXBSIZE,		/* maxsize */
1926 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1927 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1928 			       BUS_DMA_ALLOCNOW,	/* flags */
1929 			       NULL, NULL,		/* lockfunc, lockarg */
1930 			       &sc->sc_parent_dtag);
1931 	if (error) {
1932 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1933 		return error;
1934 	}
1935 
1936 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1937 
1938 	/*
1939 	 * Create TX ring DMA stuffs
1940 	 */
1941 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1942 				BWI_RING_ALIGN, 0,
1943 				BUS_SPACE_MAXADDR,
1944 				BUS_SPACE_MAXADDR,
1945 				NULL, NULL,
1946 				tx_ring_sz,
1947 				1,
1948 				BUS_SPACE_MAXSIZE_32BIT,
1949 				BUS_DMA_ALLOCNOW,
1950 				NULL, NULL,
1951 				&sc->sc_txring_dtag);
1952 	if (error) {
1953 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1954 		return error;
1955 	}
1956 
1957 	for (i = 0; i < BWI_TX_NRING; ++i) {
1958 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1959 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1960 					   TXRX_CTRL(i));
1961 		if (error) {
1962 			device_printf(sc->sc_dev, "%dth TX ring "
1963 				      "DMA alloc failed\n", i);
1964 			return error;
1965 		}
1966 	}
1967 
1968 	/*
1969 	 * Create RX ring DMA stuffs
1970 	 */
1971 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1972 				BWI_RING_ALIGN, 0,
1973 				BUS_SPACE_MAXADDR,
1974 				BUS_SPACE_MAXADDR,
1975 				NULL, NULL,
1976 				rx_ring_sz,
1977 				1,
1978 				BUS_SPACE_MAXSIZE_32BIT,
1979 				BUS_DMA_ALLOCNOW,
1980 				NULL, NULL,
1981 				&sc->sc_rxring_dtag);
1982 	if (error) {
1983 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1984 		return error;
1985 	}
1986 
1987 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1988 				   rx_ring_sz, TXRX_CTRL(0));
1989 	if (error) {
1990 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1991 		return error;
1992 	}
1993 
1994 	if (has_txstats) {
1995 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1996 		if (error) {
1997 			device_printf(sc->sc_dev,
1998 				      "TX stats DMA alloc failed\n");
1999 			return error;
2000 		}
2001 	}
2002 
2003 #undef TXRX_CTRL
2004 
2005 	return bwi_dma_mbuf_create(sc);
2006 }
2007 
2008 static void
2009 bwi_dma_free(struct bwi_softc *sc)
2010 {
2011 	if (sc->sc_txring_dtag != NULL) {
2012 		int i;
2013 
2014 		for (i = 0; i < BWI_TX_NRING; ++i) {
2015 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
2016 
2017 			if (rd->rdata_desc != NULL) {
2018 				bus_dmamap_unload(sc->sc_txring_dtag,
2019 						  rd->rdata_dmap);
2020 				bus_dmamem_free(sc->sc_txring_dtag,
2021 						rd->rdata_desc,
2022 						rd->rdata_dmap);
2023 			}
2024 		}
2025 		bus_dma_tag_destroy(sc->sc_txring_dtag);
2026 	}
2027 
2028 	if (sc->sc_rxring_dtag != NULL) {
2029 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2030 
2031 		if (rd->rdata_desc != NULL) {
2032 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
2033 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
2034 					rd->rdata_dmap);
2035 		}
2036 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
2037 	}
2038 
2039 	bwi_dma_txstats_free(sc);
2040 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
2041 
2042 	if (sc->sc_parent_dtag != NULL)
2043 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2044 }
2045 
2046 static int
2047 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2048 		   struct bwi_ring_data *rd, bus_size_t size,
2049 		   uint32_t txrx_ctrl)
2050 {
2051 	int error;
2052 
2053 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2054 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2055 				 &rd->rdata_dmap);
2056 	if (error) {
2057 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2058 		return error;
2059 	}
2060 
2061 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2062 				bwi_dma_ring_addr, &rd->rdata_paddr,
2063 				BUS_DMA_NOWAIT);
2064 	if (error) {
2065 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2066 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2067 		rd->rdata_desc = NULL;
2068 		return error;
2069 	}
2070 
2071 	rd->rdata_txrx_ctrl = txrx_ctrl;
2072 	return 0;
2073 }
2074 
2075 static int
2076 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2077 		      bus_size_t desc_sz)
2078 {
2079 	struct bwi_txstats_data *st;
2080 	bus_size_t dma_size;
2081 	int error;
2082 
2083 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2084 	if (st == NULL) {
2085 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2086 		return ENOMEM;
2087 	}
2088 	sc->sc_txstats = st;
2089 
2090 	/*
2091 	 * Create TX stats descriptor DMA stuffs
2092 	 */
2093 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2094 
2095 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2096 				BWI_RING_ALIGN,
2097 				0,
2098 				BUS_SPACE_MAXADDR,
2099 				BUS_SPACE_MAXADDR,
2100 				NULL, NULL,
2101 				dma_size,
2102 				1,
2103 				BUS_SPACE_MAXSIZE_32BIT,
2104 				BUS_DMA_ALLOCNOW,
2105 				NULL, NULL,
2106 				&st->stats_ring_dtag);
2107 	if (error) {
2108 		device_printf(sc->sc_dev, "can't create txstats ring "
2109 			      "DMA tag\n");
2110 		return error;
2111 	}
2112 
2113 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2114 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2115 				 &st->stats_ring_dmap);
2116 	if (error) {
2117 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2118 			      "DMA mem\n");
2119 		bus_dma_tag_destroy(st->stats_ring_dtag);
2120 		st->stats_ring_dtag = NULL;
2121 		return error;
2122 	}
2123 
2124 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2125 				st->stats_ring, dma_size,
2126 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2127 				BUS_DMA_NOWAIT);
2128 	if (error) {
2129 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2130 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2131 				st->stats_ring_dmap);
2132 		bus_dma_tag_destroy(st->stats_ring_dtag);
2133 		st->stats_ring_dtag = NULL;
2134 		return error;
2135 	}
2136 
2137 	/*
2138 	 * Create TX stats DMA stuffs
2139 	 */
2140 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2141 			   BWI_ALIGN);
2142 
2143 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2144 				BWI_ALIGN,
2145 				0,
2146 				BUS_SPACE_MAXADDR,
2147 				BUS_SPACE_MAXADDR,
2148 				NULL, NULL,
2149 				dma_size,
2150 				1,
2151 				BUS_SPACE_MAXSIZE_32BIT,
2152 				BUS_DMA_ALLOCNOW,
2153 				NULL, NULL,
2154 				&st->stats_dtag);
2155 	if (error) {
2156 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2157 		return error;
2158 	}
2159 
2160 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2161 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2162 				 &st->stats_dmap);
2163 	if (error) {
2164 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2165 		bus_dma_tag_destroy(st->stats_dtag);
2166 		st->stats_dtag = NULL;
2167 		return error;
2168 	}
2169 
2170 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2171 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2172 				BUS_DMA_NOWAIT);
2173 	if (error) {
2174 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2175 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2176 		bus_dma_tag_destroy(st->stats_dtag);
2177 		st->stats_dtag = NULL;
2178 		return error;
2179 	}
2180 
2181 	st->stats_ctrl_base = ctrl_base;
2182 	return 0;
2183 }
2184 
2185 static void
2186 bwi_dma_txstats_free(struct bwi_softc *sc)
2187 {
2188 	struct bwi_txstats_data *st;
2189 
2190 	if (sc->sc_txstats == NULL)
2191 		return;
2192 	st = sc->sc_txstats;
2193 
2194 	if (st->stats_ring_dtag != NULL) {
2195 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2196 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2197 				st->stats_ring_dmap);
2198 		bus_dma_tag_destroy(st->stats_ring_dtag);
2199 	}
2200 
2201 	if (st->stats_dtag != NULL) {
2202 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2203 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2204 		bus_dma_tag_destroy(st->stats_dtag);
2205 	}
2206 
2207 	free(st, M_DEVBUF);
2208 }
2209 
2210 static void
2211 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2212 {
2213 	KASSERT(nseg == 1, ("too many segments\n"));
2214 	*((bus_addr_t *)arg) = seg->ds_addr;
2215 }
2216 
2217 static int
2218 bwi_dma_mbuf_create(struct bwi_softc *sc)
2219 {
2220 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2221 	int i, j, k, ntx, error;
2222 
2223 	/*
2224 	 * Create TX/RX mbuf DMA tag
2225 	 */
2226 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2227 				1,
2228 				0,
2229 				BUS_SPACE_MAXADDR,
2230 				BUS_SPACE_MAXADDR,
2231 				NULL, NULL,
2232 				MCLBYTES,
2233 				1,
2234 				BUS_SPACE_MAXSIZE_32BIT,
2235 				BUS_DMA_ALLOCNOW,
2236 				NULL, NULL,
2237 				&sc->sc_buf_dtag);
2238 	if (error) {
2239 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2240 		return error;
2241 	}
2242 
2243 	ntx = 0;
2244 
2245 	/*
2246 	 * Create TX mbuf DMA map
2247 	 */
2248 	for (i = 0; i < BWI_TX_NRING; ++i) {
2249 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2250 
2251 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2252 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2253 						  &tbd->tbd_buf[j].tb_dmap);
2254 			if (error) {
2255 				device_printf(sc->sc_dev, "can't create "
2256 					      "%dth tbd, %dth DMA map\n", i, j);
2257 
2258 				ntx = i;
2259 				for (k = 0; k < j; ++k) {
2260 					bus_dmamap_destroy(sc->sc_buf_dtag,
2261 						tbd->tbd_buf[k].tb_dmap);
2262 				}
2263 				goto fail;
2264 			}
2265 		}
2266 	}
2267 	ntx = BWI_TX_NRING;
2268 
2269 	/*
2270 	 * Create RX mbuf DMA map and a spare DMA map
2271 	 */
2272 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2273 				  &rbd->rbd_tmp_dmap);
2274 	if (error) {
2275 		device_printf(sc->sc_dev,
2276 			      "can't create spare RX buf DMA map\n");
2277 		goto fail;
2278 	}
2279 
2280 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2281 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2282 					  &rbd->rbd_buf[j].rb_dmap);
2283 		if (error) {
2284 			device_printf(sc->sc_dev, "can't create %dth "
2285 				      "RX buf DMA map\n", j);
2286 
2287 			for (k = 0; k < j; ++k) {
2288 				bus_dmamap_destroy(sc->sc_buf_dtag,
2289 					rbd->rbd_buf[j].rb_dmap);
2290 			}
2291 			bus_dmamap_destroy(sc->sc_buf_dtag,
2292 					   rbd->rbd_tmp_dmap);
2293 			goto fail;
2294 		}
2295 	}
2296 
2297 	return 0;
2298 fail:
2299 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2300 	return error;
2301 }
2302 
2303 static void
2304 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2305 {
2306 	int i, j;
2307 
2308 	if (sc->sc_buf_dtag == NULL)
2309 		return;
2310 
2311 	for (i = 0; i < ntx; ++i) {
2312 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2313 
2314 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2315 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2316 
2317 			if (tb->tb_mbuf != NULL) {
2318 				bus_dmamap_unload(sc->sc_buf_dtag,
2319 						  tb->tb_dmap);
2320 				m_freem(tb->tb_mbuf);
2321 			}
2322 			if (tb->tb_ni != NULL)
2323 				ieee80211_free_node(tb->tb_ni);
2324 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2325 		}
2326 	}
2327 
2328 	if (nrx) {
2329 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2330 
2331 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2332 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2333 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2334 
2335 			if (rb->rb_mbuf != NULL) {
2336 				bus_dmamap_unload(sc->sc_buf_dtag,
2337 						  rb->rb_dmap);
2338 				m_freem(rb->rb_mbuf);
2339 			}
2340 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2341 		}
2342 	}
2343 
2344 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2345 	sc->sc_buf_dtag = NULL;
2346 }
2347 
2348 static void
2349 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2350 {
2351 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2352 }
2353 
2354 static void
2355 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2356 {
2357 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2358 }
2359 
2360 static int
2361 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2362 {
2363 	struct bwi_ring_data *rd;
2364 	struct bwi_txbuf_data *tbd;
2365 	uint32_t val, addr_hi, addr_lo;
2366 
2367 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2368 	rd = &sc->sc_tx_rdata[ring_idx];
2369 	tbd = &sc->sc_tx_bdata[ring_idx];
2370 
2371 	tbd->tbd_idx = 0;
2372 	tbd->tbd_used = 0;
2373 
2374 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2375 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2376 			BUS_DMASYNC_PREWRITE);
2377 
2378 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2379 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2380 
2381 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2382 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2383 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2384 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2385 
2386 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2387 	      BWI_TXRX32_CTRL_ENABLE;
2388 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2389 
2390 	return 0;
2391 }
2392 
2393 static void
2394 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2395 		       bus_addr_t paddr, int hdr_size, int ndesc)
2396 {
2397 	uint32_t val, addr_hi, addr_lo;
2398 
2399 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2400 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2401 
2402 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2403 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2404 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2405 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2406 
2407 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2408 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2409 	      BWI_TXRX32_CTRL_ENABLE;
2410 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2411 
2412 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2413 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2414 }
2415 
2416 static int
2417 bwi_init_rx_ring32(struct bwi_softc *sc)
2418 {
2419 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2420 	int i, error;
2421 
2422 	sc->sc_rx_bdata.rbd_idx = 0;
2423 
2424 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2425 		error = bwi_newbuf(sc, i, 1);
2426 		if (error) {
2427 			device_printf(sc->sc_dev,
2428 				  "can't allocate %dth RX buffer\n", i);
2429 			return error;
2430 		}
2431 	}
2432 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2433 			BUS_DMASYNC_PREWRITE);
2434 
2435 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2436 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2437 	return 0;
2438 }
2439 
2440 static int
2441 bwi_init_txstats32(struct bwi_softc *sc)
2442 {
2443 	struct bwi_txstats_data *st = sc->sc_txstats;
2444 	bus_addr_t stats_paddr;
2445 	int i;
2446 
2447 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2448 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2449 
2450 	st->stats_idx = 0;
2451 
2452 	stats_paddr = st->stats_paddr;
2453 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2454 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2455 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2456 		stats_paddr += sizeof(struct bwi_txstats);
2457 	}
2458 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2459 			BUS_DMASYNC_PREWRITE);
2460 
2461 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2462 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2463 	return 0;
2464 }
2465 
2466 static void
2467 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2468 		    int buf_len)
2469 {
2470 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2471 
2472 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2473 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2474 			 paddr, buf_len, 0);
2475 }
2476 
2477 static void
2478 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2479 		    int buf_idx, bus_addr_t paddr, int buf_len)
2480 {
2481 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2482 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2483 			 paddr, buf_len, 1);
2484 }
2485 
2486 static int
2487 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2488 {
2489 	/* TODO:64 */
2490 	return EOPNOTSUPP;
2491 }
2492 
2493 static int
2494 bwi_init_rx_ring64(struct bwi_softc *sc)
2495 {
2496 	/* TODO:64 */
2497 	return EOPNOTSUPP;
2498 }
2499 
2500 static int
2501 bwi_init_txstats64(struct bwi_softc *sc)
2502 {
2503 	/* TODO:64 */
2504 	return EOPNOTSUPP;
2505 }
2506 
2507 static void
2508 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2509 		    int buf_len)
2510 {
2511 	/* TODO:64 */
2512 }
2513 
2514 static void
2515 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2516 		    int buf_idx, bus_addr_t paddr, int buf_len)
2517 {
2518 	/* TODO:64 */
2519 }
2520 
2521 static void
2522 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2523 		 bus_size_t mapsz __unused, int error)
2524 {
2525         if (!error) {
2526 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2527 		*((bus_addr_t *)arg) = seg->ds_addr;
2528 	}
2529 }
2530 
2531 static int
2532 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2533 {
2534 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2535 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2536 	struct bwi_rxbuf_hdr *hdr;
2537 	bus_dmamap_t map;
2538 	bus_addr_t paddr;
2539 	struct mbuf *m;
2540 	int error;
2541 
2542 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2543 
2544 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2545 	if (m == NULL) {
2546 		error = ENOBUFS;
2547 
2548 		/*
2549 		 * If the NIC is up and running, we need to:
2550 		 * - Clear RX buffer's header.
2551 		 * - Restore RX descriptor settings.
2552 		 */
2553 		if (init)
2554 			return error;
2555 		else
2556 			goto back;
2557 	}
2558 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2559 
2560 	/*
2561 	 * Try to load RX buf into temporary DMA map
2562 	 */
2563 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2564 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2565 	if (error) {
2566 		m_freem(m);
2567 
2568 		/*
2569 		 * See the comment above
2570 		 */
2571 		if (init)
2572 			return error;
2573 		else
2574 			goto back;
2575 	}
2576 
2577 	if (!init)
2578 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2579 	rxbuf->rb_mbuf = m;
2580 	rxbuf->rb_paddr = paddr;
2581 
2582 	/*
2583 	 * Swap RX buf's DMA map with the loaded temporary one
2584 	 */
2585 	map = rxbuf->rb_dmap;
2586 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2587 	rbd->rbd_tmp_dmap = map;
2588 
2589 back:
2590 	/*
2591 	 * Clear RX buf header
2592 	 */
2593 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2594 	bzero(hdr, sizeof(*hdr));
2595 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2596 
2597 	/*
2598 	 * Setup RX buf descriptor
2599 	 */
2600 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2601 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2602 	return error;
2603 }
2604 
2605 static void
2606 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2607 		    const uint8_t *addr)
2608 {
2609 	int i;
2610 
2611 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2612 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2613 
2614 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2615 		uint16_t addr_val;
2616 
2617 		addr_val = (uint16_t)addr[i * 2] |
2618 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2619 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2620 	}
2621 }
2622 
2623 static int
2624 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2625 {
2626 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2627 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2628 	struct ifnet *ifp = sc->sc_ifp;
2629 	struct ieee80211com *ic = ifp->if_l2com;
2630 	int idx, rx_data = 0;
2631 
2632 	idx = rbd->rbd_idx;
2633 	while (idx != end_idx) {
2634 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2635 		struct bwi_rxbuf_hdr *hdr;
2636 		struct ieee80211_frame_min *wh;
2637 		struct ieee80211_node *ni;
2638 		struct mbuf *m;
2639 		const void *plcp;
2640 		uint16_t flags2;
2641 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2642 
2643 		m = rb->rb_mbuf;
2644 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2645 				BUS_DMASYNC_POSTREAD);
2646 
2647 		if (bwi_newbuf(sc, idx, 0)) {
2648 			ifp->if_ierrors++;
2649 			goto next;
2650 		}
2651 
2652 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2653 		flags2 = le16toh(hdr->rxh_flags2);
2654 
2655 		hdr_extra = 0;
2656 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2657 			hdr_extra = 2;
2658 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2659 
2660 		buflen = le16toh(hdr->rxh_buflen);
2661 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2662 			if_printf(ifp, "%s: zero length data, hdr_extra %d\n",
2663 				  __func__, hdr_extra);
2664 			ifp->if_ierrors++;
2665 			m_freem(m);
2666 			goto next;
2667 		}
2668 
2669 		plcp = ((const uint8_t *)(hdr + 1) + hdr_extra);
2670 		rssi = bwi_calc_rssi(sc, hdr);
2671 		noise = bwi_calc_noise(sc);
2672 
2673 		m->m_pkthdr.rcvif = ifp;
2674 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2675 		m_adj(m, sizeof(*hdr) + wh_ofs);
2676 
2677 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2678 			rate = bwi_ofdm_plcp2rate(plcp);
2679 		else
2680 			rate = bwi_ds_plcp2rate(plcp);
2681 
2682 		/* RX radio tap */
2683 		if (ieee80211_radiotap_active(ic))
2684 			bwi_rx_radiotap(sc, m, hdr, plcp, rate, rssi, noise);
2685 
2686 		m_adj(m, -IEEE80211_CRC_LEN);
2687 
2688 		BWI_UNLOCK(sc);
2689 
2690 		wh = mtod(m, struct ieee80211_frame_min *);
2691 		ni = ieee80211_find_rxnode(ic, wh);
2692 		if (ni != NULL) {
2693 			type = ieee80211_input(ni, m, rssi - noise, noise);
2694 			ieee80211_free_node(ni);
2695 		} else
2696 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2697 		if (type == IEEE80211_FC0_TYPE_DATA) {
2698 			rx_data = 1;
2699 			sc->sc_rx_rate = rate;
2700 		}
2701 
2702 		BWI_LOCK(sc);
2703 next:
2704 		idx = (idx + 1) % BWI_RX_NDESC;
2705 
2706 		if (sc->sc_flags & BWI_F_STOP) {
2707 			/*
2708 			 * Take the fast lane, don't do
2709 			 * any damage to softc
2710 			 */
2711 			return -1;
2712 		}
2713 	}
2714 
2715 	rbd->rbd_idx = idx;
2716 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2717 			BUS_DMASYNC_PREWRITE);
2718 
2719 	return rx_data;
2720 }
2721 
2722 static int
2723 bwi_rxeof32(struct bwi_softc *sc)
2724 {
2725 	uint32_t val, rx_ctrl;
2726 	int end_idx, rx_data;
2727 
2728 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2729 
2730 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2731 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2732 		  sizeof(struct bwi_desc32);
2733 
2734 	rx_data = bwi_rxeof(sc, end_idx);
2735 	if (rx_data >= 0) {
2736 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2737 			    end_idx * sizeof(struct bwi_desc32));
2738 	}
2739 	return rx_data;
2740 }
2741 
2742 static int
2743 bwi_rxeof64(struct bwi_softc *sc)
2744 {
2745 	/* TODO:64 */
2746 	return 0;
2747 }
2748 
2749 static void
2750 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2751 {
2752 	int i;
2753 
2754 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2755 
2756 #define NRETRY 10
2757 
2758 	for (i = 0; i < NRETRY; ++i) {
2759 		uint32_t status;
2760 
2761 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2762 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2763 		    BWI_RX32_STATUS_STATE_DISABLED)
2764 			break;
2765 
2766 		DELAY(1000);
2767 	}
2768 	if (i == NRETRY)
2769 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2770 
2771 #undef NRETRY
2772 
2773 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2774 }
2775 
2776 static void
2777 bwi_free_txstats32(struct bwi_softc *sc)
2778 {
2779 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2780 }
2781 
2782 static void
2783 bwi_free_rx_ring32(struct bwi_softc *sc)
2784 {
2785 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2786 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2787 	int i;
2788 
2789 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2790 
2791 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2792 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2793 
2794 		if (rb->rb_mbuf != NULL) {
2795 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2796 			m_freem(rb->rb_mbuf);
2797 			rb->rb_mbuf = NULL;
2798 		}
2799 	}
2800 }
2801 
2802 static void
2803 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2804 {
2805 	struct bwi_ring_data *rd;
2806 	struct bwi_txbuf_data *tbd;
2807 	struct ifnet *ifp = sc->sc_ifp;
2808 	uint32_t state, val;
2809 	int i;
2810 
2811 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2812 	rd = &sc->sc_tx_rdata[ring_idx];
2813 	tbd = &sc->sc_tx_bdata[ring_idx];
2814 
2815 #define NRETRY 10
2816 
2817 	for (i = 0; i < NRETRY; ++i) {
2818 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2819 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2820 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2821 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2822 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2823 			break;
2824 
2825 		DELAY(1000);
2826 	}
2827 	if (i == NRETRY) {
2828 		if_printf(ifp, "%s: wait for TX ring(%d) stable timed out\n",
2829 			  __func__, ring_idx);
2830 	}
2831 
2832 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2833 	for (i = 0; i < NRETRY; ++i) {
2834 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2835 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2836 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2837 			break;
2838 
2839 		DELAY(1000);
2840 	}
2841 	if (i == NRETRY)
2842 		if_printf(ifp, "%s: reset TX ring (%d) timed out\n",
2843 		     __func__, ring_idx);
2844 
2845 #undef NRETRY
2846 
2847 	DELAY(1000);
2848 
2849 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2850 
2851 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2852 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2853 
2854 		if (tb->tb_mbuf != NULL) {
2855 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2856 			m_freem(tb->tb_mbuf);
2857 			tb->tb_mbuf = NULL;
2858 		}
2859 		if (tb->tb_ni != NULL) {
2860 			ieee80211_free_node(tb->tb_ni);
2861 			tb->tb_ni = NULL;
2862 		}
2863 	}
2864 }
2865 
2866 static void
2867 bwi_free_txstats64(struct bwi_softc *sc)
2868 {
2869 	/* TODO:64 */
2870 }
2871 
2872 static void
2873 bwi_free_rx_ring64(struct bwi_softc *sc)
2874 {
2875 	/* TODO:64 */
2876 }
2877 
2878 static void
2879 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2880 {
2881 	/* TODO:64 */
2882 }
2883 
2884 /* XXX does not belong here */
2885 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2886 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2887 
2888 static __inline void
2889 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2890 {
2891 	uint32_t plcp;
2892 
2893 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2894 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2895 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2896 	*plcp0 = htole32(plcp);
2897 }
2898 
2899 static __inline void
2900 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2901 		   uint8_t rate)
2902 {
2903 	int len, service, pkt_bitlen;
2904 
2905 	pkt_bitlen = pkt_len * NBBY;
2906 	len = howmany(pkt_bitlen * 2, rate);
2907 
2908 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2909 	if (rate == (11 * 2)) {
2910 		int pkt_bitlen1;
2911 
2912 		/*
2913 		 * PLCP service field needs to be adjusted,
2914 		 * if TX rate is 11Mbytes/s
2915 		 */
2916 		pkt_bitlen1 = len * 11;
2917 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2918 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2919 	}
2920 
2921 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2922 	plcp->i_service = service;
2923 	plcp->i_length = htole16(len);
2924 	/* NOTE: do NOT touch i_crc */
2925 }
2926 
2927 static __inline void
2928 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2929 	void *plcp, int pkt_len, uint8_t rate)
2930 {
2931 	enum ieee80211_phytype modtype;
2932 
2933 	/*
2934 	 * Assume caller has zeroed 'plcp'
2935 	 */
2936 	modtype = ieee80211_rate2phytype(rt, rate);
2937 	if (modtype == IEEE80211_T_OFDM)
2938 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2939 	else if (modtype == IEEE80211_T_DS)
2940 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2941 	else
2942 		panic("unsupport modulation type %u\n", modtype);
2943 }
2944 
2945 static int
2946 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2947 	  struct ieee80211_node *ni)
2948 {
2949 	struct ieee80211vap *vap = ni->ni_vap;
2950 	struct ifnet *ifp = sc->sc_ifp;
2951 	struct ieee80211com *ic = ifp->if_l2com;
2952 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2953 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2954 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2955 	struct bwi_mac *mac;
2956 	struct bwi_txbuf_hdr *hdr;
2957 	struct ieee80211_frame *wh;
2958 	const struct ieee80211_txparam *tp;
2959 	uint8_t rate, rate_fb;
2960 	uint32_t mac_ctrl;
2961 	uint16_t phy_ctrl;
2962 	bus_addr_t paddr;
2963 	int type, ismcast, pkt_len, error, rix;
2964 #if 0
2965 	const uint8_t *p;
2966 	int i;
2967 #endif
2968 
2969 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2970 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2971 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2972 
2973 	wh = mtod(m, struct ieee80211_frame *);
2974 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2975 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2976 
2977 	/* Get 802.11 frame len before prepending TX header */
2978 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2979 
2980 	/*
2981 	 * Find TX rate
2982 	 */
2983 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2984 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2985 		rate = rate_fb = tp->mgmtrate;
2986 	} else if (ismcast) {
2987 		rate = rate_fb = tp->mcastrate;
2988 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2989 		rate = rate_fb = tp->ucastrate;
2990 	} else {
2991 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2992 		rate = ni->ni_txrate;
2993 
2994 		if (rix > 0) {
2995 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2996 				  IEEE80211_RATE_VAL;
2997 		} else {
2998 			rate_fb = rate;
2999 		}
3000 	}
3001 	tb->tb_rate[0] = rate;
3002 	tb->tb_rate[1] = rate_fb;
3003 	sc->sc_tx_rate = rate;
3004 
3005 	/*
3006 	 * TX radio tap
3007 	 */
3008 	if (ieee80211_radiotap_active_vap(vap)) {
3009 		sc->sc_tx_th.wt_flags = 0;
3010 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3011 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3012 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
3013 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3014 		    rate != (1 * 2)) {
3015 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3016 		}
3017 		sc->sc_tx_th.wt_rate = rate;
3018 
3019 		ieee80211_radiotap_tx(vap, m);
3020 	}
3021 
3022 	/*
3023 	 * Setup the embedded TX header
3024 	 */
3025 	M_PREPEND(m, sizeof(*hdr), M_DONTWAIT);
3026 	if (m == NULL) {
3027 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3028 		return ENOBUFS;
3029 	}
3030 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3031 
3032 	bzero(hdr, sizeof(*hdr));
3033 
3034 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3035 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3036 
3037 	if (!ismcast) {
3038 		uint16_t dur;
3039 
3040 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
3041 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
3042 
3043 		hdr->txh_fb_duration = htole16(dur);
3044 	}
3045 
3046 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3047 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3048 
3049 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3050 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3051 
3052 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3053 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3054 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3055 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3056 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3057 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3058 
3059 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3060 	if (!ismcast)
3061 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3062 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3063 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3064 
3065 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3066 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3067 
3068 	/* Catch any further usage */
3069 	hdr = NULL;
3070 	wh = NULL;
3071 
3072 	/* DMA load */
3073 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3074 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3075 	if (error && error != EFBIG) {
3076 		if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3077 		    __func__, error);
3078 		goto back;
3079 	}
3080 
3081 	if (error) {	/* error == EFBIG */
3082 		struct mbuf *m_new;
3083 
3084 		m_new = m_defrag(m, M_DONTWAIT);
3085 		if (m_new == NULL) {
3086 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3087 			    __func__);
3088 			error = ENOBUFS;
3089 			goto back;
3090 		} else {
3091 			m = m_new;
3092 		}
3093 
3094 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3095 					     bwi_dma_buf_addr, &paddr,
3096 					     BUS_DMA_NOWAIT);
3097 		if (error) {
3098 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3099 			    __func__, error);
3100 			goto back;
3101 		}
3102 	}
3103 	error = 0;
3104 
3105 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3106 
3107 	tb->tb_mbuf = m;
3108 	tb->tb_ni = ni;
3109 
3110 #if 0
3111 	p = mtod(m, const uint8_t *);
3112 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3113 		if (i != 0 && i % 8 == 0)
3114 			printf("\n");
3115 		printf("%02x ", p[i]);
3116 	}
3117 	printf("\n");
3118 #endif
3119 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3120 		idx, pkt_len, m->m_pkthdr.len);
3121 
3122 	/* Setup TX descriptor */
3123 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3124 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3125 			BUS_DMASYNC_PREWRITE);
3126 
3127 	/* Kick start */
3128 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3129 
3130 back:
3131 	if (error)
3132 		m_freem(m);
3133 	return error;
3134 }
3135 
3136 static int
3137 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3138 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3139 {
3140 	struct ifnet *ifp = sc->sc_ifp;
3141 	struct ieee80211vap *vap = ni->ni_vap;
3142 	struct ieee80211com *ic = ni->ni_ic;
3143 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3144 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3145 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3146 	struct bwi_mac *mac;
3147 	struct bwi_txbuf_hdr *hdr;
3148 	struct ieee80211_frame *wh;
3149 	uint8_t rate, rate_fb;
3150 	uint32_t mac_ctrl;
3151 	uint16_t phy_ctrl;
3152 	bus_addr_t paddr;
3153 	int ismcast, pkt_len, error;
3154 
3155 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3156 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3157 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3158 
3159 	wh = mtod(m, struct ieee80211_frame *);
3160 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3161 
3162 	/* Get 802.11 frame len before prepending TX header */
3163 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3164 
3165 	/*
3166 	 * Find TX rate
3167 	 */
3168 	rate = params->ibp_rate0;
3169 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3170 		/* XXX fall back to mcast/mgmt rate? */
3171 		m_freem(m);
3172 		return EINVAL;
3173 	}
3174 	if (params->ibp_try1 != 0) {
3175 		rate_fb = params->ibp_rate1;
3176 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3177 			/* XXX fall back to rate0? */
3178 			m_freem(m);
3179 			return EINVAL;
3180 		}
3181 	} else
3182 		rate_fb = rate;
3183 	tb->tb_rate[0] = rate;
3184 	tb->tb_rate[1] = rate_fb;
3185 	sc->sc_tx_rate = rate;
3186 
3187 	/*
3188 	 * TX radio tap
3189 	 */
3190 	if (ieee80211_radiotap_active_vap(vap)) {
3191 		sc->sc_tx_th.wt_flags = 0;
3192 		/* XXX IEEE80211_BPF_CRYPTO */
3193 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3194 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3195 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3196 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3197 		sc->sc_tx_th.wt_rate = rate;
3198 
3199 		ieee80211_radiotap_tx(vap, m);
3200 	}
3201 
3202 	/*
3203 	 * Setup the embedded TX header
3204 	 */
3205 	M_PREPEND(m, sizeof(*hdr), M_DONTWAIT);
3206 	if (m == NULL) {
3207 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3208 		return ENOBUFS;
3209 	}
3210 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3211 
3212 	bzero(hdr, sizeof(*hdr));
3213 
3214 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3215 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3216 
3217 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3218 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3219 		uint16_t dur;
3220 
3221 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3222 
3223 		hdr->txh_fb_duration = htole16(dur);
3224 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3225 	}
3226 
3227 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3228 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3229 
3230 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3231 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3232 
3233 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3234 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3235 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3236 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3237 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3238 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3239 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3240 
3241 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3242 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3243 
3244 	/* Catch any further usage */
3245 	hdr = NULL;
3246 	wh = NULL;
3247 
3248 	/* DMA load */
3249 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3250 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3251 	if (error != 0) {
3252 		struct mbuf *m_new;
3253 
3254 		if (error != EFBIG) {
3255 			if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3256 			    __func__, error);
3257 			goto back;
3258 		}
3259 		m_new = m_defrag(m, M_DONTWAIT);
3260 		if (m_new == NULL) {
3261 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3262 			    __func__);
3263 			error = ENOBUFS;
3264 			goto back;
3265 		}
3266 		m = m_new;
3267 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3268 					     bwi_dma_buf_addr, &paddr,
3269 					     BUS_DMA_NOWAIT);
3270 		if (error) {
3271 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3272 			    __func__, error);
3273 			goto back;
3274 		}
3275 	}
3276 
3277 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3278 
3279 	tb->tb_mbuf = m;
3280 	tb->tb_ni = ni;
3281 
3282 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3283 		idx, pkt_len, m->m_pkthdr.len);
3284 
3285 	/* Setup TX descriptor */
3286 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3287 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3288 			BUS_DMASYNC_PREWRITE);
3289 
3290 	/* Kick start */
3291 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3292 back:
3293 	if (error)
3294 		m_freem(m);
3295 	return error;
3296 }
3297 
3298 static void
3299 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3300 {
3301 	idx = (idx + 1) % BWI_TX_NDESC;
3302 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3303 		    idx * sizeof(struct bwi_desc32));
3304 }
3305 
3306 static void
3307 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3308 {
3309 	/* TODO:64 */
3310 }
3311 
3312 static void
3313 bwi_txeof_status32(struct bwi_softc *sc)
3314 {
3315 	struct ifnet *ifp = sc->sc_ifp;
3316 	uint32_t val, ctrl_base;
3317 	int end_idx;
3318 
3319 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3320 
3321 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3322 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3323 		  sizeof(struct bwi_desc32);
3324 
3325 	bwi_txeof_status(sc, end_idx);
3326 
3327 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3328 		    end_idx * sizeof(struct bwi_desc32));
3329 
3330 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3331 		ifp->if_start(ifp);
3332 }
3333 
3334 static void
3335 bwi_txeof_status64(struct bwi_softc *sc)
3336 {
3337 	/* TODO:64 */
3338 }
3339 
3340 static void
3341 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3342 {
3343 	struct ifnet *ifp = sc->sc_ifp;
3344 	struct bwi_txbuf_data *tbd;
3345 	struct bwi_txbuf *tb;
3346 	int ring_idx, buf_idx;
3347 	struct ieee80211_node *ni;
3348 	struct ieee80211vap *vap;
3349 
3350 	if (tx_id == 0) {
3351 		if_printf(ifp, "%s: zero tx id\n", __func__);
3352 		return;
3353 	}
3354 
3355 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3356 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3357 
3358 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3359 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3360 
3361 	tbd = &sc->sc_tx_bdata[ring_idx];
3362 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3363 	tbd->tbd_used--;
3364 
3365 	tb = &tbd->tbd_buf[buf_idx];
3366 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3367 		"acked %d, data_txcnt %d, ni %p\n",
3368 		buf_idx, acked, data_txcnt, tb->tb_ni);
3369 
3370 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3371 
3372 	ni = tb->tb_ni;
3373 	if (tb->tb_ni != NULL) {
3374 		const struct bwi_txbuf_hdr *hdr =
3375 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3376 		vap = ni->ni_vap;
3377 
3378 		/* NB: update rate control only for unicast frames */
3379 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3380 			/*
3381 			 * Feed back 'acked and data_txcnt'.  Note that the
3382 			 * generic AMRR code only understands one tx rate
3383 			 * and the estimator doesn't handle real retry counts
3384 			 * well so to avoid over-aggressive downshifting we
3385 			 * treat any number of retries as "1".
3386 			 */
3387 			ieee80211_ratectl_tx_complete(vap, ni,
3388 			    (data_txcnt > 1) ? IEEE80211_RATECTL_TX_SUCCESS :
3389 			        IEEE80211_RATECTL_TX_FAILURE, &acked, NULL);
3390 		}
3391 
3392 		/*
3393 		 * Do any tx complete callback.  Note this must
3394 		 * be done before releasing the node reference.
3395 		 */
3396 		if (tb->tb_mbuf->m_flags & M_TXCB)
3397 			ieee80211_process_callback(ni, tb->tb_mbuf, !acked);
3398 
3399 		ieee80211_free_node(tb->tb_ni);
3400 		tb->tb_ni = NULL;
3401 	}
3402 	m_freem(tb->tb_mbuf);
3403 	tb->tb_mbuf = NULL;
3404 
3405 	if (tbd->tbd_used == 0)
3406 		sc->sc_tx_timer = 0;
3407 
3408 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3409 }
3410 
3411 static void
3412 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3413 {
3414 	struct bwi_txstats_data *st = sc->sc_txstats;
3415 	int idx;
3416 
3417 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3418 
3419 	idx = st->stats_idx;
3420 	while (idx != end_idx) {
3421 		const struct bwi_txstats *stats = &st->stats[idx];
3422 
3423 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3424 			int data_txcnt;
3425 
3426 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3427 						BWI_TXS_TXCNT_DATA);
3428 			_bwi_txeof(sc, le16toh(stats->txs_id),
3429 				   stats->txs_flags & BWI_TXS_F_ACKED,
3430 				   data_txcnt);
3431 		}
3432 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3433 	}
3434 	st->stats_idx = idx;
3435 }
3436 
3437 static void
3438 bwi_txeof(struct bwi_softc *sc)
3439 {
3440 	struct ifnet *ifp = sc->sc_ifp;
3441 
3442 	for (;;) {
3443 		uint32_t tx_status0, tx_status1;
3444 		uint16_t tx_id;
3445 		int data_txcnt;
3446 
3447 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3448 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3449 			break;
3450 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3451 
3452 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3453 		data_txcnt = __SHIFTOUT(tx_status0,
3454 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3455 
3456 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3457 			continue;
3458 
3459 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3460 		    data_txcnt);
3461 	}
3462 
3463 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3464 		ifp->if_start(ifp);
3465 }
3466 
3467 static int
3468 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3469 {
3470 	bwi_power_on(sc, 1);
3471 	return bwi_set_clock_mode(sc, clk_mode);
3472 }
3473 
3474 static void
3475 bwi_bbp_power_off(struct bwi_softc *sc)
3476 {
3477 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3478 	bwi_power_off(sc, 1);
3479 }
3480 
3481 static int
3482 bwi_get_pwron_delay(struct bwi_softc *sc)
3483 {
3484 	struct bwi_regwin *com, *old;
3485 	struct bwi_clock_freq freq;
3486 	uint32_t val;
3487 	int error;
3488 
3489 	com = &sc->sc_com_regwin;
3490 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3491 
3492 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3493 		return 0;
3494 
3495 	error = bwi_regwin_switch(sc, com, &old);
3496 	if (error)
3497 		return error;
3498 
3499 	bwi_get_clock_freq(sc, &freq);
3500 
3501 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3502 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3503 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3504 
3505 	return bwi_regwin_switch(sc, old, NULL);
3506 }
3507 
3508 static int
3509 bwi_bus_attach(struct bwi_softc *sc)
3510 {
3511 	struct bwi_regwin *bus, *old;
3512 	int error;
3513 
3514 	bus = &sc->sc_bus_regwin;
3515 
3516 	error = bwi_regwin_switch(sc, bus, &old);
3517 	if (error)
3518 		return error;
3519 
3520 	if (!bwi_regwin_is_enabled(sc, bus))
3521 		bwi_regwin_enable(sc, bus, 0);
3522 
3523 	/* Disable interripts */
3524 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3525 
3526 	return bwi_regwin_switch(sc, old, NULL);
3527 }
3528 
3529 static const char *
3530 bwi_regwin_name(const struct bwi_regwin *rw)
3531 {
3532 	switch (rw->rw_type) {
3533 	case BWI_REGWIN_T_COM:
3534 		return "COM";
3535 	case BWI_REGWIN_T_BUSPCI:
3536 		return "PCI";
3537 	case BWI_REGWIN_T_MAC:
3538 		return "MAC";
3539 	case BWI_REGWIN_T_BUSPCIE:
3540 		return "PCIE";
3541 	}
3542 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3543 	return NULL;
3544 }
3545 
3546 static uint32_t
3547 bwi_regwin_disable_bits(struct bwi_softc *sc)
3548 {
3549 	uint32_t busrev;
3550 
3551 	/* XXX cache this */
3552 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3553 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3554 		"bus rev %u\n", busrev);
3555 
3556 	if (busrev == BWI_BUSREV_0)
3557 		return BWI_STATE_LO_DISABLE1;
3558 	else if (busrev == BWI_BUSREV_1)
3559 		return BWI_STATE_LO_DISABLE2;
3560 	else
3561 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3562 }
3563 
3564 int
3565 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3566 {
3567 	uint32_t val, disable_bits;
3568 
3569 	disable_bits = bwi_regwin_disable_bits(sc);
3570 	val = CSR_READ_4(sc, BWI_STATE_LO);
3571 
3572 	if ((val & (BWI_STATE_LO_CLOCK |
3573 		    BWI_STATE_LO_RESET |
3574 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3575 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3576 			bwi_regwin_name(rw));
3577 		return 1;
3578 	} else {
3579 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3580 			bwi_regwin_name(rw));
3581 		return 0;
3582 	}
3583 }
3584 
3585 void
3586 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3587 {
3588 	uint32_t state_lo, disable_bits;
3589 	int i;
3590 
3591 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3592 
3593 	/*
3594 	 * If current regwin is in 'reset' state, it was already disabled.
3595 	 */
3596 	if (state_lo & BWI_STATE_LO_RESET) {
3597 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3598 			"%s was already disabled\n", bwi_regwin_name(rw));
3599 		return;
3600 	}
3601 
3602 	disable_bits = bwi_regwin_disable_bits(sc);
3603 
3604 	/*
3605 	 * Disable normal clock
3606 	 */
3607 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3608 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3609 
3610 	/*
3611 	 * Wait until normal clock is disabled
3612 	 */
3613 #define NRETRY	1000
3614 	for (i = 0; i < NRETRY; ++i) {
3615 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3616 		if (state_lo & disable_bits)
3617 			break;
3618 		DELAY(10);
3619 	}
3620 	if (i == NRETRY) {
3621 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3622 			      bwi_regwin_name(rw));
3623 	}
3624 
3625 	for (i = 0; i < NRETRY; ++i) {
3626 		uint32_t state_hi;
3627 
3628 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3629 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3630 			break;
3631 		DELAY(10);
3632 	}
3633 	if (i == NRETRY) {
3634 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3635 			      bwi_regwin_name(rw));
3636 	}
3637 #undef NRETRY
3638 
3639 	/*
3640 	 * Reset and disable regwin with gated clock
3641 	 */
3642 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3643 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3644 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3645 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3646 
3647 	/* Flush pending bus write */
3648 	CSR_READ_4(sc, BWI_STATE_LO);
3649 	DELAY(1);
3650 
3651 	/* Reset and disable regwin */
3652 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3653 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3654 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3655 
3656 	/* Flush pending bus write */
3657 	CSR_READ_4(sc, BWI_STATE_LO);
3658 	DELAY(1);
3659 }
3660 
3661 void
3662 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3663 {
3664 	uint32_t state_lo, state_hi, imstate;
3665 
3666 	bwi_regwin_disable(sc, rw, flags);
3667 
3668 	/* Reset regwin with gated clock */
3669 	state_lo = BWI_STATE_LO_RESET |
3670 		   BWI_STATE_LO_CLOCK |
3671 		   BWI_STATE_LO_GATED_CLOCK |
3672 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3673 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3674 
3675 	/* Flush pending bus write */
3676 	CSR_READ_4(sc, BWI_STATE_LO);
3677 	DELAY(1);
3678 
3679 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3680 	if (state_hi & BWI_STATE_HI_SERROR)
3681 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3682 
3683 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3684 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3685 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3686 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3687 	}
3688 
3689 	/* Enable regwin with gated clock */
3690 	state_lo = BWI_STATE_LO_CLOCK |
3691 		   BWI_STATE_LO_GATED_CLOCK |
3692 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3693 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3694 
3695 	/* Flush pending bus write */
3696 	CSR_READ_4(sc, BWI_STATE_LO);
3697 	DELAY(1);
3698 
3699 	/* Enable regwin with normal clock */
3700 	state_lo = BWI_STATE_LO_CLOCK |
3701 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3702 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3703 
3704 	/* Flush pending bus write */
3705 	CSR_READ_4(sc, BWI_STATE_LO);
3706 	DELAY(1);
3707 }
3708 
3709 static void
3710 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3711 {
3712 	struct ifnet *ifp = sc->sc_ifp;
3713 	struct bwi_mac *mac;
3714 	struct bwi_myaddr_bssid buf;
3715 	const uint8_t *p;
3716 	uint32_t val;
3717 	int n, i;
3718 
3719 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3720 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3721 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3722 
3723 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3724 
3725 	bcopy(IF_LLADDR(ifp), buf.myaddr, sizeof(buf.myaddr));
3726 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3727 
3728 	n = sizeof(buf) / sizeof(val);
3729 	p = (const uint8_t *)&buf;
3730 	for (i = 0; i < n; ++i) {
3731 		int j;
3732 
3733 		val = 0;
3734 		for (j = 0; j < sizeof(val); ++j)
3735 			val |= ((uint32_t)(*p++)) << (j * 8);
3736 
3737 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3738 	}
3739 }
3740 
3741 static void
3742 bwi_updateslot(struct ifnet *ifp)
3743 {
3744 	struct bwi_softc *sc = ifp->if_softc;
3745 	struct ieee80211com *ic = ifp->if_l2com;
3746 	struct bwi_mac *mac;
3747 
3748 	BWI_LOCK(sc);
3749 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3750 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3751 
3752 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3753 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3754 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3755 
3756 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3757 	}
3758 	BWI_UNLOCK(sc);
3759 }
3760 
3761 static void
3762 bwi_calibrate(void *xsc)
3763 {
3764 	struct bwi_softc *sc = xsc;
3765 #ifdef INVARIANTS
3766 	struct ifnet *ifp = sc->sc_ifp;
3767 	struct ieee80211com *ic = ifp->if_l2com;
3768 #endif
3769 	struct bwi_mac *mac;
3770 
3771 	BWI_ASSERT_LOCKED(sc);
3772 
3773 	KASSERT(ic->ic_opmode != IEEE80211_M_MONITOR,
3774 	    ("opmode %d", ic->ic_opmode));
3775 
3776 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3777 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3778 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3779 
3780 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3781 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3782 
3783 	/* XXX 15 seconds */
3784 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3785 }
3786 
3787 static int
3788 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3789 {
3790 	struct bwi_mac *mac;
3791 
3792 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3793 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3794 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3795 
3796 	return bwi_rf_calc_rssi(mac, hdr);
3797 }
3798 
3799 static int
3800 bwi_calc_noise(struct bwi_softc *sc)
3801 {
3802 	struct bwi_mac *mac;
3803 
3804 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3805 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3806 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3807 
3808 	return bwi_rf_calc_noise(mac);
3809 }
3810 
3811 static __inline uint8_t
3812 bwi_ofdm_plcp2rate(const uint32_t *plcp0)
3813 {
3814 	uint32_t plcp;
3815 	uint8_t plcp_rate;
3816 
3817 	plcp = le32toh(*plcp0);
3818 	plcp_rate = __SHIFTOUT(plcp, IEEE80211_OFDM_PLCP_RATE_MASK);
3819 	return ieee80211_plcp2rate(plcp_rate, IEEE80211_T_OFDM);
3820 }
3821 
3822 static __inline uint8_t
3823 bwi_ds_plcp2rate(const struct ieee80211_ds_plcp_hdr *hdr)
3824 {
3825 	return ieee80211_plcp2rate(hdr->i_signal, IEEE80211_T_DS);
3826 }
3827 
3828 static void
3829 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3830     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3831 {
3832 	const struct ieee80211_frame_min *wh;
3833 
3834 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3835 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3836 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3837 
3838 	wh = mtod(m, const struct ieee80211_frame_min *);
3839 	if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3840 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3841 
3842 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian convertion */
3843 	sc->sc_rx_th.wr_rate = rate;
3844 	sc->sc_rx_th.wr_antsignal = rssi;
3845 	sc->sc_rx_th.wr_antnoise = noise;
3846 }
3847 
3848 static void
3849 bwi_led_attach(struct bwi_softc *sc)
3850 {
3851 	const uint8_t *led_act = NULL;
3852 	uint16_t gpio, val[BWI_LED_MAX];
3853 	int i;
3854 
3855 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
3856 
3857 	for (i = 0; i < N(bwi_vendor_led_act); ++i) {
3858 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3859 			led_act = bwi_vendor_led_act[i].led_act;
3860 			break;
3861 		}
3862 	}
3863 	if (led_act == NULL)
3864 		led_act = bwi_default_led_act;
3865 
3866 #undef N
3867 
3868 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3869 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3870 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3871 
3872 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3873 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3874 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3875 
3876 	for (i = 0; i < BWI_LED_MAX; ++i) {
3877 		struct bwi_led *led = &sc->sc_leds[i];
3878 
3879 		if (val[i] == 0xff) {
3880 			led->l_act = led_act[i];
3881 		} else {
3882 			if (val[i] & BWI_LED_ACT_LOW)
3883 				led->l_flags |= BWI_LED_F_ACTLOW;
3884 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3885 		}
3886 		led->l_mask = (1 << i);
3887 
3888 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3889 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3890 		    led->l_act == BWI_LED_ACT_BLINK) {
3891 			led->l_flags |= BWI_LED_F_BLINK;
3892 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3893 				led->l_flags |= BWI_LED_F_POLLABLE;
3894 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3895 				led->l_flags |= BWI_LED_F_SLOW;
3896 
3897 			if (sc->sc_blink_led == NULL) {
3898 				sc->sc_blink_led = led;
3899 				if (led->l_flags & BWI_LED_F_SLOW)
3900 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3901 			}
3902 		}
3903 
3904 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3905 			"%dth led, act %d, lowact %d\n", i,
3906 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3907 	}
3908 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3909 }
3910 
3911 static __inline uint16_t
3912 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3913 {
3914 	if (led->l_flags & BWI_LED_F_ACTLOW)
3915 		on = !on;
3916 	if (on)
3917 		val |= led->l_mask;
3918 	else
3919 		val &= ~led->l_mask;
3920 	return val;
3921 }
3922 
3923 static void
3924 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3925 {
3926 	struct ifnet *ifp = sc->sc_ifp;
3927 	struct ieee80211com *ic = ifp->if_l2com;
3928 	uint16_t val;
3929 	int i;
3930 
3931 	if (nstate == IEEE80211_S_INIT) {
3932 		callout_stop(&sc->sc_led_blink_ch);
3933 		sc->sc_led_blinking = 0;
3934 	}
3935 
3936 	if ((ic->ic_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3937 		return;
3938 
3939 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3940 	for (i = 0; i < BWI_LED_MAX; ++i) {
3941 		struct bwi_led *led = &sc->sc_leds[i];
3942 		int on;
3943 
3944 		if (led->l_act == BWI_LED_ACT_UNKN ||
3945 		    led->l_act == BWI_LED_ACT_NULL)
3946 			continue;
3947 
3948 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3949 		    nstate != IEEE80211_S_INIT)
3950 		    	continue;
3951 
3952 		switch (led->l_act) {
3953 		case BWI_LED_ACT_ON:	/* Always on */
3954 			on = 1;
3955 			break;
3956 		case BWI_LED_ACT_OFF:	/* Always off */
3957 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3958 			on = 0;
3959 			break;
3960 		default:
3961 			on = 1;
3962 			switch (nstate) {
3963 			case IEEE80211_S_INIT:
3964 				on = 0;
3965 				break;
3966 			case IEEE80211_S_RUN:
3967 				if (led->l_act == BWI_LED_ACT_11G &&
3968 				    ic->ic_curmode != IEEE80211_MODE_11G)
3969 					on = 0;
3970 				break;
3971 			default:
3972 				if (led->l_act == BWI_LED_ACT_ASSOC)
3973 					on = 0;
3974 				break;
3975 			}
3976 			break;
3977 		}
3978 
3979 		val = bwi_led_onoff(led, val, on);
3980 	}
3981 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3982 }
3983 static void
3984 bwi_led_event(struct bwi_softc *sc, int event)
3985 {
3986 	struct bwi_led *led = sc->sc_blink_led;
3987 	int rate;
3988 
3989 	if (event == BWI_LED_EVENT_POLL) {
3990 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3991 			return;
3992 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3993 			return;
3994 	}
3995 
3996 	sc->sc_led_ticks = ticks;
3997 	if (sc->sc_led_blinking)
3998 		return;
3999 
4000 	switch (event) {
4001 	case BWI_LED_EVENT_RX:
4002 		rate = sc->sc_rx_rate;
4003 		break;
4004 	case BWI_LED_EVENT_TX:
4005 		rate = sc->sc_tx_rate;
4006 		break;
4007 	case BWI_LED_EVENT_POLL:
4008 		rate = 0;
4009 		break;
4010 	default:
4011 		panic("unknown LED event %d\n", event);
4012 		break;
4013 	}
4014 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
4015 	    bwi_led_duration[rate].off_dur);
4016 }
4017 
4018 static void
4019 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
4020 {
4021 	struct bwi_led *led = sc->sc_blink_led;
4022 	uint16_t val;
4023 
4024 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4025 	val = bwi_led_onoff(led, val, 1);
4026 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4027 
4028 	if (led->l_flags & BWI_LED_F_SLOW) {
4029 		BWI_LED_SLOWDOWN(on_dur);
4030 		BWI_LED_SLOWDOWN(off_dur);
4031 	}
4032 
4033 	sc->sc_led_blinking = 1;
4034 	sc->sc_led_blink_offdur = off_dur;
4035 
4036 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
4037 }
4038 
4039 static void
4040 bwi_led_blink_next(void *xsc)
4041 {
4042 	struct bwi_softc *sc = xsc;
4043 	uint16_t val;
4044 
4045 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4046 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
4047 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4048 
4049 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
4050 	    bwi_led_blink_end, sc);
4051 }
4052 
4053 static void
4054 bwi_led_blink_end(void *xsc)
4055 {
4056 	struct bwi_softc *sc = xsc;
4057 	sc->sc_led_blinking = 0;
4058 }
4059 
4060 static void
4061 bwi_restart(void *xsc, int pending)
4062 {
4063 	struct bwi_softc *sc = xsc;
4064 	struct ifnet *ifp = sc->sc_ifp;
4065 
4066 	if_printf(ifp, "%s begin, help!\n", __func__);
4067 	BWI_LOCK(sc);
4068 	bwi_init_statechg(xsc, 0);
4069 #if 0
4070 	bwi_start_locked(ifp);
4071 #endif
4072 	BWI_UNLOCK(sc);
4073 }
4074