xref: /freebsd/sys/dev/cadence/if_cgem.c (revision abcdc1b9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012-2014 Thomas Skibo <thomasskibo@yahoo.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * A network interface driver for Cadence GEM Gigabit Ethernet
31  * interface such as the one used in Xilinx Zynq-7000 SoC.
32  *
33  * Reference: Zynq-7000 All Programmable SoC Technical Reference Manual.
34  * (v1.4) November 16, 2012.  Xilinx doc UG585.  GEM is covered in Ch. 16
35  * and register definitions are in appendix B.18.
36  */
37 
38 #include <sys/cdefs.h>
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/bus.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/module.h>
46 #include <sys/rman.h>
47 #include <sys/socket.h>
48 #include <sys/sockio.h>
49 #include <sys/sysctl.h>
50 
51 #include <machine/bus.h>
52 
53 #include <net/ethernet.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_mib.h>
59 #include <net/if_types.h>
60 
61 #ifdef INET
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 #endif
67 
68 #include <net/bpf.h>
69 #include <net/bpfdesc.h>
70 
71 #include <dev/fdt/fdt_common.h>
72 #include <dev/ofw/ofw_bus.h>
73 #include <dev/ofw/ofw_bus_subr.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_fdt.h>
78 
79 #include <dev/extres/clk/clk.h>
80 
81 #if BUS_SPACE_MAXADDR > BUS_SPACE_MAXADDR_32BIT
82 #define CGEM64
83 #endif
84 
85 #include <dev/cadence/if_cgem_hw.h>
86 
87 #include "miibus_if.h"
88 
89 #define IF_CGEM_NAME "cgem"
90 
91 #define CGEM_NUM_RX_DESCS	512	/* size of receive descriptor ring */
92 #define CGEM_NUM_TX_DESCS	512	/* size of transmit descriptor ring */
93 
94 /* Default for sysctl rxbufs.  Must be < CGEM_NUM_RX_DESCS of course. */
95 #define DEFAULT_NUM_RX_BUFS	256	/* number of receive bufs to queue. */
96 
97 #define TX_MAX_DMA_SEGS		8	/* maximum segs in a tx mbuf dma */
98 
99 #define CGEM_CKSUM_ASSIST	(CSUM_IP | CSUM_TCP | CSUM_UDP | \
100 				 CSUM_TCP_IPV6 | CSUM_UDP_IPV6)
101 
102 #define HWQUIRK_NONE		0
103 #define HWQUIRK_NEEDNULLQS	1
104 #define HWQUIRK_RXHANGWAR	2
105 
106 static struct ofw_compat_data compat_data[] = {
107 	{ "cdns,zynq-gem",		HWQUIRK_RXHANGWAR }, /* Deprecated */
108 	{ "cdns,zynqmp-gem",		HWQUIRK_NEEDNULLQS }, /* Deprecated */
109 	{ "xlnx,zynq-gem",		HWQUIRK_RXHANGWAR },
110 	{ "xlnx,zynqmp-gem",		HWQUIRK_NEEDNULLQS },
111 	{ "microchip,mpfs-mss-gem",	HWQUIRK_NEEDNULLQS },
112 	{ "sifive,fu540-c000-gem",	HWQUIRK_NONE },
113 	{ "sifive,fu740-c000-gem",	HWQUIRK_NONE },
114 	{ NULL,				0 }
115 };
116 
117 struct cgem_softc {
118 	if_t			ifp;
119 	struct mtx		sc_mtx;
120 	device_t		dev;
121 	device_t		miibus;
122 	u_int			mii_media_active;	/* last active media */
123 	int			if_old_flags;
124 	struct resource		*mem_res;
125 	struct resource		*irq_res;
126 	void			*intrhand;
127 	struct callout		tick_ch;
128 	uint32_t		net_ctl_shadow;
129 	uint32_t		net_cfg_shadow;
130 	clk_t			clk_pclk;
131 	clk_t			clk_hclk;
132 	clk_t			clk_txclk;
133 	clk_t			clk_rxclk;
134 	clk_t			clk_tsuclk;
135 	int			neednullqs;
136 	int			phy_contype;
137 
138 	bus_dma_tag_t		desc_dma_tag;
139 	bus_dma_tag_t		mbuf_dma_tag;
140 
141 	/* receive descriptor ring */
142 	struct cgem_rx_desc	*rxring;
143 	bus_addr_t		rxring_physaddr;
144 	struct mbuf		*rxring_m[CGEM_NUM_RX_DESCS];
145 	bus_dmamap_t		rxring_m_dmamap[CGEM_NUM_RX_DESCS];
146 	int			rxring_hd_ptr;	/* where to put rcv bufs */
147 	int			rxring_tl_ptr;	/* where to get receives */
148 	int			rxring_queued;	/* how many rcv bufs queued */
149 	bus_dmamap_t		rxring_dma_map;
150 	int			rxbufs;		/* tunable number rcv bufs */
151 	int			rxhangwar;	/* rx hang work-around */
152 	u_int			rxoverruns;	/* rx overruns */
153 	u_int			rxnobufs;	/* rx buf ring empty events */
154 	u_int			rxdmamapfails;	/* rx dmamap failures */
155 	uint32_t		rx_frames_prev;
156 
157 	/* transmit descriptor ring */
158 	struct cgem_tx_desc	*txring;
159 	bus_addr_t		txring_physaddr;
160 	struct mbuf		*txring_m[CGEM_NUM_TX_DESCS];
161 	bus_dmamap_t		txring_m_dmamap[CGEM_NUM_TX_DESCS];
162 	int			txring_hd_ptr;	/* where to put next xmits */
163 	int			txring_tl_ptr;	/* next xmit mbuf to free */
164 	int			txring_queued;	/* num xmits segs queued */
165 	u_int			txfull;		/* tx ring full events */
166 	u_int			txdefrags;	/* tx calls to m_defrag() */
167 	u_int			txdefragfails;	/* tx m_defrag() failures */
168 	u_int			txdmamapfails;	/* tx dmamap failures */
169 
170 	/* null descriptor rings */
171 	void			*null_qs;
172 	bus_addr_t		null_qs_physaddr;
173 
174 	/* hardware provided statistics */
175 	struct cgem_hw_stats {
176 		uint64_t		tx_bytes;
177 		uint32_t		tx_frames;
178 		uint32_t		tx_frames_bcast;
179 		uint32_t		tx_frames_multi;
180 		uint32_t		tx_frames_pause;
181 		uint32_t		tx_frames_64b;
182 		uint32_t		tx_frames_65to127b;
183 		uint32_t		tx_frames_128to255b;
184 		uint32_t		tx_frames_256to511b;
185 		uint32_t		tx_frames_512to1023b;
186 		uint32_t		tx_frames_1024to1536b;
187 		uint32_t		tx_under_runs;
188 		uint32_t		tx_single_collisn;
189 		uint32_t		tx_multi_collisn;
190 		uint32_t		tx_excsv_collisn;
191 		uint32_t		tx_late_collisn;
192 		uint32_t		tx_deferred_frames;
193 		uint32_t		tx_carrier_sense_errs;
194 
195 		uint64_t		rx_bytes;
196 		uint32_t		rx_frames;
197 		uint32_t		rx_frames_bcast;
198 		uint32_t		rx_frames_multi;
199 		uint32_t		rx_frames_pause;
200 		uint32_t		rx_frames_64b;
201 		uint32_t		rx_frames_65to127b;
202 		uint32_t		rx_frames_128to255b;
203 		uint32_t		rx_frames_256to511b;
204 		uint32_t		rx_frames_512to1023b;
205 		uint32_t		rx_frames_1024to1536b;
206 		uint32_t		rx_frames_undersize;
207 		uint32_t		rx_frames_oversize;
208 		uint32_t		rx_frames_jabber;
209 		uint32_t		rx_frames_fcs_errs;
210 		uint32_t		rx_frames_length_errs;
211 		uint32_t		rx_symbol_errs;
212 		uint32_t		rx_align_errs;
213 		uint32_t		rx_resource_errs;
214 		uint32_t		rx_overrun_errs;
215 		uint32_t		rx_ip_hdr_csum_errs;
216 		uint32_t		rx_tcp_csum_errs;
217 		uint32_t		rx_udp_csum_errs;
218 	} stats;
219 };
220 
221 #define RD4(sc, off)		(bus_read_4((sc)->mem_res, (off)))
222 #define WR4(sc, off, val)	(bus_write_4((sc)->mem_res, (off), (val)))
223 #define BARRIER(sc, off, len, flags) \
224 	(bus_barrier((sc)->mem_res, (off), (len), (flags))
225 
226 #define CGEM_LOCK(sc)		mtx_lock(&(sc)->sc_mtx)
227 #define CGEM_UNLOCK(sc)		mtx_unlock(&(sc)->sc_mtx)
228 #define CGEM_LOCK_INIT(sc)	mtx_init(&(sc)->sc_mtx, \
229 	    device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF)
230 #define CGEM_LOCK_DESTROY(sc)	mtx_destroy(&(sc)->sc_mtx)
231 #define CGEM_ASSERT_LOCKED(sc)	mtx_assert(&(sc)->sc_mtx, MA_OWNED)
232 
233 /* Allow platforms to optionally provide a way to set the reference clock. */
234 int cgem_set_ref_clk(int unit, int frequency);
235 
236 static int cgem_probe(device_t dev);
237 static int cgem_attach(device_t dev);
238 static int cgem_detach(device_t dev);
239 static void cgem_tick(void *);
240 static void cgem_intr(void *);
241 
242 static void cgem_mediachange(struct cgem_softc *, struct mii_data *);
243 
244 static void
245 cgem_get_mac(struct cgem_softc *sc, u_char eaddr[])
246 {
247 	int i;
248 	uint32_t rnd;
249 
250 	/* See if boot loader gave us a MAC address already. */
251 	for (i = 0; i < 4; i++) {
252 		uint32_t low = RD4(sc, CGEM_SPEC_ADDR_LOW(i));
253 		uint32_t high = RD4(sc, CGEM_SPEC_ADDR_HI(i)) & 0xffff;
254 		if (low != 0 || high != 0) {
255 			eaddr[0] = low & 0xff;
256 			eaddr[1] = (low >> 8) & 0xff;
257 			eaddr[2] = (low >> 16) & 0xff;
258 			eaddr[3] = (low >> 24) & 0xff;
259 			eaddr[4] = high & 0xff;
260 			eaddr[5] = (high >> 8) & 0xff;
261 			break;
262 		}
263 	}
264 
265 	/* No MAC from boot loader?  Assign a random one. */
266 	if (i == 4) {
267 		rnd = arc4random();
268 
269 		eaddr[0] = 'b';
270 		eaddr[1] = 's';
271 		eaddr[2] = 'd';
272 		eaddr[3] = (rnd >> 16) & 0xff;
273 		eaddr[4] = (rnd >> 8) & 0xff;
274 		eaddr[5] = rnd & 0xff;
275 
276 		device_printf(sc->dev, "no mac address found, assigning "
277 		    "random: %02x:%02x:%02x:%02x:%02x:%02x\n", eaddr[0],
278 		    eaddr[1], eaddr[2], eaddr[3], eaddr[4], eaddr[5]);
279 	}
280 
281 	/* Move address to first slot and zero out the rest. */
282 	WR4(sc, CGEM_SPEC_ADDR_LOW(0), (eaddr[3] << 24) |
283 	    (eaddr[2] << 16) | (eaddr[1] << 8) | eaddr[0]);
284 	WR4(sc, CGEM_SPEC_ADDR_HI(0), (eaddr[5] << 8) | eaddr[4]);
285 
286 	for (i = 1; i < 4; i++) {
287 		WR4(sc, CGEM_SPEC_ADDR_LOW(i), 0);
288 		WR4(sc, CGEM_SPEC_ADDR_HI(i), 0);
289 	}
290 }
291 
292 /*
293  * cgem_mac_hash():  map 48-bit address to a 6-bit hash. The 6-bit hash
294  * corresponds to a bit in a 64-bit hash register.  Setting that bit in the
295  * hash register enables reception of all frames with a destination address
296  * that hashes to that 6-bit value.
297  *
298  * The hash function is described in sec. 16.2.3 in the Zynq-7000 Tech
299  * Reference Manual.  Bits 0-5 in the hash are the exclusive-or of
300  * every sixth bit in the destination address.
301  */
302 static int
303 cgem_mac_hash(u_char eaddr[])
304 {
305 	int hash;
306 	int i, j;
307 
308 	hash = 0;
309 	for (i = 0; i < 6; i++)
310 		for (j = i; j < 48; j += 6)
311 			if ((eaddr[j >> 3] & (1 << (j & 7))) != 0)
312 				hash ^= (1 << i);
313 
314 	return hash;
315 }
316 
317 static u_int
318 cgem_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
319 {
320 	uint32_t *hashes = arg;
321 	int index;
322 
323 	index = cgem_mac_hash(LLADDR(sdl));
324 	if (index > 31)
325 		hashes[0] |= (1U << (index - 32));
326 	else
327 		hashes[1] |= (1U << index);
328 
329 	return (1);
330 }
331 
332 /*
333  * After any change in rx flags or multi-cast addresses, set up hash registers
334  * and net config register bits.
335  */
336 static void
337 cgem_rx_filter(struct cgem_softc *sc)
338 {
339 	if_t ifp = sc->ifp;
340 	uint32_t hashes[2] = { 0, 0 };
341 
342 	sc->net_cfg_shadow &= ~(CGEM_NET_CFG_MULTI_HASH_EN |
343 	    CGEM_NET_CFG_NO_BCAST | CGEM_NET_CFG_COPY_ALL);
344 
345 	if ((if_getflags(ifp) & IFF_PROMISC) != 0)
346 		sc->net_cfg_shadow |= CGEM_NET_CFG_COPY_ALL;
347 	else {
348 		if ((if_getflags(ifp) & IFF_BROADCAST) == 0)
349 			sc->net_cfg_shadow |= CGEM_NET_CFG_NO_BCAST;
350 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
351 			hashes[0] = 0xffffffff;
352 			hashes[1] = 0xffffffff;
353 		} else
354 			if_foreach_llmaddr(ifp, cgem_hash_maddr, hashes);
355 
356 		if (hashes[0] != 0 || hashes[1] != 0)
357 			sc->net_cfg_shadow |= CGEM_NET_CFG_MULTI_HASH_EN;
358 	}
359 
360 	WR4(sc, CGEM_HASH_TOP, hashes[0]);
361 	WR4(sc, CGEM_HASH_BOT, hashes[1]);
362 	WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow);
363 }
364 
365 /* For bus_dmamap_load() callback. */
366 static void
367 cgem_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
368 {
369 
370 	if (nsegs != 1 || error != 0)
371 		return;
372 	*(bus_addr_t *)arg = segs[0].ds_addr;
373 }
374 
375 /* Set up null queues for priority queues we actually can't disable. */
376 static void
377 cgem_null_qs(struct cgem_softc *sc)
378 {
379 	struct cgem_rx_desc *rx_desc;
380 	struct cgem_tx_desc *tx_desc;
381 	uint32_t queue_mask;
382 	int n;
383 
384 	/* Read design config register 6 to determine number of queues. */
385 	queue_mask = (RD4(sc, CGEM_DESIGN_CFG6) &
386 	    CGEM_DESIGN_CFG6_DMA_PRIO_Q_MASK) >> 1;
387 	if (queue_mask == 0)
388 		return;
389 
390 	/* Create empty RX queue and empty TX buf queues. */
391 	memset(sc->null_qs, 0, sizeof(struct cgem_rx_desc) +
392 	    sizeof(struct cgem_tx_desc));
393 	rx_desc = sc->null_qs;
394 	rx_desc->addr = CGEM_RXDESC_OWN | CGEM_RXDESC_WRAP;
395 	tx_desc = (struct cgem_tx_desc *)(rx_desc + 1);
396 	tx_desc->ctl = CGEM_TXDESC_USED | CGEM_TXDESC_WRAP;
397 
398 	/* Point all valid ring base pointers to the null queues. */
399 	for (n = 1; (queue_mask & 1) != 0; n++, queue_mask >>= 1) {
400 		WR4(sc, CGEM_RX_QN_BAR(n), sc->null_qs_physaddr);
401 		WR4(sc, CGEM_TX_QN_BAR(n), sc->null_qs_physaddr +
402 		    sizeof(struct cgem_rx_desc));
403 	}
404 }
405 
406 /* Create DMA'able descriptor rings. */
407 static int
408 cgem_setup_descs(struct cgem_softc *sc)
409 {
410 	int i, err;
411 	int desc_rings_size = CGEM_NUM_RX_DESCS * sizeof(struct cgem_rx_desc) +
412 	    CGEM_NUM_TX_DESCS * sizeof(struct cgem_tx_desc);
413 
414 	if (sc->neednullqs)
415 		desc_rings_size += sizeof(struct cgem_rx_desc) +
416 		    sizeof(struct cgem_tx_desc);
417 
418 	sc->txring = NULL;
419 	sc->rxring = NULL;
420 
421 	/* Allocate non-cached DMA space for RX and TX descriptors. */
422 	err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1,
423 #ifdef CGEM64
424 	    1ULL << 32,	/* Do not cross a 4G boundary. */
425 #else
426 	    0,
427 #endif
428 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
429 	    desc_rings_size, 1, desc_rings_size, 0,
430 	    busdma_lock_mutex, &sc->sc_mtx, &sc->desc_dma_tag);
431 	if (err)
432 		return (err);
433 
434 	/* Set up a bus_dma_tag for mbufs. */
435 	err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
436 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
437 	    TX_MAX_DMA_SEGS, MCLBYTES, 0, busdma_lock_mutex, &sc->sc_mtx,
438 	    &sc->mbuf_dma_tag);
439 	if (err)
440 		return (err);
441 
442 	/*
443 	 * Allocate DMA memory. We allocate transmit, receive and null
444 	 * descriptor queues all at once because the hardware only provides
445 	 * one register for the upper 32 bits of rx and tx descriptor queues
446 	 * hardware addresses.
447 	 */
448 	err = bus_dmamem_alloc(sc->desc_dma_tag, (void **)&sc->rxring,
449 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO,
450 	    &sc->rxring_dma_map);
451 	if (err)
452 		return (err);
453 
454 	/* Load descriptor DMA memory. */
455 	err = bus_dmamap_load(sc->desc_dma_tag, sc->rxring_dma_map,
456 	    (void *)sc->rxring, desc_rings_size,
457 	    cgem_getaddr, &sc->rxring_physaddr, BUS_DMA_NOWAIT);
458 	if (err)
459 		return (err);
460 
461 	/* Initialize RX descriptors. */
462 	for (i = 0; i < CGEM_NUM_RX_DESCS; i++) {
463 		sc->rxring[i].addr = CGEM_RXDESC_OWN;
464 		sc->rxring[i].ctl = 0;
465 		sc->rxring_m[i] = NULL;
466 		sc->rxring_m_dmamap[i] = NULL;
467 	}
468 	sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP;
469 
470 	sc->rxring_hd_ptr = 0;
471 	sc->rxring_tl_ptr = 0;
472 	sc->rxring_queued = 0;
473 
474 	sc->txring = (struct cgem_tx_desc *)(sc->rxring + CGEM_NUM_RX_DESCS);
475 	sc->txring_physaddr = sc->rxring_physaddr + CGEM_NUM_RX_DESCS *
476 	    sizeof(struct cgem_rx_desc);
477 
478 	/* Initialize TX descriptor ring. */
479 	for (i = 0; i < CGEM_NUM_TX_DESCS; i++) {
480 		sc->txring[i].addr = 0;
481 		sc->txring[i].ctl = CGEM_TXDESC_USED;
482 		sc->txring_m[i] = NULL;
483 		sc->txring_m_dmamap[i] = NULL;
484 	}
485 	sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP;
486 
487 	sc->txring_hd_ptr = 0;
488 	sc->txring_tl_ptr = 0;
489 	sc->txring_queued = 0;
490 
491 	if (sc->neednullqs) {
492 		sc->null_qs = (void *)(sc->txring + CGEM_NUM_TX_DESCS);
493 		sc->null_qs_physaddr = sc->txring_physaddr +
494 		    CGEM_NUM_TX_DESCS * sizeof(struct cgem_tx_desc);
495 
496 		cgem_null_qs(sc);
497 	}
498 
499 	return (0);
500 }
501 
502 /* Fill receive descriptor ring with mbufs. */
503 static void
504 cgem_fill_rqueue(struct cgem_softc *sc)
505 {
506 	struct mbuf *m = NULL;
507 	bus_dma_segment_t segs[TX_MAX_DMA_SEGS];
508 	int nsegs;
509 
510 	CGEM_ASSERT_LOCKED(sc);
511 
512 	while (sc->rxring_queued < sc->rxbufs) {
513 		/* Get a cluster mbuf. */
514 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
515 		if (m == NULL)
516 			break;
517 
518 		m->m_len = MCLBYTES;
519 		m->m_pkthdr.len = MCLBYTES;
520 		m->m_pkthdr.rcvif = sc->ifp;
521 
522 		/* Load map and plug in physical address. */
523 		if (bus_dmamap_create(sc->mbuf_dma_tag, 0,
524 		    &sc->rxring_m_dmamap[sc->rxring_hd_ptr])) {
525 			sc->rxdmamapfails++;
526 			m_free(m);
527 			break;
528 		}
529 		if (bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag,
530 		    sc->rxring_m_dmamap[sc->rxring_hd_ptr], m,
531 		    segs, &nsegs, BUS_DMA_NOWAIT)) {
532 			sc->rxdmamapfails++;
533 			bus_dmamap_destroy(sc->mbuf_dma_tag,
534 				   sc->rxring_m_dmamap[sc->rxring_hd_ptr]);
535 			sc->rxring_m_dmamap[sc->rxring_hd_ptr] = NULL;
536 			m_free(m);
537 			break;
538 		}
539 		sc->rxring_m[sc->rxring_hd_ptr] = m;
540 
541 		/* Sync cache with receive buffer. */
542 		bus_dmamap_sync(sc->mbuf_dma_tag,
543 		    sc->rxring_m_dmamap[sc->rxring_hd_ptr],
544 		    BUS_DMASYNC_PREREAD);
545 
546 		/* Write rx descriptor and increment head pointer. */
547 		sc->rxring[sc->rxring_hd_ptr].ctl = 0;
548 #ifdef CGEM64
549 		sc->rxring[sc->rxring_hd_ptr].addrhi = segs[0].ds_addr >> 32;
550 #endif
551 		if (sc->rxring_hd_ptr == CGEM_NUM_RX_DESCS - 1) {
552 			sc->rxring[sc->rxring_hd_ptr].addr = segs[0].ds_addr |
553 			    CGEM_RXDESC_WRAP;
554 			sc->rxring_hd_ptr = 0;
555 		} else
556 			sc->rxring[sc->rxring_hd_ptr++].addr = segs[0].ds_addr;
557 
558 		sc->rxring_queued++;
559 	}
560 }
561 
562 /* Pull received packets off of receive descriptor ring. */
563 static void
564 cgem_recv(struct cgem_softc *sc)
565 {
566 	if_t ifp = sc->ifp;
567 	struct mbuf *m, *m_hd, **m_tl;
568 	uint32_t ctl;
569 
570 	CGEM_ASSERT_LOCKED(sc);
571 
572 	/* Pick up all packets in which the OWN bit is set. */
573 	m_hd = NULL;
574 	m_tl = &m_hd;
575 	while (sc->rxring_queued > 0 &&
576 	    (sc->rxring[sc->rxring_tl_ptr].addr & CGEM_RXDESC_OWN) != 0) {
577 		ctl = sc->rxring[sc->rxring_tl_ptr].ctl;
578 
579 		/* Grab filled mbuf. */
580 		m = sc->rxring_m[sc->rxring_tl_ptr];
581 		sc->rxring_m[sc->rxring_tl_ptr] = NULL;
582 
583 		/* Sync cache with receive buffer. */
584 		bus_dmamap_sync(sc->mbuf_dma_tag,
585 		    sc->rxring_m_dmamap[sc->rxring_tl_ptr],
586 		    BUS_DMASYNC_POSTREAD);
587 
588 		/* Unload and destroy dmamap. */
589 		bus_dmamap_unload(sc->mbuf_dma_tag,
590 		    sc->rxring_m_dmamap[sc->rxring_tl_ptr]);
591 		bus_dmamap_destroy(sc->mbuf_dma_tag,
592 		    sc->rxring_m_dmamap[sc->rxring_tl_ptr]);
593 		sc->rxring_m_dmamap[sc->rxring_tl_ptr] = NULL;
594 
595 		/* Increment tail pointer. */
596 		if (++sc->rxring_tl_ptr == CGEM_NUM_RX_DESCS)
597 			sc->rxring_tl_ptr = 0;
598 		sc->rxring_queued--;
599 
600 		/*
601 		 * Check FCS and make sure entire packet landed in one mbuf
602 		 * cluster (which is much bigger than the largest ethernet
603 		 * packet).
604 		 */
605 		if ((ctl & CGEM_RXDESC_BAD_FCS) != 0 ||
606 		    (ctl & (CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) !=
607 		    (CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) {
608 			/* discard. */
609 			m_free(m);
610 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
611 			continue;
612 		}
613 
614 		/* Ready it to hand off to upper layers. */
615 		m->m_data += ETHER_ALIGN;
616 		m->m_len = (ctl & CGEM_RXDESC_LENGTH_MASK);
617 		m->m_pkthdr.rcvif = ifp;
618 		m->m_pkthdr.len = m->m_len;
619 
620 		/*
621 		 * Are we using hardware checksumming?  Check the status in the
622 		 * receive descriptor.
623 		 */
624 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
625 			/* TCP or UDP checks out, IP checks out too. */
626 			if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) ==
627 			    CGEM_RXDESC_CKSUM_STAT_TCP_GOOD ||
628 			    (ctl & CGEM_RXDESC_CKSUM_STAT_MASK) ==
629 			    CGEM_RXDESC_CKSUM_STAT_UDP_GOOD) {
630 				m->m_pkthdr.csum_flags |=
631 				    CSUM_IP_CHECKED | CSUM_IP_VALID |
632 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
633 				m->m_pkthdr.csum_data = 0xffff;
634 			} else if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) ==
635 			    CGEM_RXDESC_CKSUM_STAT_IP_GOOD) {
636 				/* Only IP checks out. */
637 				m->m_pkthdr.csum_flags |=
638 				    CSUM_IP_CHECKED | CSUM_IP_VALID;
639 				m->m_pkthdr.csum_data = 0xffff;
640 			}
641 		}
642 
643 		/* Queue it up for delivery below. */
644 		*m_tl = m;
645 		m_tl = &m->m_next;
646 	}
647 
648 	/* Replenish receive buffers. */
649 	cgem_fill_rqueue(sc);
650 
651 	/* Unlock and send up packets. */
652 	CGEM_UNLOCK(sc);
653 	while (m_hd != NULL) {
654 		m = m_hd;
655 		m_hd = m_hd->m_next;
656 		m->m_next = NULL;
657 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
658 		if_input(ifp, m);
659 	}
660 	CGEM_LOCK(sc);
661 }
662 
663 /* Find completed transmits and free their mbufs. */
664 static void
665 cgem_clean_tx(struct cgem_softc *sc)
666 {
667 	struct mbuf *m;
668 	uint32_t ctl;
669 
670 	CGEM_ASSERT_LOCKED(sc);
671 
672 	/* free up finished transmits. */
673 	while (sc->txring_queued > 0 &&
674 	    ((ctl = sc->txring[sc->txring_tl_ptr].ctl) &
675 	    CGEM_TXDESC_USED) != 0) {
676 		/* Sync cache. */
677 		bus_dmamap_sync(sc->mbuf_dma_tag,
678 		    sc->txring_m_dmamap[sc->txring_tl_ptr],
679 		    BUS_DMASYNC_POSTWRITE);
680 
681 		/* Unload and destroy DMA map. */
682 		bus_dmamap_unload(sc->mbuf_dma_tag,
683 		    sc->txring_m_dmamap[sc->txring_tl_ptr]);
684 		bus_dmamap_destroy(sc->mbuf_dma_tag,
685 		    sc->txring_m_dmamap[sc->txring_tl_ptr]);
686 		sc->txring_m_dmamap[sc->txring_tl_ptr] = NULL;
687 
688 		/* Free up the mbuf. */
689 		m = sc->txring_m[sc->txring_tl_ptr];
690 		sc->txring_m[sc->txring_tl_ptr] = NULL;
691 		m_freem(m);
692 
693 		/* Check the status. */
694 		if ((ctl & CGEM_TXDESC_AHB_ERR) != 0) {
695 			/* Serious bus error. log to console. */
696 #ifdef CGEM64
697 			device_printf(sc->dev,
698 			    "cgem_clean_tx: AHB error, addr=0x%x%08x\n",
699 			    sc->txring[sc->txring_tl_ptr].addrhi,
700 			    sc->txring[sc->txring_tl_ptr].addr);
701 #else
702 			device_printf(sc->dev,
703 			    "cgem_clean_tx: AHB error, addr=0x%x\n",
704 			    sc->txring[sc->txring_tl_ptr].addr);
705 #endif
706 		} else if ((ctl & (CGEM_TXDESC_RETRY_ERR |
707 		    CGEM_TXDESC_LATE_COLL)) != 0) {
708 			if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, 1);
709 		} else
710 			if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, 1);
711 
712 		/*
713 		 * If the packet spanned more than one tx descriptor, skip
714 		 * descriptors until we find the end so that only
715 		 * start-of-frame descriptors are processed.
716 		 */
717 		while ((ctl & CGEM_TXDESC_LAST_BUF) == 0) {
718 			if ((ctl & CGEM_TXDESC_WRAP) != 0)
719 				sc->txring_tl_ptr = 0;
720 			else
721 				sc->txring_tl_ptr++;
722 			sc->txring_queued--;
723 
724 			ctl = sc->txring[sc->txring_tl_ptr].ctl;
725 
726 			sc->txring[sc->txring_tl_ptr].ctl =
727 			    ctl | CGEM_TXDESC_USED;
728 		}
729 
730 		/* Next descriptor. */
731 		if ((ctl & CGEM_TXDESC_WRAP) != 0)
732 			sc->txring_tl_ptr = 0;
733 		else
734 			sc->txring_tl_ptr++;
735 		sc->txring_queued--;
736 
737 		if_setdrvflagbits(sc->ifp, 0, IFF_DRV_OACTIVE);
738 	}
739 }
740 
741 /* Start transmits. */
742 static void
743 cgem_start_locked(if_t ifp)
744 {
745 	struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp);
746 	struct mbuf *m;
747 	bus_dma_segment_t segs[TX_MAX_DMA_SEGS];
748 	uint32_t ctl;
749 	int i, nsegs, wrap, err;
750 
751 	CGEM_ASSERT_LOCKED(sc);
752 
753 	if ((if_getdrvflags(ifp) & IFF_DRV_OACTIVE) != 0)
754 		return;
755 
756 	for (;;) {
757 		/* Check that there is room in the descriptor ring. */
758 		if (sc->txring_queued >=
759 		    CGEM_NUM_TX_DESCS - TX_MAX_DMA_SEGS * 2) {
760 			/* Try to make room. */
761 			cgem_clean_tx(sc);
762 
763 			/* Still no room? */
764 			if (sc->txring_queued >=
765 			    CGEM_NUM_TX_DESCS - TX_MAX_DMA_SEGS * 2) {
766 				if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
767 				sc->txfull++;
768 				break;
769 			}
770 		}
771 
772 		/* Grab next transmit packet. */
773 		m = if_dequeue(ifp);
774 		if (m == NULL)
775 			break;
776 
777 		/* Create and load DMA map. */
778 		if (bus_dmamap_create(sc->mbuf_dma_tag, 0,
779 			&sc->txring_m_dmamap[sc->txring_hd_ptr])) {
780 			m_freem(m);
781 			sc->txdmamapfails++;
782 			continue;
783 		}
784 		err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag,
785 		    sc->txring_m_dmamap[sc->txring_hd_ptr], m, segs, &nsegs,
786 		    BUS_DMA_NOWAIT);
787 		if (err == EFBIG) {
788 			/* Too many segments!  defrag and try again. */
789 			struct mbuf *m2 = m_defrag(m, M_NOWAIT);
790 
791 			if (m2 == NULL) {
792 				sc->txdefragfails++;
793 				m_freem(m);
794 				bus_dmamap_destroy(sc->mbuf_dma_tag,
795 				    sc->txring_m_dmamap[sc->txring_hd_ptr]);
796 				sc->txring_m_dmamap[sc->txring_hd_ptr] = NULL;
797 				continue;
798 			}
799 			m = m2;
800 			err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag,
801 			    sc->txring_m_dmamap[sc->txring_hd_ptr], m, segs,
802 			    &nsegs, BUS_DMA_NOWAIT);
803 			sc->txdefrags++;
804 		}
805 		if (err) {
806 			/* Give up. */
807 			m_freem(m);
808 			bus_dmamap_destroy(sc->mbuf_dma_tag,
809 			    sc->txring_m_dmamap[sc->txring_hd_ptr]);
810 			sc->txring_m_dmamap[sc->txring_hd_ptr] = NULL;
811 			sc->txdmamapfails++;
812 			continue;
813 		}
814 		sc->txring_m[sc->txring_hd_ptr] = m;
815 
816 		/* Sync tx buffer with cache. */
817 		bus_dmamap_sync(sc->mbuf_dma_tag,
818 		    sc->txring_m_dmamap[sc->txring_hd_ptr],
819 		    BUS_DMASYNC_PREWRITE);
820 
821 		/* Set wrap flag if next packet might run off end of ring. */
822 		wrap = sc->txring_hd_ptr + nsegs + TX_MAX_DMA_SEGS >=
823 		    CGEM_NUM_TX_DESCS;
824 
825 		/*
826 		 * Fill in the TX descriptors back to front so that USED bit in
827 		 * first descriptor is cleared last.
828 		 */
829 		for (i = nsegs - 1; i >= 0; i--) {
830 			/* Descriptor address. */
831 			sc->txring[sc->txring_hd_ptr + i].addr =
832 			    segs[i].ds_addr;
833 #ifdef CGEM64
834 			sc->txring[sc->txring_hd_ptr + i].addrhi =
835 			    segs[i].ds_addr >> 32;
836 #endif
837 			/* Descriptor control word. */
838 			ctl = segs[i].ds_len;
839 			if (i == nsegs - 1) {
840 				ctl |= CGEM_TXDESC_LAST_BUF;
841 				if (wrap)
842 					ctl |= CGEM_TXDESC_WRAP;
843 			}
844 			sc->txring[sc->txring_hd_ptr + i].ctl = ctl;
845 
846 			if (i != 0)
847 				sc->txring_m[sc->txring_hd_ptr + i] = NULL;
848 		}
849 
850 		if (wrap)
851 			sc->txring_hd_ptr = 0;
852 		else
853 			sc->txring_hd_ptr += nsegs;
854 		sc->txring_queued += nsegs;
855 
856 		/* Kick the transmitter. */
857 		WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow |
858 		    CGEM_NET_CTRL_START_TX);
859 
860 		/* If there is a BPF listener, bounce a copy to him. */
861 		ETHER_BPF_MTAP(ifp, m);
862 	}
863 }
864 
865 static void
866 cgem_start(if_t ifp)
867 {
868 	struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp);
869 
870 	CGEM_LOCK(sc);
871 	cgem_start_locked(ifp);
872 	CGEM_UNLOCK(sc);
873 }
874 
875 static void
876 cgem_poll_hw_stats(struct cgem_softc *sc)
877 {
878 	uint32_t n;
879 
880 	CGEM_ASSERT_LOCKED(sc);
881 
882 	sc->stats.tx_bytes += RD4(sc, CGEM_OCTETS_TX_BOT);
883 	sc->stats.tx_bytes += (uint64_t)RD4(sc, CGEM_OCTETS_TX_TOP) << 32;
884 
885 	sc->stats.tx_frames += RD4(sc, CGEM_FRAMES_TX);
886 	sc->stats.tx_frames_bcast += RD4(sc, CGEM_BCAST_FRAMES_TX);
887 	sc->stats.tx_frames_multi += RD4(sc, CGEM_MULTI_FRAMES_TX);
888 	sc->stats.tx_frames_pause += RD4(sc, CGEM_PAUSE_FRAMES_TX);
889 	sc->stats.tx_frames_64b += RD4(sc, CGEM_FRAMES_64B_TX);
890 	sc->stats.tx_frames_65to127b += RD4(sc, CGEM_FRAMES_65_127B_TX);
891 	sc->stats.tx_frames_128to255b += RD4(sc, CGEM_FRAMES_128_255B_TX);
892 	sc->stats.tx_frames_256to511b += RD4(sc, CGEM_FRAMES_256_511B_TX);
893 	sc->stats.tx_frames_512to1023b += RD4(sc, CGEM_FRAMES_512_1023B_TX);
894 	sc->stats.tx_frames_1024to1536b += RD4(sc, CGEM_FRAMES_1024_1518B_TX);
895 	sc->stats.tx_under_runs += RD4(sc, CGEM_TX_UNDERRUNS);
896 
897 	n = RD4(sc, CGEM_SINGLE_COLL_FRAMES);
898 	sc->stats.tx_single_collisn += n;
899 	if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n);
900 	n = RD4(sc, CGEM_MULTI_COLL_FRAMES);
901 	sc->stats.tx_multi_collisn += n;
902 	if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n);
903 	n = RD4(sc, CGEM_EXCESSIVE_COLL_FRAMES);
904 	sc->stats.tx_excsv_collisn += n;
905 	if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n);
906 	n = RD4(sc, CGEM_LATE_COLL);
907 	sc->stats.tx_late_collisn += n;
908 	if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n);
909 
910 	sc->stats.tx_deferred_frames += RD4(sc, CGEM_DEFERRED_TX_FRAMES);
911 	sc->stats.tx_carrier_sense_errs += RD4(sc, CGEM_CARRIER_SENSE_ERRS);
912 
913 	sc->stats.rx_bytes += RD4(sc, CGEM_OCTETS_RX_BOT);
914 	sc->stats.rx_bytes += (uint64_t)RD4(sc, CGEM_OCTETS_RX_TOP) << 32;
915 
916 	sc->stats.rx_frames += RD4(sc, CGEM_FRAMES_RX);
917 	sc->stats.rx_frames_bcast += RD4(sc, CGEM_BCAST_FRAMES_RX);
918 	sc->stats.rx_frames_multi += RD4(sc, CGEM_MULTI_FRAMES_RX);
919 	sc->stats.rx_frames_pause += RD4(sc, CGEM_PAUSE_FRAMES_RX);
920 	sc->stats.rx_frames_64b += RD4(sc, CGEM_FRAMES_64B_RX);
921 	sc->stats.rx_frames_65to127b += RD4(sc, CGEM_FRAMES_65_127B_RX);
922 	sc->stats.rx_frames_128to255b += RD4(sc, CGEM_FRAMES_128_255B_RX);
923 	sc->stats.rx_frames_256to511b += RD4(sc, CGEM_FRAMES_256_511B_RX);
924 	sc->stats.rx_frames_512to1023b += RD4(sc, CGEM_FRAMES_512_1023B_RX);
925 	sc->stats.rx_frames_1024to1536b += RD4(sc, CGEM_FRAMES_1024_1518B_RX);
926 	sc->stats.rx_frames_undersize += RD4(sc, CGEM_UNDERSZ_RX);
927 	sc->stats.rx_frames_oversize += RD4(sc, CGEM_OVERSZ_RX);
928 	sc->stats.rx_frames_jabber += RD4(sc, CGEM_JABBERS_RX);
929 	sc->stats.rx_frames_fcs_errs += RD4(sc, CGEM_FCS_ERRS);
930 	sc->stats.rx_frames_length_errs += RD4(sc, CGEM_LENGTH_FIELD_ERRS);
931 	sc->stats.rx_symbol_errs += RD4(sc, CGEM_RX_SYMBOL_ERRS);
932 	sc->stats.rx_align_errs += RD4(sc, CGEM_ALIGN_ERRS);
933 	sc->stats.rx_resource_errs += RD4(sc, CGEM_RX_RESOURCE_ERRS);
934 	sc->stats.rx_overrun_errs += RD4(sc, CGEM_RX_OVERRUN_ERRS);
935 	sc->stats.rx_ip_hdr_csum_errs += RD4(sc, CGEM_IP_HDR_CKSUM_ERRS);
936 	sc->stats.rx_tcp_csum_errs += RD4(sc, CGEM_TCP_CKSUM_ERRS);
937 	sc->stats.rx_udp_csum_errs += RD4(sc, CGEM_UDP_CKSUM_ERRS);
938 }
939 
940 static void
941 cgem_tick(void *arg)
942 {
943 	struct cgem_softc *sc = (struct cgem_softc *)arg;
944 	struct mii_data *mii;
945 
946 	CGEM_ASSERT_LOCKED(sc);
947 
948 	/* Poll the phy. */
949 	if (sc->miibus != NULL) {
950 		mii = device_get_softc(sc->miibus);
951 		mii_tick(mii);
952 	}
953 
954 	/* Poll statistics registers. */
955 	cgem_poll_hw_stats(sc);
956 
957 	/* Check for receiver hang. */
958 	if (sc->rxhangwar && sc->rx_frames_prev == sc->stats.rx_frames) {
959 		/*
960 		 * Reset receiver logic by toggling RX_EN bit.  1usec
961 		 * delay is necessary especially when operating at 100mbps
962 		 * and 10mbps speeds.
963 		 */
964 		WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow &
965 		    ~CGEM_NET_CTRL_RX_EN);
966 		DELAY(1);
967 		WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow);
968 	}
969 	sc->rx_frames_prev = sc->stats.rx_frames;
970 
971 	/* Next callout in one second. */
972 	callout_reset(&sc->tick_ch, hz, cgem_tick, sc);
973 }
974 
975 /* Interrupt handler. */
976 static void
977 cgem_intr(void *arg)
978 {
979 	struct cgem_softc *sc = (struct cgem_softc *)arg;
980 	if_t ifp = sc->ifp;
981 	uint32_t istatus;
982 
983 	CGEM_LOCK(sc);
984 
985 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
986 		CGEM_UNLOCK(sc);
987 		return;
988 	}
989 
990 	/* Read interrupt status and immediately clear the bits. */
991 	istatus = RD4(sc, CGEM_INTR_STAT);
992 	WR4(sc, CGEM_INTR_STAT, istatus);
993 
994 	/* Packets received. */
995 	if ((istatus & CGEM_INTR_RX_COMPLETE) != 0)
996 		cgem_recv(sc);
997 
998 	/* Free up any completed transmit buffers. */
999 	cgem_clean_tx(sc);
1000 
1001 	/* Hresp not ok.  Something is very bad with DMA.  Try to clear. */
1002 	if ((istatus & CGEM_INTR_HRESP_NOT_OK) != 0) {
1003 		device_printf(sc->dev,
1004 		    "cgem_intr: hresp not okay! rx_status=0x%x\n",
1005 		    RD4(sc, CGEM_RX_STAT));
1006 		WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_HRESP_NOT_OK);
1007 	}
1008 
1009 	/* Receiver overrun. */
1010 	if ((istatus & CGEM_INTR_RX_OVERRUN) != 0) {
1011 		/* Clear status bit. */
1012 		WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_OVERRUN);
1013 		sc->rxoverruns++;
1014 	}
1015 
1016 	/* Receiver ran out of bufs. */
1017 	if ((istatus & CGEM_INTR_RX_USED_READ) != 0) {
1018 		WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow |
1019 		    CGEM_NET_CTRL_FLUSH_DPRAM_PKT);
1020 		cgem_fill_rqueue(sc);
1021 		sc->rxnobufs++;
1022 	}
1023 
1024 	/* Restart transmitter if needed. */
1025 	if (!if_sendq_empty(ifp))
1026 		cgem_start_locked(ifp);
1027 
1028 	CGEM_UNLOCK(sc);
1029 }
1030 
1031 /* Reset hardware. */
1032 static void
1033 cgem_reset(struct cgem_softc *sc)
1034 {
1035 
1036 	CGEM_ASSERT_LOCKED(sc);
1037 
1038 	/* Determine data bus width from design configuration register. */
1039 	switch (RD4(sc, CGEM_DESIGN_CFG1) &
1040 	    CGEM_DESIGN_CFG1_DMA_BUS_WIDTH_MASK) {
1041 	case CGEM_DESIGN_CFG1_DMA_BUS_WIDTH_64:
1042 		sc->net_cfg_shadow = CGEM_NET_CFG_DBUS_WIDTH_64;
1043 		break;
1044 	case CGEM_DESIGN_CFG1_DMA_BUS_WIDTH_128:
1045 		sc->net_cfg_shadow = CGEM_NET_CFG_DBUS_WIDTH_128;
1046 		break;
1047 	default:
1048 		sc->net_cfg_shadow = CGEM_NET_CFG_DBUS_WIDTH_32;
1049 	}
1050 
1051 	WR4(sc, CGEM_NET_CTRL, 0);
1052 	WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow);
1053 	WR4(sc, CGEM_NET_CTRL, CGEM_NET_CTRL_CLR_STAT_REGS);
1054 	WR4(sc, CGEM_TX_STAT, CGEM_TX_STAT_ALL);
1055 	WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_ALL);
1056 	WR4(sc, CGEM_INTR_DIS, CGEM_INTR_ALL);
1057 	WR4(sc, CGEM_HASH_BOT, 0);
1058 	WR4(sc, CGEM_HASH_TOP, 0);
1059 	WR4(sc, CGEM_TX_QBAR, 0);	/* manual says do this. */
1060 	WR4(sc, CGEM_RX_QBAR, 0);
1061 
1062 	/* Get management port running even if interface is down. */
1063 	sc->net_cfg_shadow |= CGEM_NET_CFG_MDC_CLK_DIV_48;
1064 	WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow);
1065 
1066 	sc->net_ctl_shadow = CGEM_NET_CTRL_MGMT_PORT_EN;
1067 	WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow);
1068 }
1069 
1070 /* Bring up the hardware. */
1071 static void
1072 cgem_config(struct cgem_softc *sc)
1073 {
1074 	if_t ifp = sc->ifp;
1075 	uint32_t dma_cfg;
1076 	u_char *eaddr = if_getlladdr(ifp);
1077 
1078 	CGEM_ASSERT_LOCKED(sc);
1079 
1080 	/* Program Net Config Register. */
1081 	sc->net_cfg_shadow &= (CGEM_NET_CFG_MDC_CLK_DIV_MASK |
1082 	    CGEM_NET_CFG_DBUS_WIDTH_MASK);
1083 	sc->net_cfg_shadow |= (CGEM_NET_CFG_FCS_REMOVE |
1084 	    CGEM_NET_CFG_RX_BUF_OFFSET(ETHER_ALIGN) |
1085 	    CGEM_NET_CFG_GIGE_EN | CGEM_NET_CFG_1536RXEN |
1086 	    CGEM_NET_CFG_FULL_DUPLEX | CGEM_NET_CFG_SPEED100);
1087 
1088 	/* Check connection type, enable SGMII bits if necessary. */
1089 	if (sc->phy_contype == MII_CONTYPE_SGMII) {
1090 		sc->net_cfg_shadow |= CGEM_NET_CFG_SGMII_EN;
1091 		sc->net_cfg_shadow |= CGEM_NET_CFG_PCS_SEL;
1092 	}
1093 
1094 	/* Enable receive checksum offloading? */
1095 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1096 		sc->net_cfg_shadow |=  CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN;
1097 
1098 	WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow);
1099 
1100 	/* Program DMA Config Register. */
1101 	dma_cfg = CGEM_DMA_CFG_RX_BUF_SIZE(MCLBYTES) |
1102 	    CGEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL_8K |
1103 	    CGEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL |
1104 	    CGEM_DMA_CFG_AHB_FIXED_BURST_LEN_16 |
1105 #ifdef CGEM64
1106 	    CGEM_DMA_CFG_ADDR_BUS_64 |
1107 #endif
1108 	    CGEM_DMA_CFG_DISC_WHEN_NO_AHB;
1109 
1110 	/* Enable transmit checksum offloading? */
1111 	if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1112 		dma_cfg |= CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN;
1113 
1114 	WR4(sc, CGEM_DMA_CFG, dma_cfg);
1115 
1116 	/* Write the rx and tx descriptor ring addresses to the QBAR regs. */
1117 	WR4(sc, CGEM_RX_QBAR, (uint32_t)sc->rxring_physaddr);
1118 	WR4(sc, CGEM_TX_QBAR, (uint32_t)sc->txring_physaddr);
1119 #ifdef CGEM64
1120 	WR4(sc, CGEM_RX_QBAR_HI, (uint32_t)(sc->rxring_physaddr >> 32));
1121 	WR4(sc, CGEM_TX_QBAR_HI, (uint32_t)(sc->txring_physaddr >> 32));
1122 #endif
1123 
1124 	/* Enable rx and tx. */
1125 	sc->net_ctl_shadow |= (CGEM_NET_CTRL_TX_EN | CGEM_NET_CTRL_RX_EN);
1126 	WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow);
1127 
1128 	/* Set receive address in case it changed. */
1129 	WR4(sc, CGEM_SPEC_ADDR_LOW(0), (eaddr[3] << 24) |
1130 	    (eaddr[2] << 16) | (eaddr[1] << 8) | eaddr[0]);
1131 	WR4(sc, CGEM_SPEC_ADDR_HI(0), (eaddr[5] << 8) | eaddr[4]);
1132 
1133 	/* Set up interrupts. */
1134 	WR4(sc, CGEM_INTR_EN, CGEM_INTR_RX_COMPLETE | CGEM_INTR_RX_OVERRUN |
1135 	    CGEM_INTR_TX_USED_READ | CGEM_INTR_RX_USED_READ |
1136 	    CGEM_INTR_HRESP_NOT_OK);
1137 }
1138 
1139 /* Turn on interface and load up receive ring with buffers. */
1140 static void
1141 cgem_init_locked(struct cgem_softc *sc)
1142 {
1143 	struct mii_data *mii;
1144 
1145 	CGEM_ASSERT_LOCKED(sc);
1146 
1147 	if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) != 0)
1148 		return;
1149 
1150 	cgem_config(sc);
1151 	cgem_fill_rqueue(sc);
1152 
1153 	if_setdrvflagbits(sc->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
1154 
1155 	if (sc->miibus != NULL) {
1156 		mii = device_get_softc(sc->miibus);
1157 		mii_mediachg(mii);
1158 	}
1159 
1160 	callout_reset(&sc->tick_ch, hz, cgem_tick, sc);
1161 }
1162 
1163 static void
1164 cgem_init(void *arg)
1165 {
1166 	struct cgem_softc *sc = (struct cgem_softc *)arg;
1167 
1168 	CGEM_LOCK(sc);
1169 	cgem_init_locked(sc);
1170 	CGEM_UNLOCK(sc);
1171 }
1172 
1173 /* Turn off interface.  Free up any buffers in transmit or receive queues. */
1174 static void
1175 cgem_stop(struct cgem_softc *sc)
1176 {
1177 	int i;
1178 
1179 	CGEM_ASSERT_LOCKED(sc);
1180 
1181 	callout_stop(&sc->tick_ch);
1182 
1183 	/* Shut down hardware. */
1184 	cgem_reset(sc);
1185 
1186 	/* Clear out transmit queue. */
1187 	memset(sc->txring, 0, CGEM_NUM_TX_DESCS * sizeof(struct cgem_tx_desc));
1188 	for (i = 0; i < CGEM_NUM_TX_DESCS; i++) {
1189 		sc->txring[i].ctl = CGEM_TXDESC_USED;
1190 		if (sc->txring_m[i]) {
1191 			/* Unload and destroy dmamap. */
1192 			bus_dmamap_unload(sc->mbuf_dma_tag,
1193 			    sc->txring_m_dmamap[i]);
1194 			bus_dmamap_destroy(sc->mbuf_dma_tag,
1195 			    sc->txring_m_dmamap[i]);
1196 			sc->txring_m_dmamap[i] = NULL;
1197 			m_freem(sc->txring_m[i]);
1198 			sc->txring_m[i] = NULL;
1199 		}
1200 	}
1201 	sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP;
1202 
1203 	sc->txring_hd_ptr = 0;
1204 	sc->txring_tl_ptr = 0;
1205 	sc->txring_queued = 0;
1206 
1207 	/* Clear out receive queue. */
1208 	memset(sc->rxring, 0, CGEM_NUM_RX_DESCS * sizeof(struct cgem_rx_desc));
1209 	for (i = 0; i < CGEM_NUM_RX_DESCS; i++) {
1210 		sc->rxring[i].addr = CGEM_RXDESC_OWN;
1211 		if (sc->rxring_m[i]) {
1212 			/* Unload and destroy dmamap. */
1213 			bus_dmamap_unload(sc->mbuf_dma_tag,
1214 			    sc->rxring_m_dmamap[i]);
1215 			bus_dmamap_destroy(sc->mbuf_dma_tag,
1216 			    sc->rxring_m_dmamap[i]);
1217 			sc->rxring_m_dmamap[i] = NULL;
1218 
1219 			m_freem(sc->rxring_m[i]);
1220 			sc->rxring_m[i] = NULL;
1221 		}
1222 	}
1223 	sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP;
1224 
1225 	sc->rxring_hd_ptr = 0;
1226 	sc->rxring_tl_ptr = 0;
1227 	sc->rxring_queued = 0;
1228 
1229 	/* Force next statchg or linkchg to program net config register. */
1230 	sc->mii_media_active = 0;
1231 }
1232 
1233 static int
1234 cgem_ioctl(if_t ifp, u_long cmd, caddr_t data)
1235 {
1236 	struct cgem_softc *sc = if_getsoftc(ifp);
1237 	struct ifreq *ifr = (struct ifreq *)data;
1238 	struct mii_data *mii;
1239 	int error = 0, mask;
1240 
1241 	switch (cmd) {
1242 	case SIOCSIFFLAGS:
1243 		CGEM_LOCK(sc);
1244 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1245 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1246 				if (((if_getflags(ifp) ^ sc->if_old_flags) &
1247 				    (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1248 					cgem_rx_filter(sc);
1249 				}
1250 			} else {
1251 				cgem_init_locked(sc);
1252 			}
1253 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1254 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1255 			cgem_stop(sc);
1256 		}
1257 		sc->if_old_flags = if_getflags(ifp);
1258 		CGEM_UNLOCK(sc);
1259 		break;
1260 
1261 	case SIOCADDMULTI:
1262 	case SIOCDELMULTI:
1263 		/* Set up multi-cast filters. */
1264 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1265 			CGEM_LOCK(sc);
1266 			cgem_rx_filter(sc);
1267 			CGEM_UNLOCK(sc);
1268 		}
1269 		break;
1270 
1271 	case SIOCSIFMEDIA:
1272 	case SIOCGIFMEDIA:
1273 		if (sc->miibus == NULL)
1274 			return (ENXIO);
1275 		mii = device_get_softc(sc->miibus);
1276 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1277 		break;
1278 
1279 	case SIOCSIFCAP:
1280 		CGEM_LOCK(sc);
1281 		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
1282 
1283 		if ((mask & IFCAP_TXCSUM) != 0) {
1284 			if ((ifr->ifr_reqcap & IFCAP_TXCSUM) != 0) {
1285 				/* Turn on TX checksumming. */
1286 				if_setcapenablebit(ifp, IFCAP_TXCSUM |
1287 				    IFCAP_TXCSUM_IPV6, 0);
1288 				if_sethwassistbits(ifp, CGEM_CKSUM_ASSIST, 0);
1289 
1290 				WR4(sc, CGEM_DMA_CFG,
1291 				    RD4(sc, CGEM_DMA_CFG) |
1292 				    CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN);
1293 			} else {
1294 				/* Turn off TX checksumming. */
1295 				if_setcapenablebit(ifp, 0, IFCAP_TXCSUM |
1296 				    IFCAP_TXCSUM_IPV6);
1297 				if_sethwassistbits(ifp, 0, CGEM_CKSUM_ASSIST);
1298 
1299 				WR4(sc, CGEM_DMA_CFG,
1300 				    RD4(sc, CGEM_DMA_CFG) &
1301 				    ~CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN);
1302 			}
1303 		}
1304 		if ((mask & IFCAP_RXCSUM) != 0) {
1305 			if ((ifr->ifr_reqcap & IFCAP_RXCSUM) != 0) {
1306 				/* Turn on RX checksumming. */
1307 				if_setcapenablebit(ifp, IFCAP_RXCSUM |
1308 				    IFCAP_RXCSUM_IPV6, 0);
1309 				sc->net_cfg_shadow |=
1310 				    CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN;
1311 				WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow);
1312 			} else {
1313 				/* Turn off RX checksumming. */
1314 				if_setcapenablebit(ifp, 0, IFCAP_RXCSUM |
1315 				    IFCAP_RXCSUM_IPV6);
1316 				sc->net_cfg_shadow &=
1317 				    ~CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN;
1318 				WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow);
1319 			}
1320 		}
1321 		if ((if_getcapenable(ifp) & (IFCAP_RXCSUM | IFCAP_TXCSUM)) ==
1322 		    (IFCAP_RXCSUM | IFCAP_TXCSUM))
1323 			if_setcapenablebit(ifp, IFCAP_VLAN_HWCSUM, 0);
1324 		else
1325 			if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWCSUM);
1326 
1327 		CGEM_UNLOCK(sc);
1328 		break;
1329 	default:
1330 		error = ether_ioctl(ifp, cmd, data);
1331 		break;
1332 	}
1333 
1334 	return (error);
1335 }
1336 
1337 /* MII bus support routines.
1338  */
1339 static int
1340 cgem_ifmedia_upd(if_t ifp)
1341 {
1342 	struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp);
1343 	struct mii_data *mii;
1344 	struct mii_softc *miisc;
1345 	int error = 0;
1346 
1347 	mii = device_get_softc(sc->miibus);
1348 	CGEM_LOCK(sc);
1349 	if ((if_getflags(ifp) & IFF_UP) != 0) {
1350 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1351 			PHY_RESET(miisc);
1352 		error = mii_mediachg(mii);
1353 	}
1354 	CGEM_UNLOCK(sc);
1355 
1356 	return (error);
1357 }
1358 
1359 static void
1360 cgem_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
1361 {
1362 	struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp);
1363 	struct mii_data *mii;
1364 
1365 	mii = device_get_softc(sc->miibus);
1366 	CGEM_LOCK(sc);
1367 	mii_pollstat(mii);
1368 	ifmr->ifm_active = mii->mii_media_active;
1369 	ifmr->ifm_status = mii->mii_media_status;
1370 	CGEM_UNLOCK(sc);
1371 }
1372 
1373 static int
1374 cgem_miibus_readreg(device_t dev, int phy, int reg)
1375 {
1376 	struct cgem_softc *sc = device_get_softc(dev);
1377 	int tries, val;
1378 
1379 	WR4(sc, CGEM_PHY_MAINT, CGEM_PHY_MAINT_CLAUSE_22 |
1380 	    CGEM_PHY_MAINT_MUST_10 | CGEM_PHY_MAINT_OP_READ |
1381 	    (phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) |
1382 	    (reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT));
1383 
1384 	/* Wait for completion. */
1385 	tries=0;
1386 	while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) {
1387 		DELAY(5);
1388 		if (++tries > 200) {
1389 			device_printf(dev, "phy read timeout: %d\n", reg);
1390 			return (-1);
1391 		}
1392 	}
1393 
1394 	val = RD4(sc, CGEM_PHY_MAINT) & CGEM_PHY_MAINT_DATA_MASK;
1395 
1396 	if (reg == MII_EXTSR)
1397 		/*
1398 		 * MAC does not support half-duplex at gig speeds.
1399 		 * Let mii(4) exclude the capability.
1400 		 */
1401 		val &= ~(EXTSR_1000XHDX | EXTSR_1000THDX);
1402 
1403 	return (val);
1404 }
1405 
1406 static int
1407 cgem_miibus_writereg(device_t dev, int phy, int reg, int data)
1408 {
1409 	struct cgem_softc *sc = device_get_softc(dev);
1410 	int tries;
1411 
1412 	WR4(sc, CGEM_PHY_MAINT, CGEM_PHY_MAINT_CLAUSE_22 |
1413 	    CGEM_PHY_MAINT_MUST_10 | CGEM_PHY_MAINT_OP_WRITE |
1414 	    (phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) |
1415 	    (reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT) |
1416 	    (data & CGEM_PHY_MAINT_DATA_MASK));
1417 
1418 	/* Wait for completion. */
1419 	tries = 0;
1420 	while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) {
1421 		DELAY(5);
1422 		if (++tries > 200) {
1423 			device_printf(dev, "phy write timeout: %d\n", reg);
1424 			return (-1);
1425 		}
1426 	}
1427 
1428 	return (0);
1429 }
1430 
1431 static void
1432 cgem_miibus_statchg(device_t dev)
1433 {
1434 	struct cgem_softc *sc  = device_get_softc(dev);
1435 	struct mii_data *mii = device_get_softc(sc->miibus);
1436 
1437 	CGEM_ASSERT_LOCKED(sc);
1438 
1439 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1440 	    (IFM_ACTIVE | IFM_AVALID) &&
1441 	    sc->mii_media_active != mii->mii_media_active)
1442 		cgem_mediachange(sc, mii);
1443 }
1444 
1445 static void
1446 cgem_miibus_linkchg(device_t dev)
1447 {
1448 	struct cgem_softc *sc  = device_get_softc(dev);
1449 	struct mii_data *mii = device_get_softc(sc->miibus);
1450 
1451 	CGEM_ASSERT_LOCKED(sc);
1452 
1453 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1454 	    (IFM_ACTIVE | IFM_AVALID) &&
1455 	    sc->mii_media_active != mii->mii_media_active)
1456 		cgem_mediachange(sc, mii);
1457 }
1458 
1459 /*
1460  * Overridable weak symbol cgem_set_ref_clk().  This allows platforms to
1461  * provide a function to set the cgem's reference clock.
1462  */
1463 static int __used
1464 cgem_default_set_ref_clk(int unit, int frequency)
1465 {
1466 
1467 	return 0;
1468 }
1469 __weak_reference(cgem_default_set_ref_clk, cgem_set_ref_clk);
1470 
1471 /* Call to set reference clock and network config bits according to media. */
1472 static void
1473 cgem_mediachange(struct cgem_softc *sc,	struct mii_data *mii)
1474 {
1475 	int ref_clk_freq;
1476 
1477 	CGEM_ASSERT_LOCKED(sc);
1478 
1479 	/* Update hardware to reflect media. */
1480 	sc->net_cfg_shadow &= ~(CGEM_NET_CFG_SPEED100 | CGEM_NET_CFG_GIGE_EN |
1481 	    CGEM_NET_CFG_FULL_DUPLEX);
1482 
1483 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1484 	case IFM_1000_T:
1485 		sc->net_cfg_shadow |= (CGEM_NET_CFG_SPEED100 |
1486 		    CGEM_NET_CFG_GIGE_EN);
1487 		ref_clk_freq = 125000000;
1488 		break;
1489 	case IFM_100_TX:
1490 		sc->net_cfg_shadow |= CGEM_NET_CFG_SPEED100;
1491 		ref_clk_freq = 25000000;
1492 		break;
1493 	default:
1494 		ref_clk_freq = 2500000;
1495 	}
1496 
1497 	if ((mii->mii_media_active & IFM_FDX) != 0)
1498 		sc->net_cfg_shadow |= CGEM_NET_CFG_FULL_DUPLEX;
1499 
1500 	WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow);
1501 
1502 	if (sc->clk_pclk != NULL) {
1503 		CGEM_UNLOCK(sc);
1504 		if (clk_set_freq(sc->clk_pclk, ref_clk_freq, 0))
1505 			device_printf(sc->dev, "could not set ref clk to %d\n",
1506 			    ref_clk_freq);
1507 		CGEM_LOCK(sc);
1508 	}
1509 
1510 	sc->mii_media_active = mii->mii_media_active;
1511 }
1512 
1513 static void
1514 cgem_add_sysctls(device_t dev)
1515 {
1516 	struct cgem_softc *sc = device_get_softc(dev);
1517 	struct sysctl_ctx_list *ctx;
1518 	struct sysctl_oid_list *child;
1519 	struct sysctl_oid *tree;
1520 
1521 	ctx = device_get_sysctl_ctx(dev);
1522 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
1523 
1524 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rxbufs", CTLFLAG_RW,
1525 	    &sc->rxbufs, 0, "Number receive buffers to provide");
1526 
1527 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rxhangwar", CTLFLAG_RW,
1528 	    &sc->rxhangwar, 0, "Enable receive hang work-around");
1529 
1530 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxoverruns", CTLFLAG_RD,
1531 	    &sc->rxoverruns, 0, "Receive overrun events");
1532 
1533 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxnobufs", CTLFLAG_RD,
1534 	    &sc->rxnobufs, 0, "Receive buf queue empty events");
1535 
1536 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxdmamapfails", CTLFLAG_RD,
1537 	    &sc->rxdmamapfails, 0, "Receive DMA map failures");
1538 
1539 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txfull", CTLFLAG_RD,
1540 	    &sc->txfull, 0, "Transmit ring full events");
1541 
1542 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdmamapfails", CTLFLAG_RD,
1543 	    &sc->txdmamapfails, 0, "Transmit DMA map failures");
1544 
1545 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdefrags", CTLFLAG_RD,
1546 	    &sc->txdefrags, 0, "Transmit m_defrag() calls");
1547 
1548 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdefragfails", CTLFLAG_RD,
1549 	    &sc->txdefragfails, 0, "Transmit m_defrag() failures");
1550 
1551 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
1552 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "GEM statistics");
1553 	child = SYSCTL_CHILDREN(tree);
1554 
1555 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_bytes", CTLFLAG_RD,
1556 	    &sc->stats.tx_bytes, "Total bytes transmitted");
1557 
1558 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames", CTLFLAG_RD,
1559 	    &sc->stats.tx_frames, 0, "Total frames transmitted");
1560 
1561 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_bcast", CTLFLAG_RD,
1562 	    &sc->stats.tx_frames_bcast, 0,
1563 	    "Number broadcast frames transmitted");
1564 
1565 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_multi", CTLFLAG_RD,
1566 	    &sc->stats.tx_frames_multi, 0,
1567 	    "Number multicast frames transmitted");
1568 
1569 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_pause",
1570 	    CTLFLAG_RD, &sc->stats.tx_frames_pause, 0,
1571 	    "Number pause frames transmitted");
1572 
1573 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_64b", CTLFLAG_RD,
1574 	    &sc->stats.tx_frames_64b, 0,
1575 	    "Number frames transmitted of size 64 bytes or less");
1576 
1577 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_65to127b", CTLFLAG_RD,
1578 	    &sc->stats.tx_frames_65to127b, 0,
1579 	    "Number frames transmitted of size 65-127 bytes");
1580 
1581 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_128to255b",
1582 	    CTLFLAG_RD, &sc->stats.tx_frames_128to255b, 0,
1583 	    "Number frames transmitted of size 128-255 bytes");
1584 
1585 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_256to511b",
1586 	    CTLFLAG_RD, &sc->stats.tx_frames_256to511b, 0,
1587 	    "Number frames transmitted of size 256-511 bytes");
1588 
1589 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_512to1023b",
1590 	    CTLFLAG_RD, &sc->stats.tx_frames_512to1023b, 0,
1591 	    "Number frames transmitted of size 512-1023 bytes");
1592 
1593 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_1024to1536b",
1594 	    CTLFLAG_RD, &sc->stats.tx_frames_1024to1536b, 0,
1595 	    "Number frames transmitted of size 1024-1536 bytes");
1596 
1597 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_under_runs",
1598 	    CTLFLAG_RD, &sc->stats.tx_under_runs, 0,
1599 	    "Number transmit under-run events");
1600 
1601 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_single_collisn",
1602 	    CTLFLAG_RD, &sc->stats.tx_single_collisn, 0,
1603 	    "Number single-collision transmit frames");
1604 
1605 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_multi_collisn",
1606 	    CTLFLAG_RD, &sc->stats.tx_multi_collisn, 0,
1607 	    "Number multi-collision transmit frames");
1608 
1609 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_excsv_collisn",
1610 	    CTLFLAG_RD, &sc->stats.tx_excsv_collisn, 0,
1611 	    "Number excessive collision transmit frames");
1612 
1613 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_late_collisn",
1614 	    CTLFLAG_RD, &sc->stats.tx_late_collisn, 0,
1615 	    "Number late-collision transmit frames");
1616 
1617 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_deferred_frames",
1618 	    CTLFLAG_RD, &sc->stats.tx_deferred_frames, 0,
1619 	    "Number deferred transmit frames");
1620 
1621 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_carrier_sense_errs",
1622 	    CTLFLAG_RD, &sc->stats.tx_carrier_sense_errs, 0,
1623 	    "Number carrier sense errors on transmit");
1624 
1625 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_bytes", CTLFLAG_RD,
1626 	    &sc->stats.rx_bytes, "Total bytes received");
1627 
1628 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames", CTLFLAG_RD,
1629 	    &sc->stats.rx_frames, 0, "Total frames received");
1630 
1631 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_bcast",
1632 	    CTLFLAG_RD, &sc->stats.rx_frames_bcast, 0,
1633 	    "Number broadcast frames received");
1634 
1635 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_multi",
1636 	    CTLFLAG_RD, &sc->stats.rx_frames_multi, 0,
1637 	    "Number multicast frames received");
1638 
1639 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_pause",
1640 	    CTLFLAG_RD, &sc->stats.rx_frames_pause, 0,
1641 	    "Number pause frames received");
1642 
1643 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_64b",
1644 	    CTLFLAG_RD, &sc->stats.rx_frames_64b, 0,
1645 	    "Number frames received of size 64 bytes or less");
1646 
1647 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_65to127b",
1648 	    CTLFLAG_RD, &sc->stats.rx_frames_65to127b, 0,
1649 	    "Number frames received of size 65-127 bytes");
1650 
1651 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_128to255b",
1652 	    CTLFLAG_RD, &sc->stats.rx_frames_128to255b, 0,
1653 	    "Number frames received of size 128-255 bytes");
1654 
1655 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_256to511b",
1656 	    CTLFLAG_RD, &sc->stats.rx_frames_256to511b, 0,
1657 	    "Number frames received of size 256-511 bytes");
1658 
1659 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_512to1023b",
1660 	    CTLFLAG_RD, &sc->stats.rx_frames_512to1023b, 0,
1661 	    "Number frames received of size 512-1023 bytes");
1662 
1663 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_1024to1536b",
1664 	    CTLFLAG_RD, &sc->stats.rx_frames_1024to1536b, 0,
1665 	    "Number frames received of size 1024-1536 bytes");
1666 
1667 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_undersize",
1668 	    CTLFLAG_RD, &sc->stats.rx_frames_undersize, 0,
1669 	    "Number undersize frames received");
1670 
1671 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_oversize",
1672 	    CTLFLAG_RD, &sc->stats.rx_frames_oversize, 0,
1673 	    "Number oversize frames received");
1674 
1675 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_jabber",
1676 	    CTLFLAG_RD, &sc->stats.rx_frames_jabber, 0,
1677 	    "Number jabber frames received");
1678 
1679 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_fcs_errs",
1680 	    CTLFLAG_RD, &sc->stats.rx_frames_fcs_errs, 0,
1681 	    "Number frames received with FCS errors");
1682 
1683 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_length_errs",
1684 	    CTLFLAG_RD, &sc->stats.rx_frames_length_errs, 0,
1685 	    "Number frames received with length errors");
1686 
1687 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_symbol_errs",
1688 	    CTLFLAG_RD, &sc->stats.rx_symbol_errs, 0,
1689 	    "Number receive symbol errors");
1690 
1691 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_align_errs",
1692 	    CTLFLAG_RD, &sc->stats.rx_align_errs, 0,
1693 	    "Number receive alignment errors");
1694 
1695 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_resource_errs",
1696 	    CTLFLAG_RD, &sc->stats.rx_resource_errs, 0,
1697 	    "Number frames received when no rx buffer available");
1698 
1699 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_overrun_errs",
1700 	    CTLFLAG_RD, &sc->stats.rx_overrun_errs, 0,
1701 	    "Number frames received but not copied due to receive overrun");
1702 
1703 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_ip_hdr_csum_errs",
1704 	    CTLFLAG_RD, &sc->stats.rx_ip_hdr_csum_errs, 0,
1705 	    "Number frames received with IP header checksum errors");
1706 
1707 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_tcp_csum_errs",
1708 	    CTLFLAG_RD, &sc->stats.rx_tcp_csum_errs, 0,
1709 	    "Number frames received with TCP checksum errors");
1710 
1711 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_udp_csum_errs",
1712 	    CTLFLAG_RD, &sc->stats.rx_udp_csum_errs, 0,
1713 	    "Number frames received with UDP checksum errors");
1714 }
1715 
1716 static int
1717 cgem_probe(device_t dev)
1718 {
1719 
1720 	if (!ofw_bus_status_okay(dev))
1721 		return (ENXIO);
1722 
1723 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_str == NULL)
1724 		return (ENXIO);
1725 
1726 	device_set_desc(dev, "Cadence CGEM Gigabit Ethernet Interface");
1727 	return (0);
1728 }
1729 
1730 static int
1731 cgem_attach(device_t dev)
1732 {
1733 	struct cgem_softc *sc = device_get_softc(dev);
1734 	if_t ifp = NULL;
1735 	int rid, err;
1736 	u_char eaddr[ETHER_ADDR_LEN];
1737 	int hwquirks;
1738 	phandle_t node;
1739 
1740 	sc->dev = dev;
1741 	CGEM_LOCK_INIT(sc);
1742 
1743 	/* Key off of compatible string and set hardware-specific options. */
1744 	hwquirks = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1745 	if ((hwquirks & HWQUIRK_NEEDNULLQS) != 0)
1746 		sc->neednullqs = 1;
1747 	if ((hwquirks & HWQUIRK_RXHANGWAR) != 0)
1748 		sc->rxhangwar = 1;
1749 	/*
1750 	 * Both pclk and hclk are mandatory but we don't have a proper
1751 	 * clock driver for Zynq so don't make it fatal if we can't
1752 	 * get them.
1753 	 */
1754 	if (clk_get_by_ofw_name(dev, 0, "pclk", &sc->clk_pclk) != 0)
1755 		device_printf(dev,
1756 		  "could not retrieve pclk.\n");
1757 	else {
1758 		if (clk_enable(sc->clk_pclk) != 0)
1759 			device_printf(dev, "could not enable pclk.\n");
1760 	}
1761 	if (clk_get_by_ofw_name(dev, 0, "hclk", &sc->clk_hclk) != 0)
1762 		device_printf(dev,
1763 		  "could not retrieve hclk.\n");
1764 	else {
1765 		if (clk_enable(sc->clk_hclk) != 0)
1766 			device_printf(dev, "could not enable hclk.\n");
1767 	}
1768 
1769 	/* Optional clocks */
1770 	if (clk_get_by_ofw_name(dev, 0, "tx_clk", &sc->clk_txclk) == 0) {
1771 		if (clk_enable(sc->clk_txclk) != 0) {
1772 			device_printf(dev, "could not enable tx_clk.\n");
1773 			err = ENXIO;
1774 			goto err_pclk;
1775 		}
1776 	}
1777 	if (clk_get_by_ofw_name(dev, 0, "rx_clk", &sc->clk_rxclk) == 0) {
1778 		if (clk_enable(sc->clk_rxclk) != 0) {
1779 			device_printf(dev, "could not enable rx_clk.\n");
1780 			err = ENXIO;
1781 			goto err_tx_clk;
1782 		}
1783 	}
1784 	if (clk_get_by_ofw_name(dev, 0, "tsu_clk", &sc->clk_tsuclk) == 0) {
1785 		if (clk_enable(sc->clk_tsuclk) != 0) {
1786 			device_printf(dev, "could not enable tsu_clk.\n");
1787 			err = ENXIO;
1788 			goto err_rx_clk;
1789 		}
1790 	}
1791 
1792 	node = ofw_bus_get_node(dev);
1793 	sc->phy_contype = mii_fdt_get_contype(node);
1794 
1795 	/* Get memory resource. */
1796 	rid = 0;
1797 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1798 	    RF_ACTIVE);
1799 	if (sc->mem_res == NULL) {
1800 		device_printf(dev, "could not allocate memory resources.\n");
1801 		err = ENOMEM;
1802 		goto err_tsu_clk;
1803 	}
1804 
1805 	/* Get IRQ resource. */
1806 	rid = 0;
1807 	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1808 	    RF_ACTIVE);
1809 	if (sc->irq_res == NULL) {
1810 		device_printf(dev, "could not allocate interrupt resource.\n");
1811 		cgem_detach(dev);
1812 		return (ENOMEM);
1813 	}
1814 
1815 	/* Set up ifnet structure. */
1816 	ifp = sc->ifp = if_alloc(IFT_ETHER);
1817 	if (ifp == NULL) {
1818 		device_printf(dev, "could not allocate ifnet structure\n");
1819 		cgem_detach(dev);
1820 		return (ENOMEM);
1821 	}
1822 	if_setsoftc(ifp, sc);
1823 	if_initname(ifp, IF_CGEM_NAME, device_get_unit(dev));
1824 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1825 	if_setinitfn(ifp, cgem_init);
1826 	if_setioctlfn(ifp, cgem_ioctl);
1827 	if_setstartfn(ifp, cgem_start);
1828 	if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6 |
1829 	    IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM, 0);
1830 	if_setsendqlen(ifp, CGEM_NUM_TX_DESCS);
1831 	if_setsendqready(ifp);
1832 
1833 	/* Disable hardware checksumming by default. */
1834 	if_sethwassist(ifp, 0);
1835 	if_setcapenable(ifp, if_getcapabilities(ifp) &
1836 	    ~(IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6 | IFCAP_VLAN_HWCSUM));
1837 
1838 	sc->if_old_flags = if_getflags(ifp);
1839 	sc->rxbufs = DEFAULT_NUM_RX_BUFS;
1840 
1841 	/* Reset hardware. */
1842 	CGEM_LOCK(sc);
1843 	cgem_reset(sc);
1844 	CGEM_UNLOCK(sc);
1845 
1846 	/* Attach phy to mii bus. */
1847 	err = mii_attach(dev, &sc->miibus, ifp,
1848 	    cgem_ifmedia_upd, cgem_ifmedia_sts, BMSR_DEFCAPMASK,
1849 	    MII_PHY_ANY, MII_OFFSET_ANY, 0);
1850 	if (err)
1851 		device_printf(dev, "warning: attaching PHYs failed\n");
1852 
1853 	/* Set up TX and RX descriptor area. */
1854 	err = cgem_setup_descs(sc);
1855 	if (err) {
1856 		device_printf(dev, "could not set up dma mem for descs.\n");
1857 		cgem_detach(dev);
1858 		goto err;
1859 	}
1860 
1861 	/* Get a MAC address. */
1862 	cgem_get_mac(sc, eaddr);
1863 
1864 	/* Start ticks. */
1865 	callout_init_mtx(&sc->tick_ch, &sc->sc_mtx, 0);
1866 
1867 	ether_ifattach(ifp, eaddr);
1868 
1869 	err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE |
1870 	    INTR_EXCL, NULL, cgem_intr, sc, &sc->intrhand);
1871 	if (err) {
1872 		device_printf(dev, "could not set interrupt handler.\n");
1873 		ether_ifdetach(ifp);
1874 		cgem_detach(dev);
1875 		goto err;
1876 	}
1877 
1878 	cgem_add_sysctls(dev);
1879 
1880 	return (0);
1881 
1882 err_tsu_clk:
1883 	if (sc->clk_tsuclk)
1884 		clk_release(sc->clk_tsuclk);
1885 err_rx_clk:
1886 	if (sc->clk_rxclk)
1887 		clk_release(sc->clk_rxclk);
1888 err_tx_clk:
1889 	if (sc->clk_txclk)
1890 		clk_release(sc->clk_txclk);
1891 err_pclk:
1892 	if (sc->clk_pclk)
1893 		clk_release(sc->clk_pclk);
1894 	if (sc->clk_hclk)
1895 		clk_release(sc->clk_hclk);
1896 err:
1897 	return (err);
1898 }
1899 
1900 static int
1901 cgem_detach(device_t dev)
1902 {
1903 	struct cgem_softc *sc = device_get_softc(dev);
1904 	int i;
1905 
1906 	if (sc == NULL)
1907 		return (ENODEV);
1908 
1909 	if (device_is_attached(dev)) {
1910 		CGEM_LOCK(sc);
1911 		cgem_stop(sc);
1912 		CGEM_UNLOCK(sc);
1913 		callout_drain(&sc->tick_ch);
1914 		if_setflagbits(sc->ifp, 0, IFF_UP);
1915 		ether_ifdetach(sc->ifp);
1916 	}
1917 
1918 	if (sc->miibus != NULL) {
1919 		device_delete_child(dev, sc->miibus);
1920 		sc->miibus = NULL;
1921 	}
1922 
1923 	/* Release resources. */
1924 	if (sc->mem_res != NULL) {
1925 		bus_release_resource(dev, SYS_RES_MEMORY,
1926 		    rman_get_rid(sc->mem_res), sc->mem_res);
1927 		sc->mem_res = NULL;
1928 	}
1929 	if (sc->irq_res != NULL) {
1930 		if (sc->intrhand)
1931 			bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
1932 		bus_release_resource(dev, SYS_RES_IRQ,
1933 		    rman_get_rid(sc->irq_res), sc->irq_res);
1934 		sc->irq_res = NULL;
1935 	}
1936 
1937 	/* Release DMA resources. */
1938 	if (sc->rxring != NULL) {
1939 		if (sc->rxring_physaddr != 0) {
1940 			bus_dmamap_unload(sc->desc_dma_tag,
1941 			    sc->rxring_dma_map);
1942 			sc->rxring_physaddr = 0;
1943 			sc->txring_physaddr = 0;
1944 			sc->null_qs_physaddr = 0;
1945 		}
1946 		bus_dmamem_free(sc->desc_dma_tag, sc->rxring,
1947 				sc->rxring_dma_map);
1948 		sc->rxring = NULL;
1949 		sc->txring = NULL;
1950 		sc->null_qs = NULL;
1951 
1952 		for (i = 0; i < CGEM_NUM_RX_DESCS; i++)
1953 			if (sc->rxring_m_dmamap[i] != NULL) {
1954 				bus_dmamap_destroy(sc->mbuf_dma_tag,
1955 				    sc->rxring_m_dmamap[i]);
1956 				sc->rxring_m_dmamap[i] = NULL;
1957 			}
1958 		for (i = 0; i < CGEM_NUM_TX_DESCS; i++)
1959 			if (sc->txring_m_dmamap[i] != NULL) {
1960 				bus_dmamap_destroy(sc->mbuf_dma_tag,
1961 				    sc->txring_m_dmamap[i]);
1962 				sc->txring_m_dmamap[i] = NULL;
1963 			}
1964 	}
1965 	if (sc->desc_dma_tag != NULL) {
1966 		bus_dma_tag_destroy(sc->desc_dma_tag);
1967 		sc->desc_dma_tag = NULL;
1968 	}
1969 	if (sc->mbuf_dma_tag != NULL) {
1970 		bus_dma_tag_destroy(sc->mbuf_dma_tag);
1971 		sc->mbuf_dma_tag = NULL;
1972 	}
1973 
1974 	bus_generic_detach(dev);
1975 
1976 	if (sc->clk_tsuclk)
1977 		clk_release(sc->clk_tsuclk);
1978 	if (sc->clk_rxclk)
1979 		clk_release(sc->clk_rxclk);
1980 	if (sc->clk_txclk)
1981 		clk_release(sc->clk_txclk);
1982 	if (sc->clk_pclk)
1983 		clk_release(sc->clk_pclk);
1984 	if (sc->clk_hclk)
1985 		clk_release(sc->clk_hclk);
1986 
1987 	CGEM_LOCK_DESTROY(sc);
1988 
1989 	return (0);
1990 }
1991 
1992 static device_method_t cgem_methods[] = {
1993 	/* Device interface */
1994 	DEVMETHOD(device_probe,		cgem_probe),
1995 	DEVMETHOD(device_attach,	cgem_attach),
1996 	DEVMETHOD(device_detach,	cgem_detach),
1997 
1998 	/* MII interface */
1999 	DEVMETHOD(miibus_readreg,	cgem_miibus_readreg),
2000 	DEVMETHOD(miibus_writereg,	cgem_miibus_writereg),
2001 	DEVMETHOD(miibus_statchg,	cgem_miibus_statchg),
2002 	DEVMETHOD(miibus_linkchg,	cgem_miibus_linkchg),
2003 
2004 	DEVMETHOD_END
2005 };
2006 
2007 static driver_t cgem_driver = {
2008 	"cgem",
2009 	cgem_methods,
2010 	sizeof(struct cgem_softc),
2011 };
2012 
2013 DRIVER_MODULE(cgem, simplebus, cgem_driver, NULL, NULL);
2014 DRIVER_MODULE(miibus, cgem, miibus_driver, NULL, NULL);
2015 MODULE_DEPEND(cgem, miibus, 1, 1, 1);
2016 MODULE_DEPEND(cgem, ether, 1, 1, 1);
2017 SIMPLEBUS_PNP_INFO(compat_data);
2018