xref: /freebsd/sys/dev/cas/if_cas.c (revision 3157ba21)
1 /*-
2  * Copyright (C) 2001 Eduardo Horvath.
3  * Copyright (c) 2001-2003 Thomas Moestl
4  * Copyright (c) 2007-2009 Marius Strobl <marius@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
29  *	from: FreeBSD: if_gem.c 182060 2008-08-23 15:03:26Z marius
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /*
36  * driver for Sun Cassini/Cassini+ and National Semiconductor DP83065
37  * Saturn Gigabit Ethernet controllers
38  */
39 
40 #if 0
41 #define	CAS_DEBUG
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bus.h>
47 #include <sys/callout.h>
48 #include <sys/endian.h>
49 #include <sys/mbuf.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/lock.h>
53 #include <sys/module.h>
54 #include <sys/mutex.h>
55 #include <sys/refcount.h>
56 #include <sys/resource.h>
57 #include <sys/rman.h>
58 #include <sys/socket.h>
59 #include <sys/sockio.h>
60 #include <sys/taskqueue.h>
61 
62 #include <net/bpf.h>
63 #include <net/ethernet.h>
64 #include <net/if.h>
65 #include <net/if_arp.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_types.h>
69 #include <net/if_vlan_var.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <netinet/tcp.h>
75 #include <netinet/udp.h>
76 
77 #include <machine/bus.h>
78 #if defined(__powerpc__) || defined(__sparc64__)
79 #include <dev/ofw/ofw_bus.h>
80 #include <dev/ofw/openfirm.h>
81 #include <machine/ofw_machdep.h>
82 #endif
83 #include <machine/resource.h>
84 
85 #include <dev/mii/mii.h>
86 #include <dev/mii/miivar.h>
87 
88 #include <dev/cas/if_casreg.h>
89 #include <dev/cas/if_casvar.h>
90 
91 #include <dev/pci/pcireg.h>
92 #include <dev/pci/pcivar.h>
93 
94 #include "miibus_if.h"
95 
96 #define RINGASSERT(n , min, max)					\
97 	CTASSERT(powerof2(n) && (n) >= (min) && (n) <= (max))
98 
99 RINGASSERT(CAS_NRXCOMP, 128, 32768);
100 RINGASSERT(CAS_NRXDESC, 32, 8192);
101 RINGASSERT(CAS_NRXDESC2, 32, 8192);
102 RINGASSERT(CAS_NTXDESC, 32, 8192);
103 
104 #undef RINGASSERT
105 
106 #define	CCDASSERT(m, a)							\
107 	CTASSERT((offsetof(struct cas_control_data, m) & ((a) - 1)) == 0)
108 
109 CCDASSERT(ccd_rxcomps, CAS_RX_COMP_ALIGN);
110 CCDASSERT(ccd_rxdescs, CAS_RX_DESC_ALIGN);
111 CCDASSERT(ccd_rxdescs2, CAS_RX_DESC_ALIGN);
112 
113 #undef CCDASSERT
114 
115 #define	CAS_TRIES	10000
116 
117 /*
118  * According to documentation, the hardware has support for basic TCP
119  * checksum offloading only, in practice this can be also used for UDP
120  * however (i.e. the problem of previous Sun NICs that a checksum of 0x0
121  * is not converted to 0xffff no longer exists).
122  */
123 #define	CAS_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
124 
125 static inline void cas_add_rxdesc(struct cas_softc *sc, u_int idx);
126 static int	cas_attach(struct cas_softc *sc);
127 static int	cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr,
128 		    uint32_t set);
129 static void	cas_cddma_callback(void *xsc, bus_dma_segment_t *segs,
130 		    int nsegs, int error);
131 static void	cas_detach(struct cas_softc *sc);
132 static int	cas_disable_rx(struct cas_softc *sc);
133 static int	cas_disable_tx(struct cas_softc *sc);
134 static void	cas_eint(struct cas_softc *sc, u_int status);
135 static void	cas_free(void *arg1, void* arg2);
136 static void	cas_init(void *xsc);
137 static void	cas_init_locked(struct cas_softc *sc);
138 static void	cas_init_regs(struct cas_softc *sc);
139 static int	cas_intr(void *v);
140 static void	cas_intr_task(void *arg, int pending __unused);
141 static int	cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
142 static int	cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head);
143 static int	cas_mediachange(struct ifnet *ifp);
144 static void	cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
145 static void	cas_meminit(struct cas_softc *sc);
146 static void	cas_mifinit(struct cas_softc *sc);
147 static int	cas_mii_readreg(device_t dev, int phy, int reg);
148 static void	cas_mii_statchg(device_t dev);
149 static int	cas_mii_writereg(device_t dev, int phy, int reg, int val);
150 static void	cas_reset(struct cas_softc *sc);
151 static int	cas_reset_rx(struct cas_softc *sc);
152 static int	cas_reset_tx(struct cas_softc *sc);
153 static void	cas_resume(struct cas_softc *sc);
154 static u_int	cas_descsize(u_int sz);
155 static void	cas_rint(struct cas_softc *sc);
156 static void	cas_rint_timeout(void *arg);
157 static inline void cas_rxcksum(struct mbuf *m, uint16_t cksum);
158 static inline void cas_rxcompinit(struct cas_rx_comp *rxcomp);
159 static u_int	cas_rxcompsize(u_int sz);
160 static void	cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs,
161 		    int nsegs, int error);
162 static void	cas_setladrf(struct cas_softc *sc);
163 static void	cas_start(struct ifnet *ifp);
164 static void	cas_stop(struct ifnet *ifp);
165 static void	cas_suspend(struct cas_softc *sc);
166 static void	cas_tick(void *arg);
167 static void	cas_tint(struct cas_softc *sc);
168 static void	cas_tx_task(void *arg, int pending __unused);
169 static inline void cas_txkick(struct cas_softc *sc);
170 static void	cas_watchdog(struct cas_softc *sc);
171 
172 static devclass_t cas_devclass;
173 
174 MODULE_DEPEND(cas, ether, 1, 1, 1);
175 MODULE_DEPEND(cas, miibus, 1, 1, 1);
176 
177 #ifdef CAS_DEBUG
178 #include <sys/ktr.h>
179 #define	KTR_CAS		KTR_CT2
180 #endif
181 
182 static int
183 cas_attach(struct cas_softc *sc)
184 {
185 	struct cas_txsoft *txs;
186 	struct ifnet *ifp;
187 	int error, i;
188 	uint32_t v;
189 
190 	/* Set up ifnet structure. */
191 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
192 	if (ifp == NULL)
193 		return (ENOSPC);
194 	ifp->if_softc = sc;
195 	if_initname(ifp, device_get_name(sc->sc_dev),
196 	    device_get_unit(sc->sc_dev));
197 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
198 	ifp->if_start = cas_start;
199 	ifp->if_ioctl = cas_ioctl;
200 	ifp->if_init = cas_init;
201 	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_TXQUEUELEN);
202 	ifp->if_snd.ifq_drv_maxlen = CAS_TXQUEUELEN;
203 	IFQ_SET_READY(&ifp->if_snd);
204 
205 	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
206 	callout_init(&sc->sc_rx_ch, 1);
207 	/* Create local taskq. */
208 	TASK_INIT(&sc->sc_intr_task, 0, cas_intr_task, sc);
209 	TASK_INIT(&sc->sc_tx_task, 1, cas_tx_task, ifp);
210 	sc->sc_tq = taskqueue_create_fast("cas_taskq", M_WAITOK,
211 	    taskqueue_thread_enqueue, &sc->sc_tq);
212 	if (sc->sc_tq == NULL) {
213 		device_printf(sc->sc_dev, "could not create taskqueue\n");
214 		error = ENXIO;
215 		goto fail_ifnet;
216 	}
217 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
218 	    device_get_nameunit(sc->sc_dev));
219 
220 	/* Make sure the chip is stopped. */
221 	cas_reset(sc);
222 
223 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
224 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
225 	    BUS_SPACE_MAXSIZE, 0, BUS_SPACE_MAXSIZE, 0, NULL, NULL,
226 	    &sc->sc_pdmatag);
227 	if (error != 0)
228 		goto fail_taskq;
229 
230 	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
231 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
232 	    CAS_PAGE_SIZE, 1, CAS_PAGE_SIZE, 0, NULL, NULL, &sc->sc_rdmatag);
233 	if (error != 0)
234 		goto fail_ptag;
235 
236 	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
237 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
238 	    MCLBYTES * CAS_NTXSEGS, CAS_NTXSEGS, MCLBYTES,
239 	    BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag);
240 	if (error != 0)
241 		goto fail_rtag;
242 
243 	error = bus_dma_tag_create(sc->sc_pdmatag, CAS_TX_DESC_ALIGN, 0,
244 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
245 	    sizeof(struct cas_control_data), 1,
246 	    sizeof(struct cas_control_data), 0,
247 	    NULL, NULL, &sc->sc_cdmatag);
248 	if (error != 0)
249 		goto fail_ttag;
250 
251 	/*
252 	 * Allocate the control data structures, create and load the
253 	 * DMA map for it.
254 	 */
255 	if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
256 	    (void **)&sc->sc_control_data,
257 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
258 	    &sc->sc_cddmamap)) != 0) {
259 		device_printf(sc->sc_dev,
260 		    "unable to allocate control data, error = %d\n", error);
261 		goto fail_ctag;
262 	}
263 
264 	sc->sc_cddma = 0;
265 	if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
266 	    sc->sc_control_data, sizeof(struct cas_control_data),
267 	    cas_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
268 		device_printf(sc->sc_dev,
269 		    "unable to load control data DMA map, error = %d\n",
270 		    error);
271 		goto fail_cmem;
272 	}
273 
274 	/*
275 	 * Initialize the transmit job descriptors.
276 	 */
277 	STAILQ_INIT(&sc->sc_txfreeq);
278 	STAILQ_INIT(&sc->sc_txdirtyq);
279 
280 	/*
281 	 * Create the transmit buffer DMA maps.
282 	 */
283 	error = ENOMEM;
284 	for (i = 0; i < CAS_TXQUEUELEN; i++) {
285 		txs = &sc->sc_txsoft[i];
286 		txs->txs_mbuf = NULL;
287 		txs->txs_ndescs = 0;
288 		if ((error = bus_dmamap_create(sc->sc_tdmatag, 0,
289 		    &txs->txs_dmamap)) != 0) {
290 			device_printf(sc->sc_dev,
291 			    "unable to create TX DMA map %d, error = %d\n",
292 			    i, error);
293 			goto fail_txd;
294 		}
295 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
296 	}
297 
298 	/*
299 	 * Allocate the receive buffers, create and load the DMA maps
300 	 * for them.
301 	 */
302 	for (i = 0; i < CAS_NRXDESC; i++) {
303 		if ((error = bus_dmamem_alloc(sc->sc_rdmatag,
304 		    &sc->sc_rxdsoft[i].rxds_buf, BUS_DMA_WAITOK,
305 		    &sc->sc_rxdsoft[i].rxds_dmamap)) != 0) {
306 			device_printf(sc->sc_dev,
307 			    "unable to allocate RX buffer %d, error = %d\n",
308 			    i, error);
309 			goto fail_rxmem;
310 		}
311 
312 		sc->sc_rxdptr = i;
313 		sc->sc_rxdsoft[i].rxds_paddr = 0;
314 		if ((error = bus_dmamap_load(sc->sc_rdmatag,
315 		    sc->sc_rxdsoft[i].rxds_dmamap, sc->sc_rxdsoft[i].rxds_buf,
316 		    CAS_PAGE_SIZE, cas_rxdma_callback, sc, 0)) != 0 ||
317 		    sc->sc_rxdsoft[i].rxds_paddr == 0) {
318 			device_printf(sc->sc_dev,
319 			    "unable to load RX DMA map %d, error = %d\n",
320 			    i, error);
321 			goto fail_rxmap;
322 		}
323 	}
324 
325 	if ((sc->sc_flags & CAS_SERDES) == 0) {
326 		CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_MII);
327 		CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4,
328 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
329 		cas_mifinit(sc);
330 		/*
331 		 * Look for an external PHY.
332 		 */
333 		error = ENXIO;
334 		v = CAS_READ_4(sc, CAS_MIF_CONF);
335 		if ((v & CAS_MIF_CONF_MDI1) != 0) {
336 			v |= CAS_MIF_CONF_PHY_SELECT;
337 			CAS_WRITE_4(sc, CAS_MIF_CONF, v);
338 			CAS_BARRIER(sc, CAS_MIF_CONF, 4,
339 			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
340 			/* Enable/unfreeze the GMII pins of Saturn. */
341 			if (sc->sc_variant == CAS_SATURN) {
342 				CAS_WRITE_4(sc, CAS_SATURN_PCFG, 0);
343 				CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
344 				    BUS_SPACE_BARRIER_READ |
345 				    BUS_SPACE_BARRIER_WRITE);
346 			}
347 			switch (sc->sc_variant) {
348 			default:
349 				sc->sc_phyad = -1;
350 				break;
351 			}
352 			error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus,
353 			    cas_mediachange, cas_mediastatus);
354 		}
355 		/*
356 		 * Fall back on an internal PHY if no external PHY was found.
357 		 */
358 		if (error != 0 && (v & CAS_MIF_CONF_MDI0) != 0) {
359 			v &= ~CAS_MIF_CONF_PHY_SELECT;
360 			CAS_WRITE_4(sc, CAS_MIF_CONF, v);
361 			CAS_BARRIER(sc, CAS_MIF_CONF, 4,
362 			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
363 			/* Freeze the GMII pins of Saturn for saving power. */
364 			if (sc->sc_variant == CAS_SATURN) {
365 				CAS_WRITE_4(sc, CAS_SATURN_PCFG,
366 				    CAS_SATURN_PCFG_FSI);
367 				CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
368 				    BUS_SPACE_BARRIER_READ |
369 				    BUS_SPACE_BARRIER_WRITE);
370 			}
371 			switch (sc->sc_variant) {
372 			default:
373 				sc->sc_phyad = -1;
374 				break;
375 			}
376 			error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus,
377 			    cas_mediachange, cas_mediastatus);
378 		}
379 	} else {
380 		/*
381 		 * Use the external PCS SERDES.
382 		 */
383 		CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_SERDES);
384 		CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4, BUS_SPACE_BARRIER_WRITE);
385 		/* Enable/unfreeze the SERDES pins of Saturn. */
386 		if (sc->sc_variant == CAS_SATURN) {
387 			CAS_WRITE_4(sc, CAS_SATURN_PCFG, 0);
388 			CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
389 			    BUS_SPACE_BARRIER_WRITE);
390 		}
391 		CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL, CAS_PCS_SERDES_CTRL_ESD);
392 		CAS_BARRIER(sc, CAS_PCS_SERDES_CTRL, 4,
393 		    BUS_SPACE_BARRIER_WRITE);
394 		CAS_WRITE_4(sc, CAS_PCS_CONF, CAS_PCS_CONF_EN);
395 		CAS_BARRIER(sc, CAS_PCS_CONF, 4,
396 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
397 		sc->sc_phyad = CAS_PHYAD_EXTERNAL;
398 		error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus,
399 		    cas_mediachange, cas_mediastatus);
400 	}
401 	if (error != 0) {
402 		device_printf(sc->sc_dev, "PHY probe failed: %d\n", error);
403 		goto fail_rxmap;
404 	}
405 	sc->sc_mii = device_get_softc(sc->sc_miibus);
406 
407 	/*
408 	 * From this point forward, the attachment cannot fail.  A failure
409 	 * before this point releases all resources that may have been
410 	 * allocated.
411 	 */
412 
413 	/* Announce FIFO sizes. */
414 	v = CAS_READ_4(sc, CAS_TX_FIFO_SIZE);
415 	device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n",
416 	    CAS_RX_FIFO_SIZE / 1024, v / 16);
417 
418 	/* Attach the interface. */
419 	ether_ifattach(ifp, sc->sc_enaddr);
420 
421 	/*
422 	 * Tell the upper layer(s) we support long frames/checksum offloads.
423 	 */
424 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
425 	ifp->if_capabilities = IFCAP_VLAN_MTU;
426 	if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
427 		ifp->if_capabilities |= IFCAP_HWCSUM;
428 		ifp->if_hwassist = CAS_CSUM_FEATURES;
429 	}
430 	ifp->if_capenable = ifp->if_capabilities;
431 
432 	return (0);
433 
434 	/*
435 	 * Free any resources we've allocated during the failed attach
436 	 * attempt.  Do this in reverse order and fall through.
437 	 */
438  fail_rxmap:
439 	for (i = 0; i < CAS_NRXDESC; i++)
440 		if (sc->sc_rxdsoft[i].rxds_paddr != 0)
441 			bus_dmamap_unload(sc->sc_rdmatag,
442 			    sc->sc_rxdsoft[i].rxds_dmamap);
443  fail_rxmem:
444 	for (i = 0; i < CAS_NRXDESC; i++)
445 		if (sc->sc_rxdsoft[i].rxds_buf != NULL)
446 			bus_dmamem_free(sc->sc_rdmatag,
447 			    sc->sc_rxdsoft[i].rxds_buf,
448 			    sc->sc_rxdsoft[i].rxds_dmamap);
449  fail_txd:
450 	for (i = 0; i < CAS_TXQUEUELEN; i++)
451 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
452 			bus_dmamap_destroy(sc->sc_tdmatag,
453 			    sc->sc_txsoft[i].txs_dmamap);
454 	bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
455  fail_cmem:
456 	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
457 	    sc->sc_cddmamap);
458  fail_ctag:
459 	bus_dma_tag_destroy(sc->sc_cdmatag);
460  fail_ttag:
461 	bus_dma_tag_destroy(sc->sc_tdmatag);
462  fail_rtag:
463 	bus_dma_tag_destroy(sc->sc_rdmatag);
464  fail_ptag:
465 	bus_dma_tag_destroy(sc->sc_pdmatag);
466  fail_taskq:
467 	taskqueue_free(sc->sc_tq);
468  fail_ifnet:
469 	if_free(ifp);
470 	return (error);
471 }
472 
473 static void
474 cas_detach(struct cas_softc *sc)
475 {
476 	struct ifnet *ifp = sc->sc_ifp;
477 	int i;
478 
479 	ether_ifdetach(ifp);
480 	CAS_LOCK(sc);
481 	cas_stop(ifp);
482 	CAS_UNLOCK(sc);
483 	callout_drain(&sc->sc_tick_ch);
484 	callout_drain(&sc->sc_rx_ch);
485 	taskqueue_drain(sc->sc_tq, &sc->sc_intr_task);
486 	taskqueue_drain(sc->sc_tq, &sc->sc_tx_task);
487 	if_free(ifp);
488 	taskqueue_free(sc->sc_tq);
489 	device_delete_child(sc->sc_dev, sc->sc_miibus);
490 
491 	for (i = 0; i < CAS_NRXDESC; i++)
492 		if (sc->sc_rxdsoft[i].rxds_dmamap != NULL)
493 			bus_dmamap_sync(sc->sc_rdmatag,
494 			    sc->sc_rxdsoft[i].rxds_dmamap,
495 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
496 	for (i = 0; i < CAS_NRXDESC; i++)
497 		if (sc->sc_rxdsoft[i].rxds_paddr != 0)
498 			bus_dmamap_unload(sc->sc_rdmatag,
499 			    sc->sc_rxdsoft[i].rxds_dmamap);
500 	for (i = 0; i < CAS_NRXDESC; i++)
501 		if (sc->sc_rxdsoft[i].rxds_buf != NULL)
502 			bus_dmamem_free(sc->sc_rdmatag,
503 			    sc->sc_rxdsoft[i].rxds_buf,
504 			    sc->sc_rxdsoft[i].rxds_dmamap);
505 	for (i = 0; i < CAS_TXQUEUELEN; i++)
506 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
507 			bus_dmamap_destroy(sc->sc_tdmatag,
508 			    sc->sc_txsoft[i].txs_dmamap);
509 	CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
510 	bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
511 	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
512 	    sc->sc_cddmamap);
513 	bus_dma_tag_destroy(sc->sc_cdmatag);
514 	bus_dma_tag_destroy(sc->sc_tdmatag);
515 	bus_dma_tag_destroy(sc->sc_rdmatag);
516 	bus_dma_tag_destroy(sc->sc_pdmatag);
517 }
518 
519 static void
520 cas_suspend(struct cas_softc *sc)
521 {
522 	struct ifnet *ifp = sc->sc_ifp;
523 
524 	CAS_LOCK(sc);
525 	cas_stop(ifp);
526 	CAS_UNLOCK(sc);
527 }
528 
529 static void
530 cas_resume(struct cas_softc *sc)
531 {
532 	struct ifnet *ifp = sc->sc_ifp;
533 
534 	CAS_LOCK(sc);
535 	/*
536 	 * On resume all registers have to be initialized again like
537 	 * after power-on.
538 	 */
539 	sc->sc_flags &= ~CAS_INITED;
540 	if (ifp->if_flags & IFF_UP)
541 		cas_init_locked(sc);
542 	CAS_UNLOCK(sc);
543 }
544 
545 static inline void
546 cas_rxcksum(struct mbuf *m, uint16_t cksum)
547 {
548 	struct ether_header *eh;
549 	struct ip *ip;
550 	struct udphdr *uh;
551 	uint16_t *opts;
552 	int32_t hlen, len, pktlen;
553 	uint32_t temp32;
554 
555 	pktlen = m->m_pkthdr.len;
556 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
557 		return;
558 	eh = mtod(m, struct ether_header *);
559 	if (eh->ether_type != htons(ETHERTYPE_IP))
560 		return;
561 	ip = (struct ip *)(eh + 1);
562 	if (ip->ip_v != IPVERSION)
563 		return;
564 
565 	hlen = ip->ip_hl << 2;
566 	pktlen -= sizeof(struct ether_header);
567 	if (hlen < sizeof(struct ip))
568 		return;
569 	if (ntohs(ip->ip_len) < hlen)
570 		return;
571 	if (ntohs(ip->ip_len) != pktlen)
572 		return;
573 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
574 		return;	/* Cannot handle fragmented packet. */
575 
576 	switch (ip->ip_p) {
577 	case IPPROTO_TCP:
578 		if (pktlen < (hlen + sizeof(struct tcphdr)))
579 			return;
580 		break;
581 	case IPPROTO_UDP:
582 		if (pktlen < (hlen + sizeof(struct udphdr)))
583 			return;
584 		uh = (struct udphdr *)((uint8_t *)ip + hlen);
585 		if (uh->uh_sum == 0)
586 			return; /* no checksum */
587 		break;
588 	default:
589 		return;
590 	}
591 
592 	cksum = ~cksum;
593 	/* checksum fixup for IP options */
594 	len = hlen - sizeof(struct ip);
595 	if (len > 0) {
596 		opts = (uint16_t *)(ip + 1);
597 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
598 			temp32 = cksum - *opts;
599 			temp32 = (temp32 >> 16) + (temp32 & 65535);
600 			cksum = temp32 & 65535;
601 		}
602 	}
603 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
604 	m->m_pkthdr.csum_data = cksum;
605 }
606 
607 static void
608 cas_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
609 {
610 	struct cas_softc *sc = xsc;
611 
612 	if (error != 0)
613 		return;
614 	if (nsegs != 1)
615 		panic("%s: bad control buffer segment count", __func__);
616 	sc->sc_cddma = segs[0].ds_addr;
617 }
618 
619 static void
620 cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
621 {
622 	struct cas_softc *sc = xsc;
623 
624 	if (error != 0)
625 		return;
626 	if (nsegs != 1)
627 		panic("%s: bad RX buffer segment count", __func__);
628 	sc->sc_rxdsoft[sc->sc_rxdptr].rxds_paddr = segs[0].ds_addr;
629 }
630 
631 static void
632 cas_tick(void *arg)
633 {
634 	struct cas_softc *sc = arg;
635 	struct ifnet *ifp = sc->sc_ifp;
636 	uint32_t v;
637 
638 	CAS_LOCK_ASSERT(sc, MA_OWNED);
639 
640 	/*
641 	 * Unload collision and error counters.
642 	 */
643 	ifp->if_collisions +=
644 	    CAS_READ_4(sc, CAS_MAC_NORM_COLL_CNT) +
645 	    CAS_READ_4(sc, CAS_MAC_FIRST_COLL_CNT);
646 	v = CAS_READ_4(sc, CAS_MAC_EXCESS_COLL_CNT) +
647 	    CAS_READ_4(sc, CAS_MAC_LATE_COLL_CNT);
648 	ifp->if_collisions += v;
649 	ifp->if_oerrors += v;
650 	ifp->if_ierrors +=
651 	    CAS_READ_4(sc, CAS_MAC_RX_LEN_ERR_CNT) +
652 	    CAS_READ_4(sc, CAS_MAC_RX_ALIGN_ERR) +
653 	    CAS_READ_4(sc, CAS_MAC_RX_CRC_ERR_CNT) +
654 	    CAS_READ_4(sc, CAS_MAC_RX_CODE_VIOL);
655 
656 	/*
657 	 * Then clear the hardware counters.
658 	 */
659 	CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
660 	CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
661 	CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
662 	CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
663 	CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
664 	CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
665 	CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
666 	CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
667 
668 	mii_tick(sc->sc_mii);
669 
670 	if (sc->sc_txfree != CAS_MAXTXFREE)
671 		cas_tint(sc);
672 
673 	cas_watchdog(sc);
674 
675 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
676 }
677 
678 static int
679 cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr, uint32_t set)
680 {
681 	int i;
682 	uint32_t reg;
683 
684 	for (i = CAS_TRIES; i--; DELAY(100)) {
685 		reg = CAS_READ_4(sc, r);
686 		if ((reg & clr) == 0 && (reg & set) == set)
687 			return (1);
688 	}
689 	return (0);
690 }
691 
692 static void
693 cas_reset(struct cas_softc *sc)
694 {
695 
696 #ifdef CAS_DEBUG
697 	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
698 #endif
699 	/* Disable all interrupts in order to avoid spurious ones. */
700 	CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
701 
702 	cas_reset_rx(sc);
703 	cas_reset_tx(sc);
704 
705 	/*
706 	 * Do a full reset modulo the result of the last auto-negotiation
707 	 * when using the SERDES.
708 	 */
709 	CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX |
710 	    ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
711 	CAS_BARRIER(sc, CAS_RESET, 4,
712 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
713 	DELAY(3000);
714 	if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
715 		device_printf(sc->sc_dev, "cannot reset device\n");
716 }
717 
718 static void
719 cas_stop(struct ifnet *ifp)
720 {
721 	struct cas_softc *sc = ifp->if_softc;
722 	struct cas_txsoft *txs;
723 
724 #ifdef CAS_DEBUG
725 	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
726 #endif
727 
728 	callout_stop(&sc->sc_tick_ch);
729 	callout_stop(&sc->sc_rx_ch);
730 
731 	/* Disable all interrupts in order to avoid spurious ones. */
732 	CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
733 
734 	cas_reset_tx(sc);
735 	cas_reset_rx(sc);
736 
737 	/*
738 	 * Release any queued transmit buffers.
739 	 */
740 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
741 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
742 		if (txs->txs_ndescs != 0) {
743 			bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
744 			    BUS_DMASYNC_POSTWRITE);
745 			bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
746 			if (txs->txs_mbuf != NULL) {
747 				m_freem(txs->txs_mbuf);
748 				txs->txs_mbuf = NULL;
749 			}
750 		}
751 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
752 	}
753 
754 	/*
755 	 * Mark the interface down and cancel the watchdog timer.
756 	 */
757 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
758 	sc->sc_flags &= ~CAS_LINK;
759 	sc->sc_wdog_timer = 0;
760 }
761 
762 static int
763 cas_reset_rx(struct cas_softc *sc)
764 {
765 
766 	/*
767 	 * Resetting while DMA is in progress can cause a bus hang, so we
768 	 * disable DMA first.
769 	 */
770 	cas_disable_rx(sc);
771 	CAS_WRITE_4(sc, CAS_RX_CONF, 0);
772 	CAS_BARRIER(sc, CAS_RX_CONF, 4,
773 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
774 	if (!cas_bitwait(sc, CAS_RX_CONF, CAS_RX_CONF_RXDMA_EN, 0))
775 		device_printf(sc->sc_dev, "cannot disable RX DMA\n");
776 
777 	/* Finally, reset the ERX. */
778 	CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX |
779 	    ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
780 	CAS_BARRIER(sc, CAS_RESET, 4,
781 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
782 	if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0)) {
783 		device_printf(sc->sc_dev, "cannot reset receiver\n");
784 		return (1);
785 	}
786 	return (0);
787 }
788 
789 static int
790 cas_reset_tx(struct cas_softc *sc)
791 {
792 
793 	/*
794 	 * Resetting while DMA is in progress can cause a bus hang, so we
795 	 * disable DMA first.
796 	 */
797 	cas_disable_tx(sc);
798 	CAS_WRITE_4(sc, CAS_TX_CONF, 0);
799 	CAS_BARRIER(sc, CAS_TX_CONF, 4,
800 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
801 	if (!cas_bitwait(sc, CAS_TX_CONF, CAS_TX_CONF_TXDMA_EN, 0))
802 		device_printf(sc->sc_dev, "cannot disable TX DMA\n");
803 
804 	/* Finally, reset the ETX. */
805 	CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_TX |
806 	    ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
807 	CAS_BARRIER(sc, CAS_RESET, 4,
808 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
809 	if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0)) {
810 		device_printf(sc->sc_dev, "cannot reset transmitter\n");
811 		return (1);
812 	}
813 	return (0);
814 }
815 
816 static int
817 cas_disable_rx(struct cas_softc *sc)
818 {
819 
820 	CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
821 	    CAS_READ_4(sc, CAS_MAC_RX_CONF) & ~CAS_MAC_RX_CONF_EN);
822 	CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
823 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
824 	return (cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0));
825 }
826 
827 static int
828 cas_disable_tx(struct cas_softc *sc)
829 {
830 
831 	CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
832 	    CAS_READ_4(sc, CAS_MAC_TX_CONF) & ~CAS_MAC_TX_CONF_EN);
833 	CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4,
834 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
835 	return (cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0));
836 }
837 
838 static inline void
839 cas_rxcompinit(struct cas_rx_comp *rxcomp)
840 {
841 
842 	rxcomp->crc_word1 = 0;
843 	rxcomp->crc_word2 = 0;
844 	rxcomp->crc_word3 =
845 	    htole64(CAS_SET(ETHER_HDR_LEN + sizeof(struct ip), CAS_RC3_CSO));
846 	rxcomp->crc_word4 = htole64(CAS_RC4_ZERO);
847 }
848 
849 static void
850 cas_meminit(struct cas_softc *sc)
851 {
852 	int i;
853 
854 	CAS_LOCK_ASSERT(sc, MA_OWNED);
855 
856 	/*
857 	 * Initialize the transmit descriptor ring.
858 	 */
859 	for (i = 0; i < CAS_NTXDESC; i++) {
860 		sc->sc_txdescs[i].cd_flags = 0;
861 		sc->sc_txdescs[i].cd_buf_ptr = 0;
862 	}
863 	sc->sc_txfree = CAS_MAXTXFREE;
864 	sc->sc_txnext = 0;
865 	sc->sc_txwin = 0;
866 
867 	/*
868 	 * Initialize the receive completion ring.
869 	 */
870 	for (i = 0; i < CAS_NRXCOMP; i++)
871 		cas_rxcompinit(&sc->sc_rxcomps[i]);
872 	sc->sc_rxcptr = 0;
873 
874 	/*
875 	 * Initialize the first receive descriptor ring.  We leave
876 	 * the second one zeroed as we don't actually use it.
877 	 */
878 	for (i = 0; i < CAS_NRXDESC; i++)
879 		CAS_INIT_RXDESC(sc, i, i);
880 	sc->sc_rxdptr = 0;
881 
882 	CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
883 }
884 
885 static u_int
886 cas_descsize(u_int sz)
887 {
888 
889 	switch (sz) {
890 	case 32:
891 		return (CAS_DESC_32);
892 	case 64:
893 		return (CAS_DESC_64);
894 	case 128:
895 		return (CAS_DESC_128);
896 	case 256:
897 		return (CAS_DESC_256);
898 	case 512:
899 		return (CAS_DESC_512);
900 	case 1024:
901 		return (CAS_DESC_1K);
902 	case 2048:
903 		return (CAS_DESC_2K);
904 	case 4096:
905 		return (CAS_DESC_4K);
906 	case 8192:
907 		return (CAS_DESC_8K);
908 	default:
909 		printf("%s: invalid descriptor ring size %d\n", __func__, sz);
910 		return (CAS_DESC_32);
911 	}
912 }
913 
914 static u_int
915 cas_rxcompsize(u_int sz)
916 {
917 
918 	switch (sz) {
919 	case 128:
920 		return (CAS_RX_CONF_COMP_128);
921 	case 256:
922 		return (CAS_RX_CONF_COMP_256);
923 	case 512:
924 		return (CAS_RX_CONF_COMP_512);
925 	case 1024:
926 		return (CAS_RX_CONF_COMP_1K);
927 	case 2048:
928 		return (CAS_RX_CONF_COMP_2K);
929 	case 4096:
930 		return (CAS_RX_CONF_COMP_4K);
931 	case 8192:
932 		return (CAS_RX_CONF_COMP_8K);
933 	case 16384:
934 		return (CAS_RX_CONF_COMP_16K);
935 	case 32768:
936 		return (CAS_RX_CONF_COMP_32K);
937 	default:
938 		printf("%s: invalid dcompletion ring size %d\n", __func__, sz);
939 		return (CAS_RX_CONF_COMP_128);
940 	}
941 }
942 
943 static void
944 cas_init(void *xsc)
945 {
946 	struct cas_softc *sc = xsc;
947 
948 	CAS_LOCK(sc);
949 	cas_init_locked(sc);
950 	CAS_UNLOCK(sc);
951 }
952 
953 /*
954  * Initialization of interface; set up initialization block
955  * and transmit/receive descriptor rings.
956  */
957 static void
958 cas_init_locked(struct cas_softc *sc)
959 {
960 	struct ifnet *ifp = sc->sc_ifp;
961 	uint32_t v;
962 
963 	CAS_LOCK_ASSERT(sc, MA_OWNED);
964 
965 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
966 		return;
967 
968 #ifdef CAS_DEBUG
969 	CTR2(KTR_CAS, "%s: %s: calling stop", device_get_name(sc->sc_dev),
970 	    __func__);
971 #endif
972 	/*
973 	 * Initialization sequence.  The numbered steps below correspond
974 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
975 	 * Channel Engine manual (part of the PCIO manual).
976 	 * See also the STP2002-STQ document from Sun Microsystems.
977 	 */
978 
979 	/* step 1 & 2.  Reset the Ethernet Channel. */
980 	cas_stop(ifp);
981 	cas_reset(sc);
982 #ifdef CAS_DEBUG
983 	CTR2(KTR_CAS, "%s: %s: restarting", device_get_name(sc->sc_dev),
984 	    __func__);
985 #endif
986 
987 	if ((sc->sc_flags & CAS_SERDES) == 0)
988 		/* Re-initialize the MIF. */
989 		cas_mifinit(sc);
990 
991 	/* step 3.  Setup data structures in host memory. */
992 	cas_meminit(sc);
993 
994 	/* step 4.  TX MAC registers & counters */
995 	cas_init_regs(sc);
996 
997 	/* step 5.  RX MAC registers & counters */
998 	cas_setladrf(sc);
999 
1000 	/* step 6 & 7.  Program Ring Base Addresses. */
1001 	CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_HI,
1002 	    (((uint64_t)CAS_CDTXDADDR(sc, 0)) >> 32));
1003 	CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_LO,
1004 	    CAS_CDTXDADDR(sc, 0) & 0xffffffff);
1005 
1006 	CAS_WRITE_4(sc, CAS_RX_COMP_BASE_HI,
1007 	    (((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32));
1008 	CAS_WRITE_4(sc, CAS_RX_COMP_BASE_LO,
1009 	    CAS_CDRXCADDR(sc, 0) & 0xffffffff);
1010 
1011 	CAS_WRITE_4(sc, CAS_RX_DESC_BASE_HI,
1012 	    (((uint64_t)CAS_CDRXDADDR(sc, 0)) >> 32));
1013 	CAS_WRITE_4(sc, CAS_RX_DESC_BASE_LO,
1014 	    CAS_CDRXDADDR(sc, 0) & 0xffffffff);
1015 
1016 	if ((sc->sc_flags & CAS_REG_PLUS) != 0) {
1017 		CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_HI,
1018 		    (((uint64_t)CAS_CDRXD2ADDR(sc, 0)) >> 32));
1019 		CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_LO,
1020 		    CAS_CDRXD2ADDR(sc, 0) & 0xffffffff);
1021 	}
1022 
1023 #ifdef CAS_DEBUG
1024 	CTR5(KTR_CAS,
1025 	    "loading TXDR %lx, RXCR %lx, RXDR %lx, RXD2R %lx, cddma %lx",
1026 	    CAS_CDTXDADDR(sc, 0), CAS_CDRXCADDR(sc, 0), CAS_CDRXDADDR(sc, 0),
1027 	    CAS_CDRXD2ADDR(sc, 0), sc->sc_cddma);
1028 #endif
1029 
1030 	/* step 8.  Global Configuration & Interrupt Masks */
1031 
1032 	/* Disable weighted round robin. */
1033 	CAS_WRITE_4(sc, CAS_CAW, CAS_CAW_RR_DIS);
1034 
1035 	/*
1036 	 * Enable infinite bursts for revisions without PCI issues if
1037 	 * applicable.  Doing so greatly improves the TX performance on
1038 	 * !__sparc64__.
1039 	 */
1040 	CAS_WRITE_4(sc, CAS_INF_BURST,
1041 #if !defined(__sparc64__)
1042 	    (sc->sc_flags & CAS_TABORT) == 0 ? CAS_INF_BURST_EN :
1043 #endif
1044 	    0);
1045 
1046 	/* Set up interrupts. */
1047 	CAS_WRITE_4(sc, CAS_INTMASK,
1048 	    ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
1049 	    CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
1050 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
1051 	    CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
1052 	    CAS_INTR_PCI_ERROR_INT
1053 #ifdef CAS_DEBUG
1054 	    | CAS_INTR_PCS_INT | CAS_INTR_MIF
1055 #endif
1056 	    ));
1057 	/* Don't clear top level interrupts when CAS_STATUS_ALIAS is read. */
1058 	CAS_WRITE_4(sc, CAS_CLEAR_ALIAS, 0);
1059 	CAS_WRITE_4(sc, CAS_MAC_RX_MASK, ~CAS_MAC_RX_OVERFLOW);
1060 	CAS_WRITE_4(sc, CAS_MAC_TX_MASK,
1061 	    ~(CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR));
1062 #ifdef CAS_DEBUG
1063 	CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
1064 	    ~(CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
1065 	    CAS_MAC_CTRL_NON_PAUSE));
1066 #else
1067 	CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
1068 	    CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
1069 	    CAS_MAC_CTRL_NON_PAUSE);
1070 #endif
1071 
1072 	/* Enable PCI error interrupts. */
1073 	CAS_WRITE_4(sc, CAS_ERROR_MASK,
1074 	    ~(CAS_ERROR_DTRTO | CAS_ERROR_OTHER | CAS_ERROR_DMAW_ZERO |
1075 	    CAS_ERROR_DMAR_ZERO | CAS_ERROR_RTRTO));
1076 
1077 	/* Enable PCI error interrupts in BIM configuration. */
1078 	CAS_WRITE_4(sc, CAS_BIM_CONF,
1079 	    CAS_BIM_CONF_DPAR_EN | CAS_BIM_CONF_RMA_EN | CAS_BIM_CONF_RTA_EN);
1080 
1081 	/*
1082 	 * step 9.  ETX Configuration: encode receive descriptor ring size,
1083 	 * enable DMA and disable pre-interrupt writeback completion.
1084 	 */
1085 	v = cas_descsize(CAS_NTXDESC) << CAS_TX_CONF_DESC3_SHFT;
1086 	CAS_WRITE_4(sc, CAS_TX_CONF, v | CAS_TX_CONF_TXDMA_EN |
1087 	    CAS_TX_CONF_RDPP_DIS | CAS_TX_CONF_PICWB_DIS);
1088 
1089 	/* step 10.  ERX Configuration */
1090 
1091 	/*
1092 	 * Encode receive completion and descriptor ring sizes, set the
1093 	 * swivel offset.
1094 	 */
1095 	v = cas_rxcompsize(CAS_NRXCOMP) << CAS_RX_CONF_COMP_SHFT;
1096 	v |= cas_descsize(CAS_NRXDESC) << CAS_RX_CONF_DESC_SHFT;
1097 	if ((sc->sc_flags & CAS_REG_PLUS) != 0)
1098 		v |= cas_descsize(CAS_NRXDESC2) << CAS_RX_CONF_DESC2_SHFT;
1099 	CAS_WRITE_4(sc, CAS_RX_CONF,
1100 	    v | (ETHER_ALIGN << CAS_RX_CONF_SOFF_SHFT));
1101 
1102 	/* Set the PAUSE thresholds.  We use the maximum OFF threshold. */
1103 	CAS_WRITE_4(sc, CAS_RX_PTHRS,
1104 	    ((111 * 64) << CAS_RX_PTHRS_XOFF_SHFT) |
1105 	    ((15 * 64) << CAS_RX_PTHRS_XON_SHFT));
1106 
1107 	/* RX blanking */
1108 	CAS_WRITE_4(sc, CAS_RX_BLANK,
1109 	    (15 << CAS_RX_BLANK_TIME_SHFT) | (5 << CAS_RX_BLANK_PKTS_SHFT));
1110 
1111 	/* Set RX_COMP_AFULL threshold to half of the RX completions. */
1112 	CAS_WRITE_4(sc, CAS_RX_AEMPTY_THRS,
1113 	    (CAS_NRXCOMP / 2) << CAS_RX_AEMPTY_COMP_SHFT);
1114 
1115 	/* Initialize the RX page size register as appropriate for 8k. */
1116 	CAS_WRITE_4(sc, CAS_RX_PSZ,
1117 	    (CAS_RX_PSZ_8K << CAS_RX_PSZ_SHFT) |
1118 	    (4 << CAS_RX_PSZ_MB_CNT_SHFT) |
1119 	    (CAS_RX_PSZ_MB_STRD_2K << CAS_RX_PSZ_MB_STRD_SHFT) |
1120 	    (CAS_RX_PSZ_MB_OFF_64 << CAS_RX_PSZ_MB_OFF_SHFT));
1121 
1122 	/* Disable RX random early detection. */
1123 	CAS_WRITE_4(sc,	CAS_RX_RED, 0);
1124 
1125 	/* Zero the RX reassembly DMA table. */
1126 	for (v = 0; v <= CAS_RX_REAS_DMA_ADDR_LC; v++) {
1127 		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_ADDR, v);
1128 		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_DATA_LO, 0);
1129 		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_DATA_MD, 0);
1130 		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_DATA_HI, 0);
1131 	}
1132 
1133 	/* Ensure the RX control FIFO and RX IPP FIFO addresses are zero. */
1134 	CAS_WRITE_4(sc, CAS_RX_CTRL_FIFO, 0);
1135 	CAS_WRITE_4(sc, CAS_RX_IPP_ADDR, 0);
1136 
1137 	/* Finally, enable RX DMA. */
1138 	CAS_WRITE_4(sc, CAS_RX_CONF,
1139 	    CAS_READ_4(sc, CAS_RX_CONF) | CAS_RX_CONF_RXDMA_EN);
1140 
1141 	/* step 11.  Configure Media. */
1142 
1143 	/* step 12.  RX_MAC Configuration Register */
1144 	v = CAS_READ_4(sc, CAS_MAC_RX_CONF) & ~CAS_MAC_RX_CONF_STRPPAD;
1145 	v |= CAS_MAC_RX_CONF_EN | CAS_MAC_RX_CONF_STRPFCS;
1146 	CAS_WRITE_4(sc, CAS_MAC_RX_CONF, 0);
1147 	CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
1148 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
1149 	if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0))
1150 		device_printf(sc->sc_dev, "cannot configure RX MAC\n");
1151 	CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v);
1152 
1153 	/* step 13.  TX_MAC Configuration Register */
1154 	v = CAS_READ_4(sc, CAS_MAC_TX_CONF);
1155 	v |= CAS_MAC_TX_CONF_EN;
1156 	CAS_WRITE_4(sc, CAS_MAC_TX_CONF, 0);
1157 	CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4,
1158 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
1159 	if (!cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0))
1160 		device_printf(sc->sc_dev, "cannot configure TX MAC\n");
1161 	CAS_WRITE_4(sc, CAS_MAC_TX_CONF, v);
1162 
1163 	/* step 14.  Issue Transmit Pending command. */
1164 
1165 	/* step 15.  Give the reciever a swift kick. */
1166 	CAS_WRITE_4(sc, CAS_RX_KICK, CAS_NRXDESC - 4);
1167 	CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, 0);
1168 	if ((sc->sc_flags & CAS_REG_PLUS) != 0)
1169 		CAS_WRITE_4(sc, CAS_RX_KICK2, CAS_NRXDESC2 - 4);
1170 
1171 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1172 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1173 
1174 	mii_mediachg(sc->sc_mii);
1175 
1176 	/* Start the one second timer. */
1177 	sc->sc_wdog_timer = 0;
1178 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1179 }
1180 
1181 static int
1182 cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head)
1183 {
1184 	bus_dma_segment_t txsegs[CAS_NTXSEGS];
1185 	struct cas_txsoft *txs;
1186 	struct ip *ip;
1187 	struct mbuf *m;
1188 	uint64_t cflags;
1189 	int error, nexttx, nsegs, offset, seg;
1190 
1191 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1192 
1193 	/* Get a work queue entry. */
1194 	if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1195 		/* Ran out of descriptors. */
1196 		return (ENOBUFS);
1197 	}
1198 
1199 	cflags = 0;
1200 	if (((*m_head)->m_pkthdr.csum_flags & CAS_CSUM_FEATURES) != 0) {
1201 		if (M_WRITABLE(*m_head) == 0) {
1202 			m = m_dup(*m_head, M_DONTWAIT);
1203 			m_freem(*m_head);
1204 			*m_head = m;
1205 			if (m == NULL)
1206 				return (ENOBUFS);
1207 		}
1208 		offset = sizeof(struct ether_header);
1209 		m = m_pullup(*m_head, offset + sizeof(struct ip));
1210 		if (m == NULL) {
1211 			*m_head = NULL;
1212 			return (ENOBUFS);
1213 		}
1214 		ip = (struct ip *)(mtod(m, caddr_t) + offset);
1215 		offset += (ip->ip_hl << 2);
1216 		cflags = (offset << CAS_TD_CKSUM_START_SHFT) |
1217 		    ((offset + m->m_pkthdr.csum_data) <<
1218 		    CAS_TD_CKSUM_STUFF_SHFT) | CAS_TD_CKSUM_EN;
1219 		*m_head = m;
1220 	}
1221 
1222 	error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap,
1223 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1224 	if (error == EFBIG) {
1225 		m = m_collapse(*m_head, M_DONTWAIT, CAS_NTXSEGS);
1226 		if (m == NULL) {
1227 			m_freem(*m_head);
1228 			*m_head = NULL;
1229 			return (ENOBUFS);
1230 		}
1231 		*m_head = m;
1232 		error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag,
1233 		    txs->txs_dmamap, *m_head, txsegs, &nsegs,
1234 		    BUS_DMA_NOWAIT);
1235 		if (error != 0) {
1236 			m_freem(*m_head);
1237 			*m_head = NULL;
1238 			return (error);
1239 		}
1240 	} else if (error != 0)
1241 		return (error);
1242 	/* If nsegs is wrong then the stack is corrupt. */
1243 	KASSERT(nsegs <= CAS_NTXSEGS,
1244 	    ("%s: too many DMA segments (%d)", __func__, nsegs));
1245 	if (nsegs == 0) {
1246 		m_freem(*m_head);
1247 		*m_head = NULL;
1248 		return (EIO);
1249 	}
1250 
1251 	/*
1252 	 * Ensure we have enough descriptors free to describe
1253 	 * the packet.  Note, we always reserve one descriptor
1254 	 * at the end of the ring as a termination point, in
1255 	 * order to prevent wrap-around.
1256 	 */
1257 	if (nsegs > sc->sc_txfree - 1) {
1258 		txs->txs_ndescs = 0;
1259 		bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1260 		return (ENOBUFS);
1261 	}
1262 
1263 	txs->txs_ndescs = nsegs;
1264 	txs->txs_firstdesc = sc->sc_txnext;
1265 	nexttx = txs->txs_firstdesc;
1266 	for (seg = 0; seg < nsegs; seg++, nexttx = CAS_NEXTTX(nexttx)) {
1267 #ifdef CAS_DEBUG
1268 		CTR6(KTR_CAS,
1269 		    "%s: mapping seg %d (txd %d), len %lx, addr %#lx (%#lx)",
1270 		    __func__, seg, nexttx, txsegs[seg].ds_len,
1271 		    txsegs[seg].ds_addr, htole64(txsegs[seg].ds_addr));
1272 #endif
1273 		sc->sc_txdescs[nexttx].cd_buf_ptr =
1274 		    htole64(txsegs[seg].ds_addr);
1275 		KASSERT(txsegs[seg].ds_len <
1276 		    CAS_TD_BUF_LEN_MASK >> CAS_TD_BUF_LEN_SHFT,
1277 		    ("%s: segment size too large!", __func__));
1278 		sc->sc_txdescs[nexttx].cd_flags =
1279 		    htole64(txsegs[seg].ds_len << CAS_TD_BUF_LEN_SHFT);
1280 		txs->txs_lastdesc = nexttx;
1281 	}
1282 
1283 	/* Set EOF on the last descriptor. */
1284 #ifdef CAS_DEBUG
1285 	CTR3(KTR_CAS, "%s: end of frame at segment %d, TX %d",
1286 	    __func__, seg, nexttx);
1287 #endif
1288 	sc->sc_txdescs[txs->txs_lastdesc].cd_flags |=
1289 	    htole64(CAS_TD_END_OF_FRAME);
1290 
1291 	/* Lastly set SOF on the first descriptor. */
1292 #ifdef CAS_DEBUG
1293 	CTR3(KTR_CAS, "%s: start of frame at segment %d, TX %d",
1294 	    __func__, seg, nexttx);
1295 #endif
1296 	if (sc->sc_txwin += nsegs > CAS_MAXTXFREE * 2 / 3) {
1297 		sc->sc_txwin = 0;
1298 		sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
1299 		    htole64(cflags | CAS_TD_START_OF_FRAME | CAS_TD_INT_ME);
1300 	} else
1301 		sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
1302 		    htole64(cflags | CAS_TD_START_OF_FRAME);
1303 
1304 	/* Sync the DMA map. */
1305 	bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1306 	    BUS_DMASYNC_PREWRITE);
1307 
1308 #ifdef CAS_DEBUG
1309 	CTR4(KTR_CAS, "%s: setting firstdesc=%d, lastdesc=%d, ndescs=%d",
1310 	    __func__, txs->txs_firstdesc, txs->txs_lastdesc,
1311 	    txs->txs_ndescs);
1312 #endif
1313 	STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1314 	STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1315 	txs->txs_mbuf = *m_head;
1316 
1317 	sc->sc_txnext = CAS_NEXTTX(txs->txs_lastdesc);
1318 	sc->sc_txfree -= txs->txs_ndescs;
1319 
1320 	return (0);
1321 }
1322 
1323 static void
1324 cas_init_regs(struct cas_softc *sc)
1325 {
1326 	int i;
1327 	const u_char *laddr = IF_LLADDR(sc->sc_ifp);
1328 
1329 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1330 
1331 	/* These registers are not cleared on reset. */
1332 	if ((sc->sc_flags & CAS_INITED) == 0) {
1333 		/* magic values */
1334 		CAS_WRITE_4(sc, CAS_MAC_IPG0, 0);
1335 		CAS_WRITE_4(sc, CAS_MAC_IPG1, 8);
1336 		CAS_WRITE_4(sc, CAS_MAC_IPG2, 4);
1337 
1338 		/* min frame length */
1339 		CAS_WRITE_4(sc, CAS_MAC_MIN_FRAME, ETHER_MIN_LEN);
1340 		/* max frame length and max burst size */
1341 		CAS_WRITE_4(sc, CAS_MAC_MAX_BF,
1342 		    ((ETHER_MAX_LEN_JUMBO + ETHER_VLAN_ENCAP_LEN) <<
1343 		    CAS_MAC_MAX_BF_FRM_SHFT) |
1344 		    (0x2000 << CAS_MAC_MAX_BF_BST_SHFT));
1345 
1346 		/* more magic values */
1347 		CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
1348 		CAS_WRITE_4(sc, CAS_MAC_JAM_SIZE, 0x4);
1349 		CAS_WRITE_4(sc, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1350 		CAS_WRITE_4(sc, CAS_MAC_CTRL_TYPE, 0x8088);
1351 
1352 		/* random number seed */
1353 		CAS_WRITE_4(sc, CAS_MAC_RANDOM_SEED,
1354 		    ((laddr[5] << 8) | laddr[4]) & 0x3ff);
1355 
1356 		/* secondary MAC addresses: 0:0:0:0:0:0 */
1357 		for (i = CAS_MAC_ADDR3; i <= CAS_MAC_ADDR41;
1358 		    i += CAS_MAC_ADDR4 - CAS_MAC_ADDR3)
1359 			CAS_WRITE_4(sc, i, 0);
1360 
1361 		/* MAC control address: 01:80:c2:00:00:01 */
1362 		CAS_WRITE_4(sc, CAS_MAC_ADDR42, 0x0001);
1363 		CAS_WRITE_4(sc, CAS_MAC_ADDR43, 0xc200);
1364 		CAS_WRITE_4(sc, CAS_MAC_ADDR44, 0x0180);
1365 
1366 		/* MAC filter address: 0:0:0:0:0:0 */
1367 		CAS_WRITE_4(sc, CAS_MAC_AFILTER0, 0);
1368 		CAS_WRITE_4(sc, CAS_MAC_AFILTER1, 0);
1369 		CAS_WRITE_4(sc, CAS_MAC_AFILTER2, 0);
1370 		CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK1_2, 0);
1371 		CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK0, 0);
1372 
1373 		/* Zero the hash table. */
1374 		for (i = CAS_MAC_HASH0; i <= CAS_MAC_HASH15;
1375 		    i += CAS_MAC_HASH1 - CAS_MAC_HASH0)
1376 			CAS_WRITE_4(sc, i, 0);
1377 
1378 		sc->sc_flags |= CAS_INITED;
1379 	}
1380 
1381 	/* Counters need to be zeroed. */
1382 	CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
1383 	CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
1384 	CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
1385 	CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
1386 	CAS_WRITE_4(sc, CAS_MAC_DEFER_TMR_CNT, 0);
1387 	CAS_WRITE_4(sc, CAS_MAC_PEAK_ATTEMPTS, 0);
1388 	CAS_WRITE_4(sc, CAS_MAC_RX_FRAME_COUNT, 0);
1389 	CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
1390 	CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
1391 	CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
1392 	CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
1393 
1394 	/* Set XOFF PAUSE time. */
1395 	CAS_WRITE_4(sc, CAS_MAC_SPC, 0x1BF0 << CAS_MAC_SPC_TIME_SHFT);
1396 
1397 	/* Set the station address. */
1398 	CAS_WRITE_4(sc, CAS_MAC_ADDR0, (laddr[4] << 8) | laddr[5]);
1399 	CAS_WRITE_4(sc, CAS_MAC_ADDR1, (laddr[2] << 8) | laddr[3]);
1400 	CAS_WRITE_4(sc, CAS_MAC_ADDR2, (laddr[0] << 8) | laddr[1]);
1401 
1402 	/* Enable MII outputs. */
1403 	CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, CAS_MAC_XIF_CONF_TX_OE);
1404 }
1405 
1406 static void
1407 cas_tx_task(void *arg, int pending __unused)
1408 {
1409 	struct ifnet *ifp;
1410 
1411 	ifp = (struct ifnet *)arg;
1412 	cas_start(ifp);
1413 }
1414 
1415 static inline void
1416 cas_txkick(struct cas_softc *sc)
1417 {
1418 
1419 	/*
1420 	 * Update the TX kick register.  This register has to point to the
1421 	 * descriptor after the last valid one and for optimum performance
1422 	 * should be incremented in multiples of 4 (the DMA engine fetches/
1423 	 * updates descriptors in batches of 4).
1424 	 */
1425 #ifdef CAS_DEBUG
1426 	CTR3(KTR_CAS, "%s: %s: kicking TX %d",
1427 	    device_get_name(sc->sc_dev), __func__, sc->sc_txnext);
1428 #endif
1429 	CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1430 	CAS_WRITE_4(sc, CAS_TX_KICK3, sc->sc_txnext);
1431 }
1432 
1433 static void
1434 cas_start(struct ifnet *ifp)
1435 {
1436 	struct cas_softc *sc = ifp->if_softc;
1437 	struct mbuf *m;
1438 	int kicked, ntx;
1439 
1440 	CAS_LOCK(sc);
1441 
1442 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1443 	    IFF_DRV_RUNNING || (sc->sc_flags & CAS_LINK) == 0) {
1444 		CAS_UNLOCK(sc);
1445 		return;
1446 	}
1447 
1448 	if (sc->sc_txfree < CAS_MAXTXFREE / 4)
1449 		cas_tint(sc);
1450 
1451 #ifdef CAS_DEBUG
1452 	CTR4(KTR_CAS, "%s: %s: txfree %d, txnext %d",
1453 	    device_get_name(sc->sc_dev), __func__, sc->sc_txfree,
1454 	    sc->sc_txnext);
1455 #endif
1456 	ntx = 0;
1457 	kicked = 0;
1458 	for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->sc_txfree > 1;) {
1459 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1460 		if (m == NULL)
1461 			break;
1462 		if (cas_load_txmbuf(sc, &m) != 0) {
1463 			if (m == NULL)
1464 				break;
1465 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1466 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1467 			break;
1468 		}
1469 		if ((sc->sc_txnext % 4) == 0) {
1470 			cas_txkick(sc);
1471 			kicked = 1;
1472 		} else
1473 			kicked = 0;
1474 		ntx++;
1475 		BPF_MTAP(ifp, m);
1476 	}
1477 
1478 	if (ntx > 0) {
1479 		if (kicked == 0)
1480 			cas_txkick(sc);
1481 #ifdef CAS_DEBUG
1482 		CTR2(KTR_CAS, "%s: packets enqueued, OWN on %d",
1483 		    device_get_name(sc->sc_dev), sc->sc_txnext);
1484 #endif
1485 
1486 		/* Set a watchdog timer in case the chip flakes out. */
1487 		sc->sc_wdog_timer = 5;
1488 #ifdef CAS_DEBUG
1489 		CTR3(KTR_CAS, "%s: %s: watchdog %d",
1490 		    device_get_name(sc->sc_dev), __func__,
1491 		    sc->sc_wdog_timer);
1492 #endif
1493 	}
1494 
1495 	CAS_UNLOCK(sc);
1496 }
1497 
1498 static void
1499 cas_tint(struct cas_softc *sc)
1500 {
1501 	struct ifnet *ifp = sc->sc_ifp;
1502 	struct cas_txsoft *txs;
1503 	int progress;
1504 	uint32_t txlast;
1505 #ifdef CAS_DEBUG
1506 	int i;
1507 
1508 	CAS_LOCK_ASSERT(sc, MA_OWNED);
1509 
1510 	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
1511 #endif
1512 
1513 	/*
1514 	 * Go through our TX list and free mbufs for those
1515 	 * frames that have been transmitted.
1516 	 */
1517 	progress = 0;
1518 	CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
1519 	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1520 #ifdef CAS_DEBUG
1521 		if ((ifp->if_flags & IFF_DEBUG) != 0) {
1522 			printf("    txsoft %p transmit chain:\n", txs);
1523 			for (i = txs->txs_firstdesc;; i = CAS_NEXTTX(i)) {
1524 				printf("descriptor %d: ", i);
1525 				printf("cd_flags: 0x%016llx\t",
1526 				    (long long)le64toh(
1527 				    sc->sc_txdescs[i].cd_flags));
1528 				printf("cd_buf_ptr: 0x%016llx\n",
1529 				    (long long)le64toh(
1530 				    sc->sc_txdescs[i].cd_buf_ptr));
1531 				if (i == txs->txs_lastdesc)
1532 					break;
1533 			}
1534 		}
1535 #endif
1536 
1537 		/*
1538 		 * In theory, we could harvest some descriptors before
1539 		 * the ring is empty, but that's a bit complicated.
1540 		 *
1541 		 * CAS_TX_COMPn points to the last descriptor
1542 		 * processed + 1.
1543 		 */
1544 		txlast = CAS_READ_4(sc, CAS_TX_COMP3);
1545 #ifdef CAS_DEBUG
1546 		CTR4(KTR_CAS, "%s: txs->txs_firstdesc = %d, "
1547 		    "txs->txs_lastdesc = %d, txlast = %d",
1548 		    __func__, txs->txs_firstdesc, txs->txs_lastdesc, txlast);
1549 #endif
1550 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1551 			if ((txlast >= txs->txs_firstdesc) &&
1552 			    (txlast <= txs->txs_lastdesc))
1553 				break;
1554 		} else {
1555 			/* Ick -- this command wraps. */
1556 			if ((txlast >= txs->txs_firstdesc) ||
1557 			    (txlast <= txs->txs_lastdesc))
1558 				break;
1559 		}
1560 
1561 #ifdef CAS_DEBUG
1562 		CTR1(KTR_CAS, "%s: releasing a descriptor", __func__);
1563 #endif
1564 		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1565 
1566 		sc->sc_txfree += txs->txs_ndescs;
1567 
1568 		bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1569 		    BUS_DMASYNC_POSTWRITE);
1570 		bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1571 		if (txs->txs_mbuf != NULL) {
1572 			m_freem(txs->txs_mbuf);
1573 			txs->txs_mbuf = NULL;
1574 		}
1575 
1576 		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1577 
1578 		ifp->if_opackets++;
1579 		progress = 1;
1580 	}
1581 
1582 #ifdef CAS_DEBUG
1583 	CTR4(KTR_CAS, "%s: CAS_TX_STATE_MACHINE %x CAS_TX_DESC_BASE %llx "
1584 	    "CAS_TX_COMP3 %x",
1585 	    __func__, CAS_READ_4(sc, CAS_TX_STATE_MACHINE),
1586 	    ((long long)CAS_READ_4(sc, CAS_TX_DESC_BASE_HI3) << 32) |
1587 	    CAS_READ_4(sc, CAS_TX_DESC_BASE_LO3),
1588 	    CAS_READ_4(sc, CAS_TX_COMP3));
1589 #endif
1590 
1591 	if (progress) {
1592 		/* We freed some descriptors, so reset IFF_DRV_OACTIVE. */
1593 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1594 		if (STAILQ_EMPTY(&sc->sc_txdirtyq))
1595 			sc->sc_wdog_timer = 0;
1596 	}
1597 
1598 #ifdef CAS_DEBUG
1599 	CTR3(KTR_CAS, "%s: %s: watchdog %d",
1600 	    device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer);
1601 #endif
1602 }
1603 
1604 static void
1605 cas_rint_timeout(void *arg)
1606 {
1607 	struct cas_softc *sc = arg;
1608 
1609 	CAS_LOCK_ASSERT(sc, MA_NOTOWNED);
1610 
1611 	cas_rint(sc);
1612 }
1613 
1614 static void
1615 cas_rint(struct cas_softc *sc)
1616 {
1617 	struct cas_rxdsoft *rxds, *rxds2;
1618 	struct ifnet *ifp = sc->sc_ifp;
1619 	struct mbuf *m, *m2;
1620 	uint64_t word1, word2, word3, word4;
1621 	uint32_t rxhead;
1622 	u_int idx, idx2, len, off, skip;
1623 
1624 	CAS_LOCK_ASSERT(sc, MA_NOTOWNED);
1625 
1626 	callout_stop(&sc->sc_rx_ch);
1627 
1628 #ifdef CAS_DEBUG
1629 	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
1630 #endif
1631 
1632 #define	PRINTWORD(n, delimiter)						\
1633 	printf("word ## n: 0x%016llx%c", (long long)word ## n, delimiter)
1634 
1635 #define	SKIPASSERT(n)							\
1636 	KASSERT(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n == 0,	\
1637 	    ("%s: word ## n not 0", __func__))
1638 
1639 #define	WORDTOH(n)							\
1640 	word ## n = le64toh(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n)
1641 
1642 	/*
1643 	 * Read the completion head register once.  This limits
1644 	 * how long the following loop can execute.
1645 	 */
1646 	rxhead = CAS_READ_4(sc, CAS_RX_COMP_HEAD);
1647 #ifdef CAS_DEBUG
1648 	CTR4(KTR_CAS, "%s: sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
1649 	    __func__, sc->rxcptr, sc->sc_rxdptr, rxhead);
1650 #endif
1651 	skip = 0;
1652 	CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1653 	for (; sc->sc_rxcptr != rxhead;
1654 	    sc->sc_rxcptr = CAS_NEXTRXCOMP(sc->sc_rxcptr)) {
1655 		if (skip != 0) {
1656 			SKIPASSERT(1);
1657 			SKIPASSERT(2);
1658 			SKIPASSERT(3);
1659 
1660 			--skip;
1661 			goto skip;
1662 		}
1663 
1664 		WORDTOH(1);
1665 		WORDTOH(2);
1666 		WORDTOH(3);
1667 		WORDTOH(4);
1668 
1669 #ifdef CAS_DEBUG
1670 		if ((ifp->if_flags & IFF_DEBUG) != 0) {
1671 			printf("    completion %d: ", sc->sc_rxcptr);
1672 			PRINTWORD(1, '\t');
1673 			PRINTWORD(2, '\t');
1674 			PRINTWORD(3, '\t');
1675 			PRINTWORD(4, '\n');
1676 		}
1677 #endif
1678 
1679 		if (__predict_false(
1680 		    (word1 & CAS_RC1_TYPE_MASK) == CAS_RC1_TYPE_HW ||
1681 		    (word4 & CAS_RC4_ZERO) != 0)) {
1682 			/*
1683 			 * The descriptor is still marked as owned, although
1684 			 * it is supposed to have completed.  This has been
1685 			 * observed on some machines.  Just exiting here
1686 			 * might leave the packet sitting around until another
1687 			 * one arrives to trigger a new interrupt, which is
1688 			 * generally undesirable, so set up a timeout.
1689 			 */
1690 			callout_reset(&sc->sc_rx_ch, CAS_RXOWN_TICKS,
1691 			    cas_rint_timeout, sc);
1692 			break;
1693 		}
1694 
1695 		if (__predict_false(
1696 		    (word4 & (CAS_RC4_BAD | CAS_RC4_LEN_MMATCH)) != 0)) {
1697 			ifp->if_ierrors++;
1698 			device_printf(sc->sc_dev,
1699 			    "receive error: CRC error\n");
1700 			continue;
1701 		}
1702 
1703 		KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
1704 		    CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
1705 		    ("%s: data and header present", __func__));
1706 		KASSERT((word1 & CAS_RC1_SPLIT_PKT) == 0 ||
1707 		    CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
1708 		    ("%s: split and header present", __func__));
1709 		KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
1710 		    (word1 & CAS_RC1_RELEASE_HDR) == 0,
1711 		    ("%s: data present but header release", __func__));
1712 		KASSERT(CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0 ||
1713 		    (word1 & CAS_RC1_RELEASE_DATA) == 0,
1714 		    ("%s: header present but data release", __func__));
1715 
1716 		if ((len = CAS_GET(word2, CAS_RC2_HDR_SIZE)) != 0) {
1717 			idx = CAS_GET(word2, CAS_RC2_HDR_INDEX);
1718 			off = CAS_GET(word2, CAS_RC2_HDR_OFF);
1719 #ifdef CAS_DEBUG
1720 			CTR4(KTR_CAS, "%s: hdr at idx %d, off %d, len %d",
1721 			    __func__, idx, off, len);
1722 #endif
1723 			rxds = &sc->sc_rxdsoft[idx];
1724 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1725 			if (m != NULL) {
1726 				refcount_acquire(&rxds->rxds_refcount);
1727 				bus_dmamap_sync(sc->sc_rdmatag,
1728 				    rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
1729 #if __FreeBSD_version < 800016
1730 				MEXTADD(m, (caddr_t)rxds->rxds_buf +
1731 				    off * 256 + ETHER_ALIGN, len, cas_free,
1732 				    rxds, M_RDONLY, EXT_NET_DRV);
1733 #else
1734 				MEXTADD(m, (caddr_t)rxds->rxds_buf +
1735 				    off * 256 + ETHER_ALIGN, len, cas_free,
1736 				    sc, (void *)(uintptr_t)idx,
1737 				    M_RDONLY, EXT_NET_DRV);
1738 #endif
1739 				if ((m->m_flags & M_EXT) == 0) {
1740 					m_freem(m);
1741 					m = NULL;
1742 				}
1743 			}
1744 			if (m != NULL) {
1745 				m->m_pkthdr.rcvif = ifp;
1746 				m->m_pkthdr.len = m->m_len = len;
1747 				ifp->if_ipackets++;
1748 				if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1749 					cas_rxcksum(m, CAS_GET(word4,
1750 					    CAS_RC4_TCP_CSUM));
1751 				/* Pass it on. */
1752 				(*ifp->if_input)(ifp, m);
1753 			} else
1754 				ifp->if_ierrors++;
1755 
1756 			if ((word1 & CAS_RC1_RELEASE_HDR) != 0 &&
1757 			    refcount_release(&rxds->rxds_refcount) != 0)
1758 				cas_add_rxdesc(sc, idx);
1759 		} else if ((len = CAS_GET(word1, CAS_RC1_DATA_SIZE)) != 0) {
1760 			idx = CAS_GET(word1, CAS_RC1_DATA_INDEX);
1761 			off = CAS_GET(word1, CAS_RC1_DATA_OFF);
1762 #ifdef CAS_DEBUG
1763 			CTR4(KTR_CAS, "%s: data at idx %d, off %d, len %d",
1764 			    __func__, idx, off, len);
1765 #endif
1766 			rxds = &sc->sc_rxdsoft[idx];
1767 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1768 			if (m != NULL) {
1769 				refcount_acquire(&rxds->rxds_refcount);
1770 				off += ETHER_ALIGN;
1771 				m->m_len = min(CAS_PAGE_SIZE - off, len);
1772 				bus_dmamap_sync(sc->sc_rdmatag,
1773 				    rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
1774 #if __FreeBSD_version < 800016
1775 				MEXTADD(m, (caddr_t)rxds->rxds_buf + off,
1776 				    m->m_len, cas_free, rxds, M_RDONLY,
1777 				    EXT_NET_DRV);
1778 #else
1779 				MEXTADD(m, (caddr_t)rxds->rxds_buf + off,
1780 				    m->m_len, cas_free, sc,
1781 				    (void *)(uintptr_t)idx, M_RDONLY,
1782 				    EXT_NET_DRV);
1783 #endif
1784 				if ((m->m_flags & M_EXT) == 0) {
1785 					m_freem(m);
1786 					m = NULL;
1787 				}
1788 			}
1789 			idx2 = 0;
1790 			m2 = NULL;
1791 			rxds2 = NULL;
1792 			if ((word1 & CAS_RC1_SPLIT_PKT) != 0) {
1793 				KASSERT((word1 & CAS_RC1_RELEASE_NEXT) != 0,
1794 				    ("%s: split but no release next",
1795 				    __func__));
1796 
1797 				idx2 = CAS_GET(word2, CAS_RC2_NEXT_INDEX);
1798 #ifdef CAS_DEBUG
1799 				CTR2(KTR_CAS, "%s: split at idx %d",
1800 				    __func__, idx2);
1801 #endif
1802 				rxds2 = &sc->sc_rxdsoft[idx2];
1803 				if (m != NULL) {
1804 					MGET(m2, M_DONTWAIT, MT_DATA);
1805 					if (m2 != NULL) {
1806 						refcount_acquire(
1807 						    &rxds2->rxds_refcount);
1808 						m2->m_len = len - m->m_len;
1809 						bus_dmamap_sync(
1810 						    sc->sc_rdmatag,
1811 						    rxds2->rxds_dmamap,
1812 						    BUS_DMASYNC_POSTREAD);
1813 #if __FreeBSD_version < 800016
1814 						MEXTADD(m2,
1815 						    (caddr_t)rxds2->rxds_buf,
1816 						    m2->m_len, cas_free,
1817 						    rxds2, M_RDONLY,
1818 						    EXT_NET_DRV);
1819 #else
1820 						MEXTADD(m2,
1821 						    (caddr_t)rxds2->rxds_buf,
1822 						    m2->m_len, cas_free, sc,
1823 						    (void *)(uintptr_t)idx2,
1824 						    M_RDONLY, EXT_NET_DRV);
1825 #endif
1826 						if ((m2->m_flags & M_EXT) ==
1827 						    0) {
1828 							m_freem(m2);
1829 							m2 = NULL;
1830 						}
1831 					}
1832 				}
1833 				if (m2 != NULL)
1834 					m->m_next = m2;
1835 				else if (m != NULL) {
1836 					m_freem(m);
1837 					m = NULL;
1838 				}
1839 			}
1840 			if (m != NULL) {
1841 				m->m_pkthdr.rcvif = ifp;
1842 				m->m_pkthdr.len = len;
1843 				ifp->if_ipackets++;
1844 				if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1845 					cas_rxcksum(m, CAS_GET(word4,
1846 					    CAS_RC4_TCP_CSUM));
1847 				/* Pass it on. */
1848 				(*ifp->if_input)(ifp, m);
1849 			} else
1850 				ifp->if_ierrors++;
1851 
1852 			if ((word1 & CAS_RC1_RELEASE_DATA) != 0 &&
1853 			    refcount_release(&rxds->rxds_refcount) != 0)
1854 				cas_add_rxdesc(sc, idx);
1855 			if ((word1 & CAS_RC1_SPLIT_PKT) != 0 &&
1856 			    refcount_release(&rxds2->rxds_refcount) != 0)
1857 				cas_add_rxdesc(sc, idx2);
1858 		}
1859 
1860 		skip = CAS_GET(word1, CAS_RC1_SKIP);
1861 
1862  skip:
1863 		cas_rxcompinit(&sc->sc_rxcomps[sc->sc_rxcptr]);
1864 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1865 			break;
1866 	}
1867 	CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1868 	CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, sc->sc_rxcptr);
1869 
1870 #undef PRINTWORD
1871 #undef SKIPASSERT
1872 #undef WORDTOH
1873 
1874 #ifdef CAS_DEBUG
1875 	CTR4(KTR_CAS, "%s: done sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
1876 	    __func__, sc->rxcptr, sc->sc_rxdptr,
1877 	    CAS_READ_4(sc, CAS_RX_COMP_HEAD));
1878 #endif
1879 }
1880 
1881 static void
1882 cas_free(void *arg1, void *arg2)
1883 {
1884 	struct cas_rxdsoft *rxds;
1885 	struct cas_softc *sc;
1886 	u_int idx;
1887 
1888 #if __FreeBSD_version < 800016
1889 	rxds = arg2;
1890 	sc = rxds->rxds_sc;
1891 	idx = rxds->rxds_idx;
1892 #else
1893 	sc = arg1;
1894 	idx = (uintptr_t)arg2;
1895 	rxds = &sc->sc_rxdsoft[idx];
1896 #endif
1897 	if (refcount_release(&rxds->rxds_refcount) == 0)
1898 		return;
1899 
1900 	/*
1901 	 * NB: this function can be called via m_freem(9) within
1902 	 * this driver!
1903 	 */
1904 
1905 	cas_add_rxdesc(sc, idx);
1906 }
1907 
1908 static inline void
1909 cas_add_rxdesc(struct cas_softc *sc, u_int idx)
1910 {
1911 	u_int locked;
1912 
1913 	if ((locked = CAS_LOCK_OWNED(sc)) == 0)
1914 		CAS_LOCK(sc);
1915 
1916 	bus_dmamap_sync(sc->sc_rdmatag, sc->sc_rxdsoft[idx].rxds_dmamap,
1917 	    BUS_DMASYNC_PREREAD);
1918 	CAS_UPDATE_RXDESC(sc, sc->sc_rxdptr, idx);
1919 	sc->sc_rxdptr = CAS_NEXTRXDESC(sc->sc_rxdptr);
1920 
1921 	/*
1922 	 * Update the RX kick register.  This register has to point to the
1923 	 * descriptor after the last valid one (before the current batch)
1924 	 * and for optimum performance should be incremented in multiples
1925 	 * of 4 (the DMA engine fetches/updates descriptors in batches of 4).
1926 	 */
1927 	if ((sc->sc_rxdptr % 4) == 0) {
1928 		CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1929 		CAS_WRITE_4(sc, CAS_RX_KICK,
1930 		    (sc->sc_rxdptr + CAS_NRXDESC - 4) & CAS_NRXDESC_MASK);
1931 	}
1932 
1933 	if (locked == 0)
1934 		CAS_UNLOCK(sc);
1935 }
1936 
1937 static void
1938 cas_eint(struct cas_softc *sc, u_int status)
1939 {
1940 	struct ifnet *ifp = sc->sc_ifp;
1941 
1942 	CAS_LOCK_ASSERT(sc, MA_NOTOWNED);
1943 
1944 	ifp->if_ierrors++;
1945 
1946 	device_printf(sc->sc_dev, "%s: status 0x%x", __func__, status);
1947 	if ((status & CAS_INTR_PCI_ERROR_INT) != 0) {
1948 		status = CAS_READ_4(sc, CAS_ERROR_STATUS);
1949 		printf(", PCI bus error 0x%x", status);
1950 		if ((status & CAS_ERROR_OTHER) != 0) {
1951 			status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
1952 			printf(", PCI status 0x%x", status);
1953 			pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
1954 		}
1955 	}
1956 	printf("\n");
1957 
1958 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1959 	cas_init(sc);
1960 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1961 		taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
1962 }
1963 
1964 static int
1965 cas_intr(void *v)
1966 {
1967 	struct cas_softc *sc = v;
1968 
1969 	if (__predict_false((CAS_READ_4(sc, CAS_STATUS_ALIAS) &
1970 	    CAS_INTR_SUMMARY) == 0))
1971 		return (FILTER_STRAY);
1972 
1973 	/* Disable interrupts. */
1974 	CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
1975 	taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
1976 
1977 	return (FILTER_HANDLED);
1978 }
1979 
1980 static void
1981 cas_intr_task(void *arg, int pending __unused)
1982 {
1983 	struct cas_softc *sc = arg;
1984 	struct ifnet *ifp = sc->sc_ifp;
1985 	uint32_t status, status2;
1986 
1987 	CAS_LOCK_ASSERT(sc, MA_NOTOWNED);
1988 
1989 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1990 		return;
1991 
1992 	status = CAS_READ_4(sc, CAS_STATUS);
1993 	if (__predict_false((status & CAS_INTR_SUMMARY) == 0))
1994 		goto done;
1995 
1996 #ifdef CAS_DEBUG
1997 	CTR4(KTR_CAS, "%s: %s: cplt %x, status %x",
1998 	    device_get_name(sc->sc_dev), __func__,
1999 	    (status >> CAS_STATUS_TX_COMP3_SHIFT), (u_int)status);
2000 
2001 	/*
2002 	 * PCS interrupts must be cleared, otherwise no traffic is passed!
2003 	 */
2004 	if ((status & CAS_INTR_PCS_INT) != 0) {
2005 		status2 =
2006 		    CAS_READ_4(sc, CAS_PCS_INTR_STATUS) |
2007 		    CAS_READ_4(sc, CAS_PCS_INTR_STATUS);
2008 		if ((status2 & CAS_PCS_INTR_LINK) != 0)
2009 			device_printf(sc->sc_dev,
2010 			    "%s: PCS link status changed\n", __func__);
2011 	}
2012 	if ((status & CAS_MAC_CTRL_STATUS) != 0) {
2013 		status2 = CAS_READ_4(sc, CAS_MAC_CTRL_STATUS);
2014 		if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
2015 			device_printf(sc->sc_dev,
2016 			    "%s: PAUSE received (PAUSE time %d slots)\n",
2017 			    __func__,
2018 			    (status2 & CAS_MAC_CTRL_STATUS_PT_MASK) >>
2019 			    CAS_MAC_CTRL_STATUS_PT_SHFT);
2020 		if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
2021 			device_printf(sc->sc_dev,
2022 			    "%s: transited to PAUSE state\n", __func__);
2023 		if ((status2 & CAS_MAC_CTRL_NON_PAUSE) != 0)
2024 			device_printf(sc->sc_dev,
2025 			    "%s: transited to non-PAUSE state\n", __func__);
2026 	}
2027 	if ((status & CAS_INTR_MIF) != 0)
2028 		device_printf(sc->sc_dev, "%s: MIF interrupt\n", __func__);
2029 #endif
2030 
2031 	if (__predict_false((status &
2032 	    (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
2033 	    CAS_INTR_RX_LEN_MMATCH | CAS_INTR_PCI_ERROR_INT)) != 0)) {
2034 		cas_eint(sc, status);
2035 		return;
2036 	}
2037 
2038 	if (__predict_false(status & CAS_INTR_TX_MAC_INT)) {
2039 		status2 = CAS_READ_4(sc, CAS_MAC_TX_STATUS);
2040 		if ((status2 &
2041 		    (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR)) != 0)
2042 			sc->sc_ifp->if_oerrors++;
2043 		else if ((status2 & ~CAS_MAC_TX_FRAME_XMTD) != 0)
2044 			device_printf(sc->sc_dev,
2045 			    "MAC TX fault, status %x\n", status2);
2046 	}
2047 
2048 	if (__predict_false(status & CAS_INTR_RX_MAC_INT)) {
2049 		status2 = CAS_READ_4(sc, CAS_MAC_RX_STATUS);
2050 		if ((status2 & CAS_MAC_RX_OVERFLOW) != 0)
2051 			sc->sc_ifp->if_ierrors++;
2052 		else if ((status2 & ~CAS_MAC_RX_FRAME_RCVD) != 0)
2053 			device_printf(sc->sc_dev,
2054 			    "MAC RX fault, status %x\n", status2);
2055 	}
2056 
2057 	if ((status &
2058 	    (CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
2059 	    CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0) {
2060 		cas_rint(sc);
2061 #ifdef CAS_DEBUG
2062 		if (__predict_false((status &
2063 		    (CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
2064 		    CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0))
2065 			device_printf(sc->sc_dev,
2066 			    "RX fault, status %x\n", status);
2067 #endif
2068 	}
2069 
2070 	if ((status &
2071 	    (CAS_INTR_TX_INT_ME | CAS_INTR_TX_ALL | CAS_INTR_TX_DONE)) != 0) {
2072 		CAS_LOCK(sc);
2073 		cas_tint(sc);
2074 		CAS_UNLOCK(sc);
2075 	}
2076 
2077 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2078 		return;
2079 	else if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2080 		taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
2081 
2082 	status = CAS_READ_4(sc, CAS_STATUS_ALIAS);
2083 	if (__predict_false((status & CAS_INTR_SUMMARY) != 0)) {
2084 		taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
2085 		return;
2086 	}
2087 
2088  done:
2089 	/* Re-enable interrupts. */
2090 	CAS_WRITE_4(sc, CAS_INTMASK,
2091 	    ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
2092 	    CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
2093 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
2094 	    CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
2095 	    CAS_INTR_PCI_ERROR_INT
2096 #ifdef CAS_DEBUG
2097 	    | CAS_INTR_PCS_INT | CAS_INTR_MIF
2098 #endif
2099 	));
2100 }
2101 
2102 static void
2103 cas_watchdog(struct cas_softc *sc)
2104 {
2105 	struct ifnet *ifp = sc->sc_ifp;
2106 
2107 	CAS_LOCK_ASSERT(sc, MA_OWNED);
2108 
2109 #ifdef CAS_DEBUG
2110 	CTR4(KTR_CAS,
2111 	    "%s: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x CAS_MAC_RX_CONFIG %x",
2112 	    __func__, CAS_READ_4(sc, CAS_RX_CONFIG),
2113 	    CAS_READ_4(sc, CAS_MAC_RX_STATUS),
2114 	    CAS_READ_4(sc, CAS_MAC_RX_CONFIG));
2115 	CTR4(KTR_CAS,
2116 	    "%s: CAS_TX_CONFIG %x CAS_MAC_TX_STATUS %x CAS_MAC_TX_CONFIG %x",
2117 	    __func__, CAS_READ_4(sc, CAS_TX_CONFIG),
2118 	    CAS_READ_4(sc, CAS_MAC_TX_STATUS),
2119 	    CAS_READ_4(sc, CAS_MAC_TX_CONFIG));
2120 #endif
2121 
2122 	if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0)
2123 		return;
2124 
2125 	if ((sc->sc_flags & CAS_LINK) != 0)
2126 		device_printf(sc->sc_dev, "device timeout\n");
2127 	else if (bootverbose)
2128 		device_printf(sc->sc_dev, "device timeout (no link)\n");
2129 	++ifp->if_oerrors;
2130 
2131 	/* Try to get more packets going. */
2132 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2133 	cas_init_locked(sc);
2134 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2135 		taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
2136 }
2137 
2138 static void
2139 cas_mifinit(struct cas_softc *sc)
2140 {
2141 
2142 	/* Configure the MIF in frame mode. */
2143 	CAS_WRITE_4(sc, CAS_MIF_CONF,
2144 	    CAS_READ_4(sc, CAS_MIF_CONF) & ~CAS_MIF_CONF_BB_MODE);
2145 	CAS_BARRIER(sc, CAS_MIF_CONF, 4,
2146 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2147 }
2148 
2149 /*
2150  * MII interface
2151  *
2152  * The MII interface supports at least three different operating modes:
2153  *
2154  * Bitbang mode is implemented using data, clock and output enable registers.
2155  *
2156  * Frame mode is implemented by loading a complete frame into the frame
2157  * register and polling the valid bit for completion.
2158  *
2159  * Polling mode uses the frame register but completion is indicated by
2160  * an interrupt.
2161  *
2162  */
2163 static int
2164 cas_mii_readreg(device_t dev, int phy, int reg)
2165 {
2166 	struct cas_softc *sc;
2167 	int n;
2168 	uint32_t v;
2169 
2170 #ifdef CAS_DEBUG_PHY
2171 	printf("%s: phy %d reg %d\n", __func__, phy, reg);
2172 #endif
2173 
2174 	sc = device_get_softc(dev);
2175 	if (sc->sc_phyad != -1 && phy != sc->sc_phyad)
2176 		return (0);
2177 
2178 	if ((sc->sc_flags & CAS_SERDES) != 0) {
2179 		switch (reg) {
2180 		case MII_BMCR:
2181 			reg = CAS_PCS_CTRL;
2182 			break;
2183 		case MII_BMSR:
2184 			reg = CAS_PCS_STATUS;
2185 			break;
2186 		case MII_PHYIDR1:
2187 		case MII_PHYIDR2:
2188 			return (0);
2189 		case MII_ANAR:
2190 			reg = CAS_PCS_ANAR;
2191 			break;
2192 		case MII_ANLPAR:
2193 			reg = CAS_PCS_ANLPAR;
2194 			break;
2195 		case MII_EXTSR:
2196 			return (EXTSR_1000XFDX | EXTSR_1000XHDX);
2197 		default:
2198 			device_printf(sc->sc_dev,
2199 			    "%s: unhandled register %d\n", __func__, reg);
2200 			return (0);
2201 		}
2202 		return (CAS_READ_4(sc, reg));
2203 	}
2204 
2205 	/* Construct the frame command. */
2206 	v = CAS_MIF_FRAME_READ |
2207 	    (phy << CAS_MIF_FRAME_PHY_SHFT) |
2208 	    (reg << CAS_MIF_FRAME_REG_SHFT);
2209 
2210 	CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
2211 	CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
2212 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2213 	for (n = 0; n < 100; n++) {
2214 		DELAY(1);
2215 		v = CAS_READ_4(sc, CAS_MIF_FRAME);
2216 		if (v & CAS_MIF_FRAME_TA_LSB)
2217 			return (v & CAS_MIF_FRAME_DATA);
2218 	}
2219 
2220 	device_printf(sc->sc_dev, "%s: timed out\n", __func__);
2221 	return (0);
2222 }
2223 
2224 static int
2225 cas_mii_writereg(device_t dev, int phy, int reg, int val)
2226 {
2227 	struct cas_softc *sc;
2228 	int n;
2229 	uint32_t v;
2230 
2231 #ifdef CAS_DEBUG_PHY
2232 	printf("%s: phy %d reg %d val %x\n", phy, reg, val, __func__);
2233 #endif
2234 
2235 	sc = device_get_softc(dev);
2236 	if (sc->sc_phyad != -1 && phy != sc->sc_phyad)
2237 		return (0);
2238 
2239 	if ((sc->sc_flags & CAS_SERDES) != 0) {
2240 		switch (reg) {
2241 		case MII_BMSR:
2242 			reg = CAS_PCS_STATUS;
2243 			break;
2244 		case MII_BMCR:
2245 			reg = CAS_PCS_CTRL;
2246 			if ((val & CAS_PCS_CTRL_RESET) == 0)
2247 				break;
2248 			CAS_WRITE_4(sc, CAS_PCS_CTRL, val);
2249 			CAS_BARRIER(sc, CAS_PCS_CTRL, 4,
2250 			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2251 			if (!cas_bitwait(sc, CAS_PCS_CTRL,
2252 			    CAS_PCS_CTRL_RESET, 0))
2253 				device_printf(sc->sc_dev,
2254 				    "cannot reset PCS\n");
2255 			/* FALLTHROUGH */
2256 		case MII_ANAR:
2257 			CAS_WRITE_4(sc, CAS_PCS_CONF, 0);
2258 			CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2259 			    BUS_SPACE_BARRIER_WRITE);
2260 			CAS_WRITE_4(sc, CAS_PCS_ANAR, val);
2261 			CAS_BARRIER(sc, CAS_PCS_ANAR, 4,
2262 			    BUS_SPACE_BARRIER_WRITE);
2263 			CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL,
2264 			    CAS_PCS_SERDES_CTRL_ESD);
2265 			CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2266 			    BUS_SPACE_BARRIER_WRITE);
2267 			CAS_WRITE_4(sc, CAS_PCS_CONF,
2268 			    CAS_PCS_CONF_EN);
2269 			CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2270 			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2271 			return (0);
2272 		case MII_ANLPAR:
2273 			reg = CAS_PCS_ANLPAR;
2274 			break;
2275 		default:
2276 			device_printf(sc->sc_dev,
2277 			    "%s: unhandled register %d\n", __func__, reg);
2278 			return (0);
2279 		}
2280 		CAS_WRITE_4(sc, reg, val);
2281 		CAS_BARRIER(sc, reg, 4,
2282 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2283 		return (0);
2284 	}
2285 
2286 	/* Construct the frame command. */
2287 	v = CAS_MIF_FRAME_WRITE |
2288 	    (phy << CAS_MIF_FRAME_PHY_SHFT) |
2289 	    (reg << CAS_MIF_FRAME_REG_SHFT) |
2290 	    (val & CAS_MIF_FRAME_DATA);
2291 
2292 	CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
2293 	CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
2294 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2295 	for (n = 0; n < 100; n++) {
2296 		DELAY(1);
2297 		v = CAS_READ_4(sc, CAS_MIF_FRAME);
2298 		if (v & CAS_MIF_FRAME_TA_LSB)
2299 			return (1);
2300 	}
2301 
2302 	device_printf(sc->sc_dev, "%s: timed out\n", __func__);
2303 	return (0);
2304 }
2305 
2306 static void
2307 cas_mii_statchg(device_t dev)
2308 {
2309 	struct cas_softc *sc;
2310 	struct ifnet *ifp;
2311 	int gigabit;
2312 	uint32_t rxcfg, txcfg, v;
2313 
2314 	sc = device_get_softc(dev);
2315 	ifp = sc->sc_ifp;
2316 
2317 	CAS_LOCK_ASSERT(sc, MA_OWNED);
2318 
2319 #ifdef CAS_DEBUG
2320 	if ((ifp->if_flags & IFF_DEBUG) != 0)
2321 		device_printf(sc->sc_dev, "%s: status change: PHY = %d\n",
2322 		    __func__, sc->sc_phyad);
2323 #endif
2324 
2325 	if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 &&
2326 	    IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE)
2327 		sc->sc_flags |= CAS_LINK;
2328 	else
2329 		sc->sc_flags &= ~CAS_LINK;
2330 
2331 	switch (IFM_SUBTYPE(sc->sc_mii->mii_media_active)) {
2332 	case IFM_1000_SX:
2333 	case IFM_1000_LX:
2334 	case IFM_1000_CX:
2335 	case IFM_1000_T:
2336 		gigabit = 1;
2337 		break;
2338 	default:
2339 		gigabit = 0;
2340 	}
2341 
2342 	/*
2343 	 * The configuration done here corresponds to the steps F) and
2344 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2345 	 * of the initialization sequence outlined in section 11.2.1 of
2346 	 * the Cassini+ ASIC Specification.
2347 	 */
2348 
2349 	rxcfg = CAS_READ_4(sc, CAS_MAC_RX_CONF);
2350 	rxcfg &= ~(CAS_MAC_RX_CONF_EN | CAS_MAC_RX_CONF_CARR);
2351 	txcfg = CAS_MAC_TX_CONF_EN_IPG0 | CAS_MAC_TX_CONF_NGU |
2352 	    CAS_MAC_TX_CONF_NGUL;
2353 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
2354 		txcfg |= CAS_MAC_TX_CONF_ICARR | CAS_MAC_TX_CONF_ICOLLIS;
2355 	else if (gigabit != 0) {
2356 		rxcfg |= CAS_MAC_RX_CONF_CARR;
2357 		txcfg |= CAS_MAC_TX_CONF_CARR;
2358 	}
2359 	CAS_WRITE_4(sc, CAS_MAC_TX_CONF, 0);
2360 	CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4,
2361 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2362 	if (!cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0))
2363 		device_printf(sc->sc_dev, "cannot disable TX MAC\n");
2364 	CAS_WRITE_4(sc, CAS_MAC_TX_CONF, txcfg);
2365 	CAS_WRITE_4(sc, CAS_MAC_RX_CONF, 0);
2366 	CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
2367 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2368 	if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0))
2369 		device_printf(sc->sc_dev, "cannot disable RX MAC\n");
2370 	CAS_WRITE_4(sc, CAS_MAC_RX_CONF, rxcfg);
2371 
2372 	v = CAS_READ_4(sc, CAS_MAC_CTRL_CONF) &
2373 	    ~(CAS_MAC_CTRL_CONF_TXP | CAS_MAC_CTRL_CONF_RXP);
2374 #ifdef notyet
2375 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
2376 	    IFM_ETH_RXPAUSE) != 0)
2377 		v |= CAS_MAC_CTRL_CONF_RXP;
2378 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
2379 	    IFM_ETH_TXPAUSE) != 0)
2380 		v |= CAS_MAC_CTRL_CONF_TXP;
2381 #endif
2382 	CAS_WRITE_4(sc, CAS_MAC_CTRL_CONF, v);
2383 
2384 	/*
2385 	 * All supported chips have a bug causing incorrect checksum
2386 	 * to be calculated when letting them strip the FCS in half-
2387 	 * duplex mode.  In theory we could disable FCS stripping and
2388 	 * manually adjust the checksum accordingly.  It seems to make
2389 	 * more sense to optimze for the common case and just disable
2390 	 * hardware checksumming in half-duplex mode though.
2391 	 */
2392 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) {
2393 		ifp->if_capenable &= ~IFCAP_HWCSUM;
2394 		ifp->if_hwassist = 0;
2395 	} else if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
2396 		ifp->if_capenable = ifp->if_capabilities;
2397 		ifp->if_hwassist = CAS_CSUM_FEATURES;
2398 	}
2399 
2400 	if (sc->sc_variant == CAS_SATURN) {
2401 		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
2402 			/* silicon bug workaround */
2403 			CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x41);
2404 		else
2405 			CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
2406 	}
2407 
2408 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0 &&
2409 	    gigabit != 0)
2410 		CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
2411 		    CAS_MAC_SLOT_TIME_CARR);
2412 	else
2413 		CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
2414 		    CAS_MAC_SLOT_TIME_NORM);
2415 
2416 	/* XIF Configuration */
2417 	v = CAS_MAC_XIF_CONF_TX_OE | CAS_MAC_XIF_CONF_LNKLED;
2418 	if ((sc->sc_flags & CAS_SERDES) == 0) {
2419 		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
2420 			v |= CAS_MAC_XIF_CONF_NOECHO;
2421 		v |= CAS_MAC_XIF_CONF_BUF_OE;
2422 	}
2423 	if (gigabit != 0)
2424 		v |= CAS_MAC_XIF_CONF_GMII;
2425 	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
2426 		v |= CAS_MAC_XIF_CONF_FDXLED;
2427 	CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, v);
2428 
2429 	if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2430 	    (sc->sc_flags & CAS_LINK) != 0) {
2431 		CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
2432 		    txcfg | CAS_MAC_TX_CONF_EN);
2433 		CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
2434 		    rxcfg | CAS_MAC_RX_CONF_EN);
2435 	}
2436 }
2437 
2438 static int
2439 cas_mediachange(struct ifnet *ifp)
2440 {
2441 	struct cas_softc *sc = ifp->if_softc;
2442 	int error;
2443 
2444 	/* XXX add support for serial media. */
2445 
2446 	CAS_LOCK(sc);
2447 	error = mii_mediachg(sc->sc_mii);
2448 	CAS_UNLOCK(sc);
2449 	return (error);
2450 }
2451 
2452 static void
2453 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2454 {
2455 	struct cas_softc *sc = ifp->if_softc;
2456 
2457 	CAS_LOCK(sc);
2458 	if ((ifp->if_flags & IFF_UP) == 0) {
2459 		CAS_UNLOCK(sc);
2460 		return;
2461 	}
2462 
2463 	mii_pollstat(sc->sc_mii);
2464 	ifmr->ifm_active = sc->sc_mii->mii_media_active;
2465 	ifmr->ifm_status = sc->sc_mii->mii_media_status;
2466 	CAS_UNLOCK(sc);
2467 }
2468 
2469 static int
2470 cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2471 {
2472 	struct cas_softc *sc = ifp->if_softc;
2473 	struct ifreq *ifr = (struct ifreq *)data;
2474 	int error;
2475 
2476 	error = 0;
2477 	switch (cmd) {
2478 	case SIOCSIFFLAGS:
2479 		CAS_LOCK(sc);
2480 		if ((ifp->if_flags & IFF_UP) != 0) {
2481 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2482 			    ((ifp->if_flags ^ sc->sc_ifflags) &
2483 			    (IFF_ALLMULTI | IFF_PROMISC)) != 0)
2484 				cas_setladrf(sc);
2485 			else
2486 				cas_init_locked(sc);
2487 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2488 			cas_stop(ifp);
2489 		sc->sc_ifflags = ifp->if_flags;
2490 		CAS_UNLOCK(sc);
2491 		break;
2492 	case SIOCSIFCAP:
2493 		CAS_LOCK(sc);
2494 		if ((sc->sc_flags & CAS_NO_CSUM) != 0) {
2495 			error = EINVAL;
2496 			CAS_UNLOCK(sc);
2497 			break;
2498 		}
2499 		ifp->if_capenable = ifr->ifr_reqcap;
2500 		if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2501 			ifp->if_hwassist = CAS_CSUM_FEATURES;
2502 		else
2503 			ifp->if_hwassist = 0;
2504 		CAS_UNLOCK(sc);
2505 		break;
2506 	case SIOCADDMULTI:
2507 	case SIOCDELMULTI:
2508 		CAS_LOCK(sc);
2509 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2510 			cas_setladrf(sc);
2511 		CAS_UNLOCK(sc);
2512 		break;
2513 	case SIOCSIFMTU:
2514 		if ((ifr->ifr_mtu < ETHERMIN) ||
2515 		    (ifr->ifr_mtu > ETHERMTU_JUMBO))
2516 			error = EINVAL;
2517 		else
2518 			ifp->if_mtu = ifr->ifr_mtu;
2519 		break;
2520 	case SIOCGIFMEDIA:
2521 	case SIOCSIFMEDIA:
2522 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
2523 		break;
2524 	default:
2525 		error = ether_ioctl(ifp, cmd, data);
2526 		break;
2527 	}
2528 
2529 	return (error);
2530 }
2531 
2532 static void
2533 cas_setladrf(struct cas_softc *sc)
2534 {
2535 	struct ifnet *ifp = sc->sc_ifp;
2536 	struct ifmultiaddr *inm;
2537 	int i;
2538 	uint32_t hash[16];
2539 	uint32_t crc, v;
2540 
2541 	CAS_LOCK_ASSERT(sc, MA_OWNED);
2542 
2543 	/* Get the current RX configuration. */
2544 	v = CAS_READ_4(sc, CAS_MAC_RX_CONF);
2545 
2546 	/*
2547 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2548 	 * and hash filter.  Depending on the case, the right bit will be
2549 	 * enabled.
2550 	 */
2551 	v &= ~(CAS_MAC_RX_CONF_PROMISC | CAS_MAC_RX_CONF_HFILTER |
2552 	    CAS_MAC_RX_CONF_PGRP);
2553 
2554 	CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v);
2555 	CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
2556 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2557 	if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_HFILTER, 0))
2558 		device_printf(sc->sc_dev, "cannot disable RX hash filter\n");
2559 
2560 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2561 		v |= CAS_MAC_RX_CONF_PROMISC;
2562 		goto chipit;
2563 	}
2564 	if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
2565 		v |= CAS_MAC_RX_CONF_PGRP;
2566 		goto chipit;
2567 	}
2568 
2569 	/*
2570 	 * Set up multicast address filter by passing all multicast
2571 	 * addresses through a crc generator, and then using the high
2572 	 * order 8 bits as an index into the 256 bit logical address
2573 	 * filter.  The high order 4 bits selects the word, while the
2574 	 * other 4 bits select the bit within the word (where bit 0
2575 	 * is the MSB).
2576 	 */
2577 
2578 	/* Clear the hash table. */
2579 	memset(hash, 0, sizeof(hash));
2580 
2581 	if_maddr_rlock(ifp);
2582 	TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) {
2583 		if (inm->ifma_addr->sa_family != AF_LINK)
2584 			continue;
2585 		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2586 		    inm->ifma_addr), ETHER_ADDR_LEN);
2587 
2588 		/* We just want the 8 most significant bits. */
2589 		crc >>= 24;
2590 
2591 		/* Set the corresponding bit in the filter. */
2592 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2593 	}
2594 	if_maddr_runlock(ifp);
2595 
2596 	v |= CAS_MAC_RX_CONF_HFILTER;
2597 
2598 	/* Now load the hash table into the chip (if we are using it). */
2599 	for (i = 0; i < 16; i++)
2600 		CAS_WRITE_4(sc,
2601 		    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
2602 		    hash[i]);
2603 
2604  chipit:
2605 	CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v);
2606 }
2607 
2608 static int	cas_pci_attach(device_t dev);
2609 static int	cas_pci_detach(device_t dev);
2610 static int	cas_pci_probe(device_t dev);
2611 static int	cas_pci_resume(device_t dev);
2612 static int	cas_pci_suspend(device_t dev);
2613 
2614 static device_method_t cas_pci_methods[] = {
2615 	/* Device interface */
2616 	DEVMETHOD(device_probe,		cas_pci_probe),
2617 	DEVMETHOD(device_attach,	cas_pci_attach),
2618 	DEVMETHOD(device_detach,	cas_pci_detach),
2619 	DEVMETHOD(device_suspend,	cas_pci_suspend),
2620 	DEVMETHOD(device_resume,	cas_pci_resume),
2621 	/* Use the suspend handler here, it is all that is required. */
2622 	DEVMETHOD(device_shutdown,	cas_pci_suspend),
2623 
2624 	/* bus interface */
2625 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
2626 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
2627 
2628 	/* MII interface */
2629 	DEVMETHOD(miibus_readreg,	cas_mii_readreg),
2630 	DEVMETHOD(miibus_writereg,	cas_mii_writereg),
2631 	DEVMETHOD(miibus_statchg,	cas_mii_statchg),
2632 
2633 	KOBJMETHOD_END
2634 };
2635 
2636 static driver_t cas_pci_driver = {
2637 	"cas",
2638 	cas_pci_methods,
2639 	sizeof(struct cas_softc)
2640 };
2641 
2642 DRIVER_MODULE(cas, pci, cas_pci_driver, cas_devclass, 0, 0);
2643 DRIVER_MODULE(miibus, cas, miibus_driver, miibus_devclass, 0, 0);
2644 MODULE_DEPEND(cas, pci, 1, 1, 1);
2645 
2646 static const struct cas_pci_dev {
2647 	uint32_t	cpd_devid;
2648 	uint8_t		cpd_revid;
2649 	int		cpd_variant;
2650 	const char	*cpd_desc;
2651 } const cas_pci_devlist[] = {
2652 	{ 0x0035100b, 0x0, CAS_SATURN, "NS DP83065 Saturn Gigabit Ethernet" },
2653 	{ 0xabba108e, 0x10, CAS_CASPLUS, "Sun Cassini+ Gigabit Ethernet" },
2654 	{ 0xabba108e, 0x0, CAS_CAS, "Sun Cassini Gigabit Ethernet" },
2655 	{ 0, 0, 0, NULL }
2656 };
2657 
2658 static int
2659 cas_pci_probe(device_t dev)
2660 {
2661 	int i;
2662 
2663 	for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
2664 		if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
2665 		    pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
2666 			device_set_desc(dev, cas_pci_devlist[i].cpd_desc);
2667 			return (BUS_PROBE_DEFAULT);
2668 		}
2669 	}
2670 
2671 	return (ENXIO);
2672 }
2673 
2674 static struct resource_spec cas_pci_res_spec[] = {
2675 	{ SYS_RES_IRQ, 0, RF_SHAREABLE | RF_ACTIVE },	/* CAS_RES_INTR */
2676 	{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },	/* CAS_RES_MEM */
2677 	{ -1, 0 }
2678 };
2679 
2680 #define	CAS_LOCAL_MAC_ADDRESS	"local-mac-address"
2681 #define	CAS_PHY_INTERFACE	"phy-interface"
2682 #define	CAS_PHY_TYPE		"phy-type"
2683 #define	CAS_PHY_TYPE_PCS	"pcs"
2684 
2685 static int
2686 cas_pci_attach(device_t dev)
2687 {
2688 	char buf[sizeof(CAS_LOCAL_MAC_ADDRESS)];
2689 	struct cas_softc *sc;
2690 	int i;
2691 #if !(defined(__powerpc__) || defined(__sparc64__))
2692 	u_char enaddr[4][ETHER_ADDR_LEN];
2693 	u_int j, k, lma, pcs[4], phy;
2694 #endif
2695 
2696 	sc = device_get_softc(dev);
2697 	sc->sc_variant = CAS_UNKNOWN;
2698 	for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
2699 		if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
2700 		    pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
2701 			sc->sc_variant = cas_pci_devlist[i].cpd_variant;
2702 			break;
2703 		}
2704 	}
2705 	if (sc->sc_variant == CAS_UNKNOWN) {
2706 		device_printf(dev, "unknown adaptor\n");
2707 		return (ENXIO);
2708 	}
2709 
2710 	pci_enable_busmaster(dev);
2711 
2712 	sc->sc_dev = dev;
2713 	if (sc->sc_variant == CAS_CAS && pci_get_devid(dev) < 0x02)
2714 		/* Hardware checksumming may hang TX. */
2715 		sc->sc_flags |= CAS_NO_CSUM;
2716 	if (sc->sc_variant == CAS_CASPLUS || sc->sc_variant == CAS_SATURN)
2717 		sc->sc_flags |= CAS_REG_PLUS;
2718 	if (sc->sc_variant == CAS_CAS ||
2719 	    (sc->sc_variant == CAS_CASPLUS && pci_get_revid(dev) < 0x11))
2720 		sc->sc_flags |= CAS_TABORT;
2721 	if (bootverbose)
2722 		device_printf(dev, "flags=0x%x\n", sc->sc_flags);
2723 
2724 	if (bus_alloc_resources(dev, cas_pci_res_spec, sc->sc_res)) {
2725 		device_printf(dev, "failed to allocate resources\n");
2726 		bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2727 		return (ENXIO);
2728 	}
2729 
2730 	CAS_LOCK_INIT(sc, device_get_nameunit(dev));
2731 
2732 #if defined(__powerpc__) || defined(__sparc64__)
2733 	OF_getetheraddr(dev, sc->sc_enaddr);
2734 	if (OF_getprop(ofw_bus_get_node(dev), CAS_PHY_INTERFACE, buf,
2735 	    sizeof(buf)) > 0 || OF_getprop(ofw_bus_get_node(dev),
2736 	    CAS_PHY_TYPE, buf, sizeof(buf)) > 0) {
2737 		buf[sizeof(buf) - 1] = '\0';
2738 		if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
2739 			sc->sc_flags |= CAS_SERDES;
2740 	}
2741 #else
2742 	/*
2743 	 * Dig out VPD (vital product data) and read the MAC address as well
2744 	 * as the PHY type.  The VPD resides in the PCI Expansion ROM (PCI
2745 	 * FCode) and can't be accessed via the PCI capability pointer.
2746 	 * SUNW,pci-ce and SUNW,pci-qge use the Enhanced VPD format described
2747 	 * in the free US Patent 7149820.
2748 	 */
2749 
2750 #define	PCI_ROMHDR_SIZE			0x1c
2751 #define	PCI_ROMHDR_SIG			0x00
2752 #define	PCI_ROMHDR_SIG_MAGIC		0xaa55		/* little endian */
2753 #define	PCI_ROMHDR_PTR_DATA		0x18
2754 #define	PCI_ROM_SIZE			0x18
2755 #define	PCI_ROM_SIG			0x00
2756 #define	PCI_ROM_SIG_MAGIC		0x52494350	/* "PCIR", endian */
2757 							/* reversed */
2758 #define	PCI_ROM_VENDOR			0x04
2759 #define	PCI_ROM_DEVICE			0x06
2760 #define	PCI_ROM_PTR_VPD			0x08
2761 #define	PCI_VPDRES_BYTE0		0x00
2762 #define	PCI_VPDRES_ISLARGE(x)		((x) & 0x80)
2763 #define	PCI_VPDRES_LARGE_NAME(x)	((x) & 0x7f)
2764 #define	PCI_VPDRES_LARGE_LEN_LSB	0x01
2765 #define	PCI_VPDRES_LARGE_LEN_MSB	0x02
2766 #define	PCI_VPDRES_LARGE_SIZE		0x03
2767 #define	PCI_VPDRES_TYPE_ID_STRING	0x02		/* large */
2768 #define	PCI_VPDRES_TYPE_VPD		0x10		/* large */
2769 #define	PCI_VPD_KEY0			0x00
2770 #define	PCI_VPD_KEY1			0x01
2771 #define	PCI_VPD_LEN			0x02
2772 #define	PCI_VPD_SIZE			0x03
2773 
2774 #define	CAS_ROM_READ_1(sc, offs)					\
2775 	CAS_READ_1((sc), CAS_PCI_ROM_OFFSET + (offs))
2776 #define	CAS_ROM_READ_2(sc, offs)					\
2777 	CAS_READ_2((sc), CAS_PCI_ROM_OFFSET + (offs))
2778 #define	CAS_ROM_READ_4(sc, offs)					\
2779 	CAS_READ_4((sc), CAS_PCI_ROM_OFFSET + (offs))
2780 
2781 	lma = phy = 0;
2782 	memset(enaddr, 0, sizeof(enaddr));
2783 	memset(pcs, 0, sizeof(pcs));
2784 
2785 	/* Enable PCI Expansion ROM access. */
2786 	CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN,
2787 	    CAS_BIM_LDEV_OEN_PAD | CAS_BIM_LDEV_OEN_PROM);
2788 
2789 	/* Read PCI Expansion ROM header. */
2790 	if (CAS_ROM_READ_2(sc, PCI_ROMHDR_SIG) != PCI_ROMHDR_SIG_MAGIC ||
2791 	    (i = CAS_ROM_READ_2(sc, PCI_ROMHDR_PTR_DATA)) <
2792 	    PCI_ROMHDR_SIZE) {
2793 		device_printf(dev, "unexpected PCI Expansion ROM header\n");
2794 		goto fail_prom;
2795 	}
2796 
2797 	/* Read PCI Expansion ROM data. */
2798 	if (CAS_ROM_READ_4(sc, i + PCI_ROM_SIG) != PCI_ROM_SIG_MAGIC ||
2799 	    CAS_ROM_READ_2(sc, i + PCI_ROM_VENDOR) != pci_get_vendor(dev) ||
2800 	    CAS_ROM_READ_2(sc, i + PCI_ROM_DEVICE) != pci_get_device(dev) ||
2801 	    (j = CAS_ROM_READ_2(sc, i + PCI_ROM_PTR_VPD)) <
2802 	    i + PCI_ROM_SIZE) {
2803 		device_printf(dev, "unexpected PCI Expansion ROM data\n");
2804 		goto fail_prom;
2805 	}
2806 
2807 	/* Read PCI VPD. */
2808  next:
2809 	if (PCI_VPDRES_ISLARGE(CAS_ROM_READ_1(sc,
2810 	    j + PCI_VPDRES_BYTE0)) == 0) {
2811 		device_printf(dev, "no large PCI VPD\n");
2812 		goto fail_prom;
2813 	}
2814 
2815 	i = (CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_MSB) << 8) |
2816 	    CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_LSB);
2817 	switch (PCI_VPDRES_LARGE_NAME(CAS_ROM_READ_1(sc,
2818 	    j + PCI_VPDRES_BYTE0))) {
2819 	case PCI_VPDRES_TYPE_ID_STRING:
2820 		/* Skip identifier string. */
2821 		j += PCI_VPDRES_LARGE_SIZE + i;
2822 		goto next;
2823 	case PCI_VPDRES_TYPE_VPD:
2824 		for (j += PCI_VPDRES_LARGE_SIZE; i > 0;
2825 		    i -= PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN),
2826 		    j += PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN)) {
2827 			if (CAS_ROM_READ_1(sc, j + PCI_VPD_KEY0) != 'Z')
2828 				/* no Enhanced VPD */
2829 				continue;
2830 			if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE) != 'I')
2831 				/* no instance property */
2832 				continue;
2833 			if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) == 'B') {
2834 				/* byte array */
2835 				if (CAS_ROM_READ_1(sc,
2836 				    j + PCI_VPD_SIZE + 4) != ETHER_ADDR_LEN)
2837 					continue;
2838 				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2839 				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
2840 				    buf, sizeof(buf));
2841 				buf[sizeof(buf) - 1] = '\0';
2842 				if (strcmp(buf, CAS_LOCAL_MAC_ADDRESS) != 0)
2843 					continue;
2844 				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2845 				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
2846 				    5 + sizeof(CAS_LOCAL_MAC_ADDRESS),
2847 				    enaddr[lma], sizeof(enaddr[lma]));
2848 				lma++;
2849 				if (lma == 4 && phy == 4)
2850 					break;
2851 			} else if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) ==
2852 			   'S') {
2853 				/* string */
2854 				if (CAS_ROM_READ_1(sc,
2855 				    j + PCI_VPD_SIZE + 4) !=
2856 				    sizeof(CAS_PHY_TYPE_PCS))
2857 					continue;
2858 				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2859 				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
2860 				    buf, sizeof(buf));
2861 				buf[sizeof(buf) - 1] = '\0';
2862 				if (strcmp(buf, CAS_PHY_INTERFACE) == 0)
2863 					k = sizeof(CAS_PHY_INTERFACE);
2864 				else if (strcmp(buf, CAS_PHY_TYPE) == 0)
2865 					k = sizeof(CAS_PHY_TYPE);
2866 				else
2867 					continue;
2868 				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2869 				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
2870 				    5 + k, buf, sizeof(buf));
2871 				buf[sizeof(buf) - 1] = '\0';
2872 				if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
2873 					pcs[phy] = 1;
2874 				phy++;
2875 				if (lma == 4 && phy == 4)
2876 					break;
2877 			}
2878 		}
2879 		break;
2880 	default:
2881 		device_printf(dev, "unexpected PCI VPD\n");
2882 		goto fail_prom;
2883 	}
2884 
2885  fail_prom:
2886 	CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN, 0);
2887 
2888 	if (lma == 0) {
2889 		device_printf(dev, "could not determine Ethernet address\n");
2890 		goto fail;
2891 	}
2892 	i = 0;
2893 	if (lma > 1 && pci_get_slot(dev) < sizeof(enaddr) / sizeof(*enaddr))
2894 		i = pci_get_slot(dev);
2895 	memcpy(sc->sc_enaddr, enaddr[i], ETHER_ADDR_LEN);
2896 
2897 	if (phy == 0) {
2898 		device_printf(dev, "could not determine PHY type\n");
2899 		goto fail;
2900 	}
2901 	i = 0;
2902 	if (phy > 1 && pci_get_slot(dev) < sizeof(pcs) / sizeof(*pcs))
2903 		i = pci_get_slot(dev);
2904 	if (pcs[i] != 0)
2905 		sc->sc_flags |= CAS_SERDES;
2906 #endif
2907 
2908 	if (cas_attach(sc) != 0) {
2909 		device_printf(dev, "could not be attached\n");
2910 		goto fail;
2911 	}
2912 
2913 	if (bus_setup_intr(dev, sc->sc_res[CAS_RES_INTR], INTR_TYPE_NET |
2914 	    INTR_MPSAFE, cas_intr, NULL, sc, &sc->sc_ih) != 0) {
2915 		device_printf(dev, "failed to set up interrupt\n");
2916 		cas_detach(sc);
2917 		goto fail;
2918 	}
2919 	return (0);
2920 
2921  fail:
2922 	CAS_LOCK_DESTROY(sc);
2923 	bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2924 	return (ENXIO);
2925 }
2926 
2927 static int
2928 cas_pci_detach(device_t dev)
2929 {
2930 	struct cas_softc *sc;
2931 
2932 	sc = device_get_softc(dev);
2933 	bus_teardown_intr(dev, sc->sc_res[CAS_RES_INTR], sc->sc_ih);
2934 	cas_detach(sc);
2935 	CAS_LOCK_DESTROY(sc);
2936 	bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2937 	return (0);
2938 }
2939 
2940 static int
2941 cas_pci_suspend(device_t dev)
2942 {
2943 
2944 	cas_suspend(device_get_softc(dev));
2945 	return (0);
2946 }
2947 
2948 static int
2949 cas_pci_resume(device_t dev)
2950 {
2951 
2952 	cas_resume(device_get_softc(dev));
2953 	return (0);
2954 }
2955