xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 1edb7116)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_inet.h"
31 
32 #include <sys/param.h>
33 #include <sys/eventhandler.h>
34 
35 #include "common.h"
36 #include "t4_regs.h"
37 #include "t4_regs_values.h"
38 #include "firmware/t4fw_interface.h"
39 
40 #undef msleep
41 #define msleep(x) do { \
42 	if (cold) \
43 		DELAY((x) * 1000); \
44 	else \
45 		pause("t4hw", (x) * hz / 1000); \
46 } while (0)
47 
48 /**
49  *	t4_wait_op_done_val - wait until an operation is completed
50  *	@adapter: the adapter performing the operation
51  *	@reg: the register to check for completion
52  *	@mask: a single-bit field within @reg that indicates completion
53  *	@polarity: the value of the field when the operation is completed
54  *	@attempts: number of check iterations
55  *	@delay: delay in usecs between iterations
56  *	@valp: where to store the value of the register at completion time
57  *
58  *	Wait until an operation is completed by checking a bit in a register
59  *	up to @attempts times.  If @valp is not NULL the value of the register
60  *	at the time it indicated completion is stored there.  Returns 0 if the
61  *	operation completes and	-EAGAIN	otherwise.
62  */
63 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64 			       int polarity, int attempts, int delay, u32 *valp)
65 {
66 	while (1) {
67 		u32 val = t4_read_reg(adapter, reg);
68 
69 		if (!!(val & mask) == polarity) {
70 			if (valp)
71 				*valp = val;
72 			return 0;
73 		}
74 		if (--attempts == 0)
75 			return -EAGAIN;
76 		if (delay)
77 			udelay(delay);
78 	}
79 }
80 
81 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82 				  int polarity, int attempts, int delay)
83 {
84 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85 				   delay, NULL);
86 }
87 
88 /**
89  *	t4_set_reg_field - set a register field to a value
90  *	@adapter: the adapter to program
91  *	@addr: the register address
92  *	@mask: specifies the portion of the register to modify
93  *	@val: the new value for the register field
94  *
95  *	Sets a register field specified by the supplied mask to the
96  *	given value.
97  */
98 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99 		      u32 val)
100 {
101 	u32 v = t4_read_reg(adapter, addr) & ~mask;
102 
103 	t4_write_reg(adapter, addr, v | val);
104 	(void) t4_read_reg(adapter, addr);      /* flush */
105 }
106 
107 /**
108  *	t4_read_indirect - read indirectly addressed registers
109  *	@adap: the adapter
110  *	@addr_reg: register holding the indirect address
111  *	@data_reg: register holding the value of the indirect register
112  *	@vals: where the read register values are stored
113  *	@nregs: how many indirect registers to read
114  *	@start_idx: index of first indirect register to read
115  *
116  *	Reads registers that are accessed indirectly through an address/data
117  *	register pair.
118  */
119 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120 			     unsigned int data_reg, u32 *vals,
121 			     unsigned int nregs, unsigned int start_idx)
122 {
123 	while (nregs--) {
124 		t4_write_reg(adap, addr_reg, start_idx);
125 		*vals++ = t4_read_reg(adap, data_reg);
126 		start_idx++;
127 	}
128 }
129 
130 /**
131  *	t4_write_indirect - write indirectly addressed registers
132  *	@adap: the adapter
133  *	@addr_reg: register holding the indirect addresses
134  *	@data_reg: register holding the value for the indirect registers
135  *	@vals: values to write
136  *	@nregs: how many indirect registers to write
137  *	@start_idx: address of first indirect register to write
138  *
139  *	Writes a sequential block of registers that are accessed indirectly
140  *	through an address/data register pair.
141  */
142 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143 		       unsigned int data_reg, const u32 *vals,
144 		       unsigned int nregs, unsigned int start_idx)
145 {
146 	while (nregs--) {
147 		t4_write_reg(adap, addr_reg, start_idx++);
148 		t4_write_reg(adap, data_reg, *vals++);
149 	}
150 }
151 
152 /*
153  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154  * mechanism.  This guarantees that we get the real value even if we're
155  * operating within a Virtual Machine and the Hypervisor is trapping our
156  * Configuration Space accesses.
157  *
158  * N.B. This routine should only be used as a last resort: the firmware uses
159  *      the backdoor registers on a regular basis and we can end up
160  *      conflicting with it's uses!
161  */
162 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163 {
164 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165 	u32 val;
166 
167 	if (chip_id(adap) <= CHELSIO_T5)
168 		req |= F_ENABLE;
169 	else
170 		req |= F_T6_ENABLE;
171 
172 	if (is_t4(adap))
173 		req |= F_LOCALCFG;
174 
175 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177 
178 	/*
179 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180 	 * Configuration Space read.  (None of the other fields matter when
181 	 * F_ENABLE is 0 so a simple register write is easier than a
182 	 * read-modify-write via t4_set_reg_field().)
183 	 */
184 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185 
186 	return val;
187 }
188 
189 /*
190  * t4_report_fw_error - report firmware error
191  * @adap: the adapter
192  *
193  * The adapter firmware can indicate error conditions to the host.
194  * If the firmware has indicated an error, print out the reason for
195  * the firmware error.
196  */
197 void t4_report_fw_error(struct adapter *adap)
198 {
199 	static const char *const reason[] = {
200 		"Crash",			/* PCIE_FW_EVAL_CRASH */
201 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
202 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
203 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
204 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
206 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
207 		"Reserved",			/* reserved */
208 	};
209 	u32 pcie_fw;
210 
211 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212 	if (pcie_fw & F_PCIE_FW_ERR) {
213 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
214 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
215 	}
216 }
217 
218 /*
219  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
220  */
221 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
222 			 u32 mbox_addr)
223 {
224 	for ( ; nflit; nflit--, mbox_addr += 8)
225 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
226 }
227 
228 /*
229  * Handle a FW assertion reported in a mailbox.
230  */
231 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
232 {
233 	CH_ALERT(adap,
234 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
235 		  asrt->u.assert.filename_0_7,
236 		  be32_to_cpu(asrt->u.assert.line),
237 		  be32_to_cpu(asrt->u.assert.x),
238 		  be32_to_cpu(asrt->u.assert.y));
239 }
240 
241 struct port_tx_state {
242 	uint64_t rx_pause;
243 	uint64_t tx_frames;
244 };
245 
246 static void
247 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
248 {
249 	uint32_t rx_pause_reg, tx_frames_reg;
250 
251 	if (is_t4(sc)) {
252 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
253 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
254 	} else {
255 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
256 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
257 	}
258 
259 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
260 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
261 }
262 
263 static void
264 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
265 {
266 	int i;
267 
268 	for_each_port(sc, i)
269 		read_tx_state_one(sc, i, &tx_state[i]);
270 }
271 
272 static void
273 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
274 {
275 	uint32_t port_ctl_reg;
276 	uint64_t tx_frames, rx_pause;
277 	int i;
278 
279 	for_each_port(sc, i) {
280 		rx_pause = tx_state[i].rx_pause;
281 		tx_frames = tx_state[i].tx_frames;
282 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
283 
284 		if (is_t4(sc))
285 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
286 		else
287 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
288 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
289 		    rx_pause != tx_state[i].rx_pause &&
290 		    tx_frames == tx_state[i].tx_frames) {
291 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
292 			mdelay(1);
293 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
294 		}
295 	}
296 }
297 
298 #define X_CIM_PF_NOACCESS 0xeeeeeeee
299 /**
300  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
301  *	@adap: the adapter
302  *	@mbox: index of the mailbox to use
303  *	@cmd: the command to write
304  *	@size: command length in bytes
305  *	@rpl: where to optionally store the reply
306  *	@sleep_ok: if true we may sleep while awaiting command completion
307  *	@timeout: time to wait for command to finish before timing out
308  *		(negative implies @sleep_ok=false)
309  *
310  *	Sends the given command to FW through the selected mailbox and waits
311  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
312  *	store the FW's reply to the command.  The command and its optional
313  *	reply are of the same length.  Some FW commands like RESET and
314  *	INITIALIZE can take a considerable amount of time to execute.
315  *	@sleep_ok determines whether we may sleep while awaiting the response.
316  *	If sleeping is allowed we use progressive backoff otherwise we spin.
317  *	Note that passing in a negative @timeout is an alternate mechanism
318  *	for specifying @sleep_ok=false.  This is useful when a higher level
319  *	interface allows for specification of @timeout but not @sleep_ok ...
320  *
321  *	The return value is 0 on success or a negative errno on failure.  A
322  *	failure can happen either because we are not able to execute the
323  *	command or FW executes it but signals an error.  In the latter case
324  *	the return value is the error code indicated by FW (negated).
325  */
326 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
327 			    int size, void *rpl, bool sleep_ok, int timeout)
328 {
329 	/*
330 	 * We delay in small increments at first in an effort to maintain
331 	 * responsiveness for simple, fast executing commands but then back
332 	 * off to larger delays to a maximum retry delay.
333 	 */
334 	static const int delay[] = {
335 		1, 1, 3, 5, 10, 10, 20, 50, 100
336 	};
337 	u32 v;
338 	u64 res;
339 	int i, ms, delay_idx, ret, next_tx_check;
340 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
341 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
342 	u32 ctl;
343 	__be64 cmd_rpl[MBOX_LEN/8];
344 	u32 pcie_fw;
345 	struct port_tx_state tx_state[MAX_NPORTS];
346 
347 	if (adap->flags & CHK_MBOX_ACCESS)
348 		ASSERT_SYNCHRONIZED_OP(adap);
349 
350 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
351 		return -EINVAL;
352 
353 	if (adap->flags & IS_VF) {
354 		if (is_t6(adap))
355 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
356 		else
357 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
358 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
359 	}
360 
361 	/*
362 	 * If we have a negative timeout, that implies that we can't sleep.
363 	 */
364 	if (timeout < 0) {
365 		sleep_ok = false;
366 		timeout = -timeout;
367 	}
368 
369 	/*
370 	 * Attempt to gain access to the mailbox.
371 	 */
372 	pcie_fw = 0;
373 	if (!(adap->flags & IS_VF)) {
374 		pcie_fw = t4_read_reg(adap, A_PCIE_FW);
375 		if (pcie_fw & F_PCIE_FW_ERR)
376 			goto failed;
377 	}
378 	for (i = 0; i < 4; i++) {
379 		ctl = t4_read_reg(adap, ctl_reg);
380 		v = G_MBOWNER(ctl);
381 		if (v != X_MBOWNER_NONE)
382 			break;
383 	}
384 
385 	/*
386 	 * If we were unable to gain access, report the error to our caller.
387 	 */
388 	if (v != X_MBOWNER_PL) {
389 		if (!(adap->flags & IS_VF)) {
390 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
391 			if (pcie_fw & F_PCIE_FW_ERR)
392 				goto failed;
393 		}
394 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
395 		return ret;
396 	}
397 
398 	/*
399 	 * If we gain ownership of the mailbox and there's a "valid" message
400 	 * in it, this is likely an asynchronous error message from the
401 	 * firmware.  So we'll report that and then proceed on with attempting
402 	 * to issue our own command ... which may well fail if the error
403 	 * presaged the firmware crashing ...
404 	 */
405 	if (ctl & F_MBMSGVALID) {
406 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
407 	}
408 
409 	/*
410 	 * Copy in the new mailbox command and send it on its way ...
411 	 */
412 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
413 	memcpy(cmd_rpl, cmd, size);
414 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
415 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
416 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
417 
418 	if (adap->flags & IS_VF) {
419 		/*
420 		 * For the VFs, the Mailbox Data "registers" are
421 		 * actually backed by T4's "MA" interface rather than
422 		 * PL Registers (as is the case for the PFs).  Because
423 		 * these are in different coherency domains, the write
424 		 * to the VF's PL-register-backed Mailbox Control can
425 		 * race in front of the writes to the MA-backed VF
426 		 * Mailbox Data "registers".  So we need to do a
427 		 * read-back on at least one byte of the VF Mailbox
428 		 * Data registers before doing the write to the VF
429 		 * Mailbox Control register.
430 		 */
431 		t4_read_reg(adap, data_reg);
432 	}
433 
434 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
435 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
436 	next_tx_check = 1000;
437 	delay_idx = 0;
438 	ms = delay[0];
439 
440 	/*
441 	 * Loop waiting for the reply; bail out if we time out or the firmware
442 	 * reports an error.
443 	 */
444 	for (i = 0; i < timeout; i += ms) {
445 		if (!(adap->flags & IS_VF)) {
446 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
447 			if (pcie_fw & F_PCIE_FW_ERR)
448 				break;
449 		}
450 
451 		if (i >= next_tx_check) {
452 			check_tx_state(adap, &tx_state[0]);
453 			next_tx_check = i + 1000;
454 		}
455 
456 		if (sleep_ok) {
457 			ms = delay[delay_idx];  /* last element may repeat */
458 			if (delay_idx < ARRAY_SIZE(delay) - 1)
459 				delay_idx++;
460 			msleep(ms);
461 		} else {
462 			mdelay(ms);
463 		}
464 
465 		v = t4_read_reg(adap, ctl_reg);
466 		if (v == X_CIM_PF_NOACCESS)
467 			continue;
468 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
469 			if (!(v & F_MBMSGVALID)) {
470 				t4_write_reg(adap, ctl_reg,
471 					     V_MBOWNER(X_MBOWNER_NONE));
472 				continue;
473 			}
474 
475 			/*
476 			 * Retrieve the command reply and release the mailbox.
477 			 */
478 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
479 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
480 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
481 
482 			res = be64_to_cpu(cmd_rpl[0]);
483 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
484 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
485 				res = V_FW_CMD_RETVAL(EIO);
486 			} else if (rpl)
487 				memcpy(rpl, cmd_rpl, size);
488 			return -G_FW_CMD_RETVAL((int)res);
489 		}
490 	}
491 
492 	/*
493 	 * We timed out waiting for a reply to our mailbox command.  Report
494 	 * the error and also check to see if the firmware reported any
495 	 * errors ...
496 	 */
497 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
498 	    *(const u8 *)cmd, mbox, pcie_fw);
499 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
500 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
501 failed:
502 	adap->flags &= ~FW_OK;
503 	ret = pcie_fw & F_PCIE_FW_ERR ? -ENXIO : -ETIMEDOUT;
504 	t4_fatal_err(adap, true);
505 	return ret;
506 }
507 
508 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
509 		    void *rpl, bool sleep_ok)
510 {
511 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
512 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
513 
514 }
515 
516 static int t4_edc_err_read(struct adapter *adap, int idx)
517 {
518 	u32 edc_ecc_err_addr_reg;
519 	u32 edc_bist_status_rdata_reg;
520 
521 	if (is_t4(adap)) {
522 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
523 		return 0;
524 	}
525 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
526 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
527 		return 0;
528 	}
529 
530 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
531 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
532 
533 	CH_WARN(adap,
534 		"edc%d err addr 0x%x: 0x%x.\n",
535 		idx, edc_ecc_err_addr_reg,
536 		t4_read_reg(adap, edc_ecc_err_addr_reg));
537 	CH_WARN(adap,
538 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
539 		edc_bist_status_rdata_reg,
540 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
541 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
542 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
543 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
544 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
545 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
546 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
547 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
548 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
549 
550 	return 0;
551 }
552 
553 /**
554  *	t4_mc_read - read from MC through backdoor accesses
555  *	@adap: the adapter
556  *	@idx: which MC to access
557  *	@addr: address of first byte requested
558  *	@data: 64 bytes of data containing the requested address
559  *	@ecc: where to store the corresponding 64-bit ECC word
560  *
561  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
562  *	that covers the requested address @addr.  If @parity is not %NULL it
563  *	is assigned the 64-bit ECC word for the read data.
564  */
565 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
566 {
567 	int i;
568 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
569 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
570 
571 	if (is_t4(adap)) {
572 		mc_bist_cmd_reg = A_MC_BIST_CMD;
573 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
574 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
575 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
576 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
577 	} else {
578 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
579 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
580 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
581 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
582 						  idx);
583 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
584 						  idx);
585 	}
586 
587 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
588 		return -EBUSY;
589 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
590 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
591 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
592 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
593 		     F_START_BIST | V_BIST_CMD_GAP(1));
594 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
595 	if (i)
596 		return i;
597 
598 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
599 
600 	for (i = 15; i >= 0; i--)
601 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
602 	if (ecc)
603 		*ecc = t4_read_reg64(adap, MC_DATA(16));
604 #undef MC_DATA
605 	return 0;
606 }
607 
608 /**
609  *	t4_edc_read - read from EDC through backdoor accesses
610  *	@adap: the adapter
611  *	@idx: which EDC to access
612  *	@addr: address of first byte requested
613  *	@data: 64 bytes of data containing the requested address
614  *	@ecc: where to store the corresponding 64-bit ECC word
615  *
616  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
617  *	that covers the requested address @addr.  If @parity is not %NULL it
618  *	is assigned the 64-bit ECC word for the read data.
619  */
620 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
621 {
622 	int i;
623 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
624 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
625 
626 	if (is_t4(adap)) {
627 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
628 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
629 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
630 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
631 						    idx);
632 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
633 						    idx);
634 	} else {
635 /*
636  * These macro are missing in t4_regs.h file.
637  * Added temporarily for testing.
638  */
639 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
640 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
641 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
642 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
643 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
644 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
645 						    idx);
646 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
647 						    idx);
648 #undef EDC_REG_T5
649 #undef EDC_STRIDE_T5
650 	}
651 
652 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
653 		return -EBUSY;
654 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
655 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
656 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
657 	t4_write_reg(adap, edc_bist_cmd_reg,
658 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
659 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
660 	if (i)
661 		return i;
662 
663 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
664 
665 	for (i = 15; i >= 0; i--)
666 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
667 	if (ecc)
668 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
669 #undef EDC_DATA
670 	return 0;
671 }
672 
673 /**
674  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
675  *	@adap: the adapter
676  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
677  *	@addr: address within indicated memory type
678  *	@len: amount of memory to read
679  *	@buf: host memory buffer
680  *
681  *	Reads an [almost] arbitrary memory region in the firmware: the
682  *	firmware memory address, length and host buffer must be aligned on
683  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
684  *	the firmware's memory.  If this memory contains data structures which
685  *	contain multi-byte integers, it's the callers responsibility to
686  *	perform appropriate byte order conversions.
687  */
688 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
689 		__be32 *buf)
690 {
691 	u32 pos, start, end, offset;
692 	int ret;
693 
694 	/*
695 	 * Argument sanity checks ...
696 	 */
697 	if ((addr & 0x3) || (len & 0x3))
698 		return -EINVAL;
699 
700 	/*
701 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
702 	 * need to round down the start and round up the end.  We'll start
703 	 * copying out of the first line at (addr - start) a word at a time.
704 	 */
705 	start = rounddown2(addr, 64);
706 	end = roundup2(addr + len, 64);
707 	offset = (addr - start)/sizeof(__be32);
708 
709 	for (pos = start; pos < end; pos += 64, offset = 0) {
710 		__be32 data[16];
711 
712 		/*
713 		 * Read the chip's memory block and bail if there's an error.
714 		 */
715 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
716 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
717 		else
718 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
719 		if (ret)
720 			return ret;
721 
722 		/*
723 		 * Copy the data into the caller's memory buffer.
724 		 */
725 		while (offset < 16 && len > 0) {
726 			*buf++ = data[offset++];
727 			len -= sizeof(__be32);
728 		}
729 	}
730 
731 	return 0;
732 }
733 
734 /*
735  * Return the specified PCI-E Configuration Space register from our Physical
736  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
737  * since we prefer to let the firmware own all of these registers, but if that
738  * fails we go for it directly ourselves.
739  */
740 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
741 {
742 
743 	/*
744 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
745 	 * retrieve the specified PCI-E Configuration Space register.
746 	 */
747 	if (drv_fw_attach != 0) {
748 		struct fw_ldst_cmd ldst_cmd;
749 		int ret;
750 
751 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
752 		ldst_cmd.op_to_addrspace =
753 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
754 				    F_FW_CMD_REQUEST |
755 				    F_FW_CMD_READ |
756 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
757 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
758 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
759 		ldst_cmd.u.pcie.ctrl_to_fn =
760 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
761 		ldst_cmd.u.pcie.r = reg;
762 
763 		/*
764 		 * If the LDST Command succeeds, return the result, otherwise
765 		 * fall through to reading it directly ourselves ...
766 		 */
767 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
768 				 &ldst_cmd);
769 		if (ret == 0)
770 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
771 
772 		CH_WARN(adap, "Firmware failed to return "
773 			"Configuration Space register %d, err = %d\n",
774 			reg, -ret);
775 	}
776 
777 	/*
778 	 * Read the desired Configuration Space register via the PCI-E
779 	 * Backdoor mechanism.
780 	 */
781 	return t4_hw_pci_read_cfg4(adap, reg);
782 }
783 
784 /**
785  *	t4_get_regs_len - return the size of the chips register set
786  *	@adapter: the adapter
787  *
788  *	Returns the size of the chip's BAR0 register space.
789  */
790 unsigned int t4_get_regs_len(struct adapter *adapter)
791 {
792 	unsigned int chip_version = chip_id(adapter);
793 
794 	switch (chip_version) {
795 	case CHELSIO_T4:
796 		if (adapter->flags & IS_VF)
797 			return FW_T4VF_REGMAP_SIZE;
798 		return T4_REGMAP_SIZE;
799 
800 	case CHELSIO_T5:
801 	case CHELSIO_T6:
802 		if (adapter->flags & IS_VF)
803 			return FW_T4VF_REGMAP_SIZE;
804 		return T5_REGMAP_SIZE;
805 	}
806 
807 	CH_ERR(adapter,
808 		"Unsupported chip version %d\n", chip_version);
809 	return 0;
810 }
811 
812 /**
813  *	t4_get_regs - read chip registers into provided buffer
814  *	@adap: the adapter
815  *	@buf: register buffer
816  *	@buf_size: size (in bytes) of register buffer
817  *
818  *	If the provided register buffer isn't large enough for the chip's
819  *	full register range, the register dump will be truncated to the
820  *	register buffer's size.
821  */
822 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
823 {
824 	static const unsigned int t4_reg_ranges[] = {
825 		0x1008, 0x1108,
826 		0x1180, 0x1184,
827 		0x1190, 0x1194,
828 		0x11a0, 0x11a4,
829 		0x11b0, 0x11b4,
830 		0x11fc, 0x123c,
831 		0x1300, 0x173c,
832 		0x1800, 0x18fc,
833 		0x3000, 0x30d8,
834 		0x30e0, 0x30e4,
835 		0x30ec, 0x5910,
836 		0x5920, 0x5924,
837 		0x5960, 0x5960,
838 		0x5968, 0x5968,
839 		0x5970, 0x5970,
840 		0x5978, 0x5978,
841 		0x5980, 0x5980,
842 		0x5988, 0x5988,
843 		0x5990, 0x5990,
844 		0x5998, 0x5998,
845 		0x59a0, 0x59d4,
846 		0x5a00, 0x5ae0,
847 		0x5ae8, 0x5ae8,
848 		0x5af0, 0x5af0,
849 		0x5af8, 0x5af8,
850 		0x6000, 0x6098,
851 		0x6100, 0x6150,
852 		0x6200, 0x6208,
853 		0x6240, 0x6248,
854 		0x6280, 0x62b0,
855 		0x62c0, 0x6338,
856 		0x6370, 0x638c,
857 		0x6400, 0x643c,
858 		0x6500, 0x6524,
859 		0x6a00, 0x6a04,
860 		0x6a14, 0x6a38,
861 		0x6a60, 0x6a70,
862 		0x6a78, 0x6a78,
863 		0x6b00, 0x6b0c,
864 		0x6b1c, 0x6b84,
865 		0x6bf0, 0x6bf8,
866 		0x6c00, 0x6c0c,
867 		0x6c1c, 0x6c84,
868 		0x6cf0, 0x6cf8,
869 		0x6d00, 0x6d0c,
870 		0x6d1c, 0x6d84,
871 		0x6df0, 0x6df8,
872 		0x6e00, 0x6e0c,
873 		0x6e1c, 0x6e84,
874 		0x6ef0, 0x6ef8,
875 		0x6f00, 0x6f0c,
876 		0x6f1c, 0x6f84,
877 		0x6ff0, 0x6ff8,
878 		0x7000, 0x700c,
879 		0x701c, 0x7084,
880 		0x70f0, 0x70f8,
881 		0x7100, 0x710c,
882 		0x711c, 0x7184,
883 		0x71f0, 0x71f8,
884 		0x7200, 0x720c,
885 		0x721c, 0x7284,
886 		0x72f0, 0x72f8,
887 		0x7300, 0x730c,
888 		0x731c, 0x7384,
889 		0x73f0, 0x73f8,
890 		0x7400, 0x7450,
891 		0x7500, 0x7530,
892 		0x7600, 0x760c,
893 		0x7614, 0x761c,
894 		0x7680, 0x76cc,
895 		0x7700, 0x7798,
896 		0x77c0, 0x77fc,
897 		0x7900, 0x79fc,
898 		0x7b00, 0x7b58,
899 		0x7b60, 0x7b84,
900 		0x7b8c, 0x7c38,
901 		0x7d00, 0x7d38,
902 		0x7d40, 0x7d80,
903 		0x7d8c, 0x7ddc,
904 		0x7de4, 0x7e04,
905 		0x7e10, 0x7e1c,
906 		0x7e24, 0x7e38,
907 		0x7e40, 0x7e44,
908 		0x7e4c, 0x7e78,
909 		0x7e80, 0x7ea4,
910 		0x7eac, 0x7edc,
911 		0x7ee8, 0x7efc,
912 		0x8dc0, 0x8e04,
913 		0x8e10, 0x8e1c,
914 		0x8e30, 0x8e78,
915 		0x8ea0, 0x8eb8,
916 		0x8ec0, 0x8f6c,
917 		0x8fc0, 0x9008,
918 		0x9010, 0x9058,
919 		0x9060, 0x9060,
920 		0x9068, 0x9074,
921 		0x90fc, 0x90fc,
922 		0x9400, 0x9408,
923 		0x9410, 0x9458,
924 		0x9600, 0x9600,
925 		0x9608, 0x9638,
926 		0x9640, 0x96bc,
927 		0x9800, 0x9808,
928 		0x9820, 0x983c,
929 		0x9850, 0x9864,
930 		0x9c00, 0x9c6c,
931 		0x9c80, 0x9cec,
932 		0x9d00, 0x9d6c,
933 		0x9d80, 0x9dec,
934 		0x9e00, 0x9e6c,
935 		0x9e80, 0x9eec,
936 		0x9f00, 0x9f6c,
937 		0x9f80, 0x9fec,
938 		0xd004, 0xd004,
939 		0xd010, 0xd03c,
940 		0xdfc0, 0xdfe0,
941 		0xe000, 0xea7c,
942 		0xf000, 0x11110,
943 		0x11118, 0x11190,
944 		0x19040, 0x1906c,
945 		0x19078, 0x19080,
946 		0x1908c, 0x190e4,
947 		0x190f0, 0x190f8,
948 		0x19100, 0x19110,
949 		0x19120, 0x19124,
950 		0x19150, 0x19194,
951 		0x1919c, 0x191b0,
952 		0x191d0, 0x191e8,
953 		0x19238, 0x1924c,
954 		0x193f8, 0x1943c,
955 		0x1944c, 0x19474,
956 		0x19490, 0x194e0,
957 		0x194f0, 0x194f8,
958 		0x19800, 0x19c08,
959 		0x19c10, 0x19c90,
960 		0x19ca0, 0x19ce4,
961 		0x19cf0, 0x19d40,
962 		0x19d50, 0x19d94,
963 		0x19da0, 0x19de8,
964 		0x19df0, 0x19e40,
965 		0x19e50, 0x19e90,
966 		0x19ea0, 0x19f4c,
967 		0x1a000, 0x1a004,
968 		0x1a010, 0x1a06c,
969 		0x1a0b0, 0x1a0e4,
970 		0x1a0ec, 0x1a0f4,
971 		0x1a100, 0x1a108,
972 		0x1a114, 0x1a120,
973 		0x1a128, 0x1a130,
974 		0x1a138, 0x1a138,
975 		0x1a190, 0x1a1c4,
976 		0x1a1fc, 0x1a1fc,
977 		0x1e040, 0x1e04c,
978 		0x1e284, 0x1e28c,
979 		0x1e2c0, 0x1e2c0,
980 		0x1e2e0, 0x1e2e0,
981 		0x1e300, 0x1e384,
982 		0x1e3c0, 0x1e3c8,
983 		0x1e440, 0x1e44c,
984 		0x1e684, 0x1e68c,
985 		0x1e6c0, 0x1e6c0,
986 		0x1e6e0, 0x1e6e0,
987 		0x1e700, 0x1e784,
988 		0x1e7c0, 0x1e7c8,
989 		0x1e840, 0x1e84c,
990 		0x1ea84, 0x1ea8c,
991 		0x1eac0, 0x1eac0,
992 		0x1eae0, 0x1eae0,
993 		0x1eb00, 0x1eb84,
994 		0x1ebc0, 0x1ebc8,
995 		0x1ec40, 0x1ec4c,
996 		0x1ee84, 0x1ee8c,
997 		0x1eec0, 0x1eec0,
998 		0x1eee0, 0x1eee0,
999 		0x1ef00, 0x1ef84,
1000 		0x1efc0, 0x1efc8,
1001 		0x1f040, 0x1f04c,
1002 		0x1f284, 0x1f28c,
1003 		0x1f2c0, 0x1f2c0,
1004 		0x1f2e0, 0x1f2e0,
1005 		0x1f300, 0x1f384,
1006 		0x1f3c0, 0x1f3c8,
1007 		0x1f440, 0x1f44c,
1008 		0x1f684, 0x1f68c,
1009 		0x1f6c0, 0x1f6c0,
1010 		0x1f6e0, 0x1f6e0,
1011 		0x1f700, 0x1f784,
1012 		0x1f7c0, 0x1f7c8,
1013 		0x1f840, 0x1f84c,
1014 		0x1fa84, 0x1fa8c,
1015 		0x1fac0, 0x1fac0,
1016 		0x1fae0, 0x1fae0,
1017 		0x1fb00, 0x1fb84,
1018 		0x1fbc0, 0x1fbc8,
1019 		0x1fc40, 0x1fc4c,
1020 		0x1fe84, 0x1fe8c,
1021 		0x1fec0, 0x1fec0,
1022 		0x1fee0, 0x1fee0,
1023 		0x1ff00, 0x1ff84,
1024 		0x1ffc0, 0x1ffc8,
1025 		0x20000, 0x2002c,
1026 		0x20100, 0x2013c,
1027 		0x20190, 0x201a0,
1028 		0x201a8, 0x201b8,
1029 		0x201c4, 0x201c8,
1030 		0x20200, 0x20318,
1031 		0x20400, 0x204b4,
1032 		0x204c0, 0x20528,
1033 		0x20540, 0x20614,
1034 		0x21000, 0x21040,
1035 		0x2104c, 0x21060,
1036 		0x210c0, 0x210ec,
1037 		0x21200, 0x21268,
1038 		0x21270, 0x21284,
1039 		0x212fc, 0x21388,
1040 		0x21400, 0x21404,
1041 		0x21500, 0x21500,
1042 		0x21510, 0x21518,
1043 		0x2152c, 0x21530,
1044 		0x2153c, 0x2153c,
1045 		0x21550, 0x21554,
1046 		0x21600, 0x21600,
1047 		0x21608, 0x2161c,
1048 		0x21624, 0x21628,
1049 		0x21630, 0x21634,
1050 		0x2163c, 0x2163c,
1051 		0x21700, 0x2171c,
1052 		0x21780, 0x2178c,
1053 		0x21800, 0x21818,
1054 		0x21820, 0x21828,
1055 		0x21830, 0x21848,
1056 		0x21850, 0x21854,
1057 		0x21860, 0x21868,
1058 		0x21870, 0x21870,
1059 		0x21878, 0x21898,
1060 		0x218a0, 0x218a8,
1061 		0x218b0, 0x218c8,
1062 		0x218d0, 0x218d4,
1063 		0x218e0, 0x218e8,
1064 		0x218f0, 0x218f0,
1065 		0x218f8, 0x21a18,
1066 		0x21a20, 0x21a28,
1067 		0x21a30, 0x21a48,
1068 		0x21a50, 0x21a54,
1069 		0x21a60, 0x21a68,
1070 		0x21a70, 0x21a70,
1071 		0x21a78, 0x21a98,
1072 		0x21aa0, 0x21aa8,
1073 		0x21ab0, 0x21ac8,
1074 		0x21ad0, 0x21ad4,
1075 		0x21ae0, 0x21ae8,
1076 		0x21af0, 0x21af0,
1077 		0x21af8, 0x21c18,
1078 		0x21c20, 0x21c20,
1079 		0x21c28, 0x21c30,
1080 		0x21c38, 0x21c38,
1081 		0x21c80, 0x21c98,
1082 		0x21ca0, 0x21ca8,
1083 		0x21cb0, 0x21cc8,
1084 		0x21cd0, 0x21cd4,
1085 		0x21ce0, 0x21ce8,
1086 		0x21cf0, 0x21cf0,
1087 		0x21cf8, 0x21d7c,
1088 		0x21e00, 0x21e04,
1089 		0x22000, 0x2202c,
1090 		0x22100, 0x2213c,
1091 		0x22190, 0x221a0,
1092 		0x221a8, 0x221b8,
1093 		0x221c4, 0x221c8,
1094 		0x22200, 0x22318,
1095 		0x22400, 0x224b4,
1096 		0x224c0, 0x22528,
1097 		0x22540, 0x22614,
1098 		0x23000, 0x23040,
1099 		0x2304c, 0x23060,
1100 		0x230c0, 0x230ec,
1101 		0x23200, 0x23268,
1102 		0x23270, 0x23284,
1103 		0x232fc, 0x23388,
1104 		0x23400, 0x23404,
1105 		0x23500, 0x23500,
1106 		0x23510, 0x23518,
1107 		0x2352c, 0x23530,
1108 		0x2353c, 0x2353c,
1109 		0x23550, 0x23554,
1110 		0x23600, 0x23600,
1111 		0x23608, 0x2361c,
1112 		0x23624, 0x23628,
1113 		0x23630, 0x23634,
1114 		0x2363c, 0x2363c,
1115 		0x23700, 0x2371c,
1116 		0x23780, 0x2378c,
1117 		0x23800, 0x23818,
1118 		0x23820, 0x23828,
1119 		0x23830, 0x23848,
1120 		0x23850, 0x23854,
1121 		0x23860, 0x23868,
1122 		0x23870, 0x23870,
1123 		0x23878, 0x23898,
1124 		0x238a0, 0x238a8,
1125 		0x238b0, 0x238c8,
1126 		0x238d0, 0x238d4,
1127 		0x238e0, 0x238e8,
1128 		0x238f0, 0x238f0,
1129 		0x238f8, 0x23a18,
1130 		0x23a20, 0x23a28,
1131 		0x23a30, 0x23a48,
1132 		0x23a50, 0x23a54,
1133 		0x23a60, 0x23a68,
1134 		0x23a70, 0x23a70,
1135 		0x23a78, 0x23a98,
1136 		0x23aa0, 0x23aa8,
1137 		0x23ab0, 0x23ac8,
1138 		0x23ad0, 0x23ad4,
1139 		0x23ae0, 0x23ae8,
1140 		0x23af0, 0x23af0,
1141 		0x23af8, 0x23c18,
1142 		0x23c20, 0x23c20,
1143 		0x23c28, 0x23c30,
1144 		0x23c38, 0x23c38,
1145 		0x23c80, 0x23c98,
1146 		0x23ca0, 0x23ca8,
1147 		0x23cb0, 0x23cc8,
1148 		0x23cd0, 0x23cd4,
1149 		0x23ce0, 0x23ce8,
1150 		0x23cf0, 0x23cf0,
1151 		0x23cf8, 0x23d7c,
1152 		0x23e00, 0x23e04,
1153 		0x24000, 0x2402c,
1154 		0x24100, 0x2413c,
1155 		0x24190, 0x241a0,
1156 		0x241a8, 0x241b8,
1157 		0x241c4, 0x241c8,
1158 		0x24200, 0x24318,
1159 		0x24400, 0x244b4,
1160 		0x244c0, 0x24528,
1161 		0x24540, 0x24614,
1162 		0x25000, 0x25040,
1163 		0x2504c, 0x25060,
1164 		0x250c0, 0x250ec,
1165 		0x25200, 0x25268,
1166 		0x25270, 0x25284,
1167 		0x252fc, 0x25388,
1168 		0x25400, 0x25404,
1169 		0x25500, 0x25500,
1170 		0x25510, 0x25518,
1171 		0x2552c, 0x25530,
1172 		0x2553c, 0x2553c,
1173 		0x25550, 0x25554,
1174 		0x25600, 0x25600,
1175 		0x25608, 0x2561c,
1176 		0x25624, 0x25628,
1177 		0x25630, 0x25634,
1178 		0x2563c, 0x2563c,
1179 		0x25700, 0x2571c,
1180 		0x25780, 0x2578c,
1181 		0x25800, 0x25818,
1182 		0x25820, 0x25828,
1183 		0x25830, 0x25848,
1184 		0x25850, 0x25854,
1185 		0x25860, 0x25868,
1186 		0x25870, 0x25870,
1187 		0x25878, 0x25898,
1188 		0x258a0, 0x258a8,
1189 		0x258b0, 0x258c8,
1190 		0x258d0, 0x258d4,
1191 		0x258e0, 0x258e8,
1192 		0x258f0, 0x258f0,
1193 		0x258f8, 0x25a18,
1194 		0x25a20, 0x25a28,
1195 		0x25a30, 0x25a48,
1196 		0x25a50, 0x25a54,
1197 		0x25a60, 0x25a68,
1198 		0x25a70, 0x25a70,
1199 		0x25a78, 0x25a98,
1200 		0x25aa0, 0x25aa8,
1201 		0x25ab0, 0x25ac8,
1202 		0x25ad0, 0x25ad4,
1203 		0x25ae0, 0x25ae8,
1204 		0x25af0, 0x25af0,
1205 		0x25af8, 0x25c18,
1206 		0x25c20, 0x25c20,
1207 		0x25c28, 0x25c30,
1208 		0x25c38, 0x25c38,
1209 		0x25c80, 0x25c98,
1210 		0x25ca0, 0x25ca8,
1211 		0x25cb0, 0x25cc8,
1212 		0x25cd0, 0x25cd4,
1213 		0x25ce0, 0x25ce8,
1214 		0x25cf0, 0x25cf0,
1215 		0x25cf8, 0x25d7c,
1216 		0x25e00, 0x25e04,
1217 		0x26000, 0x2602c,
1218 		0x26100, 0x2613c,
1219 		0x26190, 0x261a0,
1220 		0x261a8, 0x261b8,
1221 		0x261c4, 0x261c8,
1222 		0x26200, 0x26318,
1223 		0x26400, 0x264b4,
1224 		0x264c0, 0x26528,
1225 		0x26540, 0x26614,
1226 		0x27000, 0x27040,
1227 		0x2704c, 0x27060,
1228 		0x270c0, 0x270ec,
1229 		0x27200, 0x27268,
1230 		0x27270, 0x27284,
1231 		0x272fc, 0x27388,
1232 		0x27400, 0x27404,
1233 		0x27500, 0x27500,
1234 		0x27510, 0x27518,
1235 		0x2752c, 0x27530,
1236 		0x2753c, 0x2753c,
1237 		0x27550, 0x27554,
1238 		0x27600, 0x27600,
1239 		0x27608, 0x2761c,
1240 		0x27624, 0x27628,
1241 		0x27630, 0x27634,
1242 		0x2763c, 0x2763c,
1243 		0x27700, 0x2771c,
1244 		0x27780, 0x2778c,
1245 		0x27800, 0x27818,
1246 		0x27820, 0x27828,
1247 		0x27830, 0x27848,
1248 		0x27850, 0x27854,
1249 		0x27860, 0x27868,
1250 		0x27870, 0x27870,
1251 		0x27878, 0x27898,
1252 		0x278a0, 0x278a8,
1253 		0x278b0, 0x278c8,
1254 		0x278d0, 0x278d4,
1255 		0x278e0, 0x278e8,
1256 		0x278f0, 0x278f0,
1257 		0x278f8, 0x27a18,
1258 		0x27a20, 0x27a28,
1259 		0x27a30, 0x27a48,
1260 		0x27a50, 0x27a54,
1261 		0x27a60, 0x27a68,
1262 		0x27a70, 0x27a70,
1263 		0x27a78, 0x27a98,
1264 		0x27aa0, 0x27aa8,
1265 		0x27ab0, 0x27ac8,
1266 		0x27ad0, 0x27ad4,
1267 		0x27ae0, 0x27ae8,
1268 		0x27af0, 0x27af0,
1269 		0x27af8, 0x27c18,
1270 		0x27c20, 0x27c20,
1271 		0x27c28, 0x27c30,
1272 		0x27c38, 0x27c38,
1273 		0x27c80, 0x27c98,
1274 		0x27ca0, 0x27ca8,
1275 		0x27cb0, 0x27cc8,
1276 		0x27cd0, 0x27cd4,
1277 		0x27ce0, 0x27ce8,
1278 		0x27cf0, 0x27cf0,
1279 		0x27cf8, 0x27d7c,
1280 		0x27e00, 0x27e04,
1281 	};
1282 
1283 	static const unsigned int t4vf_reg_ranges[] = {
1284 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1285 		VF_MPS_REG(A_MPS_VF_CTL),
1286 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1287 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1288 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1289 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1290 		FW_T4VF_MBDATA_BASE_ADDR,
1291 		FW_T4VF_MBDATA_BASE_ADDR +
1292 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1293 	};
1294 
1295 	static const unsigned int t5_reg_ranges[] = {
1296 		0x1008, 0x10c0,
1297 		0x10cc, 0x10f8,
1298 		0x1100, 0x1100,
1299 		0x110c, 0x1148,
1300 		0x1180, 0x1184,
1301 		0x1190, 0x1194,
1302 		0x11a0, 0x11a4,
1303 		0x11b0, 0x11b4,
1304 		0x11fc, 0x123c,
1305 		0x1280, 0x173c,
1306 		0x1800, 0x18fc,
1307 		0x3000, 0x3028,
1308 		0x3060, 0x30b0,
1309 		0x30b8, 0x30d8,
1310 		0x30e0, 0x30fc,
1311 		0x3140, 0x357c,
1312 		0x35a8, 0x35cc,
1313 		0x35ec, 0x35ec,
1314 		0x3600, 0x5624,
1315 		0x56cc, 0x56ec,
1316 		0x56f4, 0x5720,
1317 		0x5728, 0x575c,
1318 		0x580c, 0x5814,
1319 		0x5890, 0x589c,
1320 		0x58a4, 0x58ac,
1321 		0x58b8, 0x58bc,
1322 		0x5940, 0x59c8,
1323 		0x59d0, 0x59dc,
1324 		0x59fc, 0x5a18,
1325 		0x5a60, 0x5a70,
1326 		0x5a80, 0x5a9c,
1327 		0x5b94, 0x5bfc,
1328 		0x6000, 0x6020,
1329 		0x6028, 0x6040,
1330 		0x6058, 0x609c,
1331 		0x60a8, 0x614c,
1332 		0x7700, 0x7798,
1333 		0x77c0, 0x78fc,
1334 		0x7b00, 0x7b58,
1335 		0x7b60, 0x7b84,
1336 		0x7b8c, 0x7c54,
1337 		0x7d00, 0x7d38,
1338 		0x7d40, 0x7d80,
1339 		0x7d8c, 0x7ddc,
1340 		0x7de4, 0x7e04,
1341 		0x7e10, 0x7e1c,
1342 		0x7e24, 0x7e38,
1343 		0x7e40, 0x7e44,
1344 		0x7e4c, 0x7e78,
1345 		0x7e80, 0x7edc,
1346 		0x7ee8, 0x7efc,
1347 		0x8dc0, 0x8de0,
1348 		0x8df8, 0x8e04,
1349 		0x8e10, 0x8e84,
1350 		0x8ea0, 0x8f84,
1351 		0x8fc0, 0x9058,
1352 		0x9060, 0x9060,
1353 		0x9068, 0x90f8,
1354 		0x9400, 0x9408,
1355 		0x9410, 0x9470,
1356 		0x9600, 0x9600,
1357 		0x9608, 0x9638,
1358 		0x9640, 0x96f4,
1359 		0x9800, 0x9808,
1360 		0x9810, 0x9864,
1361 		0x9c00, 0x9c6c,
1362 		0x9c80, 0x9cec,
1363 		0x9d00, 0x9d6c,
1364 		0x9d80, 0x9dec,
1365 		0x9e00, 0x9e6c,
1366 		0x9e80, 0x9eec,
1367 		0x9f00, 0x9f6c,
1368 		0x9f80, 0xa020,
1369 		0xd000, 0xd004,
1370 		0xd010, 0xd03c,
1371 		0xdfc0, 0xdfe0,
1372 		0xe000, 0x1106c,
1373 		0x11074, 0x11088,
1374 		0x1109c, 0x11110,
1375 		0x11118, 0x1117c,
1376 		0x11190, 0x11204,
1377 		0x19040, 0x1906c,
1378 		0x19078, 0x19080,
1379 		0x1908c, 0x190e8,
1380 		0x190f0, 0x190f8,
1381 		0x19100, 0x19110,
1382 		0x19120, 0x19124,
1383 		0x19150, 0x19194,
1384 		0x1919c, 0x191b0,
1385 		0x191d0, 0x191e8,
1386 		0x19238, 0x19290,
1387 		0x193f8, 0x19428,
1388 		0x19430, 0x19444,
1389 		0x1944c, 0x1946c,
1390 		0x19474, 0x19474,
1391 		0x19490, 0x194cc,
1392 		0x194f0, 0x194f8,
1393 		0x19c00, 0x19c08,
1394 		0x19c10, 0x19c60,
1395 		0x19c94, 0x19ce4,
1396 		0x19cf0, 0x19d40,
1397 		0x19d50, 0x19d94,
1398 		0x19da0, 0x19de8,
1399 		0x19df0, 0x19e10,
1400 		0x19e50, 0x19e90,
1401 		0x19ea0, 0x19f24,
1402 		0x19f34, 0x19f34,
1403 		0x19f40, 0x19f50,
1404 		0x19f90, 0x19fb4,
1405 		0x19fc4, 0x19fe4,
1406 		0x1a000, 0x1a004,
1407 		0x1a010, 0x1a06c,
1408 		0x1a0b0, 0x1a0e4,
1409 		0x1a0ec, 0x1a0f8,
1410 		0x1a100, 0x1a108,
1411 		0x1a114, 0x1a130,
1412 		0x1a138, 0x1a1c4,
1413 		0x1a1fc, 0x1a1fc,
1414 		0x1e008, 0x1e00c,
1415 		0x1e040, 0x1e044,
1416 		0x1e04c, 0x1e04c,
1417 		0x1e284, 0x1e290,
1418 		0x1e2c0, 0x1e2c0,
1419 		0x1e2e0, 0x1e2e0,
1420 		0x1e300, 0x1e384,
1421 		0x1e3c0, 0x1e3c8,
1422 		0x1e408, 0x1e40c,
1423 		0x1e440, 0x1e444,
1424 		0x1e44c, 0x1e44c,
1425 		0x1e684, 0x1e690,
1426 		0x1e6c0, 0x1e6c0,
1427 		0x1e6e0, 0x1e6e0,
1428 		0x1e700, 0x1e784,
1429 		0x1e7c0, 0x1e7c8,
1430 		0x1e808, 0x1e80c,
1431 		0x1e840, 0x1e844,
1432 		0x1e84c, 0x1e84c,
1433 		0x1ea84, 0x1ea90,
1434 		0x1eac0, 0x1eac0,
1435 		0x1eae0, 0x1eae0,
1436 		0x1eb00, 0x1eb84,
1437 		0x1ebc0, 0x1ebc8,
1438 		0x1ec08, 0x1ec0c,
1439 		0x1ec40, 0x1ec44,
1440 		0x1ec4c, 0x1ec4c,
1441 		0x1ee84, 0x1ee90,
1442 		0x1eec0, 0x1eec0,
1443 		0x1eee0, 0x1eee0,
1444 		0x1ef00, 0x1ef84,
1445 		0x1efc0, 0x1efc8,
1446 		0x1f008, 0x1f00c,
1447 		0x1f040, 0x1f044,
1448 		0x1f04c, 0x1f04c,
1449 		0x1f284, 0x1f290,
1450 		0x1f2c0, 0x1f2c0,
1451 		0x1f2e0, 0x1f2e0,
1452 		0x1f300, 0x1f384,
1453 		0x1f3c0, 0x1f3c8,
1454 		0x1f408, 0x1f40c,
1455 		0x1f440, 0x1f444,
1456 		0x1f44c, 0x1f44c,
1457 		0x1f684, 0x1f690,
1458 		0x1f6c0, 0x1f6c0,
1459 		0x1f6e0, 0x1f6e0,
1460 		0x1f700, 0x1f784,
1461 		0x1f7c0, 0x1f7c8,
1462 		0x1f808, 0x1f80c,
1463 		0x1f840, 0x1f844,
1464 		0x1f84c, 0x1f84c,
1465 		0x1fa84, 0x1fa90,
1466 		0x1fac0, 0x1fac0,
1467 		0x1fae0, 0x1fae0,
1468 		0x1fb00, 0x1fb84,
1469 		0x1fbc0, 0x1fbc8,
1470 		0x1fc08, 0x1fc0c,
1471 		0x1fc40, 0x1fc44,
1472 		0x1fc4c, 0x1fc4c,
1473 		0x1fe84, 0x1fe90,
1474 		0x1fec0, 0x1fec0,
1475 		0x1fee0, 0x1fee0,
1476 		0x1ff00, 0x1ff84,
1477 		0x1ffc0, 0x1ffc8,
1478 		0x30000, 0x30030,
1479 		0x30100, 0x30144,
1480 		0x30190, 0x301a0,
1481 		0x301a8, 0x301b8,
1482 		0x301c4, 0x301c8,
1483 		0x301d0, 0x301d0,
1484 		0x30200, 0x30318,
1485 		0x30400, 0x304b4,
1486 		0x304c0, 0x3052c,
1487 		0x30540, 0x3061c,
1488 		0x30800, 0x30828,
1489 		0x30834, 0x30834,
1490 		0x308c0, 0x30908,
1491 		0x30910, 0x309ac,
1492 		0x30a00, 0x30a14,
1493 		0x30a1c, 0x30a2c,
1494 		0x30a44, 0x30a50,
1495 		0x30a74, 0x30a74,
1496 		0x30a7c, 0x30afc,
1497 		0x30b08, 0x30c24,
1498 		0x30d00, 0x30d00,
1499 		0x30d08, 0x30d14,
1500 		0x30d1c, 0x30d20,
1501 		0x30d3c, 0x30d3c,
1502 		0x30d48, 0x30d50,
1503 		0x31200, 0x3120c,
1504 		0x31220, 0x31220,
1505 		0x31240, 0x31240,
1506 		0x31600, 0x3160c,
1507 		0x31a00, 0x31a1c,
1508 		0x31e00, 0x31e20,
1509 		0x31e38, 0x31e3c,
1510 		0x31e80, 0x31e80,
1511 		0x31e88, 0x31ea8,
1512 		0x31eb0, 0x31eb4,
1513 		0x31ec8, 0x31ed4,
1514 		0x31fb8, 0x32004,
1515 		0x32200, 0x32200,
1516 		0x32208, 0x32240,
1517 		0x32248, 0x32280,
1518 		0x32288, 0x322c0,
1519 		0x322c8, 0x322fc,
1520 		0x32600, 0x32630,
1521 		0x32a00, 0x32abc,
1522 		0x32b00, 0x32b10,
1523 		0x32b20, 0x32b30,
1524 		0x32b40, 0x32b50,
1525 		0x32b60, 0x32b70,
1526 		0x33000, 0x33028,
1527 		0x33030, 0x33048,
1528 		0x33060, 0x33068,
1529 		0x33070, 0x3309c,
1530 		0x330f0, 0x33128,
1531 		0x33130, 0x33148,
1532 		0x33160, 0x33168,
1533 		0x33170, 0x3319c,
1534 		0x331f0, 0x33238,
1535 		0x33240, 0x33240,
1536 		0x33248, 0x33250,
1537 		0x3325c, 0x33264,
1538 		0x33270, 0x332b8,
1539 		0x332c0, 0x332e4,
1540 		0x332f8, 0x33338,
1541 		0x33340, 0x33340,
1542 		0x33348, 0x33350,
1543 		0x3335c, 0x33364,
1544 		0x33370, 0x333b8,
1545 		0x333c0, 0x333e4,
1546 		0x333f8, 0x33428,
1547 		0x33430, 0x33448,
1548 		0x33460, 0x33468,
1549 		0x33470, 0x3349c,
1550 		0x334f0, 0x33528,
1551 		0x33530, 0x33548,
1552 		0x33560, 0x33568,
1553 		0x33570, 0x3359c,
1554 		0x335f0, 0x33638,
1555 		0x33640, 0x33640,
1556 		0x33648, 0x33650,
1557 		0x3365c, 0x33664,
1558 		0x33670, 0x336b8,
1559 		0x336c0, 0x336e4,
1560 		0x336f8, 0x33738,
1561 		0x33740, 0x33740,
1562 		0x33748, 0x33750,
1563 		0x3375c, 0x33764,
1564 		0x33770, 0x337b8,
1565 		0x337c0, 0x337e4,
1566 		0x337f8, 0x337fc,
1567 		0x33814, 0x33814,
1568 		0x3382c, 0x3382c,
1569 		0x33880, 0x3388c,
1570 		0x338e8, 0x338ec,
1571 		0x33900, 0x33928,
1572 		0x33930, 0x33948,
1573 		0x33960, 0x33968,
1574 		0x33970, 0x3399c,
1575 		0x339f0, 0x33a38,
1576 		0x33a40, 0x33a40,
1577 		0x33a48, 0x33a50,
1578 		0x33a5c, 0x33a64,
1579 		0x33a70, 0x33ab8,
1580 		0x33ac0, 0x33ae4,
1581 		0x33af8, 0x33b10,
1582 		0x33b28, 0x33b28,
1583 		0x33b3c, 0x33b50,
1584 		0x33bf0, 0x33c10,
1585 		0x33c28, 0x33c28,
1586 		0x33c3c, 0x33c50,
1587 		0x33cf0, 0x33cfc,
1588 		0x34000, 0x34030,
1589 		0x34100, 0x34144,
1590 		0x34190, 0x341a0,
1591 		0x341a8, 0x341b8,
1592 		0x341c4, 0x341c8,
1593 		0x341d0, 0x341d0,
1594 		0x34200, 0x34318,
1595 		0x34400, 0x344b4,
1596 		0x344c0, 0x3452c,
1597 		0x34540, 0x3461c,
1598 		0x34800, 0x34828,
1599 		0x34834, 0x34834,
1600 		0x348c0, 0x34908,
1601 		0x34910, 0x349ac,
1602 		0x34a00, 0x34a14,
1603 		0x34a1c, 0x34a2c,
1604 		0x34a44, 0x34a50,
1605 		0x34a74, 0x34a74,
1606 		0x34a7c, 0x34afc,
1607 		0x34b08, 0x34c24,
1608 		0x34d00, 0x34d00,
1609 		0x34d08, 0x34d14,
1610 		0x34d1c, 0x34d20,
1611 		0x34d3c, 0x34d3c,
1612 		0x34d48, 0x34d50,
1613 		0x35200, 0x3520c,
1614 		0x35220, 0x35220,
1615 		0x35240, 0x35240,
1616 		0x35600, 0x3560c,
1617 		0x35a00, 0x35a1c,
1618 		0x35e00, 0x35e20,
1619 		0x35e38, 0x35e3c,
1620 		0x35e80, 0x35e80,
1621 		0x35e88, 0x35ea8,
1622 		0x35eb0, 0x35eb4,
1623 		0x35ec8, 0x35ed4,
1624 		0x35fb8, 0x36004,
1625 		0x36200, 0x36200,
1626 		0x36208, 0x36240,
1627 		0x36248, 0x36280,
1628 		0x36288, 0x362c0,
1629 		0x362c8, 0x362fc,
1630 		0x36600, 0x36630,
1631 		0x36a00, 0x36abc,
1632 		0x36b00, 0x36b10,
1633 		0x36b20, 0x36b30,
1634 		0x36b40, 0x36b50,
1635 		0x36b60, 0x36b70,
1636 		0x37000, 0x37028,
1637 		0x37030, 0x37048,
1638 		0x37060, 0x37068,
1639 		0x37070, 0x3709c,
1640 		0x370f0, 0x37128,
1641 		0x37130, 0x37148,
1642 		0x37160, 0x37168,
1643 		0x37170, 0x3719c,
1644 		0x371f0, 0x37238,
1645 		0x37240, 0x37240,
1646 		0x37248, 0x37250,
1647 		0x3725c, 0x37264,
1648 		0x37270, 0x372b8,
1649 		0x372c0, 0x372e4,
1650 		0x372f8, 0x37338,
1651 		0x37340, 0x37340,
1652 		0x37348, 0x37350,
1653 		0x3735c, 0x37364,
1654 		0x37370, 0x373b8,
1655 		0x373c0, 0x373e4,
1656 		0x373f8, 0x37428,
1657 		0x37430, 0x37448,
1658 		0x37460, 0x37468,
1659 		0x37470, 0x3749c,
1660 		0x374f0, 0x37528,
1661 		0x37530, 0x37548,
1662 		0x37560, 0x37568,
1663 		0x37570, 0x3759c,
1664 		0x375f0, 0x37638,
1665 		0x37640, 0x37640,
1666 		0x37648, 0x37650,
1667 		0x3765c, 0x37664,
1668 		0x37670, 0x376b8,
1669 		0x376c0, 0x376e4,
1670 		0x376f8, 0x37738,
1671 		0x37740, 0x37740,
1672 		0x37748, 0x37750,
1673 		0x3775c, 0x37764,
1674 		0x37770, 0x377b8,
1675 		0x377c0, 0x377e4,
1676 		0x377f8, 0x377fc,
1677 		0x37814, 0x37814,
1678 		0x3782c, 0x3782c,
1679 		0x37880, 0x3788c,
1680 		0x378e8, 0x378ec,
1681 		0x37900, 0x37928,
1682 		0x37930, 0x37948,
1683 		0x37960, 0x37968,
1684 		0x37970, 0x3799c,
1685 		0x379f0, 0x37a38,
1686 		0x37a40, 0x37a40,
1687 		0x37a48, 0x37a50,
1688 		0x37a5c, 0x37a64,
1689 		0x37a70, 0x37ab8,
1690 		0x37ac0, 0x37ae4,
1691 		0x37af8, 0x37b10,
1692 		0x37b28, 0x37b28,
1693 		0x37b3c, 0x37b50,
1694 		0x37bf0, 0x37c10,
1695 		0x37c28, 0x37c28,
1696 		0x37c3c, 0x37c50,
1697 		0x37cf0, 0x37cfc,
1698 		0x38000, 0x38030,
1699 		0x38100, 0x38144,
1700 		0x38190, 0x381a0,
1701 		0x381a8, 0x381b8,
1702 		0x381c4, 0x381c8,
1703 		0x381d0, 0x381d0,
1704 		0x38200, 0x38318,
1705 		0x38400, 0x384b4,
1706 		0x384c0, 0x3852c,
1707 		0x38540, 0x3861c,
1708 		0x38800, 0x38828,
1709 		0x38834, 0x38834,
1710 		0x388c0, 0x38908,
1711 		0x38910, 0x389ac,
1712 		0x38a00, 0x38a14,
1713 		0x38a1c, 0x38a2c,
1714 		0x38a44, 0x38a50,
1715 		0x38a74, 0x38a74,
1716 		0x38a7c, 0x38afc,
1717 		0x38b08, 0x38c24,
1718 		0x38d00, 0x38d00,
1719 		0x38d08, 0x38d14,
1720 		0x38d1c, 0x38d20,
1721 		0x38d3c, 0x38d3c,
1722 		0x38d48, 0x38d50,
1723 		0x39200, 0x3920c,
1724 		0x39220, 0x39220,
1725 		0x39240, 0x39240,
1726 		0x39600, 0x3960c,
1727 		0x39a00, 0x39a1c,
1728 		0x39e00, 0x39e20,
1729 		0x39e38, 0x39e3c,
1730 		0x39e80, 0x39e80,
1731 		0x39e88, 0x39ea8,
1732 		0x39eb0, 0x39eb4,
1733 		0x39ec8, 0x39ed4,
1734 		0x39fb8, 0x3a004,
1735 		0x3a200, 0x3a200,
1736 		0x3a208, 0x3a240,
1737 		0x3a248, 0x3a280,
1738 		0x3a288, 0x3a2c0,
1739 		0x3a2c8, 0x3a2fc,
1740 		0x3a600, 0x3a630,
1741 		0x3aa00, 0x3aabc,
1742 		0x3ab00, 0x3ab10,
1743 		0x3ab20, 0x3ab30,
1744 		0x3ab40, 0x3ab50,
1745 		0x3ab60, 0x3ab70,
1746 		0x3b000, 0x3b028,
1747 		0x3b030, 0x3b048,
1748 		0x3b060, 0x3b068,
1749 		0x3b070, 0x3b09c,
1750 		0x3b0f0, 0x3b128,
1751 		0x3b130, 0x3b148,
1752 		0x3b160, 0x3b168,
1753 		0x3b170, 0x3b19c,
1754 		0x3b1f0, 0x3b238,
1755 		0x3b240, 0x3b240,
1756 		0x3b248, 0x3b250,
1757 		0x3b25c, 0x3b264,
1758 		0x3b270, 0x3b2b8,
1759 		0x3b2c0, 0x3b2e4,
1760 		0x3b2f8, 0x3b338,
1761 		0x3b340, 0x3b340,
1762 		0x3b348, 0x3b350,
1763 		0x3b35c, 0x3b364,
1764 		0x3b370, 0x3b3b8,
1765 		0x3b3c0, 0x3b3e4,
1766 		0x3b3f8, 0x3b428,
1767 		0x3b430, 0x3b448,
1768 		0x3b460, 0x3b468,
1769 		0x3b470, 0x3b49c,
1770 		0x3b4f0, 0x3b528,
1771 		0x3b530, 0x3b548,
1772 		0x3b560, 0x3b568,
1773 		0x3b570, 0x3b59c,
1774 		0x3b5f0, 0x3b638,
1775 		0x3b640, 0x3b640,
1776 		0x3b648, 0x3b650,
1777 		0x3b65c, 0x3b664,
1778 		0x3b670, 0x3b6b8,
1779 		0x3b6c0, 0x3b6e4,
1780 		0x3b6f8, 0x3b738,
1781 		0x3b740, 0x3b740,
1782 		0x3b748, 0x3b750,
1783 		0x3b75c, 0x3b764,
1784 		0x3b770, 0x3b7b8,
1785 		0x3b7c0, 0x3b7e4,
1786 		0x3b7f8, 0x3b7fc,
1787 		0x3b814, 0x3b814,
1788 		0x3b82c, 0x3b82c,
1789 		0x3b880, 0x3b88c,
1790 		0x3b8e8, 0x3b8ec,
1791 		0x3b900, 0x3b928,
1792 		0x3b930, 0x3b948,
1793 		0x3b960, 0x3b968,
1794 		0x3b970, 0x3b99c,
1795 		0x3b9f0, 0x3ba38,
1796 		0x3ba40, 0x3ba40,
1797 		0x3ba48, 0x3ba50,
1798 		0x3ba5c, 0x3ba64,
1799 		0x3ba70, 0x3bab8,
1800 		0x3bac0, 0x3bae4,
1801 		0x3baf8, 0x3bb10,
1802 		0x3bb28, 0x3bb28,
1803 		0x3bb3c, 0x3bb50,
1804 		0x3bbf0, 0x3bc10,
1805 		0x3bc28, 0x3bc28,
1806 		0x3bc3c, 0x3bc50,
1807 		0x3bcf0, 0x3bcfc,
1808 		0x3c000, 0x3c030,
1809 		0x3c100, 0x3c144,
1810 		0x3c190, 0x3c1a0,
1811 		0x3c1a8, 0x3c1b8,
1812 		0x3c1c4, 0x3c1c8,
1813 		0x3c1d0, 0x3c1d0,
1814 		0x3c200, 0x3c318,
1815 		0x3c400, 0x3c4b4,
1816 		0x3c4c0, 0x3c52c,
1817 		0x3c540, 0x3c61c,
1818 		0x3c800, 0x3c828,
1819 		0x3c834, 0x3c834,
1820 		0x3c8c0, 0x3c908,
1821 		0x3c910, 0x3c9ac,
1822 		0x3ca00, 0x3ca14,
1823 		0x3ca1c, 0x3ca2c,
1824 		0x3ca44, 0x3ca50,
1825 		0x3ca74, 0x3ca74,
1826 		0x3ca7c, 0x3cafc,
1827 		0x3cb08, 0x3cc24,
1828 		0x3cd00, 0x3cd00,
1829 		0x3cd08, 0x3cd14,
1830 		0x3cd1c, 0x3cd20,
1831 		0x3cd3c, 0x3cd3c,
1832 		0x3cd48, 0x3cd50,
1833 		0x3d200, 0x3d20c,
1834 		0x3d220, 0x3d220,
1835 		0x3d240, 0x3d240,
1836 		0x3d600, 0x3d60c,
1837 		0x3da00, 0x3da1c,
1838 		0x3de00, 0x3de20,
1839 		0x3de38, 0x3de3c,
1840 		0x3de80, 0x3de80,
1841 		0x3de88, 0x3dea8,
1842 		0x3deb0, 0x3deb4,
1843 		0x3dec8, 0x3ded4,
1844 		0x3dfb8, 0x3e004,
1845 		0x3e200, 0x3e200,
1846 		0x3e208, 0x3e240,
1847 		0x3e248, 0x3e280,
1848 		0x3e288, 0x3e2c0,
1849 		0x3e2c8, 0x3e2fc,
1850 		0x3e600, 0x3e630,
1851 		0x3ea00, 0x3eabc,
1852 		0x3eb00, 0x3eb10,
1853 		0x3eb20, 0x3eb30,
1854 		0x3eb40, 0x3eb50,
1855 		0x3eb60, 0x3eb70,
1856 		0x3f000, 0x3f028,
1857 		0x3f030, 0x3f048,
1858 		0x3f060, 0x3f068,
1859 		0x3f070, 0x3f09c,
1860 		0x3f0f0, 0x3f128,
1861 		0x3f130, 0x3f148,
1862 		0x3f160, 0x3f168,
1863 		0x3f170, 0x3f19c,
1864 		0x3f1f0, 0x3f238,
1865 		0x3f240, 0x3f240,
1866 		0x3f248, 0x3f250,
1867 		0x3f25c, 0x3f264,
1868 		0x3f270, 0x3f2b8,
1869 		0x3f2c0, 0x3f2e4,
1870 		0x3f2f8, 0x3f338,
1871 		0x3f340, 0x3f340,
1872 		0x3f348, 0x3f350,
1873 		0x3f35c, 0x3f364,
1874 		0x3f370, 0x3f3b8,
1875 		0x3f3c0, 0x3f3e4,
1876 		0x3f3f8, 0x3f428,
1877 		0x3f430, 0x3f448,
1878 		0x3f460, 0x3f468,
1879 		0x3f470, 0x3f49c,
1880 		0x3f4f0, 0x3f528,
1881 		0x3f530, 0x3f548,
1882 		0x3f560, 0x3f568,
1883 		0x3f570, 0x3f59c,
1884 		0x3f5f0, 0x3f638,
1885 		0x3f640, 0x3f640,
1886 		0x3f648, 0x3f650,
1887 		0x3f65c, 0x3f664,
1888 		0x3f670, 0x3f6b8,
1889 		0x3f6c0, 0x3f6e4,
1890 		0x3f6f8, 0x3f738,
1891 		0x3f740, 0x3f740,
1892 		0x3f748, 0x3f750,
1893 		0x3f75c, 0x3f764,
1894 		0x3f770, 0x3f7b8,
1895 		0x3f7c0, 0x3f7e4,
1896 		0x3f7f8, 0x3f7fc,
1897 		0x3f814, 0x3f814,
1898 		0x3f82c, 0x3f82c,
1899 		0x3f880, 0x3f88c,
1900 		0x3f8e8, 0x3f8ec,
1901 		0x3f900, 0x3f928,
1902 		0x3f930, 0x3f948,
1903 		0x3f960, 0x3f968,
1904 		0x3f970, 0x3f99c,
1905 		0x3f9f0, 0x3fa38,
1906 		0x3fa40, 0x3fa40,
1907 		0x3fa48, 0x3fa50,
1908 		0x3fa5c, 0x3fa64,
1909 		0x3fa70, 0x3fab8,
1910 		0x3fac0, 0x3fae4,
1911 		0x3faf8, 0x3fb10,
1912 		0x3fb28, 0x3fb28,
1913 		0x3fb3c, 0x3fb50,
1914 		0x3fbf0, 0x3fc10,
1915 		0x3fc28, 0x3fc28,
1916 		0x3fc3c, 0x3fc50,
1917 		0x3fcf0, 0x3fcfc,
1918 		0x40000, 0x4000c,
1919 		0x40040, 0x40050,
1920 		0x40060, 0x40068,
1921 		0x4007c, 0x4008c,
1922 		0x40094, 0x400b0,
1923 		0x400c0, 0x40144,
1924 		0x40180, 0x4018c,
1925 		0x40200, 0x40254,
1926 		0x40260, 0x40264,
1927 		0x40270, 0x40288,
1928 		0x40290, 0x40298,
1929 		0x402ac, 0x402c8,
1930 		0x402d0, 0x402e0,
1931 		0x402f0, 0x402f0,
1932 		0x40300, 0x4033c,
1933 		0x403f8, 0x403fc,
1934 		0x41304, 0x413c4,
1935 		0x41400, 0x4140c,
1936 		0x41414, 0x4141c,
1937 		0x41480, 0x414d0,
1938 		0x44000, 0x44054,
1939 		0x4405c, 0x44078,
1940 		0x440c0, 0x44174,
1941 		0x44180, 0x441ac,
1942 		0x441b4, 0x441b8,
1943 		0x441c0, 0x44254,
1944 		0x4425c, 0x44278,
1945 		0x442c0, 0x44374,
1946 		0x44380, 0x443ac,
1947 		0x443b4, 0x443b8,
1948 		0x443c0, 0x44454,
1949 		0x4445c, 0x44478,
1950 		0x444c0, 0x44574,
1951 		0x44580, 0x445ac,
1952 		0x445b4, 0x445b8,
1953 		0x445c0, 0x44654,
1954 		0x4465c, 0x44678,
1955 		0x446c0, 0x44774,
1956 		0x44780, 0x447ac,
1957 		0x447b4, 0x447b8,
1958 		0x447c0, 0x44854,
1959 		0x4485c, 0x44878,
1960 		0x448c0, 0x44974,
1961 		0x44980, 0x449ac,
1962 		0x449b4, 0x449b8,
1963 		0x449c0, 0x449fc,
1964 		0x45000, 0x45004,
1965 		0x45010, 0x45030,
1966 		0x45040, 0x45060,
1967 		0x45068, 0x45068,
1968 		0x45080, 0x45084,
1969 		0x450a0, 0x450b0,
1970 		0x45200, 0x45204,
1971 		0x45210, 0x45230,
1972 		0x45240, 0x45260,
1973 		0x45268, 0x45268,
1974 		0x45280, 0x45284,
1975 		0x452a0, 0x452b0,
1976 		0x460c0, 0x460e4,
1977 		0x47000, 0x4703c,
1978 		0x47044, 0x4708c,
1979 		0x47200, 0x47250,
1980 		0x47400, 0x47408,
1981 		0x47414, 0x47420,
1982 		0x47600, 0x47618,
1983 		0x47800, 0x47814,
1984 		0x48000, 0x4800c,
1985 		0x48040, 0x48050,
1986 		0x48060, 0x48068,
1987 		0x4807c, 0x4808c,
1988 		0x48094, 0x480b0,
1989 		0x480c0, 0x48144,
1990 		0x48180, 0x4818c,
1991 		0x48200, 0x48254,
1992 		0x48260, 0x48264,
1993 		0x48270, 0x48288,
1994 		0x48290, 0x48298,
1995 		0x482ac, 0x482c8,
1996 		0x482d0, 0x482e0,
1997 		0x482f0, 0x482f0,
1998 		0x48300, 0x4833c,
1999 		0x483f8, 0x483fc,
2000 		0x49304, 0x493c4,
2001 		0x49400, 0x4940c,
2002 		0x49414, 0x4941c,
2003 		0x49480, 0x494d0,
2004 		0x4c000, 0x4c054,
2005 		0x4c05c, 0x4c078,
2006 		0x4c0c0, 0x4c174,
2007 		0x4c180, 0x4c1ac,
2008 		0x4c1b4, 0x4c1b8,
2009 		0x4c1c0, 0x4c254,
2010 		0x4c25c, 0x4c278,
2011 		0x4c2c0, 0x4c374,
2012 		0x4c380, 0x4c3ac,
2013 		0x4c3b4, 0x4c3b8,
2014 		0x4c3c0, 0x4c454,
2015 		0x4c45c, 0x4c478,
2016 		0x4c4c0, 0x4c574,
2017 		0x4c580, 0x4c5ac,
2018 		0x4c5b4, 0x4c5b8,
2019 		0x4c5c0, 0x4c654,
2020 		0x4c65c, 0x4c678,
2021 		0x4c6c0, 0x4c774,
2022 		0x4c780, 0x4c7ac,
2023 		0x4c7b4, 0x4c7b8,
2024 		0x4c7c0, 0x4c854,
2025 		0x4c85c, 0x4c878,
2026 		0x4c8c0, 0x4c974,
2027 		0x4c980, 0x4c9ac,
2028 		0x4c9b4, 0x4c9b8,
2029 		0x4c9c0, 0x4c9fc,
2030 		0x4d000, 0x4d004,
2031 		0x4d010, 0x4d030,
2032 		0x4d040, 0x4d060,
2033 		0x4d068, 0x4d068,
2034 		0x4d080, 0x4d084,
2035 		0x4d0a0, 0x4d0b0,
2036 		0x4d200, 0x4d204,
2037 		0x4d210, 0x4d230,
2038 		0x4d240, 0x4d260,
2039 		0x4d268, 0x4d268,
2040 		0x4d280, 0x4d284,
2041 		0x4d2a0, 0x4d2b0,
2042 		0x4e0c0, 0x4e0e4,
2043 		0x4f000, 0x4f03c,
2044 		0x4f044, 0x4f08c,
2045 		0x4f200, 0x4f250,
2046 		0x4f400, 0x4f408,
2047 		0x4f414, 0x4f420,
2048 		0x4f600, 0x4f618,
2049 		0x4f800, 0x4f814,
2050 		0x50000, 0x50084,
2051 		0x50090, 0x500cc,
2052 		0x50400, 0x50400,
2053 		0x50800, 0x50884,
2054 		0x50890, 0x508cc,
2055 		0x50c00, 0x50c00,
2056 		0x51000, 0x5101c,
2057 		0x51300, 0x51308,
2058 	};
2059 
2060 	static const unsigned int t5vf_reg_ranges[] = {
2061 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2062 		VF_MPS_REG(A_MPS_VF_CTL),
2063 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2064 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2065 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2066 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2067 		FW_T4VF_MBDATA_BASE_ADDR,
2068 		FW_T4VF_MBDATA_BASE_ADDR +
2069 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2070 	};
2071 
2072 	static const unsigned int t6_reg_ranges[] = {
2073 		0x1008, 0x101c,
2074 		0x1024, 0x10a8,
2075 		0x10b4, 0x10f8,
2076 		0x1100, 0x1114,
2077 		0x111c, 0x112c,
2078 		0x1138, 0x113c,
2079 		0x1144, 0x114c,
2080 		0x1180, 0x1184,
2081 		0x1190, 0x1194,
2082 		0x11a0, 0x11a4,
2083 		0x11b0, 0x11c4,
2084 		0x11fc, 0x123c,
2085 		0x1254, 0x1274,
2086 		0x1280, 0x133c,
2087 		0x1800, 0x18fc,
2088 		0x3000, 0x302c,
2089 		0x3060, 0x30b0,
2090 		0x30b8, 0x30d8,
2091 		0x30e0, 0x30fc,
2092 		0x3140, 0x357c,
2093 		0x35a8, 0x35cc,
2094 		0x35ec, 0x35ec,
2095 		0x3600, 0x5624,
2096 		0x56cc, 0x56ec,
2097 		0x56f4, 0x5720,
2098 		0x5728, 0x575c,
2099 		0x580c, 0x5814,
2100 		0x5890, 0x589c,
2101 		0x58a4, 0x58ac,
2102 		0x58b8, 0x58bc,
2103 		0x5940, 0x595c,
2104 		0x5980, 0x598c,
2105 		0x59b0, 0x59c8,
2106 		0x59d0, 0x59dc,
2107 		0x59fc, 0x5a18,
2108 		0x5a60, 0x5a6c,
2109 		0x5a80, 0x5a8c,
2110 		0x5a94, 0x5a9c,
2111 		0x5b94, 0x5bfc,
2112 		0x5c10, 0x5e48,
2113 		0x5e50, 0x5e94,
2114 		0x5ea0, 0x5eb0,
2115 		0x5ec0, 0x5ec0,
2116 		0x5ec8, 0x5ed0,
2117 		0x5ee0, 0x5ee0,
2118 		0x5ef0, 0x5ef0,
2119 		0x5f00, 0x5f00,
2120 		0x6000, 0x6020,
2121 		0x6028, 0x6040,
2122 		0x6058, 0x609c,
2123 		0x60a8, 0x619c,
2124 		0x7700, 0x7798,
2125 		0x77c0, 0x7880,
2126 		0x78cc, 0x78fc,
2127 		0x7b00, 0x7b58,
2128 		0x7b60, 0x7b84,
2129 		0x7b8c, 0x7c54,
2130 		0x7d00, 0x7d38,
2131 		0x7d40, 0x7d84,
2132 		0x7d8c, 0x7ddc,
2133 		0x7de4, 0x7e04,
2134 		0x7e10, 0x7e1c,
2135 		0x7e24, 0x7e38,
2136 		0x7e40, 0x7e44,
2137 		0x7e4c, 0x7e78,
2138 		0x7e80, 0x7edc,
2139 		0x7ee8, 0x7efc,
2140 		0x8dc0, 0x8de0,
2141 		0x8df8, 0x8e04,
2142 		0x8e10, 0x8e84,
2143 		0x8ea0, 0x8f88,
2144 		0x8fb8, 0x9058,
2145 		0x9060, 0x9060,
2146 		0x9068, 0x90f8,
2147 		0x9100, 0x9124,
2148 		0x9400, 0x9470,
2149 		0x9600, 0x9600,
2150 		0x9608, 0x9638,
2151 		0x9640, 0x9704,
2152 		0x9710, 0x971c,
2153 		0x9800, 0x9808,
2154 		0x9810, 0x9864,
2155 		0x9c00, 0x9c6c,
2156 		0x9c80, 0x9cec,
2157 		0x9d00, 0x9d6c,
2158 		0x9d80, 0x9dec,
2159 		0x9e00, 0x9e6c,
2160 		0x9e80, 0x9eec,
2161 		0x9f00, 0x9f6c,
2162 		0x9f80, 0xa020,
2163 		0xd000, 0xd03c,
2164 		0xd100, 0xd118,
2165 		0xd200, 0xd214,
2166 		0xd220, 0xd234,
2167 		0xd240, 0xd254,
2168 		0xd260, 0xd274,
2169 		0xd280, 0xd294,
2170 		0xd2a0, 0xd2b4,
2171 		0xd2c0, 0xd2d4,
2172 		0xd2e0, 0xd2f4,
2173 		0xd300, 0xd31c,
2174 		0xdfc0, 0xdfe0,
2175 		0xe000, 0xf008,
2176 		0xf010, 0xf018,
2177 		0xf020, 0xf028,
2178 		0x11000, 0x11014,
2179 		0x11048, 0x1106c,
2180 		0x11074, 0x11088,
2181 		0x11098, 0x11120,
2182 		0x1112c, 0x1117c,
2183 		0x11190, 0x112e0,
2184 		0x11300, 0x1130c,
2185 		0x12000, 0x1206c,
2186 		0x19040, 0x1906c,
2187 		0x19078, 0x19080,
2188 		0x1908c, 0x190e8,
2189 		0x190f0, 0x190f8,
2190 		0x19100, 0x19110,
2191 		0x19120, 0x19124,
2192 		0x19150, 0x19194,
2193 		0x1919c, 0x191b0,
2194 		0x191d0, 0x191e8,
2195 		0x19238, 0x19290,
2196 		0x192a4, 0x192b0,
2197 		0x19348, 0x1934c,
2198 		0x193f8, 0x19418,
2199 		0x19420, 0x19428,
2200 		0x19430, 0x19444,
2201 		0x1944c, 0x1946c,
2202 		0x19474, 0x19474,
2203 		0x19490, 0x194cc,
2204 		0x194f0, 0x194f8,
2205 		0x19c00, 0x19c48,
2206 		0x19c50, 0x19c80,
2207 		0x19c94, 0x19c98,
2208 		0x19ca0, 0x19cbc,
2209 		0x19ce4, 0x19ce4,
2210 		0x19cf0, 0x19cf8,
2211 		0x19d00, 0x19d28,
2212 		0x19d50, 0x19d78,
2213 		0x19d94, 0x19d98,
2214 		0x19da0, 0x19de0,
2215 		0x19df0, 0x19e10,
2216 		0x19e50, 0x19e6c,
2217 		0x19ea0, 0x19ebc,
2218 		0x19ec4, 0x19ef4,
2219 		0x19f04, 0x19f2c,
2220 		0x19f34, 0x19f34,
2221 		0x19f40, 0x19f50,
2222 		0x19f90, 0x19fac,
2223 		0x19fc4, 0x19fc8,
2224 		0x19fd0, 0x19fe4,
2225 		0x1a000, 0x1a004,
2226 		0x1a010, 0x1a06c,
2227 		0x1a0b0, 0x1a0e4,
2228 		0x1a0ec, 0x1a0f8,
2229 		0x1a100, 0x1a108,
2230 		0x1a114, 0x1a130,
2231 		0x1a138, 0x1a1c4,
2232 		0x1a1fc, 0x1a1fc,
2233 		0x1e008, 0x1e00c,
2234 		0x1e040, 0x1e044,
2235 		0x1e04c, 0x1e04c,
2236 		0x1e284, 0x1e290,
2237 		0x1e2c0, 0x1e2c0,
2238 		0x1e2e0, 0x1e2e0,
2239 		0x1e300, 0x1e384,
2240 		0x1e3c0, 0x1e3c8,
2241 		0x1e408, 0x1e40c,
2242 		0x1e440, 0x1e444,
2243 		0x1e44c, 0x1e44c,
2244 		0x1e684, 0x1e690,
2245 		0x1e6c0, 0x1e6c0,
2246 		0x1e6e0, 0x1e6e0,
2247 		0x1e700, 0x1e784,
2248 		0x1e7c0, 0x1e7c8,
2249 		0x1e808, 0x1e80c,
2250 		0x1e840, 0x1e844,
2251 		0x1e84c, 0x1e84c,
2252 		0x1ea84, 0x1ea90,
2253 		0x1eac0, 0x1eac0,
2254 		0x1eae0, 0x1eae0,
2255 		0x1eb00, 0x1eb84,
2256 		0x1ebc0, 0x1ebc8,
2257 		0x1ec08, 0x1ec0c,
2258 		0x1ec40, 0x1ec44,
2259 		0x1ec4c, 0x1ec4c,
2260 		0x1ee84, 0x1ee90,
2261 		0x1eec0, 0x1eec0,
2262 		0x1eee0, 0x1eee0,
2263 		0x1ef00, 0x1ef84,
2264 		0x1efc0, 0x1efc8,
2265 		0x1f008, 0x1f00c,
2266 		0x1f040, 0x1f044,
2267 		0x1f04c, 0x1f04c,
2268 		0x1f284, 0x1f290,
2269 		0x1f2c0, 0x1f2c0,
2270 		0x1f2e0, 0x1f2e0,
2271 		0x1f300, 0x1f384,
2272 		0x1f3c0, 0x1f3c8,
2273 		0x1f408, 0x1f40c,
2274 		0x1f440, 0x1f444,
2275 		0x1f44c, 0x1f44c,
2276 		0x1f684, 0x1f690,
2277 		0x1f6c0, 0x1f6c0,
2278 		0x1f6e0, 0x1f6e0,
2279 		0x1f700, 0x1f784,
2280 		0x1f7c0, 0x1f7c8,
2281 		0x1f808, 0x1f80c,
2282 		0x1f840, 0x1f844,
2283 		0x1f84c, 0x1f84c,
2284 		0x1fa84, 0x1fa90,
2285 		0x1fac0, 0x1fac0,
2286 		0x1fae0, 0x1fae0,
2287 		0x1fb00, 0x1fb84,
2288 		0x1fbc0, 0x1fbc8,
2289 		0x1fc08, 0x1fc0c,
2290 		0x1fc40, 0x1fc44,
2291 		0x1fc4c, 0x1fc4c,
2292 		0x1fe84, 0x1fe90,
2293 		0x1fec0, 0x1fec0,
2294 		0x1fee0, 0x1fee0,
2295 		0x1ff00, 0x1ff84,
2296 		0x1ffc0, 0x1ffc8,
2297 		0x30000, 0x30030,
2298 		0x30100, 0x30168,
2299 		0x30190, 0x301a0,
2300 		0x301a8, 0x301b8,
2301 		0x301c4, 0x301c8,
2302 		0x301d0, 0x301d0,
2303 		0x30200, 0x30320,
2304 		0x30400, 0x304b4,
2305 		0x304c0, 0x3052c,
2306 		0x30540, 0x3061c,
2307 		0x30800, 0x308a0,
2308 		0x308c0, 0x30908,
2309 		0x30910, 0x309b8,
2310 		0x30a00, 0x30a04,
2311 		0x30a0c, 0x30a14,
2312 		0x30a1c, 0x30a2c,
2313 		0x30a44, 0x30a50,
2314 		0x30a74, 0x30a74,
2315 		0x30a7c, 0x30afc,
2316 		0x30b08, 0x30c24,
2317 		0x30d00, 0x30d14,
2318 		0x30d1c, 0x30d3c,
2319 		0x30d44, 0x30d4c,
2320 		0x30d54, 0x30d74,
2321 		0x30d7c, 0x30d7c,
2322 		0x30de0, 0x30de0,
2323 		0x30e00, 0x30ed4,
2324 		0x30f00, 0x30fa4,
2325 		0x30fc0, 0x30fc4,
2326 		0x31000, 0x31004,
2327 		0x31080, 0x310fc,
2328 		0x31208, 0x31220,
2329 		0x3123c, 0x31254,
2330 		0x31300, 0x31300,
2331 		0x31308, 0x3131c,
2332 		0x31338, 0x3133c,
2333 		0x31380, 0x31380,
2334 		0x31388, 0x313a8,
2335 		0x313b4, 0x313b4,
2336 		0x31400, 0x31420,
2337 		0x31438, 0x3143c,
2338 		0x31480, 0x31480,
2339 		0x314a8, 0x314a8,
2340 		0x314b0, 0x314b4,
2341 		0x314c8, 0x314d4,
2342 		0x31a40, 0x31a4c,
2343 		0x31af0, 0x31b20,
2344 		0x31b38, 0x31b3c,
2345 		0x31b80, 0x31b80,
2346 		0x31ba8, 0x31ba8,
2347 		0x31bb0, 0x31bb4,
2348 		0x31bc8, 0x31bd4,
2349 		0x32140, 0x3218c,
2350 		0x321f0, 0x321f4,
2351 		0x32200, 0x32200,
2352 		0x32218, 0x32218,
2353 		0x32400, 0x32400,
2354 		0x32408, 0x3241c,
2355 		0x32618, 0x32620,
2356 		0x32664, 0x32664,
2357 		0x326a8, 0x326a8,
2358 		0x326ec, 0x326ec,
2359 		0x32a00, 0x32abc,
2360 		0x32b00, 0x32b18,
2361 		0x32b20, 0x32b38,
2362 		0x32b40, 0x32b58,
2363 		0x32b60, 0x32b78,
2364 		0x32c00, 0x32c00,
2365 		0x32c08, 0x32c3c,
2366 		0x33000, 0x3302c,
2367 		0x33034, 0x33050,
2368 		0x33058, 0x33058,
2369 		0x33060, 0x3308c,
2370 		0x3309c, 0x330ac,
2371 		0x330c0, 0x330c0,
2372 		0x330c8, 0x330d0,
2373 		0x330d8, 0x330e0,
2374 		0x330ec, 0x3312c,
2375 		0x33134, 0x33150,
2376 		0x33158, 0x33158,
2377 		0x33160, 0x3318c,
2378 		0x3319c, 0x331ac,
2379 		0x331c0, 0x331c0,
2380 		0x331c8, 0x331d0,
2381 		0x331d8, 0x331e0,
2382 		0x331ec, 0x33290,
2383 		0x33298, 0x332c4,
2384 		0x332e4, 0x33390,
2385 		0x33398, 0x333c4,
2386 		0x333e4, 0x3342c,
2387 		0x33434, 0x33450,
2388 		0x33458, 0x33458,
2389 		0x33460, 0x3348c,
2390 		0x3349c, 0x334ac,
2391 		0x334c0, 0x334c0,
2392 		0x334c8, 0x334d0,
2393 		0x334d8, 0x334e0,
2394 		0x334ec, 0x3352c,
2395 		0x33534, 0x33550,
2396 		0x33558, 0x33558,
2397 		0x33560, 0x3358c,
2398 		0x3359c, 0x335ac,
2399 		0x335c0, 0x335c0,
2400 		0x335c8, 0x335d0,
2401 		0x335d8, 0x335e0,
2402 		0x335ec, 0x33690,
2403 		0x33698, 0x336c4,
2404 		0x336e4, 0x33790,
2405 		0x33798, 0x337c4,
2406 		0x337e4, 0x337fc,
2407 		0x33814, 0x33814,
2408 		0x33854, 0x33868,
2409 		0x33880, 0x3388c,
2410 		0x338c0, 0x338d0,
2411 		0x338e8, 0x338ec,
2412 		0x33900, 0x3392c,
2413 		0x33934, 0x33950,
2414 		0x33958, 0x33958,
2415 		0x33960, 0x3398c,
2416 		0x3399c, 0x339ac,
2417 		0x339c0, 0x339c0,
2418 		0x339c8, 0x339d0,
2419 		0x339d8, 0x339e0,
2420 		0x339ec, 0x33a90,
2421 		0x33a98, 0x33ac4,
2422 		0x33ae4, 0x33b10,
2423 		0x33b24, 0x33b28,
2424 		0x33b38, 0x33b50,
2425 		0x33bf0, 0x33c10,
2426 		0x33c24, 0x33c28,
2427 		0x33c38, 0x33c50,
2428 		0x33cf0, 0x33cfc,
2429 		0x34000, 0x34030,
2430 		0x34100, 0x34168,
2431 		0x34190, 0x341a0,
2432 		0x341a8, 0x341b8,
2433 		0x341c4, 0x341c8,
2434 		0x341d0, 0x341d0,
2435 		0x34200, 0x34320,
2436 		0x34400, 0x344b4,
2437 		0x344c0, 0x3452c,
2438 		0x34540, 0x3461c,
2439 		0x34800, 0x348a0,
2440 		0x348c0, 0x34908,
2441 		0x34910, 0x349b8,
2442 		0x34a00, 0x34a04,
2443 		0x34a0c, 0x34a14,
2444 		0x34a1c, 0x34a2c,
2445 		0x34a44, 0x34a50,
2446 		0x34a74, 0x34a74,
2447 		0x34a7c, 0x34afc,
2448 		0x34b08, 0x34c24,
2449 		0x34d00, 0x34d14,
2450 		0x34d1c, 0x34d3c,
2451 		0x34d44, 0x34d4c,
2452 		0x34d54, 0x34d74,
2453 		0x34d7c, 0x34d7c,
2454 		0x34de0, 0x34de0,
2455 		0x34e00, 0x34ed4,
2456 		0x34f00, 0x34fa4,
2457 		0x34fc0, 0x34fc4,
2458 		0x35000, 0x35004,
2459 		0x35080, 0x350fc,
2460 		0x35208, 0x35220,
2461 		0x3523c, 0x35254,
2462 		0x35300, 0x35300,
2463 		0x35308, 0x3531c,
2464 		0x35338, 0x3533c,
2465 		0x35380, 0x35380,
2466 		0x35388, 0x353a8,
2467 		0x353b4, 0x353b4,
2468 		0x35400, 0x35420,
2469 		0x35438, 0x3543c,
2470 		0x35480, 0x35480,
2471 		0x354a8, 0x354a8,
2472 		0x354b0, 0x354b4,
2473 		0x354c8, 0x354d4,
2474 		0x35a40, 0x35a4c,
2475 		0x35af0, 0x35b20,
2476 		0x35b38, 0x35b3c,
2477 		0x35b80, 0x35b80,
2478 		0x35ba8, 0x35ba8,
2479 		0x35bb0, 0x35bb4,
2480 		0x35bc8, 0x35bd4,
2481 		0x36140, 0x3618c,
2482 		0x361f0, 0x361f4,
2483 		0x36200, 0x36200,
2484 		0x36218, 0x36218,
2485 		0x36400, 0x36400,
2486 		0x36408, 0x3641c,
2487 		0x36618, 0x36620,
2488 		0x36664, 0x36664,
2489 		0x366a8, 0x366a8,
2490 		0x366ec, 0x366ec,
2491 		0x36a00, 0x36abc,
2492 		0x36b00, 0x36b18,
2493 		0x36b20, 0x36b38,
2494 		0x36b40, 0x36b58,
2495 		0x36b60, 0x36b78,
2496 		0x36c00, 0x36c00,
2497 		0x36c08, 0x36c3c,
2498 		0x37000, 0x3702c,
2499 		0x37034, 0x37050,
2500 		0x37058, 0x37058,
2501 		0x37060, 0x3708c,
2502 		0x3709c, 0x370ac,
2503 		0x370c0, 0x370c0,
2504 		0x370c8, 0x370d0,
2505 		0x370d8, 0x370e0,
2506 		0x370ec, 0x3712c,
2507 		0x37134, 0x37150,
2508 		0x37158, 0x37158,
2509 		0x37160, 0x3718c,
2510 		0x3719c, 0x371ac,
2511 		0x371c0, 0x371c0,
2512 		0x371c8, 0x371d0,
2513 		0x371d8, 0x371e0,
2514 		0x371ec, 0x37290,
2515 		0x37298, 0x372c4,
2516 		0x372e4, 0x37390,
2517 		0x37398, 0x373c4,
2518 		0x373e4, 0x3742c,
2519 		0x37434, 0x37450,
2520 		0x37458, 0x37458,
2521 		0x37460, 0x3748c,
2522 		0x3749c, 0x374ac,
2523 		0x374c0, 0x374c0,
2524 		0x374c8, 0x374d0,
2525 		0x374d8, 0x374e0,
2526 		0x374ec, 0x3752c,
2527 		0x37534, 0x37550,
2528 		0x37558, 0x37558,
2529 		0x37560, 0x3758c,
2530 		0x3759c, 0x375ac,
2531 		0x375c0, 0x375c0,
2532 		0x375c8, 0x375d0,
2533 		0x375d8, 0x375e0,
2534 		0x375ec, 0x37690,
2535 		0x37698, 0x376c4,
2536 		0x376e4, 0x37790,
2537 		0x37798, 0x377c4,
2538 		0x377e4, 0x377fc,
2539 		0x37814, 0x37814,
2540 		0x37854, 0x37868,
2541 		0x37880, 0x3788c,
2542 		0x378c0, 0x378d0,
2543 		0x378e8, 0x378ec,
2544 		0x37900, 0x3792c,
2545 		0x37934, 0x37950,
2546 		0x37958, 0x37958,
2547 		0x37960, 0x3798c,
2548 		0x3799c, 0x379ac,
2549 		0x379c0, 0x379c0,
2550 		0x379c8, 0x379d0,
2551 		0x379d8, 0x379e0,
2552 		0x379ec, 0x37a90,
2553 		0x37a98, 0x37ac4,
2554 		0x37ae4, 0x37b10,
2555 		0x37b24, 0x37b28,
2556 		0x37b38, 0x37b50,
2557 		0x37bf0, 0x37c10,
2558 		0x37c24, 0x37c28,
2559 		0x37c38, 0x37c50,
2560 		0x37cf0, 0x37cfc,
2561 		0x40040, 0x40040,
2562 		0x40080, 0x40084,
2563 		0x40100, 0x40100,
2564 		0x40140, 0x401bc,
2565 		0x40200, 0x40214,
2566 		0x40228, 0x40228,
2567 		0x40240, 0x40258,
2568 		0x40280, 0x40280,
2569 		0x40304, 0x40304,
2570 		0x40330, 0x4033c,
2571 		0x41304, 0x413c8,
2572 		0x413d0, 0x413dc,
2573 		0x413f0, 0x413f0,
2574 		0x41400, 0x4140c,
2575 		0x41414, 0x4141c,
2576 		0x41480, 0x414d0,
2577 		0x44000, 0x4407c,
2578 		0x440c0, 0x441ac,
2579 		0x441b4, 0x4427c,
2580 		0x442c0, 0x443ac,
2581 		0x443b4, 0x4447c,
2582 		0x444c0, 0x445ac,
2583 		0x445b4, 0x4467c,
2584 		0x446c0, 0x447ac,
2585 		0x447b4, 0x4487c,
2586 		0x448c0, 0x449ac,
2587 		0x449b4, 0x44a7c,
2588 		0x44ac0, 0x44bac,
2589 		0x44bb4, 0x44c7c,
2590 		0x44cc0, 0x44dac,
2591 		0x44db4, 0x44e7c,
2592 		0x44ec0, 0x44fac,
2593 		0x44fb4, 0x4507c,
2594 		0x450c0, 0x451ac,
2595 		0x451b4, 0x451fc,
2596 		0x45800, 0x45804,
2597 		0x45810, 0x45830,
2598 		0x45840, 0x45860,
2599 		0x45868, 0x45868,
2600 		0x45880, 0x45884,
2601 		0x458a0, 0x458b0,
2602 		0x45a00, 0x45a04,
2603 		0x45a10, 0x45a30,
2604 		0x45a40, 0x45a60,
2605 		0x45a68, 0x45a68,
2606 		0x45a80, 0x45a84,
2607 		0x45aa0, 0x45ab0,
2608 		0x460c0, 0x460e4,
2609 		0x47000, 0x4703c,
2610 		0x47044, 0x4708c,
2611 		0x47200, 0x47250,
2612 		0x47400, 0x47408,
2613 		0x47414, 0x47420,
2614 		0x47600, 0x47618,
2615 		0x47800, 0x47814,
2616 		0x47820, 0x4782c,
2617 		0x50000, 0x50084,
2618 		0x50090, 0x500cc,
2619 		0x50300, 0x50384,
2620 		0x50400, 0x50400,
2621 		0x50800, 0x50884,
2622 		0x50890, 0x508cc,
2623 		0x50b00, 0x50b84,
2624 		0x50c00, 0x50c00,
2625 		0x51000, 0x51020,
2626 		0x51028, 0x510b0,
2627 		0x51300, 0x51324,
2628 	};
2629 
2630 	static const unsigned int t6vf_reg_ranges[] = {
2631 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2632 		VF_MPS_REG(A_MPS_VF_CTL),
2633 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2634 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2635 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2636 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2637 		FW_T6VF_MBDATA_BASE_ADDR,
2638 		FW_T6VF_MBDATA_BASE_ADDR +
2639 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2640 	};
2641 
2642 	u32 *buf_end = (u32 *)(buf + buf_size);
2643 	const unsigned int *reg_ranges;
2644 	int reg_ranges_size, range;
2645 	unsigned int chip_version = chip_id(adap);
2646 
2647 	/*
2648 	 * Select the right set of register ranges to dump depending on the
2649 	 * adapter chip type.
2650 	 */
2651 	switch (chip_version) {
2652 	case CHELSIO_T4:
2653 		if (adap->flags & IS_VF) {
2654 			reg_ranges = t4vf_reg_ranges;
2655 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2656 		} else {
2657 			reg_ranges = t4_reg_ranges;
2658 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2659 		}
2660 		break;
2661 
2662 	case CHELSIO_T5:
2663 		if (adap->flags & IS_VF) {
2664 			reg_ranges = t5vf_reg_ranges;
2665 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2666 		} else {
2667 			reg_ranges = t5_reg_ranges;
2668 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2669 		}
2670 		break;
2671 
2672 	case CHELSIO_T6:
2673 		if (adap->flags & IS_VF) {
2674 			reg_ranges = t6vf_reg_ranges;
2675 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2676 		} else {
2677 			reg_ranges = t6_reg_ranges;
2678 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2679 		}
2680 		break;
2681 
2682 	default:
2683 		CH_ERR(adap,
2684 			"Unsupported chip version %d\n", chip_version);
2685 		return;
2686 	}
2687 
2688 	/*
2689 	 * Clear the register buffer and insert the appropriate register
2690 	 * values selected by the above register ranges.
2691 	 */
2692 	memset(buf, 0, buf_size);
2693 	for (range = 0; range < reg_ranges_size; range += 2) {
2694 		unsigned int reg = reg_ranges[range];
2695 		unsigned int last_reg = reg_ranges[range + 1];
2696 		u32 *bufp = (u32 *)(buf + reg);
2697 
2698 		/*
2699 		 * Iterate across the register range filling in the register
2700 		 * buffer but don't write past the end of the register buffer.
2701 		 */
2702 		while (reg <= last_reg && bufp < buf_end) {
2703 			*bufp++ = t4_read_reg(adap, reg);
2704 			reg += sizeof(u32);
2705 		}
2706 	}
2707 }
2708 
2709 /*
2710  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2711  * header followed by one or more VPD-R sections, each with its own header.
2712  */
2713 struct t4_vpd_hdr {
2714 	u8  id_tag;
2715 	u8  id_len[2];
2716 	u8  id_data[ID_LEN];
2717 };
2718 
2719 struct t4_vpdr_hdr {
2720 	u8  vpdr_tag;
2721 	u8  vpdr_len[2];
2722 };
2723 
2724 /*
2725  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2726  */
2727 #define EEPROM_DELAY		10		/* 10us per poll spin */
2728 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2729 
2730 #define EEPROM_STAT_ADDR	0x7bfc
2731 #define VPD_SIZE		0x800
2732 #define VPD_BASE		0x400
2733 #define VPD_BASE_OLD		0
2734 #define VPD_LEN			1024
2735 #define VPD_INFO_FLD_HDR_SIZE	3
2736 #define CHELSIO_VPD_UNIQUE_ID	0x82
2737 
2738 /*
2739  * Small utility function to wait till any outstanding VPD Access is complete.
2740  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2741  * VPD Access in flight.  This allows us to handle the problem of having a
2742  * previous VPD Access time out and prevent an attempt to inject a new VPD
2743  * Request before any in-flight VPD reguest has completed.
2744  */
2745 static int t4_seeprom_wait(struct adapter *adapter)
2746 {
2747 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2748 	int max_poll;
2749 
2750 	/*
2751 	 * If no VPD Access is in flight, we can just return success right
2752 	 * away.
2753 	 */
2754 	if (!adapter->vpd_busy)
2755 		return 0;
2756 
2757 	/*
2758 	 * Poll the VPD Capability Address/Flag register waiting for it
2759 	 * to indicate that the operation is complete.
2760 	 */
2761 	max_poll = EEPROM_MAX_POLL;
2762 	do {
2763 		u16 val;
2764 
2765 		udelay(EEPROM_DELAY);
2766 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2767 
2768 		/*
2769 		 * If the operation is complete, mark the VPD as no longer
2770 		 * busy and return success.
2771 		 */
2772 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2773 			adapter->vpd_busy = 0;
2774 			return 0;
2775 		}
2776 	} while (--max_poll);
2777 
2778 	/*
2779 	 * Failure!  Note that we leave the VPD Busy status set in order to
2780 	 * avoid pushing a new VPD Access request into the VPD Capability till
2781 	 * the current operation eventually succeeds.  It's a bug to issue a
2782 	 * new request when an existing request is in flight and will result
2783 	 * in corrupt hardware state.
2784 	 */
2785 	return -ETIMEDOUT;
2786 }
2787 
2788 /**
2789  *	t4_seeprom_read - read a serial EEPROM location
2790  *	@adapter: adapter to read
2791  *	@addr: EEPROM virtual address
2792  *	@data: where to store the read data
2793  *
2794  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2795  *	VPD capability.  Note that this function must be called with a virtual
2796  *	address.
2797  */
2798 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2799 {
2800 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2801 	int ret;
2802 
2803 	/*
2804 	 * VPD Accesses must alway be 4-byte aligned!
2805 	 */
2806 	if (addr >= EEPROMVSIZE || (addr & 3))
2807 		return -EINVAL;
2808 
2809 	/*
2810 	 * Wait for any previous operation which may still be in flight to
2811 	 * complete.
2812 	 */
2813 	ret = t4_seeprom_wait(adapter);
2814 	if (ret) {
2815 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2816 		return ret;
2817 	}
2818 
2819 	/*
2820 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2821 	 * for our request to complete.  If it doesn't complete, note the
2822 	 * error and return it to our caller.  Note that we do not reset the
2823 	 * VPD Busy status!
2824 	 */
2825 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2826 	adapter->vpd_busy = 1;
2827 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2828 	ret = t4_seeprom_wait(adapter);
2829 	if (ret) {
2830 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2831 		return ret;
2832 	}
2833 
2834 	/*
2835 	 * Grab the returned data, swizzle it into our endianness and
2836 	 * return success.
2837 	 */
2838 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2839 	*data = le32_to_cpu(*data);
2840 	return 0;
2841 }
2842 
2843 /**
2844  *	t4_seeprom_write - write a serial EEPROM location
2845  *	@adapter: adapter to write
2846  *	@addr: virtual EEPROM address
2847  *	@data: value to write
2848  *
2849  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2850  *	VPD capability.  Note that this function must be called with a virtual
2851  *	address.
2852  */
2853 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2854 {
2855 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2856 	int ret;
2857 	u32 stats_reg;
2858 	int max_poll;
2859 
2860 	/*
2861 	 * VPD Accesses must alway be 4-byte aligned!
2862 	 */
2863 	if (addr >= EEPROMVSIZE || (addr & 3))
2864 		return -EINVAL;
2865 
2866 	/*
2867 	 * Wait for any previous operation which may still be in flight to
2868 	 * complete.
2869 	 */
2870 	ret = t4_seeprom_wait(adapter);
2871 	if (ret) {
2872 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2873 		return ret;
2874 	}
2875 
2876 	/*
2877 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2878 	 * for our request to complete.  If it doesn't complete, note the
2879 	 * error and return it to our caller.  Note that we do not reset the
2880 	 * VPD Busy status!
2881 	 */
2882 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2883 				 cpu_to_le32(data));
2884 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2885 				 (u16)addr | PCI_VPD_ADDR_F);
2886 	adapter->vpd_busy = 1;
2887 	adapter->vpd_flag = 0;
2888 	ret = t4_seeprom_wait(adapter);
2889 	if (ret) {
2890 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2891 		return ret;
2892 	}
2893 
2894 	/*
2895 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2896 	 * request to complete. If it doesn't complete, return error.
2897 	 */
2898 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2899 	max_poll = EEPROM_MAX_POLL;
2900 	do {
2901 		udelay(EEPROM_DELAY);
2902 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2903 	} while ((stats_reg & 0x1) && --max_poll);
2904 	if (!max_poll)
2905 		return -ETIMEDOUT;
2906 
2907 	/* Return success! */
2908 	return 0;
2909 }
2910 
2911 /**
2912  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2913  *	@phys_addr: the physical EEPROM address
2914  *	@fn: the PCI function number
2915  *	@sz: size of function-specific area
2916  *
2917  *	Translate a physical EEPROM address to virtual.  The first 1K is
2918  *	accessed through virtual addresses starting at 31K, the rest is
2919  *	accessed through virtual addresses starting at 0.
2920  *
2921  *	The mapping is as follows:
2922  *	[0..1K) -> [31K..32K)
2923  *	[1K..1K+A) -> [ES-A..ES)
2924  *	[1K+A..ES) -> [0..ES-A-1K)
2925  *
2926  *	where A = @fn * @sz, and ES = EEPROM size.
2927  */
2928 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2929 {
2930 	fn *= sz;
2931 	if (phys_addr < 1024)
2932 		return phys_addr + (31 << 10);
2933 	if (phys_addr < 1024 + fn)
2934 		return EEPROMSIZE - fn + phys_addr - 1024;
2935 	if (phys_addr < EEPROMSIZE)
2936 		return phys_addr - 1024 - fn;
2937 	return -EINVAL;
2938 }
2939 
2940 /**
2941  *	t4_seeprom_wp - enable/disable EEPROM write protection
2942  *	@adapter: the adapter
2943  *	@enable: whether to enable or disable write protection
2944  *
2945  *	Enables or disables write protection on the serial EEPROM.
2946  */
2947 int t4_seeprom_wp(struct adapter *adapter, int enable)
2948 {
2949 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2950 }
2951 
2952 /**
2953  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2954  *	@vpd: Pointer to buffered vpd data structure
2955  *	@kw: The keyword to search for
2956  *	@region: VPD region to search (starting from 0)
2957  *
2958  *	Returns the value of the information field keyword or
2959  *	-ENOENT otherwise.
2960  */
2961 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2962 {
2963 	int i, tag;
2964 	unsigned int offset, len;
2965 	const struct t4_vpdr_hdr *vpdr;
2966 
2967 	offset = sizeof(struct t4_vpd_hdr);
2968 	vpdr = (const void *)(vpd + offset);
2969 	tag = vpdr->vpdr_tag;
2970 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2971 	while (region--) {
2972 		offset += sizeof(struct t4_vpdr_hdr) + len;
2973 		vpdr = (const void *)(vpd + offset);
2974 		if (++tag != vpdr->vpdr_tag)
2975 			return -ENOENT;
2976 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2977 	}
2978 	offset += sizeof(struct t4_vpdr_hdr);
2979 
2980 	if (offset + len > VPD_LEN) {
2981 		return -ENOENT;
2982 	}
2983 
2984 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2985 		if (memcmp(vpd + i , kw , 2) == 0){
2986 			i += VPD_INFO_FLD_HDR_SIZE;
2987 			return i;
2988 		}
2989 
2990 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2991 	}
2992 
2993 	return -ENOENT;
2994 }
2995 
2996 
2997 /**
2998  *	get_vpd_params - read VPD parameters from VPD EEPROM
2999  *	@adapter: adapter to read
3000  *	@p: where to store the parameters
3001  *	@vpd: caller provided temporary space to read the VPD into
3002  *
3003  *	Reads card parameters stored in VPD EEPROM.
3004  */
3005 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3006     uint16_t device_id, u32 *buf)
3007 {
3008 	int i, ret, addr;
3009 	int ec, sn, pn, na, md;
3010 	u8 csum;
3011 	const u8 *vpd = (const u8 *)buf;
3012 
3013 	/*
3014 	 * Card information normally starts at VPD_BASE but early cards had
3015 	 * it at 0.
3016 	 */
3017 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3018 	if (ret)
3019 		return (ret);
3020 
3021 	/*
3022 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3023 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3024 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3025 	 * is expected to automatically put this entry at the
3026 	 * beginning of the VPD.
3027 	 */
3028 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3029 
3030 	for (i = 0; i < VPD_LEN; i += 4) {
3031 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3032 		if (ret)
3033 			return ret;
3034 	}
3035 
3036 #define FIND_VPD_KW(var,name) do { \
3037 	var = get_vpd_keyword_val(vpd, name, 0); \
3038 	if (var < 0) { \
3039 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3040 		return -EINVAL; \
3041 	} \
3042 } while (0)
3043 
3044 	FIND_VPD_KW(i, "RV");
3045 	for (csum = 0; i >= 0; i--)
3046 		csum += vpd[i];
3047 
3048 	if (csum) {
3049 		CH_ERR(adapter,
3050 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3051 		return -EINVAL;
3052 	}
3053 
3054 	FIND_VPD_KW(ec, "EC");
3055 	FIND_VPD_KW(sn, "SN");
3056 	FIND_VPD_KW(pn, "PN");
3057 	FIND_VPD_KW(na, "NA");
3058 #undef FIND_VPD_KW
3059 
3060 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3061 	strstrip(p->id);
3062 	memcpy(p->ec, vpd + ec, EC_LEN);
3063 	strstrip(p->ec);
3064 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3065 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3066 	strstrip(p->sn);
3067 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3068 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3069 	strstrip((char *)p->pn);
3070 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3071 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3072 	strstrip((char *)p->na);
3073 
3074 	if (device_id & 0x80)
3075 		return 0;	/* Custom card */
3076 
3077 	md = get_vpd_keyword_val(vpd, "VF", 1);
3078 	if (md < 0) {
3079 		snprintf(p->md, sizeof(p->md), "unknown");
3080 	} else {
3081 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3082 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3083 		strstrip((char *)p->md);
3084 	}
3085 
3086 	return 0;
3087 }
3088 
3089 /* serial flash and firmware constants and flash config file constants */
3090 enum {
3091 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3092 
3093 	/* flash command opcodes */
3094 	SF_PROG_PAGE    = 2,	/* program 256B page */
3095 	SF_WR_DISABLE   = 4,	/* disable writes */
3096 	SF_RD_STATUS    = 5,	/* read status register */
3097 	SF_WR_ENABLE    = 6,	/* enable writes */
3098 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3099 	SF_RD_ID	= 0x9f,	/* read ID */
3100 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3101 };
3102 
3103 /**
3104  *	sf1_read - read data from the serial flash
3105  *	@adapter: the adapter
3106  *	@byte_cnt: number of bytes to read
3107  *	@cont: whether another operation will be chained
3108  *	@lock: whether to lock SF for PL access only
3109  *	@valp: where to store the read data
3110  *
3111  *	Reads up to 4 bytes of data from the serial flash.  The location of
3112  *	the read needs to be specified prior to calling this by issuing the
3113  *	appropriate commands to the serial flash.
3114  */
3115 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3116 		    int lock, u32 *valp)
3117 {
3118 	int ret;
3119 
3120 	if (!byte_cnt || byte_cnt > 4)
3121 		return -EINVAL;
3122 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3123 		return -EBUSY;
3124 	t4_write_reg(adapter, A_SF_OP,
3125 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3126 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3127 	if (!ret)
3128 		*valp = t4_read_reg(adapter, A_SF_DATA);
3129 	return ret;
3130 }
3131 
3132 /**
3133  *	sf1_write - write data to the serial flash
3134  *	@adapter: the adapter
3135  *	@byte_cnt: number of bytes to write
3136  *	@cont: whether another operation will be chained
3137  *	@lock: whether to lock SF for PL access only
3138  *	@val: value to write
3139  *
3140  *	Writes up to 4 bytes of data to the serial flash.  The location of
3141  *	the write needs to be specified prior to calling this by issuing the
3142  *	appropriate commands to the serial flash.
3143  */
3144 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3145 		     int lock, u32 val)
3146 {
3147 	if (!byte_cnt || byte_cnt > 4)
3148 		return -EINVAL;
3149 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3150 		return -EBUSY;
3151 	t4_write_reg(adapter, A_SF_DATA, val);
3152 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3153 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3154 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3155 }
3156 
3157 /**
3158  *	flash_wait_op - wait for a flash operation to complete
3159  *	@adapter: the adapter
3160  *	@attempts: max number of polls of the status register
3161  *	@delay: delay between polls in ms
3162  *
3163  *	Wait for a flash operation to complete by polling the status register.
3164  */
3165 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3166 {
3167 	int ret;
3168 	u32 status;
3169 
3170 	while (1) {
3171 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3172 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3173 			return ret;
3174 		if (!(status & 1))
3175 			return 0;
3176 		if (--attempts == 0)
3177 			return -EAGAIN;
3178 		if (delay)
3179 			msleep(delay);
3180 	}
3181 }
3182 
3183 /**
3184  *	t4_read_flash - read words from serial flash
3185  *	@adapter: the adapter
3186  *	@addr: the start address for the read
3187  *	@nwords: how many 32-bit words to read
3188  *	@data: where to store the read data
3189  *	@byte_oriented: whether to store data as bytes or as words
3190  *
3191  *	Read the specified number of 32-bit words from the serial flash.
3192  *	If @byte_oriented is set the read data is stored as a byte array
3193  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3194  *	natural endianness.
3195  */
3196 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3197 		  unsigned int nwords, u32 *data, int byte_oriented)
3198 {
3199 	int ret;
3200 
3201 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3202 		return -EINVAL;
3203 
3204 	addr = swab32(addr) | SF_RD_DATA_FAST;
3205 
3206 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3207 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3208 		return ret;
3209 
3210 	for ( ; nwords; nwords--, data++) {
3211 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3212 		if (nwords == 1)
3213 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3214 		if (ret)
3215 			return ret;
3216 		if (byte_oriented)
3217 			*data = (__force __u32)(cpu_to_be32(*data));
3218 	}
3219 	return 0;
3220 }
3221 
3222 /**
3223  *	t4_write_flash - write up to a page of data to the serial flash
3224  *	@adapter: the adapter
3225  *	@addr: the start address to write
3226  *	@n: length of data to write in bytes
3227  *	@data: the data to write
3228  *	@byte_oriented: whether to store data as bytes or as words
3229  *
3230  *	Writes up to a page of data (256 bytes) to the serial flash starting
3231  *	at the given address.  All the data must be written to the same page.
3232  *	If @byte_oriented is set the write data is stored as byte stream
3233  *	(i.e. matches what on disk), otherwise in big-endian.
3234  */
3235 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3236 			  unsigned int n, const u8 *data, int byte_oriented)
3237 {
3238 	int ret;
3239 	u32 buf[SF_PAGE_SIZE / 4];
3240 	unsigned int i, c, left, val, offset = addr & 0xff;
3241 
3242 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3243 		return -EINVAL;
3244 
3245 	val = swab32(addr) | SF_PROG_PAGE;
3246 
3247 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3248 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3249 		goto unlock;
3250 
3251 	for (left = n; left; left -= c) {
3252 		c = min(left, 4U);
3253 		for (val = 0, i = 0; i < c; ++i)
3254 			val = (val << 8) + *data++;
3255 
3256 		if (!byte_oriented)
3257 			val = cpu_to_be32(val);
3258 
3259 		ret = sf1_write(adapter, c, c != left, 1, val);
3260 		if (ret)
3261 			goto unlock;
3262 	}
3263 	ret = flash_wait_op(adapter, 8, 1);
3264 	if (ret)
3265 		goto unlock;
3266 
3267 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3268 
3269 	/* Read the page to verify the write succeeded */
3270 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3271 			    byte_oriented);
3272 	if (ret)
3273 		return ret;
3274 
3275 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3276 		CH_ERR(adapter,
3277 			"failed to correctly write the flash page at %#x\n",
3278 			addr);
3279 		return -EIO;
3280 	}
3281 	return 0;
3282 
3283 unlock:
3284 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3285 	return ret;
3286 }
3287 
3288 /**
3289  *	t4_get_fw_version - read the firmware version
3290  *	@adapter: the adapter
3291  *	@vers: where to place the version
3292  *
3293  *	Reads the FW version from flash.
3294  */
3295 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3296 {
3297 	return t4_read_flash(adapter, FLASH_FW_START +
3298 			     offsetof(struct fw_hdr, fw_ver), 1,
3299 			     vers, 0);
3300 }
3301 
3302 /**
3303  *	t4_get_fw_hdr - read the firmware header
3304  *	@adapter: the adapter
3305  *	@hdr: where to place the version
3306  *
3307  *	Reads the FW header from flash into caller provided buffer.
3308  */
3309 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3310 {
3311 	return t4_read_flash(adapter, FLASH_FW_START,
3312 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3313 }
3314 
3315 /**
3316  *	t4_get_bs_version - read the firmware bootstrap version
3317  *	@adapter: the adapter
3318  *	@vers: where to place the version
3319  *
3320  *	Reads the FW Bootstrap version from flash.
3321  */
3322 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3323 {
3324 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3325 			     offsetof(struct fw_hdr, fw_ver), 1,
3326 			     vers, 0);
3327 }
3328 
3329 /**
3330  *	t4_get_tp_version - read the TP microcode version
3331  *	@adapter: the adapter
3332  *	@vers: where to place the version
3333  *
3334  *	Reads the TP microcode version from flash.
3335  */
3336 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3337 {
3338 	return t4_read_flash(adapter, FLASH_FW_START +
3339 			     offsetof(struct fw_hdr, tp_microcode_ver),
3340 			     1, vers, 0);
3341 }
3342 
3343 /**
3344  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3345  *	@adapter: the adapter
3346  *	@vers: where to place the version
3347  *
3348  *	Reads the Expansion ROM header from FLASH and returns the version
3349  *	number (if present) through the @vers return value pointer.  We return
3350  *	this in the Firmware Version Format since it's convenient.  Return
3351  *	0 on success, -ENOENT if no Expansion ROM is present.
3352  */
3353 int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
3354 {
3355 	struct exprom_header {
3356 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3357 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3358 	} *hdr;
3359 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3360 					   sizeof(u32))];
3361 	int ret;
3362 
3363 	ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
3364 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3365 			    0);
3366 	if (ret)
3367 		return ret;
3368 
3369 	hdr = (struct exprom_header *)exprom_header_buf;
3370 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3371 		return -ENOENT;
3372 
3373 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3374 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3375 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3376 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3377 	return 0;
3378 }
3379 
3380 /**
3381  *	t4_get_scfg_version - return the Serial Configuration version
3382  *	@adapter: the adapter
3383  *	@vers: where to place the version
3384  *
3385  *	Reads the Serial Configuration Version via the Firmware interface
3386  *	(thus this can only be called once we're ready to issue Firmware
3387  *	commands).  The format of the Serial Configuration version is
3388  *	adapter specific.  Returns 0 on success, an error on failure.
3389  *
3390  *	Note that early versions of the Firmware didn't include the ability
3391  *	to retrieve the Serial Configuration version, so we zero-out the
3392  *	return-value parameter in that case to avoid leaving it with
3393  *	garbage in it.
3394  *
3395  *	Also note that the Firmware will return its cached copy of the Serial
3396  *	Initialization Revision ID, not the actual Revision ID as written in
3397  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3398  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3399  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3400  *	been issued if the Host Driver will be performing a full adapter
3401  *	initialization.
3402  */
3403 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3404 {
3405 	u32 scfgrev_param;
3406 	int ret;
3407 
3408 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3409 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3410 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3411 			      1, &scfgrev_param, vers);
3412 	if (ret)
3413 		*vers = 0;
3414 	return ret;
3415 }
3416 
3417 /**
3418  *	t4_get_vpd_version - return the VPD version
3419  *	@adapter: the adapter
3420  *	@vers: where to place the version
3421  *
3422  *	Reads the VPD via the Firmware interface (thus this can only be called
3423  *	once we're ready to issue Firmware commands).  The format of the
3424  *	VPD version is adapter specific.  Returns 0 on success, an error on
3425  *	failure.
3426  *
3427  *	Note that early versions of the Firmware didn't include the ability
3428  *	to retrieve the VPD version, so we zero-out the return-value parameter
3429  *	in that case to avoid leaving it with garbage in it.
3430  *
3431  *	Also note that the Firmware will return its cached copy of the VPD
3432  *	Revision ID, not the actual Revision ID as written in the Serial
3433  *	EEPROM.  This is only an issue if a new VPD has been written and the
3434  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3435  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3436  *	if the Host Driver will be performing a full adapter initialization.
3437  */
3438 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3439 {
3440 	u32 vpdrev_param;
3441 	int ret;
3442 
3443 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3444 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3445 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3446 			      1, &vpdrev_param, vers);
3447 	if (ret)
3448 		*vers = 0;
3449 	return ret;
3450 }
3451 
3452 /**
3453  *	t4_get_version_info - extract various chip/firmware version information
3454  *	@adapter: the adapter
3455  *
3456  *	Reads various chip/firmware version numbers and stores them into the
3457  *	adapter Adapter Parameters structure.  If any of the efforts fails
3458  *	the first failure will be returned, but all of the version numbers
3459  *	will be read.
3460  */
3461 int t4_get_version_info(struct adapter *adapter)
3462 {
3463 	int ret = 0;
3464 
3465 	#define FIRST_RET(__getvinfo) \
3466 	do { \
3467 		int __ret = __getvinfo; \
3468 		if (__ret && !ret) \
3469 			ret = __ret; \
3470 	} while (0)
3471 
3472 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3473 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3474 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3475 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3476 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3477 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3478 
3479 	#undef FIRST_RET
3480 
3481 	return ret;
3482 }
3483 
3484 /**
3485  *	t4_flash_erase_sectors - erase a range of flash sectors
3486  *	@adapter: the adapter
3487  *	@start: the first sector to erase
3488  *	@end: the last sector to erase
3489  *
3490  *	Erases the sectors in the given inclusive range.
3491  */
3492 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3493 {
3494 	int ret = 0;
3495 
3496 	if (end >= adapter->params.sf_nsec)
3497 		return -EINVAL;
3498 
3499 	while (start <= end) {
3500 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3501 		    (ret = sf1_write(adapter, 4, 0, 1,
3502 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3503 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3504 			CH_ERR(adapter,
3505 				"erase of flash sector %d failed, error %d\n",
3506 				start, ret);
3507 			break;
3508 		}
3509 		start++;
3510 	}
3511 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3512 	return ret;
3513 }
3514 
3515 /**
3516  *	t4_flash_cfg_addr - return the address of the flash configuration file
3517  *	@adapter: the adapter
3518  *
3519  *	Return the address within the flash where the Firmware Configuration
3520  *	File is stored, or an error if the device FLASH is too small to contain
3521  *	a Firmware Configuration File.
3522  */
3523 int t4_flash_cfg_addr(struct adapter *adapter)
3524 {
3525 	/*
3526 	 * If the device FLASH isn't large enough to hold a Firmware
3527 	 * Configuration File, return an error.
3528 	 */
3529 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3530 		return -ENOSPC;
3531 
3532 	return FLASH_CFG_START;
3533 }
3534 
3535 /*
3536  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3537  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3538  * and emit an error message for mismatched firmware to save our caller the
3539  * effort ...
3540  */
3541 static int t4_fw_matches_chip(struct adapter *adap,
3542 			      const struct fw_hdr *hdr)
3543 {
3544 	/*
3545 	 * The expression below will return FALSE for any unsupported adapter
3546 	 * which will keep us "honest" in the future ...
3547 	 */
3548 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3549 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3550 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3551 		return 1;
3552 
3553 	CH_ERR(adap,
3554 		"FW image (%d) is not suitable for this adapter (%d)\n",
3555 		hdr->chip, chip_id(adap));
3556 	return 0;
3557 }
3558 
3559 /**
3560  *	t4_load_fw - download firmware
3561  *	@adap: the adapter
3562  *	@fw_data: the firmware image to write
3563  *	@size: image size
3564  *
3565  *	Write the supplied firmware image to the card's serial flash.
3566  */
3567 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3568 {
3569 	u32 csum;
3570 	int ret, addr;
3571 	unsigned int i;
3572 	u8 first_page[SF_PAGE_SIZE];
3573 	const u32 *p = (const u32 *)fw_data;
3574 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3575 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3576 	unsigned int fw_start_sec;
3577 	unsigned int fw_start;
3578 	unsigned int fw_size;
3579 
3580 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3581 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3582 		fw_start = FLASH_FWBOOTSTRAP_START;
3583 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3584 	} else {
3585 		fw_start_sec = FLASH_FW_START_SEC;
3586  		fw_start = FLASH_FW_START;
3587 		fw_size = FLASH_FW_MAX_SIZE;
3588 	}
3589 
3590 	if (!size) {
3591 		CH_ERR(adap, "FW image has no data\n");
3592 		return -EINVAL;
3593 	}
3594 	if (size & 511) {
3595 		CH_ERR(adap,
3596 			"FW image size not multiple of 512 bytes\n");
3597 		return -EINVAL;
3598 	}
3599 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3600 		CH_ERR(adap,
3601 			"FW image size differs from size in FW header\n");
3602 		return -EINVAL;
3603 	}
3604 	if (size > fw_size) {
3605 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3606 			fw_size);
3607 		return -EFBIG;
3608 	}
3609 	if (!t4_fw_matches_chip(adap, hdr))
3610 		return -EINVAL;
3611 
3612 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3613 		csum += be32_to_cpu(p[i]);
3614 
3615 	if (csum != 0xffffffff) {
3616 		CH_ERR(adap,
3617 			"corrupted firmware image, checksum %#x\n", csum);
3618 		return -EINVAL;
3619 	}
3620 
3621 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3622 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3623 	if (ret)
3624 		goto out;
3625 
3626 	/*
3627 	 * We write the correct version at the end so the driver can see a bad
3628 	 * version if the FW write fails.  Start by writing a copy of the
3629 	 * first page with a bad version.
3630 	 */
3631 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3632 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3633 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3634 	if (ret)
3635 		goto out;
3636 
3637 	addr = fw_start;
3638 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3639 		addr += SF_PAGE_SIZE;
3640 		fw_data += SF_PAGE_SIZE;
3641 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3642 		if (ret)
3643 			goto out;
3644 	}
3645 
3646 	ret = t4_write_flash(adap,
3647 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3648 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3649 out:
3650 	if (ret)
3651 		CH_ERR(adap, "firmware download failed, error %d\n",
3652 			ret);
3653 	return ret;
3654 }
3655 
3656 /**
3657  *	t4_fwcache - firmware cache operation
3658  *	@adap: the adapter
3659  *	@op  : the operation (flush or flush and invalidate)
3660  */
3661 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3662 {
3663 	struct fw_params_cmd c;
3664 
3665 	memset(&c, 0, sizeof(c));
3666 	c.op_to_vfn =
3667 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3668 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3669 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3670 				V_FW_PARAMS_CMD_VFN(0));
3671 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3672 	c.param[0].mnem =
3673 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3674 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3675 	c.param[0].val = (__force __be32)op;
3676 
3677 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3678 }
3679 
3680 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3681 			unsigned int *pif_req_wrptr,
3682 			unsigned int *pif_rsp_wrptr)
3683 {
3684 	int i, j;
3685 	u32 cfg, val, req, rsp;
3686 
3687 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3688 	if (cfg & F_LADBGEN)
3689 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3690 
3691 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3692 	req = G_POLADBGWRPTR(val);
3693 	rsp = G_PILADBGWRPTR(val);
3694 	if (pif_req_wrptr)
3695 		*pif_req_wrptr = req;
3696 	if (pif_rsp_wrptr)
3697 		*pif_rsp_wrptr = rsp;
3698 
3699 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3700 		for (j = 0; j < 6; j++) {
3701 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3702 				     V_PILADBGRDPTR(rsp));
3703 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3704 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3705 			req++;
3706 			rsp++;
3707 		}
3708 		req = (req + 2) & M_POLADBGRDPTR;
3709 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3710 	}
3711 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3712 }
3713 
3714 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3715 {
3716 	u32 cfg;
3717 	int i, j, idx;
3718 
3719 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3720 	if (cfg & F_LADBGEN)
3721 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3722 
3723 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3724 		for (j = 0; j < 5; j++) {
3725 			idx = 8 * i + j;
3726 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3727 				     V_PILADBGRDPTR(idx));
3728 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3729 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3730 		}
3731 	}
3732 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3733 }
3734 
3735 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3736 {
3737 	unsigned int i, j;
3738 
3739 	for (i = 0; i < 8; i++) {
3740 		u32 *p = la_buf + i;
3741 
3742 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3743 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3744 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3745 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3746 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3747 	}
3748 }
3749 
3750 /**
3751  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3752  *	@caps16: a 16-bit Port Capabilities value
3753  *
3754  *	Returns the equivalent 32-bit Port Capabilities value.
3755  */
3756 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3757 {
3758 	uint32_t caps32 = 0;
3759 
3760 	#define CAP16_TO_CAP32(__cap) \
3761 		do { \
3762 			if (caps16 & FW_PORT_CAP_##__cap) \
3763 				caps32 |= FW_PORT_CAP32_##__cap; \
3764 		} while (0)
3765 
3766 	CAP16_TO_CAP32(SPEED_100M);
3767 	CAP16_TO_CAP32(SPEED_1G);
3768 	CAP16_TO_CAP32(SPEED_25G);
3769 	CAP16_TO_CAP32(SPEED_10G);
3770 	CAP16_TO_CAP32(SPEED_40G);
3771 	CAP16_TO_CAP32(SPEED_100G);
3772 	CAP16_TO_CAP32(FC_RX);
3773 	CAP16_TO_CAP32(FC_TX);
3774 	CAP16_TO_CAP32(ANEG);
3775 	CAP16_TO_CAP32(FORCE_PAUSE);
3776 	CAP16_TO_CAP32(MDIAUTO);
3777 	CAP16_TO_CAP32(MDISTRAIGHT);
3778 	CAP16_TO_CAP32(FEC_RS);
3779 	CAP16_TO_CAP32(FEC_BASER_RS);
3780 	CAP16_TO_CAP32(802_3_PAUSE);
3781 	CAP16_TO_CAP32(802_3_ASM_DIR);
3782 
3783 	#undef CAP16_TO_CAP32
3784 
3785 	return caps32;
3786 }
3787 
3788 /**
3789  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3790  *	@caps32: a 32-bit Port Capabilities value
3791  *
3792  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3793  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3794  *	Port Capabilities and some fields/values may not make it.
3795  */
3796 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3797 {
3798 	uint16_t caps16 = 0;
3799 
3800 	#define CAP32_TO_CAP16(__cap) \
3801 		do { \
3802 			if (caps32 & FW_PORT_CAP32_##__cap) \
3803 				caps16 |= FW_PORT_CAP_##__cap; \
3804 		} while (0)
3805 
3806 	CAP32_TO_CAP16(SPEED_100M);
3807 	CAP32_TO_CAP16(SPEED_1G);
3808 	CAP32_TO_CAP16(SPEED_10G);
3809 	CAP32_TO_CAP16(SPEED_25G);
3810 	CAP32_TO_CAP16(SPEED_40G);
3811 	CAP32_TO_CAP16(SPEED_100G);
3812 	CAP32_TO_CAP16(FC_RX);
3813 	CAP32_TO_CAP16(FC_TX);
3814 	CAP32_TO_CAP16(802_3_PAUSE);
3815 	CAP32_TO_CAP16(802_3_ASM_DIR);
3816 	CAP32_TO_CAP16(ANEG);
3817 	CAP32_TO_CAP16(FORCE_PAUSE);
3818 	CAP32_TO_CAP16(MDIAUTO);
3819 	CAP32_TO_CAP16(MDISTRAIGHT);
3820 	CAP32_TO_CAP16(FEC_RS);
3821 	CAP32_TO_CAP16(FEC_BASER_RS);
3822 
3823 	#undef CAP32_TO_CAP16
3824 
3825 	return caps16;
3826 }
3827 
3828 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3829 {
3830 	int8_t fec = 0;
3831 
3832 	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3833 		return (unset_means_none ? FEC_NONE : 0);
3834 
3835 	if (caps & FW_PORT_CAP32_FEC_RS)
3836 		fec |= FEC_RS;
3837 	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3838 		fec |= FEC_BASER_RS;
3839 	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3840 		fec |= FEC_NONE;
3841 
3842 	return (fec);
3843 }
3844 
3845 /*
3846  * Note that 0 is not translated to NO_FEC.
3847  */
3848 static uint32_t fec_to_fwcap(int8_t fec)
3849 {
3850 	uint32_t caps = 0;
3851 
3852 	/* Only real FECs allowed. */
3853 	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3854 
3855 	if (fec & FEC_RS)
3856 		caps |= FW_PORT_CAP32_FEC_RS;
3857 	if (fec & FEC_BASER_RS)
3858 		caps |= FW_PORT_CAP32_FEC_BASER_RS;
3859 	if (fec & FEC_NONE)
3860 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
3861 
3862 	return (caps);
3863 }
3864 
3865 /**
3866  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3867  *	@phy: the PHY to setup
3868  *	@mac: the MAC to setup
3869  *	@lc: the requested link configuration
3870  *
3871  *	Set up a port's MAC and PHY according to a desired link configuration.
3872  *	- If the PHY can auto-negotiate first decide what to advertise, then
3873  *	  enable/disable auto-negotiation as desired, and reset.
3874  *	- If the PHY does not auto-negotiate just reset it.
3875  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3876  *	  otherwise do it later based on the outcome of auto-negotiation.
3877  */
3878 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3879 		  struct link_config *lc)
3880 {
3881 	struct fw_port_cmd c;
3882 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3883 	unsigned int aneg, fc, fec, speed, rcap;
3884 
3885 	fc = 0;
3886 	if (lc->requested_fc & PAUSE_RX)
3887 		fc |= FW_PORT_CAP32_FC_RX;
3888 	if (lc->requested_fc & PAUSE_TX)
3889 		fc |= FW_PORT_CAP32_FC_TX;
3890 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3891 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3892 
3893 	if (lc->requested_aneg == AUTONEG_DISABLE)
3894 		aneg = 0;
3895 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3896 		aneg = FW_PORT_CAP32_ANEG;
3897 	else
3898 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3899 
3900 	if (aneg) {
3901 		speed = lc->pcaps &
3902 		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3903 	} else if (lc->requested_speed != 0)
3904 		speed = speed_to_fwcap(lc->requested_speed);
3905 	else
3906 		speed = fwcap_top_speed(lc->pcaps);
3907 
3908 	fec = 0;
3909 	if (fec_supported(speed)) {
3910 		int force_fec;
3911 
3912 		if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
3913 			force_fec = lc->force_fec;
3914 		else
3915 			force_fec = 0;
3916 
3917 		if (lc->requested_fec == FEC_AUTO) {
3918 			if (force_fec > 0) {
3919 				/*
3920 				 * Must use FORCE_FEC even though requested FEC
3921 				 * is AUTO. Set all the FEC bits valid for the
3922 				 * speed and let the firmware pick one.
3923 				 */
3924 				fec |= FW_PORT_CAP32_FORCE_FEC;
3925 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3926 					fec |= FW_PORT_CAP32_FEC_RS;
3927 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3928 				} else if (speed & FW_PORT_CAP32_SPEED_50G) {
3929 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3930 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3931 				} else {
3932 					fec |= FW_PORT_CAP32_FEC_RS;
3933 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3934 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3935 				}
3936 			} else {
3937 				/*
3938 				 * Set only 1b. Old firmwares can't deal with
3939 				 * multiple bits and new firmwares are free to
3940 				 * ignore this and try whatever FECs they want
3941 				 * because we aren't setting FORCE_FEC here.
3942 				 */
3943 				fec |= fec_to_fwcap(lc->fec_hint);
3944 				MPASS(powerof2(fec));
3945 
3946 				/*
3947 				 * Override the hint if the FEC is not valid for
3948 				 * the potential top speed.  Request the best
3949 				 * FEC at that speed instead.
3950 				 */
3951 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3952 					if (fec == FW_PORT_CAP32_FEC_BASER_RS)
3953 						fec = FW_PORT_CAP32_FEC_RS;
3954 				} else if (speed & FW_PORT_CAP32_SPEED_50G) {
3955 					if (fec == FW_PORT_CAP32_FEC_RS)
3956 						fec = FW_PORT_CAP32_FEC_BASER_RS;
3957 				}
3958 			}
3959 		} else {
3960 			/*
3961 			 * User has explicitly requested some FEC(s). Set
3962 			 * FORCE_FEC unless prohibited from using it.
3963 			 */
3964 			if (force_fec != 0)
3965 				fec |= FW_PORT_CAP32_FORCE_FEC;
3966 			fec |= fec_to_fwcap(lc->requested_fec &
3967 			    M_FW_PORT_CAP32_FEC);
3968 			if (lc->requested_fec & FEC_MODULE)
3969 				fec |= fec_to_fwcap(lc->fec_hint);
3970 		}
3971 
3972 		/*
3973 		 * This is for compatibility with old firmwares. The original
3974 		 * way to request NO_FEC was to not set any of the FEC bits. New
3975 		 * firmwares understand this too.
3976 		 */
3977 		if (fec == FW_PORT_CAP32_FEC_NO_FEC)
3978 			fec = 0;
3979 	}
3980 
3981 	/* Force AN on for BT cards. */
3982 	if (isset(&adap->bt_map, port))
3983 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3984 
3985 	rcap = aneg | speed | fc | fec;
3986 	if ((rcap | lc->pcaps) != lc->pcaps) {
3987 #ifdef INVARIANTS
3988 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3989 		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
3990 #endif
3991 		rcap &= lc->pcaps;
3992 	}
3993 	rcap |= mdi;
3994 
3995 	memset(&c, 0, sizeof(c));
3996 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3997 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3998 				     V_FW_PORT_CMD_PORTID(port));
3999 	if (adap->params.port_caps32) {
4000 		c.action_to_len16 =
4001 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
4002 			FW_LEN16(c));
4003 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4004 	} else {
4005 		c.action_to_len16 =
4006 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4007 			    FW_LEN16(c));
4008 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4009 	}
4010 
4011 	lc->requested_caps = rcap;
4012 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4013 }
4014 
4015 /**
4016  *	t4_restart_aneg - restart autonegotiation
4017  *	@adap: the adapter
4018  *	@mbox: mbox to use for the FW command
4019  *	@port: the port id
4020  *
4021  *	Restarts autonegotiation for the selected port.
4022  */
4023 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4024 {
4025 	struct fw_port_cmd c;
4026 
4027 	memset(&c, 0, sizeof(c));
4028 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
4029 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4030 				     V_FW_PORT_CMD_PORTID(port));
4031 	c.action_to_len16 =
4032 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4033 			    FW_LEN16(c));
4034 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4035 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4036 }
4037 
4038 struct intr_details {
4039 	u32 mask;
4040 	const char *msg;
4041 };
4042 
4043 struct intr_action {
4044 	u32 mask;
4045 	int arg;
4046 	bool (*action)(struct adapter *, int, bool);
4047 };
4048 
4049 #define NONFATAL_IF_DISABLED 1
4050 struct intr_info {
4051 	const char *name;	/* name of the INT_CAUSE register */
4052 	int cause_reg;		/* INT_CAUSE register */
4053 	int enable_reg;		/* INT_ENABLE register */
4054 	u32 fatal;		/* bits that are fatal */
4055 	int flags;		/* hints */
4056 	const struct intr_details *details;
4057 	const struct intr_action *actions;
4058 };
4059 
4060 static inline char
4061 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4062 {
4063 
4064 	if (cause & fatal)
4065 		return ('!');
4066 	if (cause & enable)
4067 		return ('*');
4068 	return ('-');
4069 }
4070 
4071 static void
4072 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4073 {
4074 	u32 enable, fatal, leftover;
4075 	const struct intr_details *details;
4076 	char alert;
4077 
4078 	enable = t4_read_reg(adap, ii->enable_reg);
4079 	if (ii->flags & NONFATAL_IF_DISABLED)
4080 		fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4081 	else
4082 		fatal = ii->fatal;
4083 	alert = intr_alert_char(cause, enable, fatal);
4084 	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4085 	    alert, ii->name, ii->cause_reg, cause, enable, fatal);
4086 
4087 	leftover = cause;
4088 	for (details = ii->details; details && details->mask != 0; details++) {
4089 		u32 msgbits = details->mask & cause;
4090 		if (msgbits == 0)
4091 			continue;
4092 		alert = intr_alert_char(msgbits, enable, ii->fatal);
4093 		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4094 		    details->msg);
4095 		leftover &= ~msgbits;
4096 	}
4097 	if (leftover != 0 && leftover != cause)
4098 		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4099 }
4100 
4101 /*
4102  * Returns true for fatal error.
4103  */
4104 static bool
4105 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4106     u32 additional_cause, bool verbose)
4107 {
4108 	u32 cause, fatal;
4109 	bool rc;
4110 	const struct intr_action *action;
4111 
4112 	/*
4113 	 * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4114 	 * bit special and we need to completely ignore the bits that are not in
4115 	 * PL_INT_ENABLE.
4116 	 */
4117 	cause = t4_read_reg(adap, ii->cause_reg);
4118 	if (ii->cause_reg == A_PL_INT_CAUSE)
4119 		cause &= t4_read_reg(adap, ii->enable_reg);
4120 	if (verbose || cause != 0)
4121 		t4_show_intr_info(adap, ii, cause);
4122 	fatal = cause & ii->fatal;
4123 	if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4124 		fatal &= t4_read_reg(adap, ii->enable_reg);
4125 	cause |= additional_cause;
4126 	if (cause == 0)
4127 		return (false);
4128 
4129 	rc = fatal != 0;
4130 	for (action = ii->actions; action && action->mask != 0; action++) {
4131 		if (!(action->mask & cause))
4132 			continue;
4133 		rc |= (action->action)(adap, action->arg, verbose);
4134 	}
4135 
4136 	/* clear */
4137 	t4_write_reg(adap, ii->cause_reg, cause);
4138 	(void)t4_read_reg(adap, ii->cause_reg);
4139 
4140 	return (rc);
4141 }
4142 
4143 /*
4144  * Interrupt handler for the PCIE module.
4145  */
4146 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4147 {
4148 	static const struct intr_details sysbus_intr_details[] = {
4149 		{ F_RNPP, "RXNP array parity error" },
4150 		{ F_RPCP, "RXPC array parity error" },
4151 		{ F_RCIP, "RXCIF array parity error" },
4152 		{ F_RCCP, "Rx completions control array parity error" },
4153 		{ F_RFTP, "RXFT array parity error" },
4154 		{ 0 }
4155 	};
4156 	static const struct intr_info sysbus_intr_info = {
4157 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4158 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4159 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4160 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4161 		.flags = 0,
4162 		.details = sysbus_intr_details,
4163 		.actions = NULL,
4164 	};
4165 	static const struct intr_details pcie_port_intr_details[] = {
4166 		{ F_TPCP, "TXPC array parity error" },
4167 		{ F_TNPP, "TXNP array parity error" },
4168 		{ F_TFTP, "TXFT array parity error" },
4169 		{ F_TCAP, "TXCA array parity error" },
4170 		{ F_TCIP, "TXCIF array parity error" },
4171 		{ F_RCAP, "RXCA array parity error" },
4172 		{ F_OTDD, "outbound request TLP discarded" },
4173 		{ F_RDPE, "Rx data parity error" },
4174 		{ F_TDUE, "Tx uncorrectable data error" },
4175 		{ 0 }
4176 	};
4177 	static const struct intr_info pcie_port_intr_info = {
4178 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4179 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4180 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4181 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4182 		    F_OTDD | F_RDPE | F_TDUE,
4183 		.flags = 0,
4184 		.details = pcie_port_intr_details,
4185 		.actions = NULL,
4186 	};
4187 	static const struct intr_details pcie_intr_details[] = {
4188 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4189 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4190 		{ F_MSIDATAPERR, "MSI data parity error" },
4191 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4192 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4193 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4194 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4195 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4196 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4197 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4198 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4199 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4200 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4201 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4202 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4203 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4204 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4205 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4206 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4207 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4208 		{ F_FIDPERR, "PCIe FID parity error" },
4209 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4210 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4211 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4212 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4213 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4214 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4215 		{ F_PCIESINT, "PCIe core secondary fault" },
4216 		{ F_PCIEPINT, "PCIe core primary fault" },
4217 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4218 		{ 0 }
4219 	};
4220 	static const struct intr_details t5_pcie_intr_details[] = {
4221 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4222 		{ F_NONFATALERR, "PCIe non-fatal error" },
4223 		{ F_READRSPERR, "Outbound read error" },
4224 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4225 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4226 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4227 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4228 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4229 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4230 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4231 		{ F_VFIDPERR, "VFID SRAM parity error" },
4232 		{ F_FIDPERR, "FID SRAM parity error" },
4233 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4234 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4235 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4236 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4237 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4238 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4239 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4240 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4241 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4242 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4243 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4244 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4245 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4246 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4247 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4248 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4249 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4250 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4251 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4252 		{ 0 }
4253 	};
4254 	struct intr_info pcie_intr_info = {
4255 		.name = "PCIE_INT_CAUSE",
4256 		.cause_reg = A_PCIE_INT_CAUSE,
4257 		.enable_reg = A_PCIE_INT_ENABLE,
4258 		.fatal = 0xffffffff,
4259 		.flags = NONFATAL_IF_DISABLED,
4260 		.details = NULL,
4261 		.actions = NULL,
4262 	};
4263 	bool fatal = false;
4264 
4265 	if (is_t4(adap)) {
4266 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4267 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4268 
4269 		pcie_intr_info.details = pcie_intr_details;
4270 	} else {
4271 		pcie_intr_info.details = t5_pcie_intr_details;
4272 	}
4273 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4274 
4275 	return (fatal);
4276 }
4277 
4278 /*
4279  * TP interrupt handler.
4280  */
4281 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4282 {
4283 	static const struct intr_details tp_intr_details[] = {
4284 		{ 0x3fffffff, "TP parity error" },
4285 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4286 		{ 0 }
4287 	};
4288 	static const struct intr_info tp_intr_info = {
4289 		.name = "TP_INT_CAUSE",
4290 		.cause_reg = A_TP_INT_CAUSE,
4291 		.enable_reg = A_TP_INT_ENABLE,
4292 		.fatal = 0x7fffffff,
4293 		.flags = NONFATAL_IF_DISABLED,
4294 		.details = tp_intr_details,
4295 		.actions = NULL,
4296 	};
4297 
4298 	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4299 }
4300 
4301 /*
4302  * SGE interrupt handler.
4303  */
4304 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4305 {
4306 	static const struct intr_info sge_int1_info = {
4307 		.name = "SGE_INT_CAUSE1",
4308 		.cause_reg = A_SGE_INT_CAUSE1,
4309 		.enable_reg = A_SGE_INT_ENABLE1,
4310 		.fatal = 0xffffffff,
4311 		.flags = NONFATAL_IF_DISABLED,
4312 		.details = NULL,
4313 		.actions = NULL,
4314 	};
4315 	static const struct intr_info sge_int2_info = {
4316 		.name = "SGE_INT_CAUSE2",
4317 		.cause_reg = A_SGE_INT_CAUSE2,
4318 		.enable_reg = A_SGE_INT_ENABLE2,
4319 		.fatal = 0xffffffff,
4320 		.flags = NONFATAL_IF_DISABLED,
4321 		.details = NULL,
4322 		.actions = NULL,
4323 	};
4324 	static const struct intr_details sge_int3_details[] = {
4325 		{ F_ERR_FLM_DBP,
4326 			"DBP pointer delivery for invalid context or QID" },
4327 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4328 			"Invalid QID or header request by IDMA" },
4329 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4330 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4331 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4332 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4333 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4334 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4335 			"SGE GTS with timer 0-5 for IQID > 1023" },
4336 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4337 			"SGE received CPL exceeding IQE size" },
4338 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4339 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4340 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4341 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4342 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4343 		  "SGE IQID > 1023 received CPL for FL" },
4344 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4345 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4346 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4347 		{ F_ERR_ING_CTXT_PRIO,
4348 			"Ingress context manager priority user error" },
4349 		{ F_ERR_EGR_CTXT_PRIO,
4350 			"Egress context manager priority user error" },
4351 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4352 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4353 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4354 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4355 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4356 		{ 0x0000000f, "SGE context access for invalid queue" },
4357 		{ 0 }
4358 	};
4359 	static const struct intr_details t6_sge_int3_details[] = {
4360 		{ F_ERR_FLM_DBP,
4361 			"DBP pointer delivery for invalid context or QID" },
4362 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4363 			"Invalid QID or header request by IDMA" },
4364 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4365 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4366 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4367 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4368 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4369 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4370 			"SGE GTS with timer 0-5 for IQID > 1023" },
4371 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4372 			"SGE received CPL exceeding IQE size" },
4373 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4374 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4375 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4376 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4377 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4378 			"SGE IQID > 1023 received CPL for FL" },
4379 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4380 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4381 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4382 		{ F_ERR_ING_CTXT_PRIO,
4383 			"Ingress context manager priority user error" },
4384 		{ F_ERR_EGR_CTXT_PRIO,
4385 			"Egress context manager priority user error" },
4386 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4387 		{ F_FATAL_WRE_LEN,
4388 			"SGE WRE packet less than advertized length" },
4389 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4390 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4391 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4392 		{ 0x0000000f, "SGE context access for invalid queue" },
4393 		{ 0 }
4394 	};
4395 	struct intr_info sge_int3_info = {
4396 		.name = "SGE_INT_CAUSE3",
4397 		.cause_reg = A_SGE_INT_CAUSE3,
4398 		.enable_reg = A_SGE_INT_ENABLE3,
4399 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4400 		.flags = 0,
4401 		.details = NULL,
4402 		.actions = NULL,
4403 	};
4404 	static const struct intr_info sge_int4_info = {
4405 		.name = "SGE_INT_CAUSE4",
4406 		.cause_reg = A_SGE_INT_CAUSE4,
4407 		.enable_reg = A_SGE_INT_ENABLE4,
4408 		.fatal = 0,
4409 		.flags = 0,
4410 		.details = NULL,
4411 		.actions = NULL,
4412 	};
4413 	static const struct intr_info sge_int5_info = {
4414 		.name = "SGE_INT_CAUSE5",
4415 		.cause_reg = A_SGE_INT_CAUSE5,
4416 		.enable_reg = A_SGE_INT_ENABLE5,
4417 		.fatal = 0xffffffff,
4418 		.flags = NONFATAL_IF_DISABLED,
4419 		.details = NULL,
4420 		.actions = NULL,
4421 	};
4422 	static const struct intr_info sge_int6_info = {
4423 		.name = "SGE_INT_CAUSE6",
4424 		.cause_reg = A_SGE_INT_CAUSE6,
4425 		.enable_reg = A_SGE_INT_ENABLE6,
4426 		.fatal = 0,
4427 		.flags = 0,
4428 		.details = NULL,
4429 		.actions = NULL,
4430 	};
4431 
4432 	bool fatal;
4433 	u32 v;
4434 
4435 	if (chip_id(adap) <= CHELSIO_T5) {
4436 		sge_int3_info.details = sge_int3_details;
4437 	} else {
4438 		sge_int3_info.details = t6_sge_int3_details;
4439 	}
4440 
4441 	fatal = false;
4442 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4443 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4444 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4445 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4446 	if (chip_id(adap) >= CHELSIO_T5)
4447 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4448 	if (chip_id(adap) >= CHELSIO_T6)
4449 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4450 
4451 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4452 	if (v & F_ERROR_QID_VALID) {
4453 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4454 		if (v & F_UNCAPTURED_ERROR)
4455 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4456 		t4_write_reg(adap, A_SGE_ERROR_STATS,
4457 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4458 	}
4459 
4460 	return (fatal);
4461 }
4462 
4463 /*
4464  * CIM interrupt handler.
4465  */
4466 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4467 {
4468 	static const struct intr_details cim_host_intr_details[] = {
4469 		/* T6+ */
4470 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4471 
4472 		/* T5+ */
4473 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4474 		{ F_PLCIM_MSTRSPDATAPARERR,
4475 			"PL2CIM master response data parity error" },
4476 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4477 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4478 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4479 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4480 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4481 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4482 
4483 		/* T4+ */
4484 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4485 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4486 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4487 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4488 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4489 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4490 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4491 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4492 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4493 			"CIM IBQ PCIe/SGE_HI parity error" },
4494 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4495 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4496 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4497 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4498 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4499 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4500 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4501 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4502 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4503 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4504 		{ 0}
4505 	};
4506 	static const struct intr_info cim_host_intr_info = {
4507 		.name = "CIM_HOST_INT_CAUSE",
4508 		.cause_reg = A_CIM_HOST_INT_CAUSE,
4509 		.enable_reg = A_CIM_HOST_INT_ENABLE,
4510 		.fatal = 0x007fffe6,
4511 		.flags = NONFATAL_IF_DISABLED,
4512 		.details = cim_host_intr_details,
4513 		.actions = NULL,
4514 	};
4515 	static const struct intr_details cim_host_upacc_intr_details[] = {
4516 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4517 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4518 		{ F_TIMEOUTINT, "CIM PIF timeout" },
4519 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4520 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4521 		{ F_BLKWRPLINT, "CIM block write to PL space" },
4522 		{ F_BLKRDPLINT, "CIM block read from PL space" },
4523 		{ F_SGLWRPLINT,
4524 			"CIM single write to PL space with illegal BEs" },
4525 		{ F_SGLRDPLINT,
4526 			"CIM single read from PL space with illegal BEs" },
4527 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4528 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4529 		{ F_SGLWRCTLINT,
4530 			"CIM single write to CTL space with illegal BEs" },
4531 		{ F_SGLRDCTLINT,
4532 			"CIM single read from CTL space with illegal BEs" },
4533 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4534 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4535 		{ F_SGLWREEPROMINT,
4536 			"CIM single write to EEPROM space with illegal BEs" },
4537 		{ F_SGLRDEEPROMINT,
4538 			"CIM single read from EEPROM space with illegal BEs" },
4539 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4540 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4541 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4542 		{ F_SGLRDFLASHINT,
4543 			"CIM single read from flash space with illegal BEs" },
4544 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4545 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4546 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4547 		{ F_SGLRDBOOTINT,
4548 			"CIM single read from boot space with illegal BEs" },
4549 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4550 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4551 		{ F_ILLRDINT, "CIM illegal read" },
4552 		{ F_ILLWRINT, "CIM illegal write" },
4553 		{ F_ILLTRANSINT, "CIM illegal transaction" },
4554 		{ F_RSVDSPACEINT, "CIM reserved space access" },
4555 		{0}
4556 	};
4557 	static const struct intr_info cim_host_upacc_intr_info = {
4558 		.name = "CIM_HOST_UPACC_INT_CAUSE",
4559 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4560 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4561 		.fatal = 0x3fffeeff,
4562 		.flags = NONFATAL_IF_DISABLED,
4563 		.details = cim_host_upacc_intr_details,
4564 		.actions = NULL,
4565 	};
4566 	static const struct intr_info cim_pf_host_intr_info = {
4567 		.name = "CIM_PF_HOST_INT_CAUSE",
4568 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4569 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4570 		.fatal = 0,
4571 		.flags = 0,
4572 		.details = NULL,
4573 		.actions = NULL,
4574 	};
4575 	u32 val, fw_err;
4576 	bool fatal;
4577 
4578 	/*
4579 	 * When the Firmware detects an internal error which normally wouldn't
4580 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4581 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4582 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4583 	 * interrupt.
4584 	 */
4585 	fw_err = t4_read_reg(adap, A_PCIE_FW);
4586 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4587 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4588 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4589 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4590 	}
4591 
4592 	fatal = (fw_err & F_PCIE_FW_ERR) != 0;
4593 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4594 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4595 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4596 	if (fatal)
4597 		t4_os_cim_err(adap);
4598 
4599 	return (fatal);
4600 }
4601 
4602 /*
4603  * ULP RX interrupt handler.
4604  */
4605 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4606 {
4607 	static const struct intr_details ulprx_intr_details[] = {
4608 		/* T5+ */
4609 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4610 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4611 
4612 		/* T4+ */
4613 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4614 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4615 		{ 0x007fffff, "ULPRX parity error" },
4616 		{ 0 }
4617 	};
4618 	static const struct intr_info ulprx_intr_info = {
4619 		.name = "ULP_RX_INT_CAUSE",
4620 		.cause_reg = A_ULP_RX_INT_CAUSE,
4621 		.enable_reg = A_ULP_RX_INT_ENABLE,
4622 		.fatal = 0x07ffffff,
4623 		.flags = NONFATAL_IF_DISABLED,
4624 		.details = ulprx_intr_details,
4625 		.actions = NULL,
4626 	};
4627 	static const struct intr_info ulprx_intr2_info = {
4628 		.name = "ULP_RX_INT_CAUSE_2",
4629 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4630 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4631 		.fatal = 0,
4632 		.flags = 0,
4633 		.details = NULL,
4634 		.actions = NULL,
4635 	};
4636 	bool fatal = false;
4637 
4638 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4639 	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4640 
4641 	return (fatal);
4642 }
4643 
4644 /*
4645  * ULP TX interrupt handler.
4646  */
4647 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4648 {
4649 	static const struct intr_details ulptx_intr_details[] = {
4650 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4651 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4652 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4653 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4654 		{ 0x0fffffff, "ULPTX parity error" },
4655 		{ 0 }
4656 	};
4657 	static const struct intr_info ulptx_intr_info = {
4658 		.name = "ULP_TX_INT_CAUSE",
4659 		.cause_reg = A_ULP_TX_INT_CAUSE,
4660 		.enable_reg = A_ULP_TX_INT_ENABLE,
4661 		.fatal = 0x0fffffff,
4662 		.flags = NONFATAL_IF_DISABLED,
4663 		.details = ulptx_intr_details,
4664 		.actions = NULL,
4665 	};
4666 	static const struct intr_info ulptx_intr2_info = {
4667 		.name = "ULP_TX_INT_CAUSE_2",
4668 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4669 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4670 		.fatal = 0xf0,
4671 		.flags = NONFATAL_IF_DISABLED,
4672 		.details = NULL,
4673 		.actions = NULL,
4674 	};
4675 	bool fatal = false;
4676 
4677 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4678 	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4679 
4680 	return (fatal);
4681 }
4682 
4683 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4684 {
4685 	int i;
4686 	u32 data[17];
4687 
4688 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4689 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4690 	for (i = 0; i < ARRAY_SIZE(data); i++) {
4691 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4692 		    A_PM_TX_DBG_STAT0 + i, data[i]);
4693 	}
4694 
4695 	return (false);
4696 }
4697 
4698 /*
4699  * PM TX interrupt handler.
4700  */
4701 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4702 {
4703 	static const struct intr_action pmtx_intr_actions[] = {
4704 		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4705 		{ 0 },
4706 	};
4707 	static const struct intr_details pmtx_intr_details[] = {
4708 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4709 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4710 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4711 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4712 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4713 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4714 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4715 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4716 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4717 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4718 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4719 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4720 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4721 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4722 		{ 0 }
4723 	};
4724 	static const struct intr_info pmtx_intr_info = {
4725 		.name = "PM_TX_INT_CAUSE",
4726 		.cause_reg = A_PM_TX_INT_CAUSE,
4727 		.enable_reg = A_PM_TX_INT_ENABLE,
4728 		.fatal = 0xffffffff,
4729 		.flags = 0,
4730 		.details = pmtx_intr_details,
4731 		.actions = pmtx_intr_actions,
4732 	};
4733 
4734 	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4735 }
4736 
4737 /*
4738  * PM RX interrupt handler.
4739  */
4740 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4741 {
4742 	static const struct intr_details pmrx_intr_details[] = {
4743 		/* T6+ */
4744 		{ 0x18000000, "PMRX ospi overflow" },
4745 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4746 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4747 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4748 		{ F_SDC_ERR, "PMRX SDC error" },
4749 
4750 		/* T4+ */
4751 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4752 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4753 		{ 0x0003c000, "PMRX iespi Rx framing error" },
4754 		{ 0x00003c00, "PMRX iespi Tx framing error" },
4755 		{ 0x00000300, "PMRX ocspi Rx framing error" },
4756 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4757 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4758 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4759 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4760 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4761 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4762 		{ 0 }
4763 	};
4764 	static const struct intr_info pmrx_intr_info = {
4765 		.name = "PM_RX_INT_CAUSE",
4766 		.cause_reg = A_PM_RX_INT_CAUSE,
4767 		.enable_reg = A_PM_RX_INT_ENABLE,
4768 		.fatal = 0x1fffffff,
4769 		.flags = NONFATAL_IF_DISABLED,
4770 		.details = pmrx_intr_details,
4771 		.actions = NULL,
4772 	};
4773 
4774 	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4775 }
4776 
4777 /*
4778  * CPL switch interrupt handler.
4779  */
4780 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4781 {
4782 	static const struct intr_details cplsw_intr_details[] = {
4783 		/* T5+ */
4784 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4785 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4786 
4787 		/* T4+ */
4788 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4789 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4790 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4791 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4792 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4793 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4794 		{ 0 }
4795 	};
4796 	static const struct intr_info cplsw_intr_info = {
4797 		.name = "CPL_INTR_CAUSE",
4798 		.cause_reg = A_CPL_INTR_CAUSE,
4799 		.enable_reg = A_CPL_INTR_ENABLE,
4800 		.fatal = 0xff,
4801 		.flags = NONFATAL_IF_DISABLED,
4802 		.details = cplsw_intr_details,
4803 		.actions = NULL,
4804 	};
4805 
4806 	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4807 }
4808 
4809 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4810 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4811 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4812     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4813     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4814     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4815 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4816     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4817     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4818 
4819 /*
4820  * LE interrupt handler.
4821  */
4822 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4823 {
4824 	static const struct intr_details le_intr_details[] = {
4825 		{ F_REQQPARERR, "LE request queue parity error" },
4826 		{ F_UNKNOWNCMD, "LE unknown command" },
4827 		{ F_ACTRGNFULL, "LE active region full" },
4828 		{ F_PARITYERR, "LE parity error" },
4829 		{ F_LIPMISS, "LE LIP miss" },
4830 		{ F_LIP0, "LE 0 LIP error" },
4831 		{ 0 }
4832 	};
4833 	static const struct intr_details t6_le_intr_details[] = {
4834 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4835 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4836 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4837 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4838 		{ F_TOTCNTERR, "LE total active < TCAM count" },
4839 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4840 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4841 		{ F_T6_ACTRGNFULL, "LE active region full" },
4842 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4843 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4844 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4845 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4846 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4847 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4848 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4849 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4850 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4851 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4852 		{ 0 }
4853 	};
4854 	struct intr_info le_intr_info = {
4855 		.name = "LE_DB_INT_CAUSE",
4856 		.cause_reg = A_LE_DB_INT_CAUSE,
4857 		.enable_reg = A_LE_DB_INT_ENABLE,
4858 		.fatal = 0,
4859 		.flags = NONFATAL_IF_DISABLED,
4860 		.details = NULL,
4861 		.actions = NULL,
4862 	};
4863 
4864 	if (chip_id(adap) <= CHELSIO_T5) {
4865 		le_intr_info.details = le_intr_details;
4866 		le_intr_info.fatal = T5_LE_FATAL_MASK;
4867 	} else {
4868 		le_intr_info.details = t6_le_intr_details;
4869 		le_intr_info.fatal = T6_LE_FATAL_MASK;
4870 	}
4871 
4872 	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4873 }
4874 
4875 /*
4876  * MPS interrupt handler.
4877  */
4878 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4879 {
4880 	static const struct intr_details mps_rx_perr_intr_details[] = {
4881 		{ 0xffffffff, "MPS Rx parity error" },
4882 		{ 0 }
4883 	};
4884 	static const struct intr_info mps_rx_perr_intr_info = {
4885 		.name = "MPS_RX_PERR_INT_CAUSE",
4886 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4887 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4888 		.fatal = 0xffffffff,
4889 		.flags = NONFATAL_IF_DISABLED,
4890 		.details = mps_rx_perr_intr_details,
4891 		.actions = NULL,
4892 	};
4893 	static const struct intr_details mps_tx_intr_details[] = {
4894 		{ F_PORTERR, "MPS Tx destination port is disabled" },
4895 		{ F_FRMERR, "MPS Tx framing error" },
4896 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4897 		{ F_BUBBLE, "MPS Tx underflow" },
4898 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4899 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4900 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4901 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4902 		{ 0 }
4903 	};
4904 	static const struct intr_info mps_tx_intr_info = {
4905 		.name = "MPS_TX_INT_CAUSE",
4906 		.cause_reg = A_MPS_TX_INT_CAUSE,
4907 		.enable_reg = A_MPS_TX_INT_ENABLE,
4908 		.fatal = 0x1ffff,
4909 		.flags = NONFATAL_IF_DISABLED,
4910 		.details = mps_tx_intr_details,
4911 		.actions = NULL,
4912 	};
4913 	static const struct intr_details mps_trc_intr_details[] = {
4914 		{ F_MISCPERR, "MPS TRC misc parity error" },
4915 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4916 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4917 		{ 0 }
4918 	};
4919 	static const struct intr_info mps_trc_intr_info = {
4920 		.name = "MPS_TRC_INT_CAUSE",
4921 		.cause_reg = A_MPS_TRC_INT_CAUSE,
4922 		.enable_reg = A_MPS_TRC_INT_ENABLE,
4923 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4924 		.flags = 0,
4925 		.details = mps_trc_intr_details,
4926 		.actions = NULL,
4927 	};
4928 	static const struct intr_details mps_stat_sram_intr_details[] = {
4929 		{ 0xffffffff, "MPS statistics SRAM parity error" },
4930 		{ 0 }
4931 	};
4932 	static const struct intr_info mps_stat_sram_intr_info = {
4933 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4934 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4935 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4936 		.fatal = 0x1fffffff,
4937 		.flags = NONFATAL_IF_DISABLED,
4938 		.details = mps_stat_sram_intr_details,
4939 		.actions = NULL,
4940 	};
4941 	static const struct intr_details mps_stat_tx_intr_details[] = {
4942 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4943 		{ 0 }
4944 	};
4945 	static const struct intr_info mps_stat_tx_intr_info = {
4946 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4947 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4948 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4949 		.fatal =  0xffffff,
4950 		.flags = NONFATAL_IF_DISABLED,
4951 		.details = mps_stat_tx_intr_details,
4952 		.actions = NULL,
4953 	};
4954 	static const struct intr_details mps_stat_rx_intr_details[] = {
4955 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4956 		{ 0 }
4957 	};
4958 	static const struct intr_info mps_stat_rx_intr_info = {
4959 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4960 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4961 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4962 		.fatal =  0xffffff,
4963 		.flags = 0,
4964 		.details = mps_stat_rx_intr_details,
4965 		.actions = NULL,
4966 	};
4967 	static const struct intr_details mps_cls_intr_details[] = {
4968 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4969 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4970 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4971 		{ 0 }
4972 	};
4973 	static const struct intr_info mps_cls_intr_info = {
4974 		.name = "MPS_CLS_INT_CAUSE",
4975 		.cause_reg = A_MPS_CLS_INT_CAUSE,
4976 		.enable_reg = A_MPS_CLS_INT_ENABLE,
4977 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4978 		.flags = 0,
4979 		.details = mps_cls_intr_details,
4980 		.actions = NULL,
4981 	};
4982 	static const struct intr_details mps_stat_sram1_intr_details[] = {
4983 		{ 0xff, "MPS statistics SRAM1 parity error" },
4984 		{ 0 }
4985 	};
4986 	static const struct intr_info mps_stat_sram1_intr_info = {
4987 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4988 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4989 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4990 		.fatal = 0xff,
4991 		.flags = 0,
4992 		.details = mps_stat_sram1_intr_details,
4993 		.actions = NULL,
4994 	};
4995 
4996 	bool fatal;
4997 
4998 	fatal = false;
4999 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
5000 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
5001 	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
5002 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
5003 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
5004 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
5005 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
5006 	if (chip_id(adap) > CHELSIO_T4) {
5007 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
5008 		    verbose);
5009 	}
5010 
5011 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5012 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
5013 
5014 	return (fatal);
5015 
5016 }
5017 
5018 /*
5019  * EDC/MC interrupt handler.
5020  */
5021 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
5022 {
5023 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
5024 	unsigned int count_reg, v;
5025 	static const struct intr_details mem_intr_details[] = {
5026 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
5027 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
5028 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
5029 		{ 0 }
5030 	};
5031 	struct intr_info ii = {
5032 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5033 		.details = mem_intr_details,
5034 		.flags = 0,
5035 		.actions = NULL,
5036 	};
5037 	bool fatal;
5038 
5039 	switch (idx) {
5040 	case MEM_EDC0:
5041 		ii.name = "EDC0_INT_CAUSE";
5042 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5043 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5044 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5045 		break;
5046 	case MEM_EDC1:
5047 		ii.name = "EDC1_INT_CAUSE";
5048 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5049 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5050 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5051 		break;
5052 	case MEM_MC0:
5053 		ii.name = "MC0_INT_CAUSE";
5054 		if (is_t4(adap)) {
5055 			ii.cause_reg = A_MC_INT_CAUSE;
5056 			ii.enable_reg = A_MC_INT_ENABLE;
5057 			count_reg = A_MC_ECC_STATUS;
5058 		} else {
5059 			ii.cause_reg = A_MC_P_INT_CAUSE;
5060 			ii.enable_reg = A_MC_P_INT_ENABLE;
5061 			count_reg = A_MC_P_ECC_STATUS;
5062 		}
5063 		break;
5064 	case MEM_MC1:
5065 		ii.name = "MC1_INT_CAUSE";
5066 		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5067 		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5068 		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5069 		break;
5070 	}
5071 
5072 	fatal = t4_handle_intr(adap, &ii, 0, verbose);
5073 
5074 	v = t4_read_reg(adap, count_reg);
5075 	if (v != 0) {
5076 		if (G_ECC_UECNT(v) != 0) {
5077 			CH_ALERT(adap,
5078 			    "%s: %u uncorrectable ECC data error(s)\n",
5079 			    name[idx], G_ECC_UECNT(v));
5080 		}
5081 		if (G_ECC_CECNT(v) != 0) {
5082 			if (idx <= MEM_EDC1)
5083 				t4_edc_err_read(adap, idx);
5084 			CH_WARN_RATELIMIT(adap,
5085 			    "%s: %u correctable ECC data error(s)\n",
5086 			    name[idx], G_ECC_CECNT(v));
5087 		}
5088 		t4_write_reg(adap, count_reg, 0xffffffff);
5089 	}
5090 
5091 	return (fatal);
5092 }
5093 
5094 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5095 {
5096 	u32 v;
5097 
5098 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5099 	CH_ALERT(adap,
5100 	    "MA address wrap-around error by client %u to address %#x\n",
5101 	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5102 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5103 
5104 	return (false);
5105 }
5106 
5107 
5108 /*
5109  * MA interrupt handler.
5110  */
5111 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5112 {
5113 	static const struct intr_action ma_intr_actions[] = {
5114 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5115 		{ 0 },
5116 	};
5117 	static const struct intr_info ma_intr_info = {
5118 		.name = "MA_INT_CAUSE",
5119 		.cause_reg = A_MA_INT_CAUSE,
5120 		.enable_reg = A_MA_INT_ENABLE,
5121 		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5122 		.flags = NONFATAL_IF_DISABLED,
5123 		.details = NULL,
5124 		.actions = ma_intr_actions,
5125 	};
5126 	static const struct intr_info ma_perr_status1 = {
5127 		.name = "MA_PARITY_ERROR_STATUS1",
5128 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5129 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5130 		.fatal = 0xffffffff,
5131 		.flags = 0,
5132 		.details = NULL,
5133 		.actions = NULL,
5134 	};
5135 	static const struct intr_info ma_perr_status2 = {
5136 		.name = "MA_PARITY_ERROR_STATUS2",
5137 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5138 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5139 		.fatal = 0xffffffff,
5140 		.flags = 0,
5141 		.details = NULL,
5142 		.actions = NULL,
5143 	};
5144 	bool fatal;
5145 
5146 	fatal = false;
5147 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5148 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5149 	if (chip_id(adap) > CHELSIO_T4)
5150 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5151 
5152 	return (fatal);
5153 }
5154 
5155 /*
5156  * SMB interrupt handler.
5157  */
5158 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5159 {
5160 	static const struct intr_details smb_intr_details[] = {
5161 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5162 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5163 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5164 		{ 0 }
5165 	};
5166 	static const struct intr_info smb_intr_info = {
5167 		.name = "SMB_INT_CAUSE",
5168 		.cause_reg = A_SMB_INT_CAUSE,
5169 		.enable_reg = A_SMB_INT_ENABLE,
5170 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5171 		.flags = 0,
5172 		.details = smb_intr_details,
5173 		.actions = NULL,
5174 	};
5175 
5176 	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5177 }
5178 
5179 /*
5180  * NC-SI interrupt handler.
5181  */
5182 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5183 {
5184 	static const struct intr_details ncsi_intr_details[] = {
5185 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5186 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5187 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5188 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5189 		{ 0 }
5190 	};
5191 	static const struct intr_info ncsi_intr_info = {
5192 		.name = "NCSI_INT_CAUSE",
5193 		.cause_reg = A_NCSI_INT_CAUSE,
5194 		.enable_reg = A_NCSI_INT_ENABLE,
5195 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5196 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5197 		.flags = 0,
5198 		.details = ncsi_intr_details,
5199 		.actions = NULL,
5200 	};
5201 
5202 	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5203 }
5204 
5205 /*
5206  * MAC interrupt handler.
5207  */
5208 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5209 {
5210 	static const struct intr_details mac_intr_details[] = {
5211 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5212 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5213 		{ 0 }
5214 	};
5215 	char name[32];
5216 	struct intr_info ii;
5217 	bool fatal = false;
5218 
5219 	if (is_t4(adap)) {
5220 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5221 		ii.name = &name[0];
5222 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5223 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5224 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5225 		ii.flags = 0;
5226 		ii.details = mac_intr_details;
5227 		ii.actions = NULL;
5228 	} else {
5229 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5230 		ii.name = &name[0];
5231 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5232 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5233 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5234 		ii.flags = 0;
5235 		ii.details = mac_intr_details;
5236 		ii.actions = NULL;
5237 	}
5238 	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5239 
5240 	if (chip_id(adap) >= CHELSIO_T5) {
5241 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5242 		ii.name = &name[0];
5243 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5244 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5245 		ii.fatal = 0;
5246 		ii.flags = 0;
5247 		ii.details = NULL;
5248 		ii.actions = NULL;
5249 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5250 	}
5251 
5252 	if (chip_id(adap) >= CHELSIO_T6) {
5253 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5254 		ii.name = &name[0];
5255 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5256 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5257 		ii.fatal = 0;
5258 		ii.flags = 0;
5259 		ii.details = NULL;
5260 		ii.actions = NULL;
5261 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5262 	}
5263 
5264 	return (fatal);
5265 }
5266 
5267 static bool pl_timeout_status(struct adapter *adap, int arg, bool verbose)
5268 {
5269 
5270 	CH_ALERT(adap, "    PL_TIMEOUT_STATUS 0x%08x 0x%08x\n",
5271 	    t4_read_reg(adap, A_PL_TIMEOUT_STATUS0),
5272 	    t4_read_reg(adap, A_PL_TIMEOUT_STATUS1));
5273 
5274 	return (false);
5275 }
5276 
5277 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5278 {
5279 	static const struct intr_action plpl_intr_actions[] = {
5280 		{ F_TIMEOUT, 0, pl_timeout_status },
5281 		{ 0 },
5282 	};
5283 	static const struct intr_details plpl_intr_details[] = {
5284 		{ F_PL_BUSPERR, "Bus parity error" },
5285 		{ F_FATALPERR, "Fatal parity error" },
5286 		{ F_INVALIDACCESS, "Global reserved memory access" },
5287 		{ F_TIMEOUT,  "Bus timeout" },
5288 		{ F_PLERR, "Module reserved access" },
5289 		{ F_PERRVFID, "VFID_MAP parity error" },
5290 		{ 0 }
5291 	};
5292 	static const struct intr_info plpl_intr_info = {
5293 		.name = "PL_PL_INT_CAUSE",
5294 		.cause_reg = A_PL_PL_INT_CAUSE,
5295 		.enable_reg = A_PL_PL_INT_ENABLE,
5296 		.fatal = F_FATALPERR | F_PERRVFID,
5297 		.flags = NONFATAL_IF_DISABLED,
5298 		.details = plpl_intr_details,
5299 		.actions = plpl_intr_actions,
5300 	};
5301 
5302 	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5303 }
5304 
5305 /**
5306  *	t4_slow_intr_handler - control path interrupt handler
5307  *	@adap: the adapter
5308  *	@verbose: increased verbosity, for debug
5309  *
5310  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5311  *	The designation 'slow' is because it involves register reads, while
5312  *	data interrupts typically don't involve any MMIOs.
5313  */
5314 bool t4_slow_intr_handler(struct adapter *adap, bool verbose)
5315 {
5316 	static const struct intr_details pl_intr_details[] = {
5317 		{ F_MC1, "MC1" },
5318 		{ F_UART, "UART" },
5319 		{ F_ULP_TX, "ULP TX" },
5320 		{ F_SGE, "SGE" },
5321 		{ F_HMA, "HMA" },
5322 		{ F_CPL_SWITCH, "CPL Switch" },
5323 		{ F_ULP_RX, "ULP RX" },
5324 		{ F_PM_RX, "PM RX" },
5325 		{ F_PM_TX, "PM TX" },
5326 		{ F_MA, "MA" },
5327 		{ F_TP, "TP" },
5328 		{ F_LE, "LE" },
5329 		{ F_EDC1, "EDC1" },
5330 		{ F_EDC0, "EDC0" },
5331 		{ F_MC, "MC0" },
5332 		{ F_PCIE, "PCIE" },
5333 		{ F_PMU, "PMU" },
5334 		{ F_MAC3, "MAC3" },
5335 		{ F_MAC2, "MAC2" },
5336 		{ F_MAC1, "MAC1" },
5337 		{ F_MAC0, "MAC0" },
5338 		{ F_SMB, "SMB" },
5339 		{ F_SF, "SF" },
5340 		{ F_PL, "PL" },
5341 		{ F_NCSI, "NC-SI" },
5342 		{ F_MPS, "MPS" },
5343 		{ F_MI, "MI" },
5344 		{ F_DBG, "DBG" },
5345 		{ F_I2CM, "I2CM" },
5346 		{ F_CIM, "CIM" },
5347 		{ 0 }
5348 	};
5349 	static const struct intr_info pl_perr_cause = {
5350 		.name = "PL_PERR_CAUSE",
5351 		.cause_reg = A_PL_PERR_CAUSE,
5352 		.enable_reg = A_PL_PERR_ENABLE,
5353 		.fatal = 0xffffffff,
5354 		.flags = 0,
5355 		.details = pl_intr_details,
5356 		.actions = NULL,
5357 	};
5358 	static const struct intr_action pl_intr_action[] = {
5359 		{ F_MC1, MEM_MC1, mem_intr_handler },
5360 		{ F_ULP_TX, -1, ulptx_intr_handler },
5361 		{ F_SGE, -1, sge_intr_handler },
5362 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5363 		{ F_ULP_RX, -1, ulprx_intr_handler },
5364 		{ F_PM_RX, -1, pmrx_intr_handler},
5365 		{ F_PM_TX, -1, pmtx_intr_handler},
5366 		{ F_MA, -1, ma_intr_handler },
5367 		{ F_TP, -1, tp_intr_handler },
5368 		{ F_LE, -1, le_intr_handler },
5369 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5370 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5371 		{ F_MC0, MEM_MC0, mem_intr_handler },
5372 		{ F_PCIE, -1, pcie_intr_handler },
5373 		{ F_MAC3, 3, mac_intr_handler},
5374 		{ F_MAC2, 2, mac_intr_handler},
5375 		{ F_MAC1, 1, mac_intr_handler},
5376 		{ F_MAC0, 0, mac_intr_handler},
5377 		{ F_SMB, -1, smb_intr_handler},
5378 		{ F_PL, -1, plpl_intr_handler },
5379 		{ F_NCSI, -1, ncsi_intr_handler},
5380 		{ F_MPS, -1, mps_intr_handler },
5381 		{ F_CIM, -1, cim_intr_handler },
5382 		{ 0 }
5383 	};
5384 	static const struct intr_info pl_intr_info = {
5385 		.name = "PL_INT_CAUSE",
5386 		.cause_reg = A_PL_INT_CAUSE,
5387 		.enable_reg = A_PL_INT_ENABLE,
5388 		.fatal = 0,
5389 		.flags = 0,
5390 		.details = pl_intr_details,
5391 		.actions = pl_intr_action,
5392 	};
5393 	u32 perr;
5394 
5395 	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5396 	if (verbose || perr != 0) {
5397 		t4_show_intr_info(adap, &pl_perr_cause, perr);
5398 		if (perr != 0)
5399 			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5400 		if (verbose)
5401 			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5402 	}
5403 
5404 	return (t4_handle_intr(adap, &pl_intr_info, perr, verbose));
5405 }
5406 
5407 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5408 
5409 /**
5410  *	t4_intr_enable - enable interrupts
5411  *	@adapter: the adapter whose interrupts should be enabled
5412  *
5413  *	Enable PF-specific interrupts for the calling function and the top-level
5414  *	interrupt concentrator for global interrupts.  Interrupts are already
5415  *	enabled at each module,	here we just enable the roots of the interrupt
5416  *	hierarchies.
5417  *
5418  *	Note: this function should be called only when the driver manages
5419  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5420  *	function at a time should be doing this.
5421  */
5422 void t4_intr_enable(struct adapter *adap)
5423 {
5424 	u32 val = 0;
5425 
5426 	if (chip_id(adap) <= CHELSIO_T5)
5427 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5428 	else
5429 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5430 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5431 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5432 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5433 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5434 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5435 	    F_EGRESS_SIZE_ERR;
5436 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5437 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5438 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5439 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5440 }
5441 
5442 /**
5443  *	t4_intr_disable - disable interrupts
5444  *	@adap: the adapter whose interrupts should be disabled
5445  *
5446  *	Disable interrupts.  We only disable the top-level interrupt
5447  *	concentrators.  The caller must be a PCI function managing global
5448  *	interrupts.
5449  */
5450 void t4_intr_disable(struct adapter *adap)
5451 {
5452 
5453 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5454 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5455 }
5456 
5457 /**
5458  *	t4_intr_clear - clear all interrupts
5459  *	@adap: the adapter whose interrupts should be cleared
5460  *
5461  *	Clears all interrupts.  The caller must be a PCI function managing
5462  *	global interrupts.
5463  */
5464 void t4_intr_clear(struct adapter *adap)
5465 {
5466 	static const u32 cause_reg[] = {
5467 		A_CIM_HOST_INT_CAUSE,
5468 		A_CIM_HOST_UPACC_INT_CAUSE,
5469 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5470 		A_CPL_INTR_CAUSE,
5471 		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5472 		A_LE_DB_INT_CAUSE,
5473 		A_MA_INT_WRAP_STATUS,
5474 		A_MA_PARITY_ERROR_STATUS1,
5475 		A_MA_INT_CAUSE,
5476 		A_MPS_CLS_INT_CAUSE,
5477 		A_MPS_RX_PERR_INT_CAUSE,
5478 		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5479 		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5480 		A_MPS_TRC_INT_CAUSE,
5481 		A_MPS_TX_INT_CAUSE,
5482 		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5483 		A_NCSI_INT_CAUSE,
5484 		A_PCIE_INT_CAUSE,
5485 		A_PCIE_NONFAT_ERR,
5486 		A_PL_PL_INT_CAUSE,
5487 		A_PM_RX_INT_CAUSE,
5488 		A_PM_TX_INT_CAUSE,
5489 		A_SGE_INT_CAUSE1,
5490 		A_SGE_INT_CAUSE2,
5491 		A_SGE_INT_CAUSE3,
5492 		A_SGE_INT_CAUSE4,
5493 		A_SMB_INT_CAUSE,
5494 		A_TP_INT_CAUSE,
5495 		A_ULP_RX_INT_CAUSE,
5496 		A_ULP_RX_INT_CAUSE_2,
5497 		A_ULP_TX_INT_CAUSE,
5498 		A_ULP_TX_INT_CAUSE_2,
5499 
5500 		MYPF_REG(A_PL_PF_INT_CAUSE),
5501 	};
5502 	int i;
5503 	const int nchan = adap->chip_params->nchan;
5504 
5505 	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5506 		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5507 
5508 	if (is_t4(adap)) {
5509 		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5510 		    0xffffffff);
5511 		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5512 		    0xffffffff);
5513 		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5514 		for (i = 0; i < nchan; i++) {
5515 			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5516 			    0xffffffff);
5517 		}
5518 	}
5519 	if (chip_id(adap) >= CHELSIO_T5) {
5520 		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5521 		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5522 		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5523 		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5524 		if (is_t5(adap)) {
5525 			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5526 			    0xffffffff);
5527 		}
5528 		for (i = 0; i < nchan; i++) {
5529 			t4_write_reg(adap, T5_PORT_REG(i,
5530 			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5531 			if (chip_id(adap) > CHELSIO_T5) {
5532 				t4_write_reg(adap, T5_PORT_REG(i,
5533 				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5534 				    0xffffffff);
5535 			}
5536 			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5537 			    0xffffffff);
5538 		}
5539 	}
5540 	if (chip_id(adap) >= CHELSIO_T6) {
5541 		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5542 	}
5543 
5544 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5545 	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5546 	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5547 	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5548 }
5549 
5550 /**
5551  *	hash_mac_addr - return the hash value of a MAC address
5552  *	@addr: the 48-bit Ethernet MAC address
5553  *
5554  *	Hashes a MAC address according to the hash function used by HW inexact
5555  *	(hash) address matching.
5556  */
5557 static int hash_mac_addr(const u8 *addr)
5558 {
5559 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5560 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5561 	a ^= b;
5562 	a ^= (a >> 12);
5563 	a ^= (a >> 6);
5564 	return a & 0x3f;
5565 }
5566 
5567 /**
5568  *	t4_config_rss_range - configure a portion of the RSS mapping table
5569  *	@adapter: the adapter
5570  *	@mbox: mbox to use for the FW command
5571  *	@viid: virtual interface whose RSS subtable is to be written
5572  *	@start: start entry in the table to write
5573  *	@n: how many table entries to write
5574  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5575  *	@nrspq: number of values in @rspq
5576  *
5577  *	Programs the selected part of the VI's RSS mapping table with the
5578  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5579  *	until the full table range is populated.
5580  *
5581  *	The caller must ensure the values in @rspq are in the range allowed for
5582  *	@viid.
5583  */
5584 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5585 			int start, int n, const u16 *rspq, unsigned int nrspq)
5586 {
5587 	int ret;
5588 	const u16 *rsp = rspq;
5589 	const u16 *rsp_end = rspq + nrspq;
5590 	struct fw_rss_ind_tbl_cmd cmd;
5591 
5592 	memset(&cmd, 0, sizeof(cmd));
5593 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5594 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5595 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5596 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5597 
5598 	/*
5599 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5600 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5601 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5602 	 * reserved.
5603 	 */
5604 	while (n > 0) {
5605 		int nq = min(n, 32);
5606 		int nq_packed = 0;
5607 		__be32 *qp = &cmd.iq0_to_iq2;
5608 
5609 		/*
5610 		 * Set up the firmware RSS command header to send the next
5611 		 * "nq" Ingress Queue IDs to the firmware.
5612 		 */
5613 		cmd.niqid = cpu_to_be16(nq);
5614 		cmd.startidx = cpu_to_be16(start);
5615 
5616 		/*
5617 		 * "nq" more done for the start of the next loop.
5618 		 */
5619 		start += nq;
5620 		n -= nq;
5621 
5622 		/*
5623 		 * While there are still Ingress Queue IDs to stuff into the
5624 		 * current firmware RSS command, retrieve them from the
5625 		 * Ingress Queue ID array and insert them into the command.
5626 		 */
5627 		while (nq > 0) {
5628 			/*
5629 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5630 			 * around the Ingress Queue ID array if necessary) and
5631 			 * insert them into the firmware RSS command at the
5632 			 * current 3-tuple position within the commad.
5633 			 */
5634 			u16 qbuf[3];
5635 			u16 *qbp = qbuf;
5636 			int nqbuf = min(3, nq);
5637 
5638 			nq -= nqbuf;
5639 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5640 			while (nqbuf && nq_packed < 32) {
5641 				nqbuf--;
5642 				nq_packed++;
5643 				*qbp++ = *rsp++;
5644 				if (rsp >= rsp_end)
5645 					rsp = rspq;
5646 			}
5647 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5648 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5649 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5650 		}
5651 
5652 		/*
5653 		 * Send this portion of the RRS table update to the firmware;
5654 		 * bail out on any errors.
5655 		 */
5656 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5657 		if (ret)
5658 			return ret;
5659 	}
5660 	return 0;
5661 }
5662 
5663 /**
5664  *	t4_config_glbl_rss - configure the global RSS mode
5665  *	@adapter: the adapter
5666  *	@mbox: mbox to use for the FW command
5667  *	@mode: global RSS mode
5668  *	@flags: mode-specific flags
5669  *
5670  *	Sets the global RSS mode.
5671  */
5672 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5673 		       unsigned int flags)
5674 {
5675 	struct fw_rss_glb_config_cmd c;
5676 
5677 	memset(&c, 0, sizeof(c));
5678 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5679 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5680 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5681 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5682 		c.u.manual.mode_pkd =
5683 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5684 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5685 		c.u.basicvirtual.mode_keymode =
5686 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5687 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5688 	} else
5689 		return -EINVAL;
5690 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5691 }
5692 
5693 /**
5694  *	t4_config_vi_rss - configure per VI RSS settings
5695  *	@adapter: the adapter
5696  *	@mbox: mbox to use for the FW command
5697  *	@viid: the VI id
5698  *	@flags: RSS flags
5699  *	@defq: id of the default RSS queue for the VI.
5700  *	@skeyidx: RSS secret key table index for non-global mode
5701  *	@skey: RSS vf_scramble key for VI.
5702  *
5703  *	Configures VI-specific RSS properties.
5704  */
5705 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5706 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5707 		     unsigned int skey)
5708 {
5709 	struct fw_rss_vi_config_cmd c;
5710 
5711 	memset(&c, 0, sizeof(c));
5712 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5713 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5714 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5715 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5716 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5717 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5718 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5719 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5720 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5721 
5722 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5723 }
5724 
5725 /* Read an RSS table row */
5726 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5727 {
5728 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5729 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5730 				   5, 0, val);
5731 }
5732 
5733 /**
5734  *	t4_read_rss - read the contents of the RSS mapping table
5735  *	@adapter: the adapter
5736  *	@map: holds the contents of the RSS mapping table
5737  *
5738  *	Reads the contents of the RSS hash->queue mapping table.
5739  */
5740 int t4_read_rss(struct adapter *adapter, u16 *map)
5741 {
5742 	u32 val;
5743 	int i, ret;
5744 	int rss_nentries = adapter->chip_params->rss_nentries;
5745 
5746 	for (i = 0; i < rss_nentries / 2; ++i) {
5747 		ret = rd_rss_row(adapter, i, &val);
5748 		if (ret)
5749 			return ret;
5750 		*map++ = G_LKPTBLQUEUE0(val);
5751 		*map++ = G_LKPTBLQUEUE1(val);
5752 	}
5753 	return 0;
5754 }
5755 
5756 /**
5757  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5758  * @adap: the adapter
5759  * @cmd: TP fw ldst address space type
5760  * @vals: where the indirect register values are stored/written
5761  * @nregs: how many indirect registers to read/write
5762  * @start_idx: index of first indirect register to read/write
5763  * @rw: Read (1) or Write (0)
5764  * @sleep_ok: if true we may sleep while awaiting command completion
5765  *
5766  * Access TP indirect registers through LDST
5767  **/
5768 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5769 			    unsigned int nregs, unsigned int start_index,
5770 			    unsigned int rw, bool sleep_ok)
5771 {
5772 	int ret = 0;
5773 	unsigned int i;
5774 	struct fw_ldst_cmd c;
5775 
5776 	for (i = 0; i < nregs; i++) {
5777 		memset(&c, 0, sizeof(c));
5778 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5779 						F_FW_CMD_REQUEST |
5780 						(rw ? F_FW_CMD_READ :
5781 						      F_FW_CMD_WRITE) |
5782 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5783 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5784 
5785 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5786 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5787 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5788 				      sleep_ok);
5789 		if (ret)
5790 			return ret;
5791 
5792 		if (rw)
5793 			vals[i] = be32_to_cpu(c.u.addrval.val);
5794 	}
5795 	return 0;
5796 }
5797 
5798 /**
5799  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5800  * @adap: the adapter
5801  * @reg_addr: Address Register
5802  * @reg_data: Data register
5803  * @buff: where the indirect register values are stored/written
5804  * @nregs: how many indirect registers to read/write
5805  * @start_index: index of first indirect register to read/write
5806  * @rw: READ(1) or WRITE(0)
5807  * @sleep_ok: if true we may sleep while awaiting command completion
5808  *
5809  * Read/Write TP indirect registers through LDST if possible.
5810  * Else, use backdoor access
5811  **/
5812 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5813 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5814 			      bool sleep_ok)
5815 {
5816 	int rc = -EINVAL;
5817 	int cmd;
5818 
5819 	switch (reg_addr) {
5820 	case A_TP_PIO_ADDR:
5821 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5822 		break;
5823 	case A_TP_TM_PIO_ADDR:
5824 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5825 		break;
5826 	case A_TP_MIB_INDEX:
5827 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5828 		break;
5829 	default:
5830 		goto indirect_access;
5831 	}
5832 
5833 	if (t4_use_ldst(adap))
5834 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5835 				      sleep_ok);
5836 
5837 indirect_access:
5838 
5839 	if (rc) {
5840 		if (rw)
5841 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5842 					 start_index);
5843 		else
5844 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5845 					  start_index);
5846 	}
5847 }
5848 
5849 /**
5850  * t4_tp_pio_read - Read TP PIO registers
5851  * @adap: the adapter
5852  * @buff: where the indirect register values are written
5853  * @nregs: how many indirect registers to read
5854  * @start_index: index of first indirect register to read
5855  * @sleep_ok: if true we may sleep while awaiting command completion
5856  *
5857  * Read TP PIO Registers
5858  **/
5859 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5860 		    u32 start_index, bool sleep_ok)
5861 {
5862 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5863 			  start_index, 1, sleep_ok);
5864 }
5865 
5866 /**
5867  * t4_tp_pio_write - Write TP PIO registers
5868  * @adap: the adapter
5869  * @buff: where the indirect register values are stored
5870  * @nregs: how many indirect registers to write
5871  * @start_index: index of first indirect register to write
5872  * @sleep_ok: if true we may sleep while awaiting command completion
5873  *
5874  * Write TP PIO Registers
5875  **/
5876 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5877 		     u32 start_index, bool sleep_ok)
5878 {
5879 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5880 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5881 }
5882 
5883 /**
5884  * t4_tp_tm_pio_read - Read TP TM PIO registers
5885  * @adap: the adapter
5886  * @buff: where the indirect register values are written
5887  * @nregs: how many indirect registers to read
5888  * @start_index: index of first indirect register to read
5889  * @sleep_ok: if true we may sleep while awaiting command completion
5890  *
5891  * Read TP TM PIO Registers
5892  **/
5893 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5894 		       u32 start_index, bool sleep_ok)
5895 {
5896 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5897 			  nregs, start_index, 1, sleep_ok);
5898 }
5899 
5900 /**
5901  * t4_tp_mib_read - Read TP MIB registers
5902  * @adap: the adapter
5903  * @buff: where the indirect register values are written
5904  * @nregs: how many indirect registers to read
5905  * @start_index: index of first indirect register to read
5906  * @sleep_ok: if true we may sleep while awaiting command completion
5907  *
5908  * Read TP MIB Registers
5909  **/
5910 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5911 		    bool sleep_ok)
5912 {
5913 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5914 			  start_index, 1, sleep_ok);
5915 }
5916 
5917 /**
5918  *	t4_read_rss_key - read the global RSS key
5919  *	@adap: the adapter
5920  *	@key: 10-entry array holding the 320-bit RSS key
5921  * 	@sleep_ok: if true we may sleep while awaiting command completion
5922  *
5923  *	Reads the global 320-bit RSS key.
5924  */
5925 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5926 {
5927 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5928 }
5929 
5930 /**
5931  *	t4_write_rss_key - program one of the RSS keys
5932  *	@adap: the adapter
5933  *	@key: 10-entry array holding the 320-bit RSS key
5934  *	@idx: which RSS key to write
5935  * 	@sleep_ok: if true we may sleep while awaiting command completion
5936  *
5937  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5938  *	0..15 the corresponding entry in the RSS key table is written,
5939  *	otherwise the global RSS key is written.
5940  */
5941 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5942 		      bool sleep_ok)
5943 {
5944 	u8 rss_key_addr_cnt = 16;
5945 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5946 
5947 	/*
5948 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5949 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5950 	 * as index[5:4](upper 2) into key table
5951 	 */
5952 	if ((chip_id(adap) > CHELSIO_T5) &&
5953 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5954 		rss_key_addr_cnt = 32;
5955 
5956 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5957 
5958 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5959 		if (rss_key_addr_cnt > 16)
5960 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5961 				     vrt | V_KEYWRADDRX(idx >> 4) |
5962 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5963 		else
5964 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5965 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5966 	}
5967 }
5968 
5969 /**
5970  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5971  *	@adapter: the adapter
5972  *	@index: the entry in the PF RSS table to read
5973  *	@valp: where to store the returned value
5974  * 	@sleep_ok: if true we may sleep while awaiting command completion
5975  *
5976  *	Reads the PF RSS Configuration Table at the specified index and returns
5977  *	the value found there.
5978  */
5979 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5980 			   u32 *valp, bool sleep_ok)
5981 {
5982 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5983 }
5984 
5985 /**
5986  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5987  *	@adapter: the adapter
5988  *	@index: the entry in the VF RSS table to read
5989  *	@val: the value to store
5990  * 	@sleep_ok: if true we may sleep while awaiting command completion
5991  *
5992  *	Writes the PF RSS Configuration Table at the specified index with the
5993  *	specified value.
5994  */
5995 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5996 			    u32 val, bool sleep_ok)
5997 {
5998 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5999 			sleep_ok);
6000 }
6001 
6002 /**
6003  *	t4_read_rss_vf_config - read VF RSS Configuration Table
6004  *	@adapter: the adapter
6005  *	@index: the entry in the VF RSS table to read
6006  *	@vfl: where to store the returned VFL
6007  *	@vfh: where to store the returned VFH
6008  * 	@sleep_ok: if true we may sleep while awaiting command completion
6009  *
6010  *	Reads the VF RSS Configuration Table at the specified index and returns
6011  *	the (VFL, VFH) values found there.
6012  */
6013 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
6014 			   u32 *vfl, u32 *vfh, bool sleep_ok)
6015 {
6016 	u32 vrt, mask, data;
6017 
6018 	if (chip_id(adapter) <= CHELSIO_T5) {
6019 		mask = V_VFWRADDR(M_VFWRADDR);
6020 		data = V_VFWRADDR(index);
6021 	} else {
6022 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6023 		 data = V_T6_VFWRADDR(index);
6024 	}
6025 	/*
6026 	 * Request that the index'th VF Table values be read into VFL/VFH.
6027 	 */
6028 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6029 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6030 	vrt |= data | F_VFRDEN;
6031 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6032 
6033 	/*
6034 	 * Grab the VFL/VFH values ...
6035 	 */
6036 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6037 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6038 }
6039 
6040 /**
6041  *	t4_write_rss_vf_config - write VF RSS Configuration Table
6042  *
6043  *	@adapter: the adapter
6044  *	@index: the entry in the VF RSS table to write
6045  *	@vfl: the VFL to store
6046  *	@vfh: the VFH to store
6047  *
6048  *	Writes the VF RSS Configuration Table at the specified index with the
6049  *	specified (VFL, VFH) values.
6050  */
6051 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
6052 			    u32 vfl, u32 vfh, bool sleep_ok)
6053 {
6054 	u32 vrt, mask, data;
6055 
6056 	if (chip_id(adapter) <= CHELSIO_T5) {
6057 		mask = V_VFWRADDR(M_VFWRADDR);
6058 		data = V_VFWRADDR(index);
6059 	} else {
6060 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6061 		data = V_T6_VFWRADDR(index);
6062 	}
6063 
6064 	/*
6065 	 * Load up VFL/VFH with the values to be written ...
6066 	 */
6067 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6068 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6069 
6070 	/*
6071 	 * Write the VFL/VFH into the VF Table at index'th location.
6072 	 */
6073 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6074 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6075 	vrt |= data | F_VFRDEN;
6076 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6077 }
6078 
6079 /**
6080  *	t4_read_rss_pf_map - read PF RSS Map
6081  *	@adapter: the adapter
6082  * 	@sleep_ok: if true we may sleep while awaiting command completion
6083  *
6084  *	Reads the PF RSS Map register and returns its value.
6085  */
6086 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
6087 {
6088 	u32 pfmap;
6089 
6090 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6091 
6092 	return pfmap;
6093 }
6094 
6095 /**
6096  *	t4_write_rss_pf_map - write PF RSS Map
6097  *	@adapter: the adapter
6098  *	@pfmap: PF RSS Map value
6099  *
6100  *	Writes the specified value to the PF RSS Map register.
6101  */
6102 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6103 {
6104 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6105 }
6106 
6107 /**
6108  *	t4_read_rss_pf_mask - read PF RSS Mask
6109  *	@adapter: the adapter
6110  * 	@sleep_ok: if true we may sleep while awaiting command completion
6111  *
6112  *	Reads the PF RSS Mask register and returns its value.
6113  */
6114 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6115 {
6116 	u32 pfmask;
6117 
6118 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6119 
6120 	return pfmask;
6121 }
6122 
6123 /**
6124  *	t4_write_rss_pf_mask - write PF RSS Mask
6125  *	@adapter: the adapter
6126  *	@pfmask: PF RSS Mask value
6127  *
6128  *	Writes the specified value to the PF RSS Mask register.
6129  */
6130 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6131 {
6132 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6133 }
6134 
6135 /**
6136  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6137  *	@adap: the adapter
6138  *	@v4: holds the TCP/IP counter values
6139  *	@v6: holds the TCP/IPv6 counter values
6140  * 	@sleep_ok: if true we may sleep while awaiting command completion
6141  *
6142  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6143  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6144  */
6145 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6146 			 struct tp_tcp_stats *v6, bool sleep_ok)
6147 {
6148 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6149 
6150 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6151 #define STAT(x)     val[STAT_IDX(x)]
6152 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6153 
6154 	if (v4) {
6155 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6156 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6157 		v4->tcp_out_rsts = STAT(OUT_RST);
6158 		v4->tcp_in_segs  = STAT64(IN_SEG);
6159 		v4->tcp_out_segs = STAT64(OUT_SEG);
6160 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6161 	}
6162 	if (v6) {
6163 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6164 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6165 		v6->tcp_out_rsts = STAT(OUT_RST);
6166 		v6->tcp_in_segs  = STAT64(IN_SEG);
6167 		v6->tcp_out_segs = STAT64(OUT_SEG);
6168 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6169 	}
6170 #undef STAT64
6171 #undef STAT
6172 #undef STAT_IDX
6173 }
6174 
6175 /**
6176  *	t4_tp_get_err_stats - read TP's error MIB counters
6177  *	@adap: the adapter
6178  *	@st: holds the counter values
6179  * 	@sleep_ok: if true we may sleep while awaiting command completion
6180  *
6181  *	Returns the values of TP's error counters.
6182  */
6183 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6184 			 bool sleep_ok)
6185 {
6186 	int nchan = adap->chip_params->nchan;
6187 
6188 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6189 		       sleep_ok);
6190 
6191 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6192 		       sleep_ok);
6193 
6194 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6195 		       sleep_ok);
6196 
6197 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6198 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6199 
6200 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6201 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6202 
6203 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6204 		       sleep_ok);
6205 
6206 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6207 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6208 
6209 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6210 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6211 
6212 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6213 		       sleep_ok);
6214 }
6215 
6216 /**
6217  *	t4_tp_get_err_stats - read TP's error MIB counters
6218  *	@adap: the adapter
6219  *	@st: holds the counter values
6220  * 	@sleep_ok: if true we may sleep while awaiting command completion
6221  *
6222  *	Returns the values of TP's error counters.
6223  */
6224 void t4_tp_get_tnl_stats(struct adapter *adap, struct tp_tnl_stats *st,
6225 			 bool sleep_ok)
6226 {
6227 	int nchan = adap->chip_params->nchan;
6228 
6229 	t4_tp_mib_read(adap, st->out_pkt, nchan, A_TP_MIB_TNL_OUT_PKT_0,
6230 		       sleep_ok);
6231 	t4_tp_mib_read(adap, st->in_pkt, nchan, A_TP_MIB_TNL_IN_PKT_0,
6232 		       sleep_ok);
6233 }
6234 
6235 /**
6236  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6237  *	@adap: the adapter
6238  *	@st: holds the counter values
6239  *
6240  *	Returns the values of TP's proxy counters.
6241  */
6242 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6243     bool sleep_ok)
6244 {
6245 	int nchan = adap->chip_params->nchan;
6246 
6247 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6248 }
6249 
6250 /**
6251  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6252  *	@adap: the adapter
6253  *	@st: holds the counter values
6254  * 	@sleep_ok: if true we may sleep while awaiting command completion
6255  *
6256  *	Returns the values of TP's CPL counters.
6257  */
6258 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6259 			 bool sleep_ok)
6260 {
6261 	int nchan = adap->chip_params->nchan;
6262 
6263 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6264 
6265 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6266 }
6267 
6268 /**
6269  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6270  *	@adap: the adapter
6271  *	@st: holds the counter values
6272  *
6273  *	Returns the values of TP's RDMA counters.
6274  */
6275 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6276 			  bool sleep_ok)
6277 {
6278 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6279 		       sleep_ok);
6280 }
6281 
6282 /**
6283  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6284  *	@adap: the adapter
6285  *	@idx: the port index
6286  *	@st: holds the counter values
6287  * 	@sleep_ok: if true we may sleep while awaiting command completion
6288  *
6289  *	Returns the values of TP's FCoE counters for the selected port.
6290  */
6291 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6292 		       struct tp_fcoe_stats *st, bool sleep_ok)
6293 {
6294 	u32 val[2];
6295 
6296 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6297 		       sleep_ok);
6298 
6299 	t4_tp_mib_read(adap, &st->frames_drop, 1,
6300 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6301 
6302 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6303 		       sleep_ok);
6304 
6305 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6306 }
6307 
6308 /**
6309  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6310  *	@adap: the adapter
6311  *	@st: holds the counter values
6312  * 	@sleep_ok: if true we may sleep while awaiting command completion
6313  *
6314  *	Returns the values of TP's counters for non-TCP directly-placed packets.
6315  */
6316 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6317 		      bool sleep_ok)
6318 {
6319 	u32 val[4];
6320 
6321 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6322 
6323 	st->frames = val[0];
6324 	st->drops = val[1];
6325 	st->octets = ((u64)val[2] << 32) | val[3];
6326 }
6327 
6328 /**
6329  *	t4_tp_get_tid_stats - read TP's tid MIB counters.
6330  *	@adap: the adapter
6331  *	@st: holds the counter values
6332  * 	@sleep_ok: if true we may sleep while awaiting command completion
6333  *
6334  *	Returns the values of TP's counters for tids.
6335  */
6336 void t4_tp_get_tid_stats(struct adapter *adap, struct tp_tid_stats *st,
6337 		      bool sleep_ok)
6338 {
6339 
6340 	t4_tp_mib_read(adap, &st->del, 4, A_TP_MIB_TID_DEL, sleep_ok);
6341 }
6342 
6343 /**
6344  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6345  *	@adap: the adapter
6346  *	@mtus: where to store the MTU values
6347  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6348  *
6349  *	Reads the HW path MTU table.
6350  */
6351 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6352 {
6353 	u32 v;
6354 	int i;
6355 
6356 	for (i = 0; i < NMTUS; ++i) {
6357 		t4_write_reg(adap, A_TP_MTU_TABLE,
6358 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6359 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6360 		mtus[i] = G_MTUVALUE(v);
6361 		if (mtu_log)
6362 			mtu_log[i] = G_MTUWIDTH(v);
6363 	}
6364 }
6365 
6366 /**
6367  *	t4_read_cong_tbl - reads the congestion control table
6368  *	@adap: the adapter
6369  *	@incr: where to store the alpha values
6370  *
6371  *	Reads the additive increments programmed into the HW congestion
6372  *	control table.
6373  */
6374 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6375 {
6376 	unsigned int mtu, w;
6377 
6378 	for (mtu = 0; mtu < NMTUS; ++mtu)
6379 		for (w = 0; w < NCCTRL_WIN; ++w) {
6380 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6381 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6382 			incr[mtu][w] = (u16)t4_read_reg(adap,
6383 						A_TP_CCTRL_TABLE) & 0x1fff;
6384 		}
6385 }
6386 
6387 /**
6388  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6389  *	@adap: the adapter
6390  *	@addr: the indirect TP register address
6391  *	@mask: specifies the field within the register to modify
6392  *	@val: new value for the field
6393  *
6394  *	Sets a field of an indirect TP register to the given value.
6395  */
6396 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6397 			    unsigned int mask, unsigned int val)
6398 {
6399 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6400 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6401 	t4_write_reg(adap, A_TP_PIO_DATA, val);
6402 }
6403 
6404 /**
6405  *	init_cong_ctrl - initialize congestion control parameters
6406  *	@a: the alpha values for congestion control
6407  *	@b: the beta values for congestion control
6408  *
6409  *	Initialize the congestion control parameters.
6410  */
6411 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6412 {
6413 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6414 	a[9] = 2;
6415 	a[10] = 3;
6416 	a[11] = 4;
6417 	a[12] = 5;
6418 	a[13] = 6;
6419 	a[14] = 7;
6420 	a[15] = 8;
6421 	a[16] = 9;
6422 	a[17] = 10;
6423 	a[18] = 14;
6424 	a[19] = 17;
6425 	a[20] = 21;
6426 	a[21] = 25;
6427 	a[22] = 30;
6428 	a[23] = 35;
6429 	a[24] = 45;
6430 	a[25] = 60;
6431 	a[26] = 80;
6432 	a[27] = 100;
6433 	a[28] = 200;
6434 	a[29] = 300;
6435 	a[30] = 400;
6436 	a[31] = 500;
6437 
6438 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6439 	b[9] = b[10] = 1;
6440 	b[11] = b[12] = 2;
6441 	b[13] = b[14] = b[15] = b[16] = 3;
6442 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6443 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6444 	b[28] = b[29] = 6;
6445 	b[30] = b[31] = 7;
6446 }
6447 
6448 /* The minimum additive increment value for the congestion control table */
6449 #define CC_MIN_INCR 2U
6450 
6451 /**
6452  *	t4_load_mtus - write the MTU and congestion control HW tables
6453  *	@adap: the adapter
6454  *	@mtus: the values for the MTU table
6455  *	@alpha: the values for the congestion control alpha parameter
6456  *	@beta: the values for the congestion control beta parameter
6457  *
6458  *	Write the HW MTU table with the supplied MTUs and the high-speed
6459  *	congestion control table with the supplied alpha, beta, and MTUs.
6460  *	We write the two tables together because the additive increments
6461  *	depend on the MTUs.
6462  */
6463 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6464 		  const unsigned short *alpha, const unsigned short *beta)
6465 {
6466 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6467 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6468 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6469 		28672, 40960, 57344, 81920, 114688, 163840, 229376
6470 	};
6471 
6472 	unsigned int i, w;
6473 
6474 	for (i = 0; i < NMTUS; ++i) {
6475 		unsigned int mtu = mtus[i];
6476 		unsigned int log2 = fls(mtu);
6477 
6478 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6479 			log2--;
6480 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6481 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6482 
6483 		for (w = 0; w < NCCTRL_WIN; ++w) {
6484 			unsigned int inc;
6485 
6486 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6487 				  CC_MIN_INCR);
6488 
6489 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6490 				     (w << 16) | (beta[w] << 13) | inc);
6491 		}
6492 	}
6493 }
6494 
6495 /**
6496  *	t4_set_pace_tbl - set the pace table
6497  *	@adap: the adapter
6498  *	@pace_vals: the pace values in microseconds
6499  *	@start: index of the first entry in the HW pace table to set
6500  *	@n: how many entries to set
6501  *
6502  *	Sets (a subset of the) HW pace table.
6503  */
6504 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6505 		     unsigned int start, unsigned int n)
6506 {
6507 	unsigned int vals[NTX_SCHED], i;
6508 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6509 
6510 	if (n > NTX_SCHED)
6511 	    return -ERANGE;
6512 
6513 	/* convert values from us to dack ticks, rounding to closest value */
6514 	for (i = 0; i < n; i++, pace_vals++) {
6515 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6516 		if (vals[i] > 0x7ff)
6517 			return -ERANGE;
6518 		if (*pace_vals && vals[i] == 0)
6519 			return -ERANGE;
6520 	}
6521 	for (i = 0; i < n; i++, start++)
6522 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6523 	return 0;
6524 }
6525 
6526 /**
6527  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6528  *	@adap: the adapter
6529  *	@kbps: target rate in Kbps
6530  *	@sched: the scheduler index
6531  *
6532  *	Configure a Tx HW scheduler for the target rate.
6533  */
6534 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6535 {
6536 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6537 	unsigned int clk = adap->params.vpd.cclk * 1000;
6538 	unsigned int selected_cpt = 0, selected_bpt = 0;
6539 
6540 	if (kbps > 0) {
6541 		kbps *= 125;     /* -> bytes */
6542 		for (cpt = 1; cpt <= 255; cpt++) {
6543 			tps = clk / cpt;
6544 			bpt = (kbps + tps / 2) / tps;
6545 			if (bpt > 0 && bpt <= 255) {
6546 				v = bpt * tps;
6547 				delta = v >= kbps ? v - kbps : kbps - v;
6548 				if (delta < mindelta) {
6549 					mindelta = delta;
6550 					selected_cpt = cpt;
6551 					selected_bpt = bpt;
6552 				}
6553 			} else if (selected_cpt)
6554 				break;
6555 		}
6556 		if (!selected_cpt)
6557 			return -EINVAL;
6558 	}
6559 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6560 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6561 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6562 	if (sched & 1)
6563 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6564 	else
6565 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6566 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6567 	return 0;
6568 }
6569 
6570 /**
6571  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6572  *	@adap: the adapter
6573  *	@sched: the scheduler index
6574  *	@ipg: the interpacket delay in tenths of nanoseconds
6575  *
6576  *	Set the interpacket delay for a HW packet rate scheduler.
6577  */
6578 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6579 {
6580 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6581 
6582 	/* convert ipg to nearest number of core clocks */
6583 	ipg *= core_ticks_per_usec(adap);
6584 	ipg = (ipg + 5000) / 10000;
6585 	if (ipg > M_TXTIMERSEPQ0)
6586 		return -EINVAL;
6587 
6588 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6589 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6590 	if (sched & 1)
6591 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6592 	else
6593 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6594 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6595 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6596 	return 0;
6597 }
6598 
6599 /*
6600  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6601  * clocks.  The formula is
6602  *
6603  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6604  *
6605  * which is equivalent to
6606  *
6607  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6608  */
6609 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6610 {
6611 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6612 
6613 	return v * 62 + v / 2;
6614 }
6615 
6616 /**
6617  *	t4_get_chan_txrate - get the current per channel Tx rates
6618  *	@adap: the adapter
6619  *	@nic_rate: rates for NIC traffic
6620  *	@ofld_rate: rates for offloaded traffic
6621  *
6622  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6623  *	for each channel.
6624  */
6625 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6626 {
6627 	u32 v;
6628 
6629 	v = t4_read_reg(adap, A_TP_TX_TRATE);
6630 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6631 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6632 	if (adap->chip_params->nchan > 2) {
6633 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6634 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6635 	}
6636 
6637 	v = t4_read_reg(adap, A_TP_TX_ORATE);
6638 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6639 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6640 	if (adap->chip_params->nchan > 2) {
6641 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6642 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6643 	}
6644 }
6645 
6646 /**
6647  *	t4_set_trace_filter - configure one of the tracing filters
6648  *	@adap: the adapter
6649  *	@tp: the desired trace filter parameters
6650  *	@idx: which filter to configure
6651  *	@enable: whether to enable or disable the filter
6652  *
6653  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6654  *	it indicates that the filter is already written in the register and it
6655  *	just needs to be enabled or disabled.
6656  */
6657 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6658     int idx, int enable)
6659 {
6660 	int i, ofst = idx * 4;
6661 	u32 data_reg, mask_reg, cfg;
6662 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6663 
6664 	if (idx < 0 || idx >= NTRACE)
6665 		return -EINVAL;
6666 
6667 	if (tp == NULL || !enable) {
6668 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6669 		    enable ? en : 0);
6670 		return 0;
6671 	}
6672 
6673 	/*
6674 	 * TODO - After T4 data book is updated, specify the exact
6675 	 * section below.
6676 	 *
6677 	 * See T4 data book - MPS section for a complete description
6678 	 * of the below if..else handling of A_MPS_TRC_CFG register
6679 	 * value.
6680 	 */
6681 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6682 	if (cfg & F_TRCMULTIFILTER) {
6683 		/*
6684 		 * If multiple tracers are enabled, then maximum
6685 		 * capture size is 2.5KB (FIFO size of a single channel)
6686 		 * minus 2 flits for CPL_TRACE_PKT header.
6687 		 */
6688 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6689 			return -EINVAL;
6690 	} else {
6691 		/*
6692 		 * If multiple tracers are disabled, to avoid deadlocks
6693 		 * maximum packet capture size of 9600 bytes is recommended.
6694 		 * Also in this mode, only trace0 can be enabled and running.
6695 		 */
6696 		if (tp->snap_len > 9600 || idx)
6697 			return -EINVAL;
6698 	}
6699 
6700 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6701 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6702 	    tp->min_len > M_TFMINPKTSIZE)
6703 		return -EINVAL;
6704 
6705 	/* stop the tracer we'll be changing */
6706 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6707 
6708 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6709 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6710 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6711 
6712 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6713 		t4_write_reg(adap, data_reg, tp->data[i]);
6714 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6715 	}
6716 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6717 		     V_TFCAPTUREMAX(tp->snap_len) |
6718 		     V_TFMINPKTSIZE(tp->min_len));
6719 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6720 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6721 		     (is_t4(adap) ?
6722 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6723 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6724 
6725 	return 0;
6726 }
6727 
6728 /**
6729  *	t4_get_trace_filter - query one of the tracing filters
6730  *	@adap: the adapter
6731  *	@tp: the current trace filter parameters
6732  *	@idx: which trace filter to query
6733  *	@enabled: non-zero if the filter is enabled
6734  *
6735  *	Returns the current settings of one of the HW tracing filters.
6736  */
6737 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6738 			 int *enabled)
6739 {
6740 	u32 ctla, ctlb;
6741 	int i, ofst = idx * 4;
6742 	u32 data_reg, mask_reg;
6743 
6744 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6745 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6746 
6747 	if (is_t4(adap)) {
6748 		*enabled = !!(ctla & F_TFEN);
6749 		tp->port =  G_TFPORT(ctla);
6750 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6751 	} else {
6752 		*enabled = !!(ctla & F_T5_TFEN);
6753 		tp->port = G_T5_TFPORT(ctla);
6754 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6755 	}
6756 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6757 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6758 	tp->skip_ofst = G_TFOFFSET(ctla);
6759 	tp->skip_len = G_TFLENGTH(ctla);
6760 
6761 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6762 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6763 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6764 
6765 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6766 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6767 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6768 	}
6769 }
6770 
6771 /**
6772  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6773  *	@adap: the adapter
6774  *	@cnt: where to store the count statistics
6775  *	@cycles: where to store the cycle statistics
6776  *
6777  *	Returns performance statistics from PMTX.
6778  */
6779 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6780 {
6781 	int i;
6782 	u32 data[2];
6783 
6784 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6785 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6786 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6787 		if (is_t4(adap))
6788 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6789 		else {
6790 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6791 					 A_PM_TX_DBG_DATA, data, 2,
6792 					 A_PM_TX_DBG_STAT_MSB);
6793 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6794 		}
6795 	}
6796 }
6797 
6798 /**
6799  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6800  *	@adap: the adapter
6801  *	@cnt: where to store the count statistics
6802  *	@cycles: where to store the cycle statistics
6803  *
6804  *	Returns performance statistics from PMRX.
6805  */
6806 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6807 {
6808 	int i;
6809 	u32 data[2];
6810 
6811 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6812 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6813 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6814 		if (is_t4(adap)) {
6815 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6816 		} else {
6817 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6818 					 A_PM_RX_DBG_DATA, data, 2,
6819 					 A_PM_RX_DBG_STAT_MSB);
6820 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6821 		}
6822 	}
6823 }
6824 
6825 /**
6826  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6827  *	@adap: the adapter
6828  *	@idx: the port index
6829  *
6830  *	Returns a bitmap indicating which MPS buffer groups are associated
6831  *	with the given port.  Bit i is set if buffer group i is used by the
6832  *	port.
6833  */
6834 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6835 {
6836 	u32 n;
6837 
6838 	if (adap->params.mps_bg_map)
6839 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6840 
6841 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6842 	if (n == 0)
6843 		return idx == 0 ? 0xf : 0;
6844 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6845 		return idx < 2 ? (3 << (2 * idx)) : 0;
6846 	return 1 << idx;
6847 }
6848 
6849 /*
6850  * TP RX e-channels associated with the port.
6851  */
6852 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6853 {
6854 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6855 	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6856 
6857 	if (n == 0)
6858 		return idx == 0 ? all_chan : 0;
6859 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6860 		return idx < 2 ? (3 << (2 * idx)) : 0;
6861 	return 1 << idx;
6862 }
6863 
6864 /*
6865  * TP RX c-channel associated with the port.
6866  */
6867 static unsigned int t4_get_rx_c_chan(struct adapter *adap, int idx)
6868 {
6869 	u32 param, val;
6870 	int ret;
6871 
6872 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6873 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPCHMAP));
6874 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
6875 	if (!ret)
6876 		return (val >> (8 * idx)) & 0xff;
6877 
6878         return 0;
6879 }
6880 
6881 /**
6882  *      t4_get_port_type_description - return Port Type string description
6883  *      @port_type: firmware Port Type enumeration
6884  */
6885 const char *t4_get_port_type_description(enum fw_port_type port_type)
6886 {
6887 	static const char *const port_type_description[] = {
6888 		"Fiber_XFI",
6889 		"Fiber_XAUI",
6890 		"BT_SGMII",
6891 		"BT_XFI",
6892 		"BT_XAUI",
6893 		"KX4",
6894 		"CX4",
6895 		"KX",
6896 		"KR",
6897 		"SFP",
6898 		"BP_AP",
6899 		"BP4_AP",
6900 		"QSFP_10G",
6901 		"QSA",
6902 		"QSFP",
6903 		"BP40_BA",
6904 		"KR4_100G",
6905 		"CR4_QSFP",
6906 		"CR_QSFP",
6907 		"CR2_QSFP",
6908 		"SFP28",
6909 		"KR_SFP28",
6910 	};
6911 
6912 	if (port_type < ARRAY_SIZE(port_type_description))
6913 		return port_type_description[port_type];
6914 	return "UNKNOWN";
6915 }
6916 
6917 /**
6918  *      t4_get_port_stats_offset - collect port stats relative to a previous
6919  *				   snapshot
6920  *      @adap: The adapter
6921  *      @idx: The port
6922  *      @stats: Current stats to fill
6923  *      @offset: Previous stats snapshot
6924  */
6925 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6926 		struct port_stats *stats,
6927 		struct port_stats *offset)
6928 {
6929 	u64 *s, *o;
6930 	int i;
6931 
6932 	t4_get_port_stats(adap, idx, stats);
6933 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6934 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6935 			i++, s++, o++)
6936 		*s -= *o;
6937 }
6938 
6939 /**
6940  *	t4_get_port_stats - collect port statistics
6941  *	@adap: the adapter
6942  *	@idx: the port index
6943  *	@p: the stats structure to fill
6944  *
6945  *	Collect statistics related to the given port from HW.
6946  */
6947 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6948 {
6949 	struct port_info *pi = adap->port[idx];
6950 	u32 bgmap = pi->mps_bg_map;
6951 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6952 
6953 #define GET_STAT(name) \
6954 	t4_read_reg64(adap, \
6955 	(is_t4(adap) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##name##_L) : \
6956 	T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##name##_L)))
6957 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6958 
6959 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6960 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6961 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6962 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6963 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6964 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6965 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6966 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6967 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6968 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6969 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6970 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6971 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6972 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6973 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6974 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6975 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6976 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6977 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6978 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6979 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6980 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6981 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6982 
6983 	if (chip_id(adap) >= CHELSIO_T5) {
6984 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6985 			p->tx_frames -= p->tx_pause;
6986 			p->tx_octets -= p->tx_pause * 64;
6987 		}
6988 		if (stat_ctl & F_COUNTPAUSEMCTX)
6989 			p->tx_mcast_frames -= p->tx_pause;
6990 	}
6991 
6992 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6993 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6994 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6995 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6996 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6997 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6998 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6999 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
7000 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
7001 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
7002 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
7003 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
7004 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
7005 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
7006 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
7007 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
7008 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
7009 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
7010 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
7011 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
7012 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
7013 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
7014 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
7015 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
7016 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
7017 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
7018 
7019 	if (pi->fcs_reg != -1)
7020 		p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base;
7021 
7022 	if (chip_id(adap) >= CHELSIO_T5) {
7023 		if (stat_ctl & F_COUNTPAUSESTATRX) {
7024 			p->rx_frames -= p->rx_pause;
7025 			p->rx_octets -= p->rx_pause * 64;
7026 		}
7027 		if (stat_ctl & F_COUNTPAUSEMCRX)
7028 			p->rx_mcast_frames -= p->rx_pause;
7029 	}
7030 
7031 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
7032 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
7033 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
7034 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
7035 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
7036 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
7037 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
7038 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
7039 
7040 #undef GET_STAT
7041 #undef GET_STAT_COM
7042 }
7043 
7044 /**
7045  *	t4_get_lb_stats - collect loopback port statistics
7046  *	@adap: the adapter
7047  *	@idx: the loopback port index
7048  *	@p: the stats structure to fill
7049  *
7050  *	Return HW statistics for the given loopback port.
7051  */
7052 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
7053 {
7054 
7055 #define GET_STAT(name) \
7056 	t4_read_reg64(adap, \
7057 	(is_t4(adap) ? \
7058 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
7059 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
7060 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
7061 
7062 	p->octets	= GET_STAT(BYTES);
7063 	p->frames	= GET_STAT(FRAMES);
7064 	p->bcast_frames	= GET_STAT(BCAST);
7065 	p->mcast_frames	= GET_STAT(MCAST);
7066 	p->ucast_frames	= GET_STAT(UCAST);
7067 	p->error_frames	= GET_STAT(ERROR);
7068 
7069 	p->frames_64		= GET_STAT(64B);
7070 	p->frames_65_127	= GET_STAT(65B_127B);
7071 	p->frames_128_255	= GET_STAT(128B_255B);
7072 	p->frames_256_511	= GET_STAT(256B_511B);
7073 	p->frames_512_1023	= GET_STAT(512B_1023B);
7074 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
7075 	p->frames_1519_max	= GET_STAT(1519B_MAX);
7076 	p->drop			= GET_STAT(DROP_FRAMES);
7077 
7078 	if (idx < adap->params.nports) {
7079 		u32 bg = adap2pinfo(adap, idx)->mps_bg_map;
7080 
7081 		p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
7082 		p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
7083 		p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
7084 		p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
7085 		p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
7086 		p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
7087 		p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
7088 		p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
7089 	}
7090 
7091 #undef GET_STAT
7092 #undef GET_STAT_COM
7093 }
7094 
7095 /**
7096  *	t4_wol_magic_enable - enable/disable magic packet WoL
7097  *	@adap: the adapter
7098  *	@port: the physical port index
7099  *	@addr: MAC address expected in magic packets, %NULL to disable
7100  *
7101  *	Enables/disables magic packet wake-on-LAN for the selected port.
7102  */
7103 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7104 			 const u8 *addr)
7105 {
7106 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7107 
7108 	if (is_t4(adap)) {
7109 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7110 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7111 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7112 	} else {
7113 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7114 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7115 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7116 	}
7117 
7118 	if (addr) {
7119 		t4_write_reg(adap, mag_id_reg_l,
7120 			     (addr[2] << 24) | (addr[3] << 16) |
7121 			     (addr[4] << 8) | addr[5]);
7122 		t4_write_reg(adap, mag_id_reg_h,
7123 			     (addr[0] << 8) | addr[1]);
7124 	}
7125 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7126 			 V_MAGICEN(addr != NULL));
7127 }
7128 
7129 /**
7130  *	t4_wol_pat_enable - enable/disable pattern-based WoL
7131  *	@adap: the adapter
7132  *	@port: the physical port index
7133  *	@map: bitmap of which HW pattern filters to set
7134  *	@mask0: byte mask for bytes 0-63 of a packet
7135  *	@mask1: byte mask for bytes 64-127 of a packet
7136  *	@crc: Ethernet CRC for selected bytes
7137  *	@enable: enable/disable switch
7138  *
7139  *	Sets the pattern filters indicated in @map to mask out the bytes
7140  *	specified in @mask0/@mask1 in received packets and compare the CRC of
7141  *	the resulting packet against @crc.  If @enable is %true pattern-based
7142  *	WoL is enabled, otherwise disabled.
7143  */
7144 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7145 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
7146 {
7147 	int i;
7148 	u32 port_cfg_reg;
7149 
7150 	if (is_t4(adap))
7151 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7152 	else
7153 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7154 
7155 	if (!enable) {
7156 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7157 		return 0;
7158 	}
7159 	if (map > 0xff)
7160 		return -EINVAL;
7161 
7162 #define EPIO_REG(name) \
7163 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7164 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7165 
7166 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7167 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7168 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7169 
7170 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7171 		if (!(map & 1))
7172 			continue;
7173 
7174 		/* write byte masks */
7175 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7176 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7177 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7178 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7179 			return -ETIMEDOUT;
7180 
7181 		/* write CRC */
7182 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
7183 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7184 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7185 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7186 			return -ETIMEDOUT;
7187 	}
7188 #undef EPIO_REG
7189 
7190 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7191 	return 0;
7192 }
7193 
7194 /*     t4_mk_filtdelwr - create a delete filter WR
7195  *     @ftid: the filter ID
7196  *     @wr: the filter work request to populate
7197  *     @qid: ingress queue to receive the delete notification
7198  *
7199  *     Creates a filter work request to delete the supplied filter.  If @qid is
7200  *     negative the delete notification is suppressed.
7201  */
7202 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7203 {
7204 	memset(wr, 0, sizeof(*wr));
7205 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7206 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7207 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7208 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7209 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7210 	if (qid >= 0)
7211 		wr->rx_chan_rx_rpl_iq =
7212 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7213 }
7214 
7215 #define INIT_CMD(var, cmd, rd_wr) do { \
7216 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7217 					F_FW_CMD_REQUEST | \
7218 					F_FW_CMD_##rd_wr); \
7219 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7220 } while (0)
7221 
7222 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7223 			  u32 addr, u32 val)
7224 {
7225 	u32 ldst_addrspace;
7226 	struct fw_ldst_cmd c;
7227 
7228 	memset(&c, 0, sizeof(c));
7229 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7230 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7231 					F_FW_CMD_REQUEST |
7232 					F_FW_CMD_WRITE |
7233 					ldst_addrspace);
7234 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7235 	c.u.addrval.addr = cpu_to_be32(addr);
7236 	c.u.addrval.val = cpu_to_be32(val);
7237 
7238 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7239 }
7240 
7241 /**
7242  *	t4_mdio_rd - read a PHY register through MDIO
7243  *	@adap: the adapter
7244  *	@mbox: mailbox to use for the FW command
7245  *	@phy_addr: the PHY address
7246  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7247  *	@reg: the register to read
7248  *	@valp: where to store the value
7249  *
7250  *	Issues a FW command through the given mailbox to read a PHY register.
7251  */
7252 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7253 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7254 {
7255 	int ret;
7256 	u32 ldst_addrspace;
7257 	struct fw_ldst_cmd c;
7258 
7259 	memset(&c, 0, sizeof(c));
7260 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7261 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7262 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7263 					ldst_addrspace);
7264 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7265 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7266 					 V_FW_LDST_CMD_MMD(mmd));
7267 	c.u.mdio.raddr = cpu_to_be16(reg);
7268 
7269 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7270 	if (ret == 0)
7271 		*valp = be16_to_cpu(c.u.mdio.rval);
7272 	return ret;
7273 }
7274 
7275 /**
7276  *	t4_mdio_wr - write a PHY register through MDIO
7277  *	@adap: the adapter
7278  *	@mbox: mailbox to use for the FW command
7279  *	@phy_addr: the PHY address
7280  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7281  *	@reg: the register to write
7282  *	@valp: value to write
7283  *
7284  *	Issues a FW command through the given mailbox to write a PHY register.
7285  */
7286 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7287 	       unsigned int mmd, unsigned int reg, unsigned int val)
7288 {
7289 	u32 ldst_addrspace;
7290 	struct fw_ldst_cmd c;
7291 
7292 	memset(&c, 0, sizeof(c));
7293 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7294 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7295 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7296 					ldst_addrspace);
7297 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7298 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7299 					 V_FW_LDST_CMD_MMD(mmd));
7300 	c.u.mdio.raddr = cpu_to_be16(reg);
7301 	c.u.mdio.rval = cpu_to_be16(val);
7302 
7303 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7304 }
7305 
7306 /**
7307  *
7308  *	t4_sge_decode_idma_state - decode the idma state
7309  *	@adap: the adapter
7310  *	@state: the state idma is stuck in
7311  */
7312 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7313 {
7314 	static const char * const t4_decode[] = {
7315 		"IDMA_IDLE",
7316 		"IDMA_PUSH_MORE_CPL_FIFO",
7317 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7318 		"Not used",
7319 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7320 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7321 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7322 		"IDMA_SEND_FIFO_TO_IMSG",
7323 		"IDMA_FL_REQ_DATA_FL_PREP",
7324 		"IDMA_FL_REQ_DATA_FL",
7325 		"IDMA_FL_DROP",
7326 		"IDMA_FL_H_REQ_HEADER_FL",
7327 		"IDMA_FL_H_SEND_PCIEHDR",
7328 		"IDMA_FL_H_PUSH_CPL_FIFO",
7329 		"IDMA_FL_H_SEND_CPL",
7330 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7331 		"IDMA_FL_H_SEND_IP_HDR",
7332 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7333 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7334 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7335 		"IDMA_FL_D_SEND_PCIEHDR",
7336 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7337 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7338 		"IDMA_FL_SEND_PCIEHDR",
7339 		"IDMA_FL_PUSH_CPL_FIFO",
7340 		"IDMA_FL_SEND_CPL",
7341 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7342 		"IDMA_FL_SEND_PAYLOAD",
7343 		"IDMA_FL_REQ_NEXT_DATA_FL",
7344 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7345 		"IDMA_FL_SEND_PADDING",
7346 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7347 		"IDMA_FL_SEND_FIFO_TO_IMSG",
7348 		"IDMA_FL_REQ_DATAFL_DONE",
7349 		"IDMA_FL_REQ_HEADERFL_DONE",
7350 	};
7351 	static const char * const t5_decode[] = {
7352 		"IDMA_IDLE",
7353 		"IDMA_ALMOST_IDLE",
7354 		"IDMA_PUSH_MORE_CPL_FIFO",
7355 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7356 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7357 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7358 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7359 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7360 		"IDMA_SEND_FIFO_TO_IMSG",
7361 		"IDMA_FL_REQ_DATA_FL",
7362 		"IDMA_FL_DROP",
7363 		"IDMA_FL_DROP_SEND_INC",
7364 		"IDMA_FL_H_REQ_HEADER_FL",
7365 		"IDMA_FL_H_SEND_PCIEHDR",
7366 		"IDMA_FL_H_PUSH_CPL_FIFO",
7367 		"IDMA_FL_H_SEND_CPL",
7368 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7369 		"IDMA_FL_H_SEND_IP_HDR",
7370 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7371 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7372 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7373 		"IDMA_FL_D_SEND_PCIEHDR",
7374 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7375 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7376 		"IDMA_FL_SEND_PCIEHDR",
7377 		"IDMA_FL_PUSH_CPL_FIFO",
7378 		"IDMA_FL_SEND_CPL",
7379 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7380 		"IDMA_FL_SEND_PAYLOAD",
7381 		"IDMA_FL_REQ_NEXT_DATA_FL",
7382 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7383 		"IDMA_FL_SEND_PADDING",
7384 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7385 	};
7386 	static const char * const t6_decode[] = {
7387 		"IDMA_IDLE",
7388 		"IDMA_PUSH_MORE_CPL_FIFO",
7389 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7390 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7391 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7392 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7393 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7394 		"IDMA_FL_REQ_DATA_FL",
7395 		"IDMA_FL_DROP",
7396 		"IDMA_FL_DROP_SEND_INC",
7397 		"IDMA_FL_H_REQ_HEADER_FL",
7398 		"IDMA_FL_H_SEND_PCIEHDR",
7399 		"IDMA_FL_H_PUSH_CPL_FIFO",
7400 		"IDMA_FL_H_SEND_CPL",
7401 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7402 		"IDMA_FL_H_SEND_IP_HDR",
7403 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7404 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7405 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7406 		"IDMA_FL_D_SEND_PCIEHDR",
7407 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7408 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7409 		"IDMA_FL_SEND_PCIEHDR",
7410 		"IDMA_FL_PUSH_CPL_FIFO",
7411 		"IDMA_FL_SEND_CPL",
7412 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7413 		"IDMA_FL_SEND_PAYLOAD",
7414 		"IDMA_FL_REQ_NEXT_DATA_FL",
7415 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7416 		"IDMA_FL_SEND_PADDING",
7417 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7418 	};
7419 	static const u32 sge_regs[] = {
7420 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7421 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7422 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7423 	};
7424 	const char * const *sge_idma_decode;
7425 	int sge_idma_decode_nstates;
7426 	int i;
7427 	unsigned int chip_version = chip_id(adapter);
7428 
7429 	/* Select the right set of decode strings to dump depending on the
7430 	 * adapter chip type.
7431 	 */
7432 	switch (chip_version) {
7433 	case CHELSIO_T4:
7434 		sge_idma_decode = (const char * const *)t4_decode;
7435 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7436 		break;
7437 
7438 	case CHELSIO_T5:
7439 		sge_idma_decode = (const char * const *)t5_decode;
7440 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7441 		break;
7442 
7443 	case CHELSIO_T6:
7444 		sge_idma_decode = (const char * const *)t6_decode;
7445 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7446 		break;
7447 
7448 	default:
7449 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7450 		return;
7451 	}
7452 
7453 	if (state < sge_idma_decode_nstates)
7454 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7455 	else
7456 		CH_WARN(adapter, "idma state %d unknown\n", state);
7457 
7458 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7459 		CH_WARN(adapter, "SGE register %#x value %#x\n",
7460 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7461 }
7462 
7463 /**
7464  *      t4_sge_ctxt_flush - flush the SGE context cache
7465  *      @adap: the adapter
7466  *      @mbox: mailbox to use for the FW command
7467  *
7468  *      Issues a FW command through the given mailbox to flush the
7469  *      SGE context cache.
7470  */
7471 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
7472 {
7473 	int ret;
7474 	u32 ldst_addrspace;
7475 	struct fw_ldst_cmd c;
7476 
7477 	memset(&c, 0, sizeof(c));
7478 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
7479 						 FW_LDST_ADDRSPC_SGE_EGRC :
7480 						 FW_LDST_ADDRSPC_SGE_INGC);
7481 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7482 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7483 					ldst_addrspace);
7484 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7485 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7486 
7487 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7488 	return ret;
7489 }
7490 
7491 /**
7492  *      t4_fw_hello - establish communication with FW
7493  *      @adap: the adapter
7494  *      @mbox: mailbox to use for the FW command
7495  *      @evt_mbox: mailbox to receive async FW events
7496  *      @master: specifies the caller's willingness to be the device master
7497  *	@state: returns the current device state (if non-NULL)
7498  *
7499  *	Issues a command to establish communication with FW.  Returns either
7500  *	an error (negative integer) or the mailbox of the Master PF.
7501  */
7502 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7503 		enum dev_master master, enum dev_state *state)
7504 {
7505 	int ret;
7506 	struct fw_hello_cmd c;
7507 	u32 v;
7508 	unsigned int master_mbox;
7509 	int retries = FW_CMD_HELLO_RETRIES;
7510 
7511 retry:
7512 	memset(&c, 0, sizeof(c));
7513 	INIT_CMD(c, HELLO, WRITE);
7514 	c.err_to_clearinit = cpu_to_be32(
7515 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7516 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7517 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7518 					mbox : M_FW_HELLO_CMD_MBMASTER) |
7519 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7520 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7521 		F_FW_HELLO_CMD_CLEARINIT);
7522 
7523 	/*
7524 	 * Issue the HELLO command to the firmware.  If it's not successful
7525 	 * but indicates that we got a "busy" or "timeout" condition, retry
7526 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7527 	 * retry limit, check to see if the firmware left us any error
7528 	 * information and report that if so ...
7529 	 */
7530 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7531 	if (ret != FW_SUCCESS) {
7532 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7533 			goto retry;
7534 		return ret;
7535 	}
7536 
7537 	v = be32_to_cpu(c.err_to_clearinit);
7538 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7539 	if (state) {
7540 		if (v & F_FW_HELLO_CMD_ERR)
7541 			*state = DEV_STATE_ERR;
7542 		else if (v & F_FW_HELLO_CMD_INIT)
7543 			*state = DEV_STATE_INIT;
7544 		else
7545 			*state = DEV_STATE_UNINIT;
7546 	}
7547 
7548 	/*
7549 	 * If we're not the Master PF then we need to wait around for the
7550 	 * Master PF Driver to finish setting up the adapter.
7551 	 *
7552 	 * Note that we also do this wait if we're a non-Master-capable PF and
7553 	 * there is no current Master PF; a Master PF may show up momentarily
7554 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7555 	 * OS loads lots of different drivers rapidly at the same time).  In
7556 	 * this case, the Master PF returned by the firmware will be
7557 	 * M_PCIE_FW_MASTER so the test below will work ...
7558 	 */
7559 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7560 	    master_mbox != mbox) {
7561 		int waiting = FW_CMD_HELLO_TIMEOUT;
7562 
7563 		/*
7564 		 * Wait for the firmware to either indicate an error or
7565 		 * initialized state.  If we see either of these we bail out
7566 		 * and report the issue to the caller.  If we exhaust the
7567 		 * "hello timeout" and we haven't exhausted our retries, try
7568 		 * again.  Otherwise bail with a timeout error.
7569 		 */
7570 		for (;;) {
7571 			u32 pcie_fw;
7572 
7573 			msleep(50);
7574 			waiting -= 50;
7575 
7576 			/*
7577 			 * If neither Error nor Initialialized are indicated
7578 			 * by the firmware keep waiting till we exhaust our
7579 			 * timeout ... and then retry if we haven't exhausted
7580 			 * our retries ...
7581 			 */
7582 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7583 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7584 				if (waiting <= 0) {
7585 					if (retries-- > 0)
7586 						goto retry;
7587 
7588 					return -ETIMEDOUT;
7589 				}
7590 				continue;
7591 			}
7592 
7593 			/*
7594 			 * We either have an Error or Initialized condition
7595 			 * report errors preferentially.
7596 			 */
7597 			if (state) {
7598 				if (pcie_fw & F_PCIE_FW_ERR)
7599 					*state = DEV_STATE_ERR;
7600 				else if (pcie_fw & F_PCIE_FW_INIT)
7601 					*state = DEV_STATE_INIT;
7602 			}
7603 
7604 			/*
7605 			 * If we arrived before a Master PF was selected and
7606 			 * there's not a valid Master PF, grab its identity
7607 			 * for our caller.
7608 			 */
7609 			if (master_mbox == M_PCIE_FW_MASTER &&
7610 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7611 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7612 			break;
7613 		}
7614 	}
7615 
7616 	return master_mbox;
7617 }
7618 
7619 /**
7620  *	t4_fw_bye - end communication with FW
7621  *	@adap: the adapter
7622  *	@mbox: mailbox to use for the FW command
7623  *
7624  *	Issues a command to terminate communication with FW.
7625  */
7626 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7627 {
7628 	struct fw_bye_cmd c;
7629 
7630 	memset(&c, 0, sizeof(c));
7631 	INIT_CMD(c, BYE, WRITE);
7632 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7633 }
7634 
7635 /**
7636  *	t4_fw_reset - issue a reset to FW
7637  *	@adap: the adapter
7638  *	@mbox: mailbox to use for the FW command
7639  *	@reset: specifies the type of reset to perform
7640  *
7641  *	Issues a reset command of the specified type to FW.
7642  */
7643 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7644 {
7645 	struct fw_reset_cmd c;
7646 
7647 	memset(&c, 0, sizeof(c));
7648 	INIT_CMD(c, RESET, WRITE);
7649 	c.val = cpu_to_be32(reset);
7650 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7651 }
7652 
7653 /**
7654  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7655  *	@adap: the adapter
7656  *	@mbox: mailbox to use for the FW RESET command (if desired)
7657  *	@force: force uP into RESET even if FW RESET command fails
7658  *
7659  *	Issues a RESET command to firmware (if desired) with a HALT indication
7660  *	and then puts the microprocessor into RESET state.  The RESET command
7661  *	will only be issued if a legitimate mailbox is provided (mbox <=
7662  *	M_PCIE_FW_MASTER).
7663  *
7664  *	This is generally used in order for the host to safely manipulate the
7665  *	adapter without fear of conflicting with whatever the firmware might
7666  *	be doing.  The only way out of this state is to RESTART the firmware
7667  *	...
7668  */
7669 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7670 {
7671 	int ret = 0;
7672 
7673 	/*
7674 	 * If a legitimate mailbox is provided, issue a RESET command
7675 	 * with a HALT indication.
7676 	 */
7677 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7678 		struct fw_reset_cmd c;
7679 
7680 		memset(&c, 0, sizeof(c));
7681 		INIT_CMD(c, RESET, WRITE);
7682 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7683 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7684 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7685 	}
7686 
7687 	/*
7688 	 * Normally we won't complete the operation if the firmware RESET
7689 	 * command fails but if our caller insists we'll go ahead and put the
7690 	 * uP into RESET.  This can be useful if the firmware is hung or even
7691 	 * missing ...  We'll have to take the risk of putting the uP into
7692 	 * RESET without the cooperation of firmware in that case.
7693 	 *
7694 	 * We also force the firmware's HALT flag to be on in case we bypassed
7695 	 * the firmware RESET command above or we're dealing with old firmware
7696 	 * which doesn't have the HALT capability.  This will serve as a flag
7697 	 * for the incoming firmware to know that it's coming out of a HALT
7698 	 * rather than a RESET ... if it's new enough to understand that ...
7699 	 */
7700 	if (ret == 0 || force) {
7701 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7702 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7703 				 F_PCIE_FW_HALT);
7704 	}
7705 
7706 	/*
7707 	 * And we always return the result of the firmware RESET command
7708 	 * even when we force the uP into RESET ...
7709 	 */
7710 	return ret;
7711 }
7712 
7713 /**
7714  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7715  *	@adap: the adapter
7716  *
7717  *	Restart firmware previously halted by t4_fw_halt().  On successful
7718  *	return the previous PF Master remains as the new PF Master and there
7719  *	is no need to issue a new HELLO command, etc.
7720  */
7721 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7722 {
7723 	int ms;
7724 
7725 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7726 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7727 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7728 			return FW_SUCCESS;
7729 		msleep(100);
7730 		ms += 100;
7731 	}
7732 
7733 	return -ETIMEDOUT;
7734 }
7735 
7736 /**
7737  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7738  *	@adap: the adapter
7739  *	@mbox: mailbox to use for the FW RESET command (if desired)
7740  *	@fw_data: the firmware image to write
7741  *	@size: image size
7742  *	@force: force upgrade even if firmware doesn't cooperate
7743  *
7744  *	Perform all of the steps necessary for upgrading an adapter's
7745  *	firmware image.  Normally this requires the cooperation of the
7746  *	existing firmware in order to halt all existing activities
7747  *	but if an invalid mailbox token is passed in we skip that step
7748  *	(though we'll still put the adapter microprocessor into RESET in
7749  *	that case).
7750  *
7751  *	On successful return the new firmware will have been loaded and
7752  *	the adapter will have been fully RESET losing all previous setup
7753  *	state.  On unsuccessful return the adapter may be completely hosed ...
7754  *	positive errno indicates that the adapter is ~probably~ intact, a
7755  *	negative errno indicates that things are looking bad ...
7756  */
7757 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7758 		  const u8 *fw_data, unsigned int size, int force)
7759 {
7760 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7761 	unsigned int bootstrap =
7762 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7763 	int ret;
7764 
7765 	if (!t4_fw_matches_chip(adap, fw_hdr))
7766 		return -EINVAL;
7767 
7768 	if (!bootstrap) {
7769 		ret = t4_fw_halt(adap, mbox, force);
7770 		if (ret < 0 && !force)
7771 			return ret;
7772 	}
7773 
7774 	ret = t4_load_fw(adap, fw_data, size);
7775 	if (ret < 0 || bootstrap)
7776 		return ret;
7777 
7778 	return t4_fw_restart(adap, mbox);
7779 }
7780 
7781 /**
7782  *	t4_fw_initialize - ask FW to initialize the device
7783  *	@adap: the adapter
7784  *	@mbox: mailbox to use for the FW command
7785  *
7786  *	Issues a command to FW to partially initialize the device.  This
7787  *	performs initialization that generally doesn't depend on user input.
7788  */
7789 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7790 {
7791 	struct fw_initialize_cmd c;
7792 
7793 	memset(&c, 0, sizeof(c));
7794 	INIT_CMD(c, INITIALIZE, WRITE);
7795 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7796 }
7797 
7798 /**
7799  *	t4_query_params_rw - query FW or device parameters
7800  *	@adap: the adapter
7801  *	@mbox: mailbox to use for the FW command
7802  *	@pf: the PF
7803  *	@vf: the VF
7804  *	@nparams: the number of parameters
7805  *	@params: the parameter names
7806  *	@val: the parameter values
7807  *	@rw: Write and read flag
7808  *
7809  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7810  *	queried at once.
7811  */
7812 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7813 		       unsigned int vf, unsigned int nparams, const u32 *params,
7814 		       u32 *val, int rw)
7815 {
7816 	int i, ret;
7817 	struct fw_params_cmd c;
7818 	__be32 *p = &c.param[0].mnem;
7819 
7820 	if (nparams > 7)
7821 		return -EINVAL;
7822 
7823 	memset(&c, 0, sizeof(c));
7824 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7825 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7826 				  V_FW_PARAMS_CMD_PFN(pf) |
7827 				  V_FW_PARAMS_CMD_VFN(vf));
7828 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7829 
7830 	for (i = 0; i < nparams; i++) {
7831 		*p++ = cpu_to_be32(*params++);
7832 		if (rw)
7833 			*p = cpu_to_be32(*(val + i));
7834 		p++;
7835 	}
7836 
7837 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7838 	if (ret == 0)
7839 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7840 			*val++ = be32_to_cpu(*p);
7841 	return ret;
7842 }
7843 
7844 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7845 		    unsigned int vf, unsigned int nparams, const u32 *params,
7846 		    u32 *val)
7847 {
7848 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7849 }
7850 
7851 /**
7852  *      t4_set_params_timeout - sets FW or device parameters
7853  *      @adap: the adapter
7854  *      @mbox: mailbox to use for the FW command
7855  *      @pf: the PF
7856  *      @vf: the VF
7857  *      @nparams: the number of parameters
7858  *      @params: the parameter names
7859  *      @val: the parameter values
7860  *      @timeout: the timeout time
7861  *
7862  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7863  *      specified at once.
7864  */
7865 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7866 			  unsigned int pf, unsigned int vf,
7867 			  unsigned int nparams, const u32 *params,
7868 			  const u32 *val, int timeout)
7869 {
7870 	struct fw_params_cmd c;
7871 	__be32 *p = &c.param[0].mnem;
7872 
7873 	if (nparams > 7)
7874 		return -EINVAL;
7875 
7876 	memset(&c, 0, sizeof(c));
7877 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7878 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7879 				  V_FW_PARAMS_CMD_PFN(pf) |
7880 				  V_FW_PARAMS_CMD_VFN(vf));
7881 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7882 
7883 	while (nparams--) {
7884 		*p++ = cpu_to_be32(*params++);
7885 		*p++ = cpu_to_be32(*val++);
7886 	}
7887 
7888 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7889 }
7890 
7891 /**
7892  *	t4_set_params - sets FW or device parameters
7893  *	@adap: the adapter
7894  *	@mbox: mailbox to use for the FW command
7895  *	@pf: the PF
7896  *	@vf: the VF
7897  *	@nparams: the number of parameters
7898  *	@params: the parameter names
7899  *	@val: the parameter values
7900  *
7901  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7902  *	specified at once.
7903  */
7904 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7905 		  unsigned int vf, unsigned int nparams, const u32 *params,
7906 		  const u32 *val)
7907 {
7908 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7909 				     FW_CMD_MAX_TIMEOUT);
7910 }
7911 
7912 /**
7913  *	t4_cfg_pfvf - configure PF/VF resource limits
7914  *	@adap: the adapter
7915  *	@mbox: mailbox to use for the FW command
7916  *	@pf: the PF being configured
7917  *	@vf: the VF being configured
7918  *	@txq: the max number of egress queues
7919  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7920  *	@rxqi: the max number of interrupt-capable ingress queues
7921  *	@rxq: the max number of interruptless ingress queues
7922  *	@tc: the PCI traffic class
7923  *	@vi: the max number of virtual interfaces
7924  *	@cmask: the channel access rights mask for the PF/VF
7925  *	@pmask: the port access rights mask for the PF/VF
7926  *	@nexact: the maximum number of exact MPS filters
7927  *	@rcaps: read capabilities
7928  *	@wxcaps: write/execute capabilities
7929  *
7930  *	Configures resource limits and capabilities for a physical or virtual
7931  *	function.
7932  */
7933 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7934 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7935 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7936 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7937 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7938 {
7939 	struct fw_pfvf_cmd c;
7940 
7941 	memset(&c, 0, sizeof(c));
7942 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7943 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7944 				  V_FW_PFVF_CMD_VFN(vf));
7945 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7946 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7947 				     V_FW_PFVF_CMD_NIQ(rxq));
7948 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7949 				    V_FW_PFVF_CMD_PMASK(pmask) |
7950 				    V_FW_PFVF_CMD_NEQ(txq));
7951 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7952 				      V_FW_PFVF_CMD_NVI(vi) |
7953 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7954 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7955 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7956 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7957 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7958 }
7959 
7960 /**
7961  *	t4_alloc_vi_func - allocate a virtual interface
7962  *	@adap: the adapter
7963  *	@mbox: mailbox to use for the FW command
7964  *	@port: physical port associated with the VI
7965  *	@pf: the PF owning the VI
7966  *	@vf: the VF owning the VI
7967  *	@nmac: number of MAC addresses needed (1 to 5)
7968  *	@mac: the MAC addresses of the VI
7969  *	@rss_size: size of RSS table slice associated with this VI
7970  *	@portfunc: which Port Application Function MAC Address is desired
7971  *	@idstype: Intrusion Detection Type
7972  *
7973  *	Allocates a virtual interface for the given physical port.  If @mac is
7974  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7975  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7976  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7977  *	stored consecutively so the space needed is @nmac * 6 bytes.
7978  *	Returns a negative error number or the non-negative VI id.
7979  */
7980 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7981 		     unsigned int port, unsigned int pf, unsigned int vf,
7982 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7983 		     uint8_t *vfvld, uint16_t *vin,
7984 		     unsigned int portfunc, unsigned int idstype)
7985 {
7986 	int ret;
7987 	struct fw_vi_cmd c;
7988 
7989 	memset(&c, 0, sizeof(c));
7990 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7991 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7992 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7993 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7994 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7995 				     V_FW_VI_CMD_FUNC(portfunc));
7996 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7997 	c.nmac = nmac - 1;
7998 	if(!rss_size)
7999 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
8000 
8001 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8002 	if (ret)
8003 		return ret;
8004 	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
8005 
8006 	if (mac) {
8007 		memcpy(mac, c.mac, sizeof(c.mac));
8008 		switch (nmac) {
8009 		case 5:
8010 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
8011 		case 4:
8012 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
8013 		case 3:
8014 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
8015 		case 2:
8016 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
8017 		}
8018 	}
8019 	if (rss_size)
8020 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
8021 	if (vfvld) {
8022 		*vfvld = adap->params.viid_smt_extn_support ?
8023 		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
8024 		    G_FW_VIID_VIVLD(ret);
8025 	}
8026 	if (vin) {
8027 		*vin = adap->params.viid_smt_extn_support ?
8028 		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
8029 		    G_FW_VIID_VIN(ret);
8030 	}
8031 
8032 	return ret;
8033 }
8034 
8035 /**
8036  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
8037  *      @adap: the adapter
8038  *      @mbox: mailbox to use for the FW command
8039  *      @port: physical port associated with the VI
8040  *      @pf: the PF owning the VI
8041  *      @vf: the VF owning the VI
8042  *      @nmac: number of MAC addresses needed (1 to 5)
8043  *      @mac: the MAC addresses of the VI
8044  *      @rss_size: size of RSS table slice associated with this VI
8045  *
8046  *	backwards compatible and convieniance routine to allocate a Virtual
8047  *	Interface with a Ethernet Port Application Function and Intrustion
8048  *	Detection System disabled.
8049  */
8050 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
8051 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
8052 		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
8053 {
8054 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
8055 				vfvld, vin, FW_VI_FUNC_ETH, 0);
8056 }
8057 
8058 /**
8059  * 	t4_free_vi - free a virtual interface
8060  * 	@adap: the adapter
8061  * 	@mbox: mailbox to use for the FW command
8062  * 	@pf: the PF owning the VI
8063  * 	@vf: the VF owning the VI
8064  * 	@viid: virtual interface identifiler
8065  *
8066  * 	Free a previously allocated virtual interface.
8067  */
8068 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
8069 	       unsigned int vf, unsigned int viid)
8070 {
8071 	struct fw_vi_cmd c;
8072 
8073 	memset(&c, 0, sizeof(c));
8074 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
8075 				  F_FW_CMD_REQUEST |
8076 				  F_FW_CMD_EXEC |
8077 				  V_FW_VI_CMD_PFN(pf) |
8078 				  V_FW_VI_CMD_VFN(vf));
8079 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
8080 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
8081 
8082 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8083 }
8084 
8085 /**
8086  *	t4_set_rxmode - set Rx properties of a virtual interface
8087  *	@adap: the adapter
8088  *	@mbox: mailbox to use for the FW command
8089  *	@viid: the VI id
8090  *	@mtu: the new MTU or -1
8091  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
8092  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
8093  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
8094  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
8095  *	@sleep_ok: if true we may sleep while awaiting command completion
8096  *
8097  *	Sets Rx properties of a virtual interface.
8098  */
8099 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8100 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
8101 		  bool sleep_ok)
8102 {
8103 	struct fw_vi_rxmode_cmd c;
8104 
8105 	/* convert to FW values */
8106 	if (mtu < 0)
8107 		mtu = M_FW_VI_RXMODE_CMD_MTU;
8108 	if (promisc < 0)
8109 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8110 	if (all_multi < 0)
8111 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8112 	if (bcast < 0)
8113 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8114 	if (vlanex < 0)
8115 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8116 
8117 	memset(&c, 0, sizeof(c));
8118 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8119 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8120 				   V_FW_VI_RXMODE_CMD_VIID(viid));
8121 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8122 	c.mtu_to_vlanexen =
8123 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8124 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8125 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8126 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8127 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8128 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8129 }
8130 
8131 /**
8132  *	t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
8133  *	@adap: the adapter
8134  *	@viid: the VI id
8135  *	@mac: the MAC address
8136  *	@mask: the mask
8137  *	@vni: the VNI id for the tunnel protocol
8138  *	@vni_mask: mask for the VNI id
8139  *	@dip_hit: to enable DIP match for the MPS entry
8140  *	@lookup_type: MAC address for inner (1) or outer (0) header
8141  *	@sleep_ok: call is allowed to sleep
8142  *
8143  *	Allocates an MPS entry with specified MAC address and VNI value.
8144  *
8145  *	Returns a negative error number or the allocated index for this mac.
8146  */
8147 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
8148 			    const u8 *addr, const u8 *mask, unsigned int vni,
8149 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
8150 			    bool sleep_ok)
8151 {
8152 	struct fw_vi_mac_cmd c;
8153 	struct fw_vi_mac_vni *p = c.u.exact_vni;
8154 	int ret = 0;
8155 	u32 val;
8156 
8157 	memset(&c, 0, sizeof(c));
8158 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8159 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8160 				   V_FW_VI_MAC_CMD_VIID(viid));
8161 	val = V_FW_CMD_LEN16(1) |
8162 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
8163 	c.freemacs_to_len16 = cpu_to_be32(val);
8164 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8165 				      V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8166 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8167 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
8168 
8169 	p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
8170 					    V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
8171 					    V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
8172 	p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
8173 
8174 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8175 	if (ret == 0)
8176 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8177 	return ret;
8178 }
8179 
8180 /**
8181  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
8182  *	@adap: the adapter
8183  *	@viid: the VI id
8184  *	@mac: the MAC address
8185  *	@mask: the mask
8186  *	@idx: index at which to add this entry
8187  *	@port_id: the port index
8188  *	@lookup_type: MAC address for inner (1) or outer (0) header
8189  *	@sleep_ok: call is allowed to sleep
8190  *
8191  *	Adds the mac entry at the specified index using raw mac interface.
8192  *
8193  *	Returns a negative error number or the allocated index for this mac.
8194  */
8195 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
8196 			  const u8 *addr, const u8 *mask, unsigned int idx,
8197 			  u8 lookup_type, u8 port_id, bool sleep_ok)
8198 {
8199 	int ret = 0;
8200 	struct fw_vi_mac_cmd c;
8201 	struct fw_vi_mac_raw *p = &c.u.raw;
8202 	u32 val;
8203 
8204 	memset(&c, 0, sizeof(c));
8205 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8206 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8207 				   V_FW_VI_MAC_CMD_VIID(viid));
8208 	val = V_FW_CMD_LEN16(1) |
8209 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8210 	c.freemacs_to_len16 = cpu_to_be32(val);
8211 
8212 	/* Specify that this is an inner mac address */
8213 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
8214 
8215 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8216 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8217 				   V_DATAPORTNUM(port_id));
8218 	/* Lookup mask and port mask */
8219 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8220 				    V_DATAPORTNUM(M_DATAPORTNUM));
8221 
8222 	/* Copy the address and the mask */
8223 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8224 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8225 
8226 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8227 	if (ret == 0) {
8228 		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
8229 		if (ret != idx)
8230 			ret = -ENOMEM;
8231 	}
8232 
8233 	return ret;
8234 }
8235 
8236 /**
8237  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8238  *	@adap: the adapter
8239  *	@mbox: mailbox to use for the FW command
8240  *	@viid: the VI id
8241  *	@free: if true any existing filters for this VI id are first removed
8242  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8243  *	@addr: the MAC address(es)
8244  *	@idx: where to store the index of each allocated filter
8245  *	@hash: pointer to hash address filter bitmap
8246  *	@sleep_ok: call is allowed to sleep
8247  *
8248  *	Allocates an exact-match filter for each of the supplied addresses and
8249  *	sets it to the corresponding address.  If @idx is not %NULL it should
8250  *	have at least @naddr entries, each of which will be set to the index of
8251  *	the filter allocated for the corresponding MAC address.  If a filter
8252  *	could not be allocated for an address its index is set to 0xffff.
8253  *	If @hash is not %NULL addresses that fail to allocate an exact filter
8254  *	are hashed and update the hash filter bitmap pointed at by @hash.
8255  *
8256  *	Returns a negative error number or the number of filters allocated.
8257  */
8258 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8259 		      unsigned int viid, bool free, unsigned int naddr,
8260 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8261 {
8262 	int offset, ret = 0;
8263 	struct fw_vi_mac_cmd c;
8264 	unsigned int nfilters = 0;
8265 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8266 	unsigned int rem = naddr;
8267 
8268 	if (naddr > max_naddr)
8269 		return -EINVAL;
8270 
8271 	for (offset = 0; offset < naddr ; /**/) {
8272 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8273 					 ? rem
8274 					 : ARRAY_SIZE(c.u.exact));
8275 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8276 						     u.exact[fw_naddr]), 16);
8277 		struct fw_vi_mac_exact *p;
8278 		int i;
8279 
8280 		memset(&c, 0, sizeof(c));
8281 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8282 					   F_FW_CMD_REQUEST |
8283 					   F_FW_CMD_WRITE |
8284 					   V_FW_CMD_EXEC(free) |
8285 					   V_FW_VI_MAC_CMD_VIID(viid));
8286 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8287 						  V_FW_CMD_LEN16(len16));
8288 
8289 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8290 			p->valid_to_idx =
8291 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8292 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8293 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8294 		}
8295 
8296 		/*
8297 		 * It's okay if we run out of space in our MAC address arena.
8298 		 * Some of the addresses we submit may get stored so we need
8299 		 * to run through the reply to see what the results were ...
8300 		 */
8301 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8302 		if (ret && ret != -FW_ENOMEM)
8303 			break;
8304 
8305 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8306 			u16 index = G_FW_VI_MAC_CMD_IDX(
8307 						be16_to_cpu(p->valid_to_idx));
8308 
8309 			if (idx)
8310 				idx[offset+i] = (index >=  max_naddr
8311 						 ? 0xffff
8312 						 : index);
8313 			if (index < max_naddr)
8314 				nfilters++;
8315 			else if (hash)
8316 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8317 		}
8318 
8319 		free = false;
8320 		offset += fw_naddr;
8321 		rem -= fw_naddr;
8322 	}
8323 
8324 	if (ret == 0 || ret == -FW_ENOMEM)
8325 		ret = nfilters;
8326 	return ret;
8327 }
8328 
8329 /**
8330  *	t4_free_encap_mac_filt - frees MPS entry at given index
8331  *	@adap: the adapter
8332  *	@viid: the VI id
8333  *	@idx: index of MPS entry to be freed
8334  *	@sleep_ok: call is allowed to sleep
8335  *
8336  *	Frees the MPS entry at supplied index
8337  *
8338  *	Returns a negative error number or zero on success
8339  */
8340 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
8341 			   int idx, bool sleep_ok)
8342 {
8343 	struct fw_vi_mac_exact *p;
8344 	struct fw_vi_mac_cmd c;
8345 	u8 addr[] = {0,0,0,0,0,0};
8346 	int ret = 0;
8347 	u32 exact;
8348 
8349 	memset(&c, 0, sizeof(c));
8350 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8351 				   F_FW_CMD_REQUEST |
8352 				   F_FW_CMD_WRITE |
8353 				   V_FW_CMD_EXEC(0) |
8354 				   V_FW_VI_MAC_CMD_VIID(viid));
8355 	exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
8356 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8357 					  exact |
8358 					  V_FW_CMD_LEN16(1));
8359 	p = c.u.exact;
8360 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8361 				      V_FW_VI_MAC_CMD_IDX(idx));
8362 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8363 
8364 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8365 	return ret;
8366 }
8367 
8368 /**
8369  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
8370  *	@adap: the adapter
8371  *	@viid: the VI id
8372  *	@addr: the MAC address
8373  *	@mask: the mask
8374  *	@idx: index of the entry in mps tcam
8375  *	@lookup_type: MAC address for inner (1) or outer (0) header
8376  *	@port_id: the port index
8377  *	@sleep_ok: call is allowed to sleep
8378  *
8379  *	Removes the mac entry at the specified index using raw mac interface.
8380  *
8381  *	Returns a negative error number on failure.
8382  */
8383 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
8384 			 const u8 *addr, const u8 *mask, unsigned int idx,
8385 			 u8 lookup_type, u8 port_id, bool sleep_ok)
8386 {
8387 	struct fw_vi_mac_cmd c;
8388 	struct fw_vi_mac_raw *p = &c.u.raw;
8389 	u32 raw;
8390 
8391 	memset(&c, 0, sizeof(c));
8392 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8393 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8394 				   V_FW_CMD_EXEC(0) |
8395 				   V_FW_VI_MAC_CMD_VIID(viid));
8396 	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8397 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8398 					  raw |
8399 					  V_FW_CMD_LEN16(1));
8400 
8401 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
8402 				     FW_VI_MAC_ID_BASED_FREE);
8403 
8404 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8405 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8406 				   V_DATAPORTNUM(port_id));
8407 	/* Lookup mask and port mask */
8408 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8409 				    V_DATAPORTNUM(M_DATAPORTNUM));
8410 
8411 	/* Copy the address and the mask */
8412 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8413 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8414 
8415 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8416 }
8417 
8418 /**
8419  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8420  *	@adap: the adapter
8421  *	@mbox: mailbox to use for the FW command
8422  *	@viid: the VI id
8423  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8424  *	@addr: the MAC address(es)
8425  *	@sleep_ok: call is allowed to sleep
8426  *
8427  *	Frees the exact-match filter for each of the supplied addresses
8428  *
8429  *	Returns a negative error number or the number of filters freed.
8430  */
8431 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8432 		      unsigned int viid, unsigned int naddr,
8433 		      const u8 **addr, bool sleep_ok)
8434 {
8435 	int offset, ret = 0;
8436 	struct fw_vi_mac_cmd c;
8437 	unsigned int nfilters = 0;
8438 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8439 	unsigned int rem = naddr;
8440 
8441 	if (naddr > max_naddr)
8442 		return -EINVAL;
8443 
8444 	for (offset = 0; offset < (int)naddr ; /**/) {
8445 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8446 					 ? rem
8447 					 : ARRAY_SIZE(c.u.exact));
8448 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8449 						     u.exact[fw_naddr]), 16);
8450 		struct fw_vi_mac_exact *p;
8451 		int i;
8452 
8453 		memset(&c, 0, sizeof(c));
8454 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8455 				     F_FW_CMD_REQUEST |
8456 				     F_FW_CMD_WRITE |
8457 				     V_FW_CMD_EXEC(0) |
8458 				     V_FW_VI_MAC_CMD_VIID(viid));
8459 		c.freemacs_to_len16 =
8460 				cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8461 					    V_FW_CMD_LEN16(len16));
8462 
8463 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8464 			p->valid_to_idx = cpu_to_be16(
8465 				F_FW_VI_MAC_CMD_VALID |
8466 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
8467 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8468 		}
8469 
8470 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8471 		if (ret)
8472 			break;
8473 
8474 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8475 			u16 index = G_FW_VI_MAC_CMD_IDX(
8476 						be16_to_cpu(p->valid_to_idx));
8477 
8478 			if (index < max_naddr)
8479 				nfilters++;
8480 		}
8481 
8482 		offset += fw_naddr;
8483 		rem -= fw_naddr;
8484 	}
8485 
8486 	if (ret == 0)
8487 		ret = nfilters;
8488 	return ret;
8489 }
8490 
8491 /**
8492  *	t4_change_mac - modifies the exact-match filter for a MAC address
8493  *	@adap: the adapter
8494  *	@mbox: mailbox to use for the FW command
8495  *	@viid: the VI id
8496  *	@idx: index of existing filter for old value of MAC address, or -1
8497  *	@addr: the new MAC address value
8498  *	@persist: whether a new MAC allocation should be persistent
8499  *	@smt_idx: add MAC to SMT and return its index, or NULL
8500  *
8501  *	Modifies an exact-match filter and sets it to the new MAC address if
8502  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8503  *	latter case the address is added persistently if @persist is %true.
8504  *
8505  *	Note that in general it is not possible to modify the value of a given
8506  *	filter so the generic way to modify an address filter is to free the one
8507  *	being used by the old address value and allocate a new filter for the
8508  *	new address value.
8509  *
8510  *	Returns a negative error number or the index of the filter with the new
8511  *	MAC value.  Note that this index may differ from @idx.
8512  */
8513 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8514 		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8515 {
8516 	int ret, mode;
8517 	struct fw_vi_mac_cmd c;
8518 	struct fw_vi_mac_exact *p = c.u.exact;
8519 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8520 
8521 	if (idx < 0)		/* new allocation */
8522 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8523 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8524 
8525 	memset(&c, 0, sizeof(c));
8526 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8527 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8528 				   V_FW_VI_MAC_CMD_VIID(viid));
8529 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8530 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8531 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8532 				      V_FW_VI_MAC_CMD_IDX(idx));
8533 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8534 
8535 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8536 	if (ret == 0) {
8537 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8538 		if (ret >= max_mac_addr)
8539 			ret = -ENOMEM;
8540 		if (smt_idx) {
8541 			if (adap->params.viid_smt_extn_support)
8542 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8543 			else {
8544 				if (chip_id(adap) <= CHELSIO_T5)
8545 					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
8546 				else
8547 					*smt_idx = viid & M_FW_VIID_VIN;
8548 			}
8549 		}
8550 	}
8551 	return ret;
8552 }
8553 
8554 /**
8555  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8556  *	@adap: the adapter
8557  *	@mbox: mailbox to use for the FW command
8558  *	@viid: the VI id
8559  *	@ucast: whether the hash filter should also match unicast addresses
8560  *	@vec: the value to be written to the hash filter
8561  *	@sleep_ok: call is allowed to sleep
8562  *
8563  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8564  */
8565 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8566 		     bool ucast, u64 vec, bool sleep_ok)
8567 {
8568 	struct fw_vi_mac_cmd c;
8569 	u32 val;
8570 
8571 	memset(&c, 0, sizeof(c));
8572 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8573 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8574 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8575 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8576 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8577 	c.freemacs_to_len16 = cpu_to_be32(val);
8578 	c.u.hash.hashvec = cpu_to_be64(vec);
8579 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8580 }
8581 
8582 /**
8583  *      t4_enable_vi_params - enable/disable a virtual interface
8584  *      @adap: the adapter
8585  *      @mbox: mailbox to use for the FW command
8586  *      @viid: the VI id
8587  *      @rx_en: 1=enable Rx, 0=disable Rx
8588  *      @tx_en: 1=enable Tx, 0=disable Tx
8589  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8590  *
8591  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8592  *      only makes sense when enabling a Virtual Interface ...
8593  */
8594 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8595 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8596 {
8597 	struct fw_vi_enable_cmd c;
8598 
8599 	memset(&c, 0, sizeof(c));
8600 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8601 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8602 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8603 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8604 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8605 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8606 				     FW_LEN16(c));
8607 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8608 }
8609 
8610 /**
8611  *	t4_enable_vi - enable/disable a virtual interface
8612  *	@adap: the adapter
8613  *	@mbox: mailbox to use for the FW command
8614  *	@viid: the VI id
8615  *	@rx_en: 1=enable Rx, 0=disable Rx
8616  *	@tx_en: 1=enable Tx, 0=disable Tx
8617  *
8618  *	Enables/disables a virtual interface.  Note that setting DCB Enable
8619  *	only makes sense when enabling a Virtual Interface ...
8620  */
8621 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8622 		 bool rx_en, bool tx_en)
8623 {
8624 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8625 }
8626 
8627 /**
8628  *	t4_identify_port - identify a VI's port by blinking its LED
8629  *	@adap: the adapter
8630  *	@mbox: mailbox to use for the FW command
8631  *	@viid: the VI id
8632  *	@nblinks: how many times to blink LED at 2.5 Hz
8633  *
8634  *	Identifies a VI's port by blinking its LED.
8635  */
8636 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8637 		     unsigned int nblinks)
8638 {
8639 	struct fw_vi_enable_cmd c;
8640 
8641 	memset(&c, 0, sizeof(c));
8642 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8643 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8644 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8645 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8646 	c.blinkdur = cpu_to_be16(nblinks);
8647 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8648 }
8649 
8650 /**
8651  *	t4_iq_stop - stop an ingress queue and its FLs
8652  *	@adap: the adapter
8653  *	@mbox: mailbox to use for the FW command
8654  *	@pf: the PF owning the queues
8655  *	@vf: the VF owning the queues
8656  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8657  *	@iqid: ingress queue id
8658  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8659  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8660  *
8661  *	Stops an ingress queue and its associated FLs, if any.  This causes
8662  *	any current or future data/messages destined for these queues to be
8663  *	tossed.
8664  */
8665 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8666 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8667 	       unsigned int fl0id, unsigned int fl1id)
8668 {
8669 	struct fw_iq_cmd c;
8670 
8671 	memset(&c, 0, sizeof(c));
8672 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8673 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8674 				  V_FW_IQ_CMD_VFN(vf));
8675 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8676 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8677 	c.iqid = cpu_to_be16(iqid);
8678 	c.fl0id = cpu_to_be16(fl0id);
8679 	c.fl1id = cpu_to_be16(fl1id);
8680 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8681 }
8682 
8683 /**
8684  *	t4_iq_free - free an ingress queue and its FLs
8685  *	@adap: the adapter
8686  *	@mbox: mailbox to use for the FW command
8687  *	@pf: the PF owning the queues
8688  *	@vf: the VF owning the queues
8689  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8690  *	@iqid: ingress queue id
8691  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8692  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8693  *
8694  *	Frees an ingress queue and its associated FLs, if any.
8695  */
8696 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8697 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8698 	       unsigned int fl0id, unsigned int fl1id)
8699 {
8700 	struct fw_iq_cmd c;
8701 
8702 	memset(&c, 0, sizeof(c));
8703 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8704 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8705 				  V_FW_IQ_CMD_VFN(vf));
8706 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8707 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8708 	c.iqid = cpu_to_be16(iqid);
8709 	c.fl0id = cpu_to_be16(fl0id);
8710 	c.fl1id = cpu_to_be16(fl1id);
8711 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8712 }
8713 
8714 /**
8715  *	t4_eth_eq_stop - stop an Ethernet egress queue
8716  *	@adap: the adapter
8717  *	@mbox: mailbox to use for the FW command
8718  *	@pf: the PF owning the queues
8719  *	@vf: the VF owning the queues
8720  *	@eqid: egress queue id
8721  *
8722  *	Stops an Ethernet egress queue.  The queue can be reinitialized or
8723  *	freed but is not otherwise functional after this call.
8724  */
8725 int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8726                    unsigned int vf, unsigned int eqid)
8727 {
8728 	struct fw_eq_eth_cmd c;
8729 
8730 	memset(&c, 0, sizeof(c));
8731 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8732 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8733 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8734 				  V_FW_EQ_ETH_CMD_VFN(vf));
8735 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c));
8736 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8737 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8738 }
8739 
8740 /**
8741  *	t4_eth_eq_free - free an Ethernet egress queue
8742  *	@adap: the adapter
8743  *	@mbox: mailbox to use for the FW command
8744  *	@pf: the PF owning the queue
8745  *	@vf: the VF owning the queue
8746  *	@eqid: egress queue id
8747  *
8748  *	Frees an Ethernet egress queue.
8749  */
8750 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8751 		   unsigned int vf, unsigned int eqid)
8752 {
8753 	struct fw_eq_eth_cmd c;
8754 
8755 	memset(&c, 0, sizeof(c));
8756 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8757 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8758 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8759 				  V_FW_EQ_ETH_CMD_VFN(vf));
8760 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8761 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8762 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8763 }
8764 
8765 /**
8766  *	t4_ctrl_eq_free - free a control egress queue
8767  *	@adap: the adapter
8768  *	@mbox: mailbox to use for the FW command
8769  *	@pf: the PF owning the queue
8770  *	@vf: the VF owning the queue
8771  *	@eqid: egress queue id
8772  *
8773  *	Frees a control egress queue.
8774  */
8775 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8776 		    unsigned int vf, unsigned int eqid)
8777 {
8778 	struct fw_eq_ctrl_cmd c;
8779 
8780 	memset(&c, 0, sizeof(c));
8781 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8782 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8783 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8784 				  V_FW_EQ_CTRL_CMD_VFN(vf));
8785 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8786 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8787 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8788 }
8789 
8790 /**
8791  *	t4_ofld_eq_free - free an offload egress queue
8792  *	@adap: the adapter
8793  *	@mbox: mailbox to use for the FW command
8794  *	@pf: the PF owning the queue
8795  *	@vf: the VF owning the queue
8796  *	@eqid: egress queue id
8797  *
8798  *	Frees a control egress queue.
8799  */
8800 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8801 		    unsigned int vf, unsigned int eqid)
8802 {
8803 	struct fw_eq_ofld_cmd c;
8804 
8805 	memset(&c, 0, sizeof(c));
8806 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8807 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8808 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8809 				  V_FW_EQ_OFLD_CMD_VFN(vf));
8810 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8811 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8812 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8813 }
8814 
8815 /**
8816  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8817  *	@link_down_rc: Link Down Reason Code
8818  *
8819  *	Returns a string representation of the Link Down Reason Code.
8820  */
8821 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8822 {
8823 	static const char *reason[] = {
8824 		"Link Down",
8825 		"Remote Fault",
8826 		"Auto-negotiation Failure",
8827 		"Reserved3",
8828 		"Insufficient Airflow",
8829 		"Unable To Determine Reason",
8830 		"No RX Signal Detected",
8831 		"Reserved7",
8832 	};
8833 
8834 	if (link_down_rc >= ARRAY_SIZE(reason))
8835 		return "Bad Reason Code";
8836 
8837 	return reason[link_down_rc];
8838 }
8839 
8840 /*
8841  * Return the highest speed set in the port capabilities, in Mb/s.
8842  */
8843 unsigned int fwcap_to_speed(uint32_t caps)
8844 {
8845 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8846 		do { \
8847 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8848 				return __speed; \
8849 		} while (0)
8850 
8851 	TEST_SPEED_RETURN(400G, 400000);
8852 	TEST_SPEED_RETURN(200G, 200000);
8853 	TEST_SPEED_RETURN(100G, 100000);
8854 	TEST_SPEED_RETURN(50G,   50000);
8855 	TEST_SPEED_RETURN(40G,   40000);
8856 	TEST_SPEED_RETURN(25G,   25000);
8857 	TEST_SPEED_RETURN(10G,   10000);
8858 	TEST_SPEED_RETURN(1G,     1000);
8859 	TEST_SPEED_RETURN(100M,    100);
8860 
8861 	#undef TEST_SPEED_RETURN
8862 
8863 	return 0;
8864 }
8865 
8866 /*
8867  * Return the port capabilities bit for the given speed, which is in Mb/s.
8868  */
8869 uint32_t speed_to_fwcap(unsigned int speed)
8870 {
8871 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8872 		do { \
8873 			if (speed == __speed) \
8874 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8875 		} while (0)
8876 
8877 	TEST_SPEED_RETURN(400G, 400000);
8878 	TEST_SPEED_RETURN(200G, 200000);
8879 	TEST_SPEED_RETURN(100G, 100000);
8880 	TEST_SPEED_RETURN(50G,   50000);
8881 	TEST_SPEED_RETURN(40G,   40000);
8882 	TEST_SPEED_RETURN(25G,   25000);
8883 	TEST_SPEED_RETURN(10G,   10000);
8884 	TEST_SPEED_RETURN(1G,     1000);
8885 	TEST_SPEED_RETURN(100M,    100);
8886 
8887 	#undef TEST_SPEED_RETURN
8888 
8889 	return 0;
8890 }
8891 
8892 /*
8893  * Return the port capabilities bit for the highest speed in the capabilities.
8894  */
8895 uint32_t fwcap_top_speed(uint32_t caps)
8896 {
8897 	#define TEST_SPEED_RETURN(__caps_speed) \
8898 		do { \
8899 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8900 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8901 		} while (0)
8902 
8903 	TEST_SPEED_RETURN(400G);
8904 	TEST_SPEED_RETURN(200G);
8905 	TEST_SPEED_RETURN(100G);
8906 	TEST_SPEED_RETURN(50G);
8907 	TEST_SPEED_RETURN(40G);
8908 	TEST_SPEED_RETURN(25G);
8909 	TEST_SPEED_RETURN(10G);
8910 	TEST_SPEED_RETURN(1G);
8911 	TEST_SPEED_RETURN(100M);
8912 
8913 	#undef TEST_SPEED_RETURN
8914 
8915 	return 0;
8916 }
8917 
8918 /**
8919  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8920  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8921  *
8922  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8923  *	32-bit Port Capabilities value.
8924  */
8925 static uint32_t lstatus_to_fwcap(u32 lstatus)
8926 {
8927 	uint32_t linkattr = 0;
8928 
8929 	/*
8930 	 * Unfortunately the format of the Link Status in the old
8931 	 * 16-bit Port Information message isn't the same as the
8932 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8933 	 */
8934 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8935 		linkattr |= FW_PORT_CAP32_FC_RX;
8936 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8937 		linkattr |= FW_PORT_CAP32_FC_TX;
8938 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8939 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8940 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8941 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8942 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8943 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8944 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8945 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8946 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8947 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8948 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8949 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8950 
8951 	return linkattr;
8952 }
8953 
8954 /*
8955  * Updates all fields owned by the common code in port_info and link_config
8956  * based on information provided by the firmware.  Does not touch any
8957  * requested_* field.
8958  */
8959 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8960     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8961 {
8962 	struct link_config old_lc, *lc = &pi->link_cfg;
8963 	unsigned char fc;
8964 	u32 stat, linkattr;
8965 	int old_ptype, old_mtype;
8966 
8967 	old_ptype = pi->port_type;
8968 	old_mtype = pi->mod_type;
8969 	old_lc = *lc;
8970 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8971 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8972 
8973 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8974 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8975 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8976 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8977 
8978 		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8979 		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8980 		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8981 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8982 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8983 
8984 		linkattr = lstatus_to_fwcap(stat);
8985 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8986 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8987 
8988 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8989 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8990 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8991 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8992 
8993 		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8994 		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8995 		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8996 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8997 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8998 
8999 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
9000 	} else {
9001 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
9002 		return;
9003 	}
9004 
9005 	lc->speed = fwcap_to_speed(linkattr);
9006 	lc->fec = fwcap_to_fec(linkattr, true);
9007 
9008 	fc = 0;
9009 	if (linkattr & FW_PORT_CAP32_FC_RX)
9010 		fc |= PAUSE_RX;
9011 	if (linkattr & FW_PORT_CAP32_FC_TX)
9012 		fc |= PAUSE_TX;
9013 	lc->fc = fc;
9014 
9015 	if (mod_changed != NULL)
9016 		*mod_changed = false;
9017 	if (link_changed != NULL)
9018 		*link_changed = false;
9019 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
9020 	    old_lc.pcaps != lc->pcaps) {
9021 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
9022 			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
9023 		if (mod_changed != NULL)
9024 			*mod_changed = true;
9025 	}
9026 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
9027 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
9028 		if (link_changed != NULL)
9029 			*link_changed = true;
9030 	}
9031 }
9032 
9033 /**
9034  *	t4_update_port_info - retrieve and update port information if changed
9035  *	@pi: the port_info
9036  *
9037  *	We issue a Get Port Information Command to the Firmware and, if
9038  *	successful, we check to see if anything is different from what we
9039  *	last recorded and update things accordingly.
9040  */
9041  int t4_update_port_info(struct port_info *pi)
9042  {
9043 	struct adapter *sc = pi->adapter;
9044 	struct fw_port_cmd cmd;
9045 	enum fw_port_action action;
9046 	int ret;
9047 
9048 	memset(&cmd, 0, sizeof(cmd));
9049 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
9050 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
9051 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
9052 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
9053 	    FW_PORT_ACTION_GET_PORT_INFO;
9054 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
9055 	    FW_LEN16(cmd));
9056 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
9057 	if (ret)
9058 		return ret;
9059 
9060 	handle_port_info(pi, &cmd, action, NULL, NULL);
9061 	return 0;
9062 }
9063 
9064 /**
9065  *	t4_handle_fw_rpl - process a FW reply message
9066  *	@adap: the adapter
9067  *	@rpl: start of the FW message
9068  *
9069  *	Processes a FW message, such as link state change messages.
9070  */
9071 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
9072 {
9073 	u8 opcode = *(const u8 *)rpl;
9074 	const struct fw_port_cmd *p = (const void *)rpl;
9075 	enum fw_port_action action =
9076 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
9077 	bool mod_changed, link_changed;
9078 
9079 	if (opcode == FW_PORT_CMD &&
9080 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
9081 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
9082 		/* link/module state change message */
9083 		int i;
9084 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
9085 		struct port_info *pi = NULL;
9086 
9087 		for_each_port(adap, i) {
9088 			pi = adap2pinfo(adap, i);
9089 			if (pi->tx_chan == chan)
9090 				break;
9091 		}
9092 
9093 		PORT_LOCK(pi);
9094 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
9095 		PORT_UNLOCK(pi);
9096 		if (mod_changed)
9097 			t4_os_portmod_changed(pi);
9098 		if (link_changed) {
9099 			PORT_LOCK(pi);
9100 			t4_os_link_changed(pi);
9101 			PORT_UNLOCK(pi);
9102 		}
9103 	} else {
9104 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
9105 		return -EINVAL;
9106 	}
9107 	return 0;
9108 }
9109 
9110 /**
9111  *	get_pci_mode - determine a card's PCI mode
9112  *	@adapter: the adapter
9113  *	@p: where to store the PCI settings
9114  *
9115  *	Determines a card's PCI mode and associated parameters, such as speed
9116  *	and width.
9117  */
9118 static void get_pci_mode(struct adapter *adapter,
9119 				   struct pci_params *p)
9120 {
9121 	u16 val;
9122 	u32 pcie_cap;
9123 
9124 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9125 	if (pcie_cap) {
9126 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
9127 		p->speed = val & PCI_EXP_LNKSTA_CLS;
9128 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
9129 	}
9130 }
9131 
9132 struct flash_desc {
9133 	u32 vendor_and_model_id;
9134 	u32 size_mb;
9135 };
9136 
9137 int t4_get_flash_params(struct adapter *adapter)
9138 {
9139 	/*
9140 	 * Table for non-standard supported Flash parts.  Note, all Flash
9141 	 * parts must have 64KB sectors.
9142 	 */
9143 	static struct flash_desc supported_flash[] = {
9144 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
9145 	};
9146 
9147 	int ret;
9148 	u32 flashid = 0;
9149 	unsigned int part, manufacturer;
9150 	unsigned int density, size = 0;
9151 
9152 
9153 	/*
9154 	 * Issue a Read ID Command to the Flash part.  We decode supported
9155 	 * Flash parts and their sizes from this.  There's a newer Query
9156 	 * Command which can retrieve detailed geometry information but many
9157 	 * Flash parts don't support it.
9158 	 */
9159 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
9160 	if (!ret)
9161 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
9162 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
9163 	if (ret < 0)
9164 		return ret;
9165 
9166 	/*
9167 	 * Check to see if it's one of our non-standard supported Flash parts.
9168 	 */
9169 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9170 		if (supported_flash[part].vendor_and_model_id == flashid) {
9171 			adapter->params.sf_size =
9172 				supported_flash[part].size_mb;
9173 			adapter->params.sf_nsec =
9174 				adapter->params.sf_size / SF_SEC_SIZE;
9175 			goto found;
9176 		}
9177 
9178 	/*
9179 	 * Decode Flash part size.  The code below looks repetative with
9180 	 * common encodings, but that's not guaranteed in the JEDEC
9181 	 * specification for the Read JADEC ID command.  The only thing that
9182 	 * we're guaranteed by the JADEC specification is where the
9183 	 * Manufacturer ID is in the returned result.  After that each
9184 	 * Manufacturer ~could~ encode things completely differently.
9185 	 * Note, all Flash parts must have 64KB sectors.
9186 	 */
9187 	manufacturer = flashid & 0xff;
9188 	switch (manufacturer) {
9189 	case 0x20: /* Micron/Numonix */
9190 		/*
9191 		 * This Density -> Size decoding table is taken from Micron
9192 		 * Data Sheets.
9193 		 */
9194 		density = (flashid >> 16) & 0xff;
9195 		switch (density) {
9196 		case 0x14: size = 1 << 20; break; /*   1MB */
9197 		case 0x15: size = 1 << 21; break; /*   2MB */
9198 		case 0x16: size = 1 << 22; break; /*   4MB */
9199 		case 0x17: size = 1 << 23; break; /*   8MB */
9200 		case 0x18: size = 1 << 24; break; /*  16MB */
9201 		case 0x19: size = 1 << 25; break; /*  32MB */
9202 		case 0x20: size = 1 << 26; break; /*  64MB */
9203 		case 0x21: size = 1 << 27; break; /* 128MB */
9204 		case 0x22: size = 1 << 28; break; /* 256MB */
9205 		}
9206 		break;
9207 
9208 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
9209 		/*
9210 		 * This Density -> Size decoding table is taken from ISSI
9211 		 * Data Sheets.
9212 		 */
9213 		density = (flashid >> 16) & 0xff;
9214 		switch (density) {
9215 		case 0x16: size = 1 << 25; break; /*  32MB */
9216 		case 0x17: size = 1 << 26; break; /*  64MB */
9217 		}
9218 		break;
9219 
9220 	case 0xc2: /* Macronix */
9221 		/*
9222 		 * This Density -> Size decoding table is taken from Macronix
9223 		 * Data Sheets.
9224 		 */
9225 		density = (flashid >> 16) & 0xff;
9226 		switch (density) {
9227 		case 0x17: size = 1 << 23; break; /*   8MB */
9228 		case 0x18: size = 1 << 24; break; /*  16MB */
9229 		}
9230 		break;
9231 
9232 	case 0xef: /* Winbond */
9233 		/*
9234 		 * This Density -> Size decoding table is taken from Winbond
9235 		 * Data Sheets.
9236 		 */
9237 		density = (flashid >> 16) & 0xff;
9238 		switch (density) {
9239 		case 0x17: size = 1 << 23; break; /*   8MB */
9240 		case 0x18: size = 1 << 24; break; /*  16MB */
9241 		}
9242 		break;
9243 	}
9244 
9245 	/* If we didn't recognize the FLASH part, that's no real issue: the
9246 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9247 	 * use a FLASH part which is at least 4MB in size and has 64KB
9248 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9249 	 * than 4MB, but that's all we really need.
9250 	 */
9251 	if (size == 0) {
9252 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
9253 		size = 1 << 22;
9254 	}
9255 
9256 	/*
9257 	 * Store decoded Flash size and fall through into vetting code.
9258 	 */
9259 	adapter->params.sf_size = size;
9260 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
9261 
9262  found:
9263 	/*
9264 	 * We should ~probably~ reject adapters with FLASHes which are too
9265 	 * small but we have some legacy FPGAs with small FLASHes that we'd
9266 	 * still like to use.  So instead we emit a scary message ...
9267 	 */
9268 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
9269 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9270 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
9271 
9272 	return 0;
9273 }
9274 
9275 static void set_pcie_completion_timeout(struct adapter *adapter,
9276 						  u8 range)
9277 {
9278 	u16 val;
9279 	u32 pcie_cap;
9280 
9281 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9282 	if (pcie_cap) {
9283 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
9284 		val &= 0xfff0;
9285 		val |= range ;
9286 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
9287 	}
9288 }
9289 
9290 const struct chip_params *t4_get_chip_params(int chipid)
9291 {
9292 	static const struct chip_params chip_params[] = {
9293 		{
9294 			/* T4 */
9295 			.nchan = NCHAN,
9296 			.pm_stats_cnt = PM_NSTATS,
9297 			.cng_ch_bits_log = 2,
9298 			.nsched_cls = 15,
9299 			.cim_num_obq = CIM_NUM_OBQ,
9300 			.filter_opt_len = FILTER_OPT_LEN,
9301 			.mps_rplc_size = 128,
9302 			.vfcount = 128,
9303 			.sge_fl_db = F_DBPRIO,
9304 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
9305 			.rss_nentries = RSS_NENTRIES,
9306 			.cim_la_size = CIMLA_SIZE,
9307 		},
9308 		{
9309 			/* T5 */
9310 			.nchan = NCHAN,
9311 			.pm_stats_cnt = PM_NSTATS,
9312 			.cng_ch_bits_log = 2,
9313 			.nsched_cls = 16,
9314 			.cim_num_obq = CIM_NUM_OBQ_T5,
9315 			.filter_opt_len = T5_FILTER_OPT_LEN,
9316 			.mps_rplc_size = 128,
9317 			.vfcount = 128,
9318 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
9319 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9320 			.rss_nentries = RSS_NENTRIES,
9321 			.cim_la_size = CIMLA_SIZE,
9322 		},
9323 		{
9324 			/* T6 */
9325 			.nchan = T6_NCHAN,
9326 			.pm_stats_cnt = T6_PM_NSTATS,
9327 			.cng_ch_bits_log = 3,
9328 			.nsched_cls = 16,
9329 			.cim_num_obq = CIM_NUM_OBQ_T5,
9330 			.filter_opt_len = T5_FILTER_OPT_LEN,
9331 			.mps_rplc_size = 256,
9332 			.vfcount = 256,
9333 			.sge_fl_db = 0,
9334 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9335 			.rss_nentries = T6_RSS_NENTRIES,
9336 			.cim_la_size = CIMLA_SIZE_T6,
9337 		},
9338 	};
9339 
9340 	chipid -= CHELSIO_T4;
9341 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
9342 		return NULL;
9343 
9344 	return &chip_params[chipid];
9345 }
9346 
9347 /**
9348  *	t4_prep_adapter - prepare SW and HW for operation
9349  *	@adapter: the adapter
9350  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
9351  *
9352  *	Initialize adapter SW state for the various HW modules, set initial
9353  *	values for some adapter tunables, take PHYs out of reset, and
9354  *	initialize the MDIO interface.
9355  */
9356 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
9357 {
9358 	int ret;
9359 	uint16_t device_id;
9360 	uint32_t pl_rev;
9361 
9362 	get_pci_mode(adapter, &adapter->params.pci);
9363 
9364 	pl_rev = t4_read_reg(adapter, A_PL_REV);
9365 	adapter->params.chipid = G_CHIPID(pl_rev);
9366 	adapter->params.rev = G_REV(pl_rev);
9367 	if (adapter->params.chipid == 0) {
9368 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
9369 		adapter->params.chipid = CHELSIO_T4;
9370 
9371 		/* T4A1 chip is not supported */
9372 		if (adapter->params.rev == 1) {
9373 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
9374 			return -EINVAL;
9375 		}
9376 	}
9377 
9378 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
9379 	if (adapter->chip_params == NULL)
9380 		return -EINVAL;
9381 
9382 	adapter->params.pci.vpd_cap_addr =
9383 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
9384 
9385 	ret = t4_get_flash_params(adapter);
9386 	if (ret < 0)
9387 		return ret;
9388 
9389 	/* Cards with real ASICs have the chipid in the PCIe device id */
9390 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
9391 	if (device_id >> 12 == chip_id(adapter))
9392 		adapter->params.cim_la_size = adapter->chip_params->cim_la_size;
9393 	else {
9394 		/* FPGA */
9395 		adapter->params.fpga = 1;
9396 		adapter->params.cim_la_size = 2 * adapter->chip_params->cim_la_size;
9397 	}
9398 
9399 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9400 	if (ret < 0)
9401 		return ret;
9402 
9403 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9404 
9405 	/*
9406 	 * Default port and clock for debugging in case we can't reach FW.
9407 	 */
9408 	adapter->params.nports = 1;
9409 	adapter->params.portvec = 1;
9410 	adapter->params.vpd.cclk = 50000;
9411 
9412 	/* Set pci completion timeout value to 4 seconds. */
9413 	set_pcie_completion_timeout(adapter, 0xd);
9414 	return 0;
9415 }
9416 
9417 /**
9418  *	t4_shutdown_adapter - shut down adapter, host & wire
9419  *	@adapter: the adapter
9420  *
9421  *	Perform an emergency shutdown of the adapter and stop it from
9422  *	continuing any further communication on the ports or DMA to the
9423  *	host.  This is typically used when the adapter and/or firmware
9424  *	have crashed and we want to prevent any further accidental
9425  *	communication with the rest of the world.  This will also force
9426  *	the port Link Status to go down -- if register writes work --
9427  *	which should help our peers figure out that we're down.
9428  */
9429 int t4_shutdown_adapter(struct adapter *adapter)
9430 {
9431 	int port;
9432 	const bool bt = adapter->bt_map != 0;
9433 
9434 	t4_intr_disable(adapter);
9435 	if (bt)
9436 		t4_write_reg(adapter, A_DBG_GPIO_EN, 0xffff0000);
9437 	for_each_port(adapter, port) {
9438 		u32 a_port_cfg = is_t4(adapter) ?
9439 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
9440 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
9441 
9442 		t4_write_reg(adapter, a_port_cfg,
9443 			     t4_read_reg(adapter, a_port_cfg)
9444 			     & ~V_SIGNAL_DET(1));
9445 		if (!bt) {
9446 			u32 hss_cfg0 = is_t4(adapter) ?
9447 					 PORT_REG(port, A_XGMAC_PORT_HSS_CFG0) :
9448 					 T5_PORT_REG(port, A_MAC_PORT_HSS_CFG0);
9449 			t4_set_reg_field(adapter, hss_cfg0, F_HSSPDWNPLLB |
9450 			    F_HSSPDWNPLLA | F_HSSPLLBYPB | F_HSSPLLBYPA,
9451 			    F_HSSPDWNPLLB | F_HSSPDWNPLLA | F_HSSPLLBYPB |
9452 			    F_HSSPLLBYPA);
9453 		}
9454 	}
9455 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9456 
9457 	return 0;
9458 }
9459 
9460 /**
9461  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9462  *	@adapter: the adapter
9463  *	@qid: the Queue ID
9464  *	@qtype: the Ingress or Egress type for @qid
9465  *	@user: true if this request is for a user mode queue
9466  *	@pbar2_qoffset: BAR2 Queue Offset
9467  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9468  *
9469  *	Returns the BAR2 SGE Queue Registers information associated with the
9470  *	indicated Absolute Queue ID.  These are passed back in return value
9471  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9472  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9473  *
9474  *	This may return an error which indicates that BAR2 SGE Queue
9475  *	registers aren't available.  If an error is not returned, then the
9476  *	following values are returned:
9477  *
9478  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9479  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9480  *
9481  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9482  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9483  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9484  *	then these "Inferred Queue ID" register may not be used.
9485  */
9486 int t4_bar2_sge_qregs(struct adapter *adapter,
9487 		      unsigned int qid,
9488 		      enum t4_bar2_qtype qtype,
9489 		      int user,
9490 		      u64 *pbar2_qoffset,
9491 		      unsigned int *pbar2_qid)
9492 {
9493 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9494 	u64 bar2_page_offset, bar2_qoffset;
9495 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9496 
9497 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
9498 	 * mode queues.
9499 	 */
9500 	if (!user && is_t4(adapter))
9501 		return -EINVAL;
9502 
9503 	/* Get our SGE Page Size parameters.
9504 	 */
9505 	page_shift = adapter->params.sge.page_shift;
9506 	page_size = 1 << page_shift;
9507 
9508 	/* Get the right Queues per Page parameters for our Queue.
9509 	 */
9510 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9511 		     ? adapter->params.sge.eq_s_qpp
9512 		     : adapter->params.sge.iq_s_qpp);
9513 	qpp_mask = (1 << qpp_shift) - 1;
9514 
9515 	/* Calculate the basics of the BAR2 SGE Queue register area:
9516 	 *  o The BAR2 page the Queue registers will be in.
9517 	 *  o The BAR2 Queue ID.
9518 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9519 	 */
9520 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9521 	bar2_qid = qid & qpp_mask;
9522 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9523 
9524 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9525 	 * hardware will infer the Absolute Queue ID simply from the writes to
9526 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9527 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9528 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9529 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9530 	 * from the BAR2 Page and BAR2 Queue ID.
9531 	 *
9532 	 * One important censequence of this is that some BAR2 SGE registers
9533 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9534 	 * there.  But other registers synthesize the SGE Queue ID purely
9535 	 * from the writes to the registers -- the Write Combined Doorbell
9536 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9537 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9538 	 * Queue ID can be inferred from simple writes.
9539 	 */
9540 	bar2_qoffset = bar2_page_offset;
9541 	bar2_qinferred = (bar2_qid_offset < page_size);
9542 	if (bar2_qinferred) {
9543 		bar2_qoffset += bar2_qid_offset;
9544 		bar2_qid = 0;
9545 	}
9546 
9547 	*pbar2_qoffset = bar2_qoffset;
9548 	*pbar2_qid = bar2_qid;
9549 	return 0;
9550 }
9551 
9552 /**
9553  *	t4_init_devlog_params - initialize adapter->params.devlog
9554  *	@adap: the adapter
9555  *	@fw_attach: whether we can talk to the firmware
9556  *
9557  *	Initialize various fields of the adapter's Firmware Device Log
9558  *	Parameters structure.
9559  */
9560 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9561 {
9562 	struct devlog_params *dparams = &adap->params.devlog;
9563 	u32 pf_dparams;
9564 	unsigned int devlog_meminfo;
9565 	struct fw_devlog_cmd devlog_cmd;
9566 	int ret;
9567 
9568 	/* If we're dealing with newer firmware, the Device Log Paramerters
9569 	 * are stored in a designated register which allows us to access the
9570 	 * Device Log even if we can't talk to the firmware.
9571 	 */
9572 	pf_dparams =
9573 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9574 	if (pf_dparams) {
9575 		unsigned int nentries, nentries128;
9576 
9577 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9578 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9579 
9580 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9581 		nentries = (nentries128 + 1) * 128;
9582 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9583 
9584 		return 0;
9585 	}
9586 
9587 	/*
9588 	 * For any failing returns ...
9589 	 */
9590 	memset(dparams, 0, sizeof *dparams);
9591 
9592 	/*
9593 	 * If we can't talk to the firmware, there's really nothing we can do
9594 	 * at this point.
9595 	 */
9596 	if (!fw_attach)
9597 		return -ENXIO;
9598 
9599 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9600 	 */
9601 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9602 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9603 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9604 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9605 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9606 			 &devlog_cmd);
9607 	if (ret)
9608 		return ret;
9609 
9610 	devlog_meminfo =
9611 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9612 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9613 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9614 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9615 
9616 	return 0;
9617 }
9618 
9619 /**
9620  *	t4_init_sge_params - initialize adap->params.sge
9621  *	@adapter: the adapter
9622  *
9623  *	Initialize various fields of the adapter's SGE Parameters structure.
9624  */
9625 int t4_init_sge_params(struct adapter *adapter)
9626 {
9627 	u32 r;
9628 	struct sge_params *sp = &adapter->params.sge;
9629 	unsigned i, tscale = 1;
9630 
9631 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9632 	sp->counter_val[0] = G_THRESHOLD_0(r);
9633 	sp->counter_val[1] = G_THRESHOLD_1(r);
9634 	sp->counter_val[2] = G_THRESHOLD_2(r);
9635 	sp->counter_val[3] = G_THRESHOLD_3(r);
9636 
9637 	if (chip_id(adapter) >= CHELSIO_T6) {
9638 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9639 		tscale = G_TSCALE(r);
9640 		if (tscale == 0)
9641 			tscale = 1;
9642 		else
9643 			tscale += 2;
9644 	}
9645 
9646 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9647 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9648 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9649 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9650 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9651 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9652 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9653 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9654 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9655 
9656 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9657 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9658 	if (is_t4(adapter))
9659 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9660 	else if (is_t5(adapter))
9661 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9662 	else
9663 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9664 
9665 	/* egress queues: log2 of # of doorbells per BAR2 page */
9666 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9667 	r >>= S_QUEUESPERPAGEPF0 +
9668 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9669 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9670 
9671 	/* ingress queues: log2 of # of doorbells per BAR2 page */
9672 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9673 	r >>= S_QUEUESPERPAGEPF0 +
9674 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9675 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9676 
9677 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9678 	r >>= S_HOSTPAGESIZEPF0 +
9679 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9680 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9681 
9682 	r = t4_read_reg(adapter, A_SGE_CONTROL);
9683 	sp->sge_control = r;
9684 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9685 	sp->fl_pktshift = G_PKTSHIFT(r);
9686 	if (chip_id(adapter) <= CHELSIO_T5) {
9687 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9688 		    X_INGPADBOUNDARY_SHIFT);
9689 	} else {
9690 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9691 		    X_T6_INGPADBOUNDARY_SHIFT);
9692 	}
9693 	if (is_t4(adapter))
9694 		sp->pack_boundary = sp->pad_boundary;
9695 	else {
9696 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9697 		if (G_INGPACKBOUNDARY(r) == 0)
9698 			sp->pack_boundary = 16;
9699 		else
9700 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9701 	}
9702 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9703 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9704 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9705 
9706 	return 0;
9707 }
9708 
9709 /* Convert the LE's hardware hash mask to a shorter filter mask. */
9710 static inline uint16_t
9711 hashmask_to_filtermask(uint64_t hashmask, uint16_t filter_mode)
9712 {
9713 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
9714 	int i;
9715 	uint16_t filter_mask;
9716 	uint64_t mask;		/* field mask */
9717 
9718 	filter_mask = 0;
9719 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
9720 		if ((filter_mode & (1 << i)) == 0)
9721 			continue;
9722 		mask = (1 << width[i]) - 1;
9723 		if ((hashmask & mask) == mask)
9724 			filter_mask |= 1 << i;
9725 		hashmask >>= width[i];
9726 	}
9727 
9728 	return (filter_mask);
9729 }
9730 
9731 /*
9732  * Read and cache the adapter's compressed filter mode and ingress config.
9733  */
9734 static void
9735 read_filter_mode_and_ingress_config(struct adapter *adap)
9736 {
9737 	int rc;
9738 	uint32_t v, param[2], val[2];
9739 	struct tp_params *tpp = &adap->params.tp;
9740 	uint64_t hash_mask;
9741 
9742 	param[0] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9743 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9744 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
9745 	param[1] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9746 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9747 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
9748 	rc = -t4_query_params(adap, adap->mbox, adap->pf, 0, 2, param, val);
9749 	if (rc == 0) {
9750 		tpp->filter_mode = G_FW_PARAMS_PARAM_FILTER_MODE(val[0]);
9751 		tpp->filter_mask = G_FW_PARAMS_PARAM_FILTER_MASK(val[0]);
9752 		tpp->vnic_mode = val[1];
9753 	} else {
9754 		/*
9755 		 * Old firmware.  Read filter mode/mask and ingress config
9756 		 * straight from the hardware.
9757 		 */
9758 		t4_tp_pio_read(adap, &v, 1, A_TP_VLAN_PRI_MAP, true);
9759 		tpp->filter_mode = v & 0xffff;
9760 
9761 		hash_mask = 0;
9762 		if (chip_id(adap) > CHELSIO_T4) {
9763 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9764 			hash_mask = v;
9765 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9766 			hash_mask |= (u64)v << 32;
9767 		}
9768 		tpp->filter_mask = hashmask_to_filtermask(hash_mask,
9769 		    tpp->filter_mode);
9770 
9771 		t4_tp_pio_read(adap, &v, 1, A_TP_INGRESS_CONFIG, true);
9772 		if (v & F_VNIC)
9773 			tpp->vnic_mode = FW_VNIC_MODE_PF_VF;
9774 		else
9775 			tpp->vnic_mode = FW_VNIC_MODE_OUTER_VLAN;
9776 	}
9777 
9778 	/*
9779 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9780 	 * shift positions of several elements of the Compressed Filter Tuple
9781 	 * for this adapter which we need frequently ...
9782 	 */
9783 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9784 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9785 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9786 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9787 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9788 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9789 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9790 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9791 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9792 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9793 }
9794 
9795 /**
9796  *      t4_init_tp_params - initialize adap->params.tp
9797  *      @adap: the adapter
9798  *
9799  *      Initialize various fields of the adapter's TP Parameters structure.
9800  */
9801 int t4_init_tp_params(struct adapter *adap)
9802 {
9803 	int chan;
9804 	u32 tx_len, rx_len, r, v;
9805 	struct tp_params *tpp = &adap->params.tp;
9806 
9807 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9808 	tpp->tre = G_TIMERRESOLUTION(v);
9809 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9810 
9811 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9812 	for (chan = 0; chan < MAX_NCHAN; chan++)
9813 		tpp->tx_modq[chan] = chan;
9814 
9815 	read_filter_mode_and_ingress_config(adap);
9816 
9817 	if (chip_id(adap) > CHELSIO_T5) {
9818 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9819 		tpp->rx_pkt_encap = v & F_CRXPKTENC;
9820 	} else
9821 		tpp->rx_pkt_encap = false;
9822 
9823 	rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
9824 	tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
9825 
9826 	r = t4_read_reg(adap, A_TP_PARA_REG2);
9827 	rx_len = min(rx_len, G_MAXRXDATA(r));
9828 	tx_len = min(tx_len, G_MAXRXDATA(r));
9829 
9830 	r = t4_read_reg(adap, A_TP_PARA_REG7);
9831 	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
9832 	rx_len = min(rx_len, v);
9833 	tx_len = min(tx_len, v);
9834 
9835 	tpp->max_tx_pdu = tx_len;
9836 	tpp->max_rx_pdu = rx_len;
9837 
9838 	return 0;
9839 }
9840 
9841 /**
9842  *      t4_filter_field_shift - calculate filter field shift
9843  *      @adap: the adapter
9844  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9845  *
9846  *      Return the shift position of a filter field within the Compressed
9847  *      Filter Tuple.  The filter field is specified via its selection bit
9848  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9849  */
9850 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9851 {
9852 	const unsigned int filter_mode = adap->params.tp.filter_mode;
9853 	unsigned int sel;
9854 	int field_shift;
9855 
9856 	if ((filter_mode & filter_sel) == 0)
9857 		return -1;
9858 
9859 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9860 		switch (filter_mode & sel) {
9861 		case F_FCOE:
9862 			field_shift += W_FT_FCOE;
9863 			break;
9864 		case F_PORT:
9865 			field_shift += W_FT_PORT;
9866 			break;
9867 		case F_VNIC_ID:
9868 			field_shift += W_FT_VNIC_ID;
9869 			break;
9870 		case F_VLAN:
9871 			field_shift += W_FT_VLAN;
9872 			break;
9873 		case F_TOS:
9874 			field_shift += W_FT_TOS;
9875 			break;
9876 		case F_PROTOCOL:
9877 			field_shift += W_FT_PROTOCOL;
9878 			break;
9879 		case F_ETHERTYPE:
9880 			field_shift += W_FT_ETHERTYPE;
9881 			break;
9882 		case F_MACMATCH:
9883 			field_shift += W_FT_MACMATCH;
9884 			break;
9885 		case F_MPSHITTYPE:
9886 			field_shift += W_FT_MPSHITTYPE;
9887 			break;
9888 		case F_FRAGMENTATION:
9889 			field_shift += W_FT_FRAGMENTATION;
9890 			break;
9891 		}
9892 	}
9893 	return field_shift;
9894 }
9895 
9896 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9897 {
9898 	u8 addr[6];
9899 	int ret, i, j;
9900 	struct port_info *p = adap2pinfo(adap, port_id);
9901 	u32 param, val;
9902 	struct vi_info *vi = &p->vi[0];
9903 
9904 	for (i = 0, j = -1; i <= p->port_id; i++) {
9905 		do {
9906 			j++;
9907 		} while ((adap->params.portvec & (1 << j)) == 0);
9908 	}
9909 
9910 	p->tx_chan = j;
9911 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9912 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9913 	p->rx_c_chan = t4_get_rx_c_chan(adap, j);
9914 	p->lport = j;
9915 
9916 	if (!(adap->flags & IS_VF) ||
9917 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9918  		t4_update_port_info(p);
9919 	}
9920 
9921 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9922 	    &vi->vfvld, &vi->vin);
9923 	if (ret < 0)
9924 		return ret;
9925 
9926 	vi->viid = ret;
9927 	t4_os_set_hw_addr(p, addr);
9928 
9929 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9930 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9931 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
9932 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9933 	if (ret)
9934 		vi->rss_base = 0xffff;
9935 	else {
9936 		/* MPASS((val >> 16) == rss_size); */
9937 		vi->rss_base = val & 0xffff;
9938 	}
9939 
9940 	return 0;
9941 }
9942 
9943 /**
9944  *	t4_read_cimq_cfg - read CIM queue configuration
9945  *	@adap: the adapter
9946  *	@base: holds the queue base addresses in bytes
9947  *	@size: holds the queue sizes in bytes
9948  *	@thres: holds the queue full thresholds in bytes
9949  *
9950  *	Returns the current configuration of the CIM queues, starting with
9951  *	the IBQs, then the OBQs.
9952  */
9953 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9954 {
9955 	unsigned int i, v;
9956 	int cim_num_obq = adap->chip_params->cim_num_obq;
9957 
9958 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9959 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9960 			     V_QUENUMSELECT(i));
9961 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9962 		/* value is in 256-byte units */
9963 		*base++ = G_CIMQBASE(v) * 256;
9964 		*size++ = G_CIMQSIZE(v) * 256;
9965 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9966 	}
9967 	for (i = 0; i < cim_num_obq; i++) {
9968 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9969 			     V_QUENUMSELECT(i));
9970 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9971 		/* value is in 256-byte units */
9972 		*base++ = G_CIMQBASE(v) * 256;
9973 		*size++ = G_CIMQSIZE(v) * 256;
9974 	}
9975 }
9976 
9977 /**
9978  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9979  *	@adap: the adapter
9980  *	@qid: the queue index
9981  *	@data: where to store the queue contents
9982  *	@n: capacity of @data in 32-bit words
9983  *
9984  *	Reads the contents of the selected CIM queue starting at address 0 up
9985  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9986  *	error and the number of 32-bit words actually read on success.
9987  */
9988 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9989 {
9990 	int i, err, attempts;
9991 	unsigned int addr;
9992 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9993 
9994 	if (qid > 5 || (n & 3))
9995 		return -EINVAL;
9996 
9997 	addr = qid * nwords;
9998 	if (n > nwords)
9999 		n = nwords;
10000 
10001 	/* It might take 3-10ms before the IBQ debug read access is allowed.
10002 	 * Wait for 1 Sec with a delay of 1 usec.
10003 	 */
10004 	attempts = 1000000;
10005 
10006 	for (i = 0; i < n; i++, addr++) {
10007 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
10008 			     F_IBQDBGEN);
10009 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
10010 				      attempts, 1);
10011 		if (err)
10012 			return err;
10013 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
10014 	}
10015 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
10016 	return i;
10017 }
10018 
10019 /**
10020  *	t4_read_cim_obq - read the contents of a CIM outbound queue
10021  *	@adap: the adapter
10022  *	@qid: the queue index
10023  *	@data: where to store the queue contents
10024  *	@n: capacity of @data in 32-bit words
10025  *
10026  *	Reads the contents of the selected CIM queue starting at address 0 up
10027  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
10028  *	error and the number of 32-bit words actually read on success.
10029  */
10030 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
10031 {
10032 	int i, err;
10033 	unsigned int addr, v, nwords;
10034 	int cim_num_obq = adap->chip_params->cim_num_obq;
10035 
10036 	if ((qid > (cim_num_obq - 1)) || (n & 3))
10037 		return -EINVAL;
10038 
10039 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
10040 		     V_QUENUMSELECT(qid));
10041 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
10042 
10043 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
10044 	nwords = G_CIMQSIZE(v) * 64;  /* same */
10045 	if (n > nwords)
10046 		n = nwords;
10047 
10048 	for (i = 0; i < n; i++, addr++) {
10049 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
10050 			     F_OBQDBGEN);
10051 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
10052 				      2, 1);
10053 		if (err)
10054 			return err;
10055 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
10056 	}
10057 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
10058 	return i;
10059 }
10060 
10061 enum {
10062 	CIM_QCTL_BASE     = 0,
10063 	CIM_CTL_BASE      = 0x2000,
10064 	CIM_PBT_ADDR_BASE = 0x2800,
10065 	CIM_PBT_LRF_BASE  = 0x3000,
10066 	CIM_PBT_DATA_BASE = 0x3800
10067 };
10068 
10069 /**
10070  *	t4_cim_read - read a block from CIM internal address space
10071  *	@adap: the adapter
10072  *	@addr: the start address within the CIM address space
10073  *	@n: number of words to read
10074  *	@valp: where to store the result
10075  *
10076  *	Reads a block of 4-byte words from the CIM intenal address space.
10077  */
10078 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
10079 		unsigned int *valp)
10080 {
10081 	int ret = 0;
10082 
10083 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10084 		return -EBUSY;
10085 
10086 	for ( ; !ret && n--; addr += 4) {
10087 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
10088 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10089 				      0, 5, 2);
10090 		if (!ret)
10091 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
10092 	}
10093 	return ret;
10094 }
10095 
10096 /**
10097  *	t4_cim_write - write a block into CIM internal address space
10098  *	@adap: the adapter
10099  *	@addr: the start address within the CIM address space
10100  *	@n: number of words to write
10101  *	@valp: set of values to write
10102  *
10103  *	Writes a block of 4-byte words into the CIM intenal address space.
10104  */
10105 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
10106 		 const unsigned int *valp)
10107 {
10108 	int ret = 0;
10109 
10110 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10111 		return -EBUSY;
10112 
10113 	for ( ; !ret && n--; addr += 4) {
10114 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
10115 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
10116 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10117 				      0, 5, 2);
10118 	}
10119 	return ret;
10120 }
10121 
10122 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
10123 			 unsigned int val)
10124 {
10125 	return t4_cim_write(adap, addr, 1, &val);
10126 }
10127 
10128 /**
10129  *	t4_cim_ctl_read - read a block from CIM control region
10130  *	@adap: the adapter
10131  *	@addr: the start address within the CIM control region
10132  *	@n: number of words to read
10133  *	@valp: where to store the result
10134  *
10135  *	Reads a block of 4-byte words from the CIM control region.
10136  */
10137 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
10138 		    unsigned int *valp)
10139 {
10140 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
10141 }
10142 
10143 /**
10144  *	t4_cim_read_la - read CIM LA capture buffer
10145  *	@adap: the adapter
10146  *	@la_buf: where to store the LA data
10147  *	@wrptr: the HW write pointer within the capture buffer
10148  *
10149  *	Reads the contents of the CIM LA buffer with the most recent entry at
10150  *	the end	of the returned data and with the entry at @wrptr first.
10151  *	We try to leave the LA in the running state we find it in.
10152  */
10153 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
10154 {
10155 	int i, ret;
10156 	unsigned int cfg, val, idx;
10157 
10158 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
10159 	if (ret)
10160 		return ret;
10161 
10162 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
10163 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
10164 		if (ret)
10165 			return ret;
10166 	}
10167 
10168 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10169 	if (ret)
10170 		goto restart;
10171 
10172 	idx = G_UPDBGLAWRPTR(val);
10173 	if (wrptr)
10174 		*wrptr = idx;
10175 
10176 	for (i = 0; i < adap->params.cim_la_size; i++) {
10177 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10178 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
10179 		if (ret)
10180 			break;
10181 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10182 		if (ret)
10183 			break;
10184 		if (val & F_UPDBGLARDEN) {
10185 			ret = -ETIMEDOUT;
10186 			break;
10187 		}
10188 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
10189 		if (ret)
10190 			break;
10191 
10192 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
10193 		 * identify the 32-bit portion of the full 312-bit data
10194 		 */
10195 		if (is_t6(adap) && (idx & 0xf) >= 9)
10196 			idx = (idx & 0xff0) + 0x10;
10197 		else
10198 			idx++;
10199 		/* address can't exceed 0xfff */
10200 		idx &= M_UPDBGLARDPTR;
10201 	}
10202 restart:
10203 	if (cfg & F_UPDBGLAEN) {
10204 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10205 				      cfg & ~F_UPDBGLARDEN);
10206 		if (!ret)
10207 			ret = r;
10208 	}
10209 	return ret;
10210 }
10211 
10212 /**
10213  *	t4_tp_read_la - read TP LA capture buffer
10214  *	@adap: the adapter
10215  *	@la_buf: where to store the LA data
10216  *	@wrptr: the HW write pointer within the capture buffer
10217  *
10218  *	Reads the contents of the TP LA buffer with the most recent entry at
10219  *	the end	of the returned data and with the entry at @wrptr first.
10220  *	We leave the LA in the running state we find it in.
10221  */
10222 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10223 {
10224 	bool last_incomplete;
10225 	unsigned int i, cfg, val, idx;
10226 
10227 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
10228 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
10229 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10230 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
10231 
10232 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
10233 	idx = G_DBGLAWPTR(val);
10234 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
10235 	if (last_incomplete)
10236 		idx = (idx + 1) & M_DBGLARPTR;
10237 	if (wrptr)
10238 		*wrptr = idx;
10239 
10240 	val &= 0xffff;
10241 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
10242 	val |= adap->params.tp.la_mask;
10243 
10244 	for (i = 0; i < TPLA_SIZE; i++) {
10245 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
10246 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
10247 		idx = (idx + 1) & M_DBGLARPTR;
10248 	}
10249 
10250 	/* Wipe out last entry if it isn't valid */
10251 	if (last_incomplete)
10252 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10253 
10254 	if (cfg & F_DBGLAENABLE)		/* restore running state */
10255 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10256 			     cfg | adap->params.tp.la_mask);
10257 }
10258 
10259 /*
10260  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10261  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10262  * state for more than the Warning Threshold then we'll issue a warning about
10263  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10264  * appears to be hung every Warning Repeat second till the situation clears.
10265  * If the situation clears, we'll note that as well.
10266  */
10267 #define SGE_IDMA_WARN_THRESH 1
10268 #define SGE_IDMA_WARN_REPEAT 300
10269 
10270 /**
10271  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10272  *	@adapter: the adapter
10273  *	@idma: the adapter IDMA Monitor state
10274  *
10275  *	Initialize the state of an SGE Ingress DMA Monitor.
10276  */
10277 void t4_idma_monitor_init(struct adapter *adapter,
10278 			  struct sge_idma_monitor_state *idma)
10279 {
10280 	/* Initialize the state variables for detecting an SGE Ingress DMA
10281 	 * hang.  The SGE has internal counters which count up on each clock
10282 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10283 	 * same state they were on the previous clock tick.  The clock used is
10284 	 * the Core Clock so we have a limit on the maximum "time" they can
10285 	 * record; typically a very small number of seconds.  For instance,
10286 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10287 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10288 	 * risk of having the "timers" overflow and give us the flexibility to
10289 	 * maintain a Hung SGE State Machine of our own which operates across
10290 	 * a longer time frame.
10291 	 */
10292 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10293 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
10294 }
10295 
10296 /**
10297  *	t4_idma_monitor - monitor SGE Ingress DMA state
10298  *	@adapter: the adapter
10299  *	@idma: the adapter IDMA Monitor state
10300  *	@hz: number of ticks/second
10301  *	@ticks: number of ticks since the last IDMA Monitor call
10302  */
10303 void t4_idma_monitor(struct adapter *adapter,
10304 		     struct sge_idma_monitor_state *idma,
10305 		     int hz, int ticks)
10306 {
10307 	int i, idma_same_state_cnt[2];
10308 
10309 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10310 	  * are counters inside the SGE which count up on each clock when the
10311 	  * SGE finds its Ingress DMA State Engines in the same states they
10312 	  * were in the previous clock.  The counters will peg out at
10313 	  * 0xffffffff without wrapping around so once they pass the 1s
10314 	  * threshold they'll stay above that till the IDMA state changes.
10315 	  */
10316 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
10317 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
10318 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10319 
10320 	for (i = 0; i < 2; i++) {
10321 		u32 debug0, debug11;
10322 
10323 		/* If the Ingress DMA Same State Counter ("timer") is less
10324 		 * than 1s, then we can reset our synthesized Stall Timer and
10325 		 * continue.  If we have previously emitted warnings about a
10326 		 * potential stalled Ingress Queue, issue a note indicating
10327 		 * that the Ingress Queue has resumed forward progress.
10328 		 */
10329 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10330 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
10331 				CH_WARN(adapter, "SGE idma%d, queue %u, "
10332 					"resumed after %d seconds\n",
10333 					i, idma->idma_qid[i],
10334 					idma->idma_stalled[i]/hz);
10335 			idma->idma_stalled[i] = 0;
10336 			continue;
10337 		}
10338 
10339 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10340 		 * domain.  The first time we get here it'll be because we
10341 		 * passed the 1s Threshold; each additional time it'll be
10342 		 * because the RX Timer Callback is being fired on its regular
10343 		 * schedule.
10344 		 *
10345 		 * If the stall is below our Potential Hung Ingress Queue
10346 		 * Warning Threshold, continue.
10347 		 */
10348 		if (idma->idma_stalled[i] == 0) {
10349 			idma->idma_stalled[i] = hz;
10350 			idma->idma_warn[i] = 0;
10351 		} else {
10352 			idma->idma_stalled[i] += ticks;
10353 			idma->idma_warn[i] -= ticks;
10354 		}
10355 
10356 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
10357 			continue;
10358 
10359 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10360 		 */
10361 		if (idma->idma_warn[i] > 0)
10362 			continue;
10363 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
10364 
10365 		/* Read and save the SGE IDMA State and Queue ID information.
10366 		 * We do this every time in case it changes across time ...
10367 		 * can't be too careful ...
10368 		 */
10369 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
10370 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10371 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10372 
10373 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
10374 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10375 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10376 
10377 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
10378 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10379 			i, idma->idma_qid[i], idma->idma_state[i],
10380 			idma->idma_stalled[i]/hz,
10381 			debug0, debug11);
10382 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10383 	}
10384 }
10385 
10386 /**
10387  *     t4_set_vf_mac - Set MAC address for the specified VF
10388  *     @adapter: The adapter
10389  *     @pf: the PF used to instantiate the VFs
10390  *     @vf: one of the VFs instantiated by the specified PF
10391  *     @naddr: the number of MAC addresses
10392  *     @addr: the MAC address(es) to be set to the specified VF
10393  */
10394 int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf,
10395 		  unsigned int naddr, u8 *addr)
10396 {
10397 	struct fw_acl_mac_cmd cmd;
10398 
10399 	memset(&cmd, 0, sizeof(cmd));
10400 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
10401 				    F_FW_CMD_REQUEST |
10402 				    F_FW_CMD_WRITE |
10403 				    V_FW_ACL_MAC_CMD_PFN(pf) |
10404 				    V_FW_ACL_MAC_CMD_VFN(vf));
10405 
10406 	/* Note: Do not enable the ACL */
10407 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10408 	cmd.nmac = naddr;
10409 
10410 	switch (pf) {
10411 	case 3:
10412 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10413 		break;
10414 	case 2:
10415 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10416 		break;
10417 	case 1:
10418 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10419 		break;
10420 	case 0:
10421 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10422 		break;
10423 	}
10424 
10425 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10426 }
10427 
10428 /**
10429  *	t4_read_pace_tbl - read the pace table
10430  *	@adap: the adapter
10431  *	@pace_vals: holds the returned values
10432  *
10433  *	Returns the values of TP's pace table in microseconds.
10434  */
10435 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10436 {
10437 	unsigned int i, v;
10438 
10439 	for (i = 0; i < NTX_SCHED; i++) {
10440 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
10441 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
10442 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10443 	}
10444 }
10445 
10446 /**
10447  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10448  *	@adap: the adapter
10449  *	@sched: the scheduler index
10450  *	@kbps: the byte rate in Kbps
10451  *	@ipg: the interpacket delay in tenths of nanoseconds
10452  *
10453  *	Return the current configuration of a HW Tx scheduler.
10454  */
10455 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
10456 		     unsigned int *ipg, bool sleep_ok)
10457 {
10458 	unsigned int v, addr, bpt, cpt;
10459 
10460 	if (kbps) {
10461 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
10462 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10463 		if (sched & 1)
10464 			v >>= 16;
10465 		bpt = (v >> 8) & 0xff;
10466 		cpt = v & 0xff;
10467 		if (!cpt)
10468 			*kbps = 0;	/* scheduler disabled */
10469 		else {
10470 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10471 			*kbps = (v * bpt) / 125;
10472 		}
10473 	}
10474 	if (ipg) {
10475 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
10476 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10477 		if (sched & 1)
10478 			v >>= 16;
10479 		v &= 0xffff;
10480 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10481 	}
10482 }
10483 
10484 /**
10485  *	t4_load_cfg - download config file
10486  *	@adap: the adapter
10487  *	@cfg_data: the cfg text file to write
10488  *	@size: text file size
10489  *
10490  *	Write the supplied config text file to the card's serial flash.
10491  */
10492 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10493 {
10494 	int ret, i, n, cfg_addr;
10495 	unsigned int addr;
10496 	unsigned int flash_cfg_start_sec;
10497 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10498 
10499 	cfg_addr = t4_flash_cfg_addr(adap);
10500 	if (cfg_addr < 0)
10501 		return cfg_addr;
10502 
10503 	addr = cfg_addr;
10504 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10505 
10506 	if (size > FLASH_CFG_MAX_SIZE) {
10507 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10508 		       FLASH_CFG_MAX_SIZE);
10509 		return -EFBIG;
10510 	}
10511 
10512 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10513 			 sf_sec_size);
10514 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10515 				     flash_cfg_start_sec + i - 1);
10516 	/*
10517 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10518 	 * with the on-adapter Firmware Configuration File.
10519 	 */
10520 	if (ret || size == 0)
10521 		goto out;
10522 
10523 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10524 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10525 		if ( (size - i) <  SF_PAGE_SIZE)
10526 			n = size - i;
10527 		else
10528 			n = SF_PAGE_SIZE;
10529 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10530 		if (ret)
10531 			goto out;
10532 
10533 		addr += SF_PAGE_SIZE;
10534 		cfg_data += SF_PAGE_SIZE;
10535 	}
10536 
10537 out:
10538 	if (ret)
10539 		CH_ERR(adap, "config file %s failed %d\n",
10540 		       (size == 0 ? "clear" : "download"), ret);
10541 	return ret;
10542 }
10543 
10544 /**
10545  *	t5_fw_init_extern_mem - initialize the external memory
10546  *	@adap: the adapter
10547  *
10548  *	Initializes the external memory on T5.
10549  */
10550 int t5_fw_init_extern_mem(struct adapter *adap)
10551 {
10552 	u32 params[1], val[1];
10553 	int ret;
10554 
10555 	if (!is_t5(adap))
10556 		return 0;
10557 
10558 	val[0] = 0xff; /* Initialize all MCs */
10559 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10560 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10561 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10562 			FW_CMD_MAX_TIMEOUT);
10563 
10564 	return ret;
10565 }
10566 
10567 /* BIOS boot headers */
10568 typedef struct pci_expansion_rom_header {
10569 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10570 	u8	reserved[22]; /* Reserved per processor Architecture data */
10571 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10572 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10573 
10574 /* Legacy PCI Expansion ROM Header */
10575 typedef struct legacy_pci_expansion_rom_header {
10576 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10577 	u8	size512; /* Current Image Size in units of 512 bytes */
10578 	u8	initentry_point[4];
10579 	u8	cksum; /* Checksum computed on the entire Image */
10580 	u8	reserved[16]; /* Reserved */
10581 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
10582 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10583 
10584 /* EFI PCI Expansion ROM Header */
10585 typedef struct efi_pci_expansion_rom_header {
10586 	u8	signature[2]; // ROM signature. The value 0xaa55
10587 	u8	initialization_size[2]; /* Units 512. Includes this header */
10588 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10589 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
10590 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
10591 	u8	compression_type[2]; /* Compression type. */
10592 		/*
10593 		 * Compression type definition
10594 		 * 0x0: uncompressed
10595 		 * 0x1: Compressed
10596 		 * 0x2-0xFFFF: Reserved
10597 		 */
10598 	u8	reserved[8]; /* Reserved */
10599 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
10600 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10601 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10602 
10603 /* PCI Data Structure Format */
10604 typedef struct pcir_data_structure { /* PCI Data Structure */
10605 	u8	signature[4]; /* Signature. The string "PCIR" */
10606 	u8	vendor_id[2]; /* Vendor Identification */
10607 	u8	device_id[2]; /* Device Identification */
10608 	u8	vital_product[2]; /* Pointer to Vital Product Data */
10609 	u8	length[2]; /* PCIR Data Structure Length */
10610 	u8	revision; /* PCIR Data Structure Revision */
10611 	u8	class_code[3]; /* Class Code */
10612 	u8	image_length[2]; /* Image Length. Multiple of 512B */
10613 	u8	code_revision[2]; /* Revision Level of Code/Data */
10614 	u8	code_type; /* Code Type. */
10615 		/*
10616 		 * PCI Expansion ROM Code Types
10617 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10618 		 * 0x01: Open Firmware standard for PCI. FCODE
10619 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10620 		 * 0x03: EFI Image. EFI
10621 		 * 0x04-0xFF: Reserved.
10622 		 */
10623 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10624 	u8	reserved[2]; /* Reserved */
10625 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10626 
10627 /* BOOT constants */
10628 enum {
10629 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10630 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10631 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10632 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10633 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10634 	VENDOR_ID = 0x1425, /* Vendor ID */
10635 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10636 };
10637 
10638 /*
10639  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10640  *	@adatper: the device ID to write.
10641  *	@boot_data: the boot image to modify.
10642  *
10643  *	Write the supplied device ID to the boot BIOS image.
10644  */
10645 static void modify_device_id(int device_id, u8 *boot_data)
10646 {
10647 	legacy_pci_exp_rom_header_t *header;
10648 	pcir_data_t *pcir_header;
10649 	u32 cur_header = 0;
10650 
10651 	/*
10652 	 * Loop through all chained images and change the device ID's
10653 	 */
10654 	while (1) {
10655 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10656 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10657 			      le16_to_cpu(*(u16*)header->pcir_offset)];
10658 
10659 		/*
10660 		 * Only modify the Device ID if code type is Legacy or HP.
10661 		 * 0x00: Okay to modify
10662 		 * 0x01: FCODE. Do not be modify
10663 		 * 0x03: Okay to modify
10664 		 * 0x04-0xFF: Do not modify
10665 		 */
10666 		if (pcir_header->code_type == 0x00) {
10667 			u8 csum = 0;
10668 			int i;
10669 
10670 			/*
10671 			 * Modify Device ID to match current adatper
10672 			 */
10673 			*(u16*) pcir_header->device_id = device_id;
10674 
10675 			/*
10676 			 * Set checksum temporarily to 0.
10677 			 * We will recalculate it later.
10678 			 */
10679 			header->cksum = 0x0;
10680 
10681 			/*
10682 			 * Calculate and update checksum
10683 			 */
10684 			for (i = 0; i < (header->size512 * 512); i++)
10685 				csum += (u8)boot_data[cur_header + i];
10686 
10687 			/*
10688 			 * Invert summed value to create the checksum
10689 			 * Writing new checksum value directly to the boot data
10690 			 */
10691 			boot_data[cur_header + 7] = -csum;
10692 
10693 		} else if (pcir_header->code_type == 0x03) {
10694 
10695 			/*
10696 			 * Modify Device ID to match current adatper
10697 			 */
10698 			*(u16*) pcir_header->device_id = device_id;
10699 
10700 		}
10701 
10702 
10703 		/*
10704 		 * Check indicator element to identify if this is the last
10705 		 * image in the ROM.
10706 		 */
10707 		if (pcir_header->indicator & 0x80)
10708 			break;
10709 
10710 		/*
10711 		 * Move header pointer up to the next image in the ROM.
10712 		 */
10713 		cur_header += header->size512 * 512;
10714 	}
10715 }
10716 
10717 /*
10718  *	t4_load_boot - download boot flash
10719  *	@adapter: the adapter
10720  *	@boot_data: the boot image to write
10721  *	@boot_addr: offset in flash to write boot_data
10722  *	@size: image size
10723  *
10724  *	Write the supplied boot image to the card's serial flash.
10725  *	The boot image has the following sections: a 28-byte header and the
10726  *	boot image.
10727  */
10728 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10729 		 unsigned int boot_addr, unsigned int size)
10730 {
10731 	pci_exp_rom_header_t *header;
10732 	int pcir_offset ;
10733 	pcir_data_t *pcir_header;
10734 	int ret, addr;
10735 	uint16_t device_id;
10736 	unsigned int i;
10737 	unsigned int boot_sector = (boot_addr * 1024 );
10738 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10739 
10740 	/*
10741 	 * Make sure the boot image does not encroach on the firmware region
10742 	 */
10743 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10744 		CH_ERR(adap, "boot image encroaching on firmware region\n");
10745 		return -EFBIG;
10746 	}
10747 
10748 	/*
10749 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10750 	 * and Boot configuration data sections. These 3 boot sections span
10751 	 * sectors 0 to 7 in flash and live right before the FW image location.
10752 	 */
10753 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10754 			sf_sec_size);
10755 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10756 				     (boot_sector >> 16) + i - 1);
10757 
10758 	/*
10759 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10760 	 * with the on-adapter option ROM file
10761 	 */
10762 	if (ret || (size == 0))
10763 		goto out;
10764 
10765 	/* Get boot header */
10766 	header = (pci_exp_rom_header_t *)boot_data;
10767 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10768 	/* PCIR Data Structure */
10769 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10770 
10771 	/*
10772 	 * Perform some primitive sanity testing to avoid accidentally
10773 	 * writing garbage over the boot sectors.  We ought to check for
10774 	 * more but it's not worth it for now ...
10775 	 */
10776 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10777 		CH_ERR(adap, "boot image too small/large\n");
10778 		return -EFBIG;
10779 	}
10780 
10781 #ifndef CHELSIO_T4_DIAGS
10782 	/*
10783 	 * Check BOOT ROM header signature
10784 	 */
10785 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10786 		CH_ERR(adap, "Boot image missing signature\n");
10787 		return -EINVAL;
10788 	}
10789 
10790 	/*
10791 	 * Check PCI header signature
10792 	 */
10793 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10794 		CH_ERR(adap, "PCI header missing signature\n");
10795 		return -EINVAL;
10796 	}
10797 
10798 	/*
10799 	 * Check Vendor ID matches Chelsio ID
10800 	 */
10801 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10802 		CH_ERR(adap, "Vendor ID missing signature\n");
10803 		return -EINVAL;
10804 	}
10805 #endif
10806 
10807 	/*
10808 	 * Retrieve adapter's device ID
10809 	 */
10810 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10811 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10812 	device_id = device_id & 0xf0ff;
10813 
10814 	/*
10815 	 * Check PCIE Device ID
10816 	 */
10817 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10818 		/*
10819 		 * Change the device ID in the Boot BIOS image to match
10820 		 * the Device ID of the current adapter.
10821 		 */
10822 		modify_device_id(device_id, boot_data);
10823 	}
10824 
10825 	/*
10826 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10827 	 * we finish copying the rest of the boot image. This will ensure
10828 	 * that the BIOS boot header will only be written if the boot image
10829 	 * was written in full.
10830 	 */
10831 	addr = boot_sector;
10832 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10833 		addr += SF_PAGE_SIZE;
10834 		boot_data += SF_PAGE_SIZE;
10835 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10836 		if (ret)
10837 			goto out;
10838 	}
10839 
10840 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10841 			     (const u8 *)header, 0);
10842 
10843 out:
10844 	if (ret)
10845 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10846 	return ret;
10847 }
10848 
10849 /*
10850  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10851  *	@adapter: the adapter
10852  *
10853  *	Return the address within the flash where the OptionROM Configuration
10854  *	is stored, or an error if the device FLASH is too small to contain
10855  *	a OptionROM Configuration.
10856  */
10857 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10858 {
10859 	/*
10860 	 * If the device FLASH isn't large enough to hold a Firmware
10861 	 * Configuration File, return an error.
10862 	 */
10863 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10864 		return -ENOSPC;
10865 
10866 	return FLASH_BOOTCFG_START;
10867 }
10868 
10869 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10870 {
10871 	int ret, i, n, cfg_addr;
10872 	unsigned int addr;
10873 	unsigned int flash_cfg_start_sec;
10874 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10875 
10876 	cfg_addr = t4_flash_bootcfg_addr(adap);
10877 	if (cfg_addr < 0)
10878 		return cfg_addr;
10879 
10880 	addr = cfg_addr;
10881 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10882 
10883 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10884 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10885 			FLASH_BOOTCFG_MAX_SIZE);
10886 		return -EFBIG;
10887 	}
10888 
10889 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10890 			 sf_sec_size);
10891 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10892 					flash_cfg_start_sec + i - 1);
10893 
10894 	/*
10895 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10896 	 * with the on-adapter OptionROM Configuration File.
10897 	 */
10898 	if (ret || size == 0)
10899 		goto out;
10900 
10901 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10902 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10903 		if ( (size - i) <  SF_PAGE_SIZE)
10904 			n = size - i;
10905 		else
10906 			n = SF_PAGE_SIZE;
10907 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10908 		if (ret)
10909 			goto out;
10910 
10911 		addr += SF_PAGE_SIZE;
10912 		cfg_data += SF_PAGE_SIZE;
10913 	}
10914 
10915 out:
10916 	if (ret)
10917 		CH_ERR(adap, "boot config data %s failed %d\n",
10918 				(size == 0 ? "clear" : "download"), ret);
10919 	return ret;
10920 }
10921 
10922 /**
10923  *	t4_set_filter_cfg - set up filter mode/mask and ingress config.
10924  *	@adap: the adapter
10925  *	@mode: a bitmap selecting which optional filter components to enable
10926  *	@mask: a bitmap selecting which components to enable in filter mask
10927  *	@vnic_mode: the ingress config/vnic mode setting
10928  *
10929  *	Sets the filter mode and mask by selecting the optional components to
10930  *	enable in filter tuples.  Returns 0 on success and a negative error if
10931  *	the requested mode needs more bits than are available for optional
10932  *	components.  The filter mask must be a subset of the filter mode.
10933  */
10934 int t4_set_filter_cfg(struct adapter *adap, int mode, int mask, int vnic_mode)
10935 {
10936 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
10937 	int i, nbits, rc;
10938 	uint32_t param, val;
10939 	uint16_t fmode, fmask;
10940 	const int maxbits = adap->chip_params->filter_opt_len;
10941 
10942 	if (mode != -1 || mask != -1) {
10943 		if (mode != -1) {
10944 			fmode = mode;
10945 			nbits = 0;
10946 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10947 				if (fmode & (1 << i))
10948 					nbits += width[i];
10949 			}
10950 			if (nbits > maxbits) {
10951 				CH_ERR(adap, "optional fields in the filter "
10952 				    "mode (0x%x) add up to %d bits "
10953 				    "(must be <= %db).  Remove some fields and "
10954 				    "try again.\n", fmode, nbits, maxbits);
10955 				return -E2BIG;
10956 			}
10957 
10958 			/*
10959 			 * Hardware wants the bits to be maxed out.  Keep
10960 			 * setting them until there's no room for more.
10961 			 */
10962 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10963 				if (fmode & (1 << i))
10964 					continue;
10965 				if (nbits + width[i] <= maxbits) {
10966 					fmode |= 1 << i;
10967 					nbits += width[i];
10968 					if (nbits == maxbits)
10969 						break;
10970 				}
10971 			}
10972 
10973 			fmask = fmode & adap->params.tp.filter_mask;
10974 			if (fmask != adap->params.tp.filter_mask) {
10975 				CH_WARN(adap,
10976 				    "filter mask will be changed from 0x%x to "
10977 				    "0x%x to comply with the filter mode (0x%x).\n",
10978 				    adap->params.tp.filter_mask, fmask, fmode);
10979 			}
10980 		} else {
10981 			fmode = adap->params.tp.filter_mode;
10982 			fmask = mask;
10983 			if ((fmode | fmask) != fmode) {
10984 				CH_ERR(adap,
10985 				    "filter mask (0x%x) must be a subset of "
10986 				    "the filter mode (0x%x).\n", fmask, fmode);
10987 				return -EINVAL;
10988 			}
10989 		}
10990 
10991 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10992 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10993 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
10994 		val = V_FW_PARAMS_PARAM_FILTER_MODE(fmode) |
10995 		    V_FW_PARAMS_PARAM_FILTER_MASK(fmask);
10996 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10997 		    &val);
10998 		if (rc < 0)
10999 			return rc;
11000 	}
11001 
11002 	if (vnic_mode != -1) {
11003 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11004 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
11005 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
11006 		val = vnic_mode;
11007 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
11008 		    &val);
11009 		if (rc < 0)
11010 			return rc;
11011 	}
11012 
11013 	/* Refresh. */
11014 	read_filter_mode_and_ingress_config(adap);
11015 
11016 	return 0;
11017 }
11018 
11019 /**
11020  *	t4_clr_port_stats - clear port statistics
11021  *	@adap: the adapter
11022  *	@idx: the port index
11023  *
11024  *	Clear HW statistics for the given port.
11025  */
11026 void t4_clr_port_stats(struct adapter *adap, int idx)
11027 {
11028 	unsigned int i;
11029 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
11030 	u32 port_base_addr;
11031 
11032 	if (is_t4(adap))
11033 		port_base_addr = PORT_BASE(idx);
11034 	else
11035 		port_base_addr = T5_PORT_BASE(idx);
11036 
11037 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
11038 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
11039 		t4_write_reg(adap, port_base_addr + i, 0);
11040 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
11041 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
11042 		t4_write_reg(adap, port_base_addr + i, 0);
11043 	for (i = 0; i < 4; i++)
11044 		if (bgmap & (1 << i)) {
11045 			t4_write_reg(adap,
11046 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
11047 			t4_write_reg(adap,
11048 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
11049 		}
11050 }
11051 
11052 /**
11053  *	t4_i2c_io - read/write I2C data from adapter
11054  *	@adap: the adapter
11055  *	@port: Port number if per-port device; <0 if not
11056  *	@devid: per-port device ID or absolute device ID
11057  *	@offset: byte offset into device I2C space
11058  *	@len: byte length of I2C space data
11059  *	@buf: buffer in which to return I2C data for read
11060  *	      buffer which holds the I2C data for write
11061  *	@write: if true, do a write; else do a read
11062  *	Reads/Writes the I2C data from/to the indicated device and location.
11063  */
11064 int t4_i2c_io(struct adapter *adap, unsigned int mbox,
11065 	      int port, unsigned int devid,
11066 	      unsigned int offset, unsigned int len,
11067 	      u8 *buf, bool write)
11068 {
11069 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
11070 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
11071 	int ret = 0;
11072 
11073 	if (len > I2C_PAGE_SIZE)
11074 		return -EINVAL;
11075 
11076 	/* Dont allow reads that spans multiple pages */
11077 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
11078 		return -EINVAL;
11079 
11080 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11081 	ldst_cmd.op_to_addrspace =
11082 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11083 			    F_FW_CMD_REQUEST |
11084 			    (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
11085 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
11086 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
11087 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
11088 	ldst_cmd.u.i2c.did = devid;
11089 
11090 	while (len > 0) {
11091 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
11092 
11093 		ldst_cmd.u.i2c.boffset = offset;
11094 		ldst_cmd.u.i2c.blen = i2c_len;
11095 
11096 		if (write)
11097 			memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
11098 
11099 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
11100 				 write ? NULL : &ldst_rpl);
11101 		if (ret)
11102 			break;
11103 
11104 		if (!write)
11105 			memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
11106 		offset += i2c_len;
11107 		buf += i2c_len;
11108 		len -= i2c_len;
11109 	}
11110 
11111 	return ret;
11112 }
11113 
11114 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
11115 	      int port, unsigned int devid,
11116 	      unsigned int offset, unsigned int len,
11117 	      u8 *buf)
11118 {
11119 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
11120 }
11121 
11122 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
11123 	      int port, unsigned int devid,
11124 	      unsigned int offset, unsigned int len,
11125 	      u8 *buf)
11126 {
11127 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
11128 }
11129 
11130 /**
11131  * 	t4_sge_ctxt_rd - read an SGE context through FW
11132  * 	@adap: the adapter
11133  * 	@mbox: mailbox to use for the FW command
11134  * 	@cid: the context id
11135  * 	@ctype: the context type
11136  * 	@data: where to store the context data
11137  *
11138  * 	Issues a FW command through the given mailbox to read an SGE context.
11139  */
11140 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
11141 		   enum ctxt_type ctype, u32 *data)
11142 {
11143 	int ret;
11144 	struct fw_ldst_cmd c;
11145 
11146 	if (ctype == CTXT_EGRESS)
11147 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
11148 	else if (ctype == CTXT_INGRESS)
11149 		ret = FW_LDST_ADDRSPC_SGE_INGC;
11150 	else if (ctype == CTXT_FLM)
11151 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
11152 	else
11153 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
11154 
11155 	memset(&c, 0, sizeof(c));
11156 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11157 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
11158 					V_FW_LDST_CMD_ADDRSPACE(ret));
11159 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
11160 	c.u.idctxt.physid = cpu_to_be32(cid);
11161 
11162 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11163 	if (ret == 0) {
11164 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
11165 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
11166 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
11167 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
11168 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
11169 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
11170 	}
11171 	return ret;
11172 }
11173 
11174 /**
11175  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
11176  * 	@adap: the adapter
11177  * 	@cid: the context id
11178  * 	@ctype: the context type
11179  * 	@data: where to store the context data
11180  *
11181  * 	Reads an SGE context directly, bypassing FW.  This is only for
11182  * 	debugging when FW is unavailable.
11183  */
11184 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
11185 		      u32 *data)
11186 {
11187 	int i, ret;
11188 
11189 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
11190 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
11191 	if (!ret)
11192 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
11193 			*data++ = t4_read_reg(adap, i);
11194 	return ret;
11195 }
11196 
11197 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
11198     int sleep_ok)
11199 {
11200 	struct fw_sched_cmd cmd;
11201 
11202 	memset(&cmd, 0, sizeof(cmd));
11203 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11204 				      F_FW_CMD_REQUEST |
11205 				      F_FW_CMD_WRITE);
11206 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11207 
11208 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
11209 	cmd.u.config.type = type;
11210 	cmd.u.config.minmaxen = minmaxen;
11211 
11212 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11213 			       NULL, sleep_ok);
11214 }
11215 
11216 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
11217 		    int rateunit, int ratemode, int channel, int cl,
11218 		    int minrate, int maxrate, int weight, int pktsize,
11219 		    int burstsize, int sleep_ok)
11220 {
11221 	struct fw_sched_cmd cmd;
11222 
11223 	memset(&cmd, 0, sizeof(cmd));
11224 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11225 				      F_FW_CMD_REQUEST |
11226 				      F_FW_CMD_WRITE);
11227 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11228 
11229 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11230 	cmd.u.params.type = type;
11231 	cmd.u.params.level = level;
11232 	cmd.u.params.mode = mode;
11233 	cmd.u.params.ch = channel;
11234 	cmd.u.params.cl = cl;
11235 	cmd.u.params.unit = rateunit;
11236 	cmd.u.params.rate = ratemode;
11237 	cmd.u.params.min = cpu_to_be32(minrate);
11238 	cmd.u.params.max = cpu_to_be32(maxrate);
11239 	cmd.u.params.weight = cpu_to_be16(weight);
11240 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11241 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
11242 
11243 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11244 			       NULL, sleep_ok);
11245 }
11246 
11247 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
11248     unsigned int maxrate, int sleep_ok)
11249 {
11250 	struct fw_sched_cmd cmd;
11251 
11252 	memset(&cmd, 0, sizeof(cmd));
11253 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11254 				      F_FW_CMD_REQUEST |
11255 				      F_FW_CMD_WRITE);
11256 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11257 
11258 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11259 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11260 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
11261 	cmd.u.params.ch = channel;
11262 	cmd.u.params.rate = ratemode;		/* REL or ABS */
11263 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
11264 
11265 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11266 			       NULL, sleep_ok);
11267 }
11268 
11269 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
11270     int weight, int sleep_ok)
11271 {
11272 	struct fw_sched_cmd cmd;
11273 
11274 	if (weight < 0 || weight > 100)
11275 		return -EINVAL;
11276 
11277 	memset(&cmd, 0, sizeof(cmd));
11278 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11279 				      F_FW_CMD_REQUEST |
11280 				      F_FW_CMD_WRITE);
11281 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11282 
11283 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11284 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11285 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
11286 	cmd.u.params.ch = channel;
11287 	cmd.u.params.cl = cl;
11288 	cmd.u.params.weight = cpu_to_be16(weight);
11289 
11290 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11291 			       NULL, sleep_ok);
11292 }
11293 
11294 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
11295     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
11296 {
11297 	struct fw_sched_cmd cmd;
11298 
11299 	memset(&cmd, 0, sizeof(cmd));
11300 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11301 				      F_FW_CMD_REQUEST |
11302 				      F_FW_CMD_WRITE);
11303 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11304 
11305 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11306 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11307 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
11308 	cmd.u.params.mode = mode;
11309 	cmd.u.params.ch = channel;
11310 	cmd.u.params.cl = cl;
11311 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
11312 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
11313 	cmd.u.params.max = cpu_to_be32(maxrate);
11314 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11315 
11316 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11317 			       NULL, sleep_ok);
11318 }
11319 
11320 /*
11321  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
11322  *	@adapter: the adapter
11323  * 	@mbox: mailbox to use for the FW command
11324  * 	@pf: the PF owning the queue
11325  * 	@vf: the VF owning the queue
11326  *	@timeout: watchdog timeout in ms
11327  *	@action: watchdog timer / action
11328  *
11329  *	There are separate watchdog timers for each possible watchdog
11330  *	action.  Configure one of the watchdog timers by setting a non-zero
11331  *	timeout.  Disable a watchdog timer by using a timeout of zero.
11332  */
11333 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
11334 		       unsigned int pf, unsigned int vf,
11335 		       unsigned int timeout, unsigned int action)
11336 {
11337 	struct fw_watchdog_cmd wdog;
11338 	unsigned int ticks;
11339 
11340 	/*
11341 	 * The watchdog command expects a timeout in units of 10ms so we need
11342 	 * to convert it here (via rounding) and force a minimum of one 10ms
11343 	 * "tick" if the timeout is non-zero but the conversion results in 0
11344 	 * ticks.
11345 	 */
11346 	ticks = (timeout + 5)/10;
11347 	if (timeout && !ticks)
11348 		ticks = 1;
11349 
11350 	memset(&wdog, 0, sizeof wdog);
11351 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
11352 				     F_FW_CMD_REQUEST |
11353 				     F_FW_CMD_WRITE |
11354 				     V_FW_PARAMS_CMD_PFN(pf) |
11355 				     V_FW_PARAMS_CMD_VFN(vf));
11356 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
11357 	wdog.timeout = cpu_to_be32(ticks);
11358 	wdog.action = cpu_to_be32(action);
11359 
11360 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
11361 }
11362 
11363 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
11364 {
11365 	struct fw_devlog_cmd devlog_cmd;
11366 	int ret;
11367 
11368 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11369 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11370 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
11371 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11372 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11373 			 sizeof(devlog_cmd), &devlog_cmd);
11374 	if (ret)
11375 		return ret;
11376 
11377 	*level = devlog_cmd.level;
11378 	return 0;
11379 }
11380 
11381 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
11382 {
11383 	struct fw_devlog_cmd devlog_cmd;
11384 
11385 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11386 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11387 					     F_FW_CMD_REQUEST |
11388 					     F_FW_CMD_WRITE);
11389 	devlog_cmd.level = level;
11390 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11391 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11392 			  sizeof(devlog_cmd), &devlog_cmd);
11393 }
11394 
11395 int t4_configure_add_smac(struct adapter *adap)
11396 {
11397 	unsigned int param, val;
11398 	int ret = 0;
11399 
11400 	adap->params.smac_add_support = 0;
11401 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11402 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
11403 	/* Query FW to check if FW supports adding source mac address
11404 	 * to TCAM feature or not.
11405 	 * If FW returns 1, driver can use this feature and driver need to send
11406 	 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
11407 	 * enable adding smac to TCAM.
11408 	 */
11409 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11410 	if (ret)
11411 		return ret;
11412 
11413 	if (val == 1) {
11414 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
11415 				    &param, &val);
11416 		if (!ret)
11417 			/* Firmware allows adding explicit TCAM entries.
11418 			 * Save this internally.
11419 			 */
11420 			adap->params.smac_add_support = 1;
11421 	}
11422 
11423 	return ret;
11424 }
11425 
11426 int t4_configure_ringbb(struct adapter *adap)
11427 {
11428 	unsigned int param, val;
11429 	int ret = 0;
11430 
11431 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11432 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
11433 	/* Query FW to check if FW supports ring switch feature or not.
11434 	 * If FW returns 1, driver can use this feature and driver need to send
11435 	 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
11436 	 * enable the ring backbone configuration.
11437 	 */
11438 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11439 	if (ret < 0) {
11440 		CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
11441 			ret);
11442 		goto out;
11443 	}
11444 
11445 	if (val != 1) {
11446 		CH_ERR(adap, "FW doesnot support ringbackbone features\n");
11447 		goto out;
11448 	}
11449 
11450 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11451 	if (ret < 0) {
11452 		CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
11453 			ret);
11454 		goto out;
11455 	}
11456 
11457 out:
11458 	return ret;
11459 }
11460 
11461 /*
11462  *	t4_set_vlan_acl - Set a VLAN id for the specified VF
11463  *	@adapter: the adapter
11464  *	@mbox: mailbox to use for the FW command
11465  *	@vf: one of the VFs instantiated by the specified PF
11466  *	@vlan: The vlanid to be set
11467  *
11468  */
11469 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
11470 		    u16 vlan)
11471 {
11472 	struct fw_acl_vlan_cmd vlan_cmd;
11473 	unsigned int enable;
11474 
11475 	enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
11476 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
11477 	vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
11478 					 F_FW_CMD_REQUEST |
11479 					 F_FW_CMD_WRITE |
11480 					 F_FW_CMD_EXEC |
11481 					 V_FW_ACL_VLAN_CMD_PFN(adap->pf) |
11482 					 V_FW_ACL_VLAN_CMD_VFN(vf));
11483 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
11484 	/* Drop all packets that donot match vlan id */
11485 	vlan_cmd.dropnovlan_fm = (enable
11486 				  ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
11487 				     F_FW_ACL_VLAN_CMD_FM)
11488 				  : 0);
11489 	if (enable != 0) {
11490 		vlan_cmd.nvlan = 1;
11491 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
11492 	}
11493 
11494 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
11495 }
11496 
11497 /**
11498  *	t4_del_mac - Removes the exact-match filter for a MAC address
11499  *	@adap: the adapter
11500  *	@mbox: mailbox to use for the FW command
11501  *	@viid: the VI id
11502  *	@addr: the MAC address value
11503  *	@smac: if true, delete from only the smac region of MPS
11504  *
11505  *	Modifies an exact-match filter and sets it to the new MAC address if
11506  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11507  *	latter case the address is added persistently if @persist is %true.
11508  *
11509  *	Returns a negative error number or the index of the filter with the new
11510  *	MAC value.  Note that this index may differ from @idx.
11511  */
11512 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11513 	       const u8 *addr, bool smac)
11514 {
11515 	int ret;
11516 	struct fw_vi_mac_cmd c;
11517 	struct fw_vi_mac_exact *p = c.u.exact;
11518 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11519 
11520 	memset(&c, 0, sizeof(c));
11521 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11522 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11523 				   V_FW_VI_MAC_CMD_VIID(viid));
11524 	c.freemacs_to_len16 = cpu_to_be32(
11525 					V_FW_CMD_LEN16(1) |
11526 					(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11527 
11528 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11529 	p->valid_to_idx = cpu_to_be16(
11530 				F_FW_VI_MAC_CMD_VALID |
11531 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
11532 
11533 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11534 	if (ret == 0) {
11535 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11536 		if (ret < max_mac_addr)
11537 			return -ENOMEM;
11538 	}
11539 
11540 	return ret;
11541 }
11542 
11543 /**
11544  *	t4_add_mac - Adds an exact-match filter for a MAC address
11545  *	@adap: the adapter
11546  *	@mbox: mailbox to use for the FW command
11547  *	@viid: the VI id
11548  *	@idx: index of existing filter for old value of MAC address, or -1
11549  *	@addr: the new MAC address value
11550  *	@persist: whether a new MAC allocation should be persistent
11551  *	@add_smt: if true also add the address to the HW SMT
11552  *	@smac: if true, update only the smac region of MPS
11553  *
11554  *	Modifies an exact-match filter and sets it to the new MAC address if
11555  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11556  *	latter case the address is added persistently if @persist is %true.
11557  *
11558  *	Returns a negative error number or the index of the filter with the new
11559  *	MAC value.  Note that this index may differ from @idx.
11560  */
11561 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11562 	       int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
11563 {
11564 	int ret, mode;
11565 	struct fw_vi_mac_cmd c;
11566 	struct fw_vi_mac_exact *p = c.u.exact;
11567 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11568 
11569 	if (idx < 0)		/* new allocation */
11570 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
11571 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
11572 
11573 	memset(&c, 0, sizeof(c));
11574 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11575 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11576 				   V_FW_VI_MAC_CMD_VIID(viid));
11577 	c.freemacs_to_len16 = cpu_to_be32(
11578 				V_FW_CMD_LEN16(1) |
11579 				(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11580 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
11581 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
11582 				      V_FW_VI_MAC_CMD_IDX(idx));
11583 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11584 
11585 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11586 	if (ret == 0) {
11587 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11588 		if (ret >= max_mac_addr)
11589 			return -ENOMEM;
11590 		if (smt_idx) {
11591 			/* Does fw supports returning smt_idx? */
11592 			if (adap->params.viid_smt_extn_support)
11593 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
11594 			else {
11595 				/* In T4/T5, SMT contains 256 SMAC entries
11596 				 * organized in 128 rows of 2 entries each.
11597 				 * In T6, SMT contains 256 SMAC entries in
11598 				 * 256 rows.
11599 				 */
11600 				if (chip_id(adap) <= CHELSIO_T5)
11601 					*smt_idx = ((viid & M_FW_VIID_VIN) << 1);
11602 				else
11603 					*smt_idx = (viid & M_FW_VIID_VIN);
11604 			}
11605 		}
11606 	}
11607 
11608 	return ret;
11609 }
11610