xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 0957b409)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR) {
215 		adap->flags &= ~FW_OK;
216 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
217 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
218 		if (pcie_fw != 0xffffffff)
219 			t4_os_dump_devlog(adap);
220 	}
221 }
222 
223 /*
224  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
225  */
226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
227 			 u32 mbox_addr)
228 {
229 	for ( ; nflit; nflit--, mbox_addr += 8)
230 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
231 }
232 
233 /*
234  * Handle a FW assertion reported in a mailbox.
235  */
236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
237 {
238 	CH_ALERT(adap,
239 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
240 		  asrt->u.assert.filename_0_7,
241 		  be32_to_cpu(asrt->u.assert.line),
242 		  be32_to_cpu(asrt->u.assert.x),
243 		  be32_to_cpu(asrt->u.assert.y));
244 }
245 
246 struct port_tx_state {
247 	uint64_t rx_pause;
248 	uint64_t tx_frames;
249 };
250 
251 static void
252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
253 {
254 	uint32_t rx_pause_reg, tx_frames_reg;
255 
256 	if (is_t4(sc)) {
257 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259 	} else {
260 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
262 	}
263 
264 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
265 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
266 }
267 
268 static void
269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
270 {
271 	int i;
272 
273 	for_each_port(sc, i)
274 		read_tx_state_one(sc, i, &tx_state[i]);
275 }
276 
277 static void
278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
279 {
280 	uint32_t port_ctl_reg;
281 	uint64_t tx_frames, rx_pause;
282 	int i;
283 
284 	for_each_port(sc, i) {
285 		rx_pause = tx_state[i].rx_pause;
286 		tx_frames = tx_state[i].tx_frames;
287 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
288 
289 		if (is_t4(sc))
290 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
291 		else
292 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
293 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
294 		    rx_pause != tx_state[i].rx_pause &&
295 		    tx_frames == tx_state[i].tx_frames) {
296 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
297 			mdelay(1);
298 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
299 		}
300 	}
301 }
302 
303 #define X_CIM_PF_NOACCESS 0xeeeeeeee
304 /**
305  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
306  *	@adap: the adapter
307  *	@mbox: index of the mailbox to use
308  *	@cmd: the command to write
309  *	@size: command length in bytes
310  *	@rpl: where to optionally store the reply
311  *	@sleep_ok: if true we may sleep while awaiting command completion
312  *	@timeout: time to wait for command to finish before timing out
313  *		(negative implies @sleep_ok=false)
314  *
315  *	Sends the given command to FW through the selected mailbox and waits
316  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
317  *	store the FW's reply to the command.  The command and its optional
318  *	reply are of the same length.  Some FW commands like RESET and
319  *	INITIALIZE can take a considerable amount of time to execute.
320  *	@sleep_ok determines whether we may sleep while awaiting the response.
321  *	If sleeping is allowed we use progressive backoff otherwise we spin.
322  *	Note that passing in a negative @timeout is an alternate mechanism
323  *	for specifying @sleep_ok=false.  This is useful when a higher level
324  *	interface allows for specification of @timeout but not @sleep_ok ...
325  *
326  *	The return value is 0 on success or a negative errno on failure.  A
327  *	failure can happen either because we are not able to execute the
328  *	command or FW executes it but signals an error.  In the latter case
329  *	the return value is the error code indicated by FW (negated).
330  */
331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
332 			    int size, void *rpl, bool sleep_ok, int timeout)
333 {
334 	/*
335 	 * We delay in small increments at first in an effort to maintain
336 	 * responsiveness for simple, fast executing commands but then back
337 	 * off to larger delays to a maximum retry delay.
338 	 */
339 	static const int delay[] = {
340 		1, 1, 3, 5, 10, 10, 20, 50, 100
341 	};
342 	u32 v;
343 	u64 res;
344 	int i, ms, delay_idx, ret, next_tx_check;
345 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
346 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
347 	u32 ctl;
348 	__be64 cmd_rpl[MBOX_LEN/8];
349 	u32 pcie_fw;
350 	struct port_tx_state tx_state[MAX_NPORTS];
351 
352 	if (adap->flags & CHK_MBOX_ACCESS)
353 		ASSERT_SYNCHRONIZED_OP(adap);
354 
355 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
356 		return -EINVAL;
357 
358 	if (adap->flags & IS_VF) {
359 		if (is_t6(adap))
360 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
361 		else
362 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
363 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
364 	}
365 
366 	/*
367 	 * If we have a negative timeout, that implies that we can't sleep.
368 	 */
369 	if (timeout < 0) {
370 		sleep_ok = false;
371 		timeout = -timeout;
372 	}
373 
374 	/*
375 	 * Attempt to gain access to the mailbox.
376 	 */
377 	for (i = 0; i < 4; i++) {
378 		ctl = t4_read_reg(adap, ctl_reg);
379 		v = G_MBOWNER(ctl);
380 		if (v != X_MBOWNER_NONE)
381 			break;
382 	}
383 
384 	/*
385 	 * If we were unable to gain access, report the error to our caller.
386 	 */
387 	if (v != X_MBOWNER_PL) {
388 		t4_report_fw_error(adap);
389 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
390 		return ret;
391 	}
392 
393 	/*
394 	 * If we gain ownership of the mailbox and there's a "valid" message
395 	 * in it, this is likely an asynchronous error message from the
396 	 * firmware.  So we'll report that and then proceed on with attempting
397 	 * to issue our own command ... which may well fail if the error
398 	 * presaged the firmware crashing ...
399 	 */
400 	if (ctl & F_MBMSGVALID) {
401 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
402 	}
403 
404 	/*
405 	 * Copy in the new mailbox command and send it on its way ...
406 	 */
407 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
408 	memcpy(cmd_rpl, cmd, size);
409 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
410 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
411 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
412 
413 	if (adap->flags & IS_VF) {
414 		/*
415 		 * For the VFs, the Mailbox Data "registers" are
416 		 * actually backed by T4's "MA" interface rather than
417 		 * PL Registers (as is the case for the PFs).  Because
418 		 * these are in different coherency domains, the write
419 		 * to the VF's PL-register-backed Mailbox Control can
420 		 * race in front of the writes to the MA-backed VF
421 		 * Mailbox Data "registers".  So we need to do a
422 		 * read-back on at least one byte of the VF Mailbox
423 		 * Data registers before doing the write to the VF
424 		 * Mailbox Control register.
425 		 */
426 		t4_read_reg(adap, data_reg);
427 	}
428 
429 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
430 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
431 	next_tx_check = 1000;
432 	delay_idx = 0;
433 	ms = delay[0];
434 
435 	/*
436 	 * Loop waiting for the reply; bail out if we time out or the firmware
437 	 * reports an error.
438 	 */
439 	pcie_fw = 0;
440 	for (i = 0; i < timeout; i += ms) {
441 		if (!(adap->flags & IS_VF)) {
442 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
443 			if (pcie_fw & F_PCIE_FW_ERR)
444 				break;
445 		}
446 
447 		if (i >= next_tx_check) {
448 			check_tx_state(adap, &tx_state[0]);
449 			next_tx_check = i + 1000;
450 		}
451 
452 		if (sleep_ok) {
453 			ms = delay[delay_idx];  /* last element may repeat */
454 			if (delay_idx < ARRAY_SIZE(delay) - 1)
455 				delay_idx++;
456 			msleep(ms);
457 		} else {
458 			mdelay(ms);
459 		}
460 
461 		v = t4_read_reg(adap, ctl_reg);
462 		if (v == X_CIM_PF_NOACCESS)
463 			continue;
464 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
465 			if (!(v & F_MBMSGVALID)) {
466 				t4_write_reg(adap, ctl_reg,
467 					     V_MBOWNER(X_MBOWNER_NONE));
468 				continue;
469 			}
470 
471 			/*
472 			 * Retrieve the command reply and release the mailbox.
473 			 */
474 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
475 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
476 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
477 
478 			res = be64_to_cpu(cmd_rpl[0]);
479 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
480 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
481 				res = V_FW_CMD_RETVAL(EIO);
482 			} else if (rpl)
483 				memcpy(rpl, cmd_rpl, size);
484 			return -G_FW_CMD_RETVAL((int)res);
485 		}
486 	}
487 
488 	/*
489 	 * We timed out waiting for a reply to our mailbox command.  Report
490 	 * the error and also check to see if the firmware reported any
491 	 * errors ...
492 	 */
493 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
494 	    *(const u8 *)cmd, mbox, pcie_fw);
495 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
496 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
497 
498 	if (pcie_fw & F_PCIE_FW_ERR) {
499 		ret = -ENXIO;
500 		t4_report_fw_error(adap);
501 	} else {
502 		ret = -ETIMEDOUT;
503 		t4_os_dump_devlog(adap);
504 	}
505 
506 	t4_fatal_err(adap, true);
507 	return ret;
508 }
509 
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511 		    void *rpl, bool sleep_ok)
512 {
513 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
515 
516 }
517 
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520 	u32 edc_ecc_err_addr_reg;
521 	u32 edc_bist_status_rdata_reg;
522 
523 	if (is_t4(adap)) {
524 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525 		return 0;
526 	}
527 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529 		return 0;
530 	}
531 
532 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534 
535 	CH_WARN(adap,
536 		"edc%d err addr 0x%x: 0x%x.\n",
537 		idx, edc_ecc_err_addr_reg,
538 		t4_read_reg(adap, edc_ecc_err_addr_reg));
539 	CH_WARN(adap,
540 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541 		edc_bist_status_rdata_reg,
542 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551 
552 	return 0;
553 }
554 
555 /**
556  *	t4_mc_read - read from MC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which MC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572 
573 	if (is_t4(adap)) {
574 		mc_bist_cmd_reg = A_MC_BIST_CMD;
575 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579 	} else {
580 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584 						  idx);
585 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586 						  idx);
587 	}
588 
589 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590 		return -EBUSY;
591 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595 		     F_START_BIST | V_BIST_CMD_GAP(1));
596 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597 	if (i)
598 		return i;
599 
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601 
602 	for (i = 15; i >= 0; i--)
603 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604 	if (ecc)
605 		*ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607 	return 0;
608 }
609 
610 /**
611  *	t4_edc_read - read from EDC through backdoor accesses
612  *	@adap: the adapter
613  *	@idx: which EDC to access
614  *	@addr: address of first byte requested
615  *	@data: 64 bytes of data containing the requested address
616  *	@ecc: where to store the corresponding 64-bit ECC word
617  *
618  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *	that covers the requested address @addr.  If @parity is not %NULL it
620  *	is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624 	int i;
625 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627 
628 	if (is_t4(adap)) {
629 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633 						    idx);
634 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635 						    idx);
636 	} else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649 						    idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652 	}
653 
654 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655 		return -EBUSY;
656 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659 	t4_write_reg(adap, edc_bist_cmd_reg,
660 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662 	if (i)
663 		return i;
664 
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666 
667 	for (i = 15; i >= 0; i--)
668 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669 	if (ecc)
670 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672 	return 0;
673 }
674 
675 /**
676  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *	@adap: the adapter
678  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *	@addr: address within indicated memory type
680  *	@len: amount of memory to read
681  *	@buf: host memory buffer
682  *
683  *	Reads an [almost] arbitrary memory region in the firmware: the
684  *	firmware memory address, length and host buffer must be aligned on
685  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *	the firmware's memory.  If this memory contains data structures which
687  *	contain multi-byte integers, it's the callers responsibility to
688  *	perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691 		__be32 *buf)
692 {
693 	u32 pos, start, end, offset;
694 	int ret;
695 
696 	/*
697 	 * Argument sanity checks ...
698 	 */
699 	if ((addr & 0x3) || (len & 0x3))
700 		return -EINVAL;
701 
702 	/*
703 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
704 	 * need to round down the start and round up the end.  We'll start
705 	 * copying out of the first line at (addr - start) a word at a time.
706 	 */
707 	start = rounddown2(addr, 64);
708 	end = roundup2(addr + len, 64);
709 	offset = (addr - start)/sizeof(__be32);
710 
711 	for (pos = start; pos < end; pos += 64, offset = 0) {
712 		__be32 data[16];
713 
714 		/*
715 		 * Read the chip's memory block and bail if there's an error.
716 		 */
717 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719 		else
720 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
721 		if (ret)
722 			return ret;
723 
724 		/*
725 		 * Copy the data into the caller's memory buffer.
726 		 */
727 		while (offset < 16 && len > 0) {
728 			*buf++ = data[offset++];
729 			len -= sizeof(__be32);
730 		}
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744 
745 	/*
746 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
747 	 * retrieve the specified PCI-E Configuration Space register.
748 	 */
749 	if (drv_fw_attach != 0) {
750 		struct fw_ldst_cmd ldst_cmd;
751 		int ret;
752 
753 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754 		ldst_cmd.op_to_addrspace =
755 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756 				    F_FW_CMD_REQUEST |
757 				    F_FW_CMD_READ |
758 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761 		ldst_cmd.u.pcie.ctrl_to_fn =
762 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763 		ldst_cmd.u.pcie.r = reg;
764 
765 		/*
766 		 * If the LDST Command succeeds, return the result, otherwise
767 		 * fall through to reading it directly ourselves ...
768 		 */
769 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770 				 &ldst_cmd);
771 		if (ret == 0)
772 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773 
774 		CH_WARN(adap, "Firmware failed to return "
775 			"Configuration Space register %d, err = %d\n",
776 			reg, -ret);
777 	}
778 
779 	/*
780 	 * Read the desired Configuration Space register via the PCI-E
781 	 * Backdoor mechanism.
782 	 */
783 	return t4_hw_pci_read_cfg4(adap, reg);
784 }
785 
786 /**
787  *	t4_get_regs_len - return the size of the chips register set
788  *	@adapter: the adapter
789  *
790  *	Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794 	unsigned int chip_version = chip_id(adapter);
795 
796 	switch (chip_version) {
797 	case CHELSIO_T4:
798 		if (adapter->flags & IS_VF)
799 			return FW_T4VF_REGMAP_SIZE;
800 		return T4_REGMAP_SIZE;
801 
802 	case CHELSIO_T5:
803 	case CHELSIO_T6:
804 		if (adapter->flags & IS_VF)
805 			return FW_T4VF_REGMAP_SIZE;
806 		return T5_REGMAP_SIZE;
807 	}
808 
809 	CH_ERR(adapter,
810 		"Unsupported chip version %d\n", chip_version);
811 	return 0;
812 }
813 
814 /**
815  *	t4_get_regs - read chip registers into provided buffer
816  *	@adap: the adapter
817  *	@buf: register buffer
818  *	@buf_size: size (in bytes) of register buffer
819  *
820  *	If the provided register buffer isn't large enough for the chip's
821  *	full register range, the register dump will be truncated to the
822  *	register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826 	static const unsigned int t4_reg_ranges[] = {
827 		0x1008, 0x1108,
828 		0x1180, 0x1184,
829 		0x1190, 0x1194,
830 		0x11a0, 0x11a4,
831 		0x11b0, 0x11b4,
832 		0x11fc, 0x123c,
833 		0x1300, 0x173c,
834 		0x1800, 0x18fc,
835 		0x3000, 0x30d8,
836 		0x30e0, 0x30e4,
837 		0x30ec, 0x5910,
838 		0x5920, 0x5924,
839 		0x5960, 0x5960,
840 		0x5968, 0x5968,
841 		0x5970, 0x5970,
842 		0x5978, 0x5978,
843 		0x5980, 0x5980,
844 		0x5988, 0x5988,
845 		0x5990, 0x5990,
846 		0x5998, 0x5998,
847 		0x59a0, 0x59d4,
848 		0x5a00, 0x5ae0,
849 		0x5ae8, 0x5ae8,
850 		0x5af0, 0x5af0,
851 		0x5af8, 0x5af8,
852 		0x6000, 0x6098,
853 		0x6100, 0x6150,
854 		0x6200, 0x6208,
855 		0x6240, 0x6248,
856 		0x6280, 0x62b0,
857 		0x62c0, 0x6338,
858 		0x6370, 0x638c,
859 		0x6400, 0x643c,
860 		0x6500, 0x6524,
861 		0x6a00, 0x6a04,
862 		0x6a14, 0x6a38,
863 		0x6a60, 0x6a70,
864 		0x6a78, 0x6a78,
865 		0x6b00, 0x6b0c,
866 		0x6b1c, 0x6b84,
867 		0x6bf0, 0x6bf8,
868 		0x6c00, 0x6c0c,
869 		0x6c1c, 0x6c84,
870 		0x6cf0, 0x6cf8,
871 		0x6d00, 0x6d0c,
872 		0x6d1c, 0x6d84,
873 		0x6df0, 0x6df8,
874 		0x6e00, 0x6e0c,
875 		0x6e1c, 0x6e84,
876 		0x6ef0, 0x6ef8,
877 		0x6f00, 0x6f0c,
878 		0x6f1c, 0x6f84,
879 		0x6ff0, 0x6ff8,
880 		0x7000, 0x700c,
881 		0x701c, 0x7084,
882 		0x70f0, 0x70f8,
883 		0x7100, 0x710c,
884 		0x711c, 0x7184,
885 		0x71f0, 0x71f8,
886 		0x7200, 0x720c,
887 		0x721c, 0x7284,
888 		0x72f0, 0x72f8,
889 		0x7300, 0x730c,
890 		0x731c, 0x7384,
891 		0x73f0, 0x73f8,
892 		0x7400, 0x7450,
893 		0x7500, 0x7530,
894 		0x7600, 0x760c,
895 		0x7614, 0x761c,
896 		0x7680, 0x76cc,
897 		0x7700, 0x7798,
898 		0x77c0, 0x77fc,
899 		0x7900, 0x79fc,
900 		0x7b00, 0x7b58,
901 		0x7b60, 0x7b84,
902 		0x7b8c, 0x7c38,
903 		0x7d00, 0x7d38,
904 		0x7d40, 0x7d80,
905 		0x7d8c, 0x7ddc,
906 		0x7de4, 0x7e04,
907 		0x7e10, 0x7e1c,
908 		0x7e24, 0x7e38,
909 		0x7e40, 0x7e44,
910 		0x7e4c, 0x7e78,
911 		0x7e80, 0x7ea4,
912 		0x7eac, 0x7edc,
913 		0x7ee8, 0x7efc,
914 		0x8dc0, 0x8e04,
915 		0x8e10, 0x8e1c,
916 		0x8e30, 0x8e78,
917 		0x8ea0, 0x8eb8,
918 		0x8ec0, 0x8f6c,
919 		0x8fc0, 0x9008,
920 		0x9010, 0x9058,
921 		0x9060, 0x9060,
922 		0x9068, 0x9074,
923 		0x90fc, 0x90fc,
924 		0x9400, 0x9408,
925 		0x9410, 0x9458,
926 		0x9600, 0x9600,
927 		0x9608, 0x9638,
928 		0x9640, 0x96bc,
929 		0x9800, 0x9808,
930 		0x9820, 0x983c,
931 		0x9850, 0x9864,
932 		0x9c00, 0x9c6c,
933 		0x9c80, 0x9cec,
934 		0x9d00, 0x9d6c,
935 		0x9d80, 0x9dec,
936 		0x9e00, 0x9e6c,
937 		0x9e80, 0x9eec,
938 		0x9f00, 0x9f6c,
939 		0x9f80, 0x9fec,
940 		0xd004, 0xd004,
941 		0xd010, 0xd03c,
942 		0xdfc0, 0xdfe0,
943 		0xe000, 0xea7c,
944 		0xf000, 0x11110,
945 		0x11118, 0x11190,
946 		0x19040, 0x1906c,
947 		0x19078, 0x19080,
948 		0x1908c, 0x190e4,
949 		0x190f0, 0x190f8,
950 		0x19100, 0x19110,
951 		0x19120, 0x19124,
952 		0x19150, 0x19194,
953 		0x1919c, 0x191b0,
954 		0x191d0, 0x191e8,
955 		0x19238, 0x1924c,
956 		0x193f8, 0x1943c,
957 		0x1944c, 0x19474,
958 		0x19490, 0x194e0,
959 		0x194f0, 0x194f8,
960 		0x19800, 0x19c08,
961 		0x19c10, 0x19c90,
962 		0x19ca0, 0x19ce4,
963 		0x19cf0, 0x19d40,
964 		0x19d50, 0x19d94,
965 		0x19da0, 0x19de8,
966 		0x19df0, 0x19e40,
967 		0x19e50, 0x19e90,
968 		0x19ea0, 0x19f4c,
969 		0x1a000, 0x1a004,
970 		0x1a010, 0x1a06c,
971 		0x1a0b0, 0x1a0e4,
972 		0x1a0ec, 0x1a0f4,
973 		0x1a100, 0x1a108,
974 		0x1a114, 0x1a120,
975 		0x1a128, 0x1a130,
976 		0x1a138, 0x1a138,
977 		0x1a190, 0x1a1c4,
978 		0x1a1fc, 0x1a1fc,
979 		0x1e040, 0x1e04c,
980 		0x1e284, 0x1e28c,
981 		0x1e2c0, 0x1e2c0,
982 		0x1e2e0, 0x1e2e0,
983 		0x1e300, 0x1e384,
984 		0x1e3c0, 0x1e3c8,
985 		0x1e440, 0x1e44c,
986 		0x1e684, 0x1e68c,
987 		0x1e6c0, 0x1e6c0,
988 		0x1e6e0, 0x1e6e0,
989 		0x1e700, 0x1e784,
990 		0x1e7c0, 0x1e7c8,
991 		0x1e840, 0x1e84c,
992 		0x1ea84, 0x1ea8c,
993 		0x1eac0, 0x1eac0,
994 		0x1eae0, 0x1eae0,
995 		0x1eb00, 0x1eb84,
996 		0x1ebc0, 0x1ebc8,
997 		0x1ec40, 0x1ec4c,
998 		0x1ee84, 0x1ee8c,
999 		0x1eec0, 0x1eec0,
1000 		0x1eee0, 0x1eee0,
1001 		0x1ef00, 0x1ef84,
1002 		0x1efc0, 0x1efc8,
1003 		0x1f040, 0x1f04c,
1004 		0x1f284, 0x1f28c,
1005 		0x1f2c0, 0x1f2c0,
1006 		0x1f2e0, 0x1f2e0,
1007 		0x1f300, 0x1f384,
1008 		0x1f3c0, 0x1f3c8,
1009 		0x1f440, 0x1f44c,
1010 		0x1f684, 0x1f68c,
1011 		0x1f6c0, 0x1f6c0,
1012 		0x1f6e0, 0x1f6e0,
1013 		0x1f700, 0x1f784,
1014 		0x1f7c0, 0x1f7c8,
1015 		0x1f840, 0x1f84c,
1016 		0x1fa84, 0x1fa8c,
1017 		0x1fac0, 0x1fac0,
1018 		0x1fae0, 0x1fae0,
1019 		0x1fb00, 0x1fb84,
1020 		0x1fbc0, 0x1fbc8,
1021 		0x1fc40, 0x1fc4c,
1022 		0x1fe84, 0x1fe8c,
1023 		0x1fec0, 0x1fec0,
1024 		0x1fee0, 0x1fee0,
1025 		0x1ff00, 0x1ff84,
1026 		0x1ffc0, 0x1ffc8,
1027 		0x20000, 0x2002c,
1028 		0x20100, 0x2013c,
1029 		0x20190, 0x201a0,
1030 		0x201a8, 0x201b8,
1031 		0x201c4, 0x201c8,
1032 		0x20200, 0x20318,
1033 		0x20400, 0x204b4,
1034 		0x204c0, 0x20528,
1035 		0x20540, 0x20614,
1036 		0x21000, 0x21040,
1037 		0x2104c, 0x21060,
1038 		0x210c0, 0x210ec,
1039 		0x21200, 0x21268,
1040 		0x21270, 0x21284,
1041 		0x212fc, 0x21388,
1042 		0x21400, 0x21404,
1043 		0x21500, 0x21500,
1044 		0x21510, 0x21518,
1045 		0x2152c, 0x21530,
1046 		0x2153c, 0x2153c,
1047 		0x21550, 0x21554,
1048 		0x21600, 0x21600,
1049 		0x21608, 0x2161c,
1050 		0x21624, 0x21628,
1051 		0x21630, 0x21634,
1052 		0x2163c, 0x2163c,
1053 		0x21700, 0x2171c,
1054 		0x21780, 0x2178c,
1055 		0x21800, 0x21818,
1056 		0x21820, 0x21828,
1057 		0x21830, 0x21848,
1058 		0x21850, 0x21854,
1059 		0x21860, 0x21868,
1060 		0x21870, 0x21870,
1061 		0x21878, 0x21898,
1062 		0x218a0, 0x218a8,
1063 		0x218b0, 0x218c8,
1064 		0x218d0, 0x218d4,
1065 		0x218e0, 0x218e8,
1066 		0x218f0, 0x218f0,
1067 		0x218f8, 0x21a18,
1068 		0x21a20, 0x21a28,
1069 		0x21a30, 0x21a48,
1070 		0x21a50, 0x21a54,
1071 		0x21a60, 0x21a68,
1072 		0x21a70, 0x21a70,
1073 		0x21a78, 0x21a98,
1074 		0x21aa0, 0x21aa8,
1075 		0x21ab0, 0x21ac8,
1076 		0x21ad0, 0x21ad4,
1077 		0x21ae0, 0x21ae8,
1078 		0x21af0, 0x21af0,
1079 		0x21af8, 0x21c18,
1080 		0x21c20, 0x21c20,
1081 		0x21c28, 0x21c30,
1082 		0x21c38, 0x21c38,
1083 		0x21c80, 0x21c98,
1084 		0x21ca0, 0x21ca8,
1085 		0x21cb0, 0x21cc8,
1086 		0x21cd0, 0x21cd4,
1087 		0x21ce0, 0x21ce8,
1088 		0x21cf0, 0x21cf0,
1089 		0x21cf8, 0x21d7c,
1090 		0x21e00, 0x21e04,
1091 		0x22000, 0x2202c,
1092 		0x22100, 0x2213c,
1093 		0x22190, 0x221a0,
1094 		0x221a8, 0x221b8,
1095 		0x221c4, 0x221c8,
1096 		0x22200, 0x22318,
1097 		0x22400, 0x224b4,
1098 		0x224c0, 0x22528,
1099 		0x22540, 0x22614,
1100 		0x23000, 0x23040,
1101 		0x2304c, 0x23060,
1102 		0x230c0, 0x230ec,
1103 		0x23200, 0x23268,
1104 		0x23270, 0x23284,
1105 		0x232fc, 0x23388,
1106 		0x23400, 0x23404,
1107 		0x23500, 0x23500,
1108 		0x23510, 0x23518,
1109 		0x2352c, 0x23530,
1110 		0x2353c, 0x2353c,
1111 		0x23550, 0x23554,
1112 		0x23600, 0x23600,
1113 		0x23608, 0x2361c,
1114 		0x23624, 0x23628,
1115 		0x23630, 0x23634,
1116 		0x2363c, 0x2363c,
1117 		0x23700, 0x2371c,
1118 		0x23780, 0x2378c,
1119 		0x23800, 0x23818,
1120 		0x23820, 0x23828,
1121 		0x23830, 0x23848,
1122 		0x23850, 0x23854,
1123 		0x23860, 0x23868,
1124 		0x23870, 0x23870,
1125 		0x23878, 0x23898,
1126 		0x238a0, 0x238a8,
1127 		0x238b0, 0x238c8,
1128 		0x238d0, 0x238d4,
1129 		0x238e0, 0x238e8,
1130 		0x238f0, 0x238f0,
1131 		0x238f8, 0x23a18,
1132 		0x23a20, 0x23a28,
1133 		0x23a30, 0x23a48,
1134 		0x23a50, 0x23a54,
1135 		0x23a60, 0x23a68,
1136 		0x23a70, 0x23a70,
1137 		0x23a78, 0x23a98,
1138 		0x23aa0, 0x23aa8,
1139 		0x23ab0, 0x23ac8,
1140 		0x23ad0, 0x23ad4,
1141 		0x23ae0, 0x23ae8,
1142 		0x23af0, 0x23af0,
1143 		0x23af8, 0x23c18,
1144 		0x23c20, 0x23c20,
1145 		0x23c28, 0x23c30,
1146 		0x23c38, 0x23c38,
1147 		0x23c80, 0x23c98,
1148 		0x23ca0, 0x23ca8,
1149 		0x23cb0, 0x23cc8,
1150 		0x23cd0, 0x23cd4,
1151 		0x23ce0, 0x23ce8,
1152 		0x23cf0, 0x23cf0,
1153 		0x23cf8, 0x23d7c,
1154 		0x23e00, 0x23e04,
1155 		0x24000, 0x2402c,
1156 		0x24100, 0x2413c,
1157 		0x24190, 0x241a0,
1158 		0x241a8, 0x241b8,
1159 		0x241c4, 0x241c8,
1160 		0x24200, 0x24318,
1161 		0x24400, 0x244b4,
1162 		0x244c0, 0x24528,
1163 		0x24540, 0x24614,
1164 		0x25000, 0x25040,
1165 		0x2504c, 0x25060,
1166 		0x250c0, 0x250ec,
1167 		0x25200, 0x25268,
1168 		0x25270, 0x25284,
1169 		0x252fc, 0x25388,
1170 		0x25400, 0x25404,
1171 		0x25500, 0x25500,
1172 		0x25510, 0x25518,
1173 		0x2552c, 0x25530,
1174 		0x2553c, 0x2553c,
1175 		0x25550, 0x25554,
1176 		0x25600, 0x25600,
1177 		0x25608, 0x2561c,
1178 		0x25624, 0x25628,
1179 		0x25630, 0x25634,
1180 		0x2563c, 0x2563c,
1181 		0x25700, 0x2571c,
1182 		0x25780, 0x2578c,
1183 		0x25800, 0x25818,
1184 		0x25820, 0x25828,
1185 		0x25830, 0x25848,
1186 		0x25850, 0x25854,
1187 		0x25860, 0x25868,
1188 		0x25870, 0x25870,
1189 		0x25878, 0x25898,
1190 		0x258a0, 0x258a8,
1191 		0x258b0, 0x258c8,
1192 		0x258d0, 0x258d4,
1193 		0x258e0, 0x258e8,
1194 		0x258f0, 0x258f0,
1195 		0x258f8, 0x25a18,
1196 		0x25a20, 0x25a28,
1197 		0x25a30, 0x25a48,
1198 		0x25a50, 0x25a54,
1199 		0x25a60, 0x25a68,
1200 		0x25a70, 0x25a70,
1201 		0x25a78, 0x25a98,
1202 		0x25aa0, 0x25aa8,
1203 		0x25ab0, 0x25ac8,
1204 		0x25ad0, 0x25ad4,
1205 		0x25ae0, 0x25ae8,
1206 		0x25af0, 0x25af0,
1207 		0x25af8, 0x25c18,
1208 		0x25c20, 0x25c20,
1209 		0x25c28, 0x25c30,
1210 		0x25c38, 0x25c38,
1211 		0x25c80, 0x25c98,
1212 		0x25ca0, 0x25ca8,
1213 		0x25cb0, 0x25cc8,
1214 		0x25cd0, 0x25cd4,
1215 		0x25ce0, 0x25ce8,
1216 		0x25cf0, 0x25cf0,
1217 		0x25cf8, 0x25d7c,
1218 		0x25e00, 0x25e04,
1219 		0x26000, 0x2602c,
1220 		0x26100, 0x2613c,
1221 		0x26190, 0x261a0,
1222 		0x261a8, 0x261b8,
1223 		0x261c4, 0x261c8,
1224 		0x26200, 0x26318,
1225 		0x26400, 0x264b4,
1226 		0x264c0, 0x26528,
1227 		0x26540, 0x26614,
1228 		0x27000, 0x27040,
1229 		0x2704c, 0x27060,
1230 		0x270c0, 0x270ec,
1231 		0x27200, 0x27268,
1232 		0x27270, 0x27284,
1233 		0x272fc, 0x27388,
1234 		0x27400, 0x27404,
1235 		0x27500, 0x27500,
1236 		0x27510, 0x27518,
1237 		0x2752c, 0x27530,
1238 		0x2753c, 0x2753c,
1239 		0x27550, 0x27554,
1240 		0x27600, 0x27600,
1241 		0x27608, 0x2761c,
1242 		0x27624, 0x27628,
1243 		0x27630, 0x27634,
1244 		0x2763c, 0x2763c,
1245 		0x27700, 0x2771c,
1246 		0x27780, 0x2778c,
1247 		0x27800, 0x27818,
1248 		0x27820, 0x27828,
1249 		0x27830, 0x27848,
1250 		0x27850, 0x27854,
1251 		0x27860, 0x27868,
1252 		0x27870, 0x27870,
1253 		0x27878, 0x27898,
1254 		0x278a0, 0x278a8,
1255 		0x278b0, 0x278c8,
1256 		0x278d0, 0x278d4,
1257 		0x278e0, 0x278e8,
1258 		0x278f0, 0x278f0,
1259 		0x278f8, 0x27a18,
1260 		0x27a20, 0x27a28,
1261 		0x27a30, 0x27a48,
1262 		0x27a50, 0x27a54,
1263 		0x27a60, 0x27a68,
1264 		0x27a70, 0x27a70,
1265 		0x27a78, 0x27a98,
1266 		0x27aa0, 0x27aa8,
1267 		0x27ab0, 0x27ac8,
1268 		0x27ad0, 0x27ad4,
1269 		0x27ae0, 0x27ae8,
1270 		0x27af0, 0x27af0,
1271 		0x27af8, 0x27c18,
1272 		0x27c20, 0x27c20,
1273 		0x27c28, 0x27c30,
1274 		0x27c38, 0x27c38,
1275 		0x27c80, 0x27c98,
1276 		0x27ca0, 0x27ca8,
1277 		0x27cb0, 0x27cc8,
1278 		0x27cd0, 0x27cd4,
1279 		0x27ce0, 0x27ce8,
1280 		0x27cf0, 0x27cf0,
1281 		0x27cf8, 0x27d7c,
1282 		0x27e00, 0x27e04,
1283 	};
1284 
1285 	static const unsigned int t4vf_reg_ranges[] = {
1286 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287 		VF_MPS_REG(A_MPS_VF_CTL),
1288 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292 		FW_T4VF_MBDATA_BASE_ADDR,
1293 		FW_T4VF_MBDATA_BASE_ADDR +
1294 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295 	};
1296 
1297 	static const unsigned int t5_reg_ranges[] = {
1298 		0x1008, 0x10c0,
1299 		0x10cc, 0x10f8,
1300 		0x1100, 0x1100,
1301 		0x110c, 0x1148,
1302 		0x1180, 0x1184,
1303 		0x1190, 0x1194,
1304 		0x11a0, 0x11a4,
1305 		0x11b0, 0x11b4,
1306 		0x11fc, 0x123c,
1307 		0x1280, 0x173c,
1308 		0x1800, 0x18fc,
1309 		0x3000, 0x3028,
1310 		0x3060, 0x30b0,
1311 		0x30b8, 0x30d8,
1312 		0x30e0, 0x30fc,
1313 		0x3140, 0x357c,
1314 		0x35a8, 0x35cc,
1315 		0x35ec, 0x35ec,
1316 		0x3600, 0x5624,
1317 		0x56cc, 0x56ec,
1318 		0x56f4, 0x5720,
1319 		0x5728, 0x575c,
1320 		0x580c, 0x5814,
1321 		0x5890, 0x589c,
1322 		0x58a4, 0x58ac,
1323 		0x58b8, 0x58bc,
1324 		0x5940, 0x59c8,
1325 		0x59d0, 0x59dc,
1326 		0x59fc, 0x5a18,
1327 		0x5a60, 0x5a70,
1328 		0x5a80, 0x5a9c,
1329 		0x5b94, 0x5bfc,
1330 		0x6000, 0x6020,
1331 		0x6028, 0x6040,
1332 		0x6058, 0x609c,
1333 		0x60a8, 0x614c,
1334 		0x7700, 0x7798,
1335 		0x77c0, 0x78fc,
1336 		0x7b00, 0x7b58,
1337 		0x7b60, 0x7b84,
1338 		0x7b8c, 0x7c54,
1339 		0x7d00, 0x7d38,
1340 		0x7d40, 0x7d80,
1341 		0x7d8c, 0x7ddc,
1342 		0x7de4, 0x7e04,
1343 		0x7e10, 0x7e1c,
1344 		0x7e24, 0x7e38,
1345 		0x7e40, 0x7e44,
1346 		0x7e4c, 0x7e78,
1347 		0x7e80, 0x7edc,
1348 		0x7ee8, 0x7efc,
1349 		0x8dc0, 0x8de0,
1350 		0x8df8, 0x8e04,
1351 		0x8e10, 0x8e84,
1352 		0x8ea0, 0x8f84,
1353 		0x8fc0, 0x9058,
1354 		0x9060, 0x9060,
1355 		0x9068, 0x90f8,
1356 		0x9400, 0x9408,
1357 		0x9410, 0x9470,
1358 		0x9600, 0x9600,
1359 		0x9608, 0x9638,
1360 		0x9640, 0x96f4,
1361 		0x9800, 0x9808,
1362 		0x9820, 0x983c,
1363 		0x9850, 0x9864,
1364 		0x9c00, 0x9c6c,
1365 		0x9c80, 0x9cec,
1366 		0x9d00, 0x9d6c,
1367 		0x9d80, 0x9dec,
1368 		0x9e00, 0x9e6c,
1369 		0x9e80, 0x9eec,
1370 		0x9f00, 0x9f6c,
1371 		0x9f80, 0xa020,
1372 		0xd004, 0xd004,
1373 		0xd010, 0xd03c,
1374 		0xdfc0, 0xdfe0,
1375 		0xe000, 0x1106c,
1376 		0x11074, 0x11088,
1377 		0x1109c, 0x1117c,
1378 		0x11190, 0x11204,
1379 		0x19040, 0x1906c,
1380 		0x19078, 0x19080,
1381 		0x1908c, 0x190e8,
1382 		0x190f0, 0x190f8,
1383 		0x19100, 0x19110,
1384 		0x19120, 0x19124,
1385 		0x19150, 0x19194,
1386 		0x1919c, 0x191b0,
1387 		0x191d0, 0x191e8,
1388 		0x19238, 0x19290,
1389 		0x193f8, 0x19428,
1390 		0x19430, 0x19444,
1391 		0x1944c, 0x1946c,
1392 		0x19474, 0x19474,
1393 		0x19490, 0x194cc,
1394 		0x194f0, 0x194f8,
1395 		0x19c00, 0x19c08,
1396 		0x19c10, 0x19c60,
1397 		0x19c94, 0x19ce4,
1398 		0x19cf0, 0x19d40,
1399 		0x19d50, 0x19d94,
1400 		0x19da0, 0x19de8,
1401 		0x19df0, 0x19e10,
1402 		0x19e50, 0x19e90,
1403 		0x19ea0, 0x19f24,
1404 		0x19f34, 0x19f34,
1405 		0x19f40, 0x19f50,
1406 		0x19f90, 0x19fb4,
1407 		0x19fc4, 0x19fe4,
1408 		0x1a000, 0x1a004,
1409 		0x1a010, 0x1a06c,
1410 		0x1a0b0, 0x1a0e4,
1411 		0x1a0ec, 0x1a0f8,
1412 		0x1a100, 0x1a108,
1413 		0x1a114, 0x1a120,
1414 		0x1a128, 0x1a130,
1415 		0x1a138, 0x1a138,
1416 		0x1a190, 0x1a1c4,
1417 		0x1a1fc, 0x1a1fc,
1418 		0x1e008, 0x1e00c,
1419 		0x1e040, 0x1e044,
1420 		0x1e04c, 0x1e04c,
1421 		0x1e284, 0x1e290,
1422 		0x1e2c0, 0x1e2c0,
1423 		0x1e2e0, 0x1e2e0,
1424 		0x1e300, 0x1e384,
1425 		0x1e3c0, 0x1e3c8,
1426 		0x1e408, 0x1e40c,
1427 		0x1e440, 0x1e444,
1428 		0x1e44c, 0x1e44c,
1429 		0x1e684, 0x1e690,
1430 		0x1e6c0, 0x1e6c0,
1431 		0x1e6e0, 0x1e6e0,
1432 		0x1e700, 0x1e784,
1433 		0x1e7c0, 0x1e7c8,
1434 		0x1e808, 0x1e80c,
1435 		0x1e840, 0x1e844,
1436 		0x1e84c, 0x1e84c,
1437 		0x1ea84, 0x1ea90,
1438 		0x1eac0, 0x1eac0,
1439 		0x1eae0, 0x1eae0,
1440 		0x1eb00, 0x1eb84,
1441 		0x1ebc0, 0x1ebc8,
1442 		0x1ec08, 0x1ec0c,
1443 		0x1ec40, 0x1ec44,
1444 		0x1ec4c, 0x1ec4c,
1445 		0x1ee84, 0x1ee90,
1446 		0x1eec0, 0x1eec0,
1447 		0x1eee0, 0x1eee0,
1448 		0x1ef00, 0x1ef84,
1449 		0x1efc0, 0x1efc8,
1450 		0x1f008, 0x1f00c,
1451 		0x1f040, 0x1f044,
1452 		0x1f04c, 0x1f04c,
1453 		0x1f284, 0x1f290,
1454 		0x1f2c0, 0x1f2c0,
1455 		0x1f2e0, 0x1f2e0,
1456 		0x1f300, 0x1f384,
1457 		0x1f3c0, 0x1f3c8,
1458 		0x1f408, 0x1f40c,
1459 		0x1f440, 0x1f444,
1460 		0x1f44c, 0x1f44c,
1461 		0x1f684, 0x1f690,
1462 		0x1f6c0, 0x1f6c0,
1463 		0x1f6e0, 0x1f6e0,
1464 		0x1f700, 0x1f784,
1465 		0x1f7c0, 0x1f7c8,
1466 		0x1f808, 0x1f80c,
1467 		0x1f840, 0x1f844,
1468 		0x1f84c, 0x1f84c,
1469 		0x1fa84, 0x1fa90,
1470 		0x1fac0, 0x1fac0,
1471 		0x1fae0, 0x1fae0,
1472 		0x1fb00, 0x1fb84,
1473 		0x1fbc0, 0x1fbc8,
1474 		0x1fc08, 0x1fc0c,
1475 		0x1fc40, 0x1fc44,
1476 		0x1fc4c, 0x1fc4c,
1477 		0x1fe84, 0x1fe90,
1478 		0x1fec0, 0x1fec0,
1479 		0x1fee0, 0x1fee0,
1480 		0x1ff00, 0x1ff84,
1481 		0x1ffc0, 0x1ffc8,
1482 		0x30000, 0x30030,
1483 		0x30100, 0x30144,
1484 		0x30190, 0x301a0,
1485 		0x301a8, 0x301b8,
1486 		0x301c4, 0x301c8,
1487 		0x301d0, 0x301d0,
1488 		0x30200, 0x30318,
1489 		0x30400, 0x304b4,
1490 		0x304c0, 0x3052c,
1491 		0x30540, 0x3061c,
1492 		0x30800, 0x30828,
1493 		0x30834, 0x30834,
1494 		0x308c0, 0x30908,
1495 		0x30910, 0x309ac,
1496 		0x30a00, 0x30a14,
1497 		0x30a1c, 0x30a2c,
1498 		0x30a44, 0x30a50,
1499 		0x30a74, 0x30a74,
1500 		0x30a7c, 0x30afc,
1501 		0x30b08, 0x30c24,
1502 		0x30d00, 0x30d00,
1503 		0x30d08, 0x30d14,
1504 		0x30d1c, 0x30d20,
1505 		0x30d3c, 0x30d3c,
1506 		0x30d48, 0x30d50,
1507 		0x31200, 0x3120c,
1508 		0x31220, 0x31220,
1509 		0x31240, 0x31240,
1510 		0x31600, 0x3160c,
1511 		0x31a00, 0x31a1c,
1512 		0x31e00, 0x31e20,
1513 		0x31e38, 0x31e3c,
1514 		0x31e80, 0x31e80,
1515 		0x31e88, 0x31ea8,
1516 		0x31eb0, 0x31eb4,
1517 		0x31ec8, 0x31ed4,
1518 		0x31fb8, 0x32004,
1519 		0x32200, 0x32200,
1520 		0x32208, 0x32240,
1521 		0x32248, 0x32280,
1522 		0x32288, 0x322c0,
1523 		0x322c8, 0x322fc,
1524 		0x32600, 0x32630,
1525 		0x32a00, 0x32abc,
1526 		0x32b00, 0x32b10,
1527 		0x32b20, 0x32b30,
1528 		0x32b40, 0x32b50,
1529 		0x32b60, 0x32b70,
1530 		0x33000, 0x33028,
1531 		0x33030, 0x33048,
1532 		0x33060, 0x33068,
1533 		0x33070, 0x3309c,
1534 		0x330f0, 0x33128,
1535 		0x33130, 0x33148,
1536 		0x33160, 0x33168,
1537 		0x33170, 0x3319c,
1538 		0x331f0, 0x33238,
1539 		0x33240, 0x33240,
1540 		0x33248, 0x33250,
1541 		0x3325c, 0x33264,
1542 		0x33270, 0x332b8,
1543 		0x332c0, 0x332e4,
1544 		0x332f8, 0x33338,
1545 		0x33340, 0x33340,
1546 		0x33348, 0x33350,
1547 		0x3335c, 0x33364,
1548 		0x33370, 0x333b8,
1549 		0x333c0, 0x333e4,
1550 		0x333f8, 0x33428,
1551 		0x33430, 0x33448,
1552 		0x33460, 0x33468,
1553 		0x33470, 0x3349c,
1554 		0x334f0, 0x33528,
1555 		0x33530, 0x33548,
1556 		0x33560, 0x33568,
1557 		0x33570, 0x3359c,
1558 		0x335f0, 0x33638,
1559 		0x33640, 0x33640,
1560 		0x33648, 0x33650,
1561 		0x3365c, 0x33664,
1562 		0x33670, 0x336b8,
1563 		0x336c0, 0x336e4,
1564 		0x336f8, 0x33738,
1565 		0x33740, 0x33740,
1566 		0x33748, 0x33750,
1567 		0x3375c, 0x33764,
1568 		0x33770, 0x337b8,
1569 		0x337c0, 0x337e4,
1570 		0x337f8, 0x337fc,
1571 		0x33814, 0x33814,
1572 		0x3382c, 0x3382c,
1573 		0x33880, 0x3388c,
1574 		0x338e8, 0x338ec,
1575 		0x33900, 0x33928,
1576 		0x33930, 0x33948,
1577 		0x33960, 0x33968,
1578 		0x33970, 0x3399c,
1579 		0x339f0, 0x33a38,
1580 		0x33a40, 0x33a40,
1581 		0x33a48, 0x33a50,
1582 		0x33a5c, 0x33a64,
1583 		0x33a70, 0x33ab8,
1584 		0x33ac0, 0x33ae4,
1585 		0x33af8, 0x33b10,
1586 		0x33b28, 0x33b28,
1587 		0x33b3c, 0x33b50,
1588 		0x33bf0, 0x33c10,
1589 		0x33c28, 0x33c28,
1590 		0x33c3c, 0x33c50,
1591 		0x33cf0, 0x33cfc,
1592 		0x34000, 0x34030,
1593 		0x34100, 0x34144,
1594 		0x34190, 0x341a0,
1595 		0x341a8, 0x341b8,
1596 		0x341c4, 0x341c8,
1597 		0x341d0, 0x341d0,
1598 		0x34200, 0x34318,
1599 		0x34400, 0x344b4,
1600 		0x344c0, 0x3452c,
1601 		0x34540, 0x3461c,
1602 		0x34800, 0x34828,
1603 		0x34834, 0x34834,
1604 		0x348c0, 0x34908,
1605 		0x34910, 0x349ac,
1606 		0x34a00, 0x34a14,
1607 		0x34a1c, 0x34a2c,
1608 		0x34a44, 0x34a50,
1609 		0x34a74, 0x34a74,
1610 		0x34a7c, 0x34afc,
1611 		0x34b08, 0x34c24,
1612 		0x34d00, 0x34d00,
1613 		0x34d08, 0x34d14,
1614 		0x34d1c, 0x34d20,
1615 		0x34d3c, 0x34d3c,
1616 		0x34d48, 0x34d50,
1617 		0x35200, 0x3520c,
1618 		0x35220, 0x35220,
1619 		0x35240, 0x35240,
1620 		0x35600, 0x3560c,
1621 		0x35a00, 0x35a1c,
1622 		0x35e00, 0x35e20,
1623 		0x35e38, 0x35e3c,
1624 		0x35e80, 0x35e80,
1625 		0x35e88, 0x35ea8,
1626 		0x35eb0, 0x35eb4,
1627 		0x35ec8, 0x35ed4,
1628 		0x35fb8, 0x36004,
1629 		0x36200, 0x36200,
1630 		0x36208, 0x36240,
1631 		0x36248, 0x36280,
1632 		0x36288, 0x362c0,
1633 		0x362c8, 0x362fc,
1634 		0x36600, 0x36630,
1635 		0x36a00, 0x36abc,
1636 		0x36b00, 0x36b10,
1637 		0x36b20, 0x36b30,
1638 		0x36b40, 0x36b50,
1639 		0x36b60, 0x36b70,
1640 		0x37000, 0x37028,
1641 		0x37030, 0x37048,
1642 		0x37060, 0x37068,
1643 		0x37070, 0x3709c,
1644 		0x370f0, 0x37128,
1645 		0x37130, 0x37148,
1646 		0x37160, 0x37168,
1647 		0x37170, 0x3719c,
1648 		0x371f0, 0x37238,
1649 		0x37240, 0x37240,
1650 		0x37248, 0x37250,
1651 		0x3725c, 0x37264,
1652 		0x37270, 0x372b8,
1653 		0x372c0, 0x372e4,
1654 		0x372f8, 0x37338,
1655 		0x37340, 0x37340,
1656 		0x37348, 0x37350,
1657 		0x3735c, 0x37364,
1658 		0x37370, 0x373b8,
1659 		0x373c0, 0x373e4,
1660 		0x373f8, 0x37428,
1661 		0x37430, 0x37448,
1662 		0x37460, 0x37468,
1663 		0x37470, 0x3749c,
1664 		0x374f0, 0x37528,
1665 		0x37530, 0x37548,
1666 		0x37560, 0x37568,
1667 		0x37570, 0x3759c,
1668 		0x375f0, 0x37638,
1669 		0x37640, 0x37640,
1670 		0x37648, 0x37650,
1671 		0x3765c, 0x37664,
1672 		0x37670, 0x376b8,
1673 		0x376c0, 0x376e4,
1674 		0x376f8, 0x37738,
1675 		0x37740, 0x37740,
1676 		0x37748, 0x37750,
1677 		0x3775c, 0x37764,
1678 		0x37770, 0x377b8,
1679 		0x377c0, 0x377e4,
1680 		0x377f8, 0x377fc,
1681 		0x37814, 0x37814,
1682 		0x3782c, 0x3782c,
1683 		0x37880, 0x3788c,
1684 		0x378e8, 0x378ec,
1685 		0x37900, 0x37928,
1686 		0x37930, 0x37948,
1687 		0x37960, 0x37968,
1688 		0x37970, 0x3799c,
1689 		0x379f0, 0x37a38,
1690 		0x37a40, 0x37a40,
1691 		0x37a48, 0x37a50,
1692 		0x37a5c, 0x37a64,
1693 		0x37a70, 0x37ab8,
1694 		0x37ac0, 0x37ae4,
1695 		0x37af8, 0x37b10,
1696 		0x37b28, 0x37b28,
1697 		0x37b3c, 0x37b50,
1698 		0x37bf0, 0x37c10,
1699 		0x37c28, 0x37c28,
1700 		0x37c3c, 0x37c50,
1701 		0x37cf0, 0x37cfc,
1702 		0x38000, 0x38030,
1703 		0x38100, 0x38144,
1704 		0x38190, 0x381a0,
1705 		0x381a8, 0x381b8,
1706 		0x381c4, 0x381c8,
1707 		0x381d0, 0x381d0,
1708 		0x38200, 0x38318,
1709 		0x38400, 0x384b4,
1710 		0x384c0, 0x3852c,
1711 		0x38540, 0x3861c,
1712 		0x38800, 0x38828,
1713 		0x38834, 0x38834,
1714 		0x388c0, 0x38908,
1715 		0x38910, 0x389ac,
1716 		0x38a00, 0x38a14,
1717 		0x38a1c, 0x38a2c,
1718 		0x38a44, 0x38a50,
1719 		0x38a74, 0x38a74,
1720 		0x38a7c, 0x38afc,
1721 		0x38b08, 0x38c24,
1722 		0x38d00, 0x38d00,
1723 		0x38d08, 0x38d14,
1724 		0x38d1c, 0x38d20,
1725 		0x38d3c, 0x38d3c,
1726 		0x38d48, 0x38d50,
1727 		0x39200, 0x3920c,
1728 		0x39220, 0x39220,
1729 		0x39240, 0x39240,
1730 		0x39600, 0x3960c,
1731 		0x39a00, 0x39a1c,
1732 		0x39e00, 0x39e20,
1733 		0x39e38, 0x39e3c,
1734 		0x39e80, 0x39e80,
1735 		0x39e88, 0x39ea8,
1736 		0x39eb0, 0x39eb4,
1737 		0x39ec8, 0x39ed4,
1738 		0x39fb8, 0x3a004,
1739 		0x3a200, 0x3a200,
1740 		0x3a208, 0x3a240,
1741 		0x3a248, 0x3a280,
1742 		0x3a288, 0x3a2c0,
1743 		0x3a2c8, 0x3a2fc,
1744 		0x3a600, 0x3a630,
1745 		0x3aa00, 0x3aabc,
1746 		0x3ab00, 0x3ab10,
1747 		0x3ab20, 0x3ab30,
1748 		0x3ab40, 0x3ab50,
1749 		0x3ab60, 0x3ab70,
1750 		0x3b000, 0x3b028,
1751 		0x3b030, 0x3b048,
1752 		0x3b060, 0x3b068,
1753 		0x3b070, 0x3b09c,
1754 		0x3b0f0, 0x3b128,
1755 		0x3b130, 0x3b148,
1756 		0x3b160, 0x3b168,
1757 		0x3b170, 0x3b19c,
1758 		0x3b1f0, 0x3b238,
1759 		0x3b240, 0x3b240,
1760 		0x3b248, 0x3b250,
1761 		0x3b25c, 0x3b264,
1762 		0x3b270, 0x3b2b8,
1763 		0x3b2c0, 0x3b2e4,
1764 		0x3b2f8, 0x3b338,
1765 		0x3b340, 0x3b340,
1766 		0x3b348, 0x3b350,
1767 		0x3b35c, 0x3b364,
1768 		0x3b370, 0x3b3b8,
1769 		0x3b3c0, 0x3b3e4,
1770 		0x3b3f8, 0x3b428,
1771 		0x3b430, 0x3b448,
1772 		0x3b460, 0x3b468,
1773 		0x3b470, 0x3b49c,
1774 		0x3b4f0, 0x3b528,
1775 		0x3b530, 0x3b548,
1776 		0x3b560, 0x3b568,
1777 		0x3b570, 0x3b59c,
1778 		0x3b5f0, 0x3b638,
1779 		0x3b640, 0x3b640,
1780 		0x3b648, 0x3b650,
1781 		0x3b65c, 0x3b664,
1782 		0x3b670, 0x3b6b8,
1783 		0x3b6c0, 0x3b6e4,
1784 		0x3b6f8, 0x3b738,
1785 		0x3b740, 0x3b740,
1786 		0x3b748, 0x3b750,
1787 		0x3b75c, 0x3b764,
1788 		0x3b770, 0x3b7b8,
1789 		0x3b7c0, 0x3b7e4,
1790 		0x3b7f8, 0x3b7fc,
1791 		0x3b814, 0x3b814,
1792 		0x3b82c, 0x3b82c,
1793 		0x3b880, 0x3b88c,
1794 		0x3b8e8, 0x3b8ec,
1795 		0x3b900, 0x3b928,
1796 		0x3b930, 0x3b948,
1797 		0x3b960, 0x3b968,
1798 		0x3b970, 0x3b99c,
1799 		0x3b9f0, 0x3ba38,
1800 		0x3ba40, 0x3ba40,
1801 		0x3ba48, 0x3ba50,
1802 		0x3ba5c, 0x3ba64,
1803 		0x3ba70, 0x3bab8,
1804 		0x3bac0, 0x3bae4,
1805 		0x3baf8, 0x3bb10,
1806 		0x3bb28, 0x3bb28,
1807 		0x3bb3c, 0x3bb50,
1808 		0x3bbf0, 0x3bc10,
1809 		0x3bc28, 0x3bc28,
1810 		0x3bc3c, 0x3bc50,
1811 		0x3bcf0, 0x3bcfc,
1812 		0x3c000, 0x3c030,
1813 		0x3c100, 0x3c144,
1814 		0x3c190, 0x3c1a0,
1815 		0x3c1a8, 0x3c1b8,
1816 		0x3c1c4, 0x3c1c8,
1817 		0x3c1d0, 0x3c1d0,
1818 		0x3c200, 0x3c318,
1819 		0x3c400, 0x3c4b4,
1820 		0x3c4c0, 0x3c52c,
1821 		0x3c540, 0x3c61c,
1822 		0x3c800, 0x3c828,
1823 		0x3c834, 0x3c834,
1824 		0x3c8c0, 0x3c908,
1825 		0x3c910, 0x3c9ac,
1826 		0x3ca00, 0x3ca14,
1827 		0x3ca1c, 0x3ca2c,
1828 		0x3ca44, 0x3ca50,
1829 		0x3ca74, 0x3ca74,
1830 		0x3ca7c, 0x3cafc,
1831 		0x3cb08, 0x3cc24,
1832 		0x3cd00, 0x3cd00,
1833 		0x3cd08, 0x3cd14,
1834 		0x3cd1c, 0x3cd20,
1835 		0x3cd3c, 0x3cd3c,
1836 		0x3cd48, 0x3cd50,
1837 		0x3d200, 0x3d20c,
1838 		0x3d220, 0x3d220,
1839 		0x3d240, 0x3d240,
1840 		0x3d600, 0x3d60c,
1841 		0x3da00, 0x3da1c,
1842 		0x3de00, 0x3de20,
1843 		0x3de38, 0x3de3c,
1844 		0x3de80, 0x3de80,
1845 		0x3de88, 0x3dea8,
1846 		0x3deb0, 0x3deb4,
1847 		0x3dec8, 0x3ded4,
1848 		0x3dfb8, 0x3e004,
1849 		0x3e200, 0x3e200,
1850 		0x3e208, 0x3e240,
1851 		0x3e248, 0x3e280,
1852 		0x3e288, 0x3e2c0,
1853 		0x3e2c8, 0x3e2fc,
1854 		0x3e600, 0x3e630,
1855 		0x3ea00, 0x3eabc,
1856 		0x3eb00, 0x3eb10,
1857 		0x3eb20, 0x3eb30,
1858 		0x3eb40, 0x3eb50,
1859 		0x3eb60, 0x3eb70,
1860 		0x3f000, 0x3f028,
1861 		0x3f030, 0x3f048,
1862 		0x3f060, 0x3f068,
1863 		0x3f070, 0x3f09c,
1864 		0x3f0f0, 0x3f128,
1865 		0x3f130, 0x3f148,
1866 		0x3f160, 0x3f168,
1867 		0x3f170, 0x3f19c,
1868 		0x3f1f0, 0x3f238,
1869 		0x3f240, 0x3f240,
1870 		0x3f248, 0x3f250,
1871 		0x3f25c, 0x3f264,
1872 		0x3f270, 0x3f2b8,
1873 		0x3f2c0, 0x3f2e4,
1874 		0x3f2f8, 0x3f338,
1875 		0x3f340, 0x3f340,
1876 		0x3f348, 0x3f350,
1877 		0x3f35c, 0x3f364,
1878 		0x3f370, 0x3f3b8,
1879 		0x3f3c0, 0x3f3e4,
1880 		0x3f3f8, 0x3f428,
1881 		0x3f430, 0x3f448,
1882 		0x3f460, 0x3f468,
1883 		0x3f470, 0x3f49c,
1884 		0x3f4f0, 0x3f528,
1885 		0x3f530, 0x3f548,
1886 		0x3f560, 0x3f568,
1887 		0x3f570, 0x3f59c,
1888 		0x3f5f0, 0x3f638,
1889 		0x3f640, 0x3f640,
1890 		0x3f648, 0x3f650,
1891 		0x3f65c, 0x3f664,
1892 		0x3f670, 0x3f6b8,
1893 		0x3f6c0, 0x3f6e4,
1894 		0x3f6f8, 0x3f738,
1895 		0x3f740, 0x3f740,
1896 		0x3f748, 0x3f750,
1897 		0x3f75c, 0x3f764,
1898 		0x3f770, 0x3f7b8,
1899 		0x3f7c0, 0x3f7e4,
1900 		0x3f7f8, 0x3f7fc,
1901 		0x3f814, 0x3f814,
1902 		0x3f82c, 0x3f82c,
1903 		0x3f880, 0x3f88c,
1904 		0x3f8e8, 0x3f8ec,
1905 		0x3f900, 0x3f928,
1906 		0x3f930, 0x3f948,
1907 		0x3f960, 0x3f968,
1908 		0x3f970, 0x3f99c,
1909 		0x3f9f0, 0x3fa38,
1910 		0x3fa40, 0x3fa40,
1911 		0x3fa48, 0x3fa50,
1912 		0x3fa5c, 0x3fa64,
1913 		0x3fa70, 0x3fab8,
1914 		0x3fac0, 0x3fae4,
1915 		0x3faf8, 0x3fb10,
1916 		0x3fb28, 0x3fb28,
1917 		0x3fb3c, 0x3fb50,
1918 		0x3fbf0, 0x3fc10,
1919 		0x3fc28, 0x3fc28,
1920 		0x3fc3c, 0x3fc50,
1921 		0x3fcf0, 0x3fcfc,
1922 		0x40000, 0x4000c,
1923 		0x40040, 0x40050,
1924 		0x40060, 0x40068,
1925 		0x4007c, 0x4008c,
1926 		0x40094, 0x400b0,
1927 		0x400c0, 0x40144,
1928 		0x40180, 0x4018c,
1929 		0x40200, 0x40254,
1930 		0x40260, 0x40264,
1931 		0x40270, 0x40288,
1932 		0x40290, 0x40298,
1933 		0x402ac, 0x402c8,
1934 		0x402d0, 0x402e0,
1935 		0x402f0, 0x402f0,
1936 		0x40300, 0x4033c,
1937 		0x403f8, 0x403fc,
1938 		0x41304, 0x413c4,
1939 		0x41400, 0x4140c,
1940 		0x41414, 0x4141c,
1941 		0x41480, 0x414d0,
1942 		0x44000, 0x44054,
1943 		0x4405c, 0x44078,
1944 		0x440c0, 0x44174,
1945 		0x44180, 0x441ac,
1946 		0x441b4, 0x441b8,
1947 		0x441c0, 0x44254,
1948 		0x4425c, 0x44278,
1949 		0x442c0, 0x44374,
1950 		0x44380, 0x443ac,
1951 		0x443b4, 0x443b8,
1952 		0x443c0, 0x44454,
1953 		0x4445c, 0x44478,
1954 		0x444c0, 0x44574,
1955 		0x44580, 0x445ac,
1956 		0x445b4, 0x445b8,
1957 		0x445c0, 0x44654,
1958 		0x4465c, 0x44678,
1959 		0x446c0, 0x44774,
1960 		0x44780, 0x447ac,
1961 		0x447b4, 0x447b8,
1962 		0x447c0, 0x44854,
1963 		0x4485c, 0x44878,
1964 		0x448c0, 0x44974,
1965 		0x44980, 0x449ac,
1966 		0x449b4, 0x449b8,
1967 		0x449c0, 0x449fc,
1968 		0x45000, 0x45004,
1969 		0x45010, 0x45030,
1970 		0x45040, 0x45060,
1971 		0x45068, 0x45068,
1972 		0x45080, 0x45084,
1973 		0x450a0, 0x450b0,
1974 		0x45200, 0x45204,
1975 		0x45210, 0x45230,
1976 		0x45240, 0x45260,
1977 		0x45268, 0x45268,
1978 		0x45280, 0x45284,
1979 		0x452a0, 0x452b0,
1980 		0x460c0, 0x460e4,
1981 		0x47000, 0x4703c,
1982 		0x47044, 0x4708c,
1983 		0x47200, 0x47250,
1984 		0x47400, 0x47408,
1985 		0x47414, 0x47420,
1986 		0x47600, 0x47618,
1987 		0x47800, 0x47814,
1988 		0x48000, 0x4800c,
1989 		0x48040, 0x48050,
1990 		0x48060, 0x48068,
1991 		0x4807c, 0x4808c,
1992 		0x48094, 0x480b0,
1993 		0x480c0, 0x48144,
1994 		0x48180, 0x4818c,
1995 		0x48200, 0x48254,
1996 		0x48260, 0x48264,
1997 		0x48270, 0x48288,
1998 		0x48290, 0x48298,
1999 		0x482ac, 0x482c8,
2000 		0x482d0, 0x482e0,
2001 		0x482f0, 0x482f0,
2002 		0x48300, 0x4833c,
2003 		0x483f8, 0x483fc,
2004 		0x49304, 0x493c4,
2005 		0x49400, 0x4940c,
2006 		0x49414, 0x4941c,
2007 		0x49480, 0x494d0,
2008 		0x4c000, 0x4c054,
2009 		0x4c05c, 0x4c078,
2010 		0x4c0c0, 0x4c174,
2011 		0x4c180, 0x4c1ac,
2012 		0x4c1b4, 0x4c1b8,
2013 		0x4c1c0, 0x4c254,
2014 		0x4c25c, 0x4c278,
2015 		0x4c2c0, 0x4c374,
2016 		0x4c380, 0x4c3ac,
2017 		0x4c3b4, 0x4c3b8,
2018 		0x4c3c0, 0x4c454,
2019 		0x4c45c, 0x4c478,
2020 		0x4c4c0, 0x4c574,
2021 		0x4c580, 0x4c5ac,
2022 		0x4c5b4, 0x4c5b8,
2023 		0x4c5c0, 0x4c654,
2024 		0x4c65c, 0x4c678,
2025 		0x4c6c0, 0x4c774,
2026 		0x4c780, 0x4c7ac,
2027 		0x4c7b4, 0x4c7b8,
2028 		0x4c7c0, 0x4c854,
2029 		0x4c85c, 0x4c878,
2030 		0x4c8c0, 0x4c974,
2031 		0x4c980, 0x4c9ac,
2032 		0x4c9b4, 0x4c9b8,
2033 		0x4c9c0, 0x4c9fc,
2034 		0x4d000, 0x4d004,
2035 		0x4d010, 0x4d030,
2036 		0x4d040, 0x4d060,
2037 		0x4d068, 0x4d068,
2038 		0x4d080, 0x4d084,
2039 		0x4d0a0, 0x4d0b0,
2040 		0x4d200, 0x4d204,
2041 		0x4d210, 0x4d230,
2042 		0x4d240, 0x4d260,
2043 		0x4d268, 0x4d268,
2044 		0x4d280, 0x4d284,
2045 		0x4d2a0, 0x4d2b0,
2046 		0x4e0c0, 0x4e0e4,
2047 		0x4f000, 0x4f03c,
2048 		0x4f044, 0x4f08c,
2049 		0x4f200, 0x4f250,
2050 		0x4f400, 0x4f408,
2051 		0x4f414, 0x4f420,
2052 		0x4f600, 0x4f618,
2053 		0x4f800, 0x4f814,
2054 		0x50000, 0x50084,
2055 		0x50090, 0x500cc,
2056 		0x50400, 0x50400,
2057 		0x50800, 0x50884,
2058 		0x50890, 0x508cc,
2059 		0x50c00, 0x50c00,
2060 		0x51000, 0x5101c,
2061 		0x51300, 0x51308,
2062 	};
2063 
2064 	static const unsigned int t5vf_reg_ranges[] = {
2065 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2066 		VF_MPS_REG(A_MPS_VF_CTL),
2067 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2068 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2069 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2070 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2071 		FW_T4VF_MBDATA_BASE_ADDR,
2072 		FW_T4VF_MBDATA_BASE_ADDR +
2073 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2074 	};
2075 
2076 	static const unsigned int t6_reg_ranges[] = {
2077 		0x1008, 0x101c,
2078 		0x1024, 0x10a8,
2079 		0x10b4, 0x10f8,
2080 		0x1100, 0x1114,
2081 		0x111c, 0x112c,
2082 		0x1138, 0x113c,
2083 		0x1144, 0x114c,
2084 		0x1180, 0x1184,
2085 		0x1190, 0x1194,
2086 		0x11a0, 0x11a4,
2087 		0x11b0, 0x11b4,
2088 		0x11fc, 0x1274,
2089 		0x1280, 0x133c,
2090 		0x1800, 0x18fc,
2091 		0x3000, 0x302c,
2092 		0x3060, 0x30b0,
2093 		0x30b8, 0x30d8,
2094 		0x30e0, 0x30fc,
2095 		0x3140, 0x357c,
2096 		0x35a8, 0x35cc,
2097 		0x35ec, 0x35ec,
2098 		0x3600, 0x5624,
2099 		0x56cc, 0x56ec,
2100 		0x56f4, 0x5720,
2101 		0x5728, 0x575c,
2102 		0x580c, 0x5814,
2103 		0x5890, 0x589c,
2104 		0x58a4, 0x58ac,
2105 		0x58b8, 0x58bc,
2106 		0x5940, 0x595c,
2107 		0x5980, 0x598c,
2108 		0x59b0, 0x59c8,
2109 		0x59d0, 0x59dc,
2110 		0x59fc, 0x5a18,
2111 		0x5a60, 0x5a6c,
2112 		0x5a80, 0x5a8c,
2113 		0x5a94, 0x5a9c,
2114 		0x5b94, 0x5bfc,
2115 		0x5c10, 0x5e48,
2116 		0x5e50, 0x5e94,
2117 		0x5ea0, 0x5eb0,
2118 		0x5ec0, 0x5ec0,
2119 		0x5ec8, 0x5ed0,
2120 		0x5ee0, 0x5ee0,
2121 		0x5ef0, 0x5ef0,
2122 		0x5f00, 0x5f00,
2123 		0x6000, 0x6020,
2124 		0x6028, 0x6040,
2125 		0x6058, 0x609c,
2126 		0x60a8, 0x619c,
2127 		0x7700, 0x7798,
2128 		0x77c0, 0x7880,
2129 		0x78cc, 0x78fc,
2130 		0x7b00, 0x7b58,
2131 		0x7b60, 0x7b84,
2132 		0x7b8c, 0x7c54,
2133 		0x7d00, 0x7d38,
2134 		0x7d40, 0x7d84,
2135 		0x7d8c, 0x7ddc,
2136 		0x7de4, 0x7e04,
2137 		0x7e10, 0x7e1c,
2138 		0x7e24, 0x7e38,
2139 		0x7e40, 0x7e44,
2140 		0x7e4c, 0x7e78,
2141 		0x7e80, 0x7edc,
2142 		0x7ee8, 0x7efc,
2143 		0x8dc0, 0x8de4,
2144 		0x8df8, 0x8e04,
2145 		0x8e10, 0x8e84,
2146 		0x8ea0, 0x8f88,
2147 		0x8fb8, 0x9058,
2148 		0x9060, 0x9060,
2149 		0x9068, 0x90f8,
2150 		0x9100, 0x9124,
2151 		0x9400, 0x9470,
2152 		0x9600, 0x9600,
2153 		0x9608, 0x9638,
2154 		0x9640, 0x9704,
2155 		0x9710, 0x971c,
2156 		0x9800, 0x9808,
2157 		0x9820, 0x983c,
2158 		0x9850, 0x9864,
2159 		0x9c00, 0x9c6c,
2160 		0x9c80, 0x9cec,
2161 		0x9d00, 0x9d6c,
2162 		0x9d80, 0x9dec,
2163 		0x9e00, 0x9e6c,
2164 		0x9e80, 0x9eec,
2165 		0x9f00, 0x9f6c,
2166 		0x9f80, 0xa020,
2167 		0xd004, 0xd03c,
2168 		0xd100, 0xd118,
2169 		0xd200, 0xd214,
2170 		0xd220, 0xd234,
2171 		0xd240, 0xd254,
2172 		0xd260, 0xd274,
2173 		0xd280, 0xd294,
2174 		0xd2a0, 0xd2b4,
2175 		0xd2c0, 0xd2d4,
2176 		0xd2e0, 0xd2f4,
2177 		0xd300, 0xd31c,
2178 		0xdfc0, 0xdfe0,
2179 		0xe000, 0xf008,
2180 		0xf010, 0xf018,
2181 		0xf020, 0xf028,
2182 		0x11000, 0x11014,
2183 		0x11048, 0x1106c,
2184 		0x11074, 0x11088,
2185 		0x11098, 0x11120,
2186 		0x1112c, 0x1117c,
2187 		0x11190, 0x112e0,
2188 		0x11300, 0x1130c,
2189 		0x12000, 0x1206c,
2190 		0x19040, 0x1906c,
2191 		0x19078, 0x19080,
2192 		0x1908c, 0x190e8,
2193 		0x190f0, 0x190f8,
2194 		0x19100, 0x19110,
2195 		0x19120, 0x19124,
2196 		0x19150, 0x19194,
2197 		0x1919c, 0x191b0,
2198 		0x191d0, 0x191e8,
2199 		0x19238, 0x19290,
2200 		0x192a4, 0x192b0,
2201 		0x192bc, 0x192bc,
2202 		0x19348, 0x1934c,
2203 		0x193f8, 0x19418,
2204 		0x19420, 0x19428,
2205 		0x19430, 0x19444,
2206 		0x1944c, 0x1946c,
2207 		0x19474, 0x19474,
2208 		0x19490, 0x194cc,
2209 		0x194f0, 0x194f8,
2210 		0x19c00, 0x19c48,
2211 		0x19c50, 0x19c80,
2212 		0x19c94, 0x19c98,
2213 		0x19ca0, 0x19cbc,
2214 		0x19ce4, 0x19ce4,
2215 		0x19cf0, 0x19cf8,
2216 		0x19d00, 0x19d28,
2217 		0x19d50, 0x19d78,
2218 		0x19d94, 0x19d98,
2219 		0x19da0, 0x19dc8,
2220 		0x19df0, 0x19e10,
2221 		0x19e50, 0x19e6c,
2222 		0x19ea0, 0x19ebc,
2223 		0x19ec4, 0x19ef4,
2224 		0x19f04, 0x19f2c,
2225 		0x19f34, 0x19f34,
2226 		0x19f40, 0x19f50,
2227 		0x19f90, 0x19fac,
2228 		0x19fc4, 0x19fc8,
2229 		0x19fd0, 0x19fe4,
2230 		0x1a000, 0x1a004,
2231 		0x1a010, 0x1a06c,
2232 		0x1a0b0, 0x1a0e4,
2233 		0x1a0ec, 0x1a0f8,
2234 		0x1a100, 0x1a108,
2235 		0x1a114, 0x1a120,
2236 		0x1a128, 0x1a130,
2237 		0x1a138, 0x1a138,
2238 		0x1a190, 0x1a1c4,
2239 		0x1a1fc, 0x1a1fc,
2240 		0x1e008, 0x1e00c,
2241 		0x1e040, 0x1e044,
2242 		0x1e04c, 0x1e04c,
2243 		0x1e284, 0x1e290,
2244 		0x1e2c0, 0x1e2c0,
2245 		0x1e2e0, 0x1e2e0,
2246 		0x1e300, 0x1e384,
2247 		0x1e3c0, 0x1e3c8,
2248 		0x1e408, 0x1e40c,
2249 		0x1e440, 0x1e444,
2250 		0x1e44c, 0x1e44c,
2251 		0x1e684, 0x1e690,
2252 		0x1e6c0, 0x1e6c0,
2253 		0x1e6e0, 0x1e6e0,
2254 		0x1e700, 0x1e784,
2255 		0x1e7c0, 0x1e7c8,
2256 		0x1e808, 0x1e80c,
2257 		0x1e840, 0x1e844,
2258 		0x1e84c, 0x1e84c,
2259 		0x1ea84, 0x1ea90,
2260 		0x1eac0, 0x1eac0,
2261 		0x1eae0, 0x1eae0,
2262 		0x1eb00, 0x1eb84,
2263 		0x1ebc0, 0x1ebc8,
2264 		0x1ec08, 0x1ec0c,
2265 		0x1ec40, 0x1ec44,
2266 		0x1ec4c, 0x1ec4c,
2267 		0x1ee84, 0x1ee90,
2268 		0x1eec0, 0x1eec0,
2269 		0x1eee0, 0x1eee0,
2270 		0x1ef00, 0x1ef84,
2271 		0x1efc0, 0x1efc8,
2272 		0x1f008, 0x1f00c,
2273 		0x1f040, 0x1f044,
2274 		0x1f04c, 0x1f04c,
2275 		0x1f284, 0x1f290,
2276 		0x1f2c0, 0x1f2c0,
2277 		0x1f2e0, 0x1f2e0,
2278 		0x1f300, 0x1f384,
2279 		0x1f3c0, 0x1f3c8,
2280 		0x1f408, 0x1f40c,
2281 		0x1f440, 0x1f444,
2282 		0x1f44c, 0x1f44c,
2283 		0x1f684, 0x1f690,
2284 		0x1f6c0, 0x1f6c0,
2285 		0x1f6e0, 0x1f6e0,
2286 		0x1f700, 0x1f784,
2287 		0x1f7c0, 0x1f7c8,
2288 		0x1f808, 0x1f80c,
2289 		0x1f840, 0x1f844,
2290 		0x1f84c, 0x1f84c,
2291 		0x1fa84, 0x1fa90,
2292 		0x1fac0, 0x1fac0,
2293 		0x1fae0, 0x1fae0,
2294 		0x1fb00, 0x1fb84,
2295 		0x1fbc0, 0x1fbc8,
2296 		0x1fc08, 0x1fc0c,
2297 		0x1fc40, 0x1fc44,
2298 		0x1fc4c, 0x1fc4c,
2299 		0x1fe84, 0x1fe90,
2300 		0x1fec0, 0x1fec0,
2301 		0x1fee0, 0x1fee0,
2302 		0x1ff00, 0x1ff84,
2303 		0x1ffc0, 0x1ffc8,
2304 		0x30000, 0x30030,
2305 		0x30100, 0x30168,
2306 		0x30190, 0x301a0,
2307 		0x301a8, 0x301b8,
2308 		0x301c4, 0x301c8,
2309 		0x301d0, 0x301d0,
2310 		0x30200, 0x30320,
2311 		0x30400, 0x304b4,
2312 		0x304c0, 0x3052c,
2313 		0x30540, 0x3061c,
2314 		0x30800, 0x308a0,
2315 		0x308c0, 0x30908,
2316 		0x30910, 0x309b8,
2317 		0x30a00, 0x30a04,
2318 		0x30a0c, 0x30a14,
2319 		0x30a1c, 0x30a2c,
2320 		0x30a44, 0x30a50,
2321 		0x30a74, 0x30a74,
2322 		0x30a7c, 0x30afc,
2323 		0x30b08, 0x30c24,
2324 		0x30d00, 0x30d14,
2325 		0x30d1c, 0x30d3c,
2326 		0x30d44, 0x30d4c,
2327 		0x30d54, 0x30d74,
2328 		0x30d7c, 0x30d7c,
2329 		0x30de0, 0x30de0,
2330 		0x30e00, 0x30ed4,
2331 		0x30f00, 0x30fa4,
2332 		0x30fc0, 0x30fc4,
2333 		0x31000, 0x31004,
2334 		0x31080, 0x310fc,
2335 		0x31208, 0x31220,
2336 		0x3123c, 0x31254,
2337 		0x31300, 0x31300,
2338 		0x31308, 0x3131c,
2339 		0x31338, 0x3133c,
2340 		0x31380, 0x31380,
2341 		0x31388, 0x313a8,
2342 		0x313b4, 0x313b4,
2343 		0x31400, 0x31420,
2344 		0x31438, 0x3143c,
2345 		0x31480, 0x31480,
2346 		0x314a8, 0x314a8,
2347 		0x314b0, 0x314b4,
2348 		0x314c8, 0x314d4,
2349 		0x31a40, 0x31a4c,
2350 		0x31af0, 0x31b20,
2351 		0x31b38, 0x31b3c,
2352 		0x31b80, 0x31b80,
2353 		0x31ba8, 0x31ba8,
2354 		0x31bb0, 0x31bb4,
2355 		0x31bc8, 0x31bd4,
2356 		0x32140, 0x3218c,
2357 		0x321f0, 0x321f4,
2358 		0x32200, 0x32200,
2359 		0x32218, 0x32218,
2360 		0x32400, 0x32400,
2361 		0x32408, 0x3241c,
2362 		0x32618, 0x32620,
2363 		0x32664, 0x32664,
2364 		0x326a8, 0x326a8,
2365 		0x326ec, 0x326ec,
2366 		0x32a00, 0x32abc,
2367 		0x32b00, 0x32b18,
2368 		0x32b20, 0x32b38,
2369 		0x32b40, 0x32b58,
2370 		0x32b60, 0x32b78,
2371 		0x32c00, 0x32c00,
2372 		0x32c08, 0x32c3c,
2373 		0x33000, 0x3302c,
2374 		0x33034, 0x33050,
2375 		0x33058, 0x33058,
2376 		0x33060, 0x3308c,
2377 		0x3309c, 0x330ac,
2378 		0x330c0, 0x330c0,
2379 		0x330c8, 0x330d0,
2380 		0x330d8, 0x330e0,
2381 		0x330ec, 0x3312c,
2382 		0x33134, 0x33150,
2383 		0x33158, 0x33158,
2384 		0x33160, 0x3318c,
2385 		0x3319c, 0x331ac,
2386 		0x331c0, 0x331c0,
2387 		0x331c8, 0x331d0,
2388 		0x331d8, 0x331e0,
2389 		0x331ec, 0x33290,
2390 		0x33298, 0x332c4,
2391 		0x332e4, 0x33390,
2392 		0x33398, 0x333c4,
2393 		0x333e4, 0x3342c,
2394 		0x33434, 0x33450,
2395 		0x33458, 0x33458,
2396 		0x33460, 0x3348c,
2397 		0x3349c, 0x334ac,
2398 		0x334c0, 0x334c0,
2399 		0x334c8, 0x334d0,
2400 		0x334d8, 0x334e0,
2401 		0x334ec, 0x3352c,
2402 		0x33534, 0x33550,
2403 		0x33558, 0x33558,
2404 		0x33560, 0x3358c,
2405 		0x3359c, 0x335ac,
2406 		0x335c0, 0x335c0,
2407 		0x335c8, 0x335d0,
2408 		0x335d8, 0x335e0,
2409 		0x335ec, 0x33690,
2410 		0x33698, 0x336c4,
2411 		0x336e4, 0x33790,
2412 		0x33798, 0x337c4,
2413 		0x337e4, 0x337fc,
2414 		0x33814, 0x33814,
2415 		0x33854, 0x33868,
2416 		0x33880, 0x3388c,
2417 		0x338c0, 0x338d0,
2418 		0x338e8, 0x338ec,
2419 		0x33900, 0x3392c,
2420 		0x33934, 0x33950,
2421 		0x33958, 0x33958,
2422 		0x33960, 0x3398c,
2423 		0x3399c, 0x339ac,
2424 		0x339c0, 0x339c0,
2425 		0x339c8, 0x339d0,
2426 		0x339d8, 0x339e0,
2427 		0x339ec, 0x33a90,
2428 		0x33a98, 0x33ac4,
2429 		0x33ae4, 0x33b10,
2430 		0x33b24, 0x33b28,
2431 		0x33b38, 0x33b50,
2432 		0x33bf0, 0x33c10,
2433 		0x33c24, 0x33c28,
2434 		0x33c38, 0x33c50,
2435 		0x33cf0, 0x33cfc,
2436 		0x34000, 0x34030,
2437 		0x34100, 0x34168,
2438 		0x34190, 0x341a0,
2439 		0x341a8, 0x341b8,
2440 		0x341c4, 0x341c8,
2441 		0x341d0, 0x341d0,
2442 		0x34200, 0x34320,
2443 		0x34400, 0x344b4,
2444 		0x344c0, 0x3452c,
2445 		0x34540, 0x3461c,
2446 		0x34800, 0x348a0,
2447 		0x348c0, 0x34908,
2448 		0x34910, 0x349b8,
2449 		0x34a00, 0x34a04,
2450 		0x34a0c, 0x34a14,
2451 		0x34a1c, 0x34a2c,
2452 		0x34a44, 0x34a50,
2453 		0x34a74, 0x34a74,
2454 		0x34a7c, 0x34afc,
2455 		0x34b08, 0x34c24,
2456 		0x34d00, 0x34d14,
2457 		0x34d1c, 0x34d3c,
2458 		0x34d44, 0x34d4c,
2459 		0x34d54, 0x34d74,
2460 		0x34d7c, 0x34d7c,
2461 		0x34de0, 0x34de0,
2462 		0x34e00, 0x34ed4,
2463 		0x34f00, 0x34fa4,
2464 		0x34fc0, 0x34fc4,
2465 		0x35000, 0x35004,
2466 		0x35080, 0x350fc,
2467 		0x35208, 0x35220,
2468 		0x3523c, 0x35254,
2469 		0x35300, 0x35300,
2470 		0x35308, 0x3531c,
2471 		0x35338, 0x3533c,
2472 		0x35380, 0x35380,
2473 		0x35388, 0x353a8,
2474 		0x353b4, 0x353b4,
2475 		0x35400, 0x35420,
2476 		0x35438, 0x3543c,
2477 		0x35480, 0x35480,
2478 		0x354a8, 0x354a8,
2479 		0x354b0, 0x354b4,
2480 		0x354c8, 0x354d4,
2481 		0x35a40, 0x35a4c,
2482 		0x35af0, 0x35b20,
2483 		0x35b38, 0x35b3c,
2484 		0x35b80, 0x35b80,
2485 		0x35ba8, 0x35ba8,
2486 		0x35bb0, 0x35bb4,
2487 		0x35bc8, 0x35bd4,
2488 		0x36140, 0x3618c,
2489 		0x361f0, 0x361f4,
2490 		0x36200, 0x36200,
2491 		0x36218, 0x36218,
2492 		0x36400, 0x36400,
2493 		0x36408, 0x3641c,
2494 		0x36618, 0x36620,
2495 		0x36664, 0x36664,
2496 		0x366a8, 0x366a8,
2497 		0x366ec, 0x366ec,
2498 		0x36a00, 0x36abc,
2499 		0x36b00, 0x36b18,
2500 		0x36b20, 0x36b38,
2501 		0x36b40, 0x36b58,
2502 		0x36b60, 0x36b78,
2503 		0x36c00, 0x36c00,
2504 		0x36c08, 0x36c3c,
2505 		0x37000, 0x3702c,
2506 		0x37034, 0x37050,
2507 		0x37058, 0x37058,
2508 		0x37060, 0x3708c,
2509 		0x3709c, 0x370ac,
2510 		0x370c0, 0x370c0,
2511 		0x370c8, 0x370d0,
2512 		0x370d8, 0x370e0,
2513 		0x370ec, 0x3712c,
2514 		0x37134, 0x37150,
2515 		0x37158, 0x37158,
2516 		0x37160, 0x3718c,
2517 		0x3719c, 0x371ac,
2518 		0x371c0, 0x371c0,
2519 		0x371c8, 0x371d0,
2520 		0x371d8, 0x371e0,
2521 		0x371ec, 0x37290,
2522 		0x37298, 0x372c4,
2523 		0x372e4, 0x37390,
2524 		0x37398, 0x373c4,
2525 		0x373e4, 0x3742c,
2526 		0x37434, 0x37450,
2527 		0x37458, 0x37458,
2528 		0x37460, 0x3748c,
2529 		0x3749c, 0x374ac,
2530 		0x374c0, 0x374c0,
2531 		0x374c8, 0x374d0,
2532 		0x374d8, 0x374e0,
2533 		0x374ec, 0x3752c,
2534 		0x37534, 0x37550,
2535 		0x37558, 0x37558,
2536 		0x37560, 0x3758c,
2537 		0x3759c, 0x375ac,
2538 		0x375c0, 0x375c0,
2539 		0x375c8, 0x375d0,
2540 		0x375d8, 0x375e0,
2541 		0x375ec, 0x37690,
2542 		0x37698, 0x376c4,
2543 		0x376e4, 0x37790,
2544 		0x37798, 0x377c4,
2545 		0x377e4, 0x377fc,
2546 		0x37814, 0x37814,
2547 		0x37854, 0x37868,
2548 		0x37880, 0x3788c,
2549 		0x378c0, 0x378d0,
2550 		0x378e8, 0x378ec,
2551 		0x37900, 0x3792c,
2552 		0x37934, 0x37950,
2553 		0x37958, 0x37958,
2554 		0x37960, 0x3798c,
2555 		0x3799c, 0x379ac,
2556 		0x379c0, 0x379c0,
2557 		0x379c8, 0x379d0,
2558 		0x379d8, 0x379e0,
2559 		0x379ec, 0x37a90,
2560 		0x37a98, 0x37ac4,
2561 		0x37ae4, 0x37b10,
2562 		0x37b24, 0x37b28,
2563 		0x37b38, 0x37b50,
2564 		0x37bf0, 0x37c10,
2565 		0x37c24, 0x37c28,
2566 		0x37c38, 0x37c50,
2567 		0x37cf0, 0x37cfc,
2568 		0x40040, 0x40040,
2569 		0x40080, 0x40084,
2570 		0x40100, 0x40100,
2571 		0x40140, 0x401bc,
2572 		0x40200, 0x40214,
2573 		0x40228, 0x40228,
2574 		0x40240, 0x40258,
2575 		0x40280, 0x40280,
2576 		0x40304, 0x40304,
2577 		0x40330, 0x4033c,
2578 		0x41304, 0x413c8,
2579 		0x413d0, 0x413dc,
2580 		0x413f0, 0x413f0,
2581 		0x41400, 0x4140c,
2582 		0x41414, 0x4141c,
2583 		0x41480, 0x414d0,
2584 		0x44000, 0x4407c,
2585 		0x440c0, 0x441ac,
2586 		0x441b4, 0x4427c,
2587 		0x442c0, 0x443ac,
2588 		0x443b4, 0x4447c,
2589 		0x444c0, 0x445ac,
2590 		0x445b4, 0x4467c,
2591 		0x446c0, 0x447ac,
2592 		0x447b4, 0x4487c,
2593 		0x448c0, 0x449ac,
2594 		0x449b4, 0x44a7c,
2595 		0x44ac0, 0x44bac,
2596 		0x44bb4, 0x44c7c,
2597 		0x44cc0, 0x44dac,
2598 		0x44db4, 0x44e7c,
2599 		0x44ec0, 0x44fac,
2600 		0x44fb4, 0x4507c,
2601 		0x450c0, 0x451ac,
2602 		0x451b4, 0x451fc,
2603 		0x45800, 0x45804,
2604 		0x45810, 0x45830,
2605 		0x45840, 0x45860,
2606 		0x45868, 0x45868,
2607 		0x45880, 0x45884,
2608 		0x458a0, 0x458b0,
2609 		0x45a00, 0x45a04,
2610 		0x45a10, 0x45a30,
2611 		0x45a40, 0x45a60,
2612 		0x45a68, 0x45a68,
2613 		0x45a80, 0x45a84,
2614 		0x45aa0, 0x45ab0,
2615 		0x460c0, 0x460e4,
2616 		0x47000, 0x4703c,
2617 		0x47044, 0x4708c,
2618 		0x47200, 0x47250,
2619 		0x47400, 0x47408,
2620 		0x47414, 0x47420,
2621 		0x47600, 0x47618,
2622 		0x47800, 0x47814,
2623 		0x47820, 0x4782c,
2624 		0x50000, 0x50084,
2625 		0x50090, 0x500cc,
2626 		0x50300, 0x50384,
2627 		0x50400, 0x50400,
2628 		0x50800, 0x50884,
2629 		0x50890, 0x508cc,
2630 		0x50b00, 0x50b84,
2631 		0x50c00, 0x50c00,
2632 		0x51000, 0x51020,
2633 		0x51028, 0x510b0,
2634 		0x51300, 0x51324,
2635 	};
2636 
2637 	static const unsigned int t6vf_reg_ranges[] = {
2638 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2639 		VF_MPS_REG(A_MPS_VF_CTL),
2640 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2641 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2642 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2643 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2644 		FW_T6VF_MBDATA_BASE_ADDR,
2645 		FW_T6VF_MBDATA_BASE_ADDR +
2646 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2647 	};
2648 
2649 	u32 *buf_end = (u32 *)(buf + buf_size);
2650 	const unsigned int *reg_ranges;
2651 	int reg_ranges_size, range;
2652 	unsigned int chip_version = chip_id(adap);
2653 
2654 	/*
2655 	 * Select the right set of register ranges to dump depending on the
2656 	 * adapter chip type.
2657 	 */
2658 	switch (chip_version) {
2659 	case CHELSIO_T4:
2660 		if (adap->flags & IS_VF) {
2661 			reg_ranges = t4vf_reg_ranges;
2662 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2663 		} else {
2664 			reg_ranges = t4_reg_ranges;
2665 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2666 		}
2667 		break;
2668 
2669 	case CHELSIO_T5:
2670 		if (adap->flags & IS_VF) {
2671 			reg_ranges = t5vf_reg_ranges;
2672 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2673 		} else {
2674 			reg_ranges = t5_reg_ranges;
2675 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2676 		}
2677 		break;
2678 
2679 	case CHELSIO_T6:
2680 		if (adap->flags & IS_VF) {
2681 			reg_ranges = t6vf_reg_ranges;
2682 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2683 		} else {
2684 			reg_ranges = t6_reg_ranges;
2685 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2686 		}
2687 		break;
2688 
2689 	default:
2690 		CH_ERR(adap,
2691 			"Unsupported chip version %d\n", chip_version);
2692 		return;
2693 	}
2694 
2695 	/*
2696 	 * Clear the register buffer and insert the appropriate register
2697 	 * values selected by the above register ranges.
2698 	 */
2699 	memset(buf, 0, buf_size);
2700 	for (range = 0; range < reg_ranges_size; range += 2) {
2701 		unsigned int reg = reg_ranges[range];
2702 		unsigned int last_reg = reg_ranges[range + 1];
2703 		u32 *bufp = (u32 *)(buf + reg);
2704 
2705 		/*
2706 		 * Iterate across the register range filling in the register
2707 		 * buffer but don't write past the end of the register buffer.
2708 		 */
2709 		while (reg <= last_reg && bufp < buf_end) {
2710 			*bufp++ = t4_read_reg(adap, reg);
2711 			reg += sizeof(u32);
2712 		}
2713 	}
2714 }
2715 
2716 /*
2717  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2718  * header followed by one or more VPD-R sections, each with its own header.
2719  */
2720 struct t4_vpd_hdr {
2721 	u8  id_tag;
2722 	u8  id_len[2];
2723 	u8  id_data[ID_LEN];
2724 };
2725 
2726 struct t4_vpdr_hdr {
2727 	u8  vpdr_tag;
2728 	u8  vpdr_len[2];
2729 };
2730 
2731 /*
2732  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2733  */
2734 #define EEPROM_DELAY		10		/* 10us per poll spin */
2735 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2736 
2737 #define EEPROM_STAT_ADDR	0x7bfc
2738 #define VPD_SIZE		0x800
2739 #define VPD_BASE		0x400
2740 #define VPD_BASE_OLD		0
2741 #define VPD_LEN			1024
2742 #define VPD_INFO_FLD_HDR_SIZE	3
2743 #define CHELSIO_VPD_UNIQUE_ID	0x82
2744 
2745 /*
2746  * Small utility function to wait till any outstanding VPD Access is complete.
2747  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2748  * VPD Access in flight.  This allows us to handle the problem of having a
2749  * previous VPD Access time out and prevent an attempt to inject a new VPD
2750  * Request before any in-flight VPD reguest has completed.
2751  */
2752 static int t4_seeprom_wait(struct adapter *adapter)
2753 {
2754 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2755 	int max_poll;
2756 
2757 	/*
2758 	 * If no VPD Access is in flight, we can just return success right
2759 	 * away.
2760 	 */
2761 	if (!adapter->vpd_busy)
2762 		return 0;
2763 
2764 	/*
2765 	 * Poll the VPD Capability Address/Flag register waiting for it
2766 	 * to indicate that the operation is complete.
2767 	 */
2768 	max_poll = EEPROM_MAX_POLL;
2769 	do {
2770 		u16 val;
2771 
2772 		udelay(EEPROM_DELAY);
2773 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2774 
2775 		/*
2776 		 * If the operation is complete, mark the VPD as no longer
2777 		 * busy and return success.
2778 		 */
2779 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2780 			adapter->vpd_busy = 0;
2781 			return 0;
2782 		}
2783 	} while (--max_poll);
2784 
2785 	/*
2786 	 * Failure!  Note that we leave the VPD Busy status set in order to
2787 	 * avoid pushing a new VPD Access request into the VPD Capability till
2788 	 * the current operation eventually succeeds.  It's a bug to issue a
2789 	 * new request when an existing request is in flight and will result
2790 	 * in corrupt hardware state.
2791 	 */
2792 	return -ETIMEDOUT;
2793 }
2794 
2795 /**
2796  *	t4_seeprom_read - read a serial EEPROM location
2797  *	@adapter: adapter to read
2798  *	@addr: EEPROM virtual address
2799  *	@data: where to store the read data
2800  *
2801  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2802  *	VPD capability.  Note that this function must be called with a virtual
2803  *	address.
2804  */
2805 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2806 {
2807 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2808 	int ret;
2809 
2810 	/*
2811 	 * VPD Accesses must alway be 4-byte aligned!
2812 	 */
2813 	if (addr >= EEPROMVSIZE || (addr & 3))
2814 		return -EINVAL;
2815 
2816 	/*
2817 	 * Wait for any previous operation which may still be in flight to
2818 	 * complete.
2819 	 */
2820 	ret = t4_seeprom_wait(adapter);
2821 	if (ret) {
2822 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2823 		return ret;
2824 	}
2825 
2826 	/*
2827 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2828 	 * for our request to complete.  If it doesn't complete, note the
2829 	 * error and return it to our caller.  Note that we do not reset the
2830 	 * VPD Busy status!
2831 	 */
2832 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2833 	adapter->vpd_busy = 1;
2834 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2835 	ret = t4_seeprom_wait(adapter);
2836 	if (ret) {
2837 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2838 		return ret;
2839 	}
2840 
2841 	/*
2842 	 * Grab the returned data, swizzle it into our endianness and
2843 	 * return success.
2844 	 */
2845 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2846 	*data = le32_to_cpu(*data);
2847 	return 0;
2848 }
2849 
2850 /**
2851  *	t4_seeprom_write - write a serial EEPROM location
2852  *	@adapter: adapter to write
2853  *	@addr: virtual EEPROM address
2854  *	@data: value to write
2855  *
2856  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2857  *	VPD capability.  Note that this function must be called with a virtual
2858  *	address.
2859  */
2860 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2861 {
2862 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2863 	int ret;
2864 	u32 stats_reg;
2865 	int max_poll;
2866 
2867 	/*
2868 	 * VPD Accesses must alway be 4-byte aligned!
2869 	 */
2870 	if (addr >= EEPROMVSIZE || (addr & 3))
2871 		return -EINVAL;
2872 
2873 	/*
2874 	 * Wait for any previous operation which may still be in flight to
2875 	 * complete.
2876 	 */
2877 	ret = t4_seeprom_wait(adapter);
2878 	if (ret) {
2879 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2880 		return ret;
2881 	}
2882 
2883 	/*
2884 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2885 	 * for our request to complete.  If it doesn't complete, note the
2886 	 * error and return it to our caller.  Note that we do not reset the
2887 	 * VPD Busy status!
2888 	 */
2889 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2890 				 cpu_to_le32(data));
2891 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2892 				 (u16)addr | PCI_VPD_ADDR_F);
2893 	adapter->vpd_busy = 1;
2894 	adapter->vpd_flag = 0;
2895 	ret = t4_seeprom_wait(adapter);
2896 	if (ret) {
2897 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2898 		return ret;
2899 	}
2900 
2901 	/*
2902 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2903 	 * request to complete. If it doesn't complete, return error.
2904 	 */
2905 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2906 	max_poll = EEPROM_MAX_POLL;
2907 	do {
2908 		udelay(EEPROM_DELAY);
2909 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2910 	} while ((stats_reg & 0x1) && --max_poll);
2911 	if (!max_poll)
2912 		return -ETIMEDOUT;
2913 
2914 	/* Return success! */
2915 	return 0;
2916 }
2917 
2918 /**
2919  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2920  *	@phys_addr: the physical EEPROM address
2921  *	@fn: the PCI function number
2922  *	@sz: size of function-specific area
2923  *
2924  *	Translate a physical EEPROM address to virtual.  The first 1K is
2925  *	accessed through virtual addresses starting at 31K, the rest is
2926  *	accessed through virtual addresses starting at 0.
2927  *
2928  *	The mapping is as follows:
2929  *	[0..1K) -> [31K..32K)
2930  *	[1K..1K+A) -> [ES-A..ES)
2931  *	[1K+A..ES) -> [0..ES-A-1K)
2932  *
2933  *	where A = @fn * @sz, and ES = EEPROM size.
2934  */
2935 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2936 {
2937 	fn *= sz;
2938 	if (phys_addr < 1024)
2939 		return phys_addr + (31 << 10);
2940 	if (phys_addr < 1024 + fn)
2941 		return EEPROMSIZE - fn + phys_addr - 1024;
2942 	if (phys_addr < EEPROMSIZE)
2943 		return phys_addr - 1024 - fn;
2944 	return -EINVAL;
2945 }
2946 
2947 /**
2948  *	t4_seeprom_wp - enable/disable EEPROM write protection
2949  *	@adapter: the adapter
2950  *	@enable: whether to enable or disable write protection
2951  *
2952  *	Enables or disables write protection on the serial EEPROM.
2953  */
2954 int t4_seeprom_wp(struct adapter *adapter, int enable)
2955 {
2956 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2957 }
2958 
2959 /**
2960  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2961  *	@vpd: Pointer to buffered vpd data structure
2962  *	@kw: The keyword to search for
2963  *	@region: VPD region to search (starting from 0)
2964  *
2965  *	Returns the value of the information field keyword or
2966  *	-ENOENT otherwise.
2967  */
2968 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2969 {
2970 	int i, tag;
2971 	unsigned int offset, len;
2972 	const struct t4_vpdr_hdr *vpdr;
2973 
2974 	offset = sizeof(struct t4_vpd_hdr);
2975 	vpdr = (const void *)(vpd + offset);
2976 	tag = vpdr->vpdr_tag;
2977 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2978 	while (region--) {
2979 		offset += sizeof(struct t4_vpdr_hdr) + len;
2980 		vpdr = (const void *)(vpd + offset);
2981 		if (++tag != vpdr->vpdr_tag)
2982 			return -ENOENT;
2983 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2984 	}
2985 	offset += sizeof(struct t4_vpdr_hdr);
2986 
2987 	if (offset + len > VPD_LEN) {
2988 		return -ENOENT;
2989 	}
2990 
2991 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2992 		if (memcmp(vpd + i , kw , 2) == 0){
2993 			i += VPD_INFO_FLD_HDR_SIZE;
2994 			return i;
2995 		}
2996 
2997 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2998 	}
2999 
3000 	return -ENOENT;
3001 }
3002 
3003 
3004 /**
3005  *	get_vpd_params - read VPD parameters from VPD EEPROM
3006  *	@adapter: adapter to read
3007  *	@p: where to store the parameters
3008  *	@vpd: caller provided temporary space to read the VPD into
3009  *
3010  *	Reads card parameters stored in VPD EEPROM.
3011  */
3012 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3013     uint16_t device_id, u32 *buf)
3014 {
3015 	int i, ret, addr;
3016 	int ec, sn, pn, na, md;
3017 	u8 csum;
3018 	const u8 *vpd = (const u8 *)buf;
3019 
3020 	/*
3021 	 * Card information normally starts at VPD_BASE but early cards had
3022 	 * it at 0.
3023 	 */
3024 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3025 	if (ret)
3026 		return (ret);
3027 
3028 	/*
3029 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3030 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3031 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3032 	 * is expected to automatically put this entry at the
3033 	 * beginning of the VPD.
3034 	 */
3035 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3036 
3037 	for (i = 0; i < VPD_LEN; i += 4) {
3038 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3039 		if (ret)
3040 			return ret;
3041 	}
3042 
3043 #define FIND_VPD_KW(var,name) do { \
3044 	var = get_vpd_keyword_val(vpd, name, 0); \
3045 	if (var < 0) { \
3046 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3047 		return -EINVAL; \
3048 	} \
3049 } while (0)
3050 
3051 	FIND_VPD_KW(i, "RV");
3052 	for (csum = 0; i >= 0; i--)
3053 		csum += vpd[i];
3054 
3055 	if (csum) {
3056 		CH_ERR(adapter,
3057 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3058 		return -EINVAL;
3059 	}
3060 
3061 	FIND_VPD_KW(ec, "EC");
3062 	FIND_VPD_KW(sn, "SN");
3063 	FIND_VPD_KW(pn, "PN");
3064 	FIND_VPD_KW(na, "NA");
3065 #undef FIND_VPD_KW
3066 
3067 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3068 	strstrip(p->id);
3069 	memcpy(p->ec, vpd + ec, EC_LEN);
3070 	strstrip(p->ec);
3071 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3072 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3073 	strstrip(p->sn);
3074 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3075 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3076 	strstrip((char *)p->pn);
3077 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3078 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3079 	strstrip((char *)p->na);
3080 
3081 	if (device_id & 0x80)
3082 		return 0;	/* Custom card */
3083 
3084 	md = get_vpd_keyword_val(vpd, "VF", 1);
3085 	if (md < 0) {
3086 		snprintf(p->md, sizeof(p->md), "unknown");
3087 	} else {
3088 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3089 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3090 		strstrip((char *)p->md);
3091 	}
3092 
3093 	return 0;
3094 }
3095 
3096 /* serial flash and firmware constants and flash config file constants */
3097 enum {
3098 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3099 
3100 	/* flash command opcodes */
3101 	SF_PROG_PAGE    = 2,	/* program 256B page */
3102 	SF_WR_DISABLE   = 4,	/* disable writes */
3103 	SF_RD_STATUS    = 5,	/* read status register */
3104 	SF_WR_ENABLE    = 6,	/* enable writes */
3105 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3106 	SF_RD_ID	= 0x9f,	/* read ID */
3107 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3108 };
3109 
3110 /**
3111  *	sf1_read - read data from the serial flash
3112  *	@adapter: the adapter
3113  *	@byte_cnt: number of bytes to read
3114  *	@cont: whether another operation will be chained
3115  *	@lock: whether to lock SF for PL access only
3116  *	@valp: where to store the read data
3117  *
3118  *	Reads up to 4 bytes of data from the serial flash.  The location of
3119  *	the read needs to be specified prior to calling this by issuing the
3120  *	appropriate commands to the serial flash.
3121  */
3122 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3123 		    int lock, u32 *valp)
3124 {
3125 	int ret;
3126 
3127 	if (!byte_cnt || byte_cnt > 4)
3128 		return -EINVAL;
3129 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3130 		return -EBUSY;
3131 	t4_write_reg(adapter, A_SF_OP,
3132 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3133 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3134 	if (!ret)
3135 		*valp = t4_read_reg(adapter, A_SF_DATA);
3136 	return ret;
3137 }
3138 
3139 /**
3140  *	sf1_write - write data to the serial flash
3141  *	@adapter: the adapter
3142  *	@byte_cnt: number of bytes to write
3143  *	@cont: whether another operation will be chained
3144  *	@lock: whether to lock SF for PL access only
3145  *	@val: value to write
3146  *
3147  *	Writes up to 4 bytes of data to the serial flash.  The location of
3148  *	the write needs to be specified prior to calling this by issuing the
3149  *	appropriate commands to the serial flash.
3150  */
3151 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3152 		     int lock, u32 val)
3153 {
3154 	if (!byte_cnt || byte_cnt > 4)
3155 		return -EINVAL;
3156 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3157 		return -EBUSY;
3158 	t4_write_reg(adapter, A_SF_DATA, val);
3159 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3160 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3161 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3162 }
3163 
3164 /**
3165  *	flash_wait_op - wait for a flash operation to complete
3166  *	@adapter: the adapter
3167  *	@attempts: max number of polls of the status register
3168  *	@delay: delay between polls in ms
3169  *
3170  *	Wait for a flash operation to complete by polling the status register.
3171  */
3172 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3173 {
3174 	int ret;
3175 	u32 status;
3176 
3177 	while (1) {
3178 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3179 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3180 			return ret;
3181 		if (!(status & 1))
3182 			return 0;
3183 		if (--attempts == 0)
3184 			return -EAGAIN;
3185 		if (delay)
3186 			msleep(delay);
3187 	}
3188 }
3189 
3190 /**
3191  *	t4_read_flash - read words from serial flash
3192  *	@adapter: the adapter
3193  *	@addr: the start address for the read
3194  *	@nwords: how many 32-bit words to read
3195  *	@data: where to store the read data
3196  *	@byte_oriented: whether to store data as bytes or as words
3197  *
3198  *	Read the specified number of 32-bit words from the serial flash.
3199  *	If @byte_oriented is set the read data is stored as a byte array
3200  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3201  *	natural endianness.
3202  */
3203 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3204 		  unsigned int nwords, u32 *data, int byte_oriented)
3205 {
3206 	int ret;
3207 
3208 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3209 		return -EINVAL;
3210 
3211 	addr = swab32(addr) | SF_RD_DATA_FAST;
3212 
3213 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3214 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3215 		return ret;
3216 
3217 	for ( ; nwords; nwords--, data++) {
3218 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3219 		if (nwords == 1)
3220 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3221 		if (ret)
3222 			return ret;
3223 		if (byte_oriented)
3224 			*data = (__force __u32)(cpu_to_be32(*data));
3225 	}
3226 	return 0;
3227 }
3228 
3229 /**
3230  *	t4_write_flash - write up to a page of data to the serial flash
3231  *	@adapter: the adapter
3232  *	@addr: the start address to write
3233  *	@n: length of data to write in bytes
3234  *	@data: the data to write
3235  *	@byte_oriented: whether to store data as bytes or as words
3236  *
3237  *	Writes up to a page of data (256 bytes) to the serial flash starting
3238  *	at the given address.  All the data must be written to the same page.
3239  *	If @byte_oriented is set the write data is stored as byte stream
3240  *	(i.e. matches what on disk), otherwise in big-endian.
3241  */
3242 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3243 			  unsigned int n, const u8 *data, int byte_oriented)
3244 {
3245 	int ret;
3246 	u32 buf[SF_PAGE_SIZE / 4];
3247 	unsigned int i, c, left, val, offset = addr & 0xff;
3248 
3249 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3250 		return -EINVAL;
3251 
3252 	val = swab32(addr) | SF_PROG_PAGE;
3253 
3254 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3255 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3256 		goto unlock;
3257 
3258 	for (left = n; left; left -= c) {
3259 		c = min(left, 4U);
3260 		for (val = 0, i = 0; i < c; ++i)
3261 			val = (val << 8) + *data++;
3262 
3263 		if (!byte_oriented)
3264 			val = cpu_to_be32(val);
3265 
3266 		ret = sf1_write(adapter, c, c != left, 1, val);
3267 		if (ret)
3268 			goto unlock;
3269 	}
3270 	ret = flash_wait_op(adapter, 8, 1);
3271 	if (ret)
3272 		goto unlock;
3273 
3274 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3275 
3276 	/* Read the page to verify the write succeeded */
3277 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3278 			    byte_oriented);
3279 	if (ret)
3280 		return ret;
3281 
3282 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3283 		CH_ERR(adapter,
3284 			"failed to correctly write the flash page at %#x\n",
3285 			addr);
3286 		return -EIO;
3287 	}
3288 	return 0;
3289 
3290 unlock:
3291 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3292 	return ret;
3293 }
3294 
3295 /**
3296  *	t4_get_fw_version - read the firmware version
3297  *	@adapter: the adapter
3298  *	@vers: where to place the version
3299  *
3300  *	Reads the FW version from flash.
3301  */
3302 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3303 {
3304 	return t4_read_flash(adapter, FLASH_FW_START +
3305 			     offsetof(struct fw_hdr, fw_ver), 1,
3306 			     vers, 0);
3307 }
3308 
3309 /**
3310  *	t4_get_fw_hdr - read the firmware header
3311  *	@adapter: the adapter
3312  *	@hdr: where to place the version
3313  *
3314  *	Reads the FW header from flash into caller provided buffer.
3315  */
3316 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3317 {
3318 	return t4_read_flash(adapter, FLASH_FW_START,
3319 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3320 }
3321 
3322 /**
3323  *	t4_get_bs_version - read the firmware bootstrap version
3324  *	@adapter: the adapter
3325  *	@vers: where to place the version
3326  *
3327  *	Reads the FW Bootstrap version from flash.
3328  */
3329 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3330 {
3331 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3332 			     offsetof(struct fw_hdr, fw_ver), 1,
3333 			     vers, 0);
3334 }
3335 
3336 /**
3337  *	t4_get_tp_version - read the TP microcode version
3338  *	@adapter: the adapter
3339  *	@vers: where to place the version
3340  *
3341  *	Reads the TP microcode version from flash.
3342  */
3343 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3344 {
3345 	return t4_read_flash(adapter, FLASH_FW_START +
3346 			     offsetof(struct fw_hdr, tp_microcode_ver),
3347 			     1, vers, 0);
3348 }
3349 
3350 /**
3351  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3352  *	@adapter: the adapter
3353  *	@vers: where to place the version
3354  *
3355  *	Reads the Expansion ROM header from FLASH and returns the version
3356  *	number (if present) through the @vers return value pointer.  We return
3357  *	this in the Firmware Version Format since it's convenient.  Return
3358  *	0 on success, -ENOENT if no Expansion ROM is present.
3359  */
3360 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3361 {
3362 	struct exprom_header {
3363 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3364 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3365 	} *hdr;
3366 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3367 					   sizeof(u32))];
3368 	int ret;
3369 
3370 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3371 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3372 			    0);
3373 	if (ret)
3374 		return ret;
3375 
3376 	hdr = (struct exprom_header *)exprom_header_buf;
3377 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3378 		return -ENOENT;
3379 
3380 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3381 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3382 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3383 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3384 	return 0;
3385 }
3386 
3387 /**
3388  *	t4_get_scfg_version - return the Serial Configuration version
3389  *	@adapter: the adapter
3390  *	@vers: where to place the version
3391  *
3392  *	Reads the Serial Configuration Version via the Firmware interface
3393  *	(thus this can only be called once we're ready to issue Firmware
3394  *	commands).  The format of the Serial Configuration version is
3395  *	adapter specific.  Returns 0 on success, an error on failure.
3396  *
3397  *	Note that early versions of the Firmware didn't include the ability
3398  *	to retrieve the Serial Configuration version, so we zero-out the
3399  *	return-value parameter in that case to avoid leaving it with
3400  *	garbage in it.
3401  *
3402  *	Also note that the Firmware will return its cached copy of the Serial
3403  *	Initialization Revision ID, not the actual Revision ID as written in
3404  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3405  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3406  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3407  *	been issued if the Host Driver will be performing a full adapter
3408  *	initialization.
3409  */
3410 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3411 {
3412 	u32 scfgrev_param;
3413 	int ret;
3414 
3415 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3416 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3417 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3418 			      1, &scfgrev_param, vers);
3419 	if (ret)
3420 		*vers = 0;
3421 	return ret;
3422 }
3423 
3424 /**
3425  *	t4_get_vpd_version - return the VPD version
3426  *	@adapter: the adapter
3427  *	@vers: where to place the version
3428  *
3429  *	Reads the VPD via the Firmware interface (thus this can only be called
3430  *	once we're ready to issue Firmware commands).  The format of the
3431  *	VPD version is adapter specific.  Returns 0 on success, an error on
3432  *	failure.
3433  *
3434  *	Note that early versions of the Firmware didn't include the ability
3435  *	to retrieve the VPD version, so we zero-out the return-value parameter
3436  *	in that case to avoid leaving it with garbage in it.
3437  *
3438  *	Also note that the Firmware will return its cached copy of the VPD
3439  *	Revision ID, not the actual Revision ID as written in the Serial
3440  *	EEPROM.  This is only an issue if a new VPD has been written and the
3441  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3442  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3443  *	if the Host Driver will be performing a full adapter initialization.
3444  */
3445 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3446 {
3447 	u32 vpdrev_param;
3448 	int ret;
3449 
3450 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3451 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3452 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3453 			      1, &vpdrev_param, vers);
3454 	if (ret)
3455 		*vers = 0;
3456 	return ret;
3457 }
3458 
3459 /**
3460  *	t4_get_version_info - extract various chip/firmware version information
3461  *	@adapter: the adapter
3462  *
3463  *	Reads various chip/firmware version numbers and stores them into the
3464  *	adapter Adapter Parameters structure.  If any of the efforts fails
3465  *	the first failure will be returned, but all of the version numbers
3466  *	will be read.
3467  */
3468 int t4_get_version_info(struct adapter *adapter)
3469 {
3470 	int ret = 0;
3471 
3472 	#define FIRST_RET(__getvinfo) \
3473 	do { \
3474 		int __ret = __getvinfo; \
3475 		if (__ret && !ret) \
3476 			ret = __ret; \
3477 	} while (0)
3478 
3479 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3480 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3481 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3482 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3483 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3484 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3485 
3486 	#undef FIRST_RET
3487 
3488 	return ret;
3489 }
3490 
3491 /**
3492  *	t4_flash_erase_sectors - erase a range of flash sectors
3493  *	@adapter: the adapter
3494  *	@start: the first sector to erase
3495  *	@end: the last sector to erase
3496  *
3497  *	Erases the sectors in the given inclusive range.
3498  */
3499 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3500 {
3501 	int ret = 0;
3502 
3503 	if (end >= adapter->params.sf_nsec)
3504 		return -EINVAL;
3505 
3506 	while (start <= end) {
3507 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3508 		    (ret = sf1_write(adapter, 4, 0, 1,
3509 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3510 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3511 			CH_ERR(adapter,
3512 				"erase of flash sector %d failed, error %d\n",
3513 				start, ret);
3514 			break;
3515 		}
3516 		start++;
3517 	}
3518 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3519 	return ret;
3520 }
3521 
3522 /**
3523  *	t4_flash_cfg_addr - return the address of the flash configuration file
3524  *	@adapter: the adapter
3525  *
3526  *	Return the address within the flash where the Firmware Configuration
3527  *	File is stored, or an error if the device FLASH is too small to contain
3528  *	a Firmware Configuration File.
3529  */
3530 int t4_flash_cfg_addr(struct adapter *adapter)
3531 {
3532 	/*
3533 	 * If the device FLASH isn't large enough to hold a Firmware
3534 	 * Configuration File, return an error.
3535 	 */
3536 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3537 		return -ENOSPC;
3538 
3539 	return FLASH_CFG_START;
3540 }
3541 
3542 /*
3543  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3544  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3545  * and emit an error message for mismatched firmware to save our caller the
3546  * effort ...
3547  */
3548 static int t4_fw_matches_chip(struct adapter *adap,
3549 			      const struct fw_hdr *hdr)
3550 {
3551 	/*
3552 	 * The expression below will return FALSE for any unsupported adapter
3553 	 * which will keep us "honest" in the future ...
3554 	 */
3555 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3556 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3557 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3558 		return 1;
3559 
3560 	CH_ERR(adap,
3561 		"FW image (%d) is not suitable for this adapter (%d)\n",
3562 		hdr->chip, chip_id(adap));
3563 	return 0;
3564 }
3565 
3566 /**
3567  *	t4_load_fw - download firmware
3568  *	@adap: the adapter
3569  *	@fw_data: the firmware image to write
3570  *	@size: image size
3571  *
3572  *	Write the supplied firmware image to the card's serial flash.
3573  */
3574 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3575 {
3576 	u32 csum;
3577 	int ret, addr;
3578 	unsigned int i;
3579 	u8 first_page[SF_PAGE_SIZE];
3580 	const u32 *p = (const u32 *)fw_data;
3581 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3582 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3583 	unsigned int fw_start_sec;
3584 	unsigned int fw_start;
3585 	unsigned int fw_size;
3586 
3587 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3588 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3589 		fw_start = FLASH_FWBOOTSTRAP_START;
3590 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3591 	} else {
3592 		fw_start_sec = FLASH_FW_START_SEC;
3593  		fw_start = FLASH_FW_START;
3594 		fw_size = FLASH_FW_MAX_SIZE;
3595 	}
3596 
3597 	if (!size) {
3598 		CH_ERR(adap, "FW image has no data\n");
3599 		return -EINVAL;
3600 	}
3601 	if (size & 511) {
3602 		CH_ERR(adap,
3603 			"FW image size not multiple of 512 bytes\n");
3604 		return -EINVAL;
3605 	}
3606 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3607 		CH_ERR(adap,
3608 			"FW image size differs from size in FW header\n");
3609 		return -EINVAL;
3610 	}
3611 	if (size > fw_size) {
3612 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3613 			fw_size);
3614 		return -EFBIG;
3615 	}
3616 	if (!t4_fw_matches_chip(adap, hdr))
3617 		return -EINVAL;
3618 
3619 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3620 		csum += be32_to_cpu(p[i]);
3621 
3622 	if (csum != 0xffffffff) {
3623 		CH_ERR(adap,
3624 			"corrupted firmware image, checksum %#x\n", csum);
3625 		return -EINVAL;
3626 	}
3627 
3628 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3629 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3630 	if (ret)
3631 		goto out;
3632 
3633 	/*
3634 	 * We write the correct version at the end so the driver can see a bad
3635 	 * version if the FW write fails.  Start by writing a copy of the
3636 	 * first page with a bad version.
3637 	 */
3638 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3639 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3640 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3641 	if (ret)
3642 		goto out;
3643 
3644 	addr = fw_start;
3645 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3646 		addr += SF_PAGE_SIZE;
3647 		fw_data += SF_PAGE_SIZE;
3648 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3649 		if (ret)
3650 			goto out;
3651 	}
3652 
3653 	ret = t4_write_flash(adap,
3654 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3655 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3656 out:
3657 	if (ret)
3658 		CH_ERR(adap, "firmware download failed, error %d\n",
3659 			ret);
3660 	return ret;
3661 }
3662 
3663 /**
3664  *	t4_fwcache - firmware cache operation
3665  *	@adap: the adapter
3666  *	@op  : the operation (flush or flush and invalidate)
3667  */
3668 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3669 {
3670 	struct fw_params_cmd c;
3671 
3672 	memset(&c, 0, sizeof(c));
3673 	c.op_to_vfn =
3674 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3675 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3676 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3677 				V_FW_PARAMS_CMD_VFN(0));
3678 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3679 	c.param[0].mnem =
3680 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3681 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3682 	c.param[0].val = (__force __be32)op;
3683 
3684 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3685 }
3686 
3687 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3688 			unsigned int *pif_req_wrptr,
3689 			unsigned int *pif_rsp_wrptr)
3690 {
3691 	int i, j;
3692 	u32 cfg, val, req, rsp;
3693 
3694 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3695 	if (cfg & F_LADBGEN)
3696 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3697 
3698 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3699 	req = G_POLADBGWRPTR(val);
3700 	rsp = G_PILADBGWRPTR(val);
3701 	if (pif_req_wrptr)
3702 		*pif_req_wrptr = req;
3703 	if (pif_rsp_wrptr)
3704 		*pif_rsp_wrptr = rsp;
3705 
3706 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3707 		for (j = 0; j < 6; j++) {
3708 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3709 				     V_PILADBGRDPTR(rsp));
3710 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3711 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3712 			req++;
3713 			rsp++;
3714 		}
3715 		req = (req + 2) & M_POLADBGRDPTR;
3716 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3717 	}
3718 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3719 }
3720 
3721 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3722 {
3723 	u32 cfg;
3724 	int i, j, idx;
3725 
3726 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3727 	if (cfg & F_LADBGEN)
3728 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3729 
3730 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3731 		for (j = 0; j < 5; j++) {
3732 			idx = 8 * i + j;
3733 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3734 				     V_PILADBGRDPTR(idx));
3735 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3736 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3737 		}
3738 	}
3739 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3740 }
3741 
3742 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3743 {
3744 	unsigned int i, j;
3745 
3746 	for (i = 0; i < 8; i++) {
3747 		u32 *p = la_buf + i;
3748 
3749 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3750 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3751 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3752 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3753 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3754 	}
3755 }
3756 
3757 /**
3758  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3759  *	@caps16: a 16-bit Port Capabilities value
3760  *
3761  *	Returns the equivalent 32-bit Port Capabilities value.
3762  */
3763 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3764 {
3765 	uint32_t caps32 = 0;
3766 
3767 	#define CAP16_TO_CAP32(__cap) \
3768 		do { \
3769 			if (caps16 & FW_PORT_CAP_##__cap) \
3770 				caps32 |= FW_PORT_CAP32_##__cap; \
3771 		} while (0)
3772 
3773 	CAP16_TO_CAP32(SPEED_100M);
3774 	CAP16_TO_CAP32(SPEED_1G);
3775 	CAP16_TO_CAP32(SPEED_25G);
3776 	CAP16_TO_CAP32(SPEED_10G);
3777 	CAP16_TO_CAP32(SPEED_40G);
3778 	CAP16_TO_CAP32(SPEED_100G);
3779 	CAP16_TO_CAP32(FC_RX);
3780 	CAP16_TO_CAP32(FC_TX);
3781 	CAP16_TO_CAP32(ANEG);
3782 	CAP16_TO_CAP32(FORCE_PAUSE);
3783 	CAP16_TO_CAP32(MDIAUTO);
3784 	CAP16_TO_CAP32(MDISTRAIGHT);
3785 	CAP16_TO_CAP32(FEC_RS);
3786 	CAP16_TO_CAP32(FEC_BASER_RS);
3787 	CAP16_TO_CAP32(802_3_PAUSE);
3788 	CAP16_TO_CAP32(802_3_ASM_DIR);
3789 
3790 	#undef CAP16_TO_CAP32
3791 
3792 	return caps32;
3793 }
3794 
3795 /**
3796  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3797  *	@caps32: a 32-bit Port Capabilities value
3798  *
3799  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3800  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3801  *	Port Capabilities and some fields/values may not make it.
3802  */
3803 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3804 {
3805 	uint16_t caps16 = 0;
3806 
3807 	#define CAP32_TO_CAP16(__cap) \
3808 		do { \
3809 			if (caps32 & FW_PORT_CAP32_##__cap) \
3810 				caps16 |= FW_PORT_CAP_##__cap; \
3811 		} while (0)
3812 
3813 	CAP32_TO_CAP16(SPEED_100M);
3814 	CAP32_TO_CAP16(SPEED_1G);
3815 	CAP32_TO_CAP16(SPEED_10G);
3816 	CAP32_TO_CAP16(SPEED_25G);
3817 	CAP32_TO_CAP16(SPEED_40G);
3818 	CAP32_TO_CAP16(SPEED_100G);
3819 	CAP32_TO_CAP16(FC_RX);
3820 	CAP32_TO_CAP16(FC_TX);
3821 	CAP32_TO_CAP16(802_3_PAUSE);
3822 	CAP32_TO_CAP16(802_3_ASM_DIR);
3823 	CAP32_TO_CAP16(ANEG);
3824 	CAP32_TO_CAP16(FORCE_PAUSE);
3825 	CAP32_TO_CAP16(MDIAUTO);
3826 	CAP32_TO_CAP16(MDISTRAIGHT);
3827 	CAP32_TO_CAP16(FEC_RS);
3828 	CAP32_TO_CAP16(FEC_BASER_RS);
3829 
3830 	#undef CAP32_TO_CAP16
3831 
3832 	return caps16;
3833 }
3834 
3835 static bool
3836 is_bt(struct port_info *pi)
3837 {
3838 
3839 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3840 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
3841 	    pi->port_type == FW_PORT_TYPE_BT_XAUI);
3842 }
3843 
3844 /**
3845  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3846  *	@phy: the PHY to setup
3847  *	@mac: the MAC to setup
3848  *	@lc: the requested link configuration
3849  *
3850  *	Set up a port's MAC and PHY according to a desired link configuration.
3851  *	- If the PHY can auto-negotiate first decide what to advertise, then
3852  *	  enable/disable auto-negotiation as desired, and reset.
3853  *	- If the PHY does not auto-negotiate just reset it.
3854  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3855  *	  otherwise do it later based on the outcome of auto-negotiation.
3856  */
3857 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3858 		  struct link_config *lc)
3859 {
3860 	struct fw_port_cmd c;
3861 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3862 	unsigned int aneg, fc, fec, speed, rcap;
3863 
3864 	fc = 0;
3865 	if (lc->requested_fc & PAUSE_RX)
3866 		fc |= FW_PORT_CAP32_FC_RX;
3867 	if (lc->requested_fc & PAUSE_TX)
3868 		fc |= FW_PORT_CAP32_FC_TX;
3869 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3870 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3871 
3872 	fec = 0;
3873 	if (lc->requested_fec == FEC_AUTO)
3874 		fec = lc->fec_hint;
3875 	else {
3876 		if (lc->requested_fec & FEC_RS)
3877 			fec |= FW_PORT_CAP32_FEC_RS;
3878 		if (lc->requested_fec & FEC_BASER_RS)
3879 			fec |= FW_PORT_CAP32_FEC_BASER_RS;
3880 	}
3881 
3882 	if (lc->requested_aneg == AUTONEG_DISABLE)
3883 		aneg = 0;
3884 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3885 		aneg = FW_PORT_CAP32_ANEG;
3886 	else
3887 		aneg = lc->supported & FW_PORT_CAP32_ANEG;
3888 
3889 	if (aneg) {
3890 		speed = lc->supported & V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3891 	} else if (lc->requested_speed != 0)
3892 		speed = speed_to_fwcap(lc->requested_speed);
3893 	else
3894 		speed = fwcap_top_speed(lc->supported);
3895 
3896 	/* Force AN on for BT cards. */
3897 	if (is_bt(adap->port[adap->chan_map[port]]))
3898 		aneg = lc->supported & FW_PORT_CAP32_ANEG;
3899 
3900 	rcap = aneg | speed | fc | fec;
3901 	if ((rcap | lc->supported) != lc->supported) {
3902 #ifdef INVARIANTS
3903 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3904 		    lc->supported);
3905 #endif
3906 		rcap &= lc->supported;
3907 	}
3908 	rcap |= mdi;
3909 
3910 	memset(&c, 0, sizeof(c));
3911 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3912 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3913 				     V_FW_PORT_CMD_PORTID(port));
3914 	if (adap->params.port_caps32) {
3915 		c.action_to_len16 =
3916 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3917 			FW_LEN16(c));
3918 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3919 	} else {
3920 		c.action_to_len16 =
3921 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3922 			    FW_LEN16(c));
3923 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3924 	}
3925 
3926 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3927 }
3928 
3929 /**
3930  *	t4_restart_aneg - restart autonegotiation
3931  *	@adap: the adapter
3932  *	@mbox: mbox to use for the FW command
3933  *	@port: the port id
3934  *
3935  *	Restarts autonegotiation for the selected port.
3936  */
3937 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3938 {
3939 	struct fw_port_cmd c;
3940 
3941 	memset(&c, 0, sizeof(c));
3942 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3943 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3944 				     V_FW_PORT_CMD_PORTID(port));
3945 	c.action_to_len16 =
3946 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3947 			    FW_LEN16(c));
3948 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3949 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3950 }
3951 
3952 struct intr_details {
3953 	u32 mask;
3954 	const char *msg;
3955 };
3956 
3957 struct intr_action {
3958 	u32 mask;
3959 	int arg;
3960 	bool (*action)(struct adapter *, int, bool);
3961 };
3962 
3963 struct intr_info {
3964 	const char *name;	/* name of the INT_CAUSE register */
3965 	int cause_reg;		/* INT_CAUSE register */
3966 	int enable_reg;		/* INT_ENABLE register */
3967 	u32 fatal;		/* bits that are fatal */
3968 	const struct intr_details *details;
3969 	const struct intr_action *actions;
3970 };
3971 
3972 static inline char
3973 intr_alert_char(u32 cause, u32 enable, u32 fatal)
3974 {
3975 
3976 	if (cause & fatal)
3977 		return ('!');
3978 	if (cause & enable)
3979 		return ('*');
3980 	return ('-');
3981 }
3982 
3983 static void
3984 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
3985 {
3986 	u32 enable, leftover;
3987 	const struct intr_details *details;
3988 	char alert;
3989 
3990 	enable = t4_read_reg(adap, ii->enable_reg);
3991 	alert = intr_alert_char(cause, enable, ii->fatal);
3992 	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
3993 	    alert, ii->name, ii->cause_reg, cause, enable, ii->fatal);
3994 
3995 	leftover = cause;
3996 	for (details = ii->details; details && details->mask != 0; details++) {
3997 		u32 msgbits = details->mask & cause;
3998 		if (msgbits == 0)
3999 			continue;
4000 		alert = intr_alert_char(msgbits, enable, ii->fatal);
4001 		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4002 		    details->msg);
4003 		leftover &= ~msgbits;
4004 	}
4005 	if (leftover != 0 && leftover != cause)
4006 		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4007 }
4008 
4009 /*
4010  * Returns true for fatal error.
4011  */
4012 static bool
4013 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4014     u32 additional_cause, bool verbose)
4015 {
4016 	u32 cause;
4017 	bool fatal;
4018 	const struct intr_action *action;
4019 
4020 	/* read and display cause. */
4021 	cause = t4_read_reg(adap, ii->cause_reg);
4022 	if (verbose || cause != 0)
4023 		t4_show_intr_info(adap, ii, cause);
4024 	fatal = (cause & ii->fatal) != 0;
4025 	cause |= additional_cause;
4026 	if (cause == 0)
4027 		return (false);
4028 
4029 	for (action = ii->actions; action && action->mask != 0; action++) {
4030 		if (!(action->mask & cause))
4031 			continue;
4032 		fatal |= (action->action)(adap, action->arg, verbose);
4033 	}
4034 
4035 	/* clear */
4036 	t4_write_reg(adap, ii->cause_reg, cause);
4037 	(void)t4_read_reg(adap, ii->cause_reg);
4038 
4039 	return (fatal);
4040 }
4041 
4042 /*
4043  * Interrupt handler for the PCIE module.
4044  */
4045 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4046 {
4047 	static const struct intr_details sysbus_intr_details[] = {
4048 		{ F_RNPP, "RXNP array parity error" },
4049 		{ F_RPCP, "RXPC array parity error" },
4050 		{ F_RCIP, "RXCIF array parity error" },
4051 		{ F_RCCP, "Rx completions control array parity error" },
4052 		{ F_RFTP, "RXFT array parity error" },
4053 		{ 0 }
4054 	};
4055 	static const struct intr_info sysbus_intr_info = {
4056 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4057 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4058 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4059 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4060 		.details = sysbus_intr_details,
4061 		.actions = NULL,
4062 	};
4063 	static const struct intr_details pcie_port_intr_details[] = {
4064 		{ F_TPCP, "TXPC array parity error" },
4065 		{ F_TNPP, "TXNP array parity error" },
4066 		{ F_TFTP, "TXFT array parity error" },
4067 		{ F_TCAP, "TXCA array parity error" },
4068 		{ F_TCIP, "TXCIF array parity error" },
4069 		{ F_RCAP, "RXCA array parity error" },
4070 		{ F_OTDD, "outbound request TLP discarded" },
4071 		{ F_RDPE, "Rx data parity error" },
4072 		{ F_TDUE, "Tx uncorrectable data error" },
4073 		{ 0 }
4074 	};
4075 	static const struct intr_info pcie_port_intr_info = {
4076 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4077 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4078 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4079 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4080 		    F_OTDD | F_RDPE | F_TDUE,
4081 		.details = pcie_port_intr_details,
4082 		.actions = NULL,
4083 	};
4084 	static const struct intr_details pcie_intr_details[] = {
4085 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4086 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4087 		{ F_MSIDATAPERR, "MSI data parity error" },
4088 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4089 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4090 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4091 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4092 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4093 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4094 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4095 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4096 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4097 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4098 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4099 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4100 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4101 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4102 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4103 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4104 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4105 		{ F_FIDPERR, "PCIe FID parity error" },
4106 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4107 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4108 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4109 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4110 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4111 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4112 		{ F_PCIESINT, "PCIe core secondary fault" },
4113 		{ F_PCIEPINT, "PCIe core primary fault" },
4114 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4115 		{ 0 }
4116 	};
4117 	static const struct intr_details t5_pcie_intr_details[] = {
4118 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4119 		{ F_NONFATALERR, "PCIe non-fatal error" },
4120 		{ F_READRSPERR, "Outbound read error" },
4121 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4122 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4123 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4124 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4125 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4126 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4127 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4128 		{ F_VFIDPERR, "VFID SRAM parity error" },
4129 		{ F_FIDPERR, "FID SRAM parity error" },
4130 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4131 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4132 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4133 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4134 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4135 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4136 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4137 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4138 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4139 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4140 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4141 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4142 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4143 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4144 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4145 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4146 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4147 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4148 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4149 		{ 0 }
4150 	};
4151 	struct intr_info pcie_intr_info = {
4152 		.name = "PCIE_INT_CAUSE",
4153 		.cause_reg = A_PCIE_INT_CAUSE,
4154 		.enable_reg = A_PCIE_INT_ENABLE,
4155 		.fatal = 0,
4156 		.details = NULL,
4157 		.actions = NULL,
4158 	};
4159 	bool fatal = false;
4160 
4161 	if (is_t4(adap)) {
4162 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4163 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4164 
4165 		pcie_intr_info.fatal =  0x3fffffc0;
4166 		pcie_intr_info.details = pcie_intr_details;
4167 	} else {
4168 		pcie_intr_info.fatal = is_t5(adap) ? 0xbfffff40 : 0x9fffff40;
4169 		pcie_intr_info.details = t5_pcie_intr_details;
4170 	}
4171 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4172 
4173 	return (fatal);
4174 }
4175 
4176 /*
4177  * TP interrupt handler.
4178  */
4179 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4180 {
4181 	static const struct intr_details tp_intr_details[] = {
4182 		{ 0x3fffffff, "TP parity error" },
4183 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4184 		{ 0 }
4185 	};
4186 	static const struct intr_info tp_intr_info = {
4187 		.name = "TP_INT_CAUSE",
4188 		.cause_reg = A_TP_INT_CAUSE,
4189 		.enable_reg = A_TP_INT_ENABLE,
4190 		.fatal = 0x7fffffff,
4191 		.details = tp_intr_details,
4192 		.actions = NULL,
4193 	};
4194 
4195 	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4196 }
4197 
4198 /*
4199  * SGE interrupt handler.
4200  */
4201 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4202 {
4203 	static const struct intr_info sge_int1_info = {
4204 		.name = "SGE_INT_CAUSE1",
4205 		.cause_reg = A_SGE_INT_CAUSE1,
4206 		.enable_reg = A_SGE_INT_ENABLE1,
4207 		.fatal = 0xffffffff,
4208 		.details = NULL,
4209 		.actions = NULL,
4210 	};
4211 	static const struct intr_info sge_int2_info = {
4212 		.name = "SGE_INT_CAUSE2",
4213 		.cause_reg = A_SGE_INT_CAUSE2,
4214 		.enable_reg = A_SGE_INT_ENABLE2,
4215 		.fatal = 0xffffffff,
4216 		.details = NULL,
4217 		.actions = NULL,
4218 	};
4219 	static const struct intr_details sge_int3_details[] = {
4220 		{ F_ERR_FLM_DBP,
4221 			"DBP pointer delivery for invalid context or QID" },
4222 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4223 			"Invalid QID or header request by IDMA" },
4224 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4225 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4226 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4227 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4228 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4229 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4230 			"SGE GTS with timer 0-5 for IQID > 1023" },
4231 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4232 			"SGE received CPL exceeding IQE size" },
4233 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4234 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4235 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4236 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4237 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4238 		  "SGE IQID > 1023 received CPL for FL" },
4239 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4240 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4241 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4242 		{ F_ERR_ING_CTXT_PRIO,
4243 			"Ingress context manager priority user error" },
4244 		{ F_ERR_EGR_CTXT_PRIO,
4245 			"Egress context manager priority user error" },
4246 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4247 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4248 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4249 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4250 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4251 		{ 0x0000000f, "SGE context access for invalid queue" },
4252 		{ 0 }
4253 	};
4254 	static const struct intr_details t6_sge_int3_details[] = {
4255 		{ F_ERR_FLM_DBP,
4256 			"DBP pointer delivery for invalid context or QID" },
4257 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4258 			"Invalid QID or header request by IDMA" },
4259 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4260 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4261 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4262 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4263 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4264 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4265 			"SGE GTS with timer 0-5 for IQID > 1023" },
4266 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4267 			"SGE received CPL exceeding IQE size" },
4268 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4269 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4270 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4271 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4272 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4273 			"SGE IQID > 1023 received CPL for FL" },
4274 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4275 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4276 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4277 		{ F_ERR_ING_CTXT_PRIO,
4278 			"Ingress context manager priority user error" },
4279 		{ F_ERR_EGR_CTXT_PRIO,
4280 			"Egress context manager priority user error" },
4281 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4282 		{ F_FATAL_WRE_LEN,
4283 			"SGE WRE packet less than advertized length" },
4284 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4285 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4286 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4287 		{ 0x0000000f, "SGE context access for invalid queue" },
4288 		{ 0 }
4289 	};
4290 	struct intr_info sge_int3_info = {
4291 		.name = "SGE_INT_CAUSE3",
4292 		.cause_reg = A_SGE_INT_CAUSE3,
4293 		.enable_reg = A_SGE_INT_ENABLE3,
4294 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4295 		.details = NULL,
4296 		.actions = NULL,
4297 	};
4298 	static const struct intr_info sge_int4_info = {
4299 		.name = "SGE_INT_CAUSE4",
4300 		.cause_reg = A_SGE_INT_CAUSE4,
4301 		.enable_reg = A_SGE_INT_ENABLE4,
4302 		.fatal = 0,
4303 		.details = NULL,
4304 		.actions = NULL,
4305 	};
4306 	static const struct intr_info sge_int5_info = {
4307 		.name = "SGE_INT_CAUSE5",
4308 		.cause_reg = A_SGE_INT_CAUSE5,
4309 		.enable_reg = A_SGE_INT_ENABLE5,
4310 		.fatal = 0xffffffff,
4311 		.details = NULL,
4312 		.actions = NULL,
4313 	};
4314 	static const struct intr_info sge_int6_info = {
4315 		.name = "SGE_INT_CAUSE6",
4316 		.cause_reg = A_SGE_INT_CAUSE6,
4317 		.enable_reg = A_SGE_INT_ENABLE6,
4318 		.fatal = 0,
4319 		.details = NULL,
4320 		.actions = NULL,
4321 	};
4322 
4323 	bool fatal;
4324 	u32 v;
4325 
4326 	if (chip_id(adap) <= CHELSIO_T5) {
4327 		sge_int3_info.details = sge_int3_details;
4328 	} else {
4329 		sge_int3_info.details = t6_sge_int3_details;
4330 	}
4331 
4332 	fatal = false;
4333 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4334 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4335 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4336 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4337 	if (chip_id(adap) >= CHELSIO_T5)
4338 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4339 	if (chip_id(adap) >= CHELSIO_T6)
4340 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4341 
4342 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4343 	if (v & F_ERROR_QID_VALID) {
4344 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4345 		if (v & F_UNCAPTURED_ERROR)
4346 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4347 		t4_write_reg(adap, A_SGE_ERROR_STATS,
4348 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4349 	}
4350 
4351 	return (fatal);
4352 }
4353 
4354 /*
4355  * CIM interrupt handler.
4356  */
4357 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4358 {
4359 	static const struct intr_action cim_host_intr_actions[] = {
4360 		{ F_TIMER0INT, 0, t4_os_dump_cimla },
4361 		{ 0 },
4362 	};
4363 	static const struct intr_details cim_host_intr_details[] = {
4364 		/* T6+ */
4365 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4366 
4367 		/* T5+ */
4368 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4369 		{ F_PLCIM_MSTRSPDATAPARERR,
4370 			"PL2CIM master response data parity error" },
4371 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4372 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4373 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4374 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4375 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4376 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4377 
4378 		/* T4+ */
4379 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4380 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4381 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4382 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4383 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4384 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4385 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4386 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4387 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4388 			"CIM IBQ PCIe/SGE_HI parity error" },
4389 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4390 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4391 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4392 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4393 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4394 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4395 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4396 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4397 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4398 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4399 		{ 0}
4400 	};
4401 	struct intr_info cim_host_intr_info = {
4402 		.name = "CIM_HOST_INT_CAUSE",
4403 		.cause_reg = A_CIM_HOST_INT_CAUSE,
4404 		.enable_reg = A_CIM_HOST_INT_ENABLE,
4405 		.fatal = 0,
4406 		.details = cim_host_intr_details,
4407 		.actions = cim_host_intr_actions,
4408 	};
4409 	static const struct intr_details cim_host_upacc_intr_details[] = {
4410 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4411 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4412 		{ F_TIMEOUTINT, "CIM PIF timeout" },
4413 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4414 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4415 		{ F_BLKWRPLINT, "CIM block write to PL space" },
4416 		{ F_BLKRDPLINT, "CIM block read from PL space" },
4417 		{ F_SGLWRPLINT,
4418 			"CIM single write to PL space with illegal BEs" },
4419 		{ F_SGLRDPLINT,
4420 			"CIM single read from PL space with illegal BEs" },
4421 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4422 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4423 		{ F_SGLWRCTLINT,
4424 			"CIM single write to CTL space with illegal BEs" },
4425 		{ F_SGLRDCTLINT,
4426 			"CIM single read from CTL space with illegal BEs" },
4427 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4428 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4429 		{ F_SGLWREEPROMINT,
4430 			"CIM single write to EEPROM space with illegal BEs" },
4431 		{ F_SGLRDEEPROMINT,
4432 			"CIM single read from EEPROM space with illegal BEs" },
4433 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4434 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4435 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4436 		{ F_SGLRDFLASHINT,
4437 			"CIM single read from flash space with illegal BEs" },
4438 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4439 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4440 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4441 		{ F_SGLRDBOOTINT,
4442 			"CIM single read from boot space with illegal BEs" },
4443 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4444 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4445 		{ F_ILLRDINT, "CIM illegal read" },
4446 		{ F_ILLWRINT, "CIM illegal write" },
4447 		{ F_ILLTRANSINT, "CIM illegal transaction" },
4448 		{ F_RSVDSPACEINT, "CIM reserved space access" },
4449 		{0}
4450 	};
4451 	static const struct intr_info cim_host_upacc_intr_info = {
4452 		.name = "CIM_HOST_UPACC_INT_CAUSE",
4453 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4454 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4455 		.fatal = 0x3fffeeff,
4456 		.details = cim_host_upacc_intr_details,
4457 		.actions = NULL,
4458 	};
4459 	static const struct intr_info cim_pf_host_intr_info = {
4460 		.name = "CIM_PF_HOST_INT_CAUSE",
4461 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4462 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4463 		.fatal = 0,
4464 		.details = NULL,
4465 		.actions = NULL,
4466 	};
4467 	u32 val, fw_err;
4468 	bool fatal;
4469 
4470 	fw_err = t4_read_reg(adap, A_PCIE_FW);
4471 	if (fw_err & F_PCIE_FW_ERR)
4472 		t4_report_fw_error(adap);
4473 
4474 	/*
4475 	 * When the Firmware detects an internal error which normally wouldn't
4476 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4477 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4478 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4479 	 * interrupt.
4480 	 */
4481 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4482 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4483 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4484 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4485 	}
4486 
4487 	fatal = false;
4488 	if (is_t4(adap))
4489 		cim_host_intr_info.fatal = 0x001fffe2;
4490 	else if (is_t5(adap))
4491 		cim_host_intr_info.fatal = 0x007dffe2;
4492 	else
4493 		cim_host_intr_info.fatal = 0x007dffe6;
4494 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4495 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4496 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4497 
4498 	return (fatal);
4499 }
4500 
4501 /*
4502  * ULP RX interrupt handler.
4503  */
4504 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4505 {
4506 	static const struct intr_details ulprx_intr_details[] = {
4507 		/* T5+ */
4508 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4509 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4510 
4511 		/* T4+ */
4512 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4513 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4514 		{ 0x007fffff, "ULPRX parity error" },
4515 		{ 0 }
4516 	};
4517 	static const struct intr_info ulprx_intr_info = {
4518 		.name = "ULP_RX_INT_CAUSE",
4519 		.cause_reg = A_ULP_RX_INT_CAUSE,
4520 		.enable_reg = A_ULP_RX_INT_ENABLE,
4521 		.fatal = 0x07ffffff,
4522 		.details = ulprx_intr_details,
4523 		.actions = NULL,
4524 	};
4525 	static const struct intr_info ulprx_intr2_info = {
4526 		.name = "ULP_RX_INT_CAUSE_2",
4527 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4528 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4529 		.fatal = 0,
4530 		.details = NULL,
4531 		.actions = NULL,
4532 	};
4533 	bool fatal = false;
4534 
4535 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4536 	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4537 
4538 	return (fatal);
4539 }
4540 
4541 /*
4542  * ULP TX interrupt handler.
4543  */
4544 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4545 {
4546 	static const struct intr_details ulptx_intr_details[] = {
4547 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4548 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4549 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4550 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4551 		{ 0x0fffffff, "ULPTX parity error" },
4552 		{ 0 }
4553 	};
4554 	static const struct intr_info ulptx_intr_info = {
4555 		.name = "ULP_TX_INT_CAUSE",
4556 		.cause_reg = A_ULP_TX_INT_CAUSE,
4557 		.enable_reg = A_ULP_TX_INT_ENABLE,
4558 		.fatal = 0x0fffffff,
4559 		.details = ulptx_intr_details,
4560 		.actions = NULL,
4561 	};
4562 	static const struct intr_info ulptx_intr2_info = {
4563 		.name = "ULP_TX_INT_CAUSE_2",
4564 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4565 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4566 		.fatal = 0,
4567 		.details = NULL,
4568 		.actions = NULL,
4569 	};
4570 	bool fatal = false;
4571 
4572 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4573 	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4574 
4575 	return (fatal);
4576 }
4577 
4578 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4579 {
4580 	int i;
4581 	u32 data[17];
4582 
4583 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4584 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4585 	for (i = 0; i < ARRAY_SIZE(data); i++) {
4586 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4587 		    A_PM_TX_DBG_STAT0 + i, data[i]);
4588 	}
4589 
4590 	return (false);
4591 }
4592 
4593 /*
4594  * PM TX interrupt handler.
4595  */
4596 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4597 {
4598 	static const struct intr_action pmtx_intr_actions[] = {
4599 		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4600 		{ 0 },
4601 	};
4602 	static const struct intr_details pmtx_intr_details[] = {
4603 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4604 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4605 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4606 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4607 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4608 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4609 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4610 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4611 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4612 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4613 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4614 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4615 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4616 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4617 		{ 0 }
4618 	};
4619 	static const struct intr_info pmtx_intr_info = {
4620 		.name = "PM_TX_INT_CAUSE",
4621 		.cause_reg = A_PM_TX_INT_CAUSE,
4622 		.enable_reg = A_PM_TX_INT_ENABLE,
4623 		.fatal = 0xffffffff,
4624 		.details = pmtx_intr_details,
4625 		.actions = pmtx_intr_actions,
4626 	};
4627 
4628 	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4629 }
4630 
4631 /*
4632  * PM RX interrupt handler.
4633  */
4634 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4635 {
4636 	static const struct intr_details pmrx_intr_details[] = {
4637 		/* T6+ */
4638 		{ 0x18000000, "PMRX ospi overflow" },
4639 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4640 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4641 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4642 		{ F_SDC_ERR, "PMRX SDC error" },
4643 
4644 		/* T4+ */
4645 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4646 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4647 		{ 0x0003c000, "PMRX iespi Rx framing error" },
4648 		{ 0x00003c00, "PMRX iespi Tx framing error" },
4649 		{ 0x00000300, "PMRX ocspi Rx framing error" },
4650 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4651 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4652 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4653 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4654 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4655 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4656 		{ 0 }
4657 	};
4658 	static const struct intr_info pmrx_intr_info = {
4659 		.name = "PM_RX_INT_CAUSE",
4660 		.cause_reg = A_PM_RX_INT_CAUSE,
4661 		.enable_reg = A_PM_RX_INT_ENABLE,
4662 		.fatal = 0x1fffffff,
4663 		.details = pmrx_intr_details,
4664 		.actions = NULL,
4665 	};
4666 
4667 	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4668 }
4669 
4670 /*
4671  * CPL switch interrupt handler.
4672  */
4673 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4674 {
4675 	static const struct intr_details cplsw_intr_details[] = {
4676 		/* T5+ */
4677 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4678 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4679 
4680 		/* T4+ */
4681 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4682 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4683 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4684 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4685 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4686 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4687 		{ 0 }
4688 	};
4689 	struct intr_info cplsw_intr_info = {
4690 		.name = "CPL_INTR_CAUSE",
4691 		.cause_reg = A_CPL_INTR_CAUSE,
4692 		.enable_reg = A_CPL_INTR_ENABLE,
4693 		.fatal = 0,
4694 		.details = cplsw_intr_details,
4695 		.actions = NULL,
4696 	};
4697 
4698 	if (is_t4(adap))
4699 		cplsw_intr_info.fatal = 0x2f;
4700 	else if (is_t5(adap))
4701 		cplsw_intr_info.fatal = 0xef;
4702 	else
4703 		cplsw_intr_info.fatal = 0xff;
4704 
4705 	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4706 }
4707 
4708 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4709 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4710     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4711     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4712     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4713 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4714     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4715     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4716 
4717 /*
4718  * LE interrupt handler.
4719  */
4720 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4721 {
4722 	static const struct intr_details le_intr_details[] = {
4723 		{ F_REQQPARERR, "LE request queue parity error" },
4724 		{ F_UNKNOWNCMD, "LE unknown command" },
4725 		{ F_ACTRGNFULL, "LE active region full" },
4726 		{ F_PARITYERR, "LE parity error" },
4727 		{ F_LIPMISS, "LE LIP miss" },
4728 		{ F_LIP0, "LE 0 LIP error" },
4729 		{ 0 }
4730 	};
4731 	static const struct intr_details t6_le_intr_details[] = {
4732 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4733 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4734 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4735 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4736 		{ F_TOTCNTERR, "LE total active < TCAM count" },
4737 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4738 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4739 		{ F_T6_ACTRGNFULL, "LE active region full" },
4740 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4741 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4742 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4743 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4744 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4745 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4746 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4747 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4748 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4749 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4750 		{ 0 }
4751 	};
4752 	struct intr_info le_intr_info = {
4753 		.name = "LE_DB_INT_CAUSE",
4754 		.cause_reg = A_LE_DB_INT_CAUSE,
4755 		.enable_reg = A_LE_DB_INT_ENABLE,
4756 		.fatal = 0,
4757 		.details = NULL,
4758 		.actions = NULL,
4759 	};
4760 
4761 	if (chip_id(adap) <= CHELSIO_T5) {
4762 		le_intr_info.details = le_intr_details;
4763 		le_intr_info.fatal = T4_LE_FATAL_MASK;
4764 		if (is_t5(adap))
4765 			le_intr_info.fatal |= F_VFPARERR;
4766 	} else {
4767 		le_intr_info.details = t6_le_intr_details;
4768 		le_intr_info.fatal = T6_LE_FATAL_MASK;
4769 	}
4770 
4771 	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4772 }
4773 
4774 /*
4775  * MPS interrupt handler.
4776  */
4777 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4778 {
4779 	static const struct intr_details mps_rx_perr_intr_details[] = {
4780 		{ 0xffffffff, "MPS Rx parity error" },
4781 		{ 0 }
4782 	};
4783 	static const struct intr_info mps_rx_perr_intr_info = {
4784 		.name = "MPS_RX_PERR_INT_CAUSE",
4785 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4786 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4787 		.fatal = 0xffffffff,
4788 		.details = mps_rx_perr_intr_details,
4789 		.actions = NULL,
4790 	};
4791 	static const struct intr_details mps_tx_intr_details[] = {
4792 		{ F_PORTERR, "MPS Tx destination port is disabled" },
4793 		{ F_FRMERR, "MPS Tx framing error" },
4794 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4795 		{ F_BUBBLE, "MPS Tx underflow" },
4796 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4797 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4798 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4799 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4800 		{ 0 }
4801 	};
4802 	struct intr_info mps_tx_intr_info = {
4803 		.name = "MPS_TX_INT_CAUSE",
4804 		.cause_reg = A_MPS_TX_INT_CAUSE,
4805 		.enable_reg = A_MPS_TX_INT_ENABLE,
4806 		.fatal = 0x1ffff,
4807 		.details = mps_tx_intr_details,
4808 		.actions = NULL,
4809 	};
4810 	static const struct intr_details mps_trc_intr_details[] = {
4811 		{ F_MISCPERR, "MPS TRC misc parity error" },
4812 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4813 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4814 		{ 0 }
4815 	};
4816 	static const struct intr_info mps_trc_intr_info = {
4817 		.name = "MPS_TRC_INT_CAUSE",
4818 		.cause_reg = A_MPS_TRC_INT_CAUSE,
4819 		.enable_reg = A_MPS_TRC_INT_ENABLE,
4820 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4821 		.details = mps_trc_intr_details,
4822 		.actions = NULL,
4823 	};
4824 	static const struct intr_details mps_stat_sram_intr_details[] = {
4825 		{ 0xffffffff, "MPS statistics SRAM parity error" },
4826 		{ 0 }
4827 	};
4828 	static const struct intr_info mps_stat_sram_intr_info = {
4829 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4830 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4831 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4832 		.fatal = 0x1fffffff,
4833 		.details = mps_stat_sram_intr_details,
4834 		.actions = NULL,
4835 	};
4836 	static const struct intr_details mps_stat_tx_intr_details[] = {
4837 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4838 		{ 0 }
4839 	};
4840 	static const struct intr_info mps_stat_tx_intr_info = {
4841 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4842 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4843 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4844 		.fatal =  0xffffff,
4845 		.details = mps_stat_tx_intr_details,
4846 		.actions = NULL,
4847 	};
4848 	static const struct intr_details mps_stat_rx_intr_details[] = {
4849 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4850 		{ 0 }
4851 	};
4852 	static const struct intr_info mps_stat_rx_intr_info = {
4853 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4854 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4855 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4856 		.fatal =  0xffffff,
4857 		.details = mps_stat_rx_intr_details,
4858 		.actions = NULL,
4859 	};
4860 	static const struct intr_details mps_cls_intr_details[] = {
4861 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4862 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4863 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4864 		{ 0 }
4865 	};
4866 	static const struct intr_info mps_cls_intr_info = {
4867 		.name = "MPS_CLS_INT_CAUSE",
4868 		.cause_reg = A_MPS_CLS_INT_CAUSE,
4869 		.enable_reg = A_MPS_CLS_INT_ENABLE,
4870 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4871 		.details = mps_cls_intr_details,
4872 		.actions = NULL,
4873 	};
4874 	static const struct intr_details mps_stat_sram1_intr_details[] = {
4875 		{ 0xff, "MPS statistics SRAM1 parity error" },
4876 		{ 0 }
4877 	};
4878 	static const struct intr_info mps_stat_sram1_intr_info = {
4879 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4880 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4881 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4882 		.fatal = 0xff,
4883 		.details = mps_stat_sram1_intr_details,
4884 		.actions = NULL,
4885 	};
4886 
4887 	bool fatal;
4888 
4889 	if (chip_id(adap) == CHELSIO_T6)
4890 		mps_tx_intr_info.fatal &= ~F_BUBBLE;
4891 
4892 	fatal = false;
4893 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4894 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
4895 	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
4896 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
4897 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
4898 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
4899 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
4900 	if (chip_id(adap) > CHELSIO_T4) {
4901 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
4902 		    verbose);
4903 	}
4904 
4905 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
4906 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
4907 
4908 	return (fatal);
4909 
4910 }
4911 
4912 /*
4913  * EDC/MC interrupt handler.
4914  */
4915 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
4916 {
4917 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
4918 	unsigned int count_reg, v;
4919 	static const struct intr_details mem_intr_details[] = {
4920 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
4921 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
4922 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
4923 		{ 0 }
4924 	};
4925 	struct intr_info ii = {
4926 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
4927 		.details = mem_intr_details,
4928 		.actions = NULL,
4929 	};
4930 	bool fatal;
4931 
4932 	switch (idx) {
4933 	case MEM_EDC0:
4934 		ii.name = "EDC0_INT_CAUSE";
4935 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
4936 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
4937 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
4938 		break;
4939 	case MEM_EDC1:
4940 		ii.name = "EDC1_INT_CAUSE";
4941 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
4942 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
4943 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
4944 		break;
4945 	case MEM_MC0:
4946 		ii.name = "MC0_INT_CAUSE";
4947 		if (is_t4(adap)) {
4948 			ii.cause_reg = A_MC_INT_CAUSE;
4949 			ii.enable_reg = A_MC_INT_ENABLE;
4950 			count_reg = A_MC_ECC_STATUS;
4951 		} else {
4952 			ii.cause_reg = A_MC_P_INT_CAUSE;
4953 			ii.enable_reg = A_MC_P_INT_ENABLE;
4954 			count_reg = A_MC_P_ECC_STATUS;
4955 		}
4956 		break;
4957 	case MEM_MC1:
4958 		ii.name = "MC1_INT_CAUSE";
4959 		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
4960 		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
4961 		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
4962 		break;
4963 	}
4964 
4965 	fatal = t4_handle_intr(adap, &ii, 0, verbose);
4966 
4967 	v = t4_read_reg(adap, count_reg);
4968 	if (v != 0) {
4969 		if (G_ECC_UECNT(v) != 0) {
4970 			CH_ALERT(adap,
4971 			    "%s: %u uncorrectable ECC data error(s)\n",
4972 			    name[idx], G_ECC_UECNT(v));
4973 		}
4974 		if (G_ECC_CECNT(v) != 0) {
4975 			if (idx <= MEM_EDC1)
4976 				t4_edc_err_read(adap, idx);
4977 			CH_WARN_RATELIMIT(adap,
4978 			    "%s: %u correctable ECC data error(s)\n",
4979 			    name[idx], G_ECC_CECNT(v));
4980 		}
4981 		t4_write_reg(adap, count_reg, 0xffffffff);
4982 	}
4983 
4984 	return (fatal);
4985 }
4986 
4987 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
4988 {
4989 	u32 v;
4990 
4991 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
4992 	CH_ALERT(adap,
4993 	    "MA address wrap-around error by client %u to address %#x\n",
4994 	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
4995 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
4996 
4997 	return (false);
4998 }
4999 
5000 
5001 /*
5002  * MA interrupt handler.
5003  */
5004 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5005 {
5006 	static const struct intr_action ma_intr_actions[] = {
5007 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5008 		{ 0 },
5009 	};
5010 	static const struct intr_info ma_intr_info = {
5011 		.name = "MA_INT_CAUSE",
5012 		.cause_reg = A_MA_INT_CAUSE,
5013 		.enable_reg = A_MA_INT_ENABLE,
5014 		.fatal = F_MEM_WRAP_INT_CAUSE | F_MEM_PERR_INT_CAUSE |
5015 		    F_MEM_TO_INT_CAUSE,
5016 		.details = NULL,
5017 		.actions = ma_intr_actions,
5018 	};
5019 	static const struct intr_info ma_perr_status1 = {
5020 		.name = "MA_PARITY_ERROR_STATUS1",
5021 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5022 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5023 		.fatal = 0xffffffff,
5024 		.details = NULL,
5025 		.actions = NULL,
5026 	};
5027 	static const struct intr_info ma_perr_status2 = {
5028 		.name = "MA_PARITY_ERROR_STATUS2",
5029 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5030 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5031 		.fatal = 0xffffffff,
5032 		.details = NULL,
5033 		.actions = NULL,
5034 	};
5035 	bool fatal;
5036 
5037 	fatal = false;
5038 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5039 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5040 	if (chip_id(adap) > CHELSIO_T4)
5041 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5042 
5043 	return (fatal);
5044 }
5045 
5046 /*
5047  * SMB interrupt handler.
5048  */
5049 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5050 {
5051 	static const struct intr_details smb_intr_details[] = {
5052 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5053 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5054 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5055 		{ 0 }
5056 	};
5057 	static const struct intr_info smb_intr_info = {
5058 		.name = "SMB_INT_CAUSE",
5059 		.cause_reg = A_SMB_INT_CAUSE,
5060 		.enable_reg = A_SMB_INT_ENABLE,
5061 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5062 		.details = smb_intr_details,
5063 		.actions = NULL,
5064 	};
5065 
5066 	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5067 }
5068 
5069 /*
5070  * NC-SI interrupt handler.
5071  */
5072 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5073 {
5074 	static const struct intr_details ncsi_intr_details[] = {
5075 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5076 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5077 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5078 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5079 		{ 0 }
5080 	};
5081 	static const struct intr_info ncsi_intr_info = {
5082 		.name = "NCSI_INT_CAUSE",
5083 		.cause_reg = A_NCSI_INT_CAUSE,
5084 		.enable_reg = A_NCSI_INT_ENABLE,
5085 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5086 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5087 		.details = ncsi_intr_details,
5088 		.actions = NULL,
5089 	};
5090 
5091 	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5092 }
5093 
5094 /*
5095  * MAC interrupt handler.
5096  */
5097 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5098 {
5099 	static const struct intr_details mac_intr_details[] = {
5100 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5101 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5102 		{ 0 }
5103 	};
5104 	char name[32];
5105 	struct intr_info ii;
5106 	bool fatal = false;
5107 
5108 	if (is_t4(adap)) {
5109 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5110 		ii.name = &name[0];
5111 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5112 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5113 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR,
5114 		ii.details = mac_intr_details,
5115 		ii.actions = NULL;
5116 	} else {
5117 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5118 		ii.name = &name[0];
5119 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5120 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5121 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR,
5122 		ii.details = mac_intr_details,
5123 		ii.actions = NULL;
5124 	}
5125 	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5126 
5127 	if (chip_id(adap) >= CHELSIO_T5) {
5128 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5129 		ii.name = &name[0];
5130 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5131 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5132 		ii.fatal = 0;
5133 		ii.details = NULL;
5134 		ii.actions = NULL;
5135 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5136 	}
5137 
5138 	if (chip_id(adap) >= CHELSIO_T6) {
5139 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5140 		ii.name = &name[0];
5141 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5142 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5143 		ii.fatal = 0;
5144 		ii.details = NULL;
5145 		ii.actions = NULL;
5146 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5147 	}
5148 
5149 	return (fatal);
5150 }
5151 
5152 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5153 {
5154 	static const struct intr_details plpl_intr_details[] = {
5155 		{ F_FATALPERR, "Fatal parity error" },
5156 		{ F_PERRVFID, "VFID_MAP parity error" },
5157 		{ 0 }
5158 	};
5159 	struct intr_info plpl_intr_info = {
5160 		.name = "PL_PL_INT_CAUSE",
5161 		.cause_reg = A_PL_PL_INT_CAUSE,
5162 		.enable_reg = A_PL_PL_INT_ENABLE,
5163 		.fatal = F_FATALPERR,
5164 		.details = plpl_intr_details,
5165 		.actions = NULL,
5166 	};
5167 
5168 	if (is_t4(adap))
5169 		plpl_intr_info.fatal |= F_PERRVFID;
5170 
5171 	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5172 }
5173 
5174 /**
5175  *	t4_slow_intr_handler - control path interrupt handler
5176  *	@adap: the adapter
5177  *	@verbose: increased verbosity, for debug
5178  *
5179  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5180  *	The designation 'slow' is because it involves register reads, while
5181  *	data interrupts typically don't involve any MMIOs.
5182  */
5183 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5184 {
5185 	static const struct intr_details pl_intr_details[] = {
5186 		{ F_MC1, "MC1" },
5187 		{ F_UART, "UART" },
5188 		{ F_ULP_TX, "ULP TX" },
5189 		{ F_SGE, "SGE" },
5190 		{ F_HMA, "HMA" },
5191 		{ F_CPL_SWITCH, "CPL Switch" },
5192 		{ F_ULP_RX, "ULP RX" },
5193 		{ F_PM_RX, "PM RX" },
5194 		{ F_PM_TX, "PM TX" },
5195 		{ F_MA, "MA" },
5196 		{ F_TP, "TP" },
5197 		{ F_LE, "LE" },
5198 		{ F_EDC1, "EDC1" },
5199 		{ F_EDC0, "EDC0" },
5200 		{ F_MC, "MC0" },
5201 		{ F_PCIE, "PCIE" },
5202 		{ F_PMU, "PMU" },
5203 		{ F_MAC3, "MAC3" },
5204 		{ F_MAC2, "MAC2" },
5205 		{ F_MAC1, "MAC1" },
5206 		{ F_MAC0, "MAC0" },
5207 		{ F_SMB, "SMB" },
5208 		{ F_SF, "SF" },
5209 		{ F_PL, "PL" },
5210 		{ F_NCSI, "NC-SI" },
5211 		{ F_MPS, "MPS" },
5212 		{ F_MI, "MI" },
5213 		{ F_DBG, "DBG" },
5214 		{ F_I2CM, "I2CM" },
5215 		{ F_CIM, "CIM" },
5216 		{ 0 }
5217 	};
5218 	static const struct intr_info pl_perr_cause = {
5219 		.name = "PL_PERR_CAUSE",
5220 		.cause_reg = A_PL_PERR_CAUSE,
5221 		.enable_reg = A_PL_PERR_ENABLE,
5222 		.fatal = 0xffffffff,
5223 		.details = pl_intr_details,
5224 		.actions = NULL,
5225 	};
5226 	static const struct intr_action pl_intr_action[] = {
5227 		{ F_MC1, MEM_MC1, mem_intr_handler },
5228 		{ F_ULP_TX, -1, ulptx_intr_handler },
5229 		{ F_SGE, -1, sge_intr_handler },
5230 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5231 		{ F_ULP_RX, -1, ulprx_intr_handler },
5232 		{ F_PM_RX, -1, pmrx_intr_handler},
5233 		{ F_PM_TX, -1, pmtx_intr_handler},
5234 		{ F_MA, -1, ma_intr_handler },
5235 		{ F_TP, -1, tp_intr_handler },
5236 		{ F_LE, -1, le_intr_handler },
5237 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5238 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5239 		{ F_MC0, MEM_MC0, mem_intr_handler },
5240 		{ F_PCIE, -1, pcie_intr_handler },
5241 		{ F_MAC3, 3, mac_intr_handler},
5242 		{ F_MAC2, 2, mac_intr_handler},
5243 		{ F_MAC1, 1, mac_intr_handler},
5244 		{ F_MAC0, 0, mac_intr_handler},
5245 		{ F_SMB, -1, smb_intr_handler},
5246 		{ F_PL, -1, plpl_intr_handler },
5247 		{ F_NCSI, -1, ncsi_intr_handler},
5248 		{ F_MPS, -1, mps_intr_handler },
5249 		{ F_CIM, -1, cim_intr_handler },
5250 		{ 0 }
5251 	};
5252 	static const struct intr_info pl_intr_info = {
5253 		.name = "PL_INT_CAUSE",
5254 		.cause_reg = A_PL_INT_CAUSE,
5255 		.enable_reg = A_PL_INT_ENABLE,
5256 		.fatal = 0,
5257 		.details = pl_intr_details,
5258 		.actions = pl_intr_action,
5259 	};
5260 	bool fatal;
5261 	u32 perr;
5262 
5263 	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5264 	if (verbose || perr != 0) {
5265 		t4_show_intr_info(adap, &pl_perr_cause, perr);
5266 		if (perr != 0)
5267 			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5268 		if (verbose)
5269 			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5270 	}
5271 	fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5272 	if (fatal)
5273 		t4_fatal_err(adap, false);
5274 
5275 	return (0);
5276 }
5277 
5278 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5279 
5280 /**
5281  *	t4_intr_enable - enable interrupts
5282  *	@adapter: the adapter whose interrupts should be enabled
5283  *
5284  *	Enable PF-specific interrupts for the calling function and the top-level
5285  *	interrupt concentrator for global interrupts.  Interrupts are already
5286  *	enabled at each module,	here we just enable the roots of the interrupt
5287  *	hierarchies.
5288  *
5289  *	Note: this function should be called only when the driver manages
5290  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5291  *	function at a time should be doing this.
5292  */
5293 void t4_intr_enable(struct adapter *adap)
5294 {
5295 	u32 val = 0;
5296 
5297 	if (chip_id(adap) <= CHELSIO_T5)
5298 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5299 	else
5300 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5301 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5302 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5303 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5304 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5305 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5306 	    F_EGRESS_SIZE_ERR;
5307 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5308 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5309 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5310 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5311 }
5312 
5313 /**
5314  *	t4_intr_disable - disable interrupts
5315  *	@adap: the adapter whose interrupts should be disabled
5316  *
5317  *	Disable interrupts.  We only disable the top-level interrupt
5318  *	concentrators.  The caller must be a PCI function managing global
5319  *	interrupts.
5320  */
5321 void t4_intr_disable(struct adapter *adap)
5322 {
5323 
5324 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5325 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5326 }
5327 
5328 /**
5329  *	t4_intr_clear - clear all interrupts
5330  *	@adap: the adapter whose interrupts should be cleared
5331  *
5332  *	Clears all interrupts.  The caller must be a PCI function managing
5333  *	global interrupts.
5334  */
5335 void t4_intr_clear(struct adapter *adap)
5336 {
5337 	static const u32 cause_reg[] = {
5338 		A_CIM_HOST_INT_CAUSE,
5339 		A_CIM_HOST_UPACC_INT_CAUSE,
5340 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5341 		A_CPL_INTR_CAUSE,
5342 		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5343 		A_LE_DB_INT_CAUSE,
5344 		A_MA_INT_WRAP_STATUS,
5345 		A_MA_PARITY_ERROR_STATUS1,
5346 		A_MA_INT_CAUSE,
5347 		A_MPS_CLS_INT_CAUSE,
5348 		A_MPS_RX_PERR_INT_CAUSE,
5349 		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5350 		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5351 		A_MPS_TRC_INT_CAUSE,
5352 		A_MPS_TX_INT_CAUSE,
5353 		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5354 		A_NCSI_INT_CAUSE,
5355 		A_PCIE_INT_CAUSE,
5356 		A_PCIE_NONFAT_ERR,
5357 		A_PL_PL_INT_CAUSE,
5358 		A_PM_RX_INT_CAUSE,
5359 		A_PM_TX_INT_CAUSE,
5360 		A_SGE_INT_CAUSE1,
5361 		A_SGE_INT_CAUSE2,
5362 		A_SGE_INT_CAUSE3,
5363 		A_SGE_INT_CAUSE4,
5364 		A_SMB_INT_CAUSE,
5365 		A_TP_INT_CAUSE,
5366 		A_ULP_RX_INT_CAUSE,
5367 		A_ULP_RX_INT_CAUSE_2,
5368 		A_ULP_TX_INT_CAUSE,
5369 		A_ULP_TX_INT_CAUSE_2,
5370 
5371 		MYPF_REG(A_PL_PF_INT_CAUSE),
5372 	};
5373 	int i;
5374 	const int nchan = adap->chip_params->nchan;
5375 
5376 	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5377 		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5378 
5379 	if (is_t4(adap)) {
5380 		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5381 		    0xffffffff);
5382 		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5383 		    0xffffffff);
5384 		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5385 		for (i = 0; i < nchan; i++) {
5386 			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5387 			    0xffffffff);
5388 		}
5389 	}
5390 	if (chip_id(adap) >= CHELSIO_T5) {
5391 		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5392 		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5393 		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5394 		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5395 		if (is_t5(adap)) {
5396 			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5397 			    0xffffffff);
5398 		}
5399 		for (i = 0; i < nchan; i++) {
5400 			t4_write_reg(adap, T5_PORT_REG(i,
5401 			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5402 			if (chip_id(adap) > CHELSIO_T5) {
5403 				t4_write_reg(adap, T5_PORT_REG(i,
5404 				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5405 				    0xffffffff);
5406 			}
5407 			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5408 			    0xffffffff);
5409 		}
5410 	}
5411 	if (chip_id(adap) >= CHELSIO_T6) {
5412 		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5413 	}
5414 
5415 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5416 	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5417 	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5418 	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5419 }
5420 
5421 /**
5422  *	hash_mac_addr - return the hash value of a MAC address
5423  *	@addr: the 48-bit Ethernet MAC address
5424  *
5425  *	Hashes a MAC address according to the hash function used by HW inexact
5426  *	(hash) address matching.
5427  */
5428 static int hash_mac_addr(const u8 *addr)
5429 {
5430 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5431 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5432 	a ^= b;
5433 	a ^= (a >> 12);
5434 	a ^= (a >> 6);
5435 	return a & 0x3f;
5436 }
5437 
5438 /**
5439  *	t4_config_rss_range - configure a portion of the RSS mapping table
5440  *	@adapter: the adapter
5441  *	@mbox: mbox to use for the FW command
5442  *	@viid: virtual interface whose RSS subtable is to be written
5443  *	@start: start entry in the table to write
5444  *	@n: how many table entries to write
5445  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5446  *	@nrspq: number of values in @rspq
5447  *
5448  *	Programs the selected part of the VI's RSS mapping table with the
5449  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5450  *	until the full table range is populated.
5451  *
5452  *	The caller must ensure the values in @rspq are in the range allowed for
5453  *	@viid.
5454  */
5455 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5456 			int start, int n, const u16 *rspq, unsigned int nrspq)
5457 {
5458 	int ret;
5459 	const u16 *rsp = rspq;
5460 	const u16 *rsp_end = rspq + nrspq;
5461 	struct fw_rss_ind_tbl_cmd cmd;
5462 
5463 	memset(&cmd, 0, sizeof(cmd));
5464 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5465 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5466 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5467 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5468 
5469 	/*
5470 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5471 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5472 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5473 	 * reserved.
5474 	 */
5475 	while (n > 0) {
5476 		int nq = min(n, 32);
5477 		int nq_packed = 0;
5478 		__be32 *qp = &cmd.iq0_to_iq2;
5479 
5480 		/*
5481 		 * Set up the firmware RSS command header to send the next
5482 		 * "nq" Ingress Queue IDs to the firmware.
5483 		 */
5484 		cmd.niqid = cpu_to_be16(nq);
5485 		cmd.startidx = cpu_to_be16(start);
5486 
5487 		/*
5488 		 * "nq" more done for the start of the next loop.
5489 		 */
5490 		start += nq;
5491 		n -= nq;
5492 
5493 		/*
5494 		 * While there are still Ingress Queue IDs to stuff into the
5495 		 * current firmware RSS command, retrieve them from the
5496 		 * Ingress Queue ID array and insert them into the command.
5497 		 */
5498 		while (nq > 0) {
5499 			/*
5500 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5501 			 * around the Ingress Queue ID array if necessary) and
5502 			 * insert them into the firmware RSS command at the
5503 			 * current 3-tuple position within the commad.
5504 			 */
5505 			u16 qbuf[3];
5506 			u16 *qbp = qbuf;
5507 			int nqbuf = min(3, nq);
5508 
5509 			nq -= nqbuf;
5510 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5511 			while (nqbuf && nq_packed < 32) {
5512 				nqbuf--;
5513 				nq_packed++;
5514 				*qbp++ = *rsp++;
5515 				if (rsp >= rsp_end)
5516 					rsp = rspq;
5517 			}
5518 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5519 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5520 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5521 		}
5522 
5523 		/*
5524 		 * Send this portion of the RRS table update to the firmware;
5525 		 * bail out on any errors.
5526 		 */
5527 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5528 		if (ret)
5529 			return ret;
5530 	}
5531 	return 0;
5532 }
5533 
5534 /**
5535  *	t4_config_glbl_rss - configure the global RSS mode
5536  *	@adapter: the adapter
5537  *	@mbox: mbox to use for the FW command
5538  *	@mode: global RSS mode
5539  *	@flags: mode-specific flags
5540  *
5541  *	Sets the global RSS mode.
5542  */
5543 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5544 		       unsigned int flags)
5545 {
5546 	struct fw_rss_glb_config_cmd c;
5547 
5548 	memset(&c, 0, sizeof(c));
5549 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5550 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5551 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5552 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5553 		c.u.manual.mode_pkd =
5554 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5555 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5556 		c.u.basicvirtual.mode_keymode =
5557 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5558 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5559 	} else
5560 		return -EINVAL;
5561 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5562 }
5563 
5564 /**
5565  *	t4_config_vi_rss - configure per VI RSS settings
5566  *	@adapter: the adapter
5567  *	@mbox: mbox to use for the FW command
5568  *	@viid: the VI id
5569  *	@flags: RSS flags
5570  *	@defq: id of the default RSS queue for the VI.
5571  *	@skeyidx: RSS secret key table index for non-global mode
5572  *	@skey: RSS vf_scramble key for VI.
5573  *
5574  *	Configures VI-specific RSS properties.
5575  */
5576 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5577 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5578 		     unsigned int skey)
5579 {
5580 	struct fw_rss_vi_config_cmd c;
5581 
5582 	memset(&c, 0, sizeof(c));
5583 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5584 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5585 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5586 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5587 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5588 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5589 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5590 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5591 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5592 
5593 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5594 }
5595 
5596 /* Read an RSS table row */
5597 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5598 {
5599 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5600 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5601 				   5, 0, val);
5602 }
5603 
5604 /**
5605  *	t4_read_rss - read the contents of the RSS mapping table
5606  *	@adapter: the adapter
5607  *	@map: holds the contents of the RSS mapping table
5608  *
5609  *	Reads the contents of the RSS hash->queue mapping table.
5610  */
5611 int t4_read_rss(struct adapter *adapter, u16 *map)
5612 {
5613 	u32 val;
5614 	int i, ret;
5615 
5616 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5617 		ret = rd_rss_row(adapter, i, &val);
5618 		if (ret)
5619 			return ret;
5620 		*map++ = G_LKPTBLQUEUE0(val);
5621 		*map++ = G_LKPTBLQUEUE1(val);
5622 	}
5623 	return 0;
5624 }
5625 
5626 /**
5627  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5628  * @adap: the adapter
5629  * @cmd: TP fw ldst address space type
5630  * @vals: where the indirect register values are stored/written
5631  * @nregs: how many indirect registers to read/write
5632  * @start_idx: index of first indirect register to read/write
5633  * @rw: Read (1) or Write (0)
5634  * @sleep_ok: if true we may sleep while awaiting command completion
5635  *
5636  * Access TP indirect registers through LDST
5637  **/
5638 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5639 			    unsigned int nregs, unsigned int start_index,
5640 			    unsigned int rw, bool sleep_ok)
5641 {
5642 	int ret = 0;
5643 	unsigned int i;
5644 	struct fw_ldst_cmd c;
5645 
5646 	for (i = 0; i < nregs; i++) {
5647 		memset(&c, 0, sizeof(c));
5648 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5649 						F_FW_CMD_REQUEST |
5650 						(rw ? F_FW_CMD_READ :
5651 						      F_FW_CMD_WRITE) |
5652 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5653 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5654 
5655 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5656 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5657 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5658 				      sleep_ok);
5659 		if (ret)
5660 			return ret;
5661 
5662 		if (rw)
5663 			vals[i] = be32_to_cpu(c.u.addrval.val);
5664 	}
5665 	return 0;
5666 }
5667 
5668 /**
5669  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5670  * @adap: the adapter
5671  * @reg_addr: Address Register
5672  * @reg_data: Data register
5673  * @buff: where the indirect register values are stored/written
5674  * @nregs: how many indirect registers to read/write
5675  * @start_index: index of first indirect register to read/write
5676  * @rw: READ(1) or WRITE(0)
5677  * @sleep_ok: if true we may sleep while awaiting command completion
5678  *
5679  * Read/Write TP indirect registers through LDST if possible.
5680  * Else, use backdoor access
5681  **/
5682 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5683 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5684 			      bool sleep_ok)
5685 {
5686 	int rc = -EINVAL;
5687 	int cmd;
5688 
5689 	switch (reg_addr) {
5690 	case A_TP_PIO_ADDR:
5691 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5692 		break;
5693 	case A_TP_TM_PIO_ADDR:
5694 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5695 		break;
5696 	case A_TP_MIB_INDEX:
5697 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5698 		break;
5699 	default:
5700 		goto indirect_access;
5701 	}
5702 
5703 	if (t4_use_ldst(adap))
5704 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5705 				      sleep_ok);
5706 
5707 indirect_access:
5708 
5709 	if (rc) {
5710 		if (rw)
5711 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5712 					 start_index);
5713 		else
5714 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5715 					  start_index);
5716 	}
5717 }
5718 
5719 /**
5720  * t4_tp_pio_read - Read TP PIO registers
5721  * @adap: the adapter
5722  * @buff: where the indirect register values are written
5723  * @nregs: how many indirect registers to read
5724  * @start_index: index of first indirect register to read
5725  * @sleep_ok: if true we may sleep while awaiting command completion
5726  *
5727  * Read TP PIO Registers
5728  **/
5729 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5730 		    u32 start_index, bool sleep_ok)
5731 {
5732 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5733 			  start_index, 1, sleep_ok);
5734 }
5735 
5736 /**
5737  * t4_tp_pio_write - Write TP PIO registers
5738  * @adap: the adapter
5739  * @buff: where the indirect register values are stored
5740  * @nregs: how many indirect registers to write
5741  * @start_index: index of first indirect register to write
5742  * @sleep_ok: if true we may sleep while awaiting command completion
5743  *
5744  * Write TP PIO Registers
5745  **/
5746 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5747 		     u32 start_index, bool sleep_ok)
5748 {
5749 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5750 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5751 }
5752 
5753 /**
5754  * t4_tp_tm_pio_read - Read TP TM PIO registers
5755  * @adap: the adapter
5756  * @buff: where the indirect register values are written
5757  * @nregs: how many indirect registers to read
5758  * @start_index: index of first indirect register to read
5759  * @sleep_ok: if true we may sleep while awaiting command completion
5760  *
5761  * Read TP TM PIO Registers
5762  **/
5763 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5764 		       u32 start_index, bool sleep_ok)
5765 {
5766 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5767 			  nregs, start_index, 1, sleep_ok);
5768 }
5769 
5770 /**
5771  * t4_tp_mib_read - Read TP MIB registers
5772  * @adap: the adapter
5773  * @buff: where the indirect register values are written
5774  * @nregs: how many indirect registers to read
5775  * @start_index: index of first indirect register to read
5776  * @sleep_ok: if true we may sleep while awaiting command completion
5777  *
5778  * Read TP MIB Registers
5779  **/
5780 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5781 		    bool sleep_ok)
5782 {
5783 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5784 			  start_index, 1, sleep_ok);
5785 }
5786 
5787 /**
5788  *	t4_read_rss_key - read the global RSS key
5789  *	@adap: the adapter
5790  *	@key: 10-entry array holding the 320-bit RSS key
5791  * 	@sleep_ok: if true we may sleep while awaiting command completion
5792  *
5793  *	Reads the global 320-bit RSS key.
5794  */
5795 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5796 {
5797 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5798 }
5799 
5800 /**
5801  *	t4_write_rss_key - program one of the RSS keys
5802  *	@adap: the adapter
5803  *	@key: 10-entry array holding the 320-bit RSS key
5804  *	@idx: which RSS key to write
5805  * 	@sleep_ok: if true we may sleep while awaiting command completion
5806  *
5807  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5808  *	0..15 the corresponding entry in the RSS key table is written,
5809  *	otherwise the global RSS key is written.
5810  */
5811 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5812 		      bool sleep_ok)
5813 {
5814 	u8 rss_key_addr_cnt = 16;
5815 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5816 
5817 	/*
5818 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5819 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5820 	 * as index[5:4](upper 2) into key table
5821 	 */
5822 	if ((chip_id(adap) > CHELSIO_T5) &&
5823 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5824 		rss_key_addr_cnt = 32;
5825 
5826 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5827 
5828 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5829 		if (rss_key_addr_cnt > 16)
5830 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5831 				     vrt | V_KEYWRADDRX(idx >> 4) |
5832 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5833 		else
5834 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5835 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5836 	}
5837 }
5838 
5839 /**
5840  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5841  *	@adapter: the adapter
5842  *	@index: the entry in the PF RSS table to read
5843  *	@valp: where to store the returned value
5844  * 	@sleep_ok: if true we may sleep while awaiting command completion
5845  *
5846  *	Reads the PF RSS Configuration Table at the specified index and returns
5847  *	the value found there.
5848  */
5849 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5850 			   u32 *valp, bool sleep_ok)
5851 {
5852 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5853 }
5854 
5855 /**
5856  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5857  *	@adapter: the adapter
5858  *	@index: the entry in the VF RSS table to read
5859  *	@val: the value to store
5860  * 	@sleep_ok: if true we may sleep while awaiting command completion
5861  *
5862  *	Writes the PF RSS Configuration Table at the specified index with the
5863  *	specified value.
5864  */
5865 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5866 			    u32 val, bool sleep_ok)
5867 {
5868 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5869 			sleep_ok);
5870 }
5871 
5872 /**
5873  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5874  *	@adapter: the adapter
5875  *	@index: the entry in the VF RSS table to read
5876  *	@vfl: where to store the returned VFL
5877  *	@vfh: where to store the returned VFH
5878  * 	@sleep_ok: if true we may sleep while awaiting command completion
5879  *
5880  *	Reads the VF RSS Configuration Table at the specified index and returns
5881  *	the (VFL, VFH) values found there.
5882  */
5883 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5884 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5885 {
5886 	u32 vrt, mask, data;
5887 
5888 	if (chip_id(adapter) <= CHELSIO_T5) {
5889 		mask = V_VFWRADDR(M_VFWRADDR);
5890 		data = V_VFWRADDR(index);
5891 	} else {
5892 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5893 		 data = V_T6_VFWRADDR(index);
5894 	}
5895 	/*
5896 	 * Request that the index'th VF Table values be read into VFL/VFH.
5897 	 */
5898 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5899 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5900 	vrt |= data | F_VFRDEN;
5901 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5902 
5903 	/*
5904 	 * Grab the VFL/VFH values ...
5905 	 */
5906 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5907 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5908 }
5909 
5910 /**
5911  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5912  *
5913  *	@adapter: the adapter
5914  *	@index: the entry in the VF RSS table to write
5915  *	@vfl: the VFL to store
5916  *	@vfh: the VFH to store
5917  *
5918  *	Writes the VF RSS Configuration Table at the specified index with the
5919  *	specified (VFL, VFH) values.
5920  */
5921 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5922 			    u32 vfl, u32 vfh, bool sleep_ok)
5923 {
5924 	u32 vrt, mask, data;
5925 
5926 	if (chip_id(adapter) <= CHELSIO_T5) {
5927 		mask = V_VFWRADDR(M_VFWRADDR);
5928 		data = V_VFWRADDR(index);
5929 	} else {
5930 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5931 		data = V_T6_VFWRADDR(index);
5932 	}
5933 
5934 	/*
5935 	 * Load up VFL/VFH with the values to be written ...
5936 	 */
5937 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5938 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5939 
5940 	/*
5941 	 * Write the VFL/VFH into the VF Table at index'th location.
5942 	 */
5943 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5944 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5945 	vrt |= data | F_VFRDEN;
5946 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5947 }
5948 
5949 /**
5950  *	t4_read_rss_pf_map - read PF RSS Map
5951  *	@adapter: the adapter
5952  * 	@sleep_ok: if true we may sleep while awaiting command completion
5953  *
5954  *	Reads the PF RSS Map register and returns its value.
5955  */
5956 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5957 {
5958 	u32 pfmap;
5959 
5960 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5961 
5962 	return pfmap;
5963 }
5964 
5965 /**
5966  *	t4_write_rss_pf_map - write PF RSS Map
5967  *	@adapter: the adapter
5968  *	@pfmap: PF RSS Map value
5969  *
5970  *	Writes the specified value to the PF RSS Map register.
5971  */
5972 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5973 {
5974 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5975 }
5976 
5977 /**
5978  *	t4_read_rss_pf_mask - read PF RSS Mask
5979  *	@adapter: the adapter
5980  * 	@sleep_ok: if true we may sleep while awaiting command completion
5981  *
5982  *	Reads the PF RSS Mask register and returns its value.
5983  */
5984 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5985 {
5986 	u32 pfmask;
5987 
5988 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5989 
5990 	return pfmask;
5991 }
5992 
5993 /**
5994  *	t4_write_rss_pf_mask - write PF RSS Mask
5995  *	@adapter: the adapter
5996  *	@pfmask: PF RSS Mask value
5997  *
5998  *	Writes the specified value to the PF RSS Mask register.
5999  */
6000 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6001 {
6002 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6003 }
6004 
6005 /**
6006  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6007  *	@adap: the adapter
6008  *	@v4: holds the TCP/IP counter values
6009  *	@v6: holds the TCP/IPv6 counter values
6010  * 	@sleep_ok: if true we may sleep while awaiting command completion
6011  *
6012  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6013  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6014  */
6015 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6016 			 struct tp_tcp_stats *v6, bool sleep_ok)
6017 {
6018 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6019 
6020 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6021 #define STAT(x)     val[STAT_IDX(x)]
6022 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6023 
6024 	if (v4) {
6025 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6026 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6027 		v4->tcp_out_rsts = STAT(OUT_RST);
6028 		v4->tcp_in_segs  = STAT64(IN_SEG);
6029 		v4->tcp_out_segs = STAT64(OUT_SEG);
6030 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6031 	}
6032 	if (v6) {
6033 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6034 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6035 		v6->tcp_out_rsts = STAT(OUT_RST);
6036 		v6->tcp_in_segs  = STAT64(IN_SEG);
6037 		v6->tcp_out_segs = STAT64(OUT_SEG);
6038 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6039 	}
6040 #undef STAT64
6041 #undef STAT
6042 #undef STAT_IDX
6043 }
6044 
6045 /**
6046  *	t4_tp_get_err_stats - read TP's error MIB counters
6047  *	@adap: the adapter
6048  *	@st: holds the counter values
6049  * 	@sleep_ok: if true we may sleep while awaiting command completion
6050  *
6051  *	Returns the values of TP's error counters.
6052  */
6053 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6054 			 bool sleep_ok)
6055 {
6056 	int nchan = adap->chip_params->nchan;
6057 
6058 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6059 		       sleep_ok);
6060 
6061 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6062 		       sleep_ok);
6063 
6064 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6065 		       sleep_ok);
6066 
6067 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6068 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6069 
6070 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6071 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6072 
6073 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6074 		       sleep_ok);
6075 
6076 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6077 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6078 
6079 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6080 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6081 
6082 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6083 		       sleep_ok);
6084 }
6085 
6086 /**
6087  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6088  *	@adap: the adapter
6089  *	@st: holds the counter values
6090  *
6091  *	Returns the values of TP's proxy counters.
6092  */
6093 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6094     bool sleep_ok)
6095 {
6096 	int nchan = adap->chip_params->nchan;
6097 
6098 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6099 }
6100 
6101 /**
6102  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6103  *	@adap: the adapter
6104  *	@st: holds the counter values
6105  * 	@sleep_ok: if true we may sleep while awaiting command completion
6106  *
6107  *	Returns the values of TP's CPL counters.
6108  */
6109 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6110 			 bool sleep_ok)
6111 {
6112 	int nchan = adap->chip_params->nchan;
6113 
6114 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6115 
6116 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6117 }
6118 
6119 /**
6120  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6121  *	@adap: the adapter
6122  *	@st: holds the counter values
6123  *
6124  *	Returns the values of TP's RDMA counters.
6125  */
6126 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6127 			  bool sleep_ok)
6128 {
6129 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6130 		       sleep_ok);
6131 }
6132 
6133 /**
6134  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6135  *	@adap: the adapter
6136  *	@idx: the port index
6137  *	@st: holds the counter values
6138  * 	@sleep_ok: if true we may sleep while awaiting command completion
6139  *
6140  *	Returns the values of TP's FCoE counters for the selected port.
6141  */
6142 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6143 		       struct tp_fcoe_stats *st, bool sleep_ok)
6144 {
6145 	u32 val[2];
6146 
6147 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6148 		       sleep_ok);
6149 
6150 	t4_tp_mib_read(adap, &st->frames_drop, 1,
6151 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6152 
6153 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6154 		       sleep_ok);
6155 
6156 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6157 }
6158 
6159 /**
6160  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6161  *	@adap: the adapter
6162  *	@st: holds the counter values
6163  * 	@sleep_ok: if true we may sleep while awaiting command completion
6164  *
6165  *	Returns the values of TP's counters for non-TCP directly-placed packets.
6166  */
6167 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6168 		      bool sleep_ok)
6169 {
6170 	u32 val[4];
6171 
6172 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6173 
6174 	st->frames = val[0];
6175 	st->drops = val[1];
6176 	st->octets = ((u64)val[2] << 32) | val[3];
6177 }
6178 
6179 /**
6180  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6181  *	@adap: the adapter
6182  *	@mtus: where to store the MTU values
6183  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6184  *
6185  *	Reads the HW path MTU table.
6186  */
6187 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6188 {
6189 	u32 v;
6190 	int i;
6191 
6192 	for (i = 0; i < NMTUS; ++i) {
6193 		t4_write_reg(adap, A_TP_MTU_TABLE,
6194 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6195 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6196 		mtus[i] = G_MTUVALUE(v);
6197 		if (mtu_log)
6198 			mtu_log[i] = G_MTUWIDTH(v);
6199 	}
6200 }
6201 
6202 /**
6203  *	t4_read_cong_tbl - reads the congestion control table
6204  *	@adap: the adapter
6205  *	@incr: where to store the alpha values
6206  *
6207  *	Reads the additive increments programmed into the HW congestion
6208  *	control table.
6209  */
6210 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6211 {
6212 	unsigned int mtu, w;
6213 
6214 	for (mtu = 0; mtu < NMTUS; ++mtu)
6215 		for (w = 0; w < NCCTRL_WIN; ++w) {
6216 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6217 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6218 			incr[mtu][w] = (u16)t4_read_reg(adap,
6219 						A_TP_CCTRL_TABLE) & 0x1fff;
6220 		}
6221 }
6222 
6223 /**
6224  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6225  *	@adap: the adapter
6226  *	@addr: the indirect TP register address
6227  *	@mask: specifies the field within the register to modify
6228  *	@val: new value for the field
6229  *
6230  *	Sets a field of an indirect TP register to the given value.
6231  */
6232 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6233 			    unsigned int mask, unsigned int val)
6234 {
6235 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6236 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6237 	t4_write_reg(adap, A_TP_PIO_DATA, val);
6238 }
6239 
6240 /**
6241  *	init_cong_ctrl - initialize congestion control parameters
6242  *	@a: the alpha values for congestion control
6243  *	@b: the beta values for congestion control
6244  *
6245  *	Initialize the congestion control parameters.
6246  */
6247 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6248 {
6249 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6250 	a[9] = 2;
6251 	a[10] = 3;
6252 	a[11] = 4;
6253 	a[12] = 5;
6254 	a[13] = 6;
6255 	a[14] = 7;
6256 	a[15] = 8;
6257 	a[16] = 9;
6258 	a[17] = 10;
6259 	a[18] = 14;
6260 	a[19] = 17;
6261 	a[20] = 21;
6262 	a[21] = 25;
6263 	a[22] = 30;
6264 	a[23] = 35;
6265 	a[24] = 45;
6266 	a[25] = 60;
6267 	a[26] = 80;
6268 	a[27] = 100;
6269 	a[28] = 200;
6270 	a[29] = 300;
6271 	a[30] = 400;
6272 	a[31] = 500;
6273 
6274 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6275 	b[9] = b[10] = 1;
6276 	b[11] = b[12] = 2;
6277 	b[13] = b[14] = b[15] = b[16] = 3;
6278 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6279 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6280 	b[28] = b[29] = 6;
6281 	b[30] = b[31] = 7;
6282 }
6283 
6284 /* The minimum additive increment value for the congestion control table */
6285 #define CC_MIN_INCR 2U
6286 
6287 /**
6288  *	t4_load_mtus - write the MTU and congestion control HW tables
6289  *	@adap: the adapter
6290  *	@mtus: the values for the MTU table
6291  *	@alpha: the values for the congestion control alpha parameter
6292  *	@beta: the values for the congestion control beta parameter
6293  *
6294  *	Write the HW MTU table with the supplied MTUs and the high-speed
6295  *	congestion control table with the supplied alpha, beta, and MTUs.
6296  *	We write the two tables together because the additive increments
6297  *	depend on the MTUs.
6298  */
6299 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6300 		  const unsigned short *alpha, const unsigned short *beta)
6301 {
6302 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6303 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6304 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6305 		28672, 40960, 57344, 81920, 114688, 163840, 229376
6306 	};
6307 
6308 	unsigned int i, w;
6309 
6310 	for (i = 0; i < NMTUS; ++i) {
6311 		unsigned int mtu = mtus[i];
6312 		unsigned int log2 = fls(mtu);
6313 
6314 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6315 			log2--;
6316 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6317 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6318 
6319 		for (w = 0; w < NCCTRL_WIN; ++w) {
6320 			unsigned int inc;
6321 
6322 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6323 				  CC_MIN_INCR);
6324 
6325 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6326 				     (w << 16) | (beta[w] << 13) | inc);
6327 		}
6328 	}
6329 }
6330 
6331 /**
6332  *	t4_set_pace_tbl - set the pace table
6333  *	@adap: the adapter
6334  *	@pace_vals: the pace values in microseconds
6335  *	@start: index of the first entry in the HW pace table to set
6336  *	@n: how many entries to set
6337  *
6338  *	Sets (a subset of the) HW pace table.
6339  */
6340 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6341 		     unsigned int start, unsigned int n)
6342 {
6343 	unsigned int vals[NTX_SCHED], i;
6344 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6345 
6346 	if (n > NTX_SCHED)
6347 	    return -ERANGE;
6348 
6349 	/* convert values from us to dack ticks, rounding to closest value */
6350 	for (i = 0; i < n; i++, pace_vals++) {
6351 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6352 		if (vals[i] > 0x7ff)
6353 			return -ERANGE;
6354 		if (*pace_vals && vals[i] == 0)
6355 			return -ERANGE;
6356 	}
6357 	for (i = 0; i < n; i++, start++)
6358 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6359 	return 0;
6360 }
6361 
6362 /**
6363  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6364  *	@adap: the adapter
6365  *	@kbps: target rate in Kbps
6366  *	@sched: the scheduler index
6367  *
6368  *	Configure a Tx HW scheduler for the target rate.
6369  */
6370 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6371 {
6372 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6373 	unsigned int clk = adap->params.vpd.cclk * 1000;
6374 	unsigned int selected_cpt = 0, selected_bpt = 0;
6375 
6376 	if (kbps > 0) {
6377 		kbps *= 125;     /* -> bytes */
6378 		for (cpt = 1; cpt <= 255; cpt++) {
6379 			tps = clk / cpt;
6380 			bpt = (kbps + tps / 2) / tps;
6381 			if (bpt > 0 && bpt <= 255) {
6382 				v = bpt * tps;
6383 				delta = v >= kbps ? v - kbps : kbps - v;
6384 				if (delta < mindelta) {
6385 					mindelta = delta;
6386 					selected_cpt = cpt;
6387 					selected_bpt = bpt;
6388 				}
6389 			} else if (selected_cpt)
6390 				break;
6391 		}
6392 		if (!selected_cpt)
6393 			return -EINVAL;
6394 	}
6395 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6396 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6397 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6398 	if (sched & 1)
6399 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6400 	else
6401 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6402 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6403 	return 0;
6404 }
6405 
6406 /**
6407  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6408  *	@adap: the adapter
6409  *	@sched: the scheduler index
6410  *	@ipg: the interpacket delay in tenths of nanoseconds
6411  *
6412  *	Set the interpacket delay for a HW packet rate scheduler.
6413  */
6414 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6415 {
6416 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6417 
6418 	/* convert ipg to nearest number of core clocks */
6419 	ipg *= core_ticks_per_usec(adap);
6420 	ipg = (ipg + 5000) / 10000;
6421 	if (ipg > M_TXTIMERSEPQ0)
6422 		return -EINVAL;
6423 
6424 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6425 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6426 	if (sched & 1)
6427 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6428 	else
6429 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6430 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6431 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6432 	return 0;
6433 }
6434 
6435 /*
6436  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6437  * clocks.  The formula is
6438  *
6439  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6440  *
6441  * which is equivalent to
6442  *
6443  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6444  */
6445 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6446 {
6447 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6448 
6449 	return v * 62 + v / 2;
6450 }
6451 
6452 /**
6453  *	t4_get_chan_txrate - get the current per channel Tx rates
6454  *	@adap: the adapter
6455  *	@nic_rate: rates for NIC traffic
6456  *	@ofld_rate: rates for offloaded traffic
6457  *
6458  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6459  *	for each channel.
6460  */
6461 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6462 {
6463 	u32 v;
6464 
6465 	v = t4_read_reg(adap, A_TP_TX_TRATE);
6466 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6467 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6468 	if (adap->chip_params->nchan > 2) {
6469 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6470 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6471 	}
6472 
6473 	v = t4_read_reg(adap, A_TP_TX_ORATE);
6474 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6475 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6476 	if (adap->chip_params->nchan > 2) {
6477 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6478 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6479 	}
6480 }
6481 
6482 /**
6483  *	t4_set_trace_filter - configure one of the tracing filters
6484  *	@adap: the adapter
6485  *	@tp: the desired trace filter parameters
6486  *	@idx: which filter to configure
6487  *	@enable: whether to enable or disable the filter
6488  *
6489  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6490  *	it indicates that the filter is already written in the register and it
6491  *	just needs to be enabled or disabled.
6492  */
6493 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6494     int idx, int enable)
6495 {
6496 	int i, ofst = idx * 4;
6497 	u32 data_reg, mask_reg, cfg;
6498 	u32 multitrc = F_TRCMULTIFILTER;
6499 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6500 
6501 	if (idx < 0 || idx >= NTRACE)
6502 		return -EINVAL;
6503 
6504 	if (tp == NULL || !enable) {
6505 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6506 		    enable ? en : 0);
6507 		return 0;
6508 	}
6509 
6510 	/*
6511 	 * TODO - After T4 data book is updated, specify the exact
6512 	 * section below.
6513 	 *
6514 	 * See T4 data book - MPS section for a complete description
6515 	 * of the below if..else handling of A_MPS_TRC_CFG register
6516 	 * value.
6517 	 */
6518 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6519 	if (cfg & F_TRCMULTIFILTER) {
6520 		/*
6521 		 * If multiple tracers are enabled, then maximum
6522 		 * capture size is 2.5KB (FIFO size of a single channel)
6523 		 * minus 2 flits for CPL_TRACE_PKT header.
6524 		 */
6525 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6526 			return -EINVAL;
6527 	} else {
6528 		/*
6529 		 * If multiple tracers are disabled, to avoid deadlocks
6530 		 * maximum packet capture size of 9600 bytes is recommended.
6531 		 * Also in this mode, only trace0 can be enabled and running.
6532 		 */
6533 		multitrc = 0;
6534 		if (tp->snap_len > 9600 || idx)
6535 			return -EINVAL;
6536 	}
6537 
6538 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6539 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6540 	    tp->min_len > M_TFMINPKTSIZE)
6541 		return -EINVAL;
6542 
6543 	/* stop the tracer we'll be changing */
6544 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6545 
6546 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6547 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6548 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6549 
6550 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6551 		t4_write_reg(adap, data_reg, tp->data[i]);
6552 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6553 	}
6554 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6555 		     V_TFCAPTUREMAX(tp->snap_len) |
6556 		     V_TFMINPKTSIZE(tp->min_len));
6557 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6558 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6559 		     (is_t4(adap) ?
6560 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6561 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6562 
6563 	return 0;
6564 }
6565 
6566 /**
6567  *	t4_get_trace_filter - query one of the tracing filters
6568  *	@adap: the adapter
6569  *	@tp: the current trace filter parameters
6570  *	@idx: which trace filter to query
6571  *	@enabled: non-zero if the filter is enabled
6572  *
6573  *	Returns the current settings of one of the HW tracing filters.
6574  */
6575 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6576 			 int *enabled)
6577 {
6578 	u32 ctla, ctlb;
6579 	int i, ofst = idx * 4;
6580 	u32 data_reg, mask_reg;
6581 
6582 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6583 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6584 
6585 	if (is_t4(adap)) {
6586 		*enabled = !!(ctla & F_TFEN);
6587 		tp->port =  G_TFPORT(ctla);
6588 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6589 	} else {
6590 		*enabled = !!(ctla & F_T5_TFEN);
6591 		tp->port = G_T5_TFPORT(ctla);
6592 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6593 	}
6594 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6595 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6596 	tp->skip_ofst = G_TFOFFSET(ctla);
6597 	tp->skip_len = G_TFLENGTH(ctla);
6598 
6599 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6600 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6601 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6602 
6603 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6604 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6605 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6606 	}
6607 }
6608 
6609 /**
6610  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6611  *	@adap: the adapter
6612  *	@cnt: where to store the count statistics
6613  *	@cycles: where to store the cycle statistics
6614  *
6615  *	Returns performance statistics from PMTX.
6616  */
6617 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6618 {
6619 	int i;
6620 	u32 data[2];
6621 
6622 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6623 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6624 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6625 		if (is_t4(adap))
6626 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6627 		else {
6628 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6629 					 A_PM_TX_DBG_DATA, data, 2,
6630 					 A_PM_TX_DBG_STAT_MSB);
6631 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6632 		}
6633 	}
6634 }
6635 
6636 /**
6637  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6638  *	@adap: the adapter
6639  *	@cnt: where to store the count statistics
6640  *	@cycles: where to store the cycle statistics
6641  *
6642  *	Returns performance statistics from PMRX.
6643  */
6644 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6645 {
6646 	int i;
6647 	u32 data[2];
6648 
6649 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6650 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6651 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6652 		if (is_t4(adap)) {
6653 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6654 		} else {
6655 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6656 					 A_PM_RX_DBG_DATA, data, 2,
6657 					 A_PM_RX_DBG_STAT_MSB);
6658 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6659 		}
6660 	}
6661 }
6662 
6663 /**
6664  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6665  *	@adap: the adapter
6666  *	@idx: the port index
6667  *
6668  *	Returns a bitmap indicating which MPS buffer groups are associated
6669  *	with the given port.  Bit i is set if buffer group i is used by the
6670  *	port.
6671  */
6672 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6673 {
6674 	u32 n;
6675 
6676 	if (adap->params.mps_bg_map)
6677 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6678 
6679 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6680 	if (n == 0)
6681 		return idx == 0 ? 0xf : 0;
6682 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6683 		return idx < 2 ? (3 << (2 * idx)) : 0;
6684 	return 1 << idx;
6685 }
6686 
6687 /*
6688  * TP RX e-channels associated with the port.
6689  */
6690 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6691 {
6692 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6693 
6694 	if (n == 0)
6695 		return idx == 0 ? 0xf : 0;
6696 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6697 		return idx < 2 ? (3 << (2 * idx)) : 0;
6698 	return 1 << idx;
6699 }
6700 
6701 /**
6702  *      t4_get_port_type_description - return Port Type string description
6703  *      @port_type: firmware Port Type enumeration
6704  */
6705 const char *t4_get_port_type_description(enum fw_port_type port_type)
6706 {
6707 	static const char *const port_type_description[] = {
6708 		"Fiber_XFI",
6709 		"Fiber_XAUI",
6710 		"BT_SGMII",
6711 		"BT_XFI",
6712 		"BT_XAUI",
6713 		"KX4",
6714 		"CX4",
6715 		"KX",
6716 		"KR",
6717 		"SFP",
6718 		"BP_AP",
6719 		"BP4_AP",
6720 		"QSFP_10G",
6721 		"QSA",
6722 		"QSFP",
6723 		"BP40_BA",
6724 		"KR4_100G",
6725 		"CR4_QSFP",
6726 		"CR_QSFP",
6727 		"CR2_QSFP",
6728 		"SFP28",
6729 		"KR_SFP28",
6730 	};
6731 
6732 	if (port_type < ARRAY_SIZE(port_type_description))
6733 		return port_type_description[port_type];
6734 	return "UNKNOWN";
6735 }
6736 
6737 /**
6738  *      t4_get_port_stats_offset - collect port stats relative to a previous
6739  *				   snapshot
6740  *      @adap: The adapter
6741  *      @idx: The port
6742  *      @stats: Current stats to fill
6743  *      @offset: Previous stats snapshot
6744  */
6745 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6746 		struct port_stats *stats,
6747 		struct port_stats *offset)
6748 {
6749 	u64 *s, *o;
6750 	int i;
6751 
6752 	t4_get_port_stats(adap, idx, stats);
6753 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6754 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6755 			i++, s++, o++)
6756 		*s -= *o;
6757 }
6758 
6759 /**
6760  *	t4_get_port_stats - collect port statistics
6761  *	@adap: the adapter
6762  *	@idx: the port index
6763  *	@p: the stats structure to fill
6764  *
6765  *	Collect statistics related to the given port from HW.
6766  */
6767 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6768 {
6769 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6770 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6771 
6772 #define GET_STAT(name) \
6773 	t4_read_reg64(adap, \
6774 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6775 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6776 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6777 
6778 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6779 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6780 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6781 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6782 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6783 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6784 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6785 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6786 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6787 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6788 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6789 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6790 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6791 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6792 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6793 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6794 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6795 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6796 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6797 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6798 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6799 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6800 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6801 
6802 	if (chip_id(adap) >= CHELSIO_T5) {
6803 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6804 			p->tx_frames -= p->tx_pause;
6805 			p->tx_octets -= p->tx_pause * 64;
6806 		}
6807 		if (stat_ctl & F_COUNTPAUSEMCTX)
6808 			p->tx_mcast_frames -= p->tx_pause;
6809 	}
6810 
6811 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6812 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6813 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6814 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6815 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6816 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6817 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6818 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6819 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6820 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6821 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6822 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6823 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6824 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6825 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6826 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6827 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6828 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6829 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6830 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6831 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6832 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6833 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6834 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6835 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6836 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6837 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6838 
6839 	if (chip_id(adap) >= CHELSIO_T5) {
6840 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6841 			p->rx_frames -= p->rx_pause;
6842 			p->rx_octets -= p->rx_pause * 64;
6843 		}
6844 		if (stat_ctl & F_COUNTPAUSEMCRX)
6845 			p->rx_mcast_frames -= p->rx_pause;
6846 	}
6847 
6848 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6849 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6850 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6851 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6852 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6853 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6854 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6855 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6856 
6857 #undef GET_STAT
6858 #undef GET_STAT_COM
6859 }
6860 
6861 /**
6862  *	t4_get_lb_stats - collect loopback port statistics
6863  *	@adap: the adapter
6864  *	@idx: the loopback port index
6865  *	@p: the stats structure to fill
6866  *
6867  *	Return HW statistics for the given loopback port.
6868  */
6869 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6870 {
6871 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6872 
6873 #define GET_STAT(name) \
6874 	t4_read_reg64(adap, \
6875 	(is_t4(adap) ? \
6876 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6877 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6878 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6879 
6880 	p->octets	= GET_STAT(BYTES);
6881 	p->frames	= GET_STAT(FRAMES);
6882 	p->bcast_frames	= GET_STAT(BCAST);
6883 	p->mcast_frames	= GET_STAT(MCAST);
6884 	p->ucast_frames	= GET_STAT(UCAST);
6885 	p->error_frames	= GET_STAT(ERROR);
6886 
6887 	p->frames_64		= GET_STAT(64B);
6888 	p->frames_65_127	= GET_STAT(65B_127B);
6889 	p->frames_128_255	= GET_STAT(128B_255B);
6890 	p->frames_256_511	= GET_STAT(256B_511B);
6891 	p->frames_512_1023	= GET_STAT(512B_1023B);
6892 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6893 	p->frames_1519_max	= GET_STAT(1519B_MAX);
6894 	p->drop			= GET_STAT(DROP_FRAMES);
6895 
6896 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6897 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6898 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6899 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6900 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6901 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6902 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6903 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6904 
6905 #undef GET_STAT
6906 #undef GET_STAT_COM
6907 }
6908 
6909 /**
6910  *	t4_wol_magic_enable - enable/disable magic packet WoL
6911  *	@adap: the adapter
6912  *	@port: the physical port index
6913  *	@addr: MAC address expected in magic packets, %NULL to disable
6914  *
6915  *	Enables/disables magic packet wake-on-LAN for the selected port.
6916  */
6917 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6918 			 const u8 *addr)
6919 {
6920 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6921 
6922 	if (is_t4(adap)) {
6923 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6924 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6925 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6926 	} else {
6927 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6928 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6929 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6930 	}
6931 
6932 	if (addr) {
6933 		t4_write_reg(adap, mag_id_reg_l,
6934 			     (addr[2] << 24) | (addr[3] << 16) |
6935 			     (addr[4] << 8) | addr[5]);
6936 		t4_write_reg(adap, mag_id_reg_h,
6937 			     (addr[0] << 8) | addr[1]);
6938 	}
6939 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6940 			 V_MAGICEN(addr != NULL));
6941 }
6942 
6943 /**
6944  *	t4_wol_pat_enable - enable/disable pattern-based WoL
6945  *	@adap: the adapter
6946  *	@port: the physical port index
6947  *	@map: bitmap of which HW pattern filters to set
6948  *	@mask0: byte mask for bytes 0-63 of a packet
6949  *	@mask1: byte mask for bytes 64-127 of a packet
6950  *	@crc: Ethernet CRC for selected bytes
6951  *	@enable: enable/disable switch
6952  *
6953  *	Sets the pattern filters indicated in @map to mask out the bytes
6954  *	specified in @mask0/@mask1 in received packets and compare the CRC of
6955  *	the resulting packet against @crc.  If @enable is %true pattern-based
6956  *	WoL is enabled, otherwise disabled.
6957  */
6958 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6959 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6960 {
6961 	int i;
6962 	u32 port_cfg_reg;
6963 
6964 	if (is_t4(adap))
6965 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6966 	else
6967 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6968 
6969 	if (!enable) {
6970 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6971 		return 0;
6972 	}
6973 	if (map > 0xff)
6974 		return -EINVAL;
6975 
6976 #define EPIO_REG(name) \
6977 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6978 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6979 
6980 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6981 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6982 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6983 
6984 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6985 		if (!(map & 1))
6986 			continue;
6987 
6988 		/* write byte masks */
6989 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6990 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6991 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6992 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6993 			return -ETIMEDOUT;
6994 
6995 		/* write CRC */
6996 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6997 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6998 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6999 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7000 			return -ETIMEDOUT;
7001 	}
7002 #undef EPIO_REG
7003 
7004 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7005 	return 0;
7006 }
7007 
7008 /*     t4_mk_filtdelwr - create a delete filter WR
7009  *     @ftid: the filter ID
7010  *     @wr: the filter work request to populate
7011  *     @qid: ingress queue to receive the delete notification
7012  *
7013  *     Creates a filter work request to delete the supplied filter.  If @qid is
7014  *     negative the delete notification is suppressed.
7015  */
7016 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7017 {
7018 	memset(wr, 0, sizeof(*wr));
7019 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7020 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7021 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7022 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7023 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7024 	if (qid >= 0)
7025 		wr->rx_chan_rx_rpl_iq =
7026 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7027 }
7028 
7029 #define INIT_CMD(var, cmd, rd_wr) do { \
7030 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7031 					F_FW_CMD_REQUEST | \
7032 					F_FW_CMD_##rd_wr); \
7033 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7034 } while (0)
7035 
7036 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7037 			  u32 addr, u32 val)
7038 {
7039 	u32 ldst_addrspace;
7040 	struct fw_ldst_cmd c;
7041 
7042 	memset(&c, 0, sizeof(c));
7043 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7044 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7045 					F_FW_CMD_REQUEST |
7046 					F_FW_CMD_WRITE |
7047 					ldst_addrspace);
7048 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7049 	c.u.addrval.addr = cpu_to_be32(addr);
7050 	c.u.addrval.val = cpu_to_be32(val);
7051 
7052 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7053 }
7054 
7055 /**
7056  *	t4_mdio_rd - read a PHY register through MDIO
7057  *	@adap: the adapter
7058  *	@mbox: mailbox to use for the FW command
7059  *	@phy_addr: the PHY address
7060  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7061  *	@reg: the register to read
7062  *	@valp: where to store the value
7063  *
7064  *	Issues a FW command through the given mailbox to read a PHY register.
7065  */
7066 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7067 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7068 {
7069 	int ret;
7070 	u32 ldst_addrspace;
7071 	struct fw_ldst_cmd c;
7072 
7073 	memset(&c, 0, sizeof(c));
7074 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7075 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7076 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7077 					ldst_addrspace);
7078 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7079 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7080 					 V_FW_LDST_CMD_MMD(mmd));
7081 	c.u.mdio.raddr = cpu_to_be16(reg);
7082 
7083 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7084 	if (ret == 0)
7085 		*valp = be16_to_cpu(c.u.mdio.rval);
7086 	return ret;
7087 }
7088 
7089 /**
7090  *	t4_mdio_wr - write a PHY register through MDIO
7091  *	@adap: the adapter
7092  *	@mbox: mailbox to use for the FW command
7093  *	@phy_addr: the PHY address
7094  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7095  *	@reg: the register to write
7096  *	@valp: value to write
7097  *
7098  *	Issues a FW command through the given mailbox to write a PHY register.
7099  */
7100 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7101 	       unsigned int mmd, unsigned int reg, unsigned int val)
7102 {
7103 	u32 ldst_addrspace;
7104 	struct fw_ldst_cmd c;
7105 
7106 	memset(&c, 0, sizeof(c));
7107 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7108 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7109 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7110 					ldst_addrspace);
7111 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7112 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7113 					 V_FW_LDST_CMD_MMD(mmd));
7114 	c.u.mdio.raddr = cpu_to_be16(reg);
7115 	c.u.mdio.rval = cpu_to_be16(val);
7116 
7117 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7118 }
7119 
7120 /**
7121  *
7122  *	t4_sge_decode_idma_state - decode the idma state
7123  *	@adap: the adapter
7124  *	@state: the state idma is stuck in
7125  */
7126 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7127 {
7128 	static const char * const t4_decode[] = {
7129 		"IDMA_IDLE",
7130 		"IDMA_PUSH_MORE_CPL_FIFO",
7131 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7132 		"Not used",
7133 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7134 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7135 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7136 		"IDMA_SEND_FIFO_TO_IMSG",
7137 		"IDMA_FL_REQ_DATA_FL_PREP",
7138 		"IDMA_FL_REQ_DATA_FL",
7139 		"IDMA_FL_DROP",
7140 		"IDMA_FL_H_REQ_HEADER_FL",
7141 		"IDMA_FL_H_SEND_PCIEHDR",
7142 		"IDMA_FL_H_PUSH_CPL_FIFO",
7143 		"IDMA_FL_H_SEND_CPL",
7144 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7145 		"IDMA_FL_H_SEND_IP_HDR",
7146 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7147 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7148 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7149 		"IDMA_FL_D_SEND_PCIEHDR",
7150 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7151 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7152 		"IDMA_FL_SEND_PCIEHDR",
7153 		"IDMA_FL_PUSH_CPL_FIFO",
7154 		"IDMA_FL_SEND_CPL",
7155 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7156 		"IDMA_FL_SEND_PAYLOAD",
7157 		"IDMA_FL_REQ_NEXT_DATA_FL",
7158 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7159 		"IDMA_FL_SEND_PADDING",
7160 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7161 		"IDMA_FL_SEND_FIFO_TO_IMSG",
7162 		"IDMA_FL_REQ_DATAFL_DONE",
7163 		"IDMA_FL_REQ_HEADERFL_DONE",
7164 	};
7165 	static const char * const t5_decode[] = {
7166 		"IDMA_IDLE",
7167 		"IDMA_ALMOST_IDLE",
7168 		"IDMA_PUSH_MORE_CPL_FIFO",
7169 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7170 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7171 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7172 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7173 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7174 		"IDMA_SEND_FIFO_TO_IMSG",
7175 		"IDMA_FL_REQ_DATA_FL",
7176 		"IDMA_FL_DROP",
7177 		"IDMA_FL_DROP_SEND_INC",
7178 		"IDMA_FL_H_REQ_HEADER_FL",
7179 		"IDMA_FL_H_SEND_PCIEHDR",
7180 		"IDMA_FL_H_PUSH_CPL_FIFO",
7181 		"IDMA_FL_H_SEND_CPL",
7182 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7183 		"IDMA_FL_H_SEND_IP_HDR",
7184 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7185 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7186 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7187 		"IDMA_FL_D_SEND_PCIEHDR",
7188 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7189 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7190 		"IDMA_FL_SEND_PCIEHDR",
7191 		"IDMA_FL_PUSH_CPL_FIFO",
7192 		"IDMA_FL_SEND_CPL",
7193 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7194 		"IDMA_FL_SEND_PAYLOAD",
7195 		"IDMA_FL_REQ_NEXT_DATA_FL",
7196 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7197 		"IDMA_FL_SEND_PADDING",
7198 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7199 	};
7200 	static const char * const t6_decode[] = {
7201 		"IDMA_IDLE",
7202 		"IDMA_PUSH_MORE_CPL_FIFO",
7203 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7204 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7205 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7206 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7207 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7208 		"IDMA_FL_REQ_DATA_FL",
7209 		"IDMA_FL_DROP",
7210 		"IDMA_FL_DROP_SEND_INC",
7211 		"IDMA_FL_H_REQ_HEADER_FL",
7212 		"IDMA_FL_H_SEND_PCIEHDR",
7213 		"IDMA_FL_H_PUSH_CPL_FIFO",
7214 		"IDMA_FL_H_SEND_CPL",
7215 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7216 		"IDMA_FL_H_SEND_IP_HDR",
7217 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7218 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7219 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7220 		"IDMA_FL_D_SEND_PCIEHDR",
7221 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7222 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7223 		"IDMA_FL_SEND_PCIEHDR",
7224 		"IDMA_FL_PUSH_CPL_FIFO",
7225 		"IDMA_FL_SEND_CPL",
7226 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7227 		"IDMA_FL_SEND_PAYLOAD",
7228 		"IDMA_FL_REQ_NEXT_DATA_FL",
7229 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7230 		"IDMA_FL_SEND_PADDING",
7231 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7232 	};
7233 	static const u32 sge_regs[] = {
7234 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7235 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7236 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7237 	};
7238 	const char * const *sge_idma_decode;
7239 	int sge_idma_decode_nstates;
7240 	int i;
7241 	unsigned int chip_version = chip_id(adapter);
7242 
7243 	/* Select the right set of decode strings to dump depending on the
7244 	 * adapter chip type.
7245 	 */
7246 	switch (chip_version) {
7247 	case CHELSIO_T4:
7248 		sge_idma_decode = (const char * const *)t4_decode;
7249 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7250 		break;
7251 
7252 	case CHELSIO_T5:
7253 		sge_idma_decode = (const char * const *)t5_decode;
7254 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7255 		break;
7256 
7257 	case CHELSIO_T6:
7258 		sge_idma_decode = (const char * const *)t6_decode;
7259 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7260 		break;
7261 
7262 	default:
7263 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7264 		return;
7265 	}
7266 
7267 	if (state < sge_idma_decode_nstates)
7268 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7269 	else
7270 		CH_WARN(adapter, "idma state %d unknown\n", state);
7271 
7272 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7273 		CH_WARN(adapter, "SGE register %#x value %#x\n",
7274 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7275 }
7276 
7277 /**
7278  *      t4_sge_ctxt_flush - flush the SGE context cache
7279  *      @adap: the adapter
7280  *      @mbox: mailbox to use for the FW command
7281  *
7282  *      Issues a FW command through the given mailbox to flush the
7283  *      SGE context cache.
7284  */
7285 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
7286 {
7287 	int ret;
7288 	u32 ldst_addrspace;
7289 	struct fw_ldst_cmd c;
7290 
7291 	memset(&c, 0, sizeof(c));
7292 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
7293 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7294 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7295 					ldst_addrspace);
7296 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7297 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7298 
7299 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7300 	return ret;
7301 }
7302 
7303 /**
7304  *      t4_fw_hello - establish communication with FW
7305  *      @adap: the adapter
7306  *      @mbox: mailbox to use for the FW command
7307  *      @evt_mbox: mailbox to receive async FW events
7308  *      @master: specifies the caller's willingness to be the device master
7309  *	@state: returns the current device state (if non-NULL)
7310  *
7311  *	Issues a command to establish communication with FW.  Returns either
7312  *	an error (negative integer) or the mailbox of the Master PF.
7313  */
7314 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7315 		enum dev_master master, enum dev_state *state)
7316 {
7317 	int ret;
7318 	struct fw_hello_cmd c;
7319 	u32 v;
7320 	unsigned int master_mbox;
7321 	int retries = FW_CMD_HELLO_RETRIES;
7322 
7323 retry:
7324 	memset(&c, 0, sizeof(c));
7325 	INIT_CMD(c, HELLO, WRITE);
7326 	c.err_to_clearinit = cpu_to_be32(
7327 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7328 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7329 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7330 					mbox : M_FW_HELLO_CMD_MBMASTER) |
7331 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7332 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7333 		F_FW_HELLO_CMD_CLEARINIT);
7334 
7335 	/*
7336 	 * Issue the HELLO command to the firmware.  If it's not successful
7337 	 * but indicates that we got a "busy" or "timeout" condition, retry
7338 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7339 	 * retry limit, check to see if the firmware left us any error
7340 	 * information and report that if so ...
7341 	 */
7342 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7343 	if (ret != FW_SUCCESS) {
7344 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7345 			goto retry;
7346 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7347 			t4_report_fw_error(adap);
7348 		return ret;
7349 	}
7350 
7351 	v = be32_to_cpu(c.err_to_clearinit);
7352 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7353 	if (state) {
7354 		if (v & F_FW_HELLO_CMD_ERR)
7355 			*state = DEV_STATE_ERR;
7356 		else if (v & F_FW_HELLO_CMD_INIT)
7357 			*state = DEV_STATE_INIT;
7358 		else
7359 			*state = DEV_STATE_UNINIT;
7360 	}
7361 
7362 	/*
7363 	 * If we're not the Master PF then we need to wait around for the
7364 	 * Master PF Driver to finish setting up the adapter.
7365 	 *
7366 	 * Note that we also do this wait if we're a non-Master-capable PF and
7367 	 * there is no current Master PF; a Master PF may show up momentarily
7368 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7369 	 * OS loads lots of different drivers rapidly at the same time).  In
7370 	 * this case, the Master PF returned by the firmware will be
7371 	 * M_PCIE_FW_MASTER so the test below will work ...
7372 	 */
7373 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7374 	    master_mbox != mbox) {
7375 		int waiting = FW_CMD_HELLO_TIMEOUT;
7376 
7377 		/*
7378 		 * Wait for the firmware to either indicate an error or
7379 		 * initialized state.  If we see either of these we bail out
7380 		 * and report the issue to the caller.  If we exhaust the
7381 		 * "hello timeout" and we haven't exhausted our retries, try
7382 		 * again.  Otherwise bail with a timeout error.
7383 		 */
7384 		for (;;) {
7385 			u32 pcie_fw;
7386 
7387 			msleep(50);
7388 			waiting -= 50;
7389 
7390 			/*
7391 			 * If neither Error nor Initialialized are indicated
7392 			 * by the firmware keep waiting till we exhaust our
7393 			 * timeout ... and then retry if we haven't exhausted
7394 			 * our retries ...
7395 			 */
7396 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7397 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7398 				if (waiting <= 0) {
7399 					if (retries-- > 0)
7400 						goto retry;
7401 
7402 					return -ETIMEDOUT;
7403 				}
7404 				continue;
7405 			}
7406 
7407 			/*
7408 			 * We either have an Error or Initialized condition
7409 			 * report errors preferentially.
7410 			 */
7411 			if (state) {
7412 				if (pcie_fw & F_PCIE_FW_ERR)
7413 					*state = DEV_STATE_ERR;
7414 				else if (pcie_fw & F_PCIE_FW_INIT)
7415 					*state = DEV_STATE_INIT;
7416 			}
7417 
7418 			/*
7419 			 * If we arrived before a Master PF was selected and
7420 			 * there's not a valid Master PF, grab its identity
7421 			 * for our caller.
7422 			 */
7423 			if (master_mbox == M_PCIE_FW_MASTER &&
7424 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7425 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7426 			break;
7427 		}
7428 	}
7429 
7430 	return master_mbox;
7431 }
7432 
7433 /**
7434  *	t4_fw_bye - end communication with FW
7435  *	@adap: the adapter
7436  *	@mbox: mailbox to use for the FW command
7437  *
7438  *	Issues a command to terminate communication with FW.
7439  */
7440 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7441 {
7442 	struct fw_bye_cmd c;
7443 
7444 	memset(&c, 0, sizeof(c));
7445 	INIT_CMD(c, BYE, WRITE);
7446 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7447 }
7448 
7449 /**
7450  *	t4_fw_reset - issue a reset to FW
7451  *	@adap: the adapter
7452  *	@mbox: mailbox to use for the FW command
7453  *	@reset: specifies the type of reset to perform
7454  *
7455  *	Issues a reset command of the specified type to FW.
7456  */
7457 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7458 {
7459 	struct fw_reset_cmd c;
7460 
7461 	memset(&c, 0, sizeof(c));
7462 	INIT_CMD(c, RESET, WRITE);
7463 	c.val = cpu_to_be32(reset);
7464 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7465 }
7466 
7467 /**
7468  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7469  *	@adap: the adapter
7470  *	@mbox: mailbox to use for the FW RESET command (if desired)
7471  *	@force: force uP into RESET even if FW RESET command fails
7472  *
7473  *	Issues a RESET command to firmware (if desired) with a HALT indication
7474  *	and then puts the microprocessor into RESET state.  The RESET command
7475  *	will only be issued if a legitimate mailbox is provided (mbox <=
7476  *	M_PCIE_FW_MASTER).
7477  *
7478  *	This is generally used in order for the host to safely manipulate the
7479  *	adapter without fear of conflicting with whatever the firmware might
7480  *	be doing.  The only way out of this state is to RESTART the firmware
7481  *	...
7482  */
7483 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7484 {
7485 	int ret = 0;
7486 
7487 	/*
7488 	 * If a legitimate mailbox is provided, issue a RESET command
7489 	 * with a HALT indication.
7490 	 */
7491 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7492 		struct fw_reset_cmd c;
7493 
7494 		memset(&c, 0, sizeof(c));
7495 		INIT_CMD(c, RESET, WRITE);
7496 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7497 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7498 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7499 	}
7500 
7501 	/*
7502 	 * Normally we won't complete the operation if the firmware RESET
7503 	 * command fails but if our caller insists we'll go ahead and put the
7504 	 * uP into RESET.  This can be useful if the firmware is hung or even
7505 	 * missing ...  We'll have to take the risk of putting the uP into
7506 	 * RESET without the cooperation of firmware in that case.
7507 	 *
7508 	 * We also force the firmware's HALT flag to be on in case we bypassed
7509 	 * the firmware RESET command above or we're dealing with old firmware
7510 	 * which doesn't have the HALT capability.  This will serve as a flag
7511 	 * for the incoming firmware to know that it's coming out of a HALT
7512 	 * rather than a RESET ... if it's new enough to understand that ...
7513 	 */
7514 	if (ret == 0 || force) {
7515 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7516 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7517 				 F_PCIE_FW_HALT);
7518 	}
7519 
7520 	/*
7521 	 * And we always return the result of the firmware RESET command
7522 	 * even when we force the uP into RESET ...
7523 	 */
7524 	return ret;
7525 }
7526 
7527 /**
7528  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7529  *	@adap: the adapter
7530  *
7531  *	Restart firmware previously halted by t4_fw_halt().  On successful
7532  *	return the previous PF Master remains as the new PF Master and there
7533  *	is no need to issue a new HELLO command, etc.
7534  */
7535 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7536 {
7537 	int ms;
7538 
7539 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7540 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7541 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7542 			return FW_SUCCESS;
7543 		msleep(100);
7544 		ms += 100;
7545 	}
7546 
7547 	return -ETIMEDOUT;
7548 }
7549 
7550 /**
7551  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7552  *	@adap: the adapter
7553  *	@mbox: mailbox to use for the FW RESET command (if desired)
7554  *	@fw_data: the firmware image to write
7555  *	@size: image size
7556  *	@force: force upgrade even if firmware doesn't cooperate
7557  *
7558  *	Perform all of the steps necessary for upgrading an adapter's
7559  *	firmware image.  Normally this requires the cooperation of the
7560  *	existing firmware in order to halt all existing activities
7561  *	but if an invalid mailbox token is passed in we skip that step
7562  *	(though we'll still put the adapter microprocessor into RESET in
7563  *	that case).
7564  *
7565  *	On successful return the new firmware will have been loaded and
7566  *	the adapter will have been fully RESET losing all previous setup
7567  *	state.  On unsuccessful return the adapter may be completely hosed ...
7568  *	positive errno indicates that the adapter is ~probably~ intact, a
7569  *	negative errno indicates that things are looking bad ...
7570  */
7571 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7572 		  const u8 *fw_data, unsigned int size, int force)
7573 {
7574 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7575 	unsigned int bootstrap =
7576 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7577 	int ret;
7578 
7579 	if (!t4_fw_matches_chip(adap, fw_hdr))
7580 		return -EINVAL;
7581 
7582 	if (!bootstrap) {
7583 		ret = t4_fw_halt(adap, mbox, force);
7584 		if (ret < 0 && !force)
7585 			return ret;
7586 	}
7587 
7588 	ret = t4_load_fw(adap, fw_data, size);
7589 	if (ret < 0 || bootstrap)
7590 		return ret;
7591 
7592 	return t4_fw_restart(adap, mbox);
7593 }
7594 
7595 /**
7596  *	t4_fw_initialize - ask FW to initialize the device
7597  *	@adap: the adapter
7598  *	@mbox: mailbox to use for the FW command
7599  *
7600  *	Issues a command to FW to partially initialize the device.  This
7601  *	performs initialization that generally doesn't depend on user input.
7602  */
7603 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7604 {
7605 	struct fw_initialize_cmd c;
7606 
7607 	memset(&c, 0, sizeof(c));
7608 	INIT_CMD(c, INITIALIZE, WRITE);
7609 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7610 }
7611 
7612 /**
7613  *	t4_query_params_rw - query FW or device parameters
7614  *	@adap: the adapter
7615  *	@mbox: mailbox to use for the FW command
7616  *	@pf: the PF
7617  *	@vf: the VF
7618  *	@nparams: the number of parameters
7619  *	@params: the parameter names
7620  *	@val: the parameter values
7621  *	@rw: Write and read flag
7622  *
7623  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7624  *	queried at once.
7625  */
7626 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7627 		       unsigned int vf, unsigned int nparams, const u32 *params,
7628 		       u32 *val, int rw)
7629 {
7630 	int i, ret;
7631 	struct fw_params_cmd c;
7632 	__be32 *p = &c.param[0].mnem;
7633 
7634 	if (nparams > 7)
7635 		return -EINVAL;
7636 
7637 	memset(&c, 0, sizeof(c));
7638 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7639 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7640 				  V_FW_PARAMS_CMD_PFN(pf) |
7641 				  V_FW_PARAMS_CMD_VFN(vf));
7642 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7643 
7644 	for (i = 0; i < nparams; i++) {
7645 		*p++ = cpu_to_be32(*params++);
7646 		if (rw)
7647 			*p = cpu_to_be32(*(val + i));
7648 		p++;
7649 	}
7650 
7651 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7652 	if (ret == 0)
7653 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7654 			*val++ = be32_to_cpu(*p);
7655 	return ret;
7656 }
7657 
7658 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7659 		    unsigned int vf, unsigned int nparams, const u32 *params,
7660 		    u32 *val)
7661 {
7662 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7663 }
7664 
7665 /**
7666  *      t4_set_params_timeout - sets FW or device parameters
7667  *      @adap: the adapter
7668  *      @mbox: mailbox to use for the FW command
7669  *      @pf: the PF
7670  *      @vf: the VF
7671  *      @nparams: the number of parameters
7672  *      @params: the parameter names
7673  *      @val: the parameter values
7674  *      @timeout: the timeout time
7675  *
7676  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7677  *      specified at once.
7678  */
7679 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7680 			  unsigned int pf, unsigned int vf,
7681 			  unsigned int nparams, const u32 *params,
7682 			  const u32 *val, int timeout)
7683 {
7684 	struct fw_params_cmd c;
7685 	__be32 *p = &c.param[0].mnem;
7686 
7687 	if (nparams > 7)
7688 		return -EINVAL;
7689 
7690 	memset(&c, 0, sizeof(c));
7691 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7692 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7693 				  V_FW_PARAMS_CMD_PFN(pf) |
7694 				  V_FW_PARAMS_CMD_VFN(vf));
7695 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7696 
7697 	while (nparams--) {
7698 		*p++ = cpu_to_be32(*params++);
7699 		*p++ = cpu_to_be32(*val++);
7700 	}
7701 
7702 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7703 }
7704 
7705 /**
7706  *	t4_set_params - sets FW or device parameters
7707  *	@adap: the adapter
7708  *	@mbox: mailbox to use for the FW command
7709  *	@pf: the PF
7710  *	@vf: the VF
7711  *	@nparams: the number of parameters
7712  *	@params: the parameter names
7713  *	@val: the parameter values
7714  *
7715  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7716  *	specified at once.
7717  */
7718 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7719 		  unsigned int vf, unsigned int nparams, const u32 *params,
7720 		  const u32 *val)
7721 {
7722 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7723 				     FW_CMD_MAX_TIMEOUT);
7724 }
7725 
7726 /**
7727  *	t4_cfg_pfvf - configure PF/VF resource limits
7728  *	@adap: the adapter
7729  *	@mbox: mailbox to use for the FW command
7730  *	@pf: the PF being configured
7731  *	@vf: the VF being configured
7732  *	@txq: the max number of egress queues
7733  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7734  *	@rxqi: the max number of interrupt-capable ingress queues
7735  *	@rxq: the max number of interruptless ingress queues
7736  *	@tc: the PCI traffic class
7737  *	@vi: the max number of virtual interfaces
7738  *	@cmask: the channel access rights mask for the PF/VF
7739  *	@pmask: the port access rights mask for the PF/VF
7740  *	@nexact: the maximum number of exact MPS filters
7741  *	@rcaps: read capabilities
7742  *	@wxcaps: write/execute capabilities
7743  *
7744  *	Configures resource limits and capabilities for a physical or virtual
7745  *	function.
7746  */
7747 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7748 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7749 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7750 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7751 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7752 {
7753 	struct fw_pfvf_cmd c;
7754 
7755 	memset(&c, 0, sizeof(c));
7756 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7757 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7758 				  V_FW_PFVF_CMD_VFN(vf));
7759 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7760 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7761 				     V_FW_PFVF_CMD_NIQ(rxq));
7762 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7763 				    V_FW_PFVF_CMD_PMASK(pmask) |
7764 				    V_FW_PFVF_CMD_NEQ(txq));
7765 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7766 				      V_FW_PFVF_CMD_NVI(vi) |
7767 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7768 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7769 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7770 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7771 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7772 }
7773 
7774 /**
7775  *	t4_alloc_vi_func - allocate a virtual interface
7776  *	@adap: the adapter
7777  *	@mbox: mailbox to use for the FW command
7778  *	@port: physical port associated with the VI
7779  *	@pf: the PF owning the VI
7780  *	@vf: the VF owning the VI
7781  *	@nmac: number of MAC addresses needed (1 to 5)
7782  *	@mac: the MAC addresses of the VI
7783  *	@rss_size: size of RSS table slice associated with this VI
7784  *	@portfunc: which Port Application Function MAC Address is desired
7785  *	@idstype: Intrusion Detection Type
7786  *
7787  *	Allocates a virtual interface for the given physical port.  If @mac is
7788  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7789  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7790  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7791  *	stored consecutively so the space needed is @nmac * 6 bytes.
7792  *	Returns a negative error number or the non-negative VI id.
7793  */
7794 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7795 		     unsigned int port, unsigned int pf, unsigned int vf,
7796 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7797 		     unsigned int portfunc, unsigned int idstype)
7798 {
7799 	int ret;
7800 	struct fw_vi_cmd c;
7801 
7802 	memset(&c, 0, sizeof(c));
7803 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7804 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7805 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7806 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7807 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7808 				     V_FW_VI_CMD_FUNC(portfunc));
7809 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7810 	c.nmac = nmac - 1;
7811 	if(!rss_size)
7812 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7813 
7814 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7815 	if (ret)
7816 		return ret;
7817 
7818 	if (mac) {
7819 		memcpy(mac, c.mac, sizeof(c.mac));
7820 		switch (nmac) {
7821 		case 5:
7822 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7823 		case 4:
7824 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7825 		case 3:
7826 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7827 		case 2:
7828 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7829 		}
7830 	}
7831 	if (rss_size)
7832 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7833 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7834 }
7835 
7836 /**
7837  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7838  *      @adap: the adapter
7839  *      @mbox: mailbox to use for the FW command
7840  *      @port: physical port associated with the VI
7841  *      @pf: the PF owning the VI
7842  *      @vf: the VF owning the VI
7843  *      @nmac: number of MAC addresses needed (1 to 5)
7844  *      @mac: the MAC addresses of the VI
7845  *      @rss_size: size of RSS table slice associated with this VI
7846  *
7847  *	backwards compatible and convieniance routine to allocate a Virtual
7848  *	Interface with a Ethernet Port Application Function and Intrustion
7849  *	Detection System disabled.
7850  */
7851 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7852 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7853 		u16 *rss_size)
7854 {
7855 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7856 				FW_VI_FUNC_ETH, 0);
7857 }
7858 
7859 /**
7860  * 	t4_free_vi - free a virtual interface
7861  * 	@adap: the adapter
7862  * 	@mbox: mailbox to use for the FW command
7863  * 	@pf: the PF owning the VI
7864  * 	@vf: the VF owning the VI
7865  * 	@viid: virtual interface identifiler
7866  *
7867  * 	Free a previously allocated virtual interface.
7868  */
7869 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7870 	       unsigned int vf, unsigned int viid)
7871 {
7872 	struct fw_vi_cmd c;
7873 
7874 	memset(&c, 0, sizeof(c));
7875 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7876 				  F_FW_CMD_REQUEST |
7877 				  F_FW_CMD_EXEC |
7878 				  V_FW_VI_CMD_PFN(pf) |
7879 				  V_FW_VI_CMD_VFN(vf));
7880 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7881 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7882 
7883 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7884 }
7885 
7886 /**
7887  *	t4_set_rxmode - set Rx properties of a virtual interface
7888  *	@adap: the adapter
7889  *	@mbox: mailbox to use for the FW command
7890  *	@viid: the VI id
7891  *	@mtu: the new MTU or -1
7892  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7893  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7894  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7895  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7896  *	@sleep_ok: if true we may sleep while awaiting command completion
7897  *
7898  *	Sets Rx properties of a virtual interface.
7899  */
7900 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7901 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7902 		  bool sleep_ok)
7903 {
7904 	struct fw_vi_rxmode_cmd c;
7905 
7906 	/* convert to FW values */
7907 	if (mtu < 0)
7908 		mtu = M_FW_VI_RXMODE_CMD_MTU;
7909 	if (promisc < 0)
7910 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7911 	if (all_multi < 0)
7912 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7913 	if (bcast < 0)
7914 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7915 	if (vlanex < 0)
7916 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7917 
7918 	memset(&c, 0, sizeof(c));
7919 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7920 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7921 				   V_FW_VI_RXMODE_CMD_VIID(viid));
7922 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7923 	c.mtu_to_vlanexen =
7924 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7925 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7926 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7927 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7928 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7929 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7930 }
7931 
7932 /**
7933  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7934  *	@adap: the adapter
7935  *	@mbox: mailbox to use for the FW command
7936  *	@viid: the VI id
7937  *	@free: if true any existing filters for this VI id are first removed
7938  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7939  *	@addr: the MAC address(es)
7940  *	@idx: where to store the index of each allocated filter
7941  *	@hash: pointer to hash address filter bitmap
7942  *	@sleep_ok: call is allowed to sleep
7943  *
7944  *	Allocates an exact-match filter for each of the supplied addresses and
7945  *	sets it to the corresponding address.  If @idx is not %NULL it should
7946  *	have at least @naddr entries, each of which will be set to the index of
7947  *	the filter allocated for the corresponding MAC address.  If a filter
7948  *	could not be allocated for an address its index is set to 0xffff.
7949  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7950  *	are hashed and update the hash filter bitmap pointed at by @hash.
7951  *
7952  *	Returns a negative error number or the number of filters allocated.
7953  */
7954 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7955 		      unsigned int viid, bool free, unsigned int naddr,
7956 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7957 {
7958 	int offset, ret = 0;
7959 	struct fw_vi_mac_cmd c;
7960 	unsigned int nfilters = 0;
7961 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7962 	unsigned int rem = naddr;
7963 
7964 	if (naddr > max_naddr)
7965 		return -EINVAL;
7966 
7967 	for (offset = 0; offset < naddr ; /**/) {
7968 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7969 					 ? rem
7970 					 : ARRAY_SIZE(c.u.exact));
7971 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7972 						     u.exact[fw_naddr]), 16);
7973 		struct fw_vi_mac_exact *p;
7974 		int i;
7975 
7976 		memset(&c, 0, sizeof(c));
7977 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7978 					   F_FW_CMD_REQUEST |
7979 					   F_FW_CMD_WRITE |
7980 					   V_FW_CMD_EXEC(free) |
7981 					   V_FW_VI_MAC_CMD_VIID(viid));
7982 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7983 						  V_FW_CMD_LEN16(len16));
7984 
7985 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7986 			p->valid_to_idx =
7987 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7988 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7989 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7990 		}
7991 
7992 		/*
7993 		 * It's okay if we run out of space in our MAC address arena.
7994 		 * Some of the addresses we submit may get stored so we need
7995 		 * to run through the reply to see what the results were ...
7996 		 */
7997 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7998 		if (ret && ret != -FW_ENOMEM)
7999 			break;
8000 
8001 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8002 			u16 index = G_FW_VI_MAC_CMD_IDX(
8003 						be16_to_cpu(p->valid_to_idx));
8004 
8005 			if (idx)
8006 				idx[offset+i] = (index >=  max_naddr
8007 						 ? 0xffff
8008 						 : index);
8009 			if (index < max_naddr)
8010 				nfilters++;
8011 			else if (hash)
8012 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8013 		}
8014 
8015 		free = false;
8016 		offset += fw_naddr;
8017 		rem -= fw_naddr;
8018 	}
8019 
8020 	if (ret == 0 || ret == -FW_ENOMEM)
8021 		ret = nfilters;
8022 	return ret;
8023 }
8024 
8025 /**
8026  *	t4_change_mac - modifies the exact-match filter for a MAC address
8027  *	@adap: the adapter
8028  *	@mbox: mailbox to use for the FW command
8029  *	@viid: the VI id
8030  *	@idx: index of existing filter for old value of MAC address, or -1
8031  *	@addr: the new MAC address value
8032  *	@persist: whether a new MAC allocation should be persistent
8033  *	@add_smt: if true also add the address to the HW SMT
8034  *
8035  *	Modifies an exact-match filter and sets it to the new MAC address if
8036  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8037  *	latter case the address is added persistently if @persist is %true.
8038  *
8039  *	Note that in general it is not possible to modify the value of a given
8040  *	filter so the generic way to modify an address filter is to free the one
8041  *	being used by the old address value and allocate a new filter for the
8042  *	new address value.
8043  *
8044  *	Returns a negative error number or the index of the filter with the new
8045  *	MAC value.  Note that this index may differ from @idx.
8046  */
8047 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8048 		  int idx, const u8 *addr, bool persist, bool add_smt)
8049 {
8050 	int ret, mode;
8051 	struct fw_vi_mac_cmd c;
8052 	struct fw_vi_mac_exact *p = c.u.exact;
8053 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8054 
8055 	if (idx < 0)		/* new allocation */
8056 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8057 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8058 
8059 	memset(&c, 0, sizeof(c));
8060 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8061 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8062 				   V_FW_VI_MAC_CMD_VIID(viid));
8063 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8064 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8065 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8066 				      V_FW_VI_MAC_CMD_IDX(idx));
8067 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8068 
8069 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8070 	if (ret == 0) {
8071 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8072 		if (ret >= max_mac_addr)
8073 			ret = -ENOMEM;
8074 	}
8075 	return ret;
8076 }
8077 
8078 /**
8079  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8080  *	@adap: the adapter
8081  *	@mbox: mailbox to use for the FW command
8082  *	@viid: the VI id
8083  *	@ucast: whether the hash filter should also match unicast addresses
8084  *	@vec: the value to be written to the hash filter
8085  *	@sleep_ok: call is allowed to sleep
8086  *
8087  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8088  */
8089 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8090 		     bool ucast, u64 vec, bool sleep_ok)
8091 {
8092 	struct fw_vi_mac_cmd c;
8093 	u32 val;
8094 
8095 	memset(&c, 0, sizeof(c));
8096 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8097 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8098 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8099 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8100 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8101 	c.freemacs_to_len16 = cpu_to_be32(val);
8102 	c.u.hash.hashvec = cpu_to_be64(vec);
8103 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8104 }
8105 
8106 /**
8107  *      t4_enable_vi_params - enable/disable a virtual interface
8108  *      @adap: the adapter
8109  *      @mbox: mailbox to use for the FW command
8110  *      @viid: the VI id
8111  *      @rx_en: 1=enable Rx, 0=disable Rx
8112  *      @tx_en: 1=enable Tx, 0=disable Tx
8113  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8114  *
8115  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8116  *      only makes sense when enabling a Virtual Interface ...
8117  */
8118 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8119 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8120 {
8121 	struct fw_vi_enable_cmd c;
8122 
8123 	memset(&c, 0, sizeof(c));
8124 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8125 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8126 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8127 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8128 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8129 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8130 				     FW_LEN16(c));
8131 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8132 }
8133 
8134 /**
8135  *	t4_enable_vi - enable/disable a virtual interface
8136  *	@adap: the adapter
8137  *	@mbox: mailbox to use for the FW command
8138  *	@viid: the VI id
8139  *	@rx_en: 1=enable Rx, 0=disable Rx
8140  *	@tx_en: 1=enable Tx, 0=disable Tx
8141  *
8142  *	Enables/disables a virtual interface.  Note that setting DCB Enable
8143  *	only makes sense when enabling a Virtual Interface ...
8144  */
8145 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8146 		 bool rx_en, bool tx_en)
8147 {
8148 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8149 }
8150 
8151 /**
8152  *	t4_identify_port - identify a VI's port by blinking its LED
8153  *	@adap: the adapter
8154  *	@mbox: mailbox to use for the FW command
8155  *	@viid: the VI id
8156  *	@nblinks: how many times to blink LED at 2.5 Hz
8157  *
8158  *	Identifies a VI's port by blinking its LED.
8159  */
8160 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8161 		     unsigned int nblinks)
8162 {
8163 	struct fw_vi_enable_cmd c;
8164 
8165 	memset(&c, 0, sizeof(c));
8166 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8167 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8168 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8169 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8170 	c.blinkdur = cpu_to_be16(nblinks);
8171 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8172 }
8173 
8174 /**
8175  *	t4_iq_stop - stop an ingress queue and its FLs
8176  *	@adap: the adapter
8177  *	@mbox: mailbox to use for the FW command
8178  *	@pf: the PF owning the queues
8179  *	@vf: the VF owning the queues
8180  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8181  *	@iqid: ingress queue id
8182  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8183  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8184  *
8185  *	Stops an ingress queue and its associated FLs, if any.  This causes
8186  *	any current or future data/messages destined for these queues to be
8187  *	tossed.
8188  */
8189 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8190 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8191 	       unsigned int fl0id, unsigned int fl1id)
8192 {
8193 	struct fw_iq_cmd c;
8194 
8195 	memset(&c, 0, sizeof(c));
8196 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8197 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8198 				  V_FW_IQ_CMD_VFN(vf));
8199 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8200 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8201 	c.iqid = cpu_to_be16(iqid);
8202 	c.fl0id = cpu_to_be16(fl0id);
8203 	c.fl1id = cpu_to_be16(fl1id);
8204 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8205 }
8206 
8207 /**
8208  *	t4_iq_free - free an ingress queue and its FLs
8209  *	@adap: the adapter
8210  *	@mbox: mailbox to use for the FW command
8211  *	@pf: the PF owning the queues
8212  *	@vf: the VF owning the queues
8213  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8214  *	@iqid: ingress queue id
8215  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8216  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8217  *
8218  *	Frees an ingress queue and its associated FLs, if any.
8219  */
8220 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8221 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8222 	       unsigned int fl0id, unsigned int fl1id)
8223 {
8224 	struct fw_iq_cmd c;
8225 
8226 	memset(&c, 0, sizeof(c));
8227 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8228 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8229 				  V_FW_IQ_CMD_VFN(vf));
8230 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8231 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8232 	c.iqid = cpu_to_be16(iqid);
8233 	c.fl0id = cpu_to_be16(fl0id);
8234 	c.fl1id = cpu_to_be16(fl1id);
8235 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8236 }
8237 
8238 /**
8239  *	t4_eth_eq_free - free an Ethernet egress queue
8240  *	@adap: the adapter
8241  *	@mbox: mailbox to use for the FW command
8242  *	@pf: the PF owning the queue
8243  *	@vf: the VF owning the queue
8244  *	@eqid: egress queue id
8245  *
8246  *	Frees an Ethernet egress queue.
8247  */
8248 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8249 		   unsigned int vf, unsigned int eqid)
8250 {
8251 	struct fw_eq_eth_cmd c;
8252 
8253 	memset(&c, 0, sizeof(c));
8254 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8255 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8256 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8257 				  V_FW_EQ_ETH_CMD_VFN(vf));
8258 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8259 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8260 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8261 }
8262 
8263 /**
8264  *	t4_ctrl_eq_free - free a control egress queue
8265  *	@adap: the adapter
8266  *	@mbox: mailbox to use for the FW command
8267  *	@pf: the PF owning the queue
8268  *	@vf: the VF owning the queue
8269  *	@eqid: egress queue id
8270  *
8271  *	Frees a control egress queue.
8272  */
8273 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8274 		    unsigned int vf, unsigned int eqid)
8275 {
8276 	struct fw_eq_ctrl_cmd c;
8277 
8278 	memset(&c, 0, sizeof(c));
8279 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8280 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8281 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8282 				  V_FW_EQ_CTRL_CMD_VFN(vf));
8283 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8284 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8285 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8286 }
8287 
8288 /**
8289  *	t4_ofld_eq_free - free an offload egress queue
8290  *	@adap: the adapter
8291  *	@mbox: mailbox to use for the FW command
8292  *	@pf: the PF owning the queue
8293  *	@vf: the VF owning the queue
8294  *	@eqid: egress queue id
8295  *
8296  *	Frees a control egress queue.
8297  */
8298 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8299 		    unsigned int vf, unsigned int eqid)
8300 {
8301 	struct fw_eq_ofld_cmd c;
8302 
8303 	memset(&c, 0, sizeof(c));
8304 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8305 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8306 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8307 				  V_FW_EQ_OFLD_CMD_VFN(vf));
8308 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8309 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8310 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8311 }
8312 
8313 /**
8314  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8315  *	@link_down_rc: Link Down Reason Code
8316  *
8317  *	Returns a string representation of the Link Down Reason Code.
8318  */
8319 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8320 {
8321 	static const char *reason[] = {
8322 		"Link Down",
8323 		"Remote Fault",
8324 		"Auto-negotiation Failure",
8325 		"Reserved3",
8326 		"Insufficient Airflow",
8327 		"Unable To Determine Reason",
8328 		"No RX Signal Detected",
8329 		"Reserved7",
8330 	};
8331 
8332 	if (link_down_rc >= ARRAY_SIZE(reason))
8333 		return "Bad Reason Code";
8334 
8335 	return reason[link_down_rc];
8336 }
8337 
8338 /*
8339  * Return the highest speed set in the port capabilities, in Mb/s.
8340  */
8341 unsigned int fwcap_to_speed(uint32_t caps)
8342 {
8343 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8344 		do { \
8345 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8346 				return __speed; \
8347 		} while (0)
8348 
8349 	TEST_SPEED_RETURN(400G, 400000);
8350 	TEST_SPEED_RETURN(200G, 200000);
8351 	TEST_SPEED_RETURN(100G, 100000);
8352 	TEST_SPEED_RETURN(50G,   50000);
8353 	TEST_SPEED_RETURN(40G,   40000);
8354 	TEST_SPEED_RETURN(25G,   25000);
8355 	TEST_SPEED_RETURN(10G,   10000);
8356 	TEST_SPEED_RETURN(1G,     1000);
8357 	TEST_SPEED_RETURN(100M,    100);
8358 
8359 	#undef TEST_SPEED_RETURN
8360 
8361 	return 0;
8362 }
8363 
8364 /*
8365  * Return the port capabilities bit for the given speed, which is in Mb/s.
8366  */
8367 uint32_t speed_to_fwcap(unsigned int speed)
8368 {
8369 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8370 		do { \
8371 			if (speed == __speed) \
8372 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8373 		} while (0)
8374 
8375 	TEST_SPEED_RETURN(400G, 400000);
8376 	TEST_SPEED_RETURN(200G, 200000);
8377 	TEST_SPEED_RETURN(100G, 100000);
8378 	TEST_SPEED_RETURN(50G,   50000);
8379 	TEST_SPEED_RETURN(40G,   40000);
8380 	TEST_SPEED_RETURN(25G,   25000);
8381 	TEST_SPEED_RETURN(10G,   10000);
8382 	TEST_SPEED_RETURN(1G,     1000);
8383 	TEST_SPEED_RETURN(100M,    100);
8384 
8385 	#undef TEST_SPEED_RETURN
8386 
8387 	return 0;
8388 }
8389 
8390 /*
8391  * Return the port capabilities bit for the highest speed in the capabilities.
8392  */
8393 uint32_t fwcap_top_speed(uint32_t caps)
8394 {
8395 	#define TEST_SPEED_RETURN(__caps_speed) \
8396 		do { \
8397 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8398 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8399 		} while (0)
8400 
8401 	TEST_SPEED_RETURN(400G);
8402 	TEST_SPEED_RETURN(200G);
8403 	TEST_SPEED_RETURN(100G);
8404 	TEST_SPEED_RETURN(50G);
8405 	TEST_SPEED_RETURN(40G);
8406 	TEST_SPEED_RETURN(25G);
8407 	TEST_SPEED_RETURN(10G);
8408 	TEST_SPEED_RETURN(1G);
8409 	TEST_SPEED_RETURN(100M);
8410 
8411 	#undef TEST_SPEED_RETURN
8412 
8413 	return 0;
8414 }
8415 
8416 
8417 /**
8418  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8419  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8420  *
8421  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8422  *	32-bit Port Capabilities value.
8423  */
8424 static uint32_t lstatus_to_fwcap(u32 lstatus)
8425 {
8426 	uint32_t linkattr = 0;
8427 
8428 	/*
8429 	 * Unfortunately the format of the Link Status in the old
8430 	 * 16-bit Port Information message isn't the same as the
8431 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8432 	 */
8433 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8434 		linkattr |= FW_PORT_CAP32_FC_RX;
8435 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8436 		linkattr |= FW_PORT_CAP32_FC_TX;
8437 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8438 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8439 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8440 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8441 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8442 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8443 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8444 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8445 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8446 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8447 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8448 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8449 
8450 	return linkattr;
8451 }
8452 
8453 /*
8454  * Updates all fields owned by the common code in port_info and link_config
8455  * based on information provided by the firmware.  Does not touch any
8456  * requested_* field.
8457  */
8458 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8459     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8460 {
8461 	struct link_config old_lc, *lc = &pi->link_cfg;
8462 	unsigned char fc, fec;
8463 	u32 stat, linkattr;
8464 	int old_ptype, old_mtype;
8465 
8466 	old_ptype = pi->port_type;
8467 	old_mtype = pi->mod_type;
8468 	old_lc = *lc;
8469 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8470 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8471 
8472 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8473 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8474 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8475 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8476 
8477 		lc->supported = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8478 		lc->advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8479 		lc->lp_advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8480 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8481 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8482 
8483 		linkattr = lstatus_to_fwcap(stat);
8484 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8485 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8486 
8487 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8488 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8489 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8490 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8491 
8492 		lc->supported = be32_to_cpu(p->u.info32.pcaps32);
8493 		lc->advertising = be32_to_cpu(p->u.info32.acaps32);
8494 		lc->lp_advertising = be16_to_cpu(p->u.info32.lpacaps32);
8495 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8496 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8497 
8498 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
8499 	} else {
8500 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8501 		return;
8502 	}
8503 
8504 	lc->speed = fwcap_to_speed(linkattr);
8505 
8506 	fc = 0;
8507 	if (linkattr & FW_PORT_CAP32_FC_RX)
8508 		fc |= PAUSE_RX;
8509 	if (linkattr & FW_PORT_CAP32_FC_TX)
8510 		fc |= PAUSE_TX;
8511 	lc->fc = fc;
8512 
8513 	fec = FEC_NONE;
8514 	if (linkattr & FW_PORT_CAP32_FEC_RS)
8515 		fec |= FEC_RS;
8516 	if (linkattr & FW_PORT_CAP32_FEC_BASER_RS)
8517 		fec |= FEC_BASER_RS;
8518 	lc->fec = fec;
8519 
8520 	if (mod_changed != NULL)
8521 		*mod_changed = false;
8522 	if (link_changed != NULL)
8523 		*link_changed = false;
8524 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8525 	    old_lc.supported != lc->supported) {
8526 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
8527 			lc->fec_hint = lc->advertising &
8528 			    V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
8529 		}
8530 		if (mod_changed != NULL)
8531 			*mod_changed = true;
8532 	}
8533 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8534 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8535 		if (link_changed != NULL)
8536 			*link_changed = true;
8537 	}
8538 }
8539 
8540 /**
8541  *	t4_update_port_info - retrieve and update port information if changed
8542  *	@pi: the port_info
8543  *
8544  *	We issue a Get Port Information Command to the Firmware and, if
8545  *	successful, we check to see if anything is different from what we
8546  *	last recorded and update things accordingly.
8547  */
8548  int t4_update_port_info(struct port_info *pi)
8549  {
8550 	struct adapter *sc = pi->adapter;
8551 	struct fw_port_cmd cmd;
8552 	enum fw_port_action action;
8553 	int ret;
8554 
8555 	memset(&cmd, 0, sizeof(cmd));
8556 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
8557 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
8558 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
8559 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
8560 	    FW_PORT_ACTION_GET_PORT_INFO;
8561 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
8562 	    FW_LEN16(cmd));
8563 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
8564 	if (ret)
8565 		return ret;
8566 
8567 	handle_port_info(pi, &cmd, action, NULL, NULL);
8568 	return 0;
8569 }
8570 
8571 /**
8572  *	t4_handle_fw_rpl - process a FW reply message
8573  *	@adap: the adapter
8574  *	@rpl: start of the FW message
8575  *
8576  *	Processes a FW message, such as link state change messages.
8577  */
8578 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8579 {
8580 	u8 opcode = *(const u8 *)rpl;
8581 	const struct fw_port_cmd *p = (const void *)rpl;
8582 	enum fw_port_action action =
8583 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
8584 	bool mod_changed, link_changed;
8585 
8586 	if (opcode == FW_PORT_CMD &&
8587 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8588 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8589 		/* link/module state change message */
8590 		int i;
8591 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
8592 		struct port_info *pi = NULL;
8593 		struct link_config *lc;
8594 
8595 		for_each_port(adap, i) {
8596 			pi = adap2pinfo(adap, i);
8597 			if (pi->tx_chan == chan)
8598 				break;
8599 		}
8600 
8601 		lc = &pi->link_cfg;
8602 		PORT_LOCK(pi);
8603 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
8604 		PORT_UNLOCK(pi);
8605 		if (mod_changed)
8606 			t4_os_portmod_changed(pi);
8607 		if (link_changed) {
8608 			PORT_LOCK(pi);
8609 			t4_os_link_changed(pi);
8610 			PORT_UNLOCK(pi);
8611 		}
8612 	} else {
8613 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
8614 		return -EINVAL;
8615 	}
8616 	return 0;
8617 }
8618 
8619 /**
8620  *	get_pci_mode - determine a card's PCI mode
8621  *	@adapter: the adapter
8622  *	@p: where to store the PCI settings
8623  *
8624  *	Determines a card's PCI mode and associated parameters, such as speed
8625  *	and width.
8626  */
8627 static void get_pci_mode(struct adapter *adapter,
8628 				   struct pci_params *p)
8629 {
8630 	u16 val;
8631 	u32 pcie_cap;
8632 
8633 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8634 	if (pcie_cap) {
8635 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
8636 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8637 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8638 	}
8639 }
8640 
8641 struct flash_desc {
8642 	u32 vendor_and_model_id;
8643 	u32 size_mb;
8644 };
8645 
8646 int t4_get_flash_params(struct adapter *adapter)
8647 {
8648 	/*
8649 	 * Table for non-standard supported Flash parts.  Note, all Flash
8650 	 * parts must have 64KB sectors.
8651 	 */
8652 	static struct flash_desc supported_flash[] = {
8653 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
8654 	};
8655 
8656 	int ret;
8657 	u32 flashid = 0;
8658 	unsigned int part, manufacturer;
8659 	unsigned int density, size = 0;
8660 
8661 
8662 	/*
8663 	 * Issue a Read ID Command to the Flash part.  We decode supported
8664 	 * Flash parts and their sizes from this.  There's a newer Query
8665 	 * Command which can retrieve detailed geometry information but many
8666 	 * Flash parts don't support it.
8667 	 */
8668 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
8669 	if (!ret)
8670 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
8671 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
8672 	if (ret < 0)
8673 		return ret;
8674 
8675 	/*
8676 	 * Check to see if it's one of our non-standard supported Flash parts.
8677 	 */
8678 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8679 		if (supported_flash[part].vendor_and_model_id == flashid) {
8680 			adapter->params.sf_size =
8681 				supported_flash[part].size_mb;
8682 			adapter->params.sf_nsec =
8683 				adapter->params.sf_size / SF_SEC_SIZE;
8684 			goto found;
8685 		}
8686 
8687 	/*
8688 	 * Decode Flash part size.  The code below looks repetative with
8689 	 * common encodings, but that's not guaranteed in the JEDEC
8690 	 * specification for the Read JADEC ID command.  The only thing that
8691 	 * we're guaranteed by the JADEC specification is where the
8692 	 * Manufacturer ID is in the returned result.  After that each
8693 	 * Manufacturer ~could~ encode things completely differently.
8694 	 * Note, all Flash parts must have 64KB sectors.
8695 	 */
8696 	manufacturer = flashid & 0xff;
8697 	switch (manufacturer) {
8698 	case 0x20: /* Micron/Numonix */
8699 		/*
8700 		 * This Density -> Size decoding table is taken from Micron
8701 		 * Data Sheets.
8702 		 */
8703 		density = (flashid >> 16) & 0xff;
8704 		switch (density) {
8705 		case 0x14: size = 1 << 20; break; /*   1MB */
8706 		case 0x15: size = 1 << 21; break; /*   2MB */
8707 		case 0x16: size = 1 << 22; break; /*   4MB */
8708 		case 0x17: size = 1 << 23; break; /*   8MB */
8709 		case 0x18: size = 1 << 24; break; /*  16MB */
8710 		case 0x19: size = 1 << 25; break; /*  32MB */
8711 		case 0x20: size = 1 << 26; break; /*  64MB */
8712 		case 0x21: size = 1 << 27; break; /* 128MB */
8713 		case 0x22: size = 1 << 28; break; /* 256MB */
8714 		}
8715 		break;
8716 
8717 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
8718 		/*
8719 		 * This Density -> Size decoding table is taken from ISSI
8720 		 * Data Sheets.
8721 		 */
8722 		density = (flashid >> 16) & 0xff;
8723 		switch (density) {
8724 		case 0x16: size = 1 << 25; break; /*  32MB */
8725 		case 0x17: size = 1 << 26; break; /*  64MB */
8726 		}
8727 		break;
8728 
8729 	case 0xc2: /* Macronix */
8730 		/*
8731 		 * This Density -> Size decoding table is taken from Macronix
8732 		 * Data Sheets.
8733 		 */
8734 		density = (flashid >> 16) & 0xff;
8735 		switch (density) {
8736 		case 0x17: size = 1 << 23; break; /*   8MB */
8737 		case 0x18: size = 1 << 24; break; /*  16MB */
8738 		}
8739 		break;
8740 
8741 	case 0xef: /* Winbond */
8742 		/*
8743 		 * This Density -> Size decoding table is taken from Winbond
8744 		 * Data Sheets.
8745 		 */
8746 		density = (flashid >> 16) & 0xff;
8747 		switch (density) {
8748 		case 0x17: size = 1 << 23; break; /*   8MB */
8749 		case 0x18: size = 1 << 24; break; /*  16MB */
8750 		}
8751 		break;
8752 	}
8753 
8754 	/* If we didn't recognize the FLASH part, that's no real issue: the
8755 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
8756 	 * use a FLASH part which is at least 4MB in size and has 64KB
8757 	 * sectors.  The unrecognized FLASH part is likely to be much larger
8758 	 * than 4MB, but that's all we really need.
8759 	 */
8760 	if (size == 0) {
8761 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
8762 		size = 1 << 22;
8763 	}
8764 
8765 	/*
8766 	 * Store decoded Flash size and fall through into vetting code.
8767 	 */
8768 	adapter->params.sf_size = size;
8769 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
8770 
8771  found:
8772 	/*
8773 	 * We should ~probably~ reject adapters with FLASHes which are too
8774 	 * small but we have some legacy FPGAs with small FLASHes that we'd
8775 	 * still like to use.  So instead we emit a scary message ...
8776 	 */
8777 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
8778 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8779 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
8780 
8781 	return 0;
8782 }
8783 
8784 static void set_pcie_completion_timeout(struct adapter *adapter,
8785 						  u8 range)
8786 {
8787 	u16 val;
8788 	u32 pcie_cap;
8789 
8790 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8791 	if (pcie_cap) {
8792 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
8793 		val &= 0xfff0;
8794 		val |= range ;
8795 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
8796 	}
8797 }
8798 
8799 const struct chip_params *t4_get_chip_params(int chipid)
8800 {
8801 	static const struct chip_params chip_params[] = {
8802 		{
8803 			/* T4 */
8804 			.nchan = NCHAN,
8805 			.pm_stats_cnt = PM_NSTATS,
8806 			.cng_ch_bits_log = 2,
8807 			.nsched_cls = 15,
8808 			.cim_num_obq = CIM_NUM_OBQ,
8809 			.mps_rplc_size = 128,
8810 			.vfcount = 128,
8811 			.sge_fl_db = F_DBPRIO,
8812 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
8813 		},
8814 		{
8815 			/* T5 */
8816 			.nchan = NCHAN,
8817 			.pm_stats_cnt = PM_NSTATS,
8818 			.cng_ch_bits_log = 2,
8819 			.nsched_cls = 16,
8820 			.cim_num_obq = CIM_NUM_OBQ_T5,
8821 			.mps_rplc_size = 128,
8822 			.vfcount = 128,
8823 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
8824 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8825 		},
8826 		{
8827 			/* T6 */
8828 			.nchan = T6_NCHAN,
8829 			.pm_stats_cnt = T6_PM_NSTATS,
8830 			.cng_ch_bits_log = 3,
8831 			.nsched_cls = 16,
8832 			.cim_num_obq = CIM_NUM_OBQ_T5,
8833 			.mps_rplc_size = 256,
8834 			.vfcount = 256,
8835 			.sge_fl_db = 0,
8836 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8837 		},
8838 	};
8839 
8840 	chipid -= CHELSIO_T4;
8841 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8842 		return NULL;
8843 
8844 	return &chip_params[chipid];
8845 }
8846 
8847 /**
8848  *	t4_prep_adapter - prepare SW and HW for operation
8849  *	@adapter: the adapter
8850  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
8851  *
8852  *	Initialize adapter SW state for the various HW modules, set initial
8853  *	values for some adapter tunables, take PHYs out of reset, and
8854  *	initialize the MDIO interface.
8855  */
8856 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8857 {
8858 	int ret;
8859 	uint16_t device_id;
8860 	uint32_t pl_rev;
8861 
8862 	get_pci_mode(adapter, &adapter->params.pci);
8863 
8864 	pl_rev = t4_read_reg(adapter, A_PL_REV);
8865 	adapter->params.chipid = G_CHIPID(pl_rev);
8866 	adapter->params.rev = G_REV(pl_rev);
8867 	if (adapter->params.chipid == 0) {
8868 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
8869 		adapter->params.chipid = CHELSIO_T4;
8870 
8871 		/* T4A1 chip is not supported */
8872 		if (adapter->params.rev == 1) {
8873 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8874 			return -EINVAL;
8875 		}
8876 	}
8877 
8878 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8879 	if (adapter->chip_params == NULL)
8880 		return -EINVAL;
8881 
8882 	adapter->params.pci.vpd_cap_addr =
8883 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8884 
8885 	ret = t4_get_flash_params(adapter);
8886 	if (ret < 0)
8887 		return ret;
8888 
8889 	/* Cards with real ASICs have the chipid in the PCIe device id */
8890 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8891 	if (device_id >> 12 == chip_id(adapter))
8892 		adapter->params.cim_la_size = CIMLA_SIZE;
8893 	else {
8894 		/* FPGA */
8895 		adapter->params.fpga = 1;
8896 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8897 	}
8898 
8899 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
8900 	if (ret < 0)
8901 		return ret;
8902 
8903 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8904 
8905 	/*
8906 	 * Default port and clock for debugging in case we can't reach FW.
8907 	 */
8908 	adapter->params.nports = 1;
8909 	adapter->params.portvec = 1;
8910 	adapter->params.vpd.cclk = 50000;
8911 
8912 	/* Set pci completion timeout value to 4 seconds. */
8913 	set_pcie_completion_timeout(adapter, 0xd);
8914 	return 0;
8915 }
8916 
8917 /**
8918  *	t4_shutdown_adapter - shut down adapter, host & wire
8919  *	@adapter: the adapter
8920  *
8921  *	Perform an emergency shutdown of the adapter and stop it from
8922  *	continuing any further communication on the ports or DMA to the
8923  *	host.  This is typically used when the adapter and/or firmware
8924  *	have crashed and we want to prevent any further accidental
8925  *	communication with the rest of the world.  This will also force
8926  *	the port Link Status to go down -- if register writes work --
8927  *	which should help our peers figure out that we're down.
8928  */
8929 int t4_shutdown_adapter(struct adapter *adapter)
8930 {
8931 	int port;
8932 
8933 	t4_intr_disable(adapter);
8934 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8935 	for_each_port(adapter, port) {
8936 		u32 a_port_cfg = is_t4(adapter) ?
8937 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
8938 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
8939 
8940 		t4_write_reg(adapter, a_port_cfg,
8941 			     t4_read_reg(adapter, a_port_cfg)
8942 			     & ~V_SIGNAL_DET(1));
8943 	}
8944 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8945 
8946 	return 0;
8947 }
8948 
8949 /**
8950  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8951  *	@adapter: the adapter
8952  *	@qid: the Queue ID
8953  *	@qtype: the Ingress or Egress type for @qid
8954  *	@user: true if this request is for a user mode queue
8955  *	@pbar2_qoffset: BAR2 Queue Offset
8956  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8957  *
8958  *	Returns the BAR2 SGE Queue Registers information associated with the
8959  *	indicated Absolute Queue ID.  These are passed back in return value
8960  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8961  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8962  *
8963  *	This may return an error which indicates that BAR2 SGE Queue
8964  *	registers aren't available.  If an error is not returned, then the
8965  *	following values are returned:
8966  *
8967  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8968  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8969  *
8970  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8971  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8972  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8973  *	then these "Inferred Queue ID" register may not be used.
8974  */
8975 int t4_bar2_sge_qregs(struct adapter *adapter,
8976 		      unsigned int qid,
8977 		      enum t4_bar2_qtype qtype,
8978 		      int user,
8979 		      u64 *pbar2_qoffset,
8980 		      unsigned int *pbar2_qid)
8981 {
8982 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8983 	u64 bar2_page_offset, bar2_qoffset;
8984 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8985 
8986 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
8987 	 * mode queues.
8988 	 */
8989 	if (!user && is_t4(adapter))
8990 		return -EINVAL;
8991 
8992 	/* Get our SGE Page Size parameters.
8993 	 */
8994 	page_shift = adapter->params.sge.page_shift;
8995 	page_size = 1 << page_shift;
8996 
8997 	/* Get the right Queues per Page parameters for our Queue.
8998 	 */
8999 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9000 		     ? adapter->params.sge.eq_s_qpp
9001 		     : adapter->params.sge.iq_s_qpp);
9002 	qpp_mask = (1 << qpp_shift) - 1;
9003 
9004 	/* Calculate the basics of the BAR2 SGE Queue register area:
9005 	 *  o The BAR2 page the Queue registers will be in.
9006 	 *  o The BAR2 Queue ID.
9007 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9008 	 */
9009 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9010 	bar2_qid = qid & qpp_mask;
9011 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9012 
9013 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9014 	 * hardware will infer the Absolute Queue ID simply from the writes to
9015 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9016 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9017 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9018 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9019 	 * from the BAR2 Page and BAR2 Queue ID.
9020 	 *
9021 	 * One important censequence of this is that some BAR2 SGE registers
9022 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9023 	 * there.  But other registers synthesize the SGE Queue ID purely
9024 	 * from the writes to the registers -- the Write Combined Doorbell
9025 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9026 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9027 	 * Queue ID can be inferred from simple writes.
9028 	 */
9029 	bar2_qoffset = bar2_page_offset;
9030 	bar2_qinferred = (bar2_qid_offset < page_size);
9031 	if (bar2_qinferred) {
9032 		bar2_qoffset += bar2_qid_offset;
9033 		bar2_qid = 0;
9034 	}
9035 
9036 	*pbar2_qoffset = bar2_qoffset;
9037 	*pbar2_qid = bar2_qid;
9038 	return 0;
9039 }
9040 
9041 /**
9042  *	t4_init_devlog_params - initialize adapter->params.devlog
9043  *	@adap: the adapter
9044  *	@fw_attach: whether we can talk to the firmware
9045  *
9046  *	Initialize various fields of the adapter's Firmware Device Log
9047  *	Parameters structure.
9048  */
9049 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9050 {
9051 	struct devlog_params *dparams = &adap->params.devlog;
9052 	u32 pf_dparams;
9053 	unsigned int devlog_meminfo;
9054 	struct fw_devlog_cmd devlog_cmd;
9055 	int ret;
9056 
9057 	/* If we're dealing with newer firmware, the Device Log Paramerters
9058 	 * are stored in a designated register which allows us to access the
9059 	 * Device Log even if we can't talk to the firmware.
9060 	 */
9061 	pf_dparams =
9062 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9063 	if (pf_dparams) {
9064 		unsigned int nentries, nentries128;
9065 
9066 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9067 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9068 
9069 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9070 		nentries = (nentries128 + 1) * 128;
9071 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9072 
9073 		return 0;
9074 	}
9075 
9076 	/*
9077 	 * For any failing returns ...
9078 	 */
9079 	memset(dparams, 0, sizeof *dparams);
9080 
9081 	/*
9082 	 * If we can't talk to the firmware, there's really nothing we can do
9083 	 * at this point.
9084 	 */
9085 	if (!fw_attach)
9086 		return -ENXIO;
9087 
9088 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9089 	 */
9090 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9091 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9092 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9093 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9094 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9095 			 &devlog_cmd);
9096 	if (ret)
9097 		return ret;
9098 
9099 	devlog_meminfo =
9100 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9101 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9102 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9103 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9104 
9105 	return 0;
9106 }
9107 
9108 /**
9109  *	t4_init_sge_params - initialize adap->params.sge
9110  *	@adapter: the adapter
9111  *
9112  *	Initialize various fields of the adapter's SGE Parameters structure.
9113  */
9114 int t4_init_sge_params(struct adapter *adapter)
9115 {
9116 	u32 r;
9117 	struct sge_params *sp = &adapter->params.sge;
9118 	unsigned i, tscale = 1;
9119 
9120 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9121 	sp->counter_val[0] = G_THRESHOLD_0(r);
9122 	sp->counter_val[1] = G_THRESHOLD_1(r);
9123 	sp->counter_val[2] = G_THRESHOLD_2(r);
9124 	sp->counter_val[3] = G_THRESHOLD_3(r);
9125 
9126 	if (chip_id(adapter) >= CHELSIO_T6) {
9127 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9128 		tscale = G_TSCALE(r);
9129 		if (tscale == 0)
9130 			tscale = 1;
9131 		else
9132 			tscale += 2;
9133 	}
9134 
9135 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9136 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9137 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9138 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9139 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9140 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9141 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9142 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9143 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9144 
9145 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9146 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9147 	if (is_t4(adapter))
9148 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9149 	else if (is_t5(adapter))
9150 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9151 	else
9152 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9153 
9154 	/* egress queues: log2 of # of doorbells per BAR2 page */
9155 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9156 	r >>= S_QUEUESPERPAGEPF0 +
9157 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9158 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9159 
9160 	/* ingress queues: log2 of # of doorbells per BAR2 page */
9161 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9162 	r >>= S_QUEUESPERPAGEPF0 +
9163 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9164 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9165 
9166 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9167 	r >>= S_HOSTPAGESIZEPF0 +
9168 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9169 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9170 
9171 	r = t4_read_reg(adapter, A_SGE_CONTROL);
9172 	sp->sge_control = r;
9173 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9174 	sp->fl_pktshift = G_PKTSHIFT(r);
9175 	if (chip_id(adapter) <= CHELSIO_T5) {
9176 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9177 		    X_INGPADBOUNDARY_SHIFT);
9178 	} else {
9179 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9180 		    X_T6_INGPADBOUNDARY_SHIFT);
9181 	}
9182 	if (is_t4(adapter))
9183 		sp->pack_boundary = sp->pad_boundary;
9184 	else {
9185 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9186 		if (G_INGPACKBOUNDARY(r) == 0)
9187 			sp->pack_boundary = 16;
9188 		else
9189 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9190 	}
9191 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9192 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9193 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9194 
9195 	return 0;
9196 }
9197 
9198 /*
9199  * Read and cache the adapter's compressed filter mode and ingress config.
9200  */
9201 static void read_filter_mode_and_ingress_config(struct adapter *adap,
9202     bool sleep_ok)
9203 {
9204 	uint32_t v;
9205 	struct tp_params *tpp = &adap->params.tp;
9206 
9207 	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
9208 	    sleep_ok);
9209 	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
9210 	    sleep_ok);
9211 
9212 	/*
9213 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9214 	 * shift positions of several elements of the Compressed Filter Tuple
9215 	 * for this adapter which we need frequently ...
9216 	 */
9217 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9218 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9219 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9220 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9221 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9222 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9223 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9224 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9225 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9226 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9227 
9228 	if (chip_id(adap) > CHELSIO_T4) {
9229 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9230 		adap->params.tp.hash_filter_mask = v;
9231 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9232 		adap->params.tp.hash_filter_mask |= (u64)v << 32;
9233 	}
9234 }
9235 
9236 /**
9237  *      t4_init_tp_params - initialize adap->params.tp
9238  *      @adap: the adapter
9239  *
9240  *      Initialize various fields of the adapter's TP Parameters structure.
9241  */
9242 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9243 {
9244 	int chan;
9245 	u32 v;
9246 	struct tp_params *tpp = &adap->params.tp;
9247 
9248 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9249 	tpp->tre = G_TIMERRESOLUTION(v);
9250 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9251 
9252 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9253 	for (chan = 0; chan < MAX_NCHAN; chan++)
9254 		tpp->tx_modq[chan] = chan;
9255 
9256 	read_filter_mode_and_ingress_config(adap, sleep_ok);
9257 
9258 	/*
9259 	 * Cache a mask of the bits that represent the error vector portion of
9260 	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
9261 	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
9262 	 */
9263 	tpp->err_vec_mask = htobe16(0xffff);
9264 	if (chip_id(adap) > CHELSIO_T5) {
9265 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9266 		if (v & F_CRXPKTENC) {
9267 			tpp->err_vec_mask =
9268 			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
9269 		}
9270 	}
9271 
9272 	return 0;
9273 }
9274 
9275 /**
9276  *      t4_filter_field_shift - calculate filter field shift
9277  *      @adap: the adapter
9278  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9279  *
9280  *      Return the shift position of a filter field within the Compressed
9281  *      Filter Tuple.  The filter field is specified via its selection bit
9282  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9283  */
9284 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9285 {
9286 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9287 	unsigned int sel;
9288 	int field_shift;
9289 
9290 	if ((filter_mode & filter_sel) == 0)
9291 		return -1;
9292 
9293 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9294 		switch (filter_mode & sel) {
9295 		case F_FCOE:
9296 			field_shift += W_FT_FCOE;
9297 			break;
9298 		case F_PORT:
9299 			field_shift += W_FT_PORT;
9300 			break;
9301 		case F_VNIC_ID:
9302 			field_shift += W_FT_VNIC_ID;
9303 			break;
9304 		case F_VLAN:
9305 			field_shift += W_FT_VLAN;
9306 			break;
9307 		case F_TOS:
9308 			field_shift += W_FT_TOS;
9309 			break;
9310 		case F_PROTOCOL:
9311 			field_shift += W_FT_PROTOCOL;
9312 			break;
9313 		case F_ETHERTYPE:
9314 			field_shift += W_FT_ETHERTYPE;
9315 			break;
9316 		case F_MACMATCH:
9317 			field_shift += W_FT_MACMATCH;
9318 			break;
9319 		case F_MPSHITTYPE:
9320 			field_shift += W_FT_MPSHITTYPE;
9321 			break;
9322 		case F_FRAGMENTATION:
9323 			field_shift += W_FT_FRAGMENTATION;
9324 			break;
9325 		}
9326 	}
9327 	return field_shift;
9328 }
9329 
9330 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9331 {
9332 	u8 addr[6];
9333 	int ret, i, j;
9334 	u16 rss_size;
9335 	struct port_info *p = adap2pinfo(adap, port_id);
9336 	u32 param, val;
9337 
9338 	for (i = 0, j = -1; i <= p->port_id; i++) {
9339 		do {
9340 			j++;
9341 		} while ((adap->params.portvec & (1 << j)) == 0);
9342 	}
9343 
9344 	p->tx_chan = j;
9345 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9346 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9347 	p->lport = j;
9348 
9349 	if (!(adap->flags & IS_VF) ||
9350 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9351  		t4_update_port_info(p);
9352 	}
9353 
9354 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
9355 	if (ret < 0)
9356 		return ret;
9357 
9358 	p->vi[0].viid = ret;
9359 	if (chip_id(adap) <= CHELSIO_T5)
9360 		p->vi[0].smt_idx = (ret & 0x7f) << 1;
9361 	else
9362 		p->vi[0].smt_idx = (ret & 0x7f);
9363 	p->vi[0].rss_size = rss_size;
9364 	t4_os_set_hw_addr(p, addr);
9365 
9366 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9367 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9368 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
9369 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9370 	if (ret)
9371 		p->vi[0].rss_base = 0xffff;
9372 	else {
9373 		/* MPASS((val >> 16) == rss_size); */
9374 		p->vi[0].rss_base = val & 0xffff;
9375 	}
9376 
9377 	return 0;
9378 }
9379 
9380 /**
9381  *	t4_read_cimq_cfg - read CIM queue configuration
9382  *	@adap: the adapter
9383  *	@base: holds the queue base addresses in bytes
9384  *	@size: holds the queue sizes in bytes
9385  *	@thres: holds the queue full thresholds in bytes
9386  *
9387  *	Returns the current configuration of the CIM queues, starting with
9388  *	the IBQs, then the OBQs.
9389  */
9390 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9391 {
9392 	unsigned int i, v;
9393 	int cim_num_obq = adap->chip_params->cim_num_obq;
9394 
9395 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9396 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9397 			     V_QUENUMSELECT(i));
9398 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9399 		/* value is in 256-byte units */
9400 		*base++ = G_CIMQBASE(v) * 256;
9401 		*size++ = G_CIMQSIZE(v) * 256;
9402 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9403 	}
9404 	for (i = 0; i < cim_num_obq; i++) {
9405 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9406 			     V_QUENUMSELECT(i));
9407 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9408 		/* value is in 256-byte units */
9409 		*base++ = G_CIMQBASE(v) * 256;
9410 		*size++ = G_CIMQSIZE(v) * 256;
9411 	}
9412 }
9413 
9414 /**
9415  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9416  *	@adap: the adapter
9417  *	@qid: the queue index
9418  *	@data: where to store the queue contents
9419  *	@n: capacity of @data in 32-bit words
9420  *
9421  *	Reads the contents of the selected CIM queue starting at address 0 up
9422  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9423  *	error and the number of 32-bit words actually read on success.
9424  */
9425 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9426 {
9427 	int i, err, attempts;
9428 	unsigned int addr;
9429 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9430 
9431 	if (qid > 5 || (n & 3))
9432 		return -EINVAL;
9433 
9434 	addr = qid * nwords;
9435 	if (n > nwords)
9436 		n = nwords;
9437 
9438 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9439 	 * Wait for 1 Sec with a delay of 1 usec.
9440 	 */
9441 	attempts = 1000000;
9442 
9443 	for (i = 0; i < n; i++, addr++) {
9444 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9445 			     F_IBQDBGEN);
9446 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9447 				      attempts, 1);
9448 		if (err)
9449 			return err;
9450 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9451 	}
9452 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9453 	return i;
9454 }
9455 
9456 /**
9457  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9458  *	@adap: the adapter
9459  *	@qid: the queue index
9460  *	@data: where to store the queue contents
9461  *	@n: capacity of @data in 32-bit words
9462  *
9463  *	Reads the contents of the selected CIM queue starting at address 0 up
9464  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9465  *	error and the number of 32-bit words actually read on success.
9466  */
9467 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9468 {
9469 	int i, err;
9470 	unsigned int addr, v, nwords;
9471 	int cim_num_obq = adap->chip_params->cim_num_obq;
9472 
9473 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9474 		return -EINVAL;
9475 
9476 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9477 		     V_QUENUMSELECT(qid));
9478 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9479 
9480 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
9481 	nwords = G_CIMQSIZE(v) * 64;  /* same */
9482 	if (n > nwords)
9483 		n = nwords;
9484 
9485 	for (i = 0; i < n; i++, addr++) {
9486 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
9487 			     F_OBQDBGEN);
9488 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
9489 				      2, 1);
9490 		if (err)
9491 			return err;
9492 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
9493 	}
9494 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
9495 	return i;
9496 }
9497 
9498 enum {
9499 	CIM_QCTL_BASE     = 0,
9500 	CIM_CTL_BASE      = 0x2000,
9501 	CIM_PBT_ADDR_BASE = 0x2800,
9502 	CIM_PBT_LRF_BASE  = 0x3000,
9503 	CIM_PBT_DATA_BASE = 0x3800
9504 };
9505 
9506 /**
9507  *	t4_cim_read - read a block from CIM internal address space
9508  *	@adap: the adapter
9509  *	@addr: the start address within the CIM address space
9510  *	@n: number of words to read
9511  *	@valp: where to store the result
9512  *
9513  *	Reads a block of 4-byte words from the CIM intenal address space.
9514  */
9515 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9516 		unsigned int *valp)
9517 {
9518 	int ret = 0;
9519 
9520 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9521 		return -EBUSY;
9522 
9523 	for ( ; !ret && n--; addr += 4) {
9524 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
9525 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9526 				      0, 5, 2);
9527 		if (!ret)
9528 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
9529 	}
9530 	return ret;
9531 }
9532 
9533 /**
9534  *	t4_cim_write - write a block into CIM internal address space
9535  *	@adap: the adapter
9536  *	@addr: the start address within the CIM address space
9537  *	@n: number of words to write
9538  *	@valp: set of values to write
9539  *
9540  *	Writes a block of 4-byte words into the CIM intenal address space.
9541  */
9542 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9543 		 const unsigned int *valp)
9544 {
9545 	int ret = 0;
9546 
9547 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9548 		return -EBUSY;
9549 
9550 	for ( ; !ret && n--; addr += 4) {
9551 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
9552 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
9553 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9554 				      0, 5, 2);
9555 	}
9556 	return ret;
9557 }
9558 
9559 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9560 			 unsigned int val)
9561 {
9562 	return t4_cim_write(adap, addr, 1, &val);
9563 }
9564 
9565 /**
9566  *	t4_cim_ctl_read - read a block from CIM control region
9567  *	@adap: the adapter
9568  *	@addr: the start address within the CIM control region
9569  *	@n: number of words to read
9570  *	@valp: where to store the result
9571  *
9572  *	Reads a block of 4-byte words from the CIM control region.
9573  */
9574 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
9575 		    unsigned int *valp)
9576 {
9577 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
9578 }
9579 
9580 /**
9581  *	t4_cim_read_la - read CIM LA capture buffer
9582  *	@adap: the adapter
9583  *	@la_buf: where to store the LA data
9584  *	@wrptr: the HW write pointer within the capture buffer
9585  *
9586  *	Reads the contents of the CIM LA buffer with the most recent entry at
9587  *	the end	of the returned data and with the entry at @wrptr first.
9588  *	We try to leave the LA in the running state we find it in.
9589  */
9590 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9591 {
9592 	int i, ret;
9593 	unsigned int cfg, val, idx;
9594 
9595 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9596 	if (ret)
9597 		return ret;
9598 
9599 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
9600 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
9601 		if (ret)
9602 			return ret;
9603 	}
9604 
9605 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9606 	if (ret)
9607 		goto restart;
9608 
9609 	idx = G_UPDBGLAWRPTR(val);
9610 	if (wrptr)
9611 		*wrptr = idx;
9612 
9613 	for (i = 0; i < adap->params.cim_la_size; i++) {
9614 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9615 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
9616 		if (ret)
9617 			break;
9618 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9619 		if (ret)
9620 			break;
9621 		if (val & F_UPDBGLARDEN) {
9622 			ret = -ETIMEDOUT;
9623 			break;
9624 		}
9625 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
9626 		if (ret)
9627 			break;
9628 
9629 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
9630 		idx = (idx + 1) & M_UPDBGLARDPTR;
9631 		/*
9632 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9633 		 * identify the 32-bit portion of the full 312-bit data
9634 		 */
9635 		if (is_t6(adap))
9636 			while ((idx & 0xf) > 9)
9637 				idx = (idx + 1) % M_UPDBGLARDPTR;
9638 	}
9639 restart:
9640 	if (cfg & F_UPDBGLAEN) {
9641 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9642 				      cfg & ~F_UPDBGLARDEN);
9643 		if (!ret)
9644 			ret = r;
9645 	}
9646 	return ret;
9647 }
9648 
9649 /**
9650  *	t4_tp_read_la - read TP LA capture buffer
9651  *	@adap: the adapter
9652  *	@la_buf: where to store the LA data
9653  *	@wrptr: the HW write pointer within the capture buffer
9654  *
9655  *	Reads the contents of the TP LA buffer with the most recent entry at
9656  *	the end	of the returned data and with the entry at @wrptr first.
9657  *	We leave the LA in the running state we find it in.
9658  */
9659 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9660 {
9661 	bool last_incomplete;
9662 	unsigned int i, cfg, val, idx;
9663 
9664 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
9665 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
9666 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9667 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
9668 
9669 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
9670 	idx = G_DBGLAWPTR(val);
9671 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
9672 	if (last_incomplete)
9673 		idx = (idx + 1) & M_DBGLARPTR;
9674 	if (wrptr)
9675 		*wrptr = idx;
9676 
9677 	val &= 0xffff;
9678 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
9679 	val |= adap->params.tp.la_mask;
9680 
9681 	for (i = 0; i < TPLA_SIZE; i++) {
9682 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
9683 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
9684 		idx = (idx + 1) & M_DBGLARPTR;
9685 	}
9686 
9687 	/* Wipe out last entry if it isn't valid */
9688 	if (last_incomplete)
9689 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9690 
9691 	if (cfg & F_DBGLAENABLE)		/* restore running state */
9692 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9693 			     cfg | adap->params.tp.la_mask);
9694 }
9695 
9696 /*
9697  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9698  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9699  * state for more than the Warning Threshold then we'll issue a warning about
9700  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9701  * appears to be hung every Warning Repeat second till the situation clears.
9702  * If the situation clears, we'll note that as well.
9703  */
9704 #define SGE_IDMA_WARN_THRESH 1
9705 #define SGE_IDMA_WARN_REPEAT 300
9706 
9707 /**
9708  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9709  *	@adapter: the adapter
9710  *	@idma: the adapter IDMA Monitor state
9711  *
9712  *	Initialize the state of an SGE Ingress DMA Monitor.
9713  */
9714 void t4_idma_monitor_init(struct adapter *adapter,
9715 			  struct sge_idma_monitor_state *idma)
9716 {
9717 	/* Initialize the state variables for detecting an SGE Ingress DMA
9718 	 * hang.  The SGE has internal counters which count up on each clock
9719 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9720 	 * same state they were on the previous clock tick.  The clock used is
9721 	 * the Core Clock so we have a limit on the maximum "time" they can
9722 	 * record; typically a very small number of seconds.  For instance,
9723 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9724 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9725 	 * risk of having the "timers" overflow and give us the flexibility to
9726 	 * maintain a Hung SGE State Machine of our own which operates across
9727 	 * a longer time frame.
9728 	 */
9729 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9730 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
9731 }
9732 
9733 /**
9734  *	t4_idma_monitor - monitor SGE Ingress DMA state
9735  *	@adapter: the adapter
9736  *	@idma: the adapter IDMA Monitor state
9737  *	@hz: number of ticks/second
9738  *	@ticks: number of ticks since the last IDMA Monitor call
9739  */
9740 void t4_idma_monitor(struct adapter *adapter,
9741 		     struct sge_idma_monitor_state *idma,
9742 		     int hz, int ticks)
9743 {
9744 	int i, idma_same_state_cnt[2];
9745 
9746 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9747 	  * are counters inside the SGE which count up on each clock when the
9748 	  * SGE finds its Ingress DMA State Engines in the same states they
9749 	  * were in the previous clock.  The counters will peg out at
9750 	  * 0xffffffff without wrapping around so once they pass the 1s
9751 	  * threshold they'll stay above that till the IDMA state changes.
9752 	  */
9753 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
9754 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
9755 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9756 
9757 	for (i = 0; i < 2; i++) {
9758 		u32 debug0, debug11;
9759 
9760 		/* If the Ingress DMA Same State Counter ("timer") is less
9761 		 * than 1s, then we can reset our synthesized Stall Timer and
9762 		 * continue.  If we have previously emitted warnings about a
9763 		 * potential stalled Ingress Queue, issue a note indicating
9764 		 * that the Ingress Queue has resumed forward progress.
9765 		 */
9766 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9767 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
9768 				CH_WARN(adapter, "SGE idma%d, queue %u, "
9769 					"resumed after %d seconds\n",
9770 					i, idma->idma_qid[i],
9771 					idma->idma_stalled[i]/hz);
9772 			idma->idma_stalled[i] = 0;
9773 			continue;
9774 		}
9775 
9776 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9777 		 * domain.  The first time we get here it'll be because we
9778 		 * passed the 1s Threshold; each additional time it'll be
9779 		 * because the RX Timer Callback is being fired on its regular
9780 		 * schedule.
9781 		 *
9782 		 * If the stall is below our Potential Hung Ingress Queue
9783 		 * Warning Threshold, continue.
9784 		 */
9785 		if (idma->idma_stalled[i] == 0) {
9786 			idma->idma_stalled[i] = hz;
9787 			idma->idma_warn[i] = 0;
9788 		} else {
9789 			idma->idma_stalled[i] += ticks;
9790 			idma->idma_warn[i] -= ticks;
9791 		}
9792 
9793 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
9794 			continue;
9795 
9796 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9797 		 */
9798 		if (idma->idma_warn[i] > 0)
9799 			continue;
9800 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
9801 
9802 		/* Read and save the SGE IDMA State and Queue ID information.
9803 		 * We do this every time in case it changes across time ...
9804 		 * can't be too careful ...
9805 		 */
9806 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
9807 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9808 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9809 
9810 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
9811 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9812 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9813 
9814 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
9815 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9816 			i, idma->idma_qid[i], idma->idma_state[i],
9817 			idma->idma_stalled[i]/hz,
9818 			debug0, debug11);
9819 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9820 	}
9821 }
9822 
9823 /**
9824  *	t4_read_pace_tbl - read the pace table
9825  *	@adap: the adapter
9826  *	@pace_vals: holds the returned values
9827  *
9828  *	Returns the values of TP's pace table in microseconds.
9829  */
9830 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9831 {
9832 	unsigned int i, v;
9833 
9834 	for (i = 0; i < NTX_SCHED; i++) {
9835 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9836 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
9837 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9838 	}
9839 }
9840 
9841 /**
9842  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9843  *	@adap: the adapter
9844  *	@sched: the scheduler index
9845  *	@kbps: the byte rate in Kbps
9846  *	@ipg: the interpacket delay in tenths of nanoseconds
9847  *
9848  *	Return the current configuration of a HW Tx scheduler.
9849  */
9850 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9851 		     unsigned int *ipg, bool sleep_ok)
9852 {
9853 	unsigned int v, addr, bpt, cpt;
9854 
9855 	if (kbps) {
9856 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9857 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9858 		if (sched & 1)
9859 			v >>= 16;
9860 		bpt = (v >> 8) & 0xff;
9861 		cpt = v & 0xff;
9862 		if (!cpt)
9863 			*kbps = 0;	/* scheduler disabled */
9864 		else {
9865 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9866 			*kbps = (v * bpt) / 125;
9867 		}
9868 	}
9869 	if (ipg) {
9870 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9871 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9872 		if (sched & 1)
9873 			v >>= 16;
9874 		v &= 0xffff;
9875 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9876 	}
9877 }
9878 
9879 /**
9880  *	t4_load_cfg - download config file
9881  *	@adap: the adapter
9882  *	@cfg_data: the cfg text file to write
9883  *	@size: text file size
9884  *
9885  *	Write the supplied config text file to the card's serial flash.
9886  */
9887 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9888 {
9889 	int ret, i, n, cfg_addr;
9890 	unsigned int addr;
9891 	unsigned int flash_cfg_start_sec;
9892 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9893 
9894 	cfg_addr = t4_flash_cfg_addr(adap);
9895 	if (cfg_addr < 0)
9896 		return cfg_addr;
9897 
9898 	addr = cfg_addr;
9899 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9900 
9901 	if (size > FLASH_CFG_MAX_SIZE) {
9902 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9903 		       FLASH_CFG_MAX_SIZE);
9904 		return -EFBIG;
9905 	}
9906 
9907 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9908 			 sf_sec_size);
9909 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9910 				     flash_cfg_start_sec + i - 1);
9911 	/*
9912 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9913 	 * with the on-adapter Firmware Configuration File.
9914 	 */
9915 	if (ret || size == 0)
9916 		goto out;
9917 
9918 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9919 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9920 		if ( (size - i) <  SF_PAGE_SIZE)
9921 			n = size - i;
9922 		else
9923 			n = SF_PAGE_SIZE;
9924 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9925 		if (ret)
9926 			goto out;
9927 
9928 		addr += SF_PAGE_SIZE;
9929 		cfg_data += SF_PAGE_SIZE;
9930 	}
9931 
9932 out:
9933 	if (ret)
9934 		CH_ERR(adap, "config file %s failed %d\n",
9935 		       (size == 0 ? "clear" : "download"), ret);
9936 	return ret;
9937 }
9938 
9939 /**
9940  *	t5_fw_init_extern_mem - initialize the external memory
9941  *	@adap: the adapter
9942  *
9943  *	Initializes the external memory on T5.
9944  */
9945 int t5_fw_init_extern_mem(struct adapter *adap)
9946 {
9947 	u32 params[1], val[1];
9948 	int ret;
9949 
9950 	if (!is_t5(adap))
9951 		return 0;
9952 
9953 	val[0] = 0xff; /* Initialize all MCs */
9954 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9955 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9956 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9957 			FW_CMD_MAX_TIMEOUT);
9958 
9959 	return ret;
9960 }
9961 
9962 /* BIOS boot headers */
9963 typedef struct pci_expansion_rom_header {
9964 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9965 	u8	reserved[22]; /* Reserved per processor Architecture data */
9966 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9967 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9968 
9969 /* Legacy PCI Expansion ROM Header */
9970 typedef struct legacy_pci_expansion_rom_header {
9971 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9972 	u8	size512; /* Current Image Size in units of 512 bytes */
9973 	u8	initentry_point[4];
9974 	u8	cksum; /* Checksum computed on the entire Image */
9975 	u8	reserved[16]; /* Reserved */
9976 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
9977 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9978 
9979 /* EFI PCI Expansion ROM Header */
9980 typedef struct efi_pci_expansion_rom_header {
9981 	u8	signature[2]; // ROM signature. The value 0xaa55
9982 	u8	initialization_size[2]; /* Units 512. Includes this header */
9983 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9984 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
9985 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
9986 	u8	compression_type[2]; /* Compression type. */
9987 		/*
9988 		 * Compression type definition
9989 		 * 0x0: uncompressed
9990 		 * 0x1: Compressed
9991 		 * 0x2-0xFFFF: Reserved
9992 		 */
9993 	u8	reserved[8]; /* Reserved */
9994 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
9995 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9996 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9997 
9998 /* PCI Data Structure Format */
9999 typedef struct pcir_data_structure { /* PCI Data Structure */
10000 	u8	signature[4]; /* Signature. The string "PCIR" */
10001 	u8	vendor_id[2]; /* Vendor Identification */
10002 	u8	device_id[2]; /* Device Identification */
10003 	u8	vital_product[2]; /* Pointer to Vital Product Data */
10004 	u8	length[2]; /* PCIR Data Structure Length */
10005 	u8	revision; /* PCIR Data Structure Revision */
10006 	u8	class_code[3]; /* Class Code */
10007 	u8	image_length[2]; /* Image Length. Multiple of 512B */
10008 	u8	code_revision[2]; /* Revision Level of Code/Data */
10009 	u8	code_type; /* Code Type. */
10010 		/*
10011 		 * PCI Expansion ROM Code Types
10012 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10013 		 * 0x01: Open Firmware standard for PCI. FCODE
10014 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10015 		 * 0x03: EFI Image. EFI
10016 		 * 0x04-0xFF: Reserved.
10017 		 */
10018 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10019 	u8	reserved[2]; /* Reserved */
10020 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10021 
10022 /* BOOT constants */
10023 enum {
10024 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10025 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10026 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10027 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10028 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10029 	VENDOR_ID = 0x1425, /* Vendor ID */
10030 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10031 };
10032 
10033 /*
10034  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10035  *	@adatper: the device ID to write.
10036  *	@boot_data: the boot image to modify.
10037  *
10038  *	Write the supplied device ID to the boot BIOS image.
10039  */
10040 static void modify_device_id(int device_id, u8 *boot_data)
10041 {
10042 	legacy_pci_exp_rom_header_t *header;
10043 	pcir_data_t *pcir_header;
10044 	u32 cur_header = 0;
10045 
10046 	/*
10047 	 * Loop through all chained images and change the device ID's
10048 	 */
10049 	while (1) {
10050 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10051 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10052 			      le16_to_cpu(*(u16*)header->pcir_offset)];
10053 
10054 		/*
10055 		 * Only modify the Device ID if code type is Legacy or HP.
10056 		 * 0x00: Okay to modify
10057 		 * 0x01: FCODE. Do not be modify
10058 		 * 0x03: Okay to modify
10059 		 * 0x04-0xFF: Do not modify
10060 		 */
10061 		if (pcir_header->code_type == 0x00) {
10062 			u8 csum = 0;
10063 			int i;
10064 
10065 			/*
10066 			 * Modify Device ID to match current adatper
10067 			 */
10068 			*(u16*) pcir_header->device_id = device_id;
10069 
10070 			/*
10071 			 * Set checksum temporarily to 0.
10072 			 * We will recalculate it later.
10073 			 */
10074 			header->cksum = 0x0;
10075 
10076 			/*
10077 			 * Calculate and update checksum
10078 			 */
10079 			for (i = 0; i < (header->size512 * 512); i++)
10080 				csum += (u8)boot_data[cur_header + i];
10081 
10082 			/*
10083 			 * Invert summed value to create the checksum
10084 			 * Writing new checksum value directly to the boot data
10085 			 */
10086 			boot_data[cur_header + 7] = -csum;
10087 
10088 		} else if (pcir_header->code_type == 0x03) {
10089 
10090 			/*
10091 			 * Modify Device ID to match current adatper
10092 			 */
10093 			*(u16*) pcir_header->device_id = device_id;
10094 
10095 		}
10096 
10097 
10098 		/*
10099 		 * Check indicator element to identify if this is the last
10100 		 * image in the ROM.
10101 		 */
10102 		if (pcir_header->indicator & 0x80)
10103 			break;
10104 
10105 		/*
10106 		 * Move header pointer up to the next image in the ROM.
10107 		 */
10108 		cur_header += header->size512 * 512;
10109 	}
10110 }
10111 
10112 /*
10113  *	t4_load_boot - download boot flash
10114  *	@adapter: the adapter
10115  *	@boot_data: the boot image to write
10116  *	@boot_addr: offset in flash to write boot_data
10117  *	@size: image size
10118  *
10119  *	Write the supplied boot image to the card's serial flash.
10120  *	The boot image has the following sections: a 28-byte header and the
10121  *	boot image.
10122  */
10123 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10124 		 unsigned int boot_addr, unsigned int size)
10125 {
10126 	pci_exp_rom_header_t *header;
10127 	int pcir_offset ;
10128 	pcir_data_t *pcir_header;
10129 	int ret, addr;
10130 	uint16_t device_id;
10131 	unsigned int i;
10132 	unsigned int boot_sector = (boot_addr * 1024 );
10133 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10134 
10135 	/*
10136 	 * Make sure the boot image does not encroach on the firmware region
10137 	 */
10138 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10139 		CH_ERR(adap, "boot image encroaching on firmware region\n");
10140 		return -EFBIG;
10141 	}
10142 
10143 	/*
10144 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10145 	 * and Boot configuration data sections. These 3 boot sections span
10146 	 * sectors 0 to 7 in flash and live right before the FW image location.
10147 	 */
10148 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10149 			sf_sec_size);
10150 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10151 				     (boot_sector >> 16) + i - 1);
10152 
10153 	/*
10154 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10155 	 * with the on-adapter option ROM file
10156 	 */
10157 	if (ret || (size == 0))
10158 		goto out;
10159 
10160 	/* Get boot header */
10161 	header = (pci_exp_rom_header_t *)boot_data;
10162 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10163 	/* PCIR Data Structure */
10164 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10165 
10166 	/*
10167 	 * Perform some primitive sanity testing to avoid accidentally
10168 	 * writing garbage over the boot sectors.  We ought to check for
10169 	 * more but it's not worth it for now ...
10170 	 */
10171 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10172 		CH_ERR(adap, "boot image too small/large\n");
10173 		return -EFBIG;
10174 	}
10175 
10176 #ifndef CHELSIO_T4_DIAGS
10177 	/*
10178 	 * Check BOOT ROM header signature
10179 	 */
10180 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10181 		CH_ERR(adap, "Boot image missing signature\n");
10182 		return -EINVAL;
10183 	}
10184 
10185 	/*
10186 	 * Check PCI header signature
10187 	 */
10188 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10189 		CH_ERR(adap, "PCI header missing signature\n");
10190 		return -EINVAL;
10191 	}
10192 
10193 	/*
10194 	 * Check Vendor ID matches Chelsio ID
10195 	 */
10196 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10197 		CH_ERR(adap, "Vendor ID missing signature\n");
10198 		return -EINVAL;
10199 	}
10200 #endif
10201 
10202 	/*
10203 	 * Retrieve adapter's device ID
10204 	 */
10205 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10206 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10207 	device_id = device_id & 0xf0ff;
10208 
10209 	/*
10210 	 * Check PCIE Device ID
10211 	 */
10212 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10213 		/*
10214 		 * Change the device ID in the Boot BIOS image to match
10215 		 * the Device ID of the current adapter.
10216 		 */
10217 		modify_device_id(device_id, boot_data);
10218 	}
10219 
10220 	/*
10221 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10222 	 * we finish copying the rest of the boot image. This will ensure
10223 	 * that the BIOS boot header will only be written if the boot image
10224 	 * was written in full.
10225 	 */
10226 	addr = boot_sector;
10227 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10228 		addr += SF_PAGE_SIZE;
10229 		boot_data += SF_PAGE_SIZE;
10230 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10231 		if (ret)
10232 			goto out;
10233 	}
10234 
10235 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10236 			     (const u8 *)header, 0);
10237 
10238 out:
10239 	if (ret)
10240 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10241 	return ret;
10242 }
10243 
10244 /*
10245  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10246  *	@adapter: the adapter
10247  *
10248  *	Return the address within the flash where the OptionROM Configuration
10249  *	is stored, or an error if the device FLASH is too small to contain
10250  *	a OptionROM Configuration.
10251  */
10252 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10253 {
10254 	/*
10255 	 * If the device FLASH isn't large enough to hold a Firmware
10256 	 * Configuration File, return an error.
10257 	 */
10258 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10259 		return -ENOSPC;
10260 
10261 	return FLASH_BOOTCFG_START;
10262 }
10263 
10264 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10265 {
10266 	int ret, i, n, cfg_addr;
10267 	unsigned int addr;
10268 	unsigned int flash_cfg_start_sec;
10269 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10270 
10271 	cfg_addr = t4_flash_bootcfg_addr(adap);
10272 	if (cfg_addr < 0)
10273 		return cfg_addr;
10274 
10275 	addr = cfg_addr;
10276 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10277 
10278 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10279 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10280 			FLASH_BOOTCFG_MAX_SIZE);
10281 		return -EFBIG;
10282 	}
10283 
10284 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10285 			 sf_sec_size);
10286 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10287 					flash_cfg_start_sec + i - 1);
10288 
10289 	/*
10290 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10291 	 * with the on-adapter OptionROM Configuration File.
10292 	 */
10293 	if (ret || size == 0)
10294 		goto out;
10295 
10296 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10297 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10298 		if ( (size - i) <  SF_PAGE_SIZE)
10299 			n = size - i;
10300 		else
10301 			n = SF_PAGE_SIZE;
10302 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10303 		if (ret)
10304 			goto out;
10305 
10306 		addr += SF_PAGE_SIZE;
10307 		cfg_data += SF_PAGE_SIZE;
10308 	}
10309 
10310 out:
10311 	if (ret)
10312 		CH_ERR(adap, "boot config data %s failed %d\n",
10313 				(size == 0 ? "clear" : "download"), ret);
10314 	return ret;
10315 }
10316 
10317 /**
10318  *	t4_set_filter_mode - configure the optional components of filter tuples
10319  *	@adap: the adapter
10320  *	@mode_map: a bitmap selcting which optional filter components to enable
10321  * 	@sleep_ok: if true we may sleep while awaiting command completion
10322  *
10323  *	Sets the filter mode by selecting the optional components to enable
10324  *	in filter tuples.  Returns 0 on success and a negative error if the
10325  *	requested mode needs more bits than are available for optional
10326  *	components.
10327  */
10328 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
10329 		       bool sleep_ok)
10330 {
10331 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
10332 
10333 	int i, nbits = 0;
10334 
10335 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
10336 		if (mode_map & (1 << i))
10337 			nbits += width[i];
10338 	if (nbits > FILTER_OPT_LEN)
10339 		return -EINVAL;
10340 	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
10341 	read_filter_mode_and_ingress_config(adap, sleep_ok);
10342 
10343 	return 0;
10344 }
10345 
10346 /**
10347  *	t4_clr_port_stats - clear port statistics
10348  *	@adap: the adapter
10349  *	@idx: the port index
10350  *
10351  *	Clear HW statistics for the given port.
10352  */
10353 void t4_clr_port_stats(struct adapter *adap, int idx)
10354 {
10355 	unsigned int i;
10356 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10357 	u32 port_base_addr;
10358 
10359 	if (is_t4(adap))
10360 		port_base_addr = PORT_BASE(idx);
10361 	else
10362 		port_base_addr = T5_PORT_BASE(idx);
10363 
10364 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
10365 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
10366 		t4_write_reg(adap, port_base_addr + i, 0);
10367 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
10368 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
10369 		t4_write_reg(adap, port_base_addr + i, 0);
10370 	for (i = 0; i < 4; i++)
10371 		if (bgmap & (1 << i)) {
10372 			t4_write_reg(adap,
10373 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
10374 			t4_write_reg(adap,
10375 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
10376 		}
10377 }
10378 
10379 /**
10380  *	t4_i2c_rd - read I2C data from adapter
10381  *	@adap: the adapter
10382  *	@port: Port number if per-port device; <0 if not
10383  *	@devid: per-port device ID or absolute device ID
10384  *	@offset: byte offset into device I2C space
10385  *	@len: byte length of I2C space data
10386  *	@buf: buffer in which to return I2C data
10387  *
10388  *	Reads the I2C data from the indicated device and location.
10389  */
10390 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
10391 	      int port, unsigned int devid,
10392 	      unsigned int offset, unsigned int len,
10393 	      u8 *buf)
10394 {
10395 	u32 ldst_addrspace;
10396 	struct fw_ldst_cmd ldst;
10397 	int ret;
10398 
10399 	if (port >= 4 ||
10400 	    devid >= 256 ||
10401 	    offset >= 256 ||
10402 	    len > sizeof ldst.u.i2c.data)
10403 		return -EINVAL;
10404 
10405 	memset(&ldst, 0, sizeof ldst);
10406 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10407 	ldst.op_to_addrspace =
10408 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10409 			    F_FW_CMD_REQUEST |
10410 			    F_FW_CMD_READ |
10411 			    ldst_addrspace);
10412 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10413 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10414 	ldst.u.i2c.did = devid;
10415 	ldst.u.i2c.boffset = offset;
10416 	ldst.u.i2c.blen = len;
10417 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10418 	if (!ret)
10419 		memcpy(buf, ldst.u.i2c.data, len);
10420 	return ret;
10421 }
10422 
10423 /**
10424  *	t4_i2c_wr - write I2C data to adapter
10425  *	@adap: the adapter
10426  *	@port: Port number if per-port device; <0 if not
10427  *	@devid: per-port device ID or absolute device ID
10428  *	@offset: byte offset into device I2C space
10429  *	@len: byte length of I2C space data
10430  *	@buf: buffer containing new I2C data
10431  *
10432  *	Write the I2C data to the indicated device and location.
10433  */
10434 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
10435 	      int port, unsigned int devid,
10436 	      unsigned int offset, unsigned int len,
10437 	      u8 *buf)
10438 {
10439 	u32 ldst_addrspace;
10440 	struct fw_ldst_cmd ldst;
10441 
10442 	if (port >= 4 ||
10443 	    devid >= 256 ||
10444 	    offset >= 256 ||
10445 	    len > sizeof ldst.u.i2c.data)
10446 		return -EINVAL;
10447 
10448 	memset(&ldst, 0, sizeof ldst);
10449 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10450 	ldst.op_to_addrspace =
10451 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10452 			    F_FW_CMD_REQUEST |
10453 			    F_FW_CMD_WRITE |
10454 			    ldst_addrspace);
10455 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10456 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10457 	ldst.u.i2c.did = devid;
10458 	ldst.u.i2c.boffset = offset;
10459 	ldst.u.i2c.blen = len;
10460 	memcpy(ldst.u.i2c.data, buf, len);
10461 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10462 }
10463 
10464 /**
10465  * 	t4_sge_ctxt_rd - read an SGE context through FW
10466  * 	@adap: the adapter
10467  * 	@mbox: mailbox to use for the FW command
10468  * 	@cid: the context id
10469  * 	@ctype: the context type
10470  * 	@data: where to store the context data
10471  *
10472  * 	Issues a FW command through the given mailbox to read an SGE context.
10473  */
10474 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10475 		   enum ctxt_type ctype, u32 *data)
10476 {
10477 	int ret;
10478 	struct fw_ldst_cmd c;
10479 
10480 	if (ctype == CTXT_EGRESS)
10481 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
10482 	else if (ctype == CTXT_INGRESS)
10483 		ret = FW_LDST_ADDRSPC_SGE_INGC;
10484 	else if (ctype == CTXT_FLM)
10485 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10486 	else
10487 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10488 
10489 	memset(&c, 0, sizeof(c));
10490 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10491 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
10492 					V_FW_LDST_CMD_ADDRSPACE(ret));
10493 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10494 	c.u.idctxt.physid = cpu_to_be32(cid);
10495 
10496 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10497 	if (ret == 0) {
10498 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10499 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10500 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10501 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10502 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10503 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10504 	}
10505 	return ret;
10506 }
10507 
10508 /**
10509  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10510  * 	@adap: the adapter
10511  * 	@cid: the context id
10512  * 	@ctype: the context type
10513  * 	@data: where to store the context data
10514  *
10515  * 	Reads an SGE context directly, bypassing FW.  This is only for
10516  * 	debugging when FW is unavailable.
10517  */
10518 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
10519 		      u32 *data)
10520 {
10521 	int i, ret;
10522 
10523 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
10524 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
10525 	if (!ret)
10526 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
10527 			*data++ = t4_read_reg(adap, i);
10528 	return ret;
10529 }
10530 
10531 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
10532     int sleep_ok)
10533 {
10534 	struct fw_sched_cmd cmd;
10535 
10536 	memset(&cmd, 0, sizeof(cmd));
10537 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10538 				      F_FW_CMD_REQUEST |
10539 				      F_FW_CMD_WRITE);
10540 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10541 
10542 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
10543 	cmd.u.config.type = type;
10544 	cmd.u.config.minmaxen = minmaxen;
10545 
10546 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10547 			       NULL, sleep_ok);
10548 }
10549 
10550 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10551 		    int rateunit, int ratemode, int channel, int cl,
10552 		    int minrate, int maxrate, int weight, int pktsize,
10553 		    int burstsize, int sleep_ok)
10554 {
10555 	struct fw_sched_cmd cmd;
10556 
10557 	memset(&cmd, 0, sizeof(cmd));
10558 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10559 				      F_FW_CMD_REQUEST |
10560 				      F_FW_CMD_WRITE);
10561 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10562 
10563 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10564 	cmd.u.params.type = type;
10565 	cmd.u.params.level = level;
10566 	cmd.u.params.mode = mode;
10567 	cmd.u.params.ch = channel;
10568 	cmd.u.params.cl = cl;
10569 	cmd.u.params.unit = rateunit;
10570 	cmd.u.params.rate = ratemode;
10571 	cmd.u.params.min = cpu_to_be32(minrate);
10572 	cmd.u.params.max = cpu_to_be32(maxrate);
10573 	cmd.u.params.weight = cpu_to_be16(weight);
10574 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10575 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10576 
10577 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10578 			       NULL, sleep_ok);
10579 }
10580 
10581 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
10582     unsigned int maxrate, int sleep_ok)
10583 {
10584 	struct fw_sched_cmd cmd;
10585 
10586 	memset(&cmd, 0, sizeof(cmd));
10587 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10588 				      F_FW_CMD_REQUEST |
10589 				      F_FW_CMD_WRITE);
10590 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10591 
10592 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10593 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10594 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
10595 	cmd.u.params.ch = channel;
10596 	cmd.u.params.rate = ratemode;		/* REL or ABS */
10597 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
10598 
10599 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10600 			       NULL, sleep_ok);
10601 }
10602 
10603 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
10604     int weight, int sleep_ok)
10605 {
10606 	struct fw_sched_cmd cmd;
10607 
10608 	if (weight < 0 || weight > 100)
10609 		return -EINVAL;
10610 
10611 	memset(&cmd, 0, sizeof(cmd));
10612 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10613 				      F_FW_CMD_REQUEST |
10614 				      F_FW_CMD_WRITE);
10615 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10616 
10617 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10618 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10619 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
10620 	cmd.u.params.ch = channel;
10621 	cmd.u.params.cl = cl;
10622 	cmd.u.params.weight = cpu_to_be16(weight);
10623 
10624 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10625 			       NULL, sleep_ok);
10626 }
10627 
10628 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
10629     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
10630 {
10631 	struct fw_sched_cmd cmd;
10632 
10633 	memset(&cmd, 0, sizeof(cmd));
10634 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10635 				      F_FW_CMD_REQUEST |
10636 				      F_FW_CMD_WRITE);
10637 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10638 
10639 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10640 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10641 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
10642 	cmd.u.params.mode = mode;
10643 	cmd.u.params.ch = channel;
10644 	cmd.u.params.cl = cl;
10645 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
10646 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
10647 	cmd.u.params.max = cpu_to_be32(maxrate);
10648 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10649 
10650 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10651 			       NULL, sleep_ok);
10652 }
10653 
10654 /*
10655  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
10656  *	@adapter: the adapter
10657  * 	@mbox: mailbox to use for the FW command
10658  * 	@pf: the PF owning the queue
10659  * 	@vf: the VF owning the queue
10660  *	@timeout: watchdog timeout in ms
10661  *	@action: watchdog timer / action
10662  *
10663  *	There are separate watchdog timers for each possible watchdog
10664  *	action.  Configure one of the watchdog timers by setting a non-zero
10665  *	timeout.  Disable a watchdog timer by using a timeout of zero.
10666  */
10667 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
10668 		       unsigned int pf, unsigned int vf,
10669 		       unsigned int timeout, unsigned int action)
10670 {
10671 	struct fw_watchdog_cmd wdog;
10672 	unsigned int ticks;
10673 
10674 	/*
10675 	 * The watchdog command expects a timeout in units of 10ms so we need
10676 	 * to convert it here (via rounding) and force a minimum of one 10ms
10677 	 * "tick" if the timeout is non-zero but the conversion results in 0
10678 	 * ticks.
10679 	 */
10680 	ticks = (timeout + 5)/10;
10681 	if (timeout && !ticks)
10682 		ticks = 1;
10683 
10684 	memset(&wdog, 0, sizeof wdog);
10685 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
10686 				     F_FW_CMD_REQUEST |
10687 				     F_FW_CMD_WRITE |
10688 				     V_FW_PARAMS_CMD_PFN(pf) |
10689 				     V_FW_PARAMS_CMD_VFN(vf));
10690 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
10691 	wdog.timeout = cpu_to_be32(ticks);
10692 	wdog.action = cpu_to_be32(action);
10693 
10694 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
10695 }
10696 
10697 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
10698 {
10699 	struct fw_devlog_cmd devlog_cmd;
10700 	int ret;
10701 
10702 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10703 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10704 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
10705 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10706 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10707 			 sizeof(devlog_cmd), &devlog_cmd);
10708 	if (ret)
10709 		return ret;
10710 
10711 	*level = devlog_cmd.level;
10712 	return 0;
10713 }
10714 
10715 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
10716 {
10717 	struct fw_devlog_cmd devlog_cmd;
10718 
10719 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10720 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10721 					     F_FW_CMD_REQUEST |
10722 					     F_FW_CMD_WRITE);
10723 	devlog_cmd.level = level;
10724 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10725 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10726 			  sizeof(devlog_cmd), &devlog_cmd);
10727 }
10728