xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 53b70c86)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR) {
215 		adap->flags &= ~FW_OK;
216 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
217 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
218 		if (pcie_fw != 0xffffffff)
219 			t4_os_dump_devlog(adap);
220 	}
221 }
222 
223 /*
224  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
225  */
226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
227 			 u32 mbox_addr)
228 {
229 	for ( ; nflit; nflit--, mbox_addr += 8)
230 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
231 }
232 
233 /*
234  * Handle a FW assertion reported in a mailbox.
235  */
236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
237 {
238 	CH_ALERT(adap,
239 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
240 		  asrt->u.assert.filename_0_7,
241 		  be32_to_cpu(asrt->u.assert.line),
242 		  be32_to_cpu(asrt->u.assert.x),
243 		  be32_to_cpu(asrt->u.assert.y));
244 }
245 
246 struct port_tx_state {
247 	uint64_t rx_pause;
248 	uint64_t tx_frames;
249 };
250 
251 static void
252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
253 {
254 	uint32_t rx_pause_reg, tx_frames_reg;
255 
256 	if (is_t4(sc)) {
257 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259 	} else {
260 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
262 	}
263 
264 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
265 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
266 }
267 
268 static void
269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
270 {
271 	int i;
272 
273 	for_each_port(sc, i)
274 		read_tx_state_one(sc, i, &tx_state[i]);
275 }
276 
277 static void
278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
279 {
280 	uint32_t port_ctl_reg;
281 	uint64_t tx_frames, rx_pause;
282 	int i;
283 
284 	for_each_port(sc, i) {
285 		rx_pause = tx_state[i].rx_pause;
286 		tx_frames = tx_state[i].tx_frames;
287 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
288 
289 		if (is_t4(sc))
290 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
291 		else
292 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
293 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
294 		    rx_pause != tx_state[i].rx_pause &&
295 		    tx_frames == tx_state[i].tx_frames) {
296 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
297 			mdelay(1);
298 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
299 		}
300 	}
301 }
302 
303 #define X_CIM_PF_NOACCESS 0xeeeeeeee
304 /**
305  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
306  *	@adap: the adapter
307  *	@mbox: index of the mailbox to use
308  *	@cmd: the command to write
309  *	@size: command length in bytes
310  *	@rpl: where to optionally store the reply
311  *	@sleep_ok: if true we may sleep while awaiting command completion
312  *	@timeout: time to wait for command to finish before timing out
313  *		(negative implies @sleep_ok=false)
314  *
315  *	Sends the given command to FW through the selected mailbox and waits
316  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
317  *	store the FW's reply to the command.  The command and its optional
318  *	reply are of the same length.  Some FW commands like RESET and
319  *	INITIALIZE can take a considerable amount of time to execute.
320  *	@sleep_ok determines whether we may sleep while awaiting the response.
321  *	If sleeping is allowed we use progressive backoff otherwise we spin.
322  *	Note that passing in a negative @timeout is an alternate mechanism
323  *	for specifying @sleep_ok=false.  This is useful when a higher level
324  *	interface allows for specification of @timeout but not @sleep_ok ...
325  *
326  *	The return value is 0 on success or a negative errno on failure.  A
327  *	failure can happen either because we are not able to execute the
328  *	command or FW executes it but signals an error.  In the latter case
329  *	the return value is the error code indicated by FW (negated).
330  */
331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
332 			    int size, void *rpl, bool sleep_ok, int timeout)
333 {
334 	/*
335 	 * We delay in small increments at first in an effort to maintain
336 	 * responsiveness for simple, fast executing commands but then back
337 	 * off to larger delays to a maximum retry delay.
338 	 */
339 	static const int delay[] = {
340 		1, 1, 3, 5, 10, 10, 20, 50, 100
341 	};
342 	u32 v;
343 	u64 res;
344 	int i, ms, delay_idx, ret, next_tx_check;
345 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
346 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
347 	u32 ctl;
348 	__be64 cmd_rpl[MBOX_LEN/8];
349 	u32 pcie_fw;
350 	struct port_tx_state tx_state[MAX_NPORTS];
351 
352 	if (adap->flags & CHK_MBOX_ACCESS)
353 		ASSERT_SYNCHRONIZED_OP(adap);
354 
355 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
356 		return -EINVAL;
357 
358 	if (adap->flags & IS_VF) {
359 		if (is_t6(adap))
360 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
361 		else
362 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
363 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
364 	}
365 
366 	/*
367 	 * If we have a negative timeout, that implies that we can't sleep.
368 	 */
369 	if (timeout < 0) {
370 		sleep_ok = false;
371 		timeout = -timeout;
372 	}
373 
374 	/*
375 	 * Attempt to gain access to the mailbox.
376 	 */
377 	for (i = 0; i < 4; i++) {
378 		ctl = t4_read_reg(adap, ctl_reg);
379 		v = G_MBOWNER(ctl);
380 		if (v != X_MBOWNER_NONE)
381 			break;
382 	}
383 
384 	/*
385 	 * If we were unable to gain access, report the error to our caller.
386 	 */
387 	if (v != X_MBOWNER_PL) {
388 		t4_report_fw_error(adap);
389 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
390 		return ret;
391 	}
392 
393 	/*
394 	 * If we gain ownership of the mailbox and there's a "valid" message
395 	 * in it, this is likely an asynchronous error message from the
396 	 * firmware.  So we'll report that and then proceed on with attempting
397 	 * to issue our own command ... which may well fail if the error
398 	 * presaged the firmware crashing ...
399 	 */
400 	if (ctl & F_MBMSGVALID) {
401 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
402 	}
403 
404 	/*
405 	 * Copy in the new mailbox command and send it on its way ...
406 	 */
407 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
408 	memcpy(cmd_rpl, cmd, size);
409 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
410 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
411 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
412 
413 	if (adap->flags & IS_VF) {
414 		/*
415 		 * For the VFs, the Mailbox Data "registers" are
416 		 * actually backed by T4's "MA" interface rather than
417 		 * PL Registers (as is the case for the PFs).  Because
418 		 * these are in different coherency domains, the write
419 		 * to the VF's PL-register-backed Mailbox Control can
420 		 * race in front of the writes to the MA-backed VF
421 		 * Mailbox Data "registers".  So we need to do a
422 		 * read-back on at least one byte of the VF Mailbox
423 		 * Data registers before doing the write to the VF
424 		 * Mailbox Control register.
425 		 */
426 		t4_read_reg(adap, data_reg);
427 	}
428 
429 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
430 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
431 	next_tx_check = 1000;
432 	delay_idx = 0;
433 	ms = delay[0];
434 
435 	/*
436 	 * Loop waiting for the reply; bail out if we time out or the firmware
437 	 * reports an error.
438 	 */
439 	pcie_fw = 0;
440 	for (i = 0; i < timeout; i += ms) {
441 		if (!(adap->flags & IS_VF)) {
442 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
443 			if (pcie_fw & F_PCIE_FW_ERR)
444 				break;
445 		}
446 
447 		if (i >= next_tx_check) {
448 			check_tx_state(adap, &tx_state[0]);
449 			next_tx_check = i + 1000;
450 		}
451 
452 		if (sleep_ok) {
453 			ms = delay[delay_idx];  /* last element may repeat */
454 			if (delay_idx < ARRAY_SIZE(delay) - 1)
455 				delay_idx++;
456 			msleep(ms);
457 		} else {
458 			mdelay(ms);
459 		}
460 
461 		v = t4_read_reg(adap, ctl_reg);
462 		if (v == X_CIM_PF_NOACCESS)
463 			continue;
464 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
465 			if (!(v & F_MBMSGVALID)) {
466 				t4_write_reg(adap, ctl_reg,
467 					     V_MBOWNER(X_MBOWNER_NONE));
468 				continue;
469 			}
470 
471 			/*
472 			 * Retrieve the command reply and release the mailbox.
473 			 */
474 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
475 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
476 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
477 
478 			res = be64_to_cpu(cmd_rpl[0]);
479 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
480 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
481 				res = V_FW_CMD_RETVAL(EIO);
482 			} else if (rpl)
483 				memcpy(rpl, cmd_rpl, size);
484 			return -G_FW_CMD_RETVAL((int)res);
485 		}
486 	}
487 
488 	/*
489 	 * We timed out waiting for a reply to our mailbox command.  Report
490 	 * the error and also check to see if the firmware reported any
491 	 * errors ...
492 	 */
493 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
494 	    *(const u8 *)cmd, mbox, pcie_fw);
495 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
496 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
497 
498 	if (pcie_fw & F_PCIE_FW_ERR) {
499 		ret = -ENXIO;
500 		t4_report_fw_error(adap);
501 	} else {
502 		ret = -ETIMEDOUT;
503 		t4_os_dump_devlog(adap);
504 	}
505 
506 	t4_fatal_err(adap, true);
507 	return ret;
508 }
509 
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511 		    void *rpl, bool sleep_ok)
512 {
513 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
515 
516 }
517 
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520 	u32 edc_ecc_err_addr_reg;
521 	u32 edc_bist_status_rdata_reg;
522 
523 	if (is_t4(adap)) {
524 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525 		return 0;
526 	}
527 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529 		return 0;
530 	}
531 
532 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534 
535 	CH_WARN(adap,
536 		"edc%d err addr 0x%x: 0x%x.\n",
537 		idx, edc_ecc_err_addr_reg,
538 		t4_read_reg(adap, edc_ecc_err_addr_reg));
539 	CH_WARN(adap,
540 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541 		edc_bist_status_rdata_reg,
542 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551 
552 	return 0;
553 }
554 
555 /**
556  *	t4_mc_read - read from MC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which MC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572 
573 	if (is_t4(adap)) {
574 		mc_bist_cmd_reg = A_MC_BIST_CMD;
575 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579 	} else {
580 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584 						  idx);
585 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586 						  idx);
587 	}
588 
589 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590 		return -EBUSY;
591 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595 		     F_START_BIST | V_BIST_CMD_GAP(1));
596 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597 	if (i)
598 		return i;
599 
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601 
602 	for (i = 15; i >= 0; i--)
603 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604 	if (ecc)
605 		*ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607 	return 0;
608 }
609 
610 /**
611  *	t4_edc_read - read from EDC through backdoor accesses
612  *	@adap: the adapter
613  *	@idx: which EDC to access
614  *	@addr: address of first byte requested
615  *	@data: 64 bytes of data containing the requested address
616  *	@ecc: where to store the corresponding 64-bit ECC word
617  *
618  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *	that covers the requested address @addr.  If @parity is not %NULL it
620  *	is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624 	int i;
625 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627 
628 	if (is_t4(adap)) {
629 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633 						    idx);
634 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635 						    idx);
636 	} else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649 						    idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652 	}
653 
654 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655 		return -EBUSY;
656 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659 	t4_write_reg(adap, edc_bist_cmd_reg,
660 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662 	if (i)
663 		return i;
664 
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666 
667 	for (i = 15; i >= 0; i--)
668 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669 	if (ecc)
670 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672 	return 0;
673 }
674 
675 /**
676  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *	@adap: the adapter
678  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *	@addr: address within indicated memory type
680  *	@len: amount of memory to read
681  *	@buf: host memory buffer
682  *
683  *	Reads an [almost] arbitrary memory region in the firmware: the
684  *	firmware memory address, length and host buffer must be aligned on
685  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *	the firmware's memory.  If this memory contains data structures which
687  *	contain multi-byte integers, it's the callers responsibility to
688  *	perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691 		__be32 *buf)
692 {
693 	u32 pos, start, end, offset;
694 	int ret;
695 
696 	/*
697 	 * Argument sanity checks ...
698 	 */
699 	if ((addr & 0x3) || (len & 0x3))
700 		return -EINVAL;
701 
702 	/*
703 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
704 	 * need to round down the start and round up the end.  We'll start
705 	 * copying out of the first line at (addr - start) a word at a time.
706 	 */
707 	start = rounddown2(addr, 64);
708 	end = roundup2(addr + len, 64);
709 	offset = (addr - start)/sizeof(__be32);
710 
711 	for (pos = start; pos < end; pos += 64, offset = 0) {
712 		__be32 data[16];
713 
714 		/*
715 		 * Read the chip's memory block and bail if there's an error.
716 		 */
717 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719 		else
720 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
721 		if (ret)
722 			return ret;
723 
724 		/*
725 		 * Copy the data into the caller's memory buffer.
726 		 */
727 		while (offset < 16 && len > 0) {
728 			*buf++ = data[offset++];
729 			len -= sizeof(__be32);
730 		}
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744 
745 	/*
746 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
747 	 * retrieve the specified PCI-E Configuration Space register.
748 	 */
749 	if (drv_fw_attach != 0) {
750 		struct fw_ldst_cmd ldst_cmd;
751 		int ret;
752 
753 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754 		ldst_cmd.op_to_addrspace =
755 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756 				    F_FW_CMD_REQUEST |
757 				    F_FW_CMD_READ |
758 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761 		ldst_cmd.u.pcie.ctrl_to_fn =
762 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763 		ldst_cmd.u.pcie.r = reg;
764 
765 		/*
766 		 * If the LDST Command succeeds, return the result, otherwise
767 		 * fall through to reading it directly ourselves ...
768 		 */
769 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770 				 &ldst_cmd);
771 		if (ret == 0)
772 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773 
774 		CH_WARN(adap, "Firmware failed to return "
775 			"Configuration Space register %d, err = %d\n",
776 			reg, -ret);
777 	}
778 
779 	/*
780 	 * Read the desired Configuration Space register via the PCI-E
781 	 * Backdoor mechanism.
782 	 */
783 	return t4_hw_pci_read_cfg4(adap, reg);
784 }
785 
786 /**
787  *	t4_get_regs_len - return the size of the chips register set
788  *	@adapter: the adapter
789  *
790  *	Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794 	unsigned int chip_version = chip_id(adapter);
795 
796 	switch (chip_version) {
797 	case CHELSIO_T4:
798 		if (adapter->flags & IS_VF)
799 			return FW_T4VF_REGMAP_SIZE;
800 		return T4_REGMAP_SIZE;
801 
802 	case CHELSIO_T5:
803 	case CHELSIO_T6:
804 		if (adapter->flags & IS_VF)
805 			return FW_T4VF_REGMAP_SIZE;
806 		return T5_REGMAP_SIZE;
807 	}
808 
809 	CH_ERR(adapter,
810 		"Unsupported chip version %d\n", chip_version);
811 	return 0;
812 }
813 
814 /**
815  *	t4_get_regs - read chip registers into provided buffer
816  *	@adap: the adapter
817  *	@buf: register buffer
818  *	@buf_size: size (in bytes) of register buffer
819  *
820  *	If the provided register buffer isn't large enough for the chip's
821  *	full register range, the register dump will be truncated to the
822  *	register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826 	static const unsigned int t4_reg_ranges[] = {
827 		0x1008, 0x1108,
828 		0x1180, 0x1184,
829 		0x1190, 0x1194,
830 		0x11a0, 0x11a4,
831 		0x11b0, 0x11b4,
832 		0x11fc, 0x123c,
833 		0x1300, 0x173c,
834 		0x1800, 0x18fc,
835 		0x3000, 0x30d8,
836 		0x30e0, 0x30e4,
837 		0x30ec, 0x5910,
838 		0x5920, 0x5924,
839 		0x5960, 0x5960,
840 		0x5968, 0x5968,
841 		0x5970, 0x5970,
842 		0x5978, 0x5978,
843 		0x5980, 0x5980,
844 		0x5988, 0x5988,
845 		0x5990, 0x5990,
846 		0x5998, 0x5998,
847 		0x59a0, 0x59d4,
848 		0x5a00, 0x5ae0,
849 		0x5ae8, 0x5ae8,
850 		0x5af0, 0x5af0,
851 		0x5af8, 0x5af8,
852 		0x6000, 0x6098,
853 		0x6100, 0x6150,
854 		0x6200, 0x6208,
855 		0x6240, 0x6248,
856 		0x6280, 0x62b0,
857 		0x62c0, 0x6338,
858 		0x6370, 0x638c,
859 		0x6400, 0x643c,
860 		0x6500, 0x6524,
861 		0x6a00, 0x6a04,
862 		0x6a14, 0x6a38,
863 		0x6a60, 0x6a70,
864 		0x6a78, 0x6a78,
865 		0x6b00, 0x6b0c,
866 		0x6b1c, 0x6b84,
867 		0x6bf0, 0x6bf8,
868 		0x6c00, 0x6c0c,
869 		0x6c1c, 0x6c84,
870 		0x6cf0, 0x6cf8,
871 		0x6d00, 0x6d0c,
872 		0x6d1c, 0x6d84,
873 		0x6df0, 0x6df8,
874 		0x6e00, 0x6e0c,
875 		0x6e1c, 0x6e84,
876 		0x6ef0, 0x6ef8,
877 		0x6f00, 0x6f0c,
878 		0x6f1c, 0x6f84,
879 		0x6ff0, 0x6ff8,
880 		0x7000, 0x700c,
881 		0x701c, 0x7084,
882 		0x70f0, 0x70f8,
883 		0x7100, 0x710c,
884 		0x711c, 0x7184,
885 		0x71f0, 0x71f8,
886 		0x7200, 0x720c,
887 		0x721c, 0x7284,
888 		0x72f0, 0x72f8,
889 		0x7300, 0x730c,
890 		0x731c, 0x7384,
891 		0x73f0, 0x73f8,
892 		0x7400, 0x7450,
893 		0x7500, 0x7530,
894 		0x7600, 0x760c,
895 		0x7614, 0x761c,
896 		0x7680, 0x76cc,
897 		0x7700, 0x7798,
898 		0x77c0, 0x77fc,
899 		0x7900, 0x79fc,
900 		0x7b00, 0x7b58,
901 		0x7b60, 0x7b84,
902 		0x7b8c, 0x7c38,
903 		0x7d00, 0x7d38,
904 		0x7d40, 0x7d80,
905 		0x7d8c, 0x7ddc,
906 		0x7de4, 0x7e04,
907 		0x7e10, 0x7e1c,
908 		0x7e24, 0x7e38,
909 		0x7e40, 0x7e44,
910 		0x7e4c, 0x7e78,
911 		0x7e80, 0x7ea4,
912 		0x7eac, 0x7edc,
913 		0x7ee8, 0x7efc,
914 		0x8dc0, 0x8e04,
915 		0x8e10, 0x8e1c,
916 		0x8e30, 0x8e78,
917 		0x8ea0, 0x8eb8,
918 		0x8ec0, 0x8f6c,
919 		0x8fc0, 0x9008,
920 		0x9010, 0x9058,
921 		0x9060, 0x9060,
922 		0x9068, 0x9074,
923 		0x90fc, 0x90fc,
924 		0x9400, 0x9408,
925 		0x9410, 0x9458,
926 		0x9600, 0x9600,
927 		0x9608, 0x9638,
928 		0x9640, 0x96bc,
929 		0x9800, 0x9808,
930 		0x9820, 0x983c,
931 		0x9850, 0x9864,
932 		0x9c00, 0x9c6c,
933 		0x9c80, 0x9cec,
934 		0x9d00, 0x9d6c,
935 		0x9d80, 0x9dec,
936 		0x9e00, 0x9e6c,
937 		0x9e80, 0x9eec,
938 		0x9f00, 0x9f6c,
939 		0x9f80, 0x9fec,
940 		0xd004, 0xd004,
941 		0xd010, 0xd03c,
942 		0xdfc0, 0xdfe0,
943 		0xe000, 0xea7c,
944 		0xf000, 0x11110,
945 		0x11118, 0x11190,
946 		0x19040, 0x1906c,
947 		0x19078, 0x19080,
948 		0x1908c, 0x190e4,
949 		0x190f0, 0x190f8,
950 		0x19100, 0x19110,
951 		0x19120, 0x19124,
952 		0x19150, 0x19194,
953 		0x1919c, 0x191b0,
954 		0x191d0, 0x191e8,
955 		0x19238, 0x1924c,
956 		0x193f8, 0x1943c,
957 		0x1944c, 0x19474,
958 		0x19490, 0x194e0,
959 		0x194f0, 0x194f8,
960 		0x19800, 0x19c08,
961 		0x19c10, 0x19c90,
962 		0x19ca0, 0x19ce4,
963 		0x19cf0, 0x19d40,
964 		0x19d50, 0x19d94,
965 		0x19da0, 0x19de8,
966 		0x19df0, 0x19e40,
967 		0x19e50, 0x19e90,
968 		0x19ea0, 0x19f4c,
969 		0x1a000, 0x1a004,
970 		0x1a010, 0x1a06c,
971 		0x1a0b0, 0x1a0e4,
972 		0x1a0ec, 0x1a0f4,
973 		0x1a100, 0x1a108,
974 		0x1a114, 0x1a120,
975 		0x1a128, 0x1a130,
976 		0x1a138, 0x1a138,
977 		0x1a190, 0x1a1c4,
978 		0x1a1fc, 0x1a1fc,
979 		0x1e040, 0x1e04c,
980 		0x1e284, 0x1e28c,
981 		0x1e2c0, 0x1e2c0,
982 		0x1e2e0, 0x1e2e0,
983 		0x1e300, 0x1e384,
984 		0x1e3c0, 0x1e3c8,
985 		0x1e440, 0x1e44c,
986 		0x1e684, 0x1e68c,
987 		0x1e6c0, 0x1e6c0,
988 		0x1e6e0, 0x1e6e0,
989 		0x1e700, 0x1e784,
990 		0x1e7c0, 0x1e7c8,
991 		0x1e840, 0x1e84c,
992 		0x1ea84, 0x1ea8c,
993 		0x1eac0, 0x1eac0,
994 		0x1eae0, 0x1eae0,
995 		0x1eb00, 0x1eb84,
996 		0x1ebc0, 0x1ebc8,
997 		0x1ec40, 0x1ec4c,
998 		0x1ee84, 0x1ee8c,
999 		0x1eec0, 0x1eec0,
1000 		0x1eee0, 0x1eee0,
1001 		0x1ef00, 0x1ef84,
1002 		0x1efc0, 0x1efc8,
1003 		0x1f040, 0x1f04c,
1004 		0x1f284, 0x1f28c,
1005 		0x1f2c0, 0x1f2c0,
1006 		0x1f2e0, 0x1f2e0,
1007 		0x1f300, 0x1f384,
1008 		0x1f3c0, 0x1f3c8,
1009 		0x1f440, 0x1f44c,
1010 		0x1f684, 0x1f68c,
1011 		0x1f6c0, 0x1f6c0,
1012 		0x1f6e0, 0x1f6e0,
1013 		0x1f700, 0x1f784,
1014 		0x1f7c0, 0x1f7c8,
1015 		0x1f840, 0x1f84c,
1016 		0x1fa84, 0x1fa8c,
1017 		0x1fac0, 0x1fac0,
1018 		0x1fae0, 0x1fae0,
1019 		0x1fb00, 0x1fb84,
1020 		0x1fbc0, 0x1fbc8,
1021 		0x1fc40, 0x1fc4c,
1022 		0x1fe84, 0x1fe8c,
1023 		0x1fec0, 0x1fec0,
1024 		0x1fee0, 0x1fee0,
1025 		0x1ff00, 0x1ff84,
1026 		0x1ffc0, 0x1ffc8,
1027 		0x20000, 0x2002c,
1028 		0x20100, 0x2013c,
1029 		0x20190, 0x201a0,
1030 		0x201a8, 0x201b8,
1031 		0x201c4, 0x201c8,
1032 		0x20200, 0x20318,
1033 		0x20400, 0x204b4,
1034 		0x204c0, 0x20528,
1035 		0x20540, 0x20614,
1036 		0x21000, 0x21040,
1037 		0x2104c, 0x21060,
1038 		0x210c0, 0x210ec,
1039 		0x21200, 0x21268,
1040 		0x21270, 0x21284,
1041 		0x212fc, 0x21388,
1042 		0x21400, 0x21404,
1043 		0x21500, 0x21500,
1044 		0x21510, 0x21518,
1045 		0x2152c, 0x21530,
1046 		0x2153c, 0x2153c,
1047 		0x21550, 0x21554,
1048 		0x21600, 0x21600,
1049 		0x21608, 0x2161c,
1050 		0x21624, 0x21628,
1051 		0x21630, 0x21634,
1052 		0x2163c, 0x2163c,
1053 		0x21700, 0x2171c,
1054 		0x21780, 0x2178c,
1055 		0x21800, 0x21818,
1056 		0x21820, 0x21828,
1057 		0x21830, 0x21848,
1058 		0x21850, 0x21854,
1059 		0x21860, 0x21868,
1060 		0x21870, 0x21870,
1061 		0x21878, 0x21898,
1062 		0x218a0, 0x218a8,
1063 		0x218b0, 0x218c8,
1064 		0x218d0, 0x218d4,
1065 		0x218e0, 0x218e8,
1066 		0x218f0, 0x218f0,
1067 		0x218f8, 0x21a18,
1068 		0x21a20, 0x21a28,
1069 		0x21a30, 0x21a48,
1070 		0x21a50, 0x21a54,
1071 		0x21a60, 0x21a68,
1072 		0x21a70, 0x21a70,
1073 		0x21a78, 0x21a98,
1074 		0x21aa0, 0x21aa8,
1075 		0x21ab0, 0x21ac8,
1076 		0x21ad0, 0x21ad4,
1077 		0x21ae0, 0x21ae8,
1078 		0x21af0, 0x21af0,
1079 		0x21af8, 0x21c18,
1080 		0x21c20, 0x21c20,
1081 		0x21c28, 0x21c30,
1082 		0x21c38, 0x21c38,
1083 		0x21c80, 0x21c98,
1084 		0x21ca0, 0x21ca8,
1085 		0x21cb0, 0x21cc8,
1086 		0x21cd0, 0x21cd4,
1087 		0x21ce0, 0x21ce8,
1088 		0x21cf0, 0x21cf0,
1089 		0x21cf8, 0x21d7c,
1090 		0x21e00, 0x21e04,
1091 		0x22000, 0x2202c,
1092 		0x22100, 0x2213c,
1093 		0x22190, 0x221a0,
1094 		0x221a8, 0x221b8,
1095 		0x221c4, 0x221c8,
1096 		0x22200, 0x22318,
1097 		0x22400, 0x224b4,
1098 		0x224c0, 0x22528,
1099 		0x22540, 0x22614,
1100 		0x23000, 0x23040,
1101 		0x2304c, 0x23060,
1102 		0x230c0, 0x230ec,
1103 		0x23200, 0x23268,
1104 		0x23270, 0x23284,
1105 		0x232fc, 0x23388,
1106 		0x23400, 0x23404,
1107 		0x23500, 0x23500,
1108 		0x23510, 0x23518,
1109 		0x2352c, 0x23530,
1110 		0x2353c, 0x2353c,
1111 		0x23550, 0x23554,
1112 		0x23600, 0x23600,
1113 		0x23608, 0x2361c,
1114 		0x23624, 0x23628,
1115 		0x23630, 0x23634,
1116 		0x2363c, 0x2363c,
1117 		0x23700, 0x2371c,
1118 		0x23780, 0x2378c,
1119 		0x23800, 0x23818,
1120 		0x23820, 0x23828,
1121 		0x23830, 0x23848,
1122 		0x23850, 0x23854,
1123 		0x23860, 0x23868,
1124 		0x23870, 0x23870,
1125 		0x23878, 0x23898,
1126 		0x238a0, 0x238a8,
1127 		0x238b0, 0x238c8,
1128 		0x238d0, 0x238d4,
1129 		0x238e0, 0x238e8,
1130 		0x238f0, 0x238f0,
1131 		0x238f8, 0x23a18,
1132 		0x23a20, 0x23a28,
1133 		0x23a30, 0x23a48,
1134 		0x23a50, 0x23a54,
1135 		0x23a60, 0x23a68,
1136 		0x23a70, 0x23a70,
1137 		0x23a78, 0x23a98,
1138 		0x23aa0, 0x23aa8,
1139 		0x23ab0, 0x23ac8,
1140 		0x23ad0, 0x23ad4,
1141 		0x23ae0, 0x23ae8,
1142 		0x23af0, 0x23af0,
1143 		0x23af8, 0x23c18,
1144 		0x23c20, 0x23c20,
1145 		0x23c28, 0x23c30,
1146 		0x23c38, 0x23c38,
1147 		0x23c80, 0x23c98,
1148 		0x23ca0, 0x23ca8,
1149 		0x23cb0, 0x23cc8,
1150 		0x23cd0, 0x23cd4,
1151 		0x23ce0, 0x23ce8,
1152 		0x23cf0, 0x23cf0,
1153 		0x23cf8, 0x23d7c,
1154 		0x23e00, 0x23e04,
1155 		0x24000, 0x2402c,
1156 		0x24100, 0x2413c,
1157 		0x24190, 0x241a0,
1158 		0x241a8, 0x241b8,
1159 		0x241c4, 0x241c8,
1160 		0x24200, 0x24318,
1161 		0x24400, 0x244b4,
1162 		0x244c0, 0x24528,
1163 		0x24540, 0x24614,
1164 		0x25000, 0x25040,
1165 		0x2504c, 0x25060,
1166 		0x250c0, 0x250ec,
1167 		0x25200, 0x25268,
1168 		0x25270, 0x25284,
1169 		0x252fc, 0x25388,
1170 		0x25400, 0x25404,
1171 		0x25500, 0x25500,
1172 		0x25510, 0x25518,
1173 		0x2552c, 0x25530,
1174 		0x2553c, 0x2553c,
1175 		0x25550, 0x25554,
1176 		0x25600, 0x25600,
1177 		0x25608, 0x2561c,
1178 		0x25624, 0x25628,
1179 		0x25630, 0x25634,
1180 		0x2563c, 0x2563c,
1181 		0x25700, 0x2571c,
1182 		0x25780, 0x2578c,
1183 		0x25800, 0x25818,
1184 		0x25820, 0x25828,
1185 		0x25830, 0x25848,
1186 		0x25850, 0x25854,
1187 		0x25860, 0x25868,
1188 		0x25870, 0x25870,
1189 		0x25878, 0x25898,
1190 		0x258a0, 0x258a8,
1191 		0x258b0, 0x258c8,
1192 		0x258d0, 0x258d4,
1193 		0x258e0, 0x258e8,
1194 		0x258f0, 0x258f0,
1195 		0x258f8, 0x25a18,
1196 		0x25a20, 0x25a28,
1197 		0x25a30, 0x25a48,
1198 		0x25a50, 0x25a54,
1199 		0x25a60, 0x25a68,
1200 		0x25a70, 0x25a70,
1201 		0x25a78, 0x25a98,
1202 		0x25aa0, 0x25aa8,
1203 		0x25ab0, 0x25ac8,
1204 		0x25ad0, 0x25ad4,
1205 		0x25ae0, 0x25ae8,
1206 		0x25af0, 0x25af0,
1207 		0x25af8, 0x25c18,
1208 		0x25c20, 0x25c20,
1209 		0x25c28, 0x25c30,
1210 		0x25c38, 0x25c38,
1211 		0x25c80, 0x25c98,
1212 		0x25ca0, 0x25ca8,
1213 		0x25cb0, 0x25cc8,
1214 		0x25cd0, 0x25cd4,
1215 		0x25ce0, 0x25ce8,
1216 		0x25cf0, 0x25cf0,
1217 		0x25cf8, 0x25d7c,
1218 		0x25e00, 0x25e04,
1219 		0x26000, 0x2602c,
1220 		0x26100, 0x2613c,
1221 		0x26190, 0x261a0,
1222 		0x261a8, 0x261b8,
1223 		0x261c4, 0x261c8,
1224 		0x26200, 0x26318,
1225 		0x26400, 0x264b4,
1226 		0x264c0, 0x26528,
1227 		0x26540, 0x26614,
1228 		0x27000, 0x27040,
1229 		0x2704c, 0x27060,
1230 		0x270c0, 0x270ec,
1231 		0x27200, 0x27268,
1232 		0x27270, 0x27284,
1233 		0x272fc, 0x27388,
1234 		0x27400, 0x27404,
1235 		0x27500, 0x27500,
1236 		0x27510, 0x27518,
1237 		0x2752c, 0x27530,
1238 		0x2753c, 0x2753c,
1239 		0x27550, 0x27554,
1240 		0x27600, 0x27600,
1241 		0x27608, 0x2761c,
1242 		0x27624, 0x27628,
1243 		0x27630, 0x27634,
1244 		0x2763c, 0x2763c,
1245 		0x27700, 0x2771c,
1246 		0x27780, 0x2778c,
1247 		0x27800, 0x27818,
1248 		0x27820, 0x27828,
1249 		0x27830, 0x27848,
1250 		0x27850, 0x27854,
1251 		0x27860, 0x27868,
1252 		0x27870, 0x27870,
1253 		0x27878, 0x27898,
1254 		0x278a0, 0x278a8,
1255 		0x278b0, 0x278c8,
1256 		0x278d0, 0x278d4,
1257 		0x278e0, 0x278e8,
1258 		0x278f0, 0x278f0,
1259 		0x278f8, 0x27a18,
1260 		0x27a20, 0x27a28,
1261 		0x27a30, 0x27a48,
1262 		0x27a50, 0x27a54,
1263 		0x27a60, 0x27a68,
1264 		0x27a70, 0x27a70,
1265 		0x27a78, 0x27a98,
1266 		0x27aa0, 0x27aa8,
1267 		0x27ab0, 0x27ac8,
1268 		0x27ad0, 0x27ad4,
1269 		0x27ae0, 0x27ae8,
1270 		0x27af0, 0x27af0,
1271 		0x27af8, 0x27c18,
1272 		0x27c20, 0x27c20,
1273 		0x27c28, 0x27c30,
1274 		0x27c38, 0x27c38,
1275 		0x27c80, 0x27c98,
1276 		0x27ca0, 0x27ca8,
1277 		0x27cb0, 0x27cc8,
1278 		0x27cd0, 0x27cd4,
1279 		0x27ce0, 0x27ce8,
1280 		0x27cf0, 0x27cf0,
1281 		0x27cf8, 0x27d7c,
1282 		0x27e00, 0x27e04,
1283 	};
1284 
1285 	static const unsigned int t4vf_reg_ranges[] = {
1286 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287 		VF_MPS_REG(A_MPS_VF_CTL),
1288 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292 		FW_T4VF_MBDATA_BASE_ADDR,
1293 		FW_T4VF_MBDATA_BASE_ADDR +
1294 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295 	};
1296 
1297 	static const unsigned int t5_reg_ranges[] = {
1298 		0x1008, 0x10c0,
1299 		0x10cc, 0x10f8,
1300 		0x1100, 0x1100,
1301 		0x110c, 0x1148,
1302 		0x1180, 0x1184,
1303 		0x1190, 0x1194,
1304 		0x11a0, 0x11a4,
1305 		0x11b0, 0x11b4,
1306 		0x11fc, 0x123c,
1307 		0x1280, 0x173c,
1308 		0x1800, 0x18fc,
1309 		0x3000, 0x3028,
1310 		0x3060, 0x30b0,
1311 		0x30b8, 0x30d8,
1312 		0x30e0, 0x30fc,
1313 		0x3140, 0x357c,
1314 		0x35a8, 0x35cc,
1315 		0x35ec, 0x35ec,
1316 		0x3600, 0x5624,
1317 		0x56cc, 0x56ec,
1318 		0x56f4, 0x5720,
1319 		0x5728, 0x575c,
1320 		0x580c, 0x5814,
1321 		0x5890, 0x589c,
1322 		0x58a4, 0x58ac,
1323 		0x58b8, 0x58bc,
1324 		0x5940, 0x59c8,
1325 		0x59d0, 0x59dc,
1326 		0x59fc, 0x5a18,
1327 		0x5a60, 0x5a70,
1328 		0x5a80, 0x5a9c,
1329 		0x5b94, 0x5bfc,
1330 		0x6000, 0x6020,
1331 		0x6028, 0x6040,
1332 		0x6058, 0x609c,
1333 		0x60a8, 0x614c,
1334 		0x7700, 0x7798,
1335 		0x77c0, 0x78fc,
1336 		0x7b00, 0x7b58,
1337 		0x7b60, 0x7b84,
1338 		0x7b8c, 0x7c54,
1339 		0x7d00, 0x7d38,
1340 		0x7d40, 0x7d80,
1341 		0x7d8c, 0x7ddc,
1342 		0x7de4, 0x7e04,
1343 		0x7e10, 0x7e1c,
1344 		0x7e24, 0x7e38,
1345 		0x7e40, 0x7e44,
1346 		0x7e4c, 0x7e78,
1347 		0x7e80, 0x7edc,
1348 		0x7ee8, 0x7efc,
1349 		0x8dc0, 0x8de0,
1350 		0x8df8, 0x8e04,
1351 		0x8e10, 0x8e84,
1352 		0x8ea0, 0x8f84,
1353 		0x8fc0, 0x9058,
1354 		0x9060, 0x9060,
1355 		0x9068, 0x90f8,
1356 		0x9400, 0x9408,
1357 		0x9410, 0x9470,
1358 		0x9600, 0x9600,
1359 		0x9608, 0x9638,
1360 		0x9640, 0x96f4,
1361 		0x9800, 0x9808,
1362 		0x9810, 0x9864,
1363 		0x9c00, 0x9c6c,
1364 		0x9c80, 0x9cec,
1365 		0x9d00, 0x9d6c,
1366 		0x9d80, 0x9dec,
1367 		0x9e00, 0x9e6c,
1368 		0x9e80, 0x9eec,
1369 		0x9f00, 0x9f6c,
1370 		0x9f80, 0xa020,
1371 		0xd000, 0xd004,
1372 		0xd010, 0xd03c,
1373 		0xdfc0, 0xdfe0,
1374 		0xe000, 0x1106c,
1375 		0x11074, 0x11088,
1376 		0x1109c, 0x11110,
1377 		0x11118, 0x1117c,
1378 		0x11190, 0x11204,
1379 		0x19040, 0x1906c,
1380 		0x19078, 0x19080,
1381 		0x1908c, 0x190e8,
1382 		0x190f0, 0x190f8,
1383 		0x19100, 0x19110,
1384 		0x19120, 0x19124,
1385 		0x19150, 0x19194,
1386 		0x1919c, 0x191b0,
1387 		0x191d0, 0x191e8,
1388 		0x19238, 0x19290,
1389 		0x193f8, 0x19428,
1390 		0x19430, 0x19444,
1391 		0x1944c, 0x1946c,
1392 		0x19474, 0x19474,
1393 		0x19490, 0x194cc,
1394 		0x194f0, 0x194f8,
1395 		0x19c00, 0x19c08,
1396 		0x19c10, 0x19c60,
1397 		0x19c94, 0x19ce4,
1398 		0x19cf0, 0x19d40,
1399 		0x19d50, 0x19d94,
1400 		0x19da0, 0x19de8,
1401 		0x19df0, 0x19e10,
1402 		0x19e50, 0x19e90,
1403 		0x19ea0, 0x19f24,
1404 		0x19f34, 0x19f34,
1405 		0x19f40, 0x19f50,
1406 		0x19f90, 0x19fb4,
1407 		0x19fc4, 0x19fe4,
1408 		0x1a000, 0x1a004,
1409 		0x1a010, 0x1a06c,
1410 		0x1a0b0, 0x1a0e4,
1411 		0x1a0ec, 0x1a0f8,
1412 		0x1a100, 0x1a108,
1413 		0x1a114, 0x1a130,
1414 		0x1a138, 0x1a1c4,
1415 		0x1a1fc, 0x1a1fc,
1416 		0x1e008, 0x1e00c,
1417 		0x1e040, 0x1e044,
1418 		0x1e04c, 0x1e04c,
1419 		0x1e284, 0x1e290,
1420 		0x1e2c0, 0x1e2c0,
1421 		0x1e2e0, 0x1e2e0,
1422 		0x1e300, 0x1e384,
1423 		0x1e3c0, 0x1e3c8,
1424 		0x1e408, 0x1e40c,
1425 		0x1e440, 0x1e444,
1426 		0x1e44c, 0x1e44c,
1427 		0x1e684, 0x1e690,
1428 		0x1e6c0, 0x1e6c0,
1429 		0x1e6e0, 0x1e6e0,
1430 		0x1e700, 0x1e784,
1431 		0x1e7c0, 0x1e7c8,
1432 		0x1e808, 0x1e80c,
1433 		0x1e840, 0x1e844,
1434 		0x1e84c, 0x1e84c,
1435 		0x1ea84, 0x1ea90,
1436 		0x1eac0, 0x1eac0,
1437 		0x1eae0, 0x1eae0,
1438 		0x1eb00, 0x1eb84,
1439 		0x1ebc0, 0x1ebc8,
1440 		0x1ec08, 0x1ec0c,
1441 		0x1ec40, 0x1ec44,
1442 		0x1ec4c, 0x1ec4c,
1443 		0x1ee84, 0x1ee90,
1444 		0x1eec0, 0x1eec0,
1445 		0x1eee0, 0x1eee0,
1446 		0x1ef00, 0x1ef84,
1447 		0x1efc0, 0x1efc8,
1448 		0x1f008, 0x1f00c,
1449 		0x1f040, 0x1f044,
1450 		0x1f04c, 0x1f04c,
1451 		0x1f284, 0x1f290,
1452 		0x1f2c0, 0x1f2c0,
1453 		0x1f2e0, 0x1f2e0,
1454 		0x1f300, 0x1f384,
1455 		0x1f3c0, 0x1f3c8,
1456 		0x1f408, 0x1f40c,
1457 		0x1f440, 0x1f444,
1458 		0x1f44c, 0x1f44c,
1459 		0x1f684, 0x1f690,
1460 		0x1f6c0, 0x1f6c0,
1461 		0x1f6e0, 0x1f6e0,
1462 		0x1f700, 0x1f784,
1463 		0x1f7c0, 0x1f7c8,
1464 		0x1f808, 0x1f80c,
1465 		0x1f840, 0x1f844,
1466 		0x1f84c, 0x1f84c,
1467 		0x1fa84, 0x1fa90,
1468 		0x1fac0, 0x1fac0,
1469 		0x1fae0, 0x1fae0,
1470 		0x1fb00, 0x1fb84,
1471 		0x1fbc0, 0x1fbc8,
1472 		0x1fc08, 0x1fc0c,
1473 		0x1fc40, 0x1fc44,
1474 		0x1fc4c, 0x1fc4c,
1475 		0x1fe84, 0x1fe90,
1476 		0x1fec0, 0x1fec0,
1477 		0x1fee0, 0x1fee0,
1478 		0x1ff00, 0x1ff84,
1479 		0x1ffc0, 0x1ffc8,
1480 		0x30000, 0x30030,
1481 		0x30100, 0x30144,
1482 		0x30190, 0x301a0,
1483 		0x301a8, 0x301b8,
1484 		0x301c4, 0x301c8,
1485 		0x301d0, 0x301d0,
1486 		0x30200, 0x30318,
1487 		0x30400, 0x304b4,
1488 		0x304c0, 0x3052c,
1489 		0x30540, 0x3061c,
1490 		0x30800, 0x30828,
1491 		0x30834, 0x30834,
1492 		0x308c0, 0x30908,
1493 		0x30910, 0x309ac,
1494 		0x30a00, 0x30a14,
1495 		0x30a1c, 0x30a2c,
1496 		0x30a44, 0x30a50,
1497 		0x30a74, 0x30a74,
1498 		0x30a7c, 0x30afc,
1499 		0x30b08, 0x30c24,
1500 		0x30d00, 0x30d00,
1501 		0x30d08, 0x30d14,
1502 		0x30d1c, 0x30d20,
1503 		0x30d3c, 0x30d3c,
1504 		0x30d48, 0x30d50,
1505 		0x31200, 0x3120c,
1506 		0x31220, 0x31220,
1507 		0x31240, 0x31240,
1508 		0x31600, 0x3160c,
1509 		0x31a00, 0x31a1c,
1510 		0x31e00, 0x31e20,
1511 		0x31e38, 0x31e3c,
1512 		0x31e80, 0x31e80,
1513 		0x31e88, 0x31ea8,
1514 		0x31eb0, 0x31eb4,
1515 		0x31ec8, 0x31ed4,
1516 		0x31fb8, 0x32004,
1517 		0x32200, 0x32200,
1518 		0x32208, 0x32240,
1519 		0x32248, 0x32280,
1520 		0x32288, 0x322c0,
1521 		0x322c8, 0x322fc,
1522 		0x32600, 0x32630,
1523 		0x32a00, 0x32abc,
1524 		0x32b00, 0x32b10,
1525 		0x32b20, 0x32b30,
1526 		0x32b40, 0x32b50,
1527 		0x32b60, 0x32b70,
1528 		0x33000, 0x33028,
1529 		0x33030, 0x33048,
1530 		0x33060, 0x33068,
1531 		0x33070, 0x3309c,
1532 		0x330f0, 0x33128,
1533 		0x33130, 0x33148,
1534 		0x33160, 0x33168,
1535 		0x33170, 0x3319c,
1536 		0x331f0, 0x33238,
1537 		0x33240, 0x33240,
1538 		0x33248, 0x33250,
1539 		0x3325c, 0x33264,
1540 		0x33270, 0x332b8,
1541 		0x332c0, 0x332e4,
1542 		0x332f8, 0x33338,
1543 		0x33340, 0x33340,
1544 		0x33348, 0x33350,
1545 		0x3335c, 0x33364,
1546 		0x33370, 0x333b8,
1547 		0x333c0, 0x333e4,
1548 		0x333f8, 0x33428,
1549 		0x33430, 0x33448,
1550 		0x33460, 0x33468,
1551 		0x33470, 0x3349c,
1552 		0x334f0, 0x33528,
1553 		0x33530, 0x33548,
1554 		0x33560, 0x33568,
1555 		0x33570, 0x3359c,
1556 		0x335f0, 0x33638,
1557 		0x33640, 0x33640,
1558 		0x33648, 0x33650,
1559 		0x3365c, 0x33664,
1560 		0x33670, 0x336b8,
1561 		0x336c0, 0x336e4,
1562 		0x336f8, 0x33738,
1563 		0x33740, 0x33740,
1564 		0x33748, 0x33750,
1565 		0x3375c, 0x33764,
1566 		0x33770, 0x337b8,
1567 		0x337c0, 0x337e4,
1568 		0x337f8, 0x337fc,
1569 		0x33814, 0x33814,
1570 		0x3382c, 0x3382c,
1571 		0x33880, 0x3388c,
1572 		0x338e8, 0x338ec,
1573 		0x33900, 0x33928,
1574 		0x33930, 0x33948,
1575 		0x33960, 0x33968,
1576 		0x33970, 0x3399c,
1577 		0x339f0, 0x33a38,
1578 		0x33a40, 0x33a40,
1579 		0x33a48, 0x33a50,
1580 		0x33a5c, 0x33a64,
1581 		0x33a70, 0x33ab8,
1582 		0x33ac0, 0x33ae4,
1583 		0x33af8, 0x33b10,
1584 		0x33b28, 0x33b28,
1585 		0x33b3c, 0x33b50,
1586 		0x33bf0, 0x33c10,
1587 		0x33c28, 0x33c28,
1588 		0x33c3c, 0x33c50,
1589 		0x33cf0, 0x33cfc,
1590 		0x34000, 0x34030,
1591 		0x34100, 0x34144,
1592 		0x34190, 0x341a0,
1593 		0x341a8, 0x341b8,
1594 		0x341c4, 0x341c8,
1595 		0x341d0, 0x341d0,
1596 		0x34200, 0x34318,
1597 		0x34400, 0x344b4,
1598 		0x344c0, 0x3452c,
1599 		0x34540, 0x3461c,
1600 		0x34800, 0x34828,
1601 		0x34834, 0x34834,
1602 		0x348c0, 0x34908,
1603 		0x34910, 0x349ac,
1604 		0x34a00, 0x34a14,
1605 		0x34a1c, 0x34a2c,
1606 		0x34a44, 0x34a50,
1607 		0x34a74, 0x34a74,
1608 		0x34a7c, 0x34afc,
1609 		0x34b08, 0x34c24,
1610 		0x34d00, 0x34d00,
1611 		0x34d08, 0x34d14,
1612 		0x34d1c, 0x34d20,
1613 		0x34d3c, 0x34d3c,
1614 		0x34d48, 0x34d50,
1615 		0x35200, 0x3520c,
1616 		0x35220, 0x35220,
1617 		0x35240, 0x35240,
1618 		0x35600, 0x3560c,
1619 		0x35a00, 0x35a1c,
1620 		0x35e00, 0x35e20,
1621 		0x35e38, 0x35e3c,
1622 		0x35e80, 0x35e80,
1623 		0x35e88, 0x35ea8,
1624 		0x35eb0, 0x35eb4,
1625 		0x35ec8, 0x35ed4,
1626 		0x35fb8, 0x36004,
1627 		0x36200, 0x36200,
1628 		0x36208, 0x36240,
1629 		0x36248, 0x36280,
1630 		0x36288, 0x362c0,
1631 		0x362c8, 0x362fc,
1632 		0x36600, 0x36630,
1633 		0x36a00, 0x36abc,
1634 		0x36b00, 0x36b10,
1635 		0x36b20, 0x36b30,
1636 		0x36b40, 0x36b50,
1637 		0x36b60, 0x36b70,
1638 		0x37000, 0x37028,
1639 		0x37030, 0x37048,
1640 		0x37060, 0x37068,
1641 		0x37070, 0x3709c,
1642 		0x370f0, 0x37128,
1643 		0x37130, 0x37148,
1644 		0x37160, 0x37168,
1645 		0x37170, 0x3719c,
1646 		0x371f0, 0x37238,
1647 		0x37240, 0x37240,
1648 		0x37248, 0x37250,
1649 		0x3725c, 0x37264,
1650 		0x37270, 0x372b8,
1651 		0x372c0, 0x372e4,
1652 		0x372f8, 0x37338,
1653 		0x37340, 0x37340,
1654 		0x37348, 0x37350,
1655 		0x3735c, 0x37364,
1656 		0x37370, 0x373b8,
1657 		0x373c0, 0x373e4,
1658 		0x373f8, 0x37428,
1659 		0x37430, 0x37448,
1660 		0x37460, 0x37468,
1661 		0x37470, 0x3749c,
1662 		0x374f0, 0x37528,
1663 		0x37530, 0x37548,
1664 		0x37560, 0x37568,
1665 		0x37570, 0x3759c,
1666 		0x375f0, 0x37638,
1667 		0x37640, 0x37640,
1668 		0x37648, 0x37650,
1669 		0x3765c, 0x37664,
1670 		0x37670, 0x376b8,
1671 		0x376c0, 0x376e4,
1672 		0x376f8, 0x37738,
1673 		0x37740, 0x37740,
1674 		0x37748, 0x37750,
1675 		0x3775c, 0x37764,
1676 		0x37770, 0x377b8,
1677 		0x377c0, 0x377e4,
1678 		0x377f8, 0x377fc,
1679 		0x37814, 0x37814,
1680 		0x3782c, 0x3782c,
1681 		0x37880, 0x3788c,
1682 		0x378e8, 0x378ec,
1683 		0x37900, 0x37928,
1684 		0x37930, 0x37948,
1685 		0x37960, 0x37968,
1686 		0x37970, 0x3799c,
1687 		0x379f0, 0x37a38,
1688 		0x37a40, 0x37a40,
1689 		0x37a48, 0x37a50,
1690 		0x37a5c, 0x37a64,
1691 		0x37a70, 0x37ab8,
1692 		0x37ac0, 0x37ae4,
1693 		0x37af8, 0x37b10,
1694 		0x37b28, 0x37b28,
1695 		0x37b3c, 0x37b50,
1696 		0x37bf0, 0x37c10,
1697 		0x37c28, 0x37c28,
1698 		0x37c3c, 0x37c50,
1699 		0x37cf0, 0x37cfc,
1700 		0x38000, 0x38030,
1701 		0x38100, 0x38144,
1702 		0x38190, 0x381a0,
1703 		0x381a8, 0x381b8,
1704 		0x381c4, 0x381c8,
1705 		0x381d0, 0x381d0,
1706 		0x38200, 0x38318,
1707 		0x38400, 0x384b4,
1708 		0x384c0, 0x3852c,
1709 		0x38540, 0x3861c,
1710 		0x38800, 0x38828,
1711 		0x38834, 0x38834,
1712 		0x388c0, 0x38908,
1713 		0x38910, 0x389ac,
1714 		0x38a00, 0x38a14,
1715 		0x38a1c, 0x38a2c,
1716 		0x38a44, 0x38a50,
1717 		0x38a74, 0x38a74,
1718 		0x38a7c, 0x38afc,
1719 		0x38b08, 0x38c24,
1720 		0x38d00, 0x38d00,
1721 		0x38d08, 0x38d14,
1722 		0x38d1c, 0x38d20,
1723 		0x38d3c, 0x38d3c,
1724 		0x38d48, 0x38d50,
1725 		0x39200, 0x3920c,
1726 		0x39220, 0x39220,
1727 		0x39240, 0x39240,
1728 		0x39600, 0x3960c,
1729 		0x39a00, 0x39a1c,
1730 		0x39e00, 0x39e20,
1731 		0x39e38, 0x39e3c,
1732 		0x39e80, 0x39e80,
1733 		0x39e88, 0x39ea8,
1734 		0x39eb0, 0x39eb4,
1735 		0x39ec8, 0x39ed4,
1736 		0x39fb8, 0x3a004,
1737 		0x3a200, 0x3a200,
1738 		0x3a208, 0x3a240,
1739 		0x3a248, 0x3a280,
1740 		0x3a288, 0x3a2c0,
1741 		0x3a2c8, 0x3a2fc,
1742 		0x3a600, 0x3a630,
1743 		0x3aa00, 0x3aabc,
1744 		0x3ab00, 0x3ab10,
1745 		0x3ab20, 0x3ab30,
1746 		0x3ab40, 0x3ab50,
1747 		0x3ab60, 0x3ab70,
1748 		0x3b000, 0x3b028,
1749 		0x3b030, 0x3b048,
1750 		0x3b060, 0x3b068,
1751 		0x3b070, 0x3b09c,
1752 		0x3b0f0, 0x3b128,
1753 		0x3b130, 0x3b148,
1754 		0x3b160, 0x3b168,
1755 		0x3b170, 0x3b19c,
1756 		0x3b1f0, 0x3b238,
1757 		0x3b240, 0x3b240,
1758 		0x3b248, 0x3b250,
1759 		0x3b25c, 0x3b264,
1760 		0x3b270, 0x3b2b8,
1761 		0x3b2c0, 0x3b2e4,
1762 		0x3b2f8, 0x3b338,
1763 		0x3b340, 0x3b340,
1764 		0x3b348, 0x3b350,
1765 		0x3b35c, 0x3b364,
1766 		0x3b370, 0x3b3b8,
1767 		0x3b3c0, 0x3b3e4,
1768 		0x3b3f8, 0x3b428,
1769 		0x3b430, 0x3b448,
1770 		0x3b460, 0x3b468,
1771 		0x3b470, 0x3b49c,
1772 		0x3b4f0, 0x3b528,
1773 		0x3b530, 0x3b548,
1774 		0x3b560, 0x3b568,
1775 		0x3b570, 0x3b59c,
1776 		0x3b5f0, 0x3b638,
1777 		0x3b640, 0x3b640,
1778 		0x3b648, 0x3b650,
1779 		0x3b65c, 0x3b664,
1780 		0x3b670, 0x3b6b8,
1781 		0x3b6c0, 0x3b6e4,
1782 		0x3b6f8, 0x3b738,
1783 		0x3b740, 0x3b740,
1784 		0x3b748, 0x3b750,
1785 		0x3b75c, 0x3b764,
1786 		0x3b770, 0x3b7b8,
1787 		0x3b7c0, 0x3b7e4,
1788 		0x3b7f8, 0x3b7fc,
1789 		0x3b814, 0x3b814,
1790 		0x3b82c, 0x3b82c,
1791 		0x3b880, 0x3b88c,
1792 		0x3b8e8, 0x3b8ec,
1793 		0x3b900, 0x3b928,
1794 		0x3b930, 0x3b948,
1795 		0x3b960, 0x3b968,
1796 		0x3b970, 0x3b99c,
1797 		0x3b9f0, 0x3ba38,
1798 		0x3ba40, 0x3ba40,
1799 		0x3ba48, 0x3ba50,
1800 		0x3ba5c, 0x3ba64,
1801 		0x3ba70, 0x3bab8,
1802 		0x3bac0, 0x3bae4,
1803 		0x3baf8, 0x3bb10,
1804 		0x3bb28, 0x3bb28,
1805 		0x3bb3c, 0x3bb50,
1806 		0x3bbf0, 0x3bc10,
1807 		0x3bc28, 0x3bc28,
1808 		0x3bc3c, 0x3bc50,
1809 		0x3bcf0, 0x3bcfc,
1810 		0x3c000, 0x3c030,
1811 		0x3c100, 0x3c144,
1812 		0x3c190, 0x3c1a0,
1813 		0x3c1a8, 0x3c1b8,
1814 		0x3c1c4, 0x3c1c8,
1815 		0x3c1d0, 0x3c1d0,
1816 		0x3c200, 0x3c318,
1817 		0x3c400, 0x3c4b4,
1818 		0x3c4c0, 0x3c52c,
1819 		0x3c540, 0x3c61c,
1820 		0x3c800, 0x3c828,
1821 		0x3c834, 0x3c834,
1822 		0x3c8c0, 0x3c908,
1823 		0x3c910, 0x3c9ac,
1824 		0x3ca00, 0x3ca14,
1825 		0x3ca1c, 0x3ca2c,
1826 		0x3ca44, 0x3ca50,
1827 		0x3ca74, 0x3ca74,
1828 		0x3ca7c, 0x3cafc,
1829 		0x3cb08, 0x3cc24,
1830 		0x3cd00, 0x3cd00,
1831 		0x3cd08, 0x3cd14,
1832 		0x3cd1c, 0x3cd20,
1833 		0x3cd3c, 0x3cd3c,
1834 		0x3cd48, 0x3cd50,
1835 		0x3d200, 0x3d20c,
1836 		0x3d220, 0x3d220,
1837 		0x3d240, 0x3d240,
1838 		0x3d600, 0x3d60c,
1839 		0x3da00, 0x3da1c,
1840 		0x3de00, 0x3de20,
1841 		0x3de38, 0x3de3c,
1842 		0x3de80, 0x3de80,
1843 		0x3de88, 0x3dea8,
1844 		0x3deb0, 0x3deb4,
1845 		0x3dec8, 0x3ded4,
1846 		0x3dfb8, 0x3e004,
1847 		0x3e200, 0x3e200,
1848 		0x3e208, 0x3e240,
1849 		0x3e248, 0x3e280,
1850 		0x3e288, 0x3e2c0,
1851 		0x3e2c8, 0x3e2fc,
1852 		0x3e600, 0x3e630,
1853 		0x3ea00, 0x3eabc,
1854 		0x3eb00, 0x3eb10,
1855 		0x3eb20, 0x3eb30,
1856 		0x3eb40, 0x3eb50,
1857 		0x3eb60, 0x3eb70,
1858 		0x3f000, 0x3f028,
1859 		0x3f030, 0x3f048,
1860 		0x3f060, 0x3f068,
1861 		0x3f070, 0x3f09c,
1862 		0x3f0f0, 0x3f128,
1863 		0x3f130, 0x3f148,
1864 		0x3f160, 0x3f168,
1865 		0x3f170, 0x3f19c,
1866 		0x3f1f0, 0x3f238,
1867 		0x3f240, 0x3f240,
1868 		0x3f248, 0x3f250,
1869 		0x3f25c, 0x3f264,
1870 		0x3f270, 0x3f2b8,
1871 		0x3f2c0, 0x3f2e4,
1872 		0x3f2f8, 0x3f338,
1873 		0x3f340, 0x3f340,
1874 		0x3f348, 0x3f350,
1875 		0x3f35c, 0x3f364,
1876 		0x3f370, 0x3f3b8,
1877 		0x3f3c0, 0x3f3e4,
1878 		0x3f3f8, 0x3f428,
1879 		0x3f430, 0x3f448,
1880 		0x3f460, 0x3f468,
1881 		0x3f470, 0x3f49c,
1882 		0x3f4f0, 0x3f528,
1883 		0x3f530, 0x3f548,
1884 		0x3f560, 0x3f568,
1885 		0x3f570, 0x3f59c,
1886 		0x3f5f0, 0x3f638,
1887 		0x3f640, 0x3f640,
1888 		0x3f648, 0x3f650,
1889 		0x3f65c, 0x3f664,
1890 		0x3f670, 0x3f6b8,
1891 		0x3f6c0, 0x3f6e4,
1892 		0x3f6f8, 0x3f738,
1893 		0x3f740, 0x3f740,
1894 		0x3f748, 0x3f750,
1895 		0x3f75c, 0x3f764,
1896 		0x3f770, 0x3f7b8,
1897 		0x3f7c0, 0x3f7e4,
1898 		0x3f7f8, 0x3f7fc,
1899 		0x3f814, 0x3f814,
1900 		0x3f82c, 0x3f82c,
1901 		0x3f880, 0x3f88c,
1902 		0x3f8e8, 0x3f8ec,
1903 		0x3f900, 0x3f928,
1904 		0x3f930, 0x3f948,
1905 		0x3f960, 0x3f968,
1906 		0x3f970, 0x3f99c,
1907 		0x3f9f0, 0x3fa38,
1908 		0x3fa40, 0x3fa40,
1909 		0x3fa48, 0x3fa50,
1910 		0x3fa5c, 0x3fa64,
1911 		0x3fa70, 0x3fab8,
1912 		0x3fac0, 0x3fae4,
1913 		0x3faf8, 0x3fb10,
1914 		0x3fb28, 0x3fb28,
1915 		0x3fb3c, 0x3fb50,
1916 		0x3fbf0, 0x3fc10,
1917 		0x3fc28, 0x3fc28,
1918 		0x3fc3c, 0x3fc50,
1919 		0x3fcf0, 0x3fcfc,
1920 		0x40000, 0x4000c,
1921 		0x40040, 0x40050,
1922 		0x40060, 0x40068,
1923 		0x4007c, 0x4008c,
1924 		0x40094, 0x400b0,
1925 		0x400c0, 0x40144,
1926 		0x40180, 0x4018c,
1927 		0x40200, 0x40254,
1928 		0x40260, 0x40264,
1929 		0x40270, 0x40288,
1930 		0x40290, 0x40298,
1931 		0x402ac, 0x402c8,
1932 		0x402d0, 0x402e0,
1933 		0x402f0, 0x402f0,
1934 		0x40300, 0x4033c,
1935 		0x403f8, 0x403fc,
1936 		0x41304, 0x413c4,
1937 		0x41400, 0x4140c,
1938 		0x41414, 0x4141c,
1939 		0x41480, 0x414d0,
1940 		0x44000, 0x44054,
1941 		0x4405c, 0x44078,
1942 		0x440c0, 0x44174,
1943 		0x44180, 0x441ac,
1944 		0x441b4, 0x441b8,
1945 		0x441c0, 0x44254,
1946 		0x4425c, 0x44278,
1947 		0x442c0, 0x44374,
1948 		0x44380, 0x443ac,
1949 		0x443b4, 0x443b8,
1950 		0x443c0, 0x44454,
1951 		0x4445c, 0x44478,
1952 		0x444c0, 0x44574,
1953 		0x44580, 0x445ac,
1954 		0x445b4, 0x445b8,
1955 		0x445c0, 0x44654,
1956 		0x4465c, 0x44678,
1957 		0x446c0, 0x44774,
1958 		0x44780, 0x447ac,
1959 		0x447b4, 0x447b8,
1960 		0x447c0, 0x44854,
1961 		0x4485c, 0x44878,
1962 		0x448c0, 0x44974,
1963 		0x44980, 0x449ac,
1964 		0x449b4, 0x449b8,
1965 		0x449c0, 0x449fc,
1966 		0x45000, 0x45004,
1967 		0x45010, 0x45030,
1968 		0x45040, 0x45060,
1969 		0x45068, 0x45068,
1970 		0x45080, 0x45084,
1971 		0x450a0, 0x450b0,
1972 		0x45200, 0x45204,
1973 		0x45210, 0x45230,
1974 		0x45240, 0x45260,
1975 		0x45268, 0x45268,
1976 		0x45280, 0x45284,
1977 		0x452a0, 0x452b0,
1978 		0x460c0, 0x460e4,
1979 		0x47000, 0x4703c,
1980 		0x47044, 0x4708c,
1981 		0x47200, 0x47250,
1982 		0x47400, 0x47408,
1983 		0x47414, 0x47420,
1984 		0x47600, 0x47618,
1985 		0x47800, 0x47814,
1986 		0x48000, 0x4800c,
1987 		0x48040, 0x48050,
1988 		0x48060, 0x48068,
1989 		0x4807c, 0x4808c,
1990 		0x48094, 0x480b0,
1991 		0x480c0, 0x48144,
1992 		0x48180, 0x4818c,
1993 		0x48200, 0x48254,
1994 		0x48260, 0x48264,
1995 		0x48270, 0x48288,
1996 		0x48290, 0x48298,
1997 		0x482ac, 0x482c8,
1998 		0x482d0, 0x482e0,
1999 		0x482f0, 0x482f0,
2000 		0x48300, 0x4833c,
2001 		0x483f8, 0x483fc,
2002 		0x49304, 0x493c4,
2003 		0x49400, 0x4940c,
2004 		0x49414, 0x4941c,
2005 		0x49480, 0x494d0,
2006 		0x4c000, 0x4c054,
2007 		0x4c05c, 0x4c078,
2008 		0x4c0c0, 0x4c174,
2009 		0x4c180, 0x4c1ac,
2010 		0x4c1b4, 0x4c1b8,
2011 		0x4c1c0, 0x4c254,
2012 		0x4c25c, 0x4c278,
2013 		0x4c2c0, 0x4c374,
2014 		0x4c380, 0x4c3ac,
2015 		0x4c3b4, 0x4c3b8,
2016 		0x4c3c0, 0x4c454,
2017 		0x4c45c, 0x4c478,
2018 		0x4c4c0, 0x4c574,
2019 		0x4c580, 0x4c5ac,
2020 		0x4c5b4, 0x4c5b8,
2021 		0x4c5c0, 0x4c654,
2022 		0x4c65c, 0x4c678,
2023 		0x4c6c0, 0x4c774,
2024 		0x4c780, 0x4c7ac,
2025 		0x4c7b4, 0x4c7b8,
2026 		0x4c7c0, 0x4c854,
2027 		0x4c85c, 0x4c878,
2028 		0x4c8c0, 0x4c974,
2029 		0x4c980, 0x4c9ac,
2030 		0x4c9b4, 0x4c9b8,
2031 		0x4c9c0, 0x4c9fc,
2032 		0x4d000, 0x4d004,
2033 		0x4d010, 0x4d030,
2034 		0x4d040, 0x4d060,
2035 		0x4d068, 0x4d068,
2036 		0x4d080, 0x4d084,
2037 		0x4d0a0, 0x4d0b0,
2038 		0x4d200, 0x4d204,
2039 		0x4d210, 0x4d230,
2040 		0x4d240, 0x4d260,
2041 		0x4d268, 0x4d268,
2042 		0x4d280, 0x4d284,
2043 		0x4d2a0, 0x4d2b0,
2044 		0x4e0c0, 0x4e0e4,
2045 		0x4f000, 0x4f03c,
2046 		0x4f044, 0x4f08c,
2047 		0x4f200, 0x4f250,
2048 		0x4f400, 0x4f408,
2049 		0x4f414, 0x4f420,
2050 		0x4f600, 0x4f618,
2051 		0x4f800, 0x4f814,
2052 		0x50000, 0x50084,
2053 		0x50090, 0x500cc,
2054 		0x50400, 0x50400,
2055 		0x50800, 0x50884,
2056 		0x50890, 0x508cc,
2057 		0x50c00, 0x50c00,
2058 		0x51000, 0x5101c,
2059 		0x51300, 0x51308,
2060 	};
2061 
2062 	static const unsigned int t5vf_reg_ranges[] = {
2063 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2064 		VF_MPS_REG(A_MPS_VF_CTL),
2065 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2066 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2067 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2068 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2069 		FW_T4VF_MBDATA_BASE_ADDR,
2070 		FW_T4VF_MBDATA_BASE_ADDR +
2071 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2072 	};
2073 
2074 	static const unsigned int t6_reg_ranges[] = {
2075 		0x1008, 0x101c,
2076 		0x1024, 0x10a8,
2077 		0x10b4, 0x10f8,
2078 		0x1100, 0x1114,
2079 		0x111c, 0x112c,
2080 		0x1138, 0x113c,
2081 		0x1144, 0x114c,
2082 		0x1180, 0x1184,
2083 		0x1190, 0x1194,
2084 		0x11a0, 0x11a4,
2085 		0x11b0, 0x11c4,
2086 		0x11fc, 0x123c,
2087 		0x1254, 0x1274,
2088 		0x1280, 0x133c,
2089 		0x1800, 0x18fc,
2090 		0x3000, 0x302c,
2091 		0x3060, 0x30b0,
2092 		0x30b8, 0x30d8,
2093 		0x30e0, 0x30fc,
2094 		0x3140, 0x357c,
2095 		0x35a8, 0x35cc,
2096 		0x35ec, 0x35ec,
2097 		0x3600, 0x5624,
2098 		0x56cc, 0x56ec,
2099 		0x56f4, 0x5720,
2100 		0x5728, 0x575c,
2101 		0x580c, 0x5814,
2102 		0x5890, 0x589c,
2103 		0x58a4, 0x58ac,
2104 		0x58b8, 0x58bc,
2105 		0x5940, 0x595c,
2106 		0x5980, 0x598c,
2107 		0x59b0, 0x59c8,
2108 		0x59d0, 0x59dc,
2109 		0x59fc, 0x5a18,
2110 		0x5a60, 0x5a6c,
2111 		0x5a80, 0x5a8c,
2112 		0x5a94, 0x5a9c,
2113 		0x5b94, 0x5bfc,
2114 		0x5c10, 0x5e48,
2115 		0x5e50, 0x5e94,
2116 		0x5ea0, 0x5eb0,
2117 		0x5ec0, 0x5ec0,
2118 		0x5ec8, 0x5ed0,
2119 		0x5ee0, 0x5ee0,
2120 		0x5ef0, 0x5ef0,
2121 		0x5f00, 0x5f00,
2122 		0x6000, 0x6020,
2123 		0x6028, 0x6040,
2124 		0x6058, 0x609c,
2125 		0x60a8, 0x619c,
2126 		0x7700, 0x7798,
2127 		0x77c0, 0x7880,
2128 		0x78cc, 0x78fc,
2129 		0x7b00, 0x7b58,
2130 		0x7b60, 0x7b84,
2131 		0x7b8c, 0x7c54,
2132 		0x7d00, 0x7d38,
2133 		0x7d40, 0x7d84,
2134 		0x7d8c, 0x7ddc,
2135 		0x7de4, 0x7e04,
2136 		0x7e10, 0x7e1c,
2137 		0x7e24, 0x7e38,
2138 		0x7e40, 0x7e44,
2139 		0x7e4c, 0x7e78,
2140 		0x7e80, 0x7edc,
2141 		0x7ee8, 0x7efc,
2142 		0x8dc0, 0x8de0,
2143 		0x8df8, 0x8e04,
2144 		0x8e10, 0x8e84,
2145 		0x8ea0, 0x8f88,
2146 		0x8fb8, 0x9058,
2147 		0x9060, 0x9060,
2148 		0x9068, 0x90f8,
2149 		0x9100, 0x9124,
2150 		0x9400, 0x9470,
2151 		0x9600, 0x9600,
2152 		0x9608, 0x9638,
2153 		0x9640, 0x9704,
2154 		0x9710, 0x971c,
2155 		0x9800, 0x9808,
2156 		0x9810, 0x9864,
2157 		0x9c00, 0x9c6c,
2158 		0x9c80, 0x9cec,
2159 		0x9d00, 0x9d6c,
2160 		0x9d80, 0x9dec,
2161 		0x9e00, 0x9e6c,
2162 		0x9e80, 0x9eec,
2163 		0x9f00, 0x9f6c,
2164 		0x9f80, 0xa020,
2165 		0xd000, 0xd03c,
2166 		0xd100, 0xd118,
2167 		0xd200, 0xd214,
2168 		0xd220, 0xd234,
2169 		0xd240, 0xd254,
2170 		0xd260, 0xd274,
2171 		0xd280, 0xd294,
2172 		0xd2a0, 0xd2b4,
2173 		0xd2c0, 0xd2d4,
2174 		0xd2e0, 0xd2f4,
2175 		0xd300, 0xd31c,
2176 		0xdfc0, 0xdfe0,
2177 		0xe000, 0xf008,
2178 		0xf010, 0xf018,
2179 		0xf020, 0xf028,
2180 		0x11000, 0x11014,
2181 		0x11048, 0x1106c,
2182 		0x11074, 0x11088,
2183 		0x11098, 0x11120,
2184 		0x1112c, 0x1117c,
2185 		0x11190, 0x112e0,
2186 		0x11300, 0x1130c,
2187 		0x12000, 0x1206c,
2188 		0x19040, 0x1906c,
2189 		0x19078, 0x19080,
2190 		0x1908c, 0x190e8,
2191 		0x190f0, 0x190f8,
2192 		0x19100, 0x19110,
2193 		0x19120, 0x19124,
2194 		0x19150, 0x19194,
2195 		0x1919c, 0x191b0,
2196 		0x191d0, 0x191e8,
2197 		0x19238, 0x19290,
2198 		0x192a4, 0x192b0,
2199 		0x19348, 0x1934c,
2200 		0x193f8, 0x19418,
2201 		0x19420, 0x19428,
2202 		0x19430, 0x19444,
2203 		0x1944c, 0x1946c,
2204 		0x19474, 0x19474,
2205 		0x19490, 0x194cc,
2206 		0x194f0, 0x194f8,
2207 		0x19c00, 0x19c48,
2208 		0x19c50, 0x19c80,
2209 		0x19c94, 0x19c98,
2210 		0x19ca0, 0x19cbc,
2211 		0x19ce4, 0x19ce4,
2212 		0x19cf0, 0x19cf8,
2213 		0x19d00, 0x19d28,
2214 		0x19d50, 0x19d78,
2215 		0x19d94, 0x19d98,
2216 		0x19da0, 0x19de0,
2217 		0x19df0, 0x19e10,
2218 		0x19e50, 0x19e6c,
2219 		0x19ea0, 0x19ebc,
2220 		0x19ec4, 0x19ef4,
2221 		0x19f04, 0x19f2c,
2222 		0x19f34, 0x19f34,
2223 		0x19f40, 0x19f50,
2224 		0x19f90, 0x19fac,
2225 		0x19fc4, 0x19fc8,
2226 		0x19fd0, 0x19fe4,
2227 		0x1a000, 0x1a004,
2228 		0x1a010, 0x1a06c,
2229 		0x1a0b0, 0x1a0e4,
2230 		0x1a0ec, 0x1a0f8,
2231 		0x1a100, 0x1a108,
2232 		0x1a114, 0x1a130,
2233 		0x1a138, 0x1a1c4,
2234 		0x1a1fc, 0x1a1fc,
2235 		0x1e008, 0x1e00c,
2236 		0x1e040, 0x1e044,
2237 		0x1e04c, 0x1e04c,
2238 		0x1e284, 0x1e290,
2239 		0x1e2c0, 0x1e2c0,
2240 		0x1e2e0, 0x1e2e0,
2241 		0x1e300, 0x1e384,
2242 		0x1e3c0, 0x1e3c8,
2243 		0x1e408, 0x1e40c,
2244 		0x1e440, 0x1e444,
2245 		0x1e44c, 0x1e44c,
2246 		0x1e684, 0x1e690,
2247 		0x1e6c0, 0x1e6c0,
2248 		0x1e6e0, 0x1e6e0,
2249 		0x1e700, 0x1e784,
2250 		0x1e7c0, 0x1e7c8,
2251 		0x1e808, 0x1e80c,
2252 		0x1e840, 0x1e844,
2253 		0x1e84c, 0x1e84c,
2254 		0x1ea84, 0x1ea90,
2255 		0x1eac0, 0x1eac0,
2256 		0x1eae0, 0x1eae0,
2257 		0x1eb00, 0x1eb84,
2258 		0x1ebc0, 0x1ebc8,
2259 		0x1ec08, 0x1ec0c,
2260 		0x1ec40, 0x1ec44,
2261 		0x1ec4c, 0x1ec4c,
2262 		0x1ee84, 0x1ee90,
2263 		0x1eec0, 0x1eec0,
2264 		0x1eee0, 0x1eee0,
2265 		0x1ef00, 0x1ef84,
2266 		0x1efc0, 0x1efc8,
2267 		0x1f008, 0x1f00c,
2268 		0x1f040, 0x1f044,
2269 		0x1f04c, 0x1f04c,
2270 		0x1f284, 0x1f290,
2271 		0x1f2c0, 0x1f2c0,
2272 		0x1f2e0, 0x1f2e0,
2273 		0x1f300, 0x1f384,
2274 		0x1f3c0, 0x1f3c8,
2275 		0x1f408, 0x1f40c,
2276 		0x1f440, 0x1f444,
2277 		0x1f44c, 0x1f44c,
2278 		0x1f684, 0x1f690,
2279 		0x1f6c0, 0x1f6c0,
2280 		0x1f6e0, 0x1f6e0,
2281 		0x1f700, 0x1f784,
2282 		0x1f7c0, 0x1f7c8,
2283 		0x1f808, 0x1f80c,
2284 		0x1f840, 0x1f844,
2285 		0x1f84c, 0x1f84c,
2286 		0x1fa84, 0x1fa90,
2287 		0x1fac0, 0x1fac0,
2288 		0x1fae0, 0x1fae0,
2289 		0x1fb00, 0x1fb84,
2290 		0x1fbc0, 0x1fbc8,
2291 		0x1fc08, 0x1fc0c,
2292 		0x1fc40, 0x1fc44,
2293 		0x1fc4c, 0x1fc4c,
2294 		0x1fe84, 0x1fe90,
2295 		0x1fec0, 0x1fec0,
2296 		0x1fee0, 0x1fee0,
2297 		0x1ff00, 0x1ff84,
2298 		0x1ffc0, 0x1ffc8,
2299 		0x30000, 0x30030,
2300 		0x30100, 0x30168,
2301 		0x30190, 0x301a0,
2302 		0x301a8, 0x301b8,
2303 		0x301c4, 0x301c8,
2304 		0x301d0, 0x301d0,
2305 		0x30200, 0x30320,
2306 		0x30400, 0x304b4,
2307 		0x304c0, 0x3052c,
2308 		0x30540, 0x3061c,
2309 		0x30800, 0x308a0,
2310 		0x308c0, 0x30908,
2311 		0x30910, 0x309b8,
2312 		0x30a00, 0x30a04,
2313 		0x30a0c, 0x30a14,
2314 		0x30a1c, 0x30a2c,
2315 		0x30a44, 0x30a50,
2316 		0x30a74, 0x30a74,
2317 		0x30a7c, 0x30afc,
2318 		0x30b08, 0x30c24,
2319 		0x30d00, 0x30d14,
2320 		0x30d1c, 0x30d3c,
2321 		0x30d44, 0x30d4c,
2322 		0x30d54, 0x30d74,
2323 		0x30d7c, 0x30d7c,
2324 		0x30de0, 0x30de0,
2325 		0x30e00, 0x30ed4,
2326 		0x30f00, 0x30fa4,
2327 		0x30fc0, 0x30fc4,
2328 		0x31000, 0x31004,
2329 		0x31080, 0x310fc,
2330 		0x31208, 0x31220,
2331 		0x3123c, 0x31254,
2332 		0x31300, 0x31300,
2333 		0x31308, 0x3131c,
2334 		0x31338, 0x3133c,
2335 		0x31380, 0x31380,
2336 		0x31388, 0x313a8,
2337 		0x313b4, 0x313b4,
2338 		0x31400, 0x31420,
2339 		0x31438, 0x3143c,
2340 		0x31480, 0x31480,
2341 		0x314a8, 0x314a8,
2342 		0x314b0, 0x314b4,
2343 		0x314c8, 0x314d4,
2344 		0x31a40, 0x31a4c,
2345 		0x31af0, 0x31b20,
2346 		0x31b38, 0x31b3c,
2347 		0x31b80, 0x31b80,
2348 		0x31ba8, 0x31ba8,
2349 		0x31bb0, 0x31bb4,
2350 		0x31bc8, 0x31bd4,
2351 		0x32140, 0x3218c,
2352 		0x321f0, 0x321f4,
2353 		0x32200, 0x32200,
2354 		0x32218, 0x32218,
2355 		0x32400, 0x32400,
2356 		0x32408, 0x3241c,
2357 		0x32618, 0x32620,
2358 		0x32664, 0x32664,
2359 		0x326a8, 0x326a8,
2360 		0x326ec, 0x326ec,
2361 		0x32a00, 0x32abc,
2362 		0x32b00, 0x32b18,
2363 		0x32b20, 0x32b38,
2364 		0x32b40, 0x32b58,
2365 		0x32b60, 0x32b78,
2366 		0x32c00, 0x32c00,
2367 		0x32c08, 0x32c3c,
2368 		0x33000, 0x3302c,
2369 		0x33034, 0x33050,
2370 		0x33058, 0x33058,
2371 		0x33060, 0x3308c,
2372 		0x3309c, 0x330ac,
2373 		0x330c0, 0x330c0,
2374 		0x330c8, 0x330d0,
2375 		0x330d8, 0x330e0,
2376 		0x330ec, 0x3312c,
2377 		0x33134, 0x33150,
2378 		0x33158, 0x33158,
2379 		0x33160, 0x3318c,
2380 		0x3319c, 0x331ac,
2381 		0x331c0, 0x331c0,
2382 		0x331c8, 0x331d0,
2383 		0x331d8, 0x331e0,
2384 		0x331ec, 0x33290,
2385 		0x33298, 0x332c4,
2386 		0x332e4, 0x33390,
2387 		0x33398, 0x333c4,
2388 		0x333e4, 0x3342c,
2389 		0x33434, 0x33450,
2390 		0x33458, 0x33458,
2391 		0x33460, 0x3348c,
2392 		0x3349c, 0x334ac,
2393 		0x334c0, 0x334c0,
2394 		0x334c8, 0x334d0,
2395 		0x334d8, 0x334e0,
2396 		0x334ec, 0x3352c,
2397 		0x33534, 0x33550,
2398 		0x33558, 0x33558,
2399 		0x33560, 0x3358c,
2400 		0x3359c, 0x335ac,
2401 		0x335c0, 0x335c0,
2402 		0x335c8, 0x335d0,
2403 		0x335d8, 0x335e0,
2404 		0x335ec, 0x33690,
2405 		0x33698, 0x336c4,
2406 		0x336e4, 0x33790,
2407 		0x33798, 0x337c4,
2408 		0x337e4, 0x337fc,
2409 		0x33814, 0x33814,
2410 		0x33854, 0x33868,
2411 		0x33880, 0x3388c,
2412 		0x338c0, 0x338d0,
2413 		0x338e8, 0x338ec,
2414 		0x33900, 0x3392c,
2415 		0x33934, 0x33950,
2416 		0x33958, 0x33958,
2417 		0x33960, 0x3398c,
2418 		0x3399c, 0x339ac,
2419 		0x339c0, 0x339c0,
2420 		0x339c8, 0x339d0,
2421 		0x339d8, 0x339e0,
2422 		0x339ec, 0x33a90,
2423 		0x33a98, 0x33ac4,
2424 		0x33ae4, 0x33b10,
2425 		0x33b24, 0x33b28,
2426 		0x33b38, 0x33b50,
2427 		0x33bf0, 0x33c10,
2428 		0x33c24, 0x33c28,
2429 		0x33c38, 0x33c50,
2430 		0x33cf0, 0x33cfc,
2431 		0x34000, 0x34030,
2432 		0x34100, 0x34168,
2433 		0x34190, 0x341a0,
2434 		0x341a8, 0x341b8,
2435 		0x341c4, 0x341c8,
2436 		0x341d0, 0x341d0,
2437 		0x34200, 0x34320,
2438 		0x34400, 0x344b4,
2439 		0x344c0, 0x3452c,
2440 		0x34540, 0x3461c,
2441 		0x34800, 0x348a0,
2442 		0x348c0, 0x34908,
2443 		0x34910, 0x349b8,
2444 		0x34a00, 0x34a04,
2445 		0x34a0c, 0x34a14,
2446 		0x34a1c, 0x34a2c,
2447 		0x34a44, 0x34a50,
2448 		0x34a74, 0x34a74,
2449 		0x34a7c, 0x34afc,
2450 		0x34b08, 0x34c24,
2451 		0x34d00, 0x34d14,
2452 		0x34d1c, 0x34d3c,
2453 		0x34d44, 0x34d4c,
2454 		0x34d54, 0x34d74,
2455 		0x34d7c, 0x34d7c,
2456 		0x34de0, 0x34de0,
2457 		0x34e00, 0x34ed4,
2458 		0x34f00, 0x34fa4,
2459 		0x34fc0, 0x34fc4,
2460 		0x35000, 0x35004,
2461 		0x35080, 0x350fc,
2462 		0x35208, 0x35220,
2463 		0x3523c, 0x35254,
2464 		0x35300, 0x35300,
2465 		0x35308, 0x3531c,
2466 		0x35338, 0x3533c,
2467 		0x35380, 0x35380,
2468 		0x35388, 0x353a8,
2469 		0x353b4, 0x353b4,
2470 		0x35400, 0x35420,
2471 		0x35438, 0x3543c,
2472 		0x35480, 0x35480,
2473 		0x354a8, 0x354a8,
2474 		0x354b0, 0x354b4,
2475 		0x354c8, 0x354d4,
2476 		0x35a40, 0x35a4c,
2477 		0x35af0, 0x35b20,
2478 		0x35b38, 0x35b3c,
2479 		0x35b80, 0x35b80,
2480 		0x35ba8, 0x35ba8,
2481 		0x35bb0, 0x35bb4,
2482 		0x35bc8, 0x35bd4,
2483 		0x36140, 0x3618c,
2484 		0x361f0, 0x361f4,
2485 		0x36200, 0x36200,
2486 		0x36218, 0x36218,
2487 		0x36400, 0x36400,
2488 		0x36408, 0x3641c,
2489 		0x36618, 0x36620,
2490 		0x36664, 0x36664,
2491 		0x366a8, 0x366a8,
2492 		0x366ec, 0x366ec,
2493 		0x36a00, 0x36abc,
2494 		0x36b00, 0x36b18,
2495 		0x36b20, 0x36b38,
2496 		0x36b40, 0x36b58,
2497 		0x36b60, 0x36b78,
2498 		0x36c00, 0x36c00,
2499 		0x36c08, 0x36c3c,
2500 		0x37000, 0x3702c,
2501 		0x37034, 0x37050,
2502 		0x37058, 0x37058,
2503 		0x37060, 0x3708c,
2504 		0x3709c, 0x370ac,
2505 		0x370c0, 0x370c0,
2506 		0x370c8, 0x370d0,
2507 		0x370d8, 0x370e0,
2508 		0x370ec, 0x3712c,
2509 		0x37134, 0x37150,
2510 		0x37158, 0x37158,
2511 		0x37160, 0x3718c,
2512 		0x3719c, 0x371ac,
2513 		0x371c0, 0x371c0,
2514 		0x371c8, 0x371d0,
2515 		0x371d8, 0x371e0,
2516 		0x371ec, 0x37290,
2517 		0x37298, 0x372c4,
2518 		0x372e4, 0x37390,
2519 		0x37398, 0x373c4,
2520 		0x373e4, 0x3742c,
2521 		0x37434, 0x37450,
2522 		0x37458, 0x37458,
2523 		0x37460, 0x3748c,
2524 		0x3749c, 0x374ac,
2525 		0x374c0, 0x374c0,
2526 		0x374c8, 0x374d0,
2527 		0x374d8, 0x374e0,
2528 		0x374ec, 0x3752c,
2529 		0x37534, 0x37550,
2530 		0x37558, 0x37558,
2531 		0x37560, 0x3758c,
2532 		0x3759c, 0x375ac,
2533 		0x375c0, 0x375c0,
2534 		0x375c8, 0x375d0,
2535 		0x375d8, 0x375e0,
2536 		0x375ec, 0x37690,
2537 		0x37698, 0x376c4,
2538 		0x376e4, 0x37790,
2539 		0x37798, 0x377c4,
2540 		0x377e4, 0x377fc,
2541 		0x37814, 0x37814,
2542 		0x37854, 0x37868,
2543 		0x37880, 0x3788c,
2544 		0x378c0, 0x378d0,
2545 		0x378e8, 0x378ec,
2546 		0x37900, 0x3792c,
2547 		0x37934, 0x37950,
2548 		0x37958, 0x37958,
2549 		0x37960, 0x3798c,
2550 		0x3799c, 0x379ac,
2551 		0x379c0, 0x379c0,
2552 		0x379c8, 0x379d0,
2553 		0x379d8, 0x379e0,
2554 		0x379ec, 0x37a90,
2555 		0x37a98, 0x37ac4,
2556 		0x37ae4, 0x37b10,
2557 		0x37b24, 0x37b28,
2558 		0x37b38, 0x37b50,
2559 		0x37bf0, 0x37c10,
2560 		0x37c24, 0x37c28,
2561 		0x37c38, 0x37c50,
2562 		0x37cf0, 0x37cfc,
2563 		0x40040, 0x40040,
2564 		0x40080, 0x40084,
2565 		0x40100, 0x40100,
2566 		0x40140, 0x401bc,
2567 		0x40200, 0x40214,
2568 		0x40228, 0x40228,
2569 		0x40240, 0x40258,
2570 		0x40280, 0x40280,
2571 		0x40304, 0x40304,
2572 		0x40330, 0x4033c,
2573 		0x41304, 0x413c8,
2574 		0x413d0, 0x413dc,
2575 		0x413f0, 0x413f0,
2576 		0x41400, 0x4140c,
2577 		0x41414, 0x4141c,
2578 		0x41480, 0x414d0,
2579 		0x44000, 0x4407c,
2580 		0x440c0, 0x441ac,
2581 		0x441b4, 0x4427c,
2582 		0x442c0, 0x443ac,
2583 		0x443b4, 0x4447c,
2584 		0x444c0, 0x445ac,
2585 		0x445b4, 0x4467c,
2586 		0x446c0, 0x447ac,
2587 		0x447b4, 0x4487c,
2588 		0x448c0, 0x449ac,
2589 		0x449b4, 0x44a7c,
2590 		0x44ac0, 0x44bac,
2591 		0x44bb4, 0x44c7c,
2592 		0x44cc0, 0x44dac,
2593 		0x44db4, 0x44e7c,
2594 		0x44ec0, 0x44fac,
2595 		0x44fb4, 0x4507c,
2596 		0x450c0, 0x451ac,
2597 		0x451b4, 0x451fc,
2598 		0x45800, 0x45804,
2599 		0x45810, 0x45830,
2600 		0x45840, 0x45860,
2601 		0x45868, 0x45868,
2602 		0x45880, 0x45884,
2603 		0x458a0, 0x458b0,
2604 		0x45a00, 0x45a04,
2605 		0x45a10, 0x45a30,
2606 		0x45a40, 0x45a60,
2607 		0x45a68, 0x45a68,
2608 		0x45a80, 0x45a84,
2609 		0x45aa0, 0x45ab0,
2610 		0x460c0, 0x460e4,
2611 		0x47000, 0x4703c,
2612 		0x47044, 0x4708c,
2613 		0x47200, 0x47250,
2614 		0x47400, 0x47408,
2615 		0x47414, 0x47420,
2616 		0x47600, 0x47618,
2617 		0x47800, 0x47814,
2618 		0x47820, 0x4782c,
2619 		0x50000, 0x50084,
2620 		0x50090, 0x500cc,
2621 		0x50300, 0x50384,
2622 		0x50400, 0x50400,
2623 		0x50800, 0x50884,
2624 		0x50890, 0x508cc,
2625 		0x50b00, 0x50b84,
2626 		0x50c00, 0x50c00,
2627 		0x51000, 0x51020,
2628 		0x51028, 0x510b0,
2629 		0x51300, 0x51324,
2630 	};
2631 
2632 	static const unsigned int t6vf_reg_ranges[] = {
2633 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2634 		VF_MPS_REG(A_MPS_VF_CTL),
2635 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2636 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2637 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2638 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2639 		FW_T6VF_MBDATA_BASE_ADDR,
2640 		FW_T6VF_MBDATA_BASE_ADDR +
2641 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2642 	};
2643 
2644 	u32 *buf_end = (u32 *)(buf + buf_size);
2645 	const unsigned int *reg_ranges;
2646 	int reg_ranges_size, range;
2647 	unsigned int chip_version = chip_id(adap);
2648 
2649 	/*
2650 	 * Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		if (adap->flags & IS_VF) {
2656 			reg_ranges = t4vf_reg_ranges;
2657 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2658 		} else {
2659 			reg_ranges = t4_reg_ranges;
2660 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2661 		}
2662 		break;
2663 
2664 	case CHELSIO_T5:
2665 		if (adap->flags & IS_VF) {
2666 			reg_ranges = t5vf_reg_ranges;
2667 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2668 		} else {
2669 			reg_ranges = t5_reg_ranges;
2670 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2671 		}
2672 		break;
2673 
2674 	case CHELSIO_T6:
2675 		if (adap->flags & IS_VF) {
2676 			reg_ranges = t6vf_reg_ranges;
2677 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2678 		} else {
2679 			reg_ranges = t6_reg_ranges;
2680 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2681 		}
2682 		break;
2683 
2684 	default:
2685 		CH_ERR(adap,
2686 			"Unsupported chip version %d\n", chip_version);
2687 		return;
2688 	}
2689 
2690 	/*
2691 	 * Clear the register buffer and insert the appropriate register
2692 	 * values selected by the above register ranges.
2693 	 */
2694 	memset(buf, 0, buf_size);
2695 	for (range = 0; range < reg_ranges_size; range += 2) {
2696 		unsigned int reg = reg_ranges[range];
2697 		unsigned int last_reg = reg_ranges[range + 1];
2698 		u32 *bufp = (u32 *)(buf + reg);
2699 
2700 		/*
2701 		 * Iterate across the register range filling in the register
2702 		 * buffer but don't write past the end of the register buffer.
2703 		 */
2704 		while (reg <= last_reg && bufp < buf_end) {
2705 			*bufp++ = t4_read_reg(adap, reg);
2706 			reg += sizeof(u32);
2707 		}
2708 	}
2709 }
2710 
2711 /*
2712  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2713  * header followed by one or more VPD-R sections, each with its own header.
2714  */
2715 struct t4_vpd_hdr {
2716 	u8  id_tag;
2717 	u8  id_len[2];
2718 	u8  id_data[ID_LEN];
2719 };
2720 
2721 struct t4_vpdr_hdr {
2722 	u8  vpdr_tag;
2723 	u8  vpdr_len[2];
2724 };
2725 
2726 /*
2727  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2728  */
2729 #define EEPROM_DELAY		10		/* 10us per poll spin */
2730 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2731 
2732 #define EEPROM_STAT_ADDR	0x7bfc
2733 #define VPD_SIZE		0x800
2734 #define VPD_BASE		0x400
2735 #define VPD_BASE_OLD		0
2736 #define VPD_LEN			1024
2737 #define VPD_INFO_FLD_HDR_SIZE	3
2738 #define CHELSIO_VPD_UNIQUE_ID	0x82
2739 
2740 /*
2741  * Small utility function to wait till any outstanding VPD Access is complete.
2742  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2743  * VPD Access in flight.  This allows us to handle the problem of having a
2744  * previous VPD Access time out and prevent an attempt to inject a new VPD
2745  * Request before any in-flight VPD reguest has completed.
2746  */
2747 static int t4_seeprom_wait(struct adapter *adapter)
2748 {
2749 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2750 	int max_poll;
2751 
2752 	/*
2753 	 * If no VPD Access is in flight, we can just return success right
2754 	 * away.
2755 	 */
2756 	if (!adapter->vpd_busy)
2757 		return 0;
2758 
2759 	/*
2760 	 * Poll the VPD Capability Address/Flag register waiting for it
2761 	 * to indicate that the operation is complete.
2762 	 */
2763 	max_poll = EEPROM_MAX_POLL;
2764 	do {
2765 		u16 val;
2766 
2767 		udelay(EEPROM_DELAY);
2768 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2769 
2770 		/*
2771 		 * If the operation is complete, mark the VPD as no longer
2772 		 * busy and return success.
2773 		 */
2774 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2775 			adapter->vpd_busy = 0;
2776 			return 0;
2777 		}
2778 	} while (--max_poll);
2779 
2780 	/*
2781 	 * Failure!  Note that we leave the VPD Busy status set in order to
2782 	 * avoid pushing a new VPD Access request into the VPD Capability till
2783 	 * the current operation eventually succeeds.  It's a bug to issue a
2784 	 * new request when an existing request is in flight and will result
2785 	 * in corrupt hardware state.
2786 	 */
2787 	return -ETIMEDOUT;
2788 }
2789 
2790 /**
2791  *	t4_seeprom_read - read a serial EEPROM location
2792  *	@adapter: adapter to read
2793  *	@addr: EEPROM virtual address
2794  *	@data: where to store the read data
2795  *
2796  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2797  *	VPD capability.  Note that this function must be called with a virtual
2798  *	address.
2799  */
2800 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2801 {
2802 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2803 	int ret;
2804 
2805 	/*
2806 	 * VPD Accesses must alway be 4-byte aligned!
2807 	 */
2808 	if (addr >= EEPROMVSIZE || (addr & 3))
2809 		return -EINVAL;
2810 
2811 	/*
2812 	 * Wait for any previous operation which may still be in flight to
2813 	 * complete.
2814 	 */
2815 	ret = t4_seeprom_wait(adapter);
2816 	if (ret) {
2817 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2818 		return ret;
2819 	}
2820 
2821 	/*
2822 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2823 	 * for our request to complete.  If it doesn't complete, note the
2824 	 * error and return it to our caller.  Note that we do not reset the
2825 	 * VPD Busy status!
2826 	 */
2827 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2828 	adapter->vpd_busy = 1;
2829 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2830 	ret = t4_seeprom_wait(adapter);
2831 	if (ret) {
2832 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2833 		return ret;
2834 	}
2835 
2836 	/*
2837 	 * Grab the returned data, swizzle it into our endianness and
2838 	 * return success.
2839 	 */
2840 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2841 	*data = le32_to_cpu(*data);
2842 	return 0;
2843 }
2844 
2845 /**
2846  *	t4_seeprom_write - write a serial EEPROM location
2847  *	@adapter: adapter to write
2848  *	@addr: virtual EEPROM address
2849  *	@data: value to write
2850  *
2851  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2852  *	VPD capability.  Note that this function must be called with a virtual
2853  *	address.
2854  */
2855 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2856 {
2857 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2858 	int ret;
2859 	u32 stats_reg;
2860 	int max_poll;
2861 
2862 	/*
2863 	 * VPD Accesses must alway be 4-byte aligned!
2864 	 */
2865 	if (addr >= EEPROMVSIZE || (addr & 3))
2866 		return -EINVAL;
2867 
2868 	/*
2869 	 * Wait for any previous operation which may still be in flight to
2870 	 * complete.
2871 	 */
2872 	ret = t4_seeprom_wait(adapter);
2873 	if (ret) {
2874 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2875 		return ret;
2876 	}
2877 
2878 	/*
2879 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2880 	 * for our request to complete.  If it doesn't complete, note the
2881 	 * error and return it to our caller.  Note that we do not reset the
2882 	 * VPD Busy status!
2883 	 */
2884 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2885 				 cpu_to_le32(data));
2886 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2887 				 (u16)addr | PCI_VPD_ADDR_F);
2888 	adapter->vpd_busy = 1;
2889 	adapter->vpd_flag = 0;
2890 	ret = t4_seeprom_wait(adapter);
2891 	if (ret) {
2892 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2893 		return ret;
2894 	}
2895 
2896 	/*
2897 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2898 	 * request to complete. If it doesn't complete, return error.
2899 	 */
2900 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2901 	max_poll = EEPROM_MAX_POLL;
2902 	do {
2903 		udelay(EEPROM_DELAY);
2904 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2905 	} while ((stats_reg & 0x1) && --max_poll);
2906 	if (!max_poll)
2907 		return -ETIMEDOUT;
2908 
2909 	/* Return success! */
2910 	return 0;
2911 }
2912 
2913 /**
2914  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2915  *	@phys_addr: the physical EEPROM address
2916  *	@fn: the PCI function number
2917  *	@sz: size of function-specific area
2918  *
2919  *	Translate a physical EEPROM address to virtual.  The first 1K is
2920  *	accessed through virtual addresses starting at 31K, the rest is
2921  *	accessed through virtual addresses starting at 0.
2922  *
2923  *	The mapping is as follows:
2924  *	[0..1K) -> [31K..32K)
2925  *	[1K..1K+A) -> [ES-A..ES)
2926  *	[1K+A..ES) -> [0..ES-A-1K)
2927  *
2928  *	where A = @fn * @sz, and ES = EEPROM size.
2929  */
2930 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2931 {
2932 	fn *= sz;
2933 	if (phys_addr < 1024)
2934 		return phys_addr + (31 << 10);
2935 	if (phys_addr < 1024 + fn)
2936 		return EEPROMSIZE - fn + phys_addr - 1024;
2937 	if (phys_addr < EEPROMSIZE)
2938 		return phys_addr - 1024 - fn;
2939 	return -EINVAL;
2940 }
2941 
2942 /**
2943  *	t4_seeprom_wp - enable/disable EEPROM write protection
2944  *	@adapter: the adapter
2945  *	@enable: whether to enable or disable write protection
2946  *
2947  *	Enables or disables write protection on the serial EEPROM.
2948  */
2949 int t4_seeprom_wp(struct adapter *adapter, int enable)
2950 {
2951 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2952 }
2953 
2954 /**
2955  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2956  *	@vpd: Pointer to buffered vpd data structure
2957  *	@kw: The keyword to search for
2958  *	@region: VPD region to search (starting from 0)
2959  *
2960  *	Returns the value of the information field keyword or
2961  *	-ENOENT otherwise.
2962  */
2963 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2964 {
2965 	int i, tag;
2966 	unsigned int offset, len;
2967 	const struct t4_vpdr_hdr *vpdr;
2968 
2969 	offset = sizeof(struct t4_vpd_hdr);
2970 	vpdr = (const void *)(vpd + offset);
2971 	tag = vpdr->vpdr_tag;
2972 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2973 	while (region--) {
2974 		offset += sizeof(struct t4_vpdr_hdr) + len;
2975 		vpdr = (const void *)(vpd + offset);
2976 		if (++tag != vpdr->vpdr_tag)
2977 			return -ENOENT;
2978 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2979 	}
2980 	offset += sizeof(struct t4_vpdr_hdr);
2981 
2982 	if (offset + len > VPD_LEN) {
2983 		return -ENOENT;
2984 	}
2985 
2986 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2987 		if (memcmp(vpd + i , kw , 2) == 0){
2988 			i += VPD_INFO_FLD_HDR_SIZE;
2989 			return i;
2990 		}
2991 
2992 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2993 	}
2994 
2995 	return -ENOENT;
2996 }
2997 
2998 
2999 /**
3000  *	get_vpd_params - read VPD parameters from VPD EEPROM
3001  *	@adapter: adapter to read
3002  *	@p: where to store the parameters
3003  *	@vpd: caller provided temporary space to read the VPD into
3004  *
3005  *	Reads card parameters stored in VPD EEPROM.
3006  */
3007 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3008     uint16_t device_id, u32 *buf)
3009 {
3010 	int i, ret, addr;
3011 	int ec, sn, pn, na, md;
3012 	u8 csum;
3013 	const u8 *vpd = (const u8 *)buf;
3014 
3015 	/*
3016 	 * Card information normally starts at VPD_BASE but early cards had
3017 	 * it at 0.
3018 	 */
3019 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3020 	if (ret)
3021 		return (ret);
3022 
3023 	/*
3024 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3025 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3026 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3027 	 * is expected to automatically put this entry at the
3028 	 * beginning of the VPD.
3029 	 */
3030 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3031 
3032 	for (i = 0; i < VPD_LEN; i += 4) {
3033 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3034 		if (ret)
3035 			return ret;
3036 	}
3037 
3038 #define FIND_VPD_KW(var,name) do { \
3039 	var = get_vpd_keyword_val(vpd, name, 0); \
3040 	if (var < 0) { \
3041 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3042 		return -EINVAL; \
3043 	} \
3044 } while (0)
3045 
3046 	FIND_VPD_KW(i, "RV");
3047 	for (csum = 0; i >= 0; i--)
3048 		csum += vpd[i];
3049 
3050 	if (csum) {
3051 		CH_ERR(adapter,
3052 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3053 		return -EINVAL;
3054 	}
3055 
3056 	FIND_VPD_KW(ec, "EC");
3057 	FIND_VPD_KW(sn, "SN");
3058 	FIND_VPD_KW(pn, "PN");
3059 	FIND_VPD_KW(na, "NA");
3060 #undef FIND_VPD_KW
3061 
3062 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3063 	strstrip(p->id);
3064 	memcpy(p->ec, vpd + ec, EC_LEN);
3065 	strstrip(p->ec);
3066 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3067 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3068 	strstrip(p->sn);
3069 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3070 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3071 	strstrip((char *)p->pn);
3072 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3073 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3074 	strstrip((char *)p->na);
3075 
3076 	if (device_id & 0x80)
3077 		return 0;	/* Custom card */
3078 
3079 	md = get_vpd_keyword_val(vpd, "VF", 1);
3080 	if (md < 0) {
3081 		snprintf(p->md, sizeof(p->md), "unknown");
3082 	} else {
3083 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3084 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3085 		strstrip((char *)p->md);
3086 	}
3087 
3088 	return 0;
3089 }
3090 
3091 /* serial flash and firmware constants and flash config file constants */
3092 enum {
3093 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3094 
3095 	/* flash command opcodes */
3096 	SF_PROG_PAGE    = 2,	/* program 256B page */
3097 	SF_WR_DISABLE   = 4,	/* disable writes */
3098 	SF_RD_STATUS    = 5,	/* read status register */
3099 	SF_WR_ENABLE    = 6,	/* enable writes */
3100 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3101 	SF_RD_ID	= 0x9f,	/* read ID */
3102 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3103 };
3104 
3105 /**
3106  *	sf1_read - read data from the serial flash
3107  *	@adapter: the adapter
3108  *	@byte_cnt: number of bytes to read
3109  *	@cont: whether another operation will be chained
3110  *	@lock: whether to lock SF for PL access only
3111  *	@valp: where to store the read data
3112  *
3113  *	Reads up to 4 bytes of data from the serial flash.  The location of
3114  *	the read needs to be specified prior to calling this by issuing the
3115  *	appropriate commands to the serial flash.
3116  */
3117 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3118 		    int lock, u32 *valp)
3119 {
3120 	int ret;
3121 
3122 	if (!byte_cnt || byte_cnt > 4)
3123 		return -EINVAL;
3124 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3125 		return -EBUSY;
3126 	t4_write_reg(adapter, A_SF_OP,
3127 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3128 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3129 	if (!ret)
3130 		*valp = t4_read_reg(adapter, A_SF_DATA);
3131 	return ret;
3132 }
3133 
3134 /**
3135  *	sf1_write - write data to the serial flash
3136  *	@adapter: the adapter
3137  *	@byte_cnt: number of bytes to write
3138  *	@cont: whether another operation will be chained
3139  *	@lock: whether to lock SF for PL access only
3140  *	@val: value to write
3141  *
3142  *	Writes up to 4 bytes of data to the serial flash.  The location of
3143  *	the write needs to be specified prior to calling this by issuing the
3144  *	appropriate commands to the serial flash.
3145  */
3146 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3147 		     int lock, u32 val)
3148 {
3149 	if (!byte_cnt || byte_cnt > 4)
3150 		return -EINVAL;
3151 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3152 		return -EBUSY;
3153 	t4_write_reg(adapter, A_SF_DATA, val);
3154 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3155 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3156 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3157 }
3158 
3159 /**
3160  *	flash_wait_op - wait for a flash operation to complete
3161  *	@adapter: the adapter
3162  *	@attempts: max number of polls of the status register
3163  *	@delay: delay between polls in ms
3164  *
3165  *	Wait for a flash operation to complete by polling the status register.
3166  */
3167 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3168 {
3169 	int ret;
3170 	u32 status;
3171 
3172 	while (1) {
3173 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3174 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3175 			return ret;
3176 		if (!(status & 1))
3177 			return 0;
3178 		if (--attempts == 0)
3179 			return -EAGAIN;
3180 		if (delay)
3181 			msleep(delay);
3182 	}
3183 }
3184 
3185 /**
3186  *	t4_read_flash - read words from serial flash
3187  *	@adapter: the adapter
3188  *	@addr: the start address for the read
3189  *	@nwords: how many 32-bit words to read
3190  *	@data: where to store the read data
3191  *	@byte_oriented: whether to store data as bytes or as words
3192  *
3193  *	Read the specified number of 32-bit words from the serial flash.
3194  *	If @byte_oriented is set the read data is stored as a byte array
3195  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3196  *	natural endianness.
3197  */
3198 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3199 		  unsigned int nwords, u32 *data, int byte_oriented)
3200 {
3201 	int ret;
3202 
3203 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3204 		return -EINVAL;
3205 
3206 	addr = swab32(addr) | SF_RD_DATA_FAST;
3207 
3208 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3209 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3210 		return ret;
3211 
3212 	for ( ; nwords; nwords--, data++) {
3213 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3214 		if (nwords == 1)
3215 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3216 		if (ret)
3217 			return ret;
3218 		if (byte_oriented)
3219 			*data = (__force __u32)(cpu_to_be32(*data));
3220 	}
3221 	return 0;
3222 }
3223 
3224 /**
3225  *	t4_write_flash - write up to a page of data to the serial flash
3226  *	@adapter: the adapter
3227  *	@addr: the start address to write
3228  *	@n: length of data to write in bytes
3229  *	@data: the data to write
3230  *	@byte_oriented: whether to store data as bytes or as words
3231  *
3232  *	Writes up to a page of data (256 bytes) to the serial flash starting
3233  *	at the given address.  All the data must be written to the same page.
3234  *	If @byte_oriented is set the write data is stored as byte stream
3235  *	(i.e. matches what on disk), otherwise in big-endian.
3236  */
3237 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3238 			  unsigned int n, const u8 *data, int byte_oriented)
3239 {
3240 	int ret;
3241 	u32 buf[SF_PAGE_SIZE / 4];
3242 	unsigned int i, c, left, val, offset = addr & 0xff;
3243 
3244 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3245 		return -EINVAL;
3246 
3247 	val = swab32(addr) | SF_PROG_PAGE;
3248 
3249 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3250 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3251 		goto unlock;
3252 
3253 	for (left = n; left; left -= c) {
3254 		c = min(left, 4U);
3255 		for (val = 0, i = 0; i < c; ++i)
3256 			val = (val << 8) + *data++;
3257 
3258 		if (!byte_oriented)
3259 			val = cpu_to_be32(val);
3260 
3261 		ret = sf1_write(adapter, c, c != left, 1, val);
3262 		if (ret)
3263 			goto unlock;
3264 	}
3265 	ret = flash_wait_op(adapter, 8, 1);
3266 	if (ret)
3267 		goto unlock;
3268 
3269 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3270 
3271 	/* Read the page to verify the write succeeded */
3272 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3273 			    byte_oriented);
3274 	if (ret)
3275 		return ret;
3276 
3277 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3278 		CH_ERR(adapter,
3279 			"failed to correctly write the flash page at %#x\n",
3280 			addr);
3281 		return -EIO;
3282 	}
3283 	return 0;
3284 
3285 unlock:
3286 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3287 	return ret;
3288 }
3289 
3290 /**
3291  *	t4_get_fw_version - read the firmware version
3292  *	@adapter: the adapter
3293  *	@vers: where to place the version
3294  *
3295  *	Reads the FW version from flash.
3296  */
3297 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3298 {
3299 	return t4_read_flash(adapter, FLASH_FW_START +
3300 			     offsetof(struct fw_hdr, fw_ver), 1,
3301 			     vers, 0);
3302 }
3303 
3304 /**
3305  *	t4_get_fw_hdr - read the firmware header
3306  *	@adapter: the adapter
3307  *	@hdr: where to place the version
3308  *
3309  *	Reads the FW header from flash into caller provided buffer.
3310  */
3311 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3312 {
3313 	return t4_read_flash(adapter, FLASH_FW_START,
3314 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3315 }
3316 
3317 /**
3318  *	t4_get_bs_version - read the firmware bootstrap version
3319  *	@adapter: the adapter
3320  *	@vers: where to place the version
3321  *
3322  *	Reads the FW Bootstrap version from flash.
3323  */
3324 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3325 {
3326 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3327 			     offsetof(struct fw_hdr, fw_ver), 1,
3328 			     vers, 0);
3329 }
3330 
3331 /**
3332  *	t4_get_tp_version - read the TP microcode version
3333  *	@adapter: the adapter
3334  *	@vers: where to place the version
3335  *
3336  *	Reads the TP microcode version from flash.
3337  */
3338 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3339 {
3340 	return t4_read_flash(adapter, FLASH_FW_START +
3341 			     offsetof(struct fw_hdr, tp_microcode_ver),
3342 			     1, vers, 0);
3343 }
3344 
3345 /**
3346  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3347  *	@adapter: the adapter
3348  *	@vers: where to place the version
3349  *
3350  *	Reads the Expansion ROM header from FLASH and returns the version
3351  *	number (if present) through the @vers return value pointer.  We return
3352  *	this in the Firmware Version Format since it's convenient.  Return
3353  *	0 on success, -ENOENT if no Expansion ROM is present.
3354  */
3355 int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
3356 {
3357 	struct exprom_header {
3358 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3359 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3360 	} *hdr;
3361 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3362 					   sizeof(u32))];
3363 	int ret;
3364 
3365 	ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
3366 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3367 			    0);
3368 	if (ret)
3369 		return ret;
3370 
3371 	hdr = (struct exprom_header *)exprom_header_buf;
3372 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3373 		return -ENOENT;
3374 
3375 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3376 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3377 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3378 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3379 	return 0;
3380 }
3381 
3382 /**
3383  *	t4_get_scfg_version - return the Serial Configuration version
3384  *	@adapter: the adapter
3385  *	@vers: where to place the version
3386  *
3387  *	Reads the Serial Configuration Version via the Firmware interface
3388  *	(thus this can only be called once we're ready to issue Firmware
3389  *	commands).  The format of the Serial Configuration version is
3390  *	adapter specific.  Returns 0 on success, an error on failure.
3391  *
3392  *	Note that early versions of the Firmware didn't include the ability
3393  *	to retrieve the Serial Configuration version, so we zero-out the
3394  *	return-value parameter in that case to avoid leaving it with
3395  *	garbage in it.
3396  *
3397  *	Also note that the Firmware will return its cached copy of the Serial
3398  *	Initialization Revision ID, not the actual Revision ID as written in
3399  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3400  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3401  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3402  *	been issued if the Host Driver will be performing a full adapter
3403  *	initialization.
3404  */
3405 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3406 {
3407 	u32 scfgrev_param;
3408 	int ret;
3409 
3410 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3411 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3412 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3413 			      1, &scfgrev_param, vers);
3414 	if (ret)
3415 		*vers = 0;
3416 	return ret;
3417 }
3418 
3419 /**
3420  *	t4_get_vpd_version - return the VPD version
3421  *	@adapter: the adapter
3422  *	@vers: where to place the version
3423  *
3424  *	Reads the VPD via the Firmware interface (thus this can only be called
3425  *	once we're ready to issue Firmware commands).  The format of the
3426  *	VPD version is adapter specific.  Returns 0 on success, an error on
3427  *	failure.
3428  *
3429  *	Note that early versions of the Firmware didn't include the ability
3430  *	to retrieve the VPD version, so we zero-out the return-value parameter
3431  *	in that case to avoid leaving it with garbage in it.
3432  *
3433  *	Also note that the Firmware will return its cached copy of the VPD
3434  *	Revision ID, not the actual Revision ID as written in the Serial
3435  *	EEPROM.  This is only an issue if a new VPD has been written and the
3436  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3437  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3438  *	if the Host Driver will be performing a full adapter initialization.
3439  */
3440 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3441 {
3442 	u32 vpdrev_param;
3443 	int ret;
3444 
3445 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3446 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3447 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3448 			      1, &vpdrev_param, vers);
3449 	if (ret)
3450 		*vers = 0;
3451 	return ret;
3452 }
3453 
3454 /**
3455  *	t4_get_version_info - extract various chip/firmware version information
3456  *	@adapter: the adapter
3457  *
3458  *	Reads various chip/firmware version numbers and stores them into the
3459  *	adapter Adapter Parameters structure.  If any of the efforts fails
3460  *	the first failure will be returned, but all of the version numbers
3461  *	will be read.
3462  */
3463 int t4_get_version_info(struct adapter *adapter)
3464 {
3465 	int ret = 0;
3466 
3467 	#define FIRST_RET(__getvinfo) \
3468 	do { \
3469 		int __ret = __getvinfo; \
3470 		if (__ret && !ret) \
3471 			ret = __ret; \
3472 	} while (0)
3473 
3474 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3475 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3476 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3477 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3478 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3479 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3480 
3481 	#undef FIRST_RET
3482 
3483 	return ret;
3484 }
3485 
3486 /**
3487  *	t4_flash_erase_sectors - erase a range of flash sectors
3488  *	@adapter: the adapter
3489  *	@start: the first sector to erase
3490  *	@end: the last sector to erase
3491  *
3492  *	Erases the sectors in the given inclusive range.
3493  */
3494 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3495 {
3496 	int ret = 0;
3497 
3498 	if (end >= adapter->params.sf_nsec)
3499 		return -EINVAL;
3500 
3501 	while (start <= end) {
3502 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3503 		    (ret = sf1_write(adapter, 4, 0, 1,
3504 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3505 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3506 			CH_ERR(adapter,
3507 				"erase of flash sector %d failed, error %d\n",
3508 				start, ret);
3509 			break;
3510 		}
3511 		start++;
3512 	}
3513 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3514 	return ret;
3515 }
3516 
3517 /**
3518  *	t4_flash_cfg_addr - return the address of the flash configuration file
3519  *	@adapter: the adapter
3520  *
3521  *	Return the address within the flash where the Firmware Configuration
3522  *	File is stored, or an error if the device FLASH is too small to contain
3523  *	a Firmware Configuration File.
3524  */
3525 int t4_flash_cfg_addr(struct adapter *adapter)
3526 {
3527 	/*
3528 	 * If the device FLASH isn't large enough to hold a Firmware
3529 	 * Configuration File, return an error.
3530 	 */
3531 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3532 		return -ENOSPC;
3533 
3534 	return FLASH_CFG_START;
3535 }
3536 
3537 /*
3538  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3539  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3540  * and emit an error message for mismatched firmware to save our caller the
3541  * effort ...
3542  */
3543 static int t4_fw_matches_chip(struct adapter *adap,
3544 			      const struct fw_hdr *hdr)
3545 {
3546 	/*
3547 	 * The expression below will return FALSE for any unsupported adapter
3548 	 * which will keep us "honest" in the future ...
3549 	 */
3550 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3551 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3552 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3553 		return 1;
3554 
3555 	CH_ERR(adap,
3556 		"FW image (%d) is not suitable for this adapter (%d)\n",
3557 		hdr->chip, chip_id(adap));
3558 	return 0;
3559 }
3560 
3561 /**
3562  *	t4_load_fw - download firmware
3563  *	@adap: the adapter
3564  *	@fw_data: the firmware image to write
3565  *	@size: image size
3566  *
3567  *	Write the supplied firmware image to the card's serial flash.
3568  */
3569 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3570 {
3571 	u32 csum;
3572 	int ret, addr;
3573 	unsigned int i;
3574 	u8 first_page[SF_PAGE_SIZE];
3575 	const u32 *p = (const u32 *)fw_data;
3576 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3577 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3578 	unsigned int fw_start_sec;
3579 	unsigned int fw_start;
3580 	unsigned int fw_size;
3581 
3582 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3583 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3584 		fw_start = FLASH_FWBOOTSTRAP_START;
3585 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3586 	} else {
3587 		fw_start_sec = FLASH_FW_START_SEC;
3588  		fw_start = FLASH_FW_START;
3589 		fw_size = FLASH_FW_MAX_SIZE;
3590 	}
3591 
3592 	if (!size) {
3593 		CH_ERR(adap, "FW image has no data\n");
3594 		return -EINVAL;
3595 	}
3596 	if (size & 511) {
3597 		CH_ERR(adap,
3598 			"FW image size not multiple of 512 bytes\n");
3599 		return -EINVAL;
3600 	}
3601 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3602 		CH_ERR(adap,
3603 			"FW image size differs from size in FW header\n");
3604 		return -EINVAL;
3605 	}
3606 	if (size > fw_size) {
3607 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3608 			fw_size);
3609 		return -EFBIG;
3610 	}
3611 	if (!t4_fw_matches_chip(adap, hdr))
3612 		return -EINVAL;
3613 
3614 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3615 		csum += be32_to_cpu(p[i]);
3616 
3617 	if (csum != 0xffffffff) {
3618 		CH_ERR(adap,
3619 			"corrupted firmware image, checksum %#x\n", csum);
3620 		return -EINVAL;
3621 	}
3622 
3623 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3624 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3625 	if (ret)
3626 		goto out;
3627 
3628 	/*
3629 	 * We write the correct version at the end so the driver can see a bad
3630 	 * version if the FW write fails.  Start by writing a copy of the
3631 	 * first page with a bad version.
3632 	 */
3633 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3634 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3635 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3636 	if (ret)
3637 		goto out;
3638 
3639 	addr = fw_start;
3640 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3641 		addr += SF_PAGE_SIZE;
3642 		fw_data += SF_PAGE_SIZE;
3643 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3644 		if (ret)
3645 			goto out;
3646 	}
3647 
3648 	ret = t4_write_flash(adap,
3649 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3650 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3651 out:
3652 	if (ret)
3653 		CH_ERR(adap, "firmware download failed, error %d\n",
3654 			ret);
3655 	return ret;
3656 }
3657 
3658 /**
3659  *	t4_fwcache - firmware cache operation
3660  *	@adap: the adapter
3661  *	@op  : the operation (flush or flush and invalidate)
3662  */
3663 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3664 {
3665 	struct fw_params_cmd c;
3666 
3667 	memset(&c, 0, sizeof(c));
3668 	c.op_to_vfn =
3669 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3670 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3671 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3672 				V_FW_PARAMS_CMD_VFN(0));
3673 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3674 	c.param[0].mnem =
3675 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3676 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3677 	c.param[0].val = (__force __be32)op;
3678 
3679 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3680 }
3681 
3682 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3683 			unsigned int *pif_req_wrptr,
3684 			unsigned int *pif_rsp_wrptr)
3685 {
3686 	int i, j;
3687 	u32 cfg, val, req, rsp;
3688 
3689 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3690 	if (cfg & F_LADBGEN)
3691 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3692 
3693 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3694 	req = G_POLADBGWRPTR(val);
3695 	rsp = G_PILADBGWRPTR(val);
3696 	if (pif_req_wrptr)
3697 		*pif_req_wrptr = req;
3698 	if (pif_rsp_wrptr)
3699 		*pif_rsp_wrptr = rsp;
3700 
3701 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3702 		for (j = 0; j < 6; j++) {
3703 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3704 				     V_PILADBGRDPTR(rsp));
3705 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3706 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3707 			req++;
3708 			rsp++;
3709 		}
3710 		req = (req + 2) & M_POLADBGRDPTR;
3711 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3712 	}
3713 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3714 }
3715 
3716 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3717 {
3718 	u32 cfg;
3719 	int i, j, idx;
3720 
3721 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3722 	if (cfg & F_LADBGEN)
3723 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3724 
3725 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3726 		for (j = 0; j < 5; j++) {
3727 			idx = 8 * i + j;
3728 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3729 				     V_PILADBGRDPTR(idx));
3730 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3731 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3732 		}
3733 	}
3734 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3735 }
3736 
3737 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3738 {
3739 	unsigned int i, j;
3740 
3741 	for (i = 0; i < 8; i++) {
3742 		u32 *p = la_buf + i;
3743 
3744 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3745 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3746 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3747 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3748 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3749 	}
3750 }
3751 
3752 /**
3753  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3754  *	@caps16: a 16-bit Port Capabilities value
3755  *
3756  *	Returns the equivalent 32-bit Port Capabilities value.
3757  */
3758 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3759 {
3760 	uint32_t caps32 = 0;
3761 
3762 	#define CAP16_TO_CAP32(__cap) \
3763 		do { \
3764 			if (caps16 & FW_PORT_CAP_##__cap) \
3765 				caps32 |= FW_PORT_CAP32_##__cap; \
3766 		} while (0)
3767 
3768 	CAP16_TO_CAP32(SPEED_100M);
3769 	CAP16_TO_CAP32(SPEED_1G);
3770 	CAP16_TO_CAP32(SPEED_25G);
3771 	CAP16_TO_CAP32(SPEED_10G);
3772 	CAP16_TO_CAP32(SPEED_40G);
3773 	CAP16_TO_CAP32(SPEED_100G);
3774 	CAP16_TO_CAP32(FC_RX);
3775 	CAP16_TO_CAP32(FC_TX);
3776 	CAP16_TO_CAP32(ANEG);
3777 	CAP16_TO_CAP32(FORCE_PAUSE);
3778 	CAP16_TO_CAP32(MDIAUTO);
3779 	CAP16_TO_CAP32(MDISTRAIGHT);
3780 	CAP16_TO_CAP32(FEC_RS);
3781 	CAP16_TO_CAP32(FEC_BASER_RS);
3782 	CAP16_TO_CAP32(802_3_PAUSE);
3783 	CAP16_TO_CAP32(802_3_ASM_DIR);
3784 
3785 	#undef CAP16_TO_CAP32
3786 
3787 	return caps32;
3788 }
3789 
3790 /**
3791  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3792  *	@caps32: a 32-bit Port Capabilities value
3793  *
3794  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3795  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3796  *	Port Capabilities and some fields/values may not make it.
3797  */
3798 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3799 {
3800 	uint16_t caps16 = 0;
3801 
3802 	#define CAP32_TO_CAP16(__cap) \
3803 		do { \
3804 			if (caps32 & FW_PORT_CAP32_##__cap) \
3805 				caps16 |= FW_PORT_CAP_##__cap; \
3806 		} while (0)
3807 
3808 	CAP32_TO_CAP16(SPEED_100M);
3809 	CAP32_TO_CAP16(SPEED_1G);
3810 	CAP32_TO_CAP16(SPEED_10G);
3811 	CAP32_TO_CAP16(SPEED_25G);
3812 	CAP32_TO_CAP16(SPEED_40G);
3813 	CAP32_TO_CAP16(SPEED_100G);
3814 	CAP32_TO_CAP16(FC_RX);
3815 	CAP32_TO_CAP16(FC_TX);
3816 	CAP32_TO_CAP16(802_3_PAUSE);
3817 	CAP32_TO_CAP16(802_3_ASM_DIR);
3818 	CAP32_TO_CAP16(ANEG);
3819 	CAP32_TO_CAP16(FORCE_PAUSE);
3820 	CAP32_TO_CAP16(MDIAUTO);
3821 	CAP32_TO_CAP16(MDISTRAIGHT);
3822 	CAP32_TO_CAP16(FEC_RS);
3823 	CAP32_TO_CAP16(FEC_BASER_RS);
3824 
3825 	#undef CAP32_TO_CAP16
3826 
3827 	return caps16;
3828 }
3829 
3830 static bool
3831 is_bt(struct port_info *pi)
3832 {
3833 
3834 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3835 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
3836 	    pi->port_type == FW_PORT_TYPE_BT_XAUI);
3837 }
3838 
3839 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3840 {
3841 	int8_t fec = 0;
3842 
3843 	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3844 		return (unset_means_none ? FEC_NONE : 0);
3845 
3846 	if (caps & FW_PORT_CAP32_FEC_RS)
3847 		fec |= FEC_RS;
3848 	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3849 		fec |= FEC_BASER_RS;
3850 	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3851 		fec |= FEC_NONE;
3852 
3853 	return (fec);
3854 }
3855 
3856 /*
3857  * Note that 0 is not translated to NO_FEC.
3858  */
3859 static uint32_t fec_to_fwcap(int8_t fec)
3860 {
3861 	uint32_t caps = 0;
3862 
3863 	/* Only real FECs allowed. */
3864 	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3865 
3866 	if (fec & FEC_RS)
3867 		caps |= FW_PORT_CAP32_FEC_RS;
3868 	if (fec & FEC_BASER_RS)
3869 		caps |= FW_PORT_CAP32_FEC_BASER_RS;
3870 	if (fec & FEC_NONE)
3871 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
3872 
3873 	return (caps);
3874 }
3875 
3876 /**
3877  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3878  *	@phy: the PHY to setup
3879  *	@mac: the MAC to setup
3880  *	@lc: the requested link configuration
3881  *
3882  *	Set up a port's MAC and PHY according to a desired link configuration.
3883  *	- If the PHY can auto-negotiate first decide what to advertise, then
3884  *	  enable/disable auto-negotiation as desired, and reset.
3885  *	- If the PHY does not auto-negotiate just reset it.
3886  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3887  *	  otherwise do it later based on the outcome of auto-negotiation.
3888  */
3889 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3890 		  struct link_config *lc)
3891 {
3892 	struct fw_port_cmd c;
3893 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3894 	unsigned int aneg, fc, fec, speed, rcap;
3895 
3896 	fc = 0;
3897 	if (lc->requested_fc & PAUSE_RX)
3898 		fc |= FW_PORT_CAP32_FC_RX;
3899 	if (lc->requested_fc & PAUSE_TX)
3900 		fc |= FW_PORT_CAP32_FC_TX;
3901 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3902 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3903 
3904 	if (lc->requested_aneg == AUTONEG_DISABLE)
3905 		aneg = 0;
3906 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3907 		aneg = FW_PORT_CAP32_ANEG;
3908 	else
3909 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3910 
3911 	if (aneg) {
3912 		speed = lc->pcaps &
3913 		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3914 	} else if (lc->requested_speed != 0)
3915 		speed = speed_to_fwcap(lc->requested_speed);
3916 	else
3917 		speed = fwcap_top_speed(lc->pcaps);
3918 
3919 	fec = 0;
3920 	if (fec_supported(speed)) {
3921 		if (lc->requested_fec == FEC_AUTO) {
3922 			if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) {
3923 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3924 					fec |= FW_PORT_CAP32_FEC_RS;
3925 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3926 				} else {
3927 					fec |= FW_PORT_CAP32_FEC_RS;
3928 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3929 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3930 				}
3931 			} else {
3932 				/* Set only 1b with old firmwares. */
3933 				fec |= fec_to_fwcap(lc->fec_hint);
3934 			}
3935 		} else {
3936 			fec |= fec_to_fwcap(lc->requested_fec &
3937 			    M_FW_PORT_CAP32_FEC);
3938 			if (lc->requested_fec & FEC_MODULE)
3939 				fec |= fec_to_fwcap(lc->fec_hint);
3940 		}
3941 
3942 		if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
3943 			fec |= FW_PORT_CAP32_FORCE_FEC;
3944 		else if (fec == FW_PORT_CAP32_FEC_NO_FEC)
3945 			fec = 0;
3946 	}
3947 
3948 	/* Force AN on for BT cards. */
3949 	if (is_bt(adap->port[adap->chan_map[port]]))
3950 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3951 
3952 	rcap = aneg | speed | fc | fec;
3953 	if ((rcap | lc->pcaps) != lc->pcaps) {
3954 #ifdef INVARIANTS
3955 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3956 		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
3957 #endif
3958 		rcap &= lc->pcaps;
3959 	}
3960 	rcap |= mdi;
3961 
3962 	memset(&c, 0, sizeof(c));
3963 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3964 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3965 				     V_FW_PORT_CMD_PORTID(port));
3966 	if (adap->params.port_caps32) {
3967 		c.action_to_len16 =
3968 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3969 			FW_LEN16(c));
3970 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3971 	} else {
3972 		c.action_to_len16 =
3973 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3974 			    FW_LEN16(c));
3975 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3976 	}
3977 
3978 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3979 }
3980 
3981 /**
3982  *	t4_restart_aneg - restart autonegotiation
3983  *	@adap: the adapter
3984  *	@mbox: mbox to use for the FW command
3985  *	@port: the port id
3986  *
3987  *	Restarts autonegotiation for the selected port.
3988  */
3989 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3990 {
3991 	struct fw_port_cmd c;
3992 
3993 	memset(&c, 0, sizeof(c));
3994 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3995 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3996 				     V_FW_PORT_CMD_PORTID(port));
3997 	c.action_to_len16 =
3998 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3999 			    FW_LEN16(c));
4000 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4001 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4002 }
4003 
4004 struct intr_details {
4005 	u32 mask;
4006 	const char *msg;
4007 };
4008 
4009 struct intr_action {
4010 	u32 mask;
4011 	int arg;
4012 	bool (*action)(struct adapter *, int, bool);
4013 };
4014 
4015 #define NONFATAL_IF_DISABLED 1
4016 struct intr_info {
4017 	const char *name;	/* name of the INT_CAUSE register */
4018 	int cause_reg;		/* INT_CAUSE register */
4019 	int enable_reg;		/* INT_ENABLE register */
4020 	u32 fatal;		/* bits that are fatal */
4021 	int flags;		/* hints */
4022 	const struct intr_details *details;
4023 	const struct intr_action *actions;
4024 };
4025 
4026 static inline char
4027 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4028 {
4029 
4030 	if (cause & fatal)
4031 		return ('!');
4032 	if (cause & enable)
4033 		return ('*');
4034 	return ('-');
4035 }
4036 
4037 static void
4038 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4039 {
4040 	u32 enable, fatal, leftover;
4041 	const struct intr_details *details;
4042 	char alert;
4043 
4044 	enable = t4_read_reg(adap, ii->enable_reg);
4045 	if (ii->flags & NONFATAL_IF_DISABLED)
4046 		fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4047 	else
4048 		fatal = ii->fatal;
4049 	alert = intr_alert_char(cause, enable, fatal);
4050 	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4051 	    alert, ii->name, ii->cause_reg, cause, enable, fatal);
4052 
4053 	leftover = cause;
4054 	for (details = ii->details; details && details->mask != 0; details++) {
4055 		u32 msgbits = details->mask & cause;
4056 		if (msgbits == 0)
4057 			continue;
4058 		alert = intr_alert_char(msgbits, enable, ii->fatal);
4059 		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4060 		    details->msg);
4061 		leftover &= ~msgbits;
4062 	}
4063 	if (leftover != 0 && leftover != cause)
4064 		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4065 }
4066 
4067 /*
4068  * Returns true for fatal error.
4069  */
4070 static bool
4071 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4072     u32 additional_cause, bool verbose)
4073 {
4074 	u32 cause, fatal;
4075 	bool rc;
4076 	const struct intr_action *action;
4077 
4078 	/*
4079 	 * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4080 	 * bit special and we need to completely ignore the bits that are not in
4081 	 * PL_INT_ENABLE.
4082 	 */
4083 	cause = t4_read_reg(adap, ii->cause_reg);
4084 	if (ii->cause_reg == A_PL_INT_CAUSE)
4085 		cause &= t4_read_reg(adap, ii->enable_reg);
4086 	if (verbose || cause != 0)
4087 		t4_show_intr_info(adap, ii, cause);
4088 	fatal = cause & ii->fatal;
4089 	if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4090 		fatal &= t4_read_reg(adap, ii->enable_reg);
4091 	cause |= additional_cause;
4092 	if (cause == 0)
4093 		return (false);
4094 
4095 	rc = fatal != 0;
4096 	for (action = ii->actions; action && action->mask != 0; action++) {
4097 		if (!(action->mask & cause))
4098 			continue;
4099 		rc |= (action->action)(adap, action->arg, verbose);
4100 	}
4101 
4102 	/* clear */
4103 	t4_write_reg(adap, ii->cause_reg, cause);
4104 	(void)t4_read_reg(adap, ii->cause_reg);
4105 
4106 	return (rc);
4107 }
4108 
4109 /*
4110  * Interrupt handler for the PCIE module.
4111  */
4112 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4113 {
4114 	static const struct intr_details sysbus_intr_details[] = {
4115 		{ F_RNPP, "RXNP array parity error" },
4116 		{ F_RPCP, "RXPC array parity error" },
4117 		{ F_RCIP, "RXCIF array parity error" },
4118 		{ F_RCCP, "Rx completions control array parity error" },
4119 		{ F_RFTP, "RXFT array parity error" },
4120 		{ 0 }
4121 	};
4122 	static const struct intr_info sysbus_intr_info = {
4123 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4124 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4125 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4126 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4127 		.flags = 0,
4128 		.details = sysbus_intr_details,
4129 		.actions = NULL,
4130 	};
4131 	static const struct intr_details pcie_port_intr_details[] = {
4132 		{ F_TPCP, "TXPC array parity error" },
4133 		{ F_TNPP, "TXNP array parity error" },
4134 		{ F_TFTP, "TXFT array parity error" },
4135 		{ F_TCAP, "TXCA array parity error" },
4136 		{ F_TCIP, "TXCIF array parity error" },
4137 		{ F_RCAP, "RXCA array parity error" },
4138 		{ F_OTDD, "outbound request TLP discarded" },
4139 		{ F_RDPE, "Rx data parity error" },
4140 		{ F_TDUE, "Tx uncorrectable data error" },
4141 		{ 0 }
4142 	};
4143 	static const struct intr_info pcie_port_intr_info = {
4144 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4145 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4146 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4147 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4148 		    F_OTDD | F_RDPE | F_TDUE,
4149 		.flags = 0,
4150 		.details = pcie_port_intr_details,
4151 		.actions = NULL,
4152 	};
4153 	static const struct intr_details pcie_intr_details[] = {
4154 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4155 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4156 		{ F_MSIDATAPERR, "MSI data parity error" },
4157 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4158 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4159 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4160 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4161 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4162 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4163 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4164 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4165 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4166 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4167 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4168 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4169 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4170 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4171 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4172 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4173 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4174 		{ F_FIDPERR, "PCIe FID parity error" },
4175 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4176 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4177 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4178 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4179 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4180 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4181 		{ F_PCIESINT, "PCIe core secondary fault" },
4182 		{ F_PCIEPINT, "PCIe core primary fault" },
4183 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4184 		{ 0 }
4185 	};
4186 	static const struct intr_details t5_pcie_intr_details[] = {
4187 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4188 		{ F_NONFATALERR, "PCIe non-fatal error" },
4189 		{ F_READRSPERR, "Outbound read error" },
4190 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4191 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4192 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4193 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4194 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4195 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4196 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4197 		{ F_VFIDPERR, "VFID SRAM parity error" },
4198 		{ F_FIDPERR, "FID SRAM parity error" },
4199 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4200 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4201 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4202 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4203 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4204 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4205 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4206 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4207 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4208 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4209 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4210 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4211 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4212 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4213 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4214 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4215 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4216 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4217 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4218 		{ 0 }
4219 	};
4220 	struct intr_info pcie_intr_info = {
4221 		.name = "PCIE_INT_CAUSE",
4222 		.cause_reg = A_PCIE_INT_CAUSE,
4223 		.enable_reg = A_PCIE_INT_ENABLE,
4224 		.fatal = 0xffffffff,
4225 		.flags = NONFATAL_IF_DISABLED,
4226 		.details = NULL,
4227 		.actions = NULL,
4228 	};
4229 	bool fatal = false;
4230 
4231 	if (is_t4(adap)) {
4232 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4233 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4234 
4235 		pcie_intr_info.details = pcie_intr_details;
4236 	} else {
4237 		pcie_intr_info.details = t5_pcie_intr_details;
4238 	}
4239 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4240 
4241 	return (fatal);
4242 }
4243 
4244 /*
4245  * TP interrupt handler.
4246  */
4247 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4248 {
4249 	static const struct intr_details tp_intr_details[] = {
4250 		{ 0x3fffffff, "TP parity error" },
4251 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4252 		{ 0 }
4253 	};
4254 	static const struct intr_info tp_intr_info = {
4255 		.name = "TP_INT_CAUSE",
4256 		.cause_reg = A_TP_INT_CAUSE,
4257 		.enable_reg = A_TP_INT_ENABLE,
4258 		.fatal = 0x7fffffff,
4259 		.flags = NONFATAL_IF_DISABLED,
4260 		.details = tp_intr_details,
4261 		.actions = NULL,
4262 	};
4263 
4264 	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4265 }
4266 
4267 /*
4268  * SGE interrupt handler.
4269  */
4270 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4271 {
4272 	static const struct intr_info sge_int1_info = {
4273 		.name = "SGE_INT_CAUSE1",
4274 		.cause_reg = A_SGE_INT_CAUSE1,
4275 		.enable_reg = A_SGE_INT_ENABLE1,
4276 		.fatal = 0xffffffff,
4277 		.flags = NONFATAL_IF_DISABLED,
4278 		.details = NULL,
4279 		.actions = NULL,
4280 	};
4281 	static const struct intr_info sge_int2_info = {
4282 		.name = "SGE_INT_CAUSE2",
4283 		.cause_reg = A_SGE_INT_CAUSE2,
4284 		.enable_reg = A_SGE_INT_ENABLE2,
4285 		.fatal = 0xffffffff,
4286 		.flags = NONFATAL_IF_DISABLED,
4287 		.details = NULL,
4288 		.actions = NULL,
4289 	};
4290 	static const struct intr_details sge_int3_details[] = {
4291 		{ F_ERR_FLM_DBP,
4292 			"DBP pointer delivery for invalid context or QID" },
4293 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4294 			"Invalid QID or header request by IDMA" },
4295 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4296 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4297 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4298 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4299 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4300 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4301 			"SGE GTS with timer 0-5 for IQID > 1023" },
4302 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4303 			"SGE received CPL exceeding IQE size" },
4304 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4305 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4306 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4307 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4308 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4309 		  "SGE IQID > 1023 received CPL for FL" },
4310 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4311 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4312 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4313 		{ F_ERR_ING_CTXT_PRIO,
4314 			"Ingress context manager priority user error" },
4315 		{ F_ERR_EGR_CTXT_PRIO,
4316 			"Egress context manager priority user error" },
4317 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4318 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4319 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4320 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4321 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4322 		{ 0x0000000f, "SGE context access for invalid queue" },
4323 		{ 0 }
4324 	};
4325 	static const struct intr_details t6_sge_int3_details[] = {
4326 		{ F_ERR_FLM_DBP,
4327 			"DBP pointer delivery for invalid context or QID" },
4328 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4329 			"Invalid QID or header request by IDMA" },
4330 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4331 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4332 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4333 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4334 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4335 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4336 			"SGE GTS with timer 0-5 for IQID > 1023" },
4337 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4338 			"SGE received CPL exceeding IQE size" },
4339 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4340 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4341 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4342 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4343 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4344 			"SGE IQID > 1023 received CPL for FL" },
4345 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4346 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4347 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4348 		{ F_ERR_ING_CTXT_PRIO,
4349 			"Ingress context manager priority user error" },
4350 		{ F_ERR_EGR_CTXT_PRIO,
4351 			"Egress context manager priority user error" },
4352 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4353 		{ F_FATAL_WRE_LEN,
4354 			"SGE WRE packet less than advertized length" },
4355 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4356 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4357 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4358 		{ 0x0000000f, "SGE context access for invalid queue" },
4359 		{ 0 }
4360 	};
4361 	struct intr_info sge_int3_info = {
4362 		.name = "SGE_INT_CAUSE3",
4363 		.cause_reg = A_SGE_INT_CAUSE3,
4364 		.enable_reg = A_SGE_INT_ENABLE3,
4365 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4366 		.flags = 0,
4367 		.details = NULL,
4368 		.actions = NULL,
4369 	};
4370 	static const struct intr_info sge_int4_info = {
4371 		.name = "SGE_INT_CAUSE4",
4372 		.cause_reg = A_SGE_INT_CAUSE4,
4373 		.enable_reg = A_SGE_INT_ENABLE4,
4374 		.fatal = 0,
4375 		.flags = 0,
4376 		.details = NULL,
4377 		.actions = NULL,
4378 	};
4379 	static const struct intr_info sge_int5_info = {
4380 		.name = "SGE_INT_CAUSE5",
4381 		.cause_reg = A_SGE_INT_CAUSE5,
4382 		.enable_reg = A_SGE_INT_ENABLE5,
4383 		.fatal = 0xffffffff,
4384 		.flags = NONFATAL_IF_DISABLED,
4385 		.details = NULL,
4386 		.actions = NULL,
4387 	};
4388 	static const struct intr_info sge_int6_info = {
4389 		.name = "SGE_INT_CAUSE6",
4390 		.cause_reg = A_SGE_INT_CAUSE6,
4391 		.enable_reg = A_SGE_INT_ENABLE6,
4392 		.fatal = 0,
4393 		.flags = 0,
4394 		.details = NULL,
4395 		.actions = NULL,
4396 	};
4397 
4398 	bool fatal;
4399 	u32 v;
4400 
4401 	if (chip_id(adap) <= CHELSIO_T5) {
4402 		sge_int3_info.details = sge_int3_details;
4403 	} else {
4404 		sge_int3_info.details = t6_sge_int3_details;
4405 	}
4406 
4407 	fatal = false;
4408 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4409 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4410 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4411 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4412 	if (chip_id(adap) >= CHELSIO_T5)
4413 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4414 	if (chip_id(adap) >= CHELSIO_T6)
4415 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4416 
4417 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4418 	if (v & F_ERROR_QID_VALID) {
4419 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4420 		if (v & F_UNCAPTURED_ERROR)
4421 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4422 		t4_write_reg(adap, A_SGE_ERROR_STATS,
4423 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4424 	}
4425 
4426 	return (fatal);
4427 }
4428 
4429 /*
4430  * CIM interrupt handler.
4431  */
4432 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4433 {
4434 	static const struct intr_action cim_host_intr_actions[] = {
4435 		{ F_TIMER0INT, 0, t4_os_dump_cimla },
4436 		{ 0 },
4437 	};
4438 	static const struct intr_details cim_host_intr_details[] = {
4439 		/* T6+ */
4440 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4441 
4442 		/* T5+ */
4443 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4444 		{ F_PLCIM_MSTRSPDATAPARERR,
4445 			"PL2CIM master response data parity error" },
4446 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4447 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4448 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4449 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4450 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4451 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4452 
4453 		/* T4+ */
4454 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4455 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4456 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4457 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4458 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4459 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4460 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4461 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4462 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4463 			"CIM IBQ PCIe/SGE_HI parity error" },
4464 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4465 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4466 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4467 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4468 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4469 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4470 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4471 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4472 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4473 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4474 		{ 0}
4475 	};
4476 	static const struct intr_info cim_host_intr_info = {
4477 		.name = "CIM_HOST_INT_CAUSE",
4478 		.cause_reg = A_CIM_HOST_INT_CAUSE,
4479 		.enable_reg = A_CIM_HOST_INT_ENABLE,
4480 		.fatal = 0x007fffe6,
4481 		.flags = NONFATAL_IF_DISABLED,
4482 		.details = cim_host_intr_details,
4483 		.actions = cim_host_intr_actions,
4484 	};
4485 	static const struct intr_details cim_host_upacc_intr_details[] = {
4486 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4487 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4488 		{ F_TIMEOUTINT, "CIM PIF timeout" },
4489 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4490 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4491 		{ F_BLKWRPLINT, "CIM block write to PL space" },
4492 		{ F_BLKRDPLINT, "CIM block read from PL space" },
4493 		{ F_SGLWRPLINT,
4494 			"CIM single write to PL space with illegal BEs" },
4495 		{ F_SGLRDPLINT,
4496 			"CIM single read from PL space with illegal BEs" },
4497 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4498 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4499 		{ F_SGLWRCTLINT,
4500 			"CIM single write to CTL space with illegal BEs" },
4501 		{ F_SGLRDCTLINT,
4502 			"CIM single read from CTL space with illegal BEs" },
4503 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4504 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4505 		{ F_SGLWREEPROMINT,
4506 			"CIM single write to EEPROM space with illegal BEs" },
4507 		{ F_SGLRDEEPROMINT,
4508 			"CIM single read from EEPROM space with illegal BEs" },
4509 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4510 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4511 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4512 		{ F_SGLRDFLASHINT,
4513 			"CIM single read from flash space with illegal BEs" },
4514 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4515 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4516 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4517 		{ F_SGLRDBOOTINT,
4518 			"CIM single read from boot space with illegal BEs" },
4519 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4520 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4521 		{ F_ILLRDINT, "CIM illegal read" },
4522 		{ F_ILLWRINT, "CIM illegal write" },
4523 		{ F_ILLTRANSINT, "CIM illegal transaction" },
4524 		{ F_RSVDSPACEINT, "CIM reserved space access" },
4525 		{0}
4526 	};
4527 	static const struct intr_info cim_host_upacc_intr_info = {
4528 		.name = "CIM_HOST_UPACC_INT_CAUSE",
4529 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4530 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4531 		.fatal = 0x3fffeeff,
4532 		.flags = NONFATAL_IF_DISABLED,
4533 		.details = cim_host_upacc_intr_details,
4534 		.actions = NULL,
4535 	};
4536 	static const struct intr_info cim_pf_host_intr_info = {
4537 		.name = "CIM_PF_HOST_INT_CAUSE",
4538 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4539 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4540 		.fatal = 0,
4541 		.flags = 0,
4542 		.details = NULL,
4543 		.actions = NULL,
4544 	};
4545 	u32 val, fw_err;
4546 	bool fatal;
4547 
4548 	fw_err = t4_read_reg(adap, A_PCIE_FW);
4549 	if (fw_err & F_PCIE_FW_ERR)
4550 		t4_report_fw_error(adap);
4551 
4552 	/*
4553 	 * When the Firmware detects an internal error which normally wouldn't
4554 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4555 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4556 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4557 	 * interrupt.
4558 	 */
4559 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4560 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4561 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4562 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4563 	}
4564 
4565 	fatal = false;
4566 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4567 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4568 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4569 
4570 	return (fatal);
4571 }
4572 
4573 /*
4574  * ULP RX interrupt handler.
4575  */
4576 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4577 {
4578 	static const struct intr_details ulprx_intr_details[] = {
4579 		/* T5+ */
4580 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4581 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4582 
4583 		/* T4+ */
4584 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4585 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4586 		{ 0x007fffff, "ULPRX parity error" },
4587 		{ 0 }
4588 	};
4589 	static const struct intr_info ulprx_intr_info = {
4590 		.name = "ULP_RX_INT_CAUSE",
4591 		.cause_reg = A_ULP_RX_INT_CAUSE,
4592 		.enable_reg = A_ULP_RX_INT_ENABLE,
4593 		.fatal = 0x07ffffff,
4594 		.flags = NONFATAL_IF_DISABLED,
4595 		.details = ulprx_intr_details,
4596 		.actions = NULL,
4597 	};
4598 	static const struct intr_info ulprx_intr2_info = {
4599 		.name = "ULP_RX_INT_CAUSE_2",
4600 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4601 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4602 		.fatal = 0,
4603 		.flags = 0,
4604 		.details = NULL,
4605 		.actions = NULL,
4606 	};
4607 	bool fatal = false;
4608 
4609 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4610 	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4611 
4612 	return (fatal);
4613 }
4614 
4615 /*
4616  * ULP TX interrupt handler.
4617  */
4618 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4619 {
4620 	static const struct intr_details ulptx_intr_details[] = {
4621 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4622 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4623 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4624 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4625 		{ 0x0fffffff, "ULPTX parity error" },
4626 		{ 0 }
4627 	};
4628 	static const struct intr_info ulptx_intr_info = {
4629 		.name = "ULP_TX_INT_CAUSE",
4630 		.cause_reg = A_ULP_TX_INT_CAUSE,
4631 		.enable_reg = A_ULP_TX_INT_ENABLE,
4632 		.fatal = 0x0fffffff,
4633 		.flags = NONFATAL_IF_DISABLED,
4634 		.details = ulptx_intr_details,
4635 		.actions = NULL,
4636 	};
4637 	static const struct intr_info ulptx_intr2_info = {
4638 		.name = "ULP_TX_INT_CAUSE_2",
4639 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4640 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4641 		.fatal = 0xf0,
4642 		.flags = NONFATAL_IF_DISABLED,
4643 		.details = NULL,
4644 		.actions = NULL,
4645 	};
4646 	bool fatal = false;
4647 
4648 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4649 	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4650 
4651 	return (fatal);
4652 }
4653 
4654 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4655 {
4656 	int i;
4657 	u32 data[17];
4658 
4659 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4660 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4661 	for (i = 0; i < ARRAY_SIZE(data); i++) {
4662 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4663 		    A_PM_TX_DBG_STAT0 + i, data[i]);
4664 	}
4665 
4666 	return (false);
4667 }
4668 
4669 /*
4670  * PM TX interrupt handler.
4671  */
4672 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4673 {
4674 	static const struct intr_action pmtx_intr_actions[] = {
4675 		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4676 		{ 0 },
4677 	};
4678 	static const struct intr_details pmtx_intr_details[] = {
4679 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4680 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4681 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4682 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4683 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4684 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4685 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4686 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4687 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4688 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4689 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4690 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4691 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4692 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4693 		{ 0 }
4694 	};
4695 	static const struct intr_info pmtx_intr_info = {
4696 		.name = "PM_TX_INT_CAUSE",
4697 		.cause_reg = A_PM_TX_INT_CAUSE,
4698 		.enable_reg = A_PM_TX_INT_ENABLE,
4699 		.fatal = 0xffffffff,
4700 		.flags = 0,
4701 		.details = pmtx_intr_details,
4702 		.actions = pmtx_intr_actions,
4703 	};
4704 
4705 	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4706 }
4707 
4708 /*
4709  * PM RX interrupt handler.
4710  */
4711 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4712 {
4713 	static const struct intr_details pmrx_intr_details[] = {
4714 		/* T6+ */
4715 		{ 0x18000000, "PMRX ospi overflow" },
4716 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4717 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4718 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4719 		{ F_SDC_ERR, "PMRX SDC error" },
4720 
4721 		/* T4+ */
4722 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4723 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4724 		{ 0x0003c000, "PMRX iespi Rx framing error" },
4725 		{ 0x00003c00, "PMRX iespi Tx framing error" },
4726 		{ 0x00000300, "PMRX ocspi Rx framing error" },
4727 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4728 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4729 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4730 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4731 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4732 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4733 		{ 0 }
4734 	};
4735 	static const struct intr_info pmrx_intr_info = {
4736 		.name = "PM_RX_INT_CAUSE",
4737 		.cause_reg = A_PM_RX_INT_CAUSE,
4738 		.enable_reg = A_PM_RX_INT_ENABLE,
4739 		.fatal = 0x1fffffff,
4740 		.flags = NONFATAL_IF_DISABLED,
4741 		.details = pmrx_intr_details,
4742 		.actions = NULL,
4743 	};
4744 
4745 	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4746 }
4747 
4748 /*
4749  * CPL switch interrupt handler.
4750  */
4751 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4752 {
4753 	static const struct intr_details cplsw_intr_details[] = {
4754 		/* T5+ */
4755 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4756 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4757 
4758 		/* T4+ */
4759 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4760 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4761 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4762 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4763 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4764 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4765 		{ 0 }
4766 	};
4767 	static const struct intr_info cplsw_intr_info = {
4768 		.name = "CPL_INTR_CAUSE",
4769 		.cause_reg = A_CPL_INTR_CAUSE,
4770 		.enable_reg = A_CPL_INTR_ENABLE,
4771 		.fatal = 0xff,
4772 		.flags = NONFATAL_IF_DISABLED,
4773 		.details = cplsw_intr_details,
4774 		.actions = NULL,
4775 	};
4776 
4777 	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4778 }
4779 
4780 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4781 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4782 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4783     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4784     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4785     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4786 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4787     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4788     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4789 
4790 /*
4791  * LE interrupt handler.
4792  */
4793 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4794 {
4795 	static const struct intr_details le_intr_details[] = {
4796 		{ F_REQQPARERR, "LE request queue parity error" },
4797 		{ F_UNKNOWNCMD, "LE unknown command" },
4798 		{ F_ACTRGNFULL, "LE active region full" },
4799 		{ F_PARITYERR, "LE parity error" },
4800 		{ F_LIPMISS, "LE LIP miss" },
4801 		{ F_LIP0, "LE 0 LIP error" },
4802 		{ 0 }
4803 	};
4804 	static const struct intr_details t6_le_intr_details[] = {
4805 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4806 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4807 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4808 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4809 		{ F_TOTCNTERR, "LE total active < TCAM count" },
4810 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4811 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4812 		{ F_T6_ACTRGNFULL, "LE active region full" },
4813 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4814 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4815 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4816 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4817 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4818 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4819 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4820 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4821 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4822 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4823 		{ 0 }
4824 	};
4825 	struct intr_info le_intr_info = {
4826 		.name = "LE_DB_INT_CAUSE",
4827 		.cause_reg = A_LE_DB_INT_CAUSE,
4828 		.enable_reg = A_LE_DB_INT_ENABLE,
4829 		.fatal = 0,
4830 		.flags = NONFATAL_IF_DISABLED,
4831 		.details = NULL,
4832 		.actions = NULL,
4833 	};
4834 
4835 	if (chip_id(adap) <= CHELSIO_T5) {
4836 		le_intr_info.details = le_intr_details;
4837 		le_intr_info.fatal = T5_LE_FATAL_MASK;
4838 	} else {
4839 		le_intr_info.details = t6_le_intr_details;
4840 		le_intr_info.fatal = T6_LE_FATAL_MASK;
4841 	}
4842 
4843 	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4844 }
4845 
4846 /*
4847  * MPS interrupt handler.
4848  */
4849 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4850 {
4851 	static const struct intr_details mps_rx_perr_intr_details[] = {
4852 		{ 0xffffffff, "MPS Rx parity error" },
4853 		{ 0 }
4854 	};
4855 	static const struct intr_info mps_rx_perr_intr_info = {
4856 		.name = "MPS_RX_PERR_INT_CAUSE",
4857 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4858 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4859 		.fatal = 0xffffffff,
4860 		.flags = NONFATAL_IF_DISABLED,
4861 		.details = mps_rx_perr_intr_details,
4862 		.actions = NULL,
4863 	};
4864 	static const struct intr_details mps_tx_intr_details[] = {
4865 		{ F_PORTERR, "MPS Tx destination port is disabled" },
4866 		{ F_FRMERR, "MPS Tx framing error" },
4867 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4868 		{ F_BUBBLE, "MPS Tx underflow" },
4869 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4870 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4871 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4872 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4873 		{ 0 }
4874 	};
4875 	static const struct intr_info mps_tx_intr_info = {
4876 		.name = "MPS_TX_INT_CAUSE",
4877 		.cause_reg = A_MPS_TX_INT_CAUSE,
4878 		.enable_reg = A_MPS_TX_INT_ENABLE,
4879 		.fatal = 0x1ffff,
4880 		.flags = NONFATAL_IF_DISABLED,
4881 		.details = mps_tx_intr_details,
4882 		.actions = NULL,
4883 	};
4884 	static const struct intr_details mps_trc_intr_details[] = {
4885 		{ F_MISCPERR, "MPS TRC misc parity error" },
4886 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4887 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4888 		{ 0 }
4889 	};
4890 	static const struct intr_info mps_trc_intr_info = {
4891 		.name = "MPS_TRC_INT_CAUSE",
4892 		.cause_reg = A_MPS_TRC_INT_CAUSE,
4893 		.enable_reg = A_MPS_TRC_INT_ENABLE,
4894 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4895 		.flags = 0,
4896 		.details = mps_trc_intr_details,
4897 		.actions = NULL,
4898 	};
4899 	static const struct intr_details mps_stat_sram_intr_details[] = {
4900 		{ 0xffffffff, "MPS statistics SRAM parity error" },
4901 		{ 0 }
4902 	};
4903 	static const struct intr_info mps_stat_sram_intr_info = {
4904 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4905 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4906 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4907 		.fatal = 0x1fffffff,
4908 		.flags = NONFATAL_IF_DISABLED,
4909 		.details = mps_stat_sram_intr_details,
4910 		.actions = NULL,
4911 	};
4912 	static const struct intr_details mps_stat_tx_intr_details[] = {
4913 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4914 		{ 0 }
4915 	};
4916 	static const struct intr_info mps_stat_tx_intr_info = {
4917 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4918 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4919 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4920 		.fatal =  0xffffff,
4921 		.flags = NONFATAL_IF_DISABLED,
4922 		.details = mps_stat_tx_intr_details,
4923 		.actions = NULL,
4924 	};
4925 	static const struct intr_details mps_stat_rx_intr_details[] = {
4926 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4927 		{ 0 }
4928 	};
4929 	static const struct intr_info mps_stat_rx_intr_info = {
4930 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4931 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4932 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4933 		.fatal =  0xffffff,
4934 		.flags = 0,
4935 		.details = mps_stat_rx_intr_details,
4936 		.actions = NULL,
4937 	};
4938 	static const struct intr_details mps_cls_intr_details[] = {
4939 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4940 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4941 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4942 		{ 0 }
4943 	};
4944 	static const struct intr_info mps_cls_intr_info = {
4945 		.name = "MPS_CLS_INT_CAUSE",
4946 		.cause_reg = A_MPS_CLS_INT_CAUSE,
4947 		.enable_reg = A_MPS_CLS_INT_ENABLE,
4948 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4949 		.flags = 0,
4950 		.details = mps_cls_intr_details,
4951 		.actions = NULL,
4952 	};
4953 	static const struct intr_details mps_stat_sram1_intr_details[] = {
4954 		{ 0xff, "MPS statistics SRAM1 parity error" },
4955 		{ 0 }
4956 	};
4957 	static const struct intr_info mps_stat_sram1_intr_info = {
4958 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4959 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4960 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4961 		.fatal = 0xff,
4962 		.flags = 0,
4963 		.details = mps_stat_sram1_intr_details,
4964 		.actions = NULL,
4965 	};
4966 
4967 	bool fatal;
4968 
4969 	fatal = false;
4970 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4971 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
4972 	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
4973 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
4974 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
4975 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
4976 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
4977 	if (chip_id(adap) > CHELSIO_T4) {
4978 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
4979 		    verbose);
4980 	}
4981 
4982 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
4983 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
4984 
4985 	return (fatal);
4986 
4987 }
4988 
4989 /*
4990  * EDC/MC interrupt handler.
4991  */
4992 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
4993 {
4994 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
4995 	unsigned int count_reg, v;
4996 	static const struct intr_details mem_intr_details[] = {
4997 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
4998 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
4999 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
5000 		{ 0 }
5001 	};
5002 	struct intr_info ii = {
5003 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5004 		.details = mem_intr_details,
5005 		.flags = 0,
5006 		.actions = NULL,
5007 	};
5008 	bool fatal;
5009 
5010 	switch (idx) {
5011 	case MEM_EDC0:
5012 		ii.name = "EDC0_INT_CAUSE";
5013 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5014 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5015 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5016 		break;
5017 	case MEM_EDC1:
5018 		ii.name = "EDC1_INT_CAUSE";
5019 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5020 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5021 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5022 		break;
5023 	case MEM_MC0:
5024 		ii.name = "MC0_INT_CAUSE";
5025 		if (is_t4(adap)) {
5026 			ii.cause_reg = A_MC_INT_CAUSE;
5027 			ii.enable_reg = A_MC_INT_ENABLE;
5028 			count_reg = A_MC_ECC_STATUS;
5029 		} else {
5030 			ii.cause_reg = A_MC_P_INT_CAUSE;
5031 			ii.enable_reg = A_MC_P_INT_ENABLE;
5032 			count_reg = A_MC_P_ECC_STATUS;
5033 		}
5034 		break;
5035 	case MEM_MC1:
5036 		ii.name = "MC1_INT_CAUSE";
5037 		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5038 		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5039 		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5040 		break;
5041 	}
5042 
5043 	fatal = t4_handle_intr(adap, &ii, 0, verbose);
5044 
5045 	v = t4_read_reg(adap, count_reg);
5046 	if (v != 0) {
5047 		if (G_ECC_UECNT(v) != 0) {
5048 			CH_ALERT(adap,
5049 			    "%s: %u uncorrectable ECC data error(s)\n",
5050 			    name[idx], G_ECC_UECNT(v));
5051 		}
5052 		if (G_ECC_CECNT(v) != 0) {
5053 			if (idx <= MEM_EDC1)
5054 				t4_edc_err_read(adap, idx);
5055 			CH_WARN_RATELIMIT(adap,
5056 			    "%s: %u correctable ECC data error(s)\n",
5057 			    name[idx], G_ECC_CECNT(v));
5058 		}
5059 		t4_write_reg(adap, count_reg, 0xffffffff);
5060 	}
5061 
5062 	return (fatal);
5063 }
5064 
5065 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5066 {
5067 	u32 v;
5068 
5069 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5070 	CH_ALERT(adap,
5071 	    "MA address wrap-around error by client %u to address %#x\n",
5072 	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5073 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5074 
5075 	return (false);
5076 }
5077 
5078 
5079 /*
5080  * MA interrupt handler.
5081  */
5082 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5083 {
5084 	static const struct intr_action ma_intr_actions[] = {
5085 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5086 		{ 0 },
5087 	};
5088 	static const struct intr_info ma_intr_info = {
5089 		.name = "MA_INT_CAUSE",
5090 		.cause_reg = A_MA_INT_CAUSE,
5091 		.enable_reg = A_MA_INT_ENABLE,
5092 		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5093 		.flags = NONFATAL_IF_DISABLED,
5094 		.details = NULL,
5095 		.actions = ma_intr_actions,
5096 	};
5097 	static const struct intr_info ma_perr_status1 = {
5098 		.name = "MA_PARITY_ERROR_STATUS1",
5099 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5100 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5101 		.fatal = 0xffffffff,
5102 		.flags = 0,
5103 		.details = NULL,
5104 		.actions = NULL,
5105 	};
5106 	static const struct intr_info ma_perr_status2 = {
5107 		.name = "MA_PARITY_ERROR_STATUS2",
5108 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5109 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5110 		.fatal = 0xffffffff,
5111 		.flags = 0,
5112 		.details = NULL,
5113 		.actions = NULL,
5114 	};
5115 	bool fatal;
5116 
5117 	fatal = false;
5118 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5119 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5120 	if (chip_id(adap) > CHELSIO_T4)
5121 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5122 
5123 	return (fatal);
5124 }
5125 
5126 /*
5127  * SMB interrupt handler.
5128  */
5129 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5130 {
5131 	static const struct intr_details smb_intr_details[] = {
5132 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5133 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5134 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5135 		{ 0 }
5136 	};
5137 	static const struct intr_info smb_intr_info = {
5138 		.name = "SMB_INT_CAUSE",
5139 		.cause_reg = A_SMB_INT_CAUSE,
5140 		.enable_reg = A_SMB_INT_ENABLE,
5141 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5142 		.flags = 0,
5143 		.details = smb_intr_details,
5144 		.actions = NULL,
5145 	};
5146 
5147 	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5148 }
5149 
5150 /*
5151  * NC-SI interrupt handler.
5152  */
5153 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5154 {
5155 	static const struct intr_details ncsi_intr_details[] = {
5156 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5157 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5158 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5159 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5160 		{ 0 }
5161 	};
5162 	static const struct intr_info ncsi_intr_info = {
5163 		.name = "NCSI_INT_CAUSE",
5164 		.cause_reg = A_NCSI_INT_CAUSE,
5165 		.enable_reg = A_NCSI_INT_ENABLE,
5166 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5167 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5168 		.flags = 0,
5169 		.details = ncsi_intr_details,
5170 		.actions = NULL,
5171 	};
5172 
5173 	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5174 }
5175 
5176 /*
5177  * MAC interrupt handler.
5178  */
5179 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5180 {
5181 	static const struct intr_details mac_intr_details[] = {
5182 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5183 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5184 		{ 0 }
5185 	};
5186 	char name[32];
5187 	struct intr_info ii;
5188 	bool fatal = false;
5189 
5190 	if (is_t4(adap)) {
5191 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5192 		ii.name = &name[0];
5193 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5194 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5195 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5196 		ii.flags = 0;
5197 		ii.details = mac_intr_details;
5198 		ii.actions = NULL;
5199 	} else {
5200 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5201 		ii.name = &name[0];
5202 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5203 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5204 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5205 		ii.flags = 0;
5206 		ii.details = mac_intr_details;
5207 		ii.actions = NULL;
5208 	}
5209 	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5210 
5211 	if (chip_id(adap) >= CHELSIO_T5) {
5212 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5213 		ii.name = &name[0];
5214 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5215 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5216 		ii.fatal = 0;
5217 		ii.flags = 0;
5218 		ii.details = NULL;
5219 		ii.actions = NULL;
5220 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5221 	}
5222 
5223 	if (chip_id(adap) >= CHELSIO_T6) {
5224 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5225 		ii.name = &name[0];
5226 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5227 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5228 		ii.fatal = 0;
5229 		ii.flags = 0;
5230 		ii.details = NULL;
5231 		ii.actions = NULL;
5232 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5233 	}
5234 
5235 	return (fatal);
5236 }
5237 
5238 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5239 {
5240 	static const struct intr_details plpl_intr_details[] = {
5241 		{ F_FATALPERR, "Fatal parity error" },
5242 		{ F_PERRVFID, "VFID_MAP parity error" },
5243 		{ 0 }
5244 	};
5245 	static const struct intr_info plpl_intr_info = {
5246 		.name = "PL_PL_INT_CAUSE",
5247 		.cause_reg = A_PL_PL_INT_CAUSE,
5248 		.enable_reg = A_PL_PL_INT_ENABLE,
5249 		.fatal = F_FATALPERR | F_PERRVFID,
5250 		.flags = NONFATAL_IF_DISABLED,
5251 		.details = plpl_intr_details,
5252 		.actions = NULL,
5253 	};
5254 
5255 	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5256 }
5257 
5258 /**
5259  *	t4_slow_intr_handler - control path interrupt handler
5260  *	@adap: the adapter
5261  *	@verbose: increased verbosity, for debug
5262  *
5263  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5264  *	The designation 'slow' is because it involves register reads, while
5265  *	data interrupts typically don't involve any MMIOs.
5266  */
5267 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5268 {
5269 	static const struct intr_details pl_intr_details[] = {
5270 		{ F_MC1, "MC1" },
5271 		{ F_UART, "UART" },
5272 		{ F_ULP_TX, "ULP TX" },
5273 		{ F_SGE, "SGE" },
5274 		{ F_HMA, "HMA" },
5275 		{ F_CPL_SWITCH, "CPL Switch" },
5276 		{ F_ULP_RX, "ULP RX" },
5277 		{ F_PM_RX, "PM RX" },
5278 		{ F_PM_TX, "PM TX" },
5279 		{ F_MA, "MA" },
5280 		{ F_TP, "TP" },
5281 		{ F_LE, "LE" },
5282 		{ F_EDC1, "EDC1" },
5283 		{ F_EDC0, "EDC0" },
5284 		{ F_MC, "MC0" },
5285 		{ F_PCIE, "PCIE" },
5286 		{ F_PMU, "PMU" },
5287 		{ F_MAC3, "MAC3" },
5288 		{ F_MAC2, "MAC2" },
5289 		{ F_MAC1, "MAC1" },
5290 		{ F_MAC0, "MAC0" },
5291 		{ F_SMB, "SMB" },
5292 		{ F_SF, "SF" },
5293 		{ F_PL, "PL" },
5294 		{ F_NCSI, "NC-SI" },
5295 		{ F_MPS, "MPS" },
5296 		{ F_MI, "MI" },
5297 		{ F_DBG, "DBG" },
5298 		{ F_I2CM, "I2CM" },
5299 		{ F_CIM, "CIM" },
5300 		{ 0 }
5301 	};
5302 	static const struct intr_info pl_perr_cause = {
5303 		.name = "PL_PERR_CAUSE",
5304 		.cause_reg = A_PL_PERR_CAUSE,
5305 		.enable_reg = A_PL_PERR_ENABLE,
5306 		.fatal = 0xffffffff,
5307 		.flags = 0,
5308 		.details = pl_intr_details,
5309 		.actions = NULL,
5310 	};
5311 	static const struct intr_action pl_intr_action[] = {
5312 		{ F_MC1, MEM_MC1, mem_intr_handler },
5313 		{ F_ULP_TX, -1, ulptx_intr_handler },
5314 		{ F_SGE, -1, sge_intr_handler },
5315 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5316 		{ F_ULP_RX, -1, ulprx_intr_handler },
5317 		{ F_PM_RX, -1, pmrx_intr_handler},
5318 		{ F_PM_TX, -1, pmtx_intr_handler},
5319 		{ F_MA, -1, ma_intr_handler },
5320 		{ F_TP, -1, tp_intr_handler },
5321 		{ F_LE, -1, le_intr_handler },
5322 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5323 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5324 		{ F_MC0, MEM_MC0, mem_intr_handler },
5325 		{ F_PCIE, -1, pcie_intr_handler },
5326 		{ F_MAC3, 3, mac_intr_handler},
5327 		{ F_MAC2, 2, mac_intr_handler},
5328 		{ F_MAC1, 1, mac_intr_handler},
5329 		{ F_MAC0, 0, mac_intr_handler},
5330 		{ F_SMB, -1, smb_intr_handler},
5331 		{ F_PL, -1, plpl_intr_handler },
5332 		{ F_NCSI, -1, ncsi_intr_handler},
5333 		{ F_MPS, -1, mps_intr_handler },
5334 		{ F_CIM, -1, cim_intr_handler },
5335 		{ 0 }
5336 	};
5337 	static const struct intr_info pl_intr_info = {
5338 		.name = "PL_INT_CAUSE",
5339 		.cause_reg = A_PL_INT_CAUSE,
5340 		.enable_reg = A_PL_INT_ENABLE,
5341 		.fatal = 0,
5342 		.flags = 0,
5343 		.details = pl_intr_details,
5344 		.actions = pl_intr_action,
5345 	};
5346 	bool fatal;
5347 	u32 perr;
5348 
5349 	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5350 	if (verbose || perr != 0) {
5351 		t4_show_intr_info(adap, &pl_perr_cause, perr);
5352 		if (perr != 0)
5353 			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5354 		if (verbose)
5355 			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5356 	}
5357 	fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5358 	if (fatal)
5359 		t4_fatal_err(adap, false);
5360 
5361 	return (0);
5362 }
5363 
5364 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5365 
5366 /**
5367  *	t4_intr_enable - enable interrupts
5368  *	@adapter: the adapter whose interrupts should be enabled
5369  *
5370  *	Enable PF-specific interrupts for the calling function and the top-level
5371  *	interrupt concentrator for global interrupts.  Interrupts are already
5372  *	enabled at each module,	here we just enable the roots of the interrupt
5373  *	hierarchies.
5374  *
5375  *	Note: this function should be called only when the driver manages
5376  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5377  *	function at a time should be doing this.
5378  */
5379 void t4_intr_enable(struct adapter *adap)
5380 {
5381 	u32 val = 0;
5382 
5383 	if (chip_id(adap) <= CHELSIO_T5)
5384 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5385 	else
5386 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5387 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5388 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5389 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5390 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5391 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5392 	    F_EGRESS_SIZE_ERR;
5393 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5394 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5395 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5396 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5397 }
5398 
5399 /**
5400  *	t4_intr_disable - disable interrupts
5401  *	@adap: the adapter whose interrupts should be disabled
5402  *
5403  *	Disable interrupts.  We only disable the top-level interrupt
5404  *	concentrators.  The caller must be a PCI function managing global
5405  *	interrupts.
5406  */
5407 void t4_intr_disable(struct adapter *adap)
5408 {
5409 
5410 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5411 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5412 }
5413 
5414 /**
5415  *	t4_intr_clear - clear all interrupts
5416  *	@adap: the adapter whose interrupts should be cleared
5417  *
5418  *	Clears all interrupts.  The caller must be a PCI function managing
5419  *	global interrupts.
5420  */
5421 void t4_intr_clear(struct adapter *adap)
5422 {
5423 	static const u32 cause_reg[] = {
5424 		A_CIM_HOST_INT_CAUSE,
5425 		A_CIM_HOST_UPACC_INT_CAUSE,
5426 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5427 		A_CPL_INTR_CAUSE,
5428 		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5429 		A_LE_DB_INT_CAUSE,
5430 		A_MA_INT_WRAP_STATUS,
5431 		A_MA_PARITY_ERROR_STATUS1,
5432 		A_MA_INT_CAUSE,
5433 		A_MPS_CLS_INT_CAUSE,
5434 		A_MPS_RX_PERR_INT_CAUSE,
5435 		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5436 		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5437 		A_MPS_TRC_INT_CAUSE,
5438 		A_MPS_TX_INT_CAUSE,
5439 		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5440 		A_NCSI_INT_CAUSE,
5441 		A_PCIE_INT_CAUSE,
5442 		A_PCIE_NONFAT_ERR,
5443 		A_PL_PL_INT_CAUSE,
5444 		A_PM_RX_INT_CAUSE,
5445 		A_PM_TX_INT_CAUSE,
5446 		A_SGE_INT_CAUSE1,
5447 		A_SGE_INT_CAUSE2,
5448 		A_SGE_INT_CAUSE3,
5449 		A_SGE_INT_CAUSE4,
5450 		A_SMB_INT_CAUSE,
5451 		A_TP_INT_CAUSE,
5452 		A_ULP_RX_INT_CAUSE,
5453 		A_ULP_RX_INT_CAUSE_2,
5454 		A_ULP_TX_INT_CAUSE,
5455 		A_ULP_TX_INT_CAUSE_2,
5456 
5457 		MYPF_REG(A_PL_PF_INT_CAUSE),
5458 	};
5459 	int i;
5460 	const int nchan = adap->chip_params->nchan;
5461 
5462 	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5463 		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5464 
5465 	if (is_t4(adap)) {
5466 		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5467 		    0xffffffff);
5468 		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5469 		    0xffffffff);
5470 		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5471 		for (i = 0; i < nchan; i++) {
5472 			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5473 			    0xffffffff);
5474 		}
5475 	}
5476 	if (chip_id(adap) >= CHELSIO_T5) {
5477 		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5478 		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5479 		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5480 		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5481 		if (is_t5(adap)) {
5482 			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5483 			    0xffffffff);
5484 		}
5485 		for (i = 0; i < nchan; i++) {
5486 			t4_write_reg(adap, T5_PORT_REG(i,
5487 			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5488 			if (chip_id(adap) > CHELSIO_T5) {
5489 				t4_write_reg(adap, T5_PORT_REG(i,
5490 				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5491 				    0xffffffff);
5492 			}
5493 			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5494 			    0xffffffff);
5495 		}
5496 	}
5497 	if (chip_id(adap) >= CHELSIO_T6) {
5498 		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5499 	}
5500 
5501 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5502 	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5503 	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5504 	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5505 }
5506 
5507 /**
5508  *	hash_mac_addr - return the hash value of a MAC address
5509  *	@addr: the 48-bit Ethernet MAC address
5510  *
5511  *	Hashes a MAC address according to the hash function used by HW inexact
5512  *	(hash) address matching.
5513  */
5514 static int hash_mac_addr(const u8 *addr)
5515 {
5516 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5517 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5518 	a ^= b;
5519 	a ^= (a >> 12);
5520 	a ^= (a >> 6);
5521 	return a & 0x3f;
5522 }
5523 
5524 /**
5525  *	t4_config_rss_range - configure a portion of the RSS mapping table
5526  *	@adapter: the adapter
5527  *	@mbox: mbox to use for the FW command
5528  *	@viid: virtual interface whose RSS subtable is to be written
5529  *	@start: start entry in the table to write
5530  *	@n: how many table entries to write
5531  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5532  *	@nrspq: number of values in @rspq
5533  *
5534  *	Programs the selected part of the VI's RSS mapping table with the
5535  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5536  *	until the full table range is populated.
5537  *
5538  *	The caller must ensure the values in @rspq are in the range allowed for
5539  *	@viid.
5540  */
5541 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5542 			int start, int n, const u16 *rspq, unsigned int nrspq)
5543 {
5544 	int ret;
5545 	const u16 *rsp = rspq;
5546 	const u16 *rsp_end = rspq + nrspq;
5547 	struct fw_rss_ind_tbl_cmd cmd;
5548 
5549 	memset(&cmd, 0, sizeof(cmd));
5550 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5551 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5552 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5553 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5554 
5555 	/*
5556 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5557 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5558 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5559 	 * reserved.
5560 	 */
5561 	while (n > 0) {
5562 		int nq = min(n, 32);
5563 		int nq_packed = 0;
5564 		__be32 *qp = &cmd.iq0_to_iq2;
5565 
5566 		/*
5567 		 * Set up the firmware RSS command header to send the next
5568 		 * "nq" Ingress Queue IDs to the firmware.
5569 		 */
5570 		cmd.niqid = cpu_to_be16(nq);
5571 		cmd.startidx = cpu_to_be16(start);
5572 
5573 		/*
5574 		 * "nq" more done for the start of the next loop.
5575 		 */
5576 		start += nq;
5577 		n -= nq;
5578 
5579 		/*
5580 		 * While there are still Ingress Queue IDs to stuff into the
5581 		 * current firmware RSS command, retrieve them from the
5582 		 * Ingress Queue ID array and insert them into the command.
5583 		 */
5584 		while (nq > 0) {
5585 			/*
5586 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5587 			 * around the Ingress Queue ID array if necessary) and
5588 			 * insert them into the firmware RSS command at the
5589 			 * current 3-tuple position within the commad.
5590 			 */
5591 			u16 qbuf[3];
5592 			u16 *qbp = qbuf;
5593 			int nqbuf = min(3, nq);
5594 
5595 			nq -= nqbuf;
5596 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5597 			while (nqbuf && nq_packed < 32) {
5598 				nqbuf--;
5599 				nq_packed++;
5600 				*qbp++ = *rsp++;
5601 				if (rsp >= rsp_end)
5602 					rsp = rspq;
5603 			}
5604 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5605 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5606 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5607 		}
5608 
5609 		/*
5610 		 * Send this portion of the RRS table update to the firmware;
5611 		 * bail out on any errors.
5612 		 */
5613 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5614 		if (ret)
5615 			return ret;
5616 	}
5617 	return 0;
5618 }
5619 
5620 /**
5621  *	t4_config_glbl_rss - configure the global RSS mode
5622  *	@adapter: the adapter
5623  *	@mbox: mbox to use for the FW command
5624  *	@mode: global RSS mode
5625  *	@flags: mode-specific flags
5626  *
5627  *	Sets the global RSS mode.
5628  */
5629 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5630 		       unsigned int flags)
5631 {
5632 	struct fw_rss_glb_config_cmd c;
5633 
5634 	memset(&c, 0, sizeof(c));
5635 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5636 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5637 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5638 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5639 		c.u.manual.mode_pkd =
5640 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5641 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5642 		c.u.basicvirtual.mode_keymode =
5643 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5644 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5645 	} else
5646 		return -EINVAL;
5647 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5648 }
5649 
5650 /**
5651  *	t4_config_vi_rss - configure per VI RSS settings
5652  *	@adapter: the adapter
5653  *	@mbox: mbox to use for the FW command
5654  *	@viid: the VI id
5655  *	@flags: RSS flags
5656  *	@defq: id of the default RSS queue for the VI.
5657  *	@skeyidx: RSS secret key table index for non-global mode
5658  *	@skey: RSS vf_scramble key for VI.
5659  *
5660  *	Configures VI-specific RSS properties.
5661  */
5662 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5663 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5664 		     unsigned int skey)
5665 {
5666 	struct fw_rss_vi_config_cmd c;
5667 
5668 	memset(&c, 0, sizeof(c));
5669 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5670 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5671 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5672 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5673 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5674 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5675 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5676 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5677 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5678 
5679 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5680 }
5681 
5682 /* Read an RSS table row */
5683 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5684 {
5685 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5686 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5687 				   5, 0, val);
5688 }
5689 
5690 /**
5691  *	t4_read_rss - read the contents of the RSS mapping table
5692  *	@adapter: the adapter
5693  *	@map: holds the contents of the RSS mapping table
5694  *
5695  *	Reads the contents of the RSS hash->queue mapping table.
5696  */
5697 int t4_read_rss(struct adapter *adapter, u16 *map)
5698 {
5699 	u32 val;
5700 	int i, ret;
5701 	int rss_nentries = adapter->chip_params->rss_nentries;
5702 
5703 	for (i = 0; i < rss_nentries / 2; ++i) {
5704 		ret = rd_rss_row(adapter, i, &val);
5705 		if (ret)
5706 			return ret;
5707 		*map++ = G_LKPTBLQUEUE0(val);
5708 		*map++ = G_LKPTBLQUEUE1(val);
5709 	}
5710 	return 0;
5711 }
5712 
5713 /**
5714  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5715  * @adap: the adapter
5716  * @cmd: TP fw ldst address space type
5717  * @vals: where the indirect register values are stored/written
5718  * @nregs: how many indirect registers to read/write
5719  * @start_idx: index of first indirect register to read/write
5720  * @rw: Read (1) or Write (0)
5721  * @sleep_ok: if true we may sleep while awaiting command completion
5722  *
5723  * Access TP indirect registers through LDST
5724  **/
5725 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5726 			    unsigned int nregs, unsigned int start_index,
5727 			    unsigned int rw, bool sleep_ok)
5728 {
5729 	int ret = 0;
5730 	unsigned int i;
5731 	struct fw_ldst_cmd c;
5732 
5733 	for (i = 0; i < nregs; i++) {
5734 		memset(&c, 0, sizeof(c));
5735 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5736 						F_FW_CMD_REQUEST |
5737 						(rw ? F_FW_CMD_READ :
5738 						      F_FW_CMD_WRITE) |
5739 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5740 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5741 
5742 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5743 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5744 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5745 				      sleep_ok);
5746 		if (ret)
5747 			return ret;
5748 
5749 		if (rw)
5750 			vals[i] = be32_to_cpu(c.u.addrval.val);
5751 	}
5752 	return 0;
5753 }
5754 
5755 /**
5756  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5757  * @adap: the adapter
5758  * @reg_addr: Address Register
5759  * @reg_data: Data register
5760  * @buff: where the indirect register values are stored/written
5761  * @nregs: how many indirect registers to read/write
5762  * @start_index: index of first indirect register to read/write
5763  * @rw: READ(1) or WRITE(0)
5764  * @sleep_ok: if true we may sleep while awaiting command completion
5765  *
5766  * Read/Write TP indirect registers through LDST if possible.
5767  * Else, use backdoor access
5768  **/
5769 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5770 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5771 			      bool sleep_ok)
5772 {
5773 	int rc = -EINVAL;
5774 	int cmd;
5775 
5776 	switch (reg_addr) {
5777 	case A_TP_PIO_ADDR:
5778 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5779 		break;
5780 	case A_TP_TM_PIO_ADDR:
5781 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5782 		break;
5783 	case A_TP_MIB_INDEX:
5784 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5785 		break;
5786 	default:
5787 		goto indirect_access;
5788 	}
5789 
5790 	if (t4_use_ldst(adap))
5791 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5792 				      sleep_ok);
5793 
5794 indirect_access:
5795 
5796 	if (rc) {
5797 		if (rw)
5798 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5799 					 start_index);
5800 		else
5801 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5802 					  start_index);
5803 	}
5804 }
5805 
5806 /**
5807  * t4_tp_pio_read - Read TP PIO registers
5808  * @adap: the adapter
5809  * @buff: where the indirect register values are written
5810  * @nregs: how many indirect registers to read
5811  * @start_index: index of first indirect register to read
5812  * @sleep_ok: if true we may sleep while awaiting command completion
5813  *
5814  * Read TP PIO Registers
5815  **/
5816 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5817 		    u32 start_index, bool sleep_ok)
5818 {
5819 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5820 			  start_index, 1, sleep_ok);
5821 }
5822 
5823 /**
5824  * t4_tp_pio_write - Write TP PIO registers
5825  * @adap: the adapter
5826  * @buff: where the indirect register values are stored
5827  * @nregs: how many indirect registers to write
5828  * @start_index: index of first indirect register to write
5829  * @sleep_ok: if true we may sleep while awaiting command completion
5830  *
5831  * Write TP PIO Registers
5832  **/
5833 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5834 		     u32 start_index, bool sleep_ok)
5835 {
5836 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5837 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5838 }
5839 
5840 /**
5841  * t4_tp_tm_pio_read - Read TP TM PIO registers
5842  * @adap: the adapter
5843  * @buff: where the indirect register values are written
5844  * @nregs: how many indirect registers to read
5845  * @start_index: index of first indirect register to read
5846  * @sleep_ok: if true we may sleep while awaiting command completion
5847  *
5848  * Read TP TM PIO Registers
5849  **/
5850 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5851 		       u32 start_index, bool sleep_ok)
5852 {
5853 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5854 			  nregs, start_index, 1, sleep_ok);
5855 }
5856 
5857 /**
5858  * t4_tp_mib_read - Read TP MIB registers
5859  * @adap: the adapter
5860  * @buff: where the indirect register values are written
5861  * @nregs: how many indirect registers to read
5862  * @start_index: index of first indirect register to read
5863  * @sleep_ok: if true we may sleep while awaiting command completion
5864  *
5865  * Read TP MIB Registers
5866  **/
5867 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5868 		    bool sleep_ok)
5869 {
5870 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5871 			  start_index, 1, sleep_ok);
5872 }
5873 
5874 /**
5875  *	t4_read_rss_key - read the global RSS key
5876  *	@adap: the adapter
5877  *	@key: 10-entry array holding the 320-bit RSS key
5878  * 	@sleep_ok: if true we may sleep while awaiting command completion
5879  *
5880  *	Reads the global 320-bit RSS key.
5881  */
5882 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5883 {
5884 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5885 }
5886 
5887 /**
5888  *	t4_write_rss_key - program one of the RSS keys
5889  *	@adap: the adapter
5890  *	@key: 10-entry array holding the 320-bit RSS key
5891  *	@idx: which RSS key to write
5892  * 	@sleep_ok: if true we may sleep while awaiting command completion
5893  *
5894  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5895  *	0..15 the corresponding entry in the RSS key table is written,
5896  *	otherwise the global RSS key is written.
5897  */
5898 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5899 		      bool sleep_ok)
5900 {
5901 	u8 rss_key_addr_cnt = 16;
5902 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5903 
5904 	/*
5905 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5906 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5907 	 * as index[5:4](upper 2) into key table
5908 	 */
5909 	if ((chip_id(adap) > CHELSIO_T5) &&
5910 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5911 		rss_key_addr_cnt = 32;
5912 
5913 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5914 
5915 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5916 		if (rss_key_addr_cnt > 16)
5917 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5918 				     vrt | V_KEYWRADDRX(idx >> 4) |
5919 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5920 		else
5921 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5922 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5923 	}
5924 }
5925 
5926 /**
5927  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5928  *	@adapter: the adapter
5929  *	@index: the entry in the PF RSS table to read
5930  *	@valp: where to store the returned value
5931  * 	@sleep_ok: if true we may sleep while awaiting command completion
5932  *
5933  *	Reads the PF RSS Configuration Table at the specified index and returns
5934  *	the value found there.
5935  */
5936 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5937 			   u32 *valp, bool sleep_ok)
5938 {
5939 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5940 }
5941 
5942 /**
5943  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5944  *	@adapter: the adapter
5945  *	@index: the entry in the VF RSS table to read
5946  *	@val: the value to store
5947  * 	@sleep_ok: if true we may sleep while awaiting command completion
5948  *
5949  *	Writes the PF RSS Configuration Table at the specified index with the
5950  *	specified value.
5951  */
5952 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5953 			    u32 val, bool sleep_ok)
5954 {
5955 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5956 			sleep_ok);
5957 }
5958 
5959 /**
5960  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5961  *	@adapter: the adapter
5962  *	@index: the entry in the VF RSS table to read
5963  *	@vfl: where to store the returned VFL
5964  *	@vfh: where to store the returned VFH
5965  * 	@sleep_ok: if true we may sleep while awaiting command completion
5966  *
5967  *	Reads the VF RSS Configuration Table at the specified index and returns
5968  *	the (VFL, VFH) values found there.
5969  */
5970 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5971 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5972 {
5973 	u32 vrt, mask, data;
5974 
5975 	if (chip_id(adapter) <= CHELSIO_T5) {
5976 		mask = V_VFWRADDR(M_VFWRADDR);
5977 		data = V_VFWRADDR(index);
5978 	} else {
5979 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5980 		 data = V_T6_VFWRADDR(index);
5981 	}
5982 	/*
5983 	 * Request that the index'th VF Table values be read into VFL/VFH.
5984 	 */
5985 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5986 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5987 	vrt |= data | F_VFRDEN;
5988 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5989 
5990 	/*
5991 	 * Grab the VFL/VFH values ...
5992 	 */
5993 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5994 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5995 }
5996 
5997 /**
5998  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5999  *
6000  *	@adapter: the adapter
6001  *	@index: the entry in the VF RSS table to write
6002  *	@vfl: the VFL to store
6003  *	@vfh: the VFH to store
6004  *
6005  *	Writes the VF RSS Configuration Table at the specified index with the
6006  *	specified (VFL, VFH) values.
6007  */
6008 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
6009 			    u32 vfl, u32 vfh, bool sleep_ok)
6010 {
6011 	u32 vrt, mask, data;
6012 
6013 	if (chip_id(adapter) <= CHELSIO_T5) {
6014 		mask = V_VFWRADDR(M_VFWRADDR);
6015 		data = V_VFWRADDR(index);
6016 	} else {
6017 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6018 		data = V_T6_VFWRADDR(index);
6019 	}
6020 
6021 	/*
6022 	 * Load up VFL/VFH with the values to be written ...
6023 	 */
6024 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6025 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6026 
6027 	/*
6028 	 * Write the VFL/VFH into the VF Table at index'th location.
6029 	 */
6030 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6031 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6032 	vrt |= data | F_VFRDEN;
6033 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6034 }
6035 
6036 /**
6037  *	t4_read_rss_pf_map - read PF RSS Map
6038  *	@adapter: the adapter
6039  * 	@sleep_ok: if true we may sleep while awaiting command completion
6040  *
6041  *	Reads the PF RSS Map register and returns its value.
6042  */
6043 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
6044 {
6045 	u32 pfmap;
6046 
6047 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6048 
6049 	return pfmap;
6050 }
6051 
6052 /**
6053  *	t4_write_rss_pf_map - write PF RSS Map
6054  *	@adapter: the adapter
6055  *	@pfmap: PF RSS Map value
6056  *
6057  *	Writes the specified value to the PF RSS Map register.
6058  */
6059 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6060 {
6061 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6062 }
6063 
6064 /**
6065  *	t4_read_rss_pf_mask - read PF RSS Mask
6066  *	@adapter: the adapter
6067  * 	@sleep_ok: if true we may sleep while awaiting command completion
6068  *
6069  *	Reads the PF RSS Mask register and returns its value.
6070  */
6071 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6072 {
6073 	u32 pfmask;
6074 
6075 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6076 
6077 	return pfmask;
6078 }
6079 
6080 /**
6081  *	t4_write_rss_pf_mask - write PF RSS Mask
6082  *	@adapter: the adapter
6083  *	@pfmask: PF RSS Mask value
6084  *
6085  *	Writes the specified value to the PF RSS Mask register.
6086  */
6087 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6088 {
6089 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6090 }
6091 
6092 /**
6093  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6094  *	@adap: the adapter
6095  *	@v4: holds the TCP/IP counter values
6096  *	@v6: holds the TCP/IPv6 counter values
6097  * 	@sleep_ok: if true we may sleep while awaiting command completion
6098  *
6099  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6100  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6101  */
6102 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6103 			 struct tp_tcp_stats *v6, bool sleep_ok)
6104 {
6105 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6106 
6107 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6108 #define STAT(x)     val[STAT_IDX(x)]
6109 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6110 
6111 	if (v4) {
6112 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6113 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6114 		v4->tcp_out_rsts = STAT(OUT_RST);
6115 		v4->tcp_in_segs  = STAT64(IN_SEG);
6116 		v4->tcp_out_segs = STAT64(OUT_SEG);
6117 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6118 	}
6119 	if (v6) {
6120 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6121 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6122 		v6->tcp_out_rsts = STAT(OUT_RST);
6123 		v6->tcp_in_segs  = STAT64(IN_SEG);
6124 		v6->tcp_out_segs = STAT64(OUT_SEG);
6125 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6126 	}
6127 #undef STAT64
6128 #undef STAT
6129 #undef STAT_IDX
6130 }
6131 
6132 /**
6133  *	t4_tp_get_err_stats - read TP's error MIB counters
6134  *	@adap: the adapter
6135  *	@st: holds the counter values
6136  * 	@sleep_ok: if true we may sleep while awaiting command completion
6137  *
6138  *	Returns the values of TP's error counters.
6139  */
6140 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6141 			 bool sleep_ok)
6142 {
6143 	int nchan = adap->chip_params->nchan;
6144 
6145 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6146 		       sleep_ok);
6147 
6148 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6149 		       sleep_ok);
6150 
6151 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6152 		       sleep_ok);
6153 
6154 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6155 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6156 
6157 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6158 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6159 
6160 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6161 		       sleep_ok);
6162 
6163 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6164 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6165 
6166 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6167 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6168 
6169 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6170 		       sleep_ok);
6171 }
6172 
6173 /**
6174  *	t4_tp_get_err_stats - read TP's error MIB counters
6175  *	@adap: the adapter
6176  *	@st: holds the counter values
6177  * 	@sleep_ok: if true we may sleep while awaiting command completion
6178  *
6179  *	Returns the values of TP's error counters.
6180  */
6181 void t4_tp_get_tnl_stats(struct adapter *adap, struct tp_tnl_stats *st,
6182 			 bool sleep_ok)
6183 {
6184 	int nchan = adap->chip_params->nchan;
6185 
6186 	t4_tp_mib_read(adap, st->out_pkt, nchan, A_TP_MIB_TNL_OUT_PKT_0,
6187 		       sleep_ok);
6188 	t4_tp_mib_read(adap, st->in_pkt, nchan, A_TP_MIB_TNL_IN_PKT_0,
6189 		       sleep_ok);
6190 }
6191 
6192 /**
6193  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6194  *	@adap: the adapter
6195  *	@st: holds the counter values
6196  *
6197  *	Returns the values of TP's proxy counters.
6198  */
6199 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6200     bool sleep_ok)
6201 {
6202 	int nchan = adap->chip_params->nchan;
6203 
6204 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6205 }
6206 
6207 /**
6208  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6209  *	@adap: the adapter
6210  *	@st: holds the counter values
6211  * 	@sleep_ok: if true we may sleep while awaiting command completion
6212  *
6213  *	Returns the values of TP's CPL counters.
6214  */
6215 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6216 			 bool sleep_ok)
6217 {
6218 	int nchan = adap->chip_params->nchan;
6219 
6220 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6221 
6222 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6223 }
6224 
6225 /**
6226  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6227  *	@adap: the adapter
6228  *	@st: holds the counter values
6229  *
6230  *	Returns the values of TP's RDMA counters.
6231  */
6232 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6233 			  bool sleep_ok)
6234 {
6235 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6236 		       sleep_ok);
6237 }
6238 
6239 /**
6240  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6241  *	@adap: the adapter
6242  *	@idx: the port index
6243  *	@st: holds the counter values
6244  * 	@sleep_ok: if true we may sleep while awaiting command completion
6245  *
6246  *	Returns the values of TP's FCoE counters for the selected port.
6247  */
6248 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6249 		       struct tp_fcoe_stats *st, bool sleep_ok)
6250 {
6251 	u32 val[2];
6252 
6253 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6254 		       sleep_ok);
6255 
6256 	t4_tp_mib_read(adap, &st->frames_drop, 1,
6257 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6258 
6259 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6260 		       sleep_ok);
6261 
6262 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6263 }
6264 
6265 /**
6266  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6267  *	@adap: the adapter
6268  *	@st: holds the counter values
6269  * 	@sleep_ok: if true we may sleep while awaiting command completion
6270  *
6271  *	Returns the values of TP's counters for non-TCP directly-placed packets.
6272  */
6273 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6274 		      bool sleep_ok)
6275 {
6276 	u32 val[4];
6277 
6278 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6279 
6280 	st->frames = val[0];
6281 	st->drops = val[1];
6282 	st->octets = ((u64)val[2] << 32) | val[3];
6283 }
6284 
6285 /**
6286  *	t4_tp_get_tid_stats - read TP's tid MIB counters.
6287  *	@adap: the adapter
6288  *	@st: holds the counter values
6289  * 	@sleep_ok: if true we may sleep while awaiting command completion
6290  *
6291  *	Returns the values of TP's counters for tids.
6292  */
6293 void t4_tp_get_tid_stats(struct adapter *adap, struct tp_tid_stats *st,
6294 		      bool sleep_ok)
6295 {
6296 
6297 	t4_tp_mib_read(adap, &st->del, 4, A_TP_MIB_TID_DEL, sleep_ok);
6298 }
6299 
6300 /**
6301  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6302  *	@adap: the adapter
6303  *	@mtus: where to store the MTU values
6304  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6305  *
6306  *	Reads the HW path MTU table.
6307  */
6308 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6309 {
6310 	u32 v;
6311 	int i;
6312 
6313 	for (i = 0; i < NMTUS; ++i) {
6314 		t4_write_reg(adap, A_TP_MTU_TABLE,
6315 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6316 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6317 		mtus[i] = G_MTUVALUE(v);
6318 		if (mtu_log)
6319 			mtu_log[i] = G_MTUWIDTH(v);
6320 	}
6321 }
6322 
6323 /**
6324  *	t4_read_cong_tbl - reads the congestion control table
6325  *	@adap: the adapter
6326  *	@incr: where to store the alpha values
6327  *
6328  *	Reads the additive increments programmed into the HW congestion
6329  *	control table.
6330  */
6331 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6332 {
6333 	unsigned int mtu, w;
6334 
6335 	for (mtu = 0; mtu < NMTUS; ++mtu)
6336 		for (w = 0; w < NCCTRL_WIN; ++w) {
6337 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6338 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6339 			incr[mtu][w] = (u16)t4_read_reg(adap,
6340 						A_TP_CCTRL_TABLE) & 0x1fff;
6341 		}
6342 }
6343 
6344 /**
6345  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6346  *	@adap: the adapter
6347  *	@addr: the indirect TP register address
6348  *	@mask: specifies the field within the register to modify
6349  *	@val: new value for the field
6350  *
6351  *	Sets a field of an indirect TP register to the given value.
6352  */
6353 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6354 			    unsigned int mask, unsigned int val)
6355 {
6356 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6357 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6358 	t4_write_reg(adap, A_TP_PIO_DATA, val);
6359 }
6360 
6361 /**
6362  *	init_cong_ctrl - initialize congestion control parameters
6363  *	@a: the alpha values for congestion control
6364  *	@b: the beta values for congestion control
6365  *
6366  *	Initialize the congestion control parameters.
6367  */
6368 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6369 {
6370 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6371 	a[9] = 2;
6372 	a[10] = 3;
6373 	a[11] = 4;
6374 	a[12] = 5;
6375 	a[13] = 6;
6376 	a[14] = 7;
6377 	a[15] = 8;
6378 	a[16] = 9;
6379 	a[17] = 10;
6380 	a[18] = 14;
6381 	a[19] = 17;
6382 	a[20] = 21;
6383 	a[21] = 25;
6384 	a[22] = 30;
6385 	a[23] = 35;
6386 	a[24] = 45;
6387 	a[25] = 60;
6388 	a[26] = 80;
6389 	a[27] = 100;
6390 	a[28] = 200;
6391 	a[29] = 300;
6392 	a[30] = 400;
6393 	a[31] = 500;
6394 
6395 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6396 	b[9] = b[10] = 1;
6397 	b[11] = b[12] = 2;
6398 	b[13] = b[14] = b[15] = b[16] = 3;
6399 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6400 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6401 	b[28] = b[29] = 6;
6402 	b[30] = b[31] = 7;
6403 }
6404 
6405 /* The minimum additive increment value for the congestion control table */
6406 #define CC_MIN_INCR 2U
6407 
6408 /**
6409  *	t4_load_mtus - write the MTU and congestion control HW tables
6410  *	@adap: the adapter
6411  *	@mtus: the values for the MTU table
6412  *	@alpha: the values for the congestion control alpha parameter
6413  *	@beta: the values for the congestion control beta parameter
6414  *
6415  *	Write the HW MTU table with the supplied MTUs and the high-speed
6416  *	congestion control table with the supplied alpha, beta, and MTUs.
6417  *	We write the two tables together because the additive increments
6418  *	depend on the MTUs.
6419  */
6420 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6421 		  const unsigned short *alpha, const unsigned short *beta)
6422 {
6423 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6424 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6425 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6426 		28672, 40960, 57344, 81920, 114688, 163840, 229376
6427 	};
6428 
6429 	unsigned int i, w;
6430 
6431 	for (i = 0; i < NMTUS; ++i) {
6432 		unsigned int mtu = mtus[i];
6433 		unsigned int log2 = fls(mtu);
6434 
6435 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6436 			log2--;
6437 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6438 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6439 
6440 		for (w = 0; w < NCCTRL_WIN; ++w) {
6441 			unsigned int inc;
6442 
6443 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6444 				  CC_MIN_INCR);
6445 
6446 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6447 				     (w << 16) | (beta[w] << 13) | inc);
6448 		}
6449 	}
6450 }
6451 
6452 /**
6453  *	t4_set_pace_tbl - set the pace table
6454  *	@adap: the adapter
6455  *	@pace_vals: the pace values in microseconds
6456  *	@start: index of the first entry in the HW pace table to set
6457  *	@n: how many entries to set
6458  *
6459  *	Sets (a subset of the) HW pace table.
6460  */
6461 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6462 		     unsigned int start, unsigned int n)
6463 {
6464 	unsigned int vals[NTX_SCHED], i;
6465 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6466 
6467 	if (n > NTX_SCHED)
6468 	    return -ERANGE;
6469 
6470 	/* convert values from us to dack ticks, rounding to closest value */
6471 	for (i = 0; i < n; i++, pace_vals++) {
6472 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6473 		if (vals[i] > 0x7ff)
6474 			return -ERANGE;
6475 		if (*pace_vals && vals[i] == 0)
6476 			return -ERANGE;
6477 	}
6478 	for (i = 0; i < n; i++, start++)
6479 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6480 	return 0;
6481 }
6482 
6483 /**
6484  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6485  *	@adap: the adapter
6486  *	@kbps: target rate in Kbps
6487  *	@sched: the scheduler index
6488  *
6489  *	Configure a Tx HW scheduler for the target rate.
6490  */
6491 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6492 {
6493 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6494 	unsigned int clk = adap->params.vpd.cclk * 1000;
6495 	unsigned int selected_cpt = 0, selected_bpt = 0;
6496 
6497 	if (kbps > 0) {
6498 		kbps *= 125;     /* -> bytes */
6499 		for (cpt = 1; cpt <= 255; cpt++) {
6500 			tps = clk / cpt;
6501 			bpt = (kbps + tps / 2) / tps;
6502 			if (bpt > 0 && bpt <= 255) {
6503 				v = bpt * tps;
6504 				delta = v >= kbps ? v - kbps : kbps - v;
6505 				if (delta < mindelta) {
6506 					mindelta = delta;
6507 					selected_cpt = cpt;
6508 					selected_bpt = bpt;
6509 				}
6510 			} else if (selected_cpt)
6511 				break;
6512 		}
6513 		if (!selected_cpt)
6514 			return -EINVAL;
6515 	}
6516 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6517 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6518 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6519 	if (sched & 1)
6520 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6521 	else
6522 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6523 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6524 	return 0;
6525 }
6526 
6527 /**
6528  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6529  *	@adap: the adapter
6530  *	@sched: the scheduler index
6531  *	@ipg: the interpacket delay in tenths of nanoseconds
6532  *
6533  *	Set the interpacket delay for a HW packet rate scheduler.
6534  */
6535 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6536 {
6537 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6538 
6539 	/* convert ipg to nearest number of core clocks */
6540 	ipg *= core_ticks_per_usec(adap);
6541 	ipg = (ipg + 5000) / 10000;
6542 	if (ipg > M_TXTIMERSEPQ0)
6543 		return -EINVAL;
6544 
6545 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6546 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6547 	if (sched & 1)
6548 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6549 	else
6550 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6551 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6552 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6553 	return 0;
6554 }
6555 
6556 /*
6557  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6558  * clocks.  The formula is
6559  *
6560  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6561  *
6562  * which is equivalent to
6563  *
6564  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6565  */
6566 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6567 {
6568 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6569 
6570 	return v * 62 + v / 2;
6571 }
6572 
6573 /**
6574  *	t4_get_chan_txrate - get the current per channel Tx rates
6575  *	@adap: the adapter
6576  *	@nic_rate: rates for NIC traffic
6577  *	@ofld_rate: rates for offloaded traffic
6578  *
6579  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6580  *	for each channel.
6581  */
6582 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6583 {
6584 	u32 v;
6585 
6586 	v = t4_read_reg(adap, A_TP_TX_TRATE);
6587 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6588 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6589 	if (adap->chip_params->nchan > 2) {
6590 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6591 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6592 	}
6593 
6594 	v = t4_read_reg(adap, A_TP_TX_ORATE);
6595 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6596 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6597 	if (adap->chip_params->nchan > 2) {
6598 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6599 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6600 	}
6601 }
6602 
6603 /**
6604  *	t4_set_trace_filter - configure one of the tracing filters
6605  *	@adap: the adapter
6606  *	@tp: the desired trace filter parameters
6607  *	@idx: which filter to configure
6608  *	@enable: whether to enable or disable the filter
6609  *
6610  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6611  *	it indicates that the filter is already written in the register and it
6612  *	just needs to be enabled or disabled.
6613  */
6614 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6615     int idx, int enable)
6616 {
6617 	int i, ofst = idx * 4;
6618 	u32 data_reg, mask_reg, cfg;
6619 	u32 multitrc = F_TRCMULTIFILTER;
6620 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6621 
6622 	if (idx < 0 || idx >= NTRACE)
6623 		return -EINVAL;
6624 
6625 	if (tp == NULL || !enable) {
6626 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6627 		    enable ? en : 0);
6628 		return 0;
6629 	}
6630 
6631 	/*
6632 	 * TODO - After T4 data book is updated, specify the exact
6633 	 * section below.
6634 	 *
6635 	 * See T4 data book - MPS section for a complete description
6636 	 * of the below if..else handling of A_MPS_TRC_CFG register
6637 	 * value.
6638 	 */
6639 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6640 	if (cfg & F_TRCMULTIFILTER) {
6641 		/*
6642 		 * If multiple tracers are enabled, then maximum
6643 		 * capture size is 2.5KB (FIFO size of a single channel)
6644 		 * minus 2 flits for CPL_TRACE_PKT header.
6645 		 */
6646 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6647 			return -EINVAL;
6648 	} else {
6649 		/*
6650 		 * If multiple tracers are disabled, to avoid deadlocks
6651 		 * maximum packet capture size of 9600 bytes is recommended.
6652 		 * Also in this mode, only trace0 can be enabled and running.
6653 		 */
6654 		multitrc = 0;
6655 		if (tp->snap_len > 9600 || idx)
6656 			return -EINVAL;
6657 	}
6658 
6659 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6660 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6661 	    tp->min_len > M_TFMINPKTSIZE)
6662 		return -EINVAL;
6663 
6664 	/* stop the tracer we'll be changing */
6665 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6666 
6667 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6668 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6669 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6670 
6671 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6672 		t4_write_reg(adap, data_reg, tp->data[i]);
6673 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6674 	}
6675 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6676 		     V_TFCAPTUREMAX(tp->snap_len) |
6677 		     V_TFMINPKTSIZE(tp->min_len));
6678 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6679 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6680 		     (is_t4(adap) ?
6681 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6682 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6683 
6684 	return 0;
6685 }
6686 
6687 /**
6688  *	t4_get_trace_filter - query one of the tracing filters
6689  *	@adap: the adapter
6690  *	@tp: the current trace filter parameters
6691  *	@idx: which trace filter to query
6692  *	@enabled: non-zero if the filter is enabled
6693  *
6694  *	Returns the current settings of one of the HW tracing filters.
6695  */
6696 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6697 			 int *enabled)
6698 {
6699 	u32 ctla, ctlb;
6700 	int i, ofst = idx * 4;
6701 	u32 data_reg, mask_reg;
6702 
6703 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6704 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6705 
6706 	if (is_t4(adap)) {
6707 		*enabled = !!(ctla & F_TFEN);
6708 		tp->port =  G_TFPORT(ctla);
6709 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6710 	} else {
6711 		*enabled = !!(ctla & F_T5_TFEN);
6712 		tp->port = G_T5_TFPORT(ctla);
6713 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6714 	}
6715 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6716 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6717 	tp->skip_ofst = G_TFOFFSET(ctla);
6718 	tp->skip_len = G_TFLENGTH(ctla);
6719 
6720 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6721 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6722 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6723 
6724 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6725 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6726 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6727 	}
6728 }
6729 
6730 /**
6731  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6732  *	@adap: the adapter
6733  *	@cnt: where to store the count statistics
6734  *	@cycles: where to store the cycle statistics
6735  *
6736  *	Returns performance statistics from PMTX.
6737  */
6738 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6739 {
6740 	int i;
6741 	u32 data[2];
6742 
6743 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6744 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6745 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6746 		if (is_t4(adap))
6747 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6748 		else {
6749 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6750 					 A_PM_TX_DBG_DATA, data, 2,
6751 					 A_PM_TX_DBG_STAT_MSB);
6752 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6753 		}
6754 	}
6755 }
6756 
6757 /**
6758  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6759  *	@adap: the adapter
6760  *	@cnt: where to store the count statistics
6761  *	@cycles: where to store the cycle statistics
6762  *
6763  *	Returns performance statistics from PMRX.
6764  */
6765 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6766 {
6767 	int i;
6768 	u32 data[2];
6769 
6770 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6771 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6772 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6773 		if (is_t4(adap)) {
6774 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6775 		} else {
6776 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6777 					 A_PM_RX_DBG_DATA, data, 2,
6778 					 A_PM_RX_DBG_STAT_MSB);
6779 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6780 		}
6781 	}
6782 }
6783 
6784 /**
6785  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6786  *	@adap: the adapter
6787  *	@idx: the port index
6788  *
6789  *	Returns a bitmap indicating which MPS buffer groups are associated
6790  *	with the given port.  Bit i is set if buffer group i is used by the
6791  *	port.
6792  */
6793 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6794 {
6795 	u32 n;
6796 
6797 	if (adap->params.mps_bg_map)
6798 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6799 
6800 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6801 	if (n == 0)
6802 		return idx == 0 ? 0xf : 0;
6803 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6804 		return idx < 2 ? (3 << (2 * idx)) : 0;
6805 	return 1 << idx;
6806 }
6807 
6808 /*
6809  * TP RX e-channels associated with the port.
6810  */
6811 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6812 {
6813 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6814 	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6815 
6816 	if (n == 0)
6817 		return idx == 0 ? all_chan : 0;
6818 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6819 		return idx < 2 ? (3 << (2 * idx)) : 0;
6820 	return 1 << idx;
6821 }
6822 
6823 /*
6824  * TP RX c-channel associated with the port.
6825  */
6826 static unsigned int t4_get_rx_c_chan(struct adapter *adap, int idx)
6827 {
6828 	u32 param, val;
6829 	int ret;
6830 
6831 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6832 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPCHMAP));
6833 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
6834 	if (!ret)
6835 		return (val >> (8 * idx)) & 0xff;
6836 
6837         return 0;
6838 }
6839 
6840 /**
6841  *      t4_get_port_type_description - return Port Type string description
6842  *      @port_type: firmware Port Type enumeration
6843  */
6844 const char *t4_get_port_type_description(enum fw_port_type port_type)
6845 {
6846 	static const char *const port_type_description[] = {
6847 		"Fiber_XFI",
6848 		"Fiber_XAUI",
6849 		"BT_SGMII",
6850 		"BT_XFI",
6851 		"BT_XAUI",
6852 		"KX4",
6853 		"CX4",
6854 		"KX",
6855 		"KR",
6856 		"SFP",
6857 		"BP_AP",
6858 		"BP4_AP",
6859 		"QSFP_10G",
6860 		"QSA",
6861 		"QSFP",
6862 		"BP40_BA",
6863 		"KR4_100G",
6864 		"CR4_QSFP",
6865 		"CR_QSFP",
6866 		"CR2_QSFP",
6867 		"SFP28",
6868 		"KR_SFP28",
6869 	};
6870 
6871 	if (port_type < ARRAY_SIZE(port_type_description))
6872 		return port_type_description[port_type];
6873 	return "UNKNOWN";
6874 }
6875 
6876 /**
6877  *      t4_get_port_stats_offset - collect port stats relative to a previous
6878  *				   snapshot
6879  *      @adap: The adapter
6880  *      @idx: The port
6881  *      @stats: Current stats to fill
6882  *      @offset: Previous stats snapshot
6883  */
6884 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6885 		struct port_stats *stats,
6886 		struct port_stats *offset)
6887 {
6888 	u64 *s, *o;
6889 	int i;
6890 
6891 	t4_get_port_stats(adap, idx, stats);
6892 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6893 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6894 			i++, s++, o++)
6895 		*s -= *o;
6896 }
6897 
6898 /**
6899  *	t4_get_port_stats - collect port statistics
6900  *	@adap: the adapter
6901  *	@idx: the port index
6902  *	@p: the stats structure to fill
6903  *
6904  *	Collect statistics related to the given port from HW.
6905  */
6906 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6907 {
6908 	struct port_info *pi = adap->port[idx];
6909 	u32 bgmap = pi->mps_bg_map;
6910 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6911 
6912 #define GET_STAT(name) \
6913 	t4_read_reg64(adap, \
6914 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6915 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6916 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6917 
6918 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6919 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6920 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6921 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6922 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6923 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6924 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6925 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6926 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6927 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6928 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6929 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6930 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6931 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6932 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6933 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6934 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6935 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6936 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6937 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6938 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6939 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6940 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6941 
6942 	if (chip_id(adap) >= CHELSIO_T5) {
6943 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6944 			p->tx_frames -= p->tx_pause;
6945 			p->tx_octets -= p->tx_pause * 64;
6946 		}
6947 		if (stat_ctl & F_COUNTPAUSEMCTX)
6948 			p->tx_mcast_frames -= p->tx_pause;
6949 	}
6950 
6951 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6952 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6953 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6954 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6955 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6956 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6957 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6958 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6959 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6960 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6961 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6962 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6963 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6964 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6965 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6966 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6967 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6968 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6969 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6970 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6971 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6972 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6973 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6974 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6975 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6976 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6977 
6978 	if (pi->fcs_reg != -1)
6979 		p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base;
6980 
6981 	if (chip_id(adap) >= CHELSIO_T5) {
6982 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6983 			p->rx_frames -= p->rx_pause;
6984 			p->rx_octets -= p->rx_pause * 64;
6985 		}
6986 		if (stat_ctl & F_COUNTPAUSEMCRX)
6987 			p->rx_mcast_frames -= p->rx_pause;
6988 	}
6989 
6990 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6991 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6992 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6993 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6994 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6995 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6996 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6997 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6998 
6999 #undef GET_STAT
7000 #undef GET_STAT_COM
7001 }
7002 
7003 /**
7004  *	t4_get_lb_stats - collect loopback port statistics
7005  *	@adap: the adapter
7006  *	@idx: the loopback port index
7007  *	@p: the stats structure to fill
7008  *
7009  *	Return HW statistics for the given loopback port.
7010  */
7011 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
7012 {
7013 
7014 #define GET_STAT(name) \
7015 	t4_read_reg64(adap, \
7016 	(is_t4(adap) ? \
7017 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
7018 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
7019 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
7020 
7021 	p->octets	= GET_STAT(BYTES);
7022 	p->frames	= GET_STAT(FRAMES);
7023 	p->bcast_frames	= GET_STAT(BCAST);
7024 	p->mcast_frames	= GET_STAT(MCAST);
7025 	p->ucast_frames	= GET_STAT(UCAST);
7026 	p->error_frames	= GET_STAT(ERROR);
7027 
7028 	p->frames_64		= GET_STAT(64B);
7029 	p->frames_65_127	= GET_STAT(65B_127B);
7030 	p->frames_128_255	= GET_STAT(128B_255B);
7031 	p->frames_256_511	= GET_STAT(256B_511B);
7032 	p->frames_512_1023	= GET_STAT(512B_1023B);
7033 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
7034 	p->frames_1519_max	= GET_STAT(1519B_MAX);
7035 	p->drop			= GET_STAT(DROP_FRAMES);
7036 
7037 	if (idx < adap->params.nports) {
7038 		u32 bg = adap2pinfo(adap, idx)->mps_bg_map;
7039 
7040 		p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
7041 		p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
7042 		p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
7043 		p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
7044 		p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
7045 		p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
7046 		p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
7047 		p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
7048 	}
7049 
7050 #undef GET_STAT
7051 #undef GET_STAT_COM
7052 }
7053 
7054 /**
7055  *	t4_wol_magic_enable - enable/disable magic packet WoL
7056  *	@adap: the adapter
7057  *	@port: the physical port index
7058  *	@addr: MAC address expected in magic packets, %NULL to disable
7059  *
7060  *	Enables/disables magic packet wake-on-LAN for the selected port.
7061  */
7062 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7063 			 const u8 *addr)
7064 {
7065 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7066 
7067 	if (is_t4(adap)) {
7068 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7069 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7070 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7071 	} else {
7072 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7073 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7074 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7075 	}
7076 
7077 	if (addr) {
7078 		t4_write_reg(adap, mag_id_reg_l,
7079 			     (addr[2] << 24) | (addr[3] << 16) |
7080 			     (addr[4] << 8) | addr[5]);
7081 		t4_write_reg(adap, mag_id_reg_h,
7082 			     (addr[0] << 8) | addr[1]);
7083 	}
7084 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7085 			 V_MAGICEN(addr != NULL));
7086 }
7087 
7088 /**
7089  *	t4_wol_pat_enable - enable/disable pattern-based WoL
7090  *	@adap: the adapter
7091  *	@port: the physical port index
7092  *	@map: bitmap of which HW pattern filters to set
7093  *	@mask0: byte mask for bytes 0-63 of a packet
7094  *	@mask1: byte mask for bytes 64-127 of a packet
7095  *	@crc: Ethernet CRC for selected bytes
7096  *	@enable: enable/disable switch
7097  *
7098  *	Sets the pattern filters indicated in @map to mask out the bytes
7099  *	specified in @mask0/@mask1 in received packets and compare the CRC of
7100  *	the resulting packet against @crc.  If @enable is %true pattern-based
7101  *	WoL is enabled, otherwise disabled.
7102  */
7103 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7104 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
7105 {
7106 	int i;
7107 	u32 port_cfg_reg;
7108 
7109 	if (is_t4(adap))
7110 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7111 	else
7112 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7113 
7114 	if (!enable) {
7115 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7116 		return 0;
7117 	}
7118 	if (map > 0xff)
7119 		return -EINVAL;
7120 
7121 #define EPIO_REG(name) \
7122 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7123 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7124 
7125 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7126 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7127 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7128 
7129 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7130 		if (!(map & 1))
7131 			continue;
7132 
7133 		/* write byte masks */
7134 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7135 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7136 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7137 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7138 			return -ETIMEDOUT;
7139 
7140 		/* write CRC */
7141 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
7142 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7143 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7144 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7145 			return -ETIMEDOUT;
7146 	}
7147 #undef EPIO_REG
7148 
7149 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7150 	return 0;
7151 }
7152 
7153 /*     t4_mk_filtdelwr - create a delete filter WR
7154  *     @ftid: the filter ID
7155  *     @wr: the filter work request to populate
7156  *     @qid: ingress queue to receive the delete notification
7157  *
7158  *     Creates a filter work request to delete the supplied filter.  If @qid is
7159  *     negative the delete notification is suppressed.
7160  */
7161 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7162 {
7163 	memset(wr, 0, sizeof(*wr));
7164 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7165 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7166 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7167 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7168 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7169 	if (qid >= 0)
7170 		wr->rx_chan_rx_rpl_iq =
7171 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7172 }
7173 
7174 #define INIT_CMD(var, cmd, rd_wr) do { \
7175 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7176 					F_FW_CMD_REQUEST | \
7177 					F_FW_CMD_##rd_wr); \
7178 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7179 } while (0)
7180 
7181 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7182 			  u32 addr, u32 val)
7183 {
7184 	u32 ldst_addrspace;
7185 	struct fw_ldst_cmd c;
7186 
7187 	memset(&c, 0, sizeof(c));
7188 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7189 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7190 					F_FW_CMD_REQUEST |
7191 					F_FW_CMD_WRITE |
7192 					ldst_addrspace);
7193 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7194 	c.u.addrval.addr = cpu_to_be32(addr);
7195 	c.u.addrval.val = cpu_to_be32(val);
7196 
7197 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7198 }
7199 
7200 /**
7201  *	t4_mdio_rd - read a PHY register through MDIO
7202  *	@adap: the adapter
7203  *	@mbox: mailbox to use for the FW command
7204  *	@phy_addr: the PHY address
7205  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7206  *	@reg: the register to read
7207  *	@valp: where to store the value
7208  *
7209  *	Issues a FW command through the given mailbox to read a PHY register.
7210  */
7211 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7212 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7213 {
7214 	int ret;
7215 	u32 ldst_addrspace;
7216 	struct fw_ldst_cmd c;
7217 
7218 	memset(&c, 0, sizeof(c));
7219 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7220 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7221 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7222 					ldst_addrspace);
7223 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7224 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7225 					 V_FW_LDST_CMD_MMD(mmd));
7226 	c.u.mdio.raddr = cpu_to_be16(reg);
7227 
7228 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7229 	if (ret == 0)
7230 		*valp = be16_to_cpu(c.u.mdio.rval);
7231 	return ret;
7232 }
7233 
7234 /**
7235  *	t4_mdio_wr - write a PHY register through MDIO
7236  *	@adap: the adapter
7237  *	@mbox: mailbox to use for the FW command
7238  *	@phy_addr: the PHY address
7239  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7240  *	@reg: the register to write
7241  *	@valp: value to write
7242  *
7243  *	Issues a FW command through the given mailbox to write a PHY register.
7244  */
7245 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7246 	       unsigned int mmd, unsigned int reg, unsigned int val)
7247 {
7248 	u32 ldst_addrspace;
7249 	struct fw_ldst_cmd c;
7250 
7251 	memset(&c, 0, sizeof(c));
7252 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7253 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7254 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7255 					ldst_addrspace);
7256 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7257 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7258 					 V_FW_LDST_CMD_MMD(mmd));
7259 	c.u.mdio.raddr = cpu_to_be16(reg);
7260 	c.u.mdio.rval = cpu_to_be16(val);
7261 
7262 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7263 }
7264 
7265 /**
7266  *
7267  *	t4_sge_decode_idma_state - decode the idma state
7268  *	@adap: the adapter
7269  *	@state: the state idma is stuck in
7270  */
7271 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7272 {
7273 	static const char * const t4_decode[] = {
7274 		"IDMA_IDLE",
7275 		"IDMA_PUSH_MORE_CPL_FIFO",
7276 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7277 		"Not used",
7278 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7279 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7280 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7281 		"IDMA_SEND_FIFO_TO_IMSG",
7282 		"IDMA_FL_REQ_DATA_FL_PREP",
7283 		"IDMA_FL_REQ_DATA_FL",
7284 		"IDMA_FL_DROP",
7285 		"IDMA_FL_H_REQ_HEADER_FL",
7286 		"IDMA_FL_H_SEND_PCIEHDR",
7287 		"IDMA_FL_H_PUSH_CPL_FIFO",
7288 		"IDMA_FL_H_SEND_CPL",
7289 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7290 		"IDMA_FL_H_SEND_IP_HDR",
7291 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7292 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7293 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7294 		"IDMA_FL_D_SEND_PCIEHDR",
7295 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7296 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7297 		"IDMA_FL_SEND_PCIEHDR",
7298 		"IDMA_FL_PUSH_CPL_FIFO",
7299 		"IDMA_FL_SEND_CPL",
7300 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7301 		"IDMA_FL_SEND_PAYLOAD",
7302 		"IDMA_FL_REQ_NEXT_DATA_FL",
7303 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7304 		"IDMA_FL_SEND_PADDING",
7305 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7306 		"IDMA_FL_SEND_FIFO_TO_IMSG",
7307 		"IDMA_FL_REQ_DATAFL_DONE",
7308 		"IDMA_FL_REQ_HEADERFL_DONE",
7309 	};
7310 	static const char * const t5_decode[] = {
7311 		"IDMA_IDLE",
7312 		"IDMA_ALMOST_IDLE",
7313 		"IDMA_PUSH_MORE_CPL_FIFO",
7314 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7315 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7316 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7317 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7318 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7319 		"IDMA_SEND_FIFO_TO_IMSG",
7320 		"IDMA_FL_REQ_DATA_FL",
7321 		"IDMA_FL_DROP",
7322 		"IDMA_FL_DROP_SEND_INC",
7323 		"IDMA_FL_H_REQ_HEADER_FL",
7324 		"IDMA_FL_H_SEND_PCIEHDR",
7325 		"IDMA_FL_H_PUSH_CPL_FIFO",
7326 		"IDMA_FL_H_SEND_CPL",
7327 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7328 		"IDMA_FL_H_SEND_IP_HDR",
7329 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7330 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7331 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7332 		"IDMA_FL_D_SEND_PCIEHDR",
7333 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7334 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7335 		"IDMA_FL_SEND_PCIEHDR",
7336 		"IDMA_FL_PUSH_CPL_FIFO",
7337 		"IDMA_FL_SEND_CPL",
7338 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7339 		"IDMA_FL_SEND_PAYLOAD",
7340 		"IDMA_FL_REQ_NEXT_DATA_FL",
7341 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7342 		"IDMA_FL_SEND_PADDING",
7343 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7344 	};
7345 	static const char * const t6_decode[] = {
7346 		"IDMA_IDLE",
7347 		"IDMA_PUSH_MORE_CPL_FIFO",
7348 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7349 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7350 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7351 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7352 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7353 		"IDMA_FL_REQ_DATA_FL",
7354 		"IDMA_FL_DROP",
7355 		"IDMA_FL_DROP_SEND_INC",
7356 		"IDMA_FL_H_REQ_HEADER_FL",
7357 		"IDMA_FL_H_SEND_PCIEHDR",
7358 		"IDMA_FL_H_PUSH_CPL_FIFO",
7359 		"IDMA_FL_H_SEND_CPL",
7360 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7361 		"IDMA_FL_H_SEND_IP_HDR",
7362 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7363 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7364 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7365 		"IDMA_FL_D_SEND_PCIEHDR",
7366 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7367 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7368 		"IDMA_FL_SEND_PCIEHDR",
7369 		"IDMA_FL_PUSH_CPL_FIFO",
7370 		"IDMA_FL_SEND_CPL",
7371 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7372 		"IDMA_FL_SEND_PAYLOAD",
7373 		"IDMA_FL_REQ_NEXT_DATA_FL",
7374 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7375 		"IDMA_FL_SEND_PADDING",
7376 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7377 	};
7378 	static const u32 sge_regs[] = {
7379 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7380 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7381 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7382 	};
7383 	const char * const *sge_idma_decode;
7384 	int sge_idma_decode_nstates;
7385 	int i;
7386 	unsigned int chip_version = chip_id(adapter);
7387 
7388 	/* Select the right set of decode strings to dump depending on the
7389 	 * adapter chip type.
7390 	 */
7391 	switch (chip_version) {
7392 	case CHELSIO_T4:
7393 		sge_idma_decode = (const char * const *)t4_decode;
7394 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7395 		break;
7396 
7397 	case CHELSIO_T5:
7398 		sge_idma_decode = (const char * const *)t5_decode;
7399 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7400 		break;
7401 
7402 	case CHELSIO_T6:
7403 		sge_idma_decode = (const char * const *)t6_decode;
7404 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7405 		break;
7406 
7407 	default:
7408 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7409 		return;
7410 	}
7411 
7412 	if (state < sge_idma_decode_nstates)
7413 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7414 	else
7415 		CH_WARN(adapter, "idma state %d unknown\n", state);
7416 
7417 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7418 		CH_WARN(adapter, "SGE register %#x value %#x\n",
7419 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7420 }
7421 
7422 /**
7423  *      t4_sge_ctxt_flush - flush the SGE context cache
7424  *      @adap: the adapter
7425  *      @mbox: mailbox to use for the FW command
7426  *
7427  *      Issues a FW command through the given mailbox to flush the
7428  *      SGE context cache.
7429  */
7430 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
7431 {
7432 	int ret;
7433 	u32 ldst_addrspace;
7434 	struct fw_ldst_cmd c;
7435 
7436 	memset(&c, 0, sizeof(c));
7437 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
7438 						 FW_LDST_ADDRSPC_SGE_EGRC :
7439 						 FW_LDST_ADDRSPC_SGE_INGC);
7440 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7441 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7442 					ldst_addrspace);
7443 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7444 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7445 
7446 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7447 	return ret;
7448 }
7449 
7450 /**
7451  *      t4_fw_hello - establish communication with FW
7452  *      @adap: the adapter
7453  *      @mbox: mailbox to use for the FW command
7454  *      @evt_mbox: mailbox to receive async FW events
7455  *      @master: specifies the caller's willingness to be the device master
7456  *	@state: returns the current device state (if non-NULL)
7457  *
7458  *	Issues a command to establish communication with FW.  Returns either
7459  *	an error (negative integer) or the mailbox of the Master PF.
7460  */
7461 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7462 		enum dev_master master, enum dev_state *state)
7463 {
7464 	int ret;
7465 	struct fw_hello_cmd c;
7466 	u32 v;
7467 	unsigned int master_mbox;
7468 	int retries = FW_CMD_HELLO_RETRIES;
7469 
7470 retry:
7471 	memset(&c, 0, sizeof(c));
7472 	INIT_CMD(c, HELLO, WRITE);
7473 	c.err_to_clearinit = cpu_to_be32(
7474 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7475 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7476 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7477 					mbox : M_FW_HELLO_CMD_MBMASTER) |
7478 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7479 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7480 		F_FW_HELLO_CMD_CLEARINIT);
7481 
7482 	/*
7483 	 * Issue the HELLO command to the firmware.  If it's not successful
7484 	 * but indicates that we got a "busy" or "timeout" condition, retry
7485 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7486 	 * retry limit, check to see if the firmware left us any error
7487 	 * information and report that if so ...
7488 	 */
7489 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7490 	if (ret != FW_SUCCESS) {
7491 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7492 			goto retry;
7493 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7494 			t4_report_fw_error(adap);
7495 		return ret;
7496 	}
7497 
7498 	v = be32_to_cpu(c.err_to_clearinit);
7499 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7500 	if (state) {
7501 		if (v & F_FW_HELLO_CMD_ERR)
7502 			*state = DEV_STATE_ERR;
7503 		else if (v & F_FW_HELLO_CMD_INIT)
7504 			*state = DEV_STATE_INIT;
7505 		else
7506 			*state = DEV_STATE_UNINIT;
7507 	}
7508 
7509 	/*
7510 	 * If we're not the Master PF then we need to wait around for the
7511 	 * Master PF Driver to finish setting up the adapter.
7512 	 *
7513 	 * Note that we also do this wait if we're a non-Master-capable PF and
7514 	 * there is no current Master PF; a Master PF may show up momentarily
7515 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7516 	 * OS loads lots of different drivers rapidly at the same time).  In
7517 	 * this case, the Master PF returned by the firmware will be
7518 	 * M_PCIE_FW_MASTER so the test below will work ...
7519 	 */
7520 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7521 	    master_mbox != mbox) {
7522 		int waiting = FW_CMD_HELLO_TIMEOUT;
7523 
7524 		/*
7525 		 * Wait for the firmware to either indicate an error or
7526 		 * initialized state.  If we see either of these we bail out
7527 		 * and report the issue to the caller.  If we exhaust the
7528 		 * "hello timeout" and we haven't exhausted our retries, try
7529 		 * again.  Otherwise bail with a timeout error.
7530 		 */
7531 		for (;;) {
7532 			u32 pcie_fw;
7533 
7534 			msleep(50);
7535 			waiting -= 50;
7536 
7537 			/*
7538 			 * If neither Error nor Initialialized are indicated
7539 			 * by the firmware keep waiting till we exhaust our
7540 			 * timeout ... and then retry if we haven't exhausted
7541 			 * our retries ...
7542 			 */
7543 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7544 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7545 				if (waiting <= 0) {
7546 					if (retries-- > 0)
7547 						goto retry;
7548 
7549 					return -ETIMEDOUT;
7550 				}
7551 				continue;
7552 			}
7553 
7554 			/*
7555 			 * We either have an Error or Initialized condition
7556 			 * report errors preferentially.
7557 			 */
7558 			if (state) {
7559 				if (pcie_fw & F_PCIE_FW_ERR)
7560 					*state = DEV_STATE_ERR;
7561 				else if (pcie_fw & F_PCIE_FW_INIT)
7562 					*state = DEV_STATE_INIT;
7563 			}
7564 
7565 			/*
7566 			 * If we arrived before a Master PF was selected and
7567 			 * there's not a valid Master PF, grab its identity
7568 			 * for our caller.
7569 			 */
7570 			if (master_mbox == M_PCIE_FW_MASTER &&
7571 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7572 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7573 			break;
7574 		}
7575 	}
7576 
7577 	return master_mbox;
7578 }
7579 
7580 /**
7581  *	t4_fw_bye - end communication with FW
7582  *	@adap: the adapter
7583  *	@mbox: mailbox to use for the FW command
7584  *
7585  *	Issues a command to terminate communication with FW.
7586  */
7587 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7588 {
7589 	struct fw_bye_cmd c;
7590 
7591 	memset(&c, 0, sizeof(c));
7592 	INIT_CMD(c, BYE, WRITE);
7593 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7594 }
7595 
7596 /**
7597  *	t4_fw_reset - issue a reset to FW
7598  *	@adap: the adapter
7599  *	@mbox: mailbox to use for the FW command
7600  *	@reset: specifies the type of reset to perform
7601  *
7602  *	Issues a reset command of the specified type to FW.
7603  */
7604 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7605 {
7606 	struct fw_reset_cmd c;
7607 
7608 	memset(&c, 0, sizeof(c));
7609 	INIT_CMD(c, RESET, WRITE);
7610 	c.val = cpu_to_be32(reset);
7611 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7612 }
7613 
7614 /**
7615  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7616  *	@adap: the adapter
7617  *	@mbox: mailbox to use for the FW RESET command (if desired)
7618  *	@force: force uP into RESET even if FW RESET command fails
7619  *
7620  *	Issues a RESET command to firmware (if desired) with a HALT indication
7621  *	and then puts the microprocessor into RESET state.  The RESET command
7622  *	will only be issued if a legitimate mailbox is provided (mbox <=
7623  *	M_PCIE_FW_MASTER).
7624  *
7625  *	This is generally used in order for the host to safely manipulate the
7626  *	adapter without fear of conflicting with whatever the firmware might
7627  *	be doing.  The only way out of this state is to RESTART the firmware
7628  *	...
7629  */
7630 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7631 {
7632 	int ret = 0;
7633 
7634 	/*
7635 	 * If a legitimate mailbox is provided, issue a RESET command
7636 	 * with a HALT indication.
7637 	 */
7638 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7639 		struct fw_reset_cmd c;
7640 
7641 		memset(&c, 0, sizeof(c));
7642 		INIT_CMD(c, RESET, WRITE);
7643 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7644 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7645 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7646 	}
7647 
7648 	/*
7649 	 * Normally we won't complete the operation if the firmware RESET
7650 	 * command fails but if our caller insists we'll go ahead and put the
7651 	 * uP into RESET.  This can be useful if the firmware is hung or even
7652 	 * missing ...  We'll have to take the risk of putting the uP into
7653 	 * RESET without the cooperation of firmware in that case.
7654 	 *
7655 	 * We also force the firmware's HALT flag to be on in case we bypassed
7656 	 * the firmware RESET command above or we're dealing with old firmware
7657 	 * which doesn't have the HALT capability.  This will serve as a flag
7658 	 * for the incoming firmware to know that it's coming out of a HALT
7659 	 * rather than a RESET ... if it's new enough to understand that ...
7660 	 */
7661 	if (ret == 0 || force) {
7662 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7663 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7664 				 F_PCIE_FW_HALT);
7665 	}
7666 
7667 	/*
7668 	 * And we always return the result of the firmware RESET command
7669 	 * even when we force the uP into RESET ...
7670 	 */
7671 	return ret;
7672 }
7673 
7674 /**
7675  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7676  *	@adap: the adapter
7677  *
7678  *	Restart firmware previously halted by t4_fw_halt().  On successful
7679  *	return the previous PF Master remains as the new PF Master and there
7680  *	is no need to issue a new HELLO command, etc.
7681  */
7682 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7683 {
7684 	int ms;
7685 
7686 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7687 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7688 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7689 			return FW_SUCCESS;
7690 		msleep(100);
7691 		ms += 100;
7692 	}
7693 
7694 	return -ETIMEDOUT;
7695 }
7696 
7697 /**
7698  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7699  *	@adap: the adapter
7700  *	@mbox: mailbox to use for the FW RESET command (if desired)
7701  *	@fw_data: the firmware image to write
7702  *	@size: image size
7703  *	@force: force upgrade even if firmware doesn't cooperate
7704  *
7705  *	Perform all of the steps necessary for upgrading an adapter's
7706  *	firmware image.  Normally this requires the cooperation of the
7707  *	existing firmware in order to halt all existing activities
7708  *	but if an invalid mailbox token is passed in we skip that step
7709  *	(though we'll still put the adapter microprocessor into RESET in
7710  *	that case).
7711  *
7712  *	On successful return the new firmware will have been loaded and
7713  *	the adapter will have been fully RESET losing all previous setup
7714  *	state.  On unsuccessful return the adapter may be completely hosed ...
7715  *	positive errno indicates that the adapter is ~probably~ intact, a
7716  *	negative errno indicates that things are looking bad ...
7717  */
7718 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7719 		  const u8 *fw_data, unsigned int size, int force)
7720 {
7721 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7722 	unsigned int bootstrap =
7723 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7724 	int ret;
7725 
7726 	if (!t4_fw_matches_chip(adap, fw_hdr))
7727 		return -EINVAL;
7728 
7729 	if (!bootstrap) {
7730 		ret = t4_fw_halt(adap, mbox, force);
7731 		if (ret < 0 && !force)
7732 			return ret;
7733 	}
7734 
7735 	ret = t4_load_fw(adap, fw_data, size);
7736 	if (ret < 0 || bootstrap)
7737 		return ret;
7738 
7739 	return t4_fw_restart(adap, mbox);
7740 }
7741 
7742 /**
7743  *	t4_fw_initialize - ask FW to initialize the device
7744  *	@adap: the adapter
7745  *	@mbox: mailbox to use for the FW command
7746  *
7747  *	Issues a command to FW to partially initialize the device.  This
7748  *	performs initialization that generally doesn't depend on user input.
7749  */
7750 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7751 {
7752 	struct fw_initialize_cmd c;
7753 
7754 	memset(&c, 0, sizeof(c));
7755 	INIT_CMD(c, INITIALIZE, WRITE);
7756 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7757 }
7758 
7759 /**
7760  *	t4_query_params_rw - query FW or device parameters
7761  *	@adap: the adapter
7762  *	@mbox: mailbox to use for the FW command
7763  *	@pf: the PF
7764  *	@vf: the VF
7765  *	@nparams: the number of parameters
7766  *	@params: the parameter names
7767  *	@val: the parameter values
7768  *	@rw: Write and read flag
7769  *
7770  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7771  *	queried at once.
7772  */
7773 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7774 		       unsigned int vf, unsigned int nparams, const u32 *params,
7775 		       u32 *val, int rw)
7776 {
7777 	int i, ret;
7778 	struct fw_params_cmd c;
7779 	__be32 *p = &c.param[0].mnem;
7780 
7781 	if (nparams > 7)
7782 		return -EINVAL;
7783 
7784 	memset(&c, 0, sizeof(c));
7785 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7786 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7787 				  V_FW_PARAMS_CMD_PFN(pf) |
7788 				  V_FW_PARAMS_CMD_VFN(vf));
7789 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7790 
7791 	for (i = 0; i < nparams; i++) {
7792 		*p++ = cpu_to_be32(*params++);
7793 		if (rw)
7794 			*p = cpu_to_be32(*(val + i));
7795 		p++;
7796 	}
7797 
7798 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7799 	if (ret == 0)
7800 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7801 			*val++ = be32_to_cpu(*p);
7802 	return ret;
7803 }
7804 
7805 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7806 		    unsigned int vf, unsigned int nparams, const u32 *params,
7807 		    u32 *val)
7808 {
7809 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7810 }
7811 
7812 /**
7813  *      t4_set_params_timeout - sets FW or device parameters
7814  *      @adap: the adapter
7815  *      @mbox: mailbox to use for the FW command
7816  *      @pf: the PF
7817  *      @vf: the VF
7818  *      @nparams: the number of parameters
7819  *      @params: the parameter names
7820  *      @val: the parameter values
7821  *      @timeout: the timeout time
7822  *
7823  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7824  *      specified at once.
7825  */
7826 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7827 			  unsigned int pf, unsigned int vf,
7828 			  unsigned int nparams, const u32 *params,
7829 			  const u32 *val, int timeout)
7830 {
7831 	struct fw_params_cmd c;
7832 	__be32 *p = &c.param[0].mnem;
7833 
7834 	if (nparams > 7)
7835 		return -EINVAL;
7836 
7837 	memset(&c, 0, sizeof(c));
7838 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7839 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7840 				  V_FW_PARAMS_CMD_PFN(pf) |
7841 				  V_FW_PARAMS_CMD_VFN(vf));
7842 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7843 
7844 	while (nparams--) {
7845 		*p++ = cpu_to_be32(*params++);
7846 		*p++ = cpu_to_be32(*val++);
7847 	}
7848 
7849 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7850 }
7851 
7852 /**
7853  *	t4_set_params - sets FW or device parameters
7854  *	@adap: the adapter
7855  *	@mbox: mailbox to use for the FW command
7856  *	@pf: the PF
7857  *	@vf: the VF
7858  *	@nparams: the number of parameters
7859  *	@params: the parameter names
7860  *	@val: the parameter values
7861  *
7862  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7863  *	specified at once.
7864  */
7865 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7866 		  unsigned int vf, unsigned int nparams, const u32 *params,
7867 		  const u32 *val)
7868 {
7869 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7870 				     FW_CMD_MAX_TIMEOUT);
7871 }
7872 
7873 /**
7874  *	t4_cfg_pfvf - configure PF/VF resource limits
7875  *	@adap: the adapter
7876  *	@mbox: mailbox to use for the FW command
7877  *	@pf: the PF being configured
7878  *	@vf: the VF being configured
7879  *	@txq: the max number of egress queues
7880  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7881  *	@rxqi: the max number of interrupt-capable ingress queues
7882  *	@rxq: the max number of interruptless ingress queues
7883  *	@tc: the PCI traffic class
7884  *	@vi: the max number of virtual interfaces
7885  *	@cmask: the channel access rights mask for the PF/VF
7886  *	@pmask: the port access rights mask for the PF/VF
7887  *	@nexact: the maximum number of exact MPS filters
7888  *	@rcaps: read capabilities
7889  *	@wxcaps: write/execute capabilities
7890  *
7891  *	Configures resource limits and capabilities for a physical or virtual
7892  *	function.
7893  */
7894 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7895 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7896 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7897 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7898 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7899 {
7900 	struct fw_pfvf_cmd c;
7901 
7902 	memset(&c, 0, sizeof(c));
7903 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7904 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7905 				  V_FW_PFVF_CMD_VFN(vf));
7906 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7907 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7908 				     V_FW_PFVF_CMD_NIQ(rxq));
7909 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7910 				    V_FW_PFVF_CMD_PMASK(pmask) |
7911 				    V_FW_PFVF_CMD_NEQ(txq));
7912 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7913 				      V_FW_PFVF_CMD_NVI(vi) |
7914 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7915 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7916 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7917 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7918 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7919 }
7920 
7921 /**
7922  *	t4_alloc_vi_func - allocate a virtual interface
7923  *	@adap: the adapter
7924  *	@mbox: mailbox to use for the FW command
7925  *	@port: physical port associated with the VI
7926  *	@pf: the PF owning the VI
7927  *	@vf: the VF owning the VI
7928  *	@nmac: number of MAC addresses needed (1 to 5)
7929  *	@mac: the MAC addresses of the VI
7930  *	@rss_size: size of RSS table slice associated with this VI
7931  *	@portfunc: which Port Application Function MAC Address is desired
7932  *	@idstype: Intrusion Detection Type
7933  *
7934  *	Allocates a virtual interface for the given physical port.  If @mac is
7935  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7936  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7937  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7938  *	stored consecutively so the space needed is @nmac * 6 bytes.
7939  *	Returns a negative error number or the non-negative VI id.
7940  */
7941 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7942 		     unsigned int port, unsigned int pf, unsigned int vf,
7943 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7944 		     uint8_t *vfvld, uint16_t *vin,
7945 		     unsigned int portfunc, unsigned int idstype)
7946 {
7947 	int ret;
7948 	struct fw_vi_cmd c;
7949 
7950 	memset(&c, 0, sizeof(c));
7951 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7952 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7953 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7954 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7955 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7956 				     V_FW_VI_CMD_FUNC(portfunc));
7957 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7958 	c.nmac = nmac - 1;
7959 	if(!rss_size)
7960 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7961 
7962 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7963 	if (ret)
7964 		return ret;
7965 	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7966 
7967 	if (mac) {
7968 		memcpy(mac, c.mac, sizeof(c.mac));
7969 		switch (nmac) {
7970 		case 5:
7971 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7972 		case 4:
7973 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7974 		case 3:
7975 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7976 		case 2:
7977 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7978 		}
7979 	}
7980 	if (rss_size)
7981 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7982 	if (vfvld) {
7983 		*vfvld = adap->params.viid_smt_extn_support ?
7984 		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
7985 		    G_FW_VIID_VIVLD(ret);
7986 	}
7987 	if (vin) {
7988 		*vin = adap->params.viid_smt_extn_support ?
7989 		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
7990 		    G_FW_VIID_VIN(ret);
7991 	}
7992 
7993 	return ret;
7994 }
7995 
7996 /**
7997  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7998  *      @adap: the adapter
7999  *      @mbox: mailbox to use for the FW command
8000  *      @port: physical port associated with the VI
8001  *      @pf: the PF owning the VI
8002  *      @vf: the VF owning the VI
8003  *      @nmac: number of MAC addresses needed (1 to 5)
8004  *      @mac: the MAC addresses of the VI
8005  *      @rss_size: size of RSS table slice associated with this VI
8006  *
8007  *	backwards compatible and convieniance routine to allocate a Virtual
8008  *	Interface with a Ethernet Port Application Function and Intrustion
8009  *	Detection System disabled.
8010  */
8011 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
8012 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
8013 		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
8014 {
8015 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
8016 				vfvld, vin, FW_VI_FUNC_ETH, 0);
8017 }
8018 
8019 /**
8020  * 	t4_free_vi - free a virtual interface
8021  * 	@adap: the adapter
8022  * 	@mbox: mailbox to use for the FW command
8023  * 	@pf: the PF owning the VI
8024  * 	@vf: the VF owning the VI
8025  * 	@viid: virtual interface identifiler
8026  *
8027  * 	Free a previously allocated virtual interface.
8028  */
8029 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
8030 	       unsigned int vf, unsigned int viid)
8031 {
8032 	struct fw_vi_cmd c;
8033 
8034 	memset(&c, 0, sizeof(c));
8035 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
8036 				  F_FW_CMD_REQUEST |
8037 				  F_FW_CMD_EXEC |
8038 				  V_FW_VI_CMD_PFN(pf) |
8039 				  V_FW_VI_CMD_VFN(vf));
8040 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
8041 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
8042 
8043 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8044 }
8045 
8046 /**
8047  *	t4_set_rxmode - set Rx properties of a virtual interface
8048  *	@adap: the adapter
8049  *	@mbox: mailbox to use for the FW command
8050  *	@viid: the VI id
8051  *	@mtu: the new MTU or -1
8052  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
8053  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
8054  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
8055  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
8056  *	@sleep_ok: if true we may sleep while awaiting command completion
8057  *
8058  *	Sets Rx properties of a virtual interface.
8059  */
8060 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8061 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
8062 		  bool sleep_ok)
8063 {
8064 	struct fw_vi_rxmode_cmd c;
8065 
8066 	/* convert to FW values */
8067 	if (mtu < 0)
8068 		mtu = M_FW_VI_RXMODE_CMD_MTU;
8069 	if (promisc < 0)
8070 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8071 	if (all_multi < 0)
8072 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8073 	if (bcast < 0)
8074 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8075 	if (vlanex < 0)
8076 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8077 
8078 	memset(&c, 0, sizeof(c));
8079 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8080 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8081 				   V_FW_VI_RXMODE_CMD_VIID(viid));
8082 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8083 	c.mtu_to_vlanexen =
8084 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8085 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8086 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8087 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8088 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8089 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8090 }
8091 
8092 /**
8093  *	t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
8094  *	@adap: the adapter
8095  *	@viid: the VI id
8096  *	@mac: the MAC address
8097  *	@mask: the mask
8098  *	@vni: the VNI id for the tunnel protocol
8099  *	@vni_mask: mask for the VNI id
8100  *	@dip_hit: to enable DIP match for the MPS entry
8101  *	@lookup_type: MAC address for inner (1) or outer (0) header
8102  *	@sleep_ok: call is allowed to sleep
8103  *
8104  *	Allocates an MPS entry with specified MAC address and VNI value.
8105  *
8106  *	Returns a negative error number or the allocated index for this mac.
8107  */
8108 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
8109 			    const u8 *addr, const u8 *mask, unsigned int vni,
8110 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
8111 			    bool sleep_ok)
8112 {
8113 	struct fw_vi_mac_cmd c;
8114 	struct fw_vi_mac_vni *p = c.u.exact_vni;
8115 	int ret = 0;
8116 	u32 val;
8117 
8118 	memset(&c, 0, sizeof(c));
8119 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8120 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8121 				   V_FW_VI_MAC_CMD_VIID(viid));
8122 	val = V_FW_CMD_LEN16(1) |
8123 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
8124 	c.freemacs_to_len16 = cpu_to_be32(val);
8125 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8126 				      V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8127 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8128 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
8129 
8130 	p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
8131 					    V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
8132 					    V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
8133 	p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
8134 
8135 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8136 	if (ret == 0)
8137 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8138 	return ret;
8139 }
8140 
8141 /**
8142  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
8143  *	@adap: the adapter
8144  *	@viid: the VI id
8145  *	@mac: the MAC address
8146  *	@mask: the mask
8147  *	@idx: index at which to add this entry
8148  *	@port_id: the port index
8149  *	@lookup_type: MAC address for inner (1) or outer (0) header
8150  *	@sleep_ok: call is allowed to sleep
8151  *
8152  *	Adds the mac entry at the specified index using raw mac interface.
8153  *
8154  *	Returns a negative error number or the allocated index for this mac.
8155  */
8156 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
8157 			  const u8 *addr, const u8 *mask, unsigned int idx,
8158 			  u8 lookup_type, u8 port_id, bool sleep_ok)
8159 {
8160 	int ret = 0;
8161 	struct fw_vi_mac_cmd c;
8162 	struct fw_vi_mac_raw *p = &c.u.raw;
8163 	u32 val;
8164 
8165 	memset(&c, 0, sizeof(c));
8166 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8167 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8168 				   V_FW_VI_MAC_CMD_VIID(viid));
8169 	val = V_FW_CMD_LEN16(1) |
8170 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8171 	c.freemacs_to_len16 = cpu_to_be32(val);
8172 
8173 	/* Specify that this is an inner mac address */
8174 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
8175 
8176 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8177 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8178 				   V_DATAPORTNUM(port_id));
8179 	/* Lookup mask and port mask */
8180 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8181 				    V_DATAPORTNUM(M_DATAPORTNUM));
8182 
8183 	/* Copy the address and the mask */
8184 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8185 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8186 
8187 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8188 	if (ret == 0) {
8189 		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
8190 		if (ret != idx)
8191 			ret = -ENOMEM;
8192 	}
8193 
8194 	return ret;
8195 }
8196 
8197 /**
8198  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8199  *	@adap: the adapter
8200  *	@mbox: mailbox to use for the FW command
8201  *	@viid: the VI id
8202  *	@free: if true any existing filters for this VI id are first removed
8203  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8204  *	@addr: the MAC address(es)
8205  *	@idx: where to store the index of each allocated filter
8206  *	@hash: pointer to hash address filter bitmap
8207  *	@sleep_ok: call is allowed to sleep
8208  *
8209  *	Allocates an exact-match filter for each of the supplied addresses and
8210  *	sets it to the corresponding address.  If @idx is not %NULL it should
8211  *	have at least @naddr entries, each of which will be set to the index of
8212  *	the filter allocated for the corresponding MAC address.  If a filter
8213  *	could not be allocated for an address its index is set to 0xffff.
8214  *	If @hash is not %NULL addresses that fail to allocate an exact filter
8215  *	are hashed and update the hash filter bitmap pointed at by @hash.
8216  *
8217  *	Returns a negative error number or the number of filters allocated.
8218  */
8219 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8220 		      unsigned int viid, bool free, unsigned int naddr,
8221 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8222 {
8223 	int offset, ret = 0;
8224 	struct fw_vi_mac_cmd c;
8225 	unsigned int nfilters = 0;
8226 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8227 	unsigned int rem = naddr;
8228 
8229 	if (naddr > max_naddr)
8230 		return -EINVAL;
8231 
8232 	for (offset = 0; offset < naddr ; /**/) {
8233 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8234 					 ? rem
8235 					 : ARRAY_SIZE(c.u.exact));
8236 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8237 						     u.exact[fw_naddr]), 16);
8238 		struct fw_vi_mac_exact *p;
8239 		int i;
8240 
8241 		memset(&c, 0, sizeof(c));
8242 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8243 					   F_FW_CMD_REQUEST |
8244 					   F_FW_CMD_WRITE |
8245 					   V_FW_CMD_EXEC(free) |
8246 					   V_FW_VI_MAC_CMD_VIID(viid));
8247 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8248 						  V_FW_CMD_LEN16(len16));
8249 
8250 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8251 			p->valid_to_idx =
8252 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8253 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8254 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8255 		}
8256 
8257 		/*
8258 		 * It's okay if we run out of space in our MAC address arena.
8259 		 * Some of the addresses we submit may get stored so we need
8260 		 * to run through the reply to see what the results were ...
8261 		 */
8262 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8263 		if (ret && ret != -FW_ENOMEM)
8264 			break;
8265 
8266 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8267 			u16 index = G_FW_VI_MAC_CMD_IDX(
8268 						be16_to_cpu(p->valid_to_idx));
8269 
8270 			if (idx)
8271 				idx[offset+i] = (index >=  max_naddr
8272 						 ? 0xffff
8273 						 : index);
8274 			if (index < max_naddr)
8275 				nfilters++;
8276 			else if (hash)
8277 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8278 		}
8279 
8280 		free = false;
8281 		offset += fw_naddr;
8282 		rem -= fw_naddr;
8283 	}
8284 
8285 	if (ret == 0 || ret == -FW_ENOMEM)
8286 		ret = nfilters;
8287 	return ret;
8288 }
8289 
8290 /**
8291  *	t4_free_encap_mac_filt - frees MPS entry at given index
8292  *	@adap: the adapter
8293  *	@viid: the VI id
8294  *	@idx: index of MPS entry to be freed
8295  *	@sleep_ok: call is allowed to sleep
8296  *
8297  *	Frees the MPS entry at supplied index
8298  *
8299  *	Returns a negative error number or zero on success
8300  */
8301 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
8302 			   int idx, bool sleep_ok)
8303 {
8304 	struct fw_vi_mac_exact *p;
8305 	struct fw_vi_mac_cmd c;
8306 	u8 addr[] = {0,0,0,0,0,0};
8307 	int ret = 0;
8308 	u32 exact;
8309 
8310 	memset(&c, 0, sizeof(c));
8311 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8312 				   F_FW_CMD_REQUEST |
8313 				   F_FW_CMD_WRITE |
8314 				   V_FW_CMD_EXEC(0) |
8315 				   V_FW_VI_MAC_CMD_VIID(viid));
8316 	exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
8317 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8318 					  exact |
8319 					  V_FW_CMD_LEN16(1));
8320 	p = c.u.exact;
8321 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8322 				      V_FW_VI_MAC_CMD_IDX(idx));
8323 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8324 
8325 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8326 	return ret;
8327 }
8328 
8329 /**
8330  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
8331  *	@adap: the adapter
8332  *	@viid: the VI id
8333  *	@addr: the MAC address
8334  *	@mask: the mask
8335  *	@idx: index of the entry in mps tcam
8336  *	@lookup_type: MAC address for inner (1) or outer (0) header
8337  *	@port_id: the port index
8338  *	@sleep_ok: call is allowed to sleep
8339  *
8340  *	Removes the mac entry at the specified index using raw mac interface.
8341  *
8342  *	Returns a negative error number on failure.
8343  */
8344 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
8345 			 const u8 *addr, const u8 *mask, unsigned int idx,
8346 			 u8 lookup_type, u8 port_id, bool sleep_ok)
8347 {
8348 	struct fw_vi_mac_cmd c;
8349 	struct fw_vi_mac_raw *p = &c.u.raw;
8350 	u32 raw;
8351 
8352 	memset(&c, 0, sizeof(c));
8353 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8354 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8355 				   V_FW_CMD_EXEC(0) |
8356 				   V_FW_VI_MAC_CMD_VIID(viid));
8357 	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8358 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8359 					  raw |
8360 					  V_FW_CMD_LEN16(1));
8361 
8362 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
8363 				     FW_VI_MAC_ID_BASED_FREE);
8364 
8365 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8366 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8367 				   V_DATAPORTNUM(port_id));
8368 	/* Lookup mask and port mask */
8369 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8370 				    V_DATAPORTNUM(M_DATAPORTNUM));
8371 
8372 	/* Copy the address and the mask */
8373 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8374 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8375 
8376 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8377 }
8378 
8379 /**
8380  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8381  *	@adap: the adapter
8382  *	@mbox: mailbox to use for the FW command
8383  *	@viid: the VI id
8384  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8385  *	@addr: the MAC address(es)
8386  *	@sleep_ok: call is allowed to sleep
8387  *
8388  *	Frees the exact-match filter for each of the supplied addresses
8389  *
8390  *	Returns a negative error number or the number of filters freed.
8391  */
8392 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8393 		      unsigned int viid, unsigned int naddr,
8394 		      const u8 **addr, bool sleep_ok)
8395 {
8396 	int offset, ret = 0;
8397 	struct fw_vi_mac_cmd c;
8398 	unsigned int nfilters = 0;
8399 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8400 	unsigned int rem = naddr;
8401 
8402 	if (naddr > max_naddr)
8403 		return -EINVAL;
8404 
8405 	for (offset = 0; offset < (int)naddr ; /**/) {
8406 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8407 					 ? rem
8408 					 : ARRAY_SIZE(c.u.exact));
8409 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8410 						     u.exact[fw_naddr]), 16);
8411 		struct fw_vi_mac_exact *p;
8412 		int i;
8413 
8414 		memset(&c, 0, sizeof(c));
8415 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8416 				     F_FW_CMD_REQUEST |
8417 				     F_FW_CMD_WRITE |
8418 				     V_FW_CMD_EXEC(0) |
8419 				     V_FW_VI_MAC_CMD_VIID(viid));
8420 		c.freemacs_to_len16 =
8421 				cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8422 					    V_FW_CMD_LEN16(len16));
8423 
8424 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8425 			p->valid_to_idx = cpu_to_be16(
8426 				F_FW_VI_MAC_CMD_VALID |
8427 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
8428 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8429 		}
8430 
8431 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8432 		if (ret)
8433 			break;
8434 
8435 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8436 			u16 index = G_FW_VI_MAC_CMD_IDX(
8437 						be16_to_cpu(p->valid_to_idx));
8438 
8439 			if (index < max_naddr)
8440 				nfilters++;
8441 		}
8442 
8443 		offset += fw_naddr;
8444 		rem -= fw_naddr;
8445 	}
8446 
8447 	if (ret == 0)
8448 		ret = nfilters;
8449 	return ret;
8450 }
8451 
8452 /**
8453  *	t4_change_mac - modifies the exact-match filter for a MAC address
8454  *	@adap: the adapter
8455  *	@mbox: mailbox to use for the FW command
8456  *	@viid: the VI id
8457  *	@idx: index of existing filter for old value of MAC address, or -1
8458  *	@addr: the new MAC address value
8459  *	@persist: whether a new MAC allocation should be persistent
8460  *	@smt_idx: add MAC to SMT and return its index, or NULL
8461  *
8462  *	Modifies an exact-match filter and sets it to the new MAC address if
8463  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8464  *	latter case the address is added persistently if @persist is %true.
8465  *
8466  *	Note that in general it is not possible to modify the value of a given
8467  *	filter so the generic way to modify an address filter is to free the one
8468  *	being used by the old address value and allocate a new filter for the
8469  *	new address value.
8470  *
8471  *	Returns a negative error number or the index of the filter with the new
8472  *	MAC value.  Note that this index may differ from @idx.
8473  */
8474 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8475 		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8476 {
8477 	int ret, mode;
8478 	struct fw_vi_mac_cmd c;
8479 	struct fw_vi_mac_exact *p = c.u.exact;
8480 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8481 
8482 	if (idx < 0)		/* new allocation */
8483 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8484 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8485 
8486 	memset(&c, 0, sizeof(c));
8487 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8488 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8489 				   V_FW_VI_MAC_CMD_VIID(viid));
8490 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8491 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8492 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8493 				      V_FW_VI_MAC_CMD_IDX(idx));
8494 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8495 
8496 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8497 	if (ret == 0) {
8498 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8499 		if (ret >= max_mac_addr)
8500 			ret = -ENOMEM;
8501 		if (smt_idx) {
8502 			if (adap->params.viid_smt_extn_support)
8503 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8504 			else {
8505 				if (chip_id(adap) <= CHELSIO_T5)
8506 					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
8507 				else
8508 					*smt_idx = viid & M_FW_VIID_VIN;
8509 			}
8510 		}
8511 	}
8512 	return ret;
8513 }
8514 
8515 /**
8516  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8517  *	@adap: the adapter
8518  *	@mbox: mailbox to use for the FW command
8519  *	@viid: the VI id
8520  *	@ucast: whether the hash filter should also match unicast addresses
8521  *	@vec: the value to be written to the hash filter
8522  *	@sleep_ok: call is allowed to sleep
8523  *
8524  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8525  */
8526 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8527 		     bool ucast, u64 vec, bool sleep_ok)
8528 {
8529 	struct fw_vi_mac_cmd c;
8530 	u32 val;
8531 
8532 	memset(&c, 0, sizeof(c));
8533 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8534 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8535 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8536 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8537 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8538 	c.freemacs_to_len16 = cpu_to_be32(val);
8539 	c.u.hash.hashvec = cpu_to_be64(vec);
8540 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8541 }
8542 
8543 /**
8544  *      t4_enable_vi_params - enable/disable a virtual interface
8545  *      @adap: the adapter
8546  *      @mbox: mailbox to use for the FW command
8547  *      @viid: the VI id
8548  *      @rx_en: 1=enable Rx, 0=disable Rx
8549  *      @tx_en: 1=enable Tx, 0=disable Tx
8550  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8551  *
8552  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8553  *      only makes sense when enabling a Virtual Interface ...
8554  */
8555 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8556 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8557 {
8558 	struct fw_vi_enable_cmd c;
8559 
8560 	memset(&c, 0, sizeof(c));
8561 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8562 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8563 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8564 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8565 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8566 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8567 				     FW_LEN16(c));
8568 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8569 }
8570 
8571 /**
8572  *	t4_enable_vi - enable/disable a virtual interface
8573  *	@adap: the adapter
8574  *	@mbox: mailbox to use for the FW command
8575  *	@viid: the VI id
8576  *	@rx_en: 1=enable Rx, 0=disable Rx
8577  *	@tx_en: 1=enable Tx, 0=disable Tx
8578  *
8579  *	Enables/disables a virtual interface.  Note that setting DCB Enable
8580  *	only makes sense when enabling a Virtual Interface ...
8581  */
8582 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8583 		 bool rx_en, bool tx_en)
8584 {
8585 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8586 }
8587 
8588 /**
8589  *	t4_identify_port - identify a VI's port by blinking its LED
8590  *	@adap: the adapter
8591  *	@mbox: mailbox to use for the FW command
8592  *	@viid: the VI id
8593  *	@nblinks: how many times to blink LED at 2.5 Hz
8594  *
8595  *	Identifies a VI's port by blinking its LED.
8596  */
8597 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8598 		     unsigned int nblinks)
8599 {
8600 	struct fw_vi_enable_cmd c;
8601 
8602 	memset(&c, 0, sizeof(c));
8603 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8604 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8605 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8606 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8607 	c.blinkdur = cpu_to_be16(nblinks);
8608 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8609 }
8610 
8611 /**
8612  *	t4_iq_stop - stop an ingress queue and its FLs
8613  *	@adap: the adapter
8614  *	@mbox: mailbox to use for the FW command
8615  *	@pf: the PF owning the queues
8616  *	@vf: the VF owning the queues
8617  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8618  *	@iqid: ingress queue id
8619  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8620  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8621  *
8622  *	Stops an ingress queue and its associated FLs, if any.  This causes
8623  *	any current or future data/messages destined for these queues to be
8624  *	tossed.
8625  */
8626 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8627 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8628 	       unsigned int fl0id, unsigned int fl1id)
8629 {
8630 	struct fw_iq_cmd c;
8631 
8632 	memset(&c, 0, sizeof(c));
8633 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8634 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8635 				  V_FW_IQ_CMD_VFN(vf));
8636 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8637 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8638 	c.iqid = cpu_to_be16(iqid);
8639 	c.fl0id = cpu_to_be16(fl0id);
8640 	c.fl1id = cpu_to_be16(fl1id);
8641 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8642 }
8643 
8644 /**
8645  *	t4_iq_free - free an ingress queue and its FLs
8646  *	@adap: the adapter
8647  *	@mbox: mailbox to use for the FW command
8648  *	@pf: the PF owning the queues
8649  *	@vf: the VF owning the queues
8650  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8651  *	@iqid: ingress queue id
8652  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8653  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8654  *
8655  *	Frees an ingress queue and its associated FLs, if any.
8656  */
8657 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8658 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8659 	       unsigned int fl0id, unsigned int fl1id)
8660 {
8661 	struct fw_iq_cmd c;
8662 
8663 	memset(&c, 0, sizeof(c));
8664 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8665 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8666 				  V_FW_IQ_CMD_VFN(vf));
8667 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8668 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8669 	c.iqid = cpu_to_be16(iqid);
8670 	c.fl0id = cpu_to_be16(fl0id);
8671 	c.fl1id = cpu_to_be16(fl1id);
8672 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8673 }
8674 
8675 /**
8676  *	t4_eth_eq_stop - stop an Ethernet egress queue
8677  *	@adap: the adapter
8678  *	@mbox: mailbox to use for the FW command
8679  *	@pf: the PF owning the queues
8680  *	@vf: the VF owning the queues
8681  *	@eqid: egress queue id
8682  *
8683  *	Stops an Ethernet egress queue.  The queue can be reinitialized or
8684  *	freed but is not otherwise functional after this call.
8685  */
8686 int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8687                    unsigned int vf, unsigned int eqid)
8688 {
8689 	struct fw_eq_eth_cmd c;
8690 
8691 	memset(&c, 0, sizeof(c));
8692 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8693 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8694 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8695 				  V_FW_EQ_ETH_CMD_VFN(vf));
8696 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c));
8697 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8698 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8699 }
8700 
8701 /**
8702  *	t4_eth_eq_free - free an Ethernet egress queue
8703  *	@adap: the adapter
8704  *	@mbox: mailbox to use for the FW command
8705  *	@pf: the PF owning the queue
8706  *	@vf: the VF owning the queue
8707  *	@eqid: egress queue id
8708  *
8709  *	Frees an Ethernet egress queue.
8710  */
8711 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8712 		   unsigned int vf, unsigned int eqid)
8713 {
8714 	struct fw_eq_eth_cmd c;
8715 
8716 	memset(&c, 0, sizeof(c));
8717 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8718 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8719 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8720 				  V_FW_EQ_ETH_CMD_VFN(vf));
8721 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8722 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8723 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8724 }
8725 
8726 /**
8727  *	t4_ctrl_eq_free - free a control egress queue
8728  *	@adap: the adapter
8729  *	@mbox: mailbox to use for the FW command
8730  *	@pf: the PF owning the queue
8731  *	@vf: the VF owning the queue
8732  *	@eqid: egress queue id
8733  *
8734  *	Frees a control egress queue.
8735  */
8736 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8737 		    unsigned int vf, unsigned int eqid)
8738 {
8739 	struct fw_eq_ctrl_cmd c;
8740 
8741 	memset(&c, 0, sizeof(c));
8742 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8743 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8744 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8745 				  V_FW_EQ_CTRL_CMD_VFN(vf));
8746 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8747 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8748 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8749 }
8750 
8751 /**
8752  *	t4_ofld_eq_free - free an offload egress queue
8753  *	@adap: the adapter
8754  *	@mbox: mailbox to use for the FW command
8755  *	@pf: the PF owning the queue
8756  *	@vf: the VF owning the queue
8757  *	@eqid: egress queue id
8758  *
8759  *	Frees a control egress queue.
8760  */
8761 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8762 		    unsigned int vf, unsigned int eqid)
8763 {
8764 	struct fw_eq_ofld_cmd c;
8765 
8766 	memset(&c, 0, sizeof(c));
8767 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8768 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8769 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8770 				  V_FW_EQ_OFLD_CMD_VFN(vf));
8771 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8772 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8773 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8774 }
8775 
8776 /**
8777  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8778  *	@link_down_rc: Link Down Reason Code
8779  *
8780  *	Returns a string representation of the Link Down Reason Code.
8781  */
8782 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8783 {
8784 	static const char *reason[] = {
8785 		"Link Down",
8786 		"Remote Fault",
8787 		"Auto-negotiation Failure",
8788 		"Reserved3",
8789 		"Insufficient Airflow",
8790 		"Unable To Determine Reason",
8791 		"No RX Signal Detected",
8792 		"Reserved7",
8793 	};
8794 
8795 	if (link_down_rc >= ARRAY_SIZE(reason))
8796 		return "Bad Reason Code";
8797 
8798 	return reason[link_down_rc];
8799 }
8800 
8801 /*
8802  * Return the highest speed set in the port capabilities, in Mb/s.
8803  */
8804 unsigned int fwcap_to_speed(uint32_t caps)
8805 {
8806 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8807 		do { \
8808 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8809 				return __speed; \
8810 		} while (0)
8811 
8812 	TEST_SPEED_RETURN(400G, 400000);
8813 	TEST_SPEED_RETURN(200G, 200000);
8814 	TEST_SPEED_RETURN(100G, 100000);
8815 	TEST_SPEED_RETURN(50G,   50000);
8816 	TEST_SPEED_RETURN(40G,   40000);
8817 	TEST_SPEED_RETURN(25G,   25000);
8818 	TEST_SPEED_RETURN(10G,   10000);
8819 	TEST_SPEED_RETURN(1G,     1000);
8820 	TEST_SPEED_RETURN(100M,    100);
8821 
8822 	#undef TEST_SPEED_RETURN
8823 
8824 	return 0;
8825 }
8826 
8827 /*
8828  * Return the port capabilities bit for the given speed, which is in Mb/s.
8829  */
8830 uint32_t speed_to_fwcap(unsigned int speed)
8831 {
8832 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8833 		do { \
8834 			if (speed == __speed) \
8835 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8836 		} while (0)
8837 
8838 	TEST_SPEED_RETURN(400G, 400000);
8839 	TEST_SPEED_RETURN(200G, 200000);
8840 	TEST_SPEED_RETURN(100G, 100000);
8841 	TEST_SPEED_RETURN(50G,   50000);
8842 	TEST_SPEED_RETURN(40G,   40000);
8843 	TEST_SPEED_RETURN(25G,   25000);
8844 	TEST_SPEED_RETURN(10G,   10000);
8845 	TEST_SPEED_RETURN(1G,     1000);
8846 	TEST_SPEED_RETURN(100M,    100);
8847 
8848 	#undef TEST_SPEED_RETURN
8849 
8850 	return 0;
8851 }
8852 
8853 /*
8854  * Return the port capabilities bit for the highest speed in the capabilities.
8855  */
8856 uint32_t fwcap_top_speed(uint32_t caps)
8857 {
8858 	#define TEST_SPEED_RETURN(__caps_speed) \
8859 		do { \
8860 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8861 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8862 		} while (0)
8863 
8864 	TEST_SPEED_RETURN(400G);
8865 	TEST_SPEED_RETURN(200G);
8866 	TEST_SPEED_RETURN(100G);
8867 	TEST_SPEED_RETURN(50G);
8868 	TEST_SPEED_RETURN(40G);
8869 	TEST_SPEED_RETURN(25G);
8870 	TEST_SPEED_RETURN(10G);
8871 	TEST_SPEED_RETURN(1G);
8872 	TEST_SPEED_RETURN(100M);
8873 
8874 	#undef TEST_SPEED_RETURN
8875 
8876 	return 0;
8877 }
8878 
8879 /**
8880  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8881  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8882  *
8883  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8884  *	32-bit Port Capabilities value.
8885  */
8886 static uint32_t lstatus_to_fwcap(u32 lstatus)
8887 {
8888 	uint32_t linkattr = 0;
8889 
8890 	/*
8891 	 * Unfortunately the format of the Link Status in the old
8892 	 * 16-bit Port Information message isn't the same as the
8893 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8894 	 */
8895 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8896 		linkattr |= FW_PORT_CAP32_FC_RX;
8897 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8898 		linkattr |= FW_PORT_CAP32_FC_TX;
8899 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8900 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8901 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8902 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8903 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8904 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8905 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8906 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8907 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8908 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8909 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8910 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8911 
8912 	return linkattr;
8913 }
8914 
8915 /*
8916  * Updates all fields owned by the common code in port_info and link_config
8917  * based on information provided by the firmware.  Does not touch any
8918  * requested_* field.
8919  */
8920 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8921     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8922 {
8923 	struct link_config old_lc, *lc = &pi->link_cfg;
8924 	unsigned char fc;
8925 	u32 stat, linkattr;
8926 	int old_ptype, old_mtype;
8927 
8928 	old_ptype = pi->port_type;
8929 	old_mtype = pi->mod_type;
8930 	old_lc = *lc;
8931 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8932 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8933 
8934 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8935 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8936 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8937 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8938 
8939 		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8940 		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8941 		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8942 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8943 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8944 
8945 		linkattr = lstatus_to_fwcap(stat);
8946 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8947 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8948 
8949 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8950 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8951 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8952 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8953 
8954 		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8955 		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8956 		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8957 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8958 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8959 
8960 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
8961 	} else {
8962 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8963 		return;
8964 	}
8965 
8966 	lc->speed = fwcap_to_speed(linkattr);
8967 	lc->fec = fwcap_to_fec(linkattr, true);
8968 
8969 	fc = 0;
8970 	if (linkattr & FW_PORT_CAP32_FC_RX)
8971 		fc |= PAUSE_RX;
8972 	if (linkattr & FW_PORT_CAP32_FC_TX)
8973 		fc |= PAUSE_TX;
8974 	lc->fc = fc;
8975 
8976 	if (mod_changed != NULL)
8977 		*mod_changed = false;
8978 	if (link_changed != NULL)
8979 		*link_changed = false;
8980 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8981 	    old_lc.pcaps != lc->pcaps) {
8982 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
8983 			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
8984 		if (mod_changed != NULL)
8985 			*mod_changed = true;
8986 	}
8987 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8988 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8989 		if (link_changed != NULL)
8990 			*link_changed = true;
8991 	}
8992 }
8993 
8994 /**
8995  *	t4_update_port_info - retrieve and update port information if changed
8996  *	@pi: the port_info
8997  *
8998  *	We issue a Get Port Information Command to the Firmware and, if
8999  *	successful, we check to see if anything is different from what we
9000  *	last recorded and update things accordingly.
9001  */
9002  int t4_update_port_info(struct port_info *pi)
9003  {
9004 	struct adapter *sc = pi->adapter;
9005 	struct fw_port_cmd cmd;
9006 	enum fw_port_action action;
9007 	int ret;
9008 
9009 	memset(&cmd, 0, sizeof(cmd));
9010 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
9011 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
9012 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
9013 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
9014 	    FW_PORT_ACTION_GET_PORT_INFO;
9015 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
9016 	    FW_LEN16(cmd));
9017 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
9018 	if (ret)
9019 		return ret;
9020 
9021 	handle_port_info(pi, &cmd, action, NULL, NULL);
9022 	return 0;
9023 }
9024 
9025 /**
9026  *	t4_handle_fw_rpl - process a FW reply message
9027  *	@adap: the adapter
9028  *	@rpl: start of the FW message
9029  *
9030  *	Processes a FW message, such as link state change messages.
9031  */
9032 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
9033 {
9034 	u8 opcode = *(const u8 *)rpl;
9035 	const struct fw_port_cmd *p = (const void *)rpl;
9036 	enum fw_port_action action =
9037 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
9038 	bool mod_changed, link_changed;
9039 
9040 	if (opcode == FW_PORT_CMD &&
9041 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
9042 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
9043 		/* link/module state change message */
9044 		int i;
9045 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
9046 		struct port_info *pi = NULL;
9047 		struct link_config *lc;
9048 
9049 		for_each_port(adap, i) {
9050 			pi = adap2pinfo(adap, i);
9051 			if (pi->tx_chan == chan)
9052 				break;
9053 		}
9054 
9055 		lc = &pi->link_cfg;
9056 		PORT_LOCK(pi);
9057 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
9058 		PORT_UNLOCK(pi);
9059 		if (mod_changed)
9060 			t4_os_portmod_changed(pi);
9061 		if (link_changed) {
9062 			PORT_LOCK(pi);
9063 			t4_os_link_changed(pi);
9064 			PORT_UNLOCK(pi);
9065 		}
9066 	} else {
9067 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
9068 		return -EINVAL;
9069 	}
9070 	return 0;
9071 }
9072 
9073 /**
9074  *	get_pci_mode - determine a card's PCI mode
9075  *	@adapter: the adapter
9076  *	@p: where to store the PCI settings
9077  *
9078  *	Determines a card's PCI mode and associated parameters, such as speed
9079  *	and width.
9080  */
9081 static void get_pci_mode(struct adapter *adapter,
9082 				   struct pci_params *p)
9083 {
9084 	u16 val;
9085 	u32 pcie_cap;
9086 
9087 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9088 	if (pcie_cap) {
9089 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
9090 		p->speed = val & PCI_EXP_LNKSTA_CLS;
9091 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
9092 	}
9093 }
9094 
9095 struct flash_desc {
9096 	u32 vendor_and_model_id;
9097 	u32 size_mb;
9098 };
9099 
9100 int t4_get_flash_params(struct adapter *adapter)
9101 {
9102 	/*
9103 	 * Table for non-standard supported Flash parts.  Note, all Flash
9104 	 * parts must have 64KB sectors.
9105 	 */
9106 	static struct flash_desc supported_flash[] = {
9107 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
9108 	};
9109 
9110 	int ret;
9111 	u32 flashid = 0;
9112 	unsigned int part, manufacturer;
9113 	unsigned int density, size = 0;
9114 
9115 
9116 	/*
9117 	 * Issue a Read ID Command to the Flash part.  We decode supported
9118 	 * Flash parts and their sizes from this.  There's a newer Query
9119 	 * Command which can retrieve detailed geometry information but many
9120 	 * Flash parts don't support it.
9121 	 */
9122 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
9123 	if (!ret)
9124 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
9125 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
9126 	if (ret < 0)
9127 		return ret;
9128 
9129 	/*
9130 	 * Check to see if it's one of our non-standard supported Flash parts.
9131 	 */
9132 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9133 		if (supported_flash[part].vendor_and_model_id == flashid) {
9134 			adapter->params.sf_size =
9135 				supported_flash[part].size_mb;
9136 			adapter->params.sf_nsec =
9137 				adapter->params.sf_size / SF_SEC_SIZE;
9138 			goto found;
9139 		}
9140 
9141 	/*
9142 	 * Decode Flash part size.  The code below looks repetative with
9143 	 * common encodings, but that's not guaranteed in the JEDEC
9144 	 * specification for the Read JADEC ID command.  The only thing that
9145 	 * we're guaranteed by the JADEC specification is where the
9146 	 * Manufacturer ID is in the returned result.  After that each
9147 	 * Manufacturer ~could~ encode things completely differently.
9148 	 * Note, all Flash parts must have 64KB sectors.
9149 	 */
9150 	manufacturer = flashid & 0xff;
9151 	switch (manufacturer) {
9152 	case 0x20: /* Micron/Numonix */
9153 		/*
9154 		 * This Density -> Size decoding table is taken from Micron
9155 		 * Data Sheets.
9156 		 */
9157 		density = (flashid >> 16) & 0xff;
9158 		switch (density) {
9159 		case 0x14: size = 1 << 20; break; /*   1MB */
9160 		case 0x15: size = 1 << 21; break; /*   2MB */
9161 		case 0x16: size = 1 << 22; break; /*   4MB */
9162 		case 0x17: size = 1 << 23; break; /*   8MB */
9163 		case 0x18: size = 1 << 24; break; /*  16MB */
9164 		case 0x19: size = 1 << 25; break; /*  32MB */
9165 		case 0x20: size = 1 << 26; break; /*  64MB */
9166 		case 0x21: size = 1 << 27; break; /* 128MB */
9167 		case 0x22: size = 1 << 28; break; /* 256MB */
9168 		}
9169 		break;
9170 
9171 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
9172 		/*
9173 		 * This Density -> Size decoding table is taken from ISSI
9174 		 * Data Sheets.
9175 		 */
9176 		density = (flashid >> 16) & 0xff;
9177 		switch (density) {
9178 		case 0x16: size = 1 << 25; break; /*  32MB */
9179 		case 0x17: size = 1 << 26; break; /*  64MB */
9180 		}
9181 		break;
9182 
9183 	case 0xc2: /* Macronix */
9184 		/*
9185 		 * This Density -> Size decoding table is taken from Macronix
9186 		 * Data Sheets.
9187 		 */
9188 		density = (flashid >> 16) & 0xff;
9189 		switch (density) {
9190 		case 0x17: size = 1 << 23; break; /*   8MB */
9191 		case 0x18: size = 1 << 24; break; /*  16MB */
9192 		}
9193 		break;
9194 
9195 	case 0xef: /* Winbond */
9196 		/*
9197 		 * This Density -> Size decoding table is taken from Winbond
9198 		 * Data Sheets.
9199 		 */
9200 		density = (flashid >> 16) & 0xff;
9201 		switch (density) {
9202 		case 0x17: size = 1 << 23; break; /*   8MB */
9203 		case 0x18: size = 1 << 24; break; /*  16MB */
9204 		}
9205 		break;
9206 	}
9207 
9208 	/* If we didn't recognize the FLASH part, that's no real issue: the
9209 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9210 	 * use a FLASH part which is at least 4MB in size and has 64KB
9211 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9212 	 * than 4MB, but that's all we really need.
9213 	 */
9214 	if (size == 0) {
9215 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
9216 		size = 1 << 22;
9217 	}
9218 
9219 	/*
9220 	 * Store decoded Flash size and fall through into vetting code.
9221 	 */
9222 	adapter->params.sf_size = size;
9223 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
9224 
9225  found:
9226 	/*
9227 	 * We should ~probably~ reject adapters with FLASHes which are too
9228 	 * small but we have some legacy FPGAs with small FLASHes that we'd
9229 	 * still like to use.  So instead we emit a scary message ...
9230 	 */
9231 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
9232 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9233 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
9234 
9235 	return 0;
9236 }
9237 
9238 static void set_pcie_completion_timeout(struct adapter *adapter,
9239 						  u8 range)
9240 {
9241 	u16 val;
9242 	u32 pcie_cap;
9243 
9244 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9245 	if (pcie_cap) {
9246 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
9247 		val &= 0xfff0;
9248 		val |= range ;
9249 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
9250 	}
9251 }
9252 
9253 const struct chip_params *t4_get_chip_params(int chipid)
9254 {
9255 	static const struct chip_params chip_params[] = {
9256 		{
9257 			/* T4 */
9258 			.nchan = NCHAN,
9259 			.pm_stats_cnt = PM_NSTATS,
9260 			.cng_ch_bits_log = 2,
9261 			.nsched_cls = 15,
9262 			.cim_num_obq = CIM_NUM_OBQ,
9263 			.filter_opt_len = FILTER_OPT_LEN,
9264 			.mps_rplc_size = 128,
9265 			.vfcount = 128,
9266 			.sge_fl_db = F_DBPRIO,
9267 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
9268 			.rss_nentries = RSS_NENTRIES,
9269 		},
9270 		{
9271 			/* T5 */
9272 			.nchan = NCHAN,
9273 			.pm_stats_cnt = PM_NSTATS,
9274 			.cng_ch_bits_log = 2,
9275 			.nsched_cls = 16,
9276 			.cim_num_obq = CIM_NUM_OBQ_T5,
9277 			.filter_opt_len = T5_FILTER_OPT_LEN,
9278 			.mps_rplc_size = 128,
9279 			.vfcount = 128,
9280 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
9281 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9282 			.rss_nentries = RSS_NENTRIES,
9283 		},
9284 		{
9285 			/* T6 */
9286 			.nchan = T6_NCHAN,
9287 			.pm_stats_cnt = T6_PM_NSTATS,
9288 			.cng_ch_bits_log = 3,
9289 			.nsched_cls = 16,
9290 			.cim_num_obq = CIM_NUM_OBQ_T5,
9291 			.filter_opt_len = T5_FILTER_OPT_LEN,
9292 			.mps_rplc_size = 256,
9293 			.vfcount = 256,
9294 			.sge_fl_db = 0,
9295 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9296 			.rss_nentries = T6_RSS_NENTRIES,
9297 		},
9298 	};
9299 
9300 	chipid -= CHELSIO_T4;
9301 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
9302 		return NULL;
9303 
9304 	return &chip_params[chipid];
9305 }
9306 
9307 /**
9308  *	t4_prep_adapter - prepare SW and HW for operation
9309  *	@adapter: the adapter
9310  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
9311  *
9312  *	Initialize adapter SW state for the various HW modules, set initial
9313  *	values for some adapter tunables, take PHYs out of reset, and
9314  *	initialize the MDIO interface.
9315  */
9316 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
9317 {
9318 	int ret;
9319 	uint16_t device_id;
9320 	uint32_t pl_rev;
9321 
9322 	get_pci_mode(adapter, &adapter->params.pci);
9323 
9324 	pl_rev = t4_read_reg(adapter, A_PL_REV);
9325 	adapter->params.chipid = G_CHIPID(pl_rev);
9326 	adapter->params.rev = G_REV(pl_rev);
9327 	if (adapter->params.chipid == 0) {
9328 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
9329 		adapter->params.chipid = CHELSIO_T4;
9330 
9331 		/* T4A1 chip is not supported */
9332 		if (adapter->params.rev == 1) {
9333 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
9334 			return -EINVAL;
9335 		}
9336 	}
9337 
9338 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
9339 	if (adapter->chip_params == NULL)
9340 		return -EINVAL;
9341 
9342 	adapter->params.pci.vpd_cap_addr =
9343 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
9344 
9345 	ret = t4_get_flash_params(adapter);
9346 	if (ret < 0)
9347 		return ret;
9348 
9349 	/* Cards with real ASICs have the chipid in the PCIe device id */
9350 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
9351 	if (device_id >> 12 == chip_id(adapter))
9352 		adapter->params.cim_la_size = CIMLA_SIZE;
9353 	else {
9354 		/* FPGA */
9355 		adapter->params.fpga = 1;
9356 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
9357 	}
9358 
9359 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9360 	if (ret < 0)
9361 		return ret;
9362 
9363 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9364 
9365 	/*
9366 	 * Default port and clock for debugging in case we can't reach FW.
9367 	 */
9368 	adapter->params.nports = 1;
9369 	adapter->params.portvec = 1;
9370 	adapter->params.vpd.cclk = 50000;
9371 
9372 	/* Set pci completion timeout value to 4 seconds. */
9373 	set_pcie_completion_timeout(adapter, 0xd);
9374 	return 0;
9375 }
9376 
9377 /**
9378  *	t4_shutdown_adapter - shut down adapter, host & wire
9379  *	@adapter: the adapter
9380  *
9381  *	Perform an emergency shutdown of the adapter and stop it from
9382  *	continuing any further communication on the ports or DMA to the
9383  *	host.  This is typically used when the adapter and/or firmware
9384  *	have crashed and we want to prevent any further accidental
9385  *	communication with the rest of the world.  This will also force
9386  *	the port Link Status to go down -- if register writes work --
9387  *	which should help our peers figure out that we're down.
9388  */
9389 int t4_shutdown_adapter(struct adapter *adapter)
9390 {
9391 	int port;
9392 
9393 	t4_intr_disable(adapter);
9394 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
9395 	for_each_port(adapter, port) {
9396 		u32 a_port_cfg = is_t4(adapter) ?
9397 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
9398 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
9399 
9400 		t4_write_reg(adapter, a_port_cfg,
9401 			     t4_read_reg(adapter, a_port_cfg)
9402 			     & ~V_SIGNAL_DET(1));
9403 	}
9404 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9405 
9406 	return 0;
9407 }
9408 
9409 /**
9410  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9411  *	@adapter: the adapter
9412  *	@qid: the Queue ID
9413  *	@qtype: the Ingress or Egress type for @qid
9414  *	@user: true if this request is for a user mode queue
9415  *	@pbar2_qoffset: BAR2 Queue Offset
9416  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9417  *
9418  *	Returns the BAR2 SGE Queue Registers information associated with the
9419  *	indicated Absolute Queue ID.  These are passed back in return value
9420  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9421  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9422  *
9423  *	This may return an error which indicates that BAR2 SGE Queue
9424  *	registers aren't available.  If an error is not returned, then the
9425  *	following values are returned:
9426  *
9427  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9428  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9429  *
9430  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9431  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9432  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9433  *	then these "Inferred Queue ID" register may not be used.
9434  */
9435 int t4_bar2_sge_qregs(struct adapter *adapter,
9436 		      unsigned int qid,
9437 		      enum t4_bar2_qtype qtype,
9438 		      int user,
9439 		      u64 *pbar2_qoffset,
9440 		      unsigned int *pbar2_qid)
9441 {
9442 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9443 	u64 bar2_page_offset, bar2_qoffset;
9444 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9445 
9446 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
9447 	 * mode queues.
9448 	 */
9449 	if (!user && is_t4(adapter))
9450 		return -EINVAL;
9451 
9452 	/* Get our SGE Page Size parameters.
9453 	 */
9454 	page_shift = adapter->params.sge.page_shift;
9455 	page_size = 1 << page_shift;
9456 
9457 	/* Get the right Queues per Page parameters for our Queue.
9458 	 */
9459 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9460 		     ? adapter->params.sge.eq_s_qpp
9461 		     : adapter->params.sge.iq_s_qpp);
9462 	qpp_mask = (1 << qpp_shift) - 1;
9463 
9464 	/* Calculate the basics of the BAR2 SGE Queue register area:
9465 	 *  o The BAR2 page the Queue registers will be in.
9466 	 *  o The BAR2 Queue ID.
9467 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9468 	 */
9469 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9470 	bar2_qid = qid & qpp_mask;
9471 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9472 
9473 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9474 	 * hardware will infer the Absolute Queue ID simply from the writes to
9475 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9476 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9477 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9478 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9479 	 * from the BAR2 Page and BAR2 Queue ID.
9480 	 *
9481 	 * One important censequence of this is that some BAR2 SGE registers
9482 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9483 	 * there.  But other registers synthesize the SGE Queue ID purely
9484 	 * from the writes to the registers -- the Write Combined Doorbell
9485 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9486 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9487 	 * Queue ID can be inferred from simple writes.
9488 	 */
9489 	bar2_qoffset = bar2_page_offset;
9490 	bar2_qinferred = (bar2_qid_offset < page_size);
9491 	if (bar2_qinferred) {
9492 		bar2_qoffset += bar2_qid_offset;
9493 		bar2_qid = 0;
9494 	}
9495 
9496 	*pbar2_qoffset = bar2_qoffset;
9497 	*pbar2_qid = bar2_qid;
9498 	return 0;
9499 }
9500 
9501 /**
9502  *	t4_init_devlog_params - initialize adapter->params.devlog
9503  *	@adap: the adapter
9504  *	@fw_attach: whether we can talk to the firmware
9505  *
9506  *	Initialize various fields of the adapter's Firmware Device Log
9507  *	Parameters structure.
9508  */
9509 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9510 {
9511 	struct devlog_params *dparams = &adap->params.devlog;
9512 	u32 pf_dparams;
9513 	unsigned int devlog_meminfo;
9514 	struct fw_devlog_cmd devlog_cmd;
9515 	int ret;
9516 
9517 	/* If we're dealing with newer firmware, the Device Log Paramerters
9518 	 * are stored in a designated register which allows us to access the
9519 	 * Device Log even if we can't talk to the firmware.
9520 	 */
9521 	pf_dparams =
9522 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9523 	if (pf_dparams) {
9524 		unsigned int nentries, nentries128;
9525 
9526 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9527 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9528 
9529 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9530 		nentries = (nentries128 + 1) * 128;
9531 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9532 
9533 		return 0;
9534 	}
9535 
9536 	/*
9537 	 * For any failing returns ...
9538 	 */
9539 	memset(dparams, 0, sizeof *dparams);
9540 
9541 	/*
9542 	 * If we can't talk to the firmware, there's really nothing we can do
9543 	 * at this point.
9544 	 */
9545 	if (!fw_attach)
9546 		return -ENXIO;
9547 
9548 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9549 	 */
9550 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9551 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9552 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9553 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9554 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9555 			 &devlog_cmd);
9556 	if (ret)
9557 		return ret;
9558 
9559 	devlog_meminfo =
9560 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9561 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9562 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9563 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9564 
9565 	return 0;
9566 }
9567 
9568 /**
9569  *	t4_init_sge_params - initialize adap->params.sge
9570  *	@adapter: the adapter
9571  *
9572  *	Initialize various fields of the adapter's SGE Parameters structure.
9573  */
9574 int t4_init_sge_params(struct adapter *adapter)
9575 {
9576 	u32 r;
9577 	struct sge_params *sp = &adapter->params.sge;
9578 	unsigned i, tscale = 1;
9579 
9580 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9581 	sp->counter_val[0] = G_THRESHOLD_0(r);
9582 	sp->counter_val[1] = G_THRESHOLD_1(r);
9583 	sp->counter_val[2] = G_THRESHOLD_2(r);
9584 	sp->counter_val[3] = G_THRESHOLD_3(r);
9585 
9586 	if (chip_id(adapter) >= CHELSIO_T6) {
9587 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9588 		tscale = G_TSCALE(r);
9589 		if (tscale == 0)
9590 			tscale = 1;
9591 		else
9592 			tscale += 2;
9593 	}
9594 
9595 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9596 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9597 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9598 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9599 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9600 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9601 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9602 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9603 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9604 
9605 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9606 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9607 	if (is_t4(adapter))
9608 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9609 	else if (is_t5(adapter))
9610 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9611 	else
9612 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9613 
9614 	/* egress queues: log2 of # of doorbells per BAR2 page */
9615 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9616 	r >>= S_QUEUESPERPAGEPF0 +
9617 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9618 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9619 
9620 	/* ingress queues: log2 of # of doorbells per BAR2 page */
9621 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9622 	r >>= S_QUEUESPERPAGEPF0 +
9623 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9624 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9625 
9626 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9627 	r >>= S_HOSTPAGESIZEPF0 +
9628 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9629 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9630 
9631 	r = t4_read_reg(adapter, A_SGE_CONTROL);
9632 	sp->sge_control = r;
9633 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9634 	sp->fl_pktshift = G_PKTSHIFT(r);
9635 	if (chip_id(adapter) <= CHELSIO_T5) {
9636 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9637 		    X_INGPADBOUNDARY_SHIFT);
9638 	} else {
9639 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9640 		    X_T6_INGPADBOUNDARY_SHIFT);
9641 	}
9642 	if (is_t4(adapter))
9643 		sp->pack_boundary = sp->pad_boundary;
9644 	else {
9645 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9646 		if (G_INGPACKBOUNDARY(r) == 0)
9647 			sp->pack_boundary = 16;
9648 		else
9649 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9650 	}
9651 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9652 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9653 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9654 
9655 	return 0;
9656 }
9657 
9658 /* Convert the LE's hardware hash mask to a shorter filter mask. */
9659 static inline uint16_t
9660 hashmask_to_filtermask(uint64_t hashmask, uint16_t filter_mode)
9661 {
9662 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
9663 	int i;
9664 	uint16_t filter_mask;
9665 	uint64_t mask;		/* field mask */
9666 
9667 	filter_mask = 0;
9668 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
9669 		if ((filter_mode & (1 << i)) == 0)
9670 			continue;
9671 		mask = (1 << width[i]) - 1;
9672 		if ((hashmask & mask) == mask)
9673 			filter_mask |= 1 << i;
9674 		hashmask >>= width[i];
9675 	}
9676 
9677 	return (filter_mask);
9678 }
9679 
9680 /*
9681  * Read and cache the adapter's compressed filter mode and ingress config.
9682  */
9683 static void
9684 read_filter_mode_and_ingress_config(struct adapter *adap)
9685 {
9686 	int rc;
9687 	uint32_t v, param[2], val[2];
9688 	struct tp_params *tpp = &adap->params.tp;
9689 	uint64_t hash_mask;
9690 
9691 	param[0] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9692 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9693 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
9694 	param[1] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9695 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9696 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
9697 	rc = -t4_query_params(adap, adap->mbox, adap->pf, 0, 2, param, val);
9698 	if (rc == 0) {
9699 		tpp->filter_mode = G_FW_PARAMS_PARAM_FILTER_MODE(val[0]);
9700 		tpp->filter_mask = G_FW_PARAMS_PARAM_FILTER_MASK(val[0]);
9701 		tpp->vnic_mode = val[1];
9702 	} else {
9703 		/*
9704 		 * Old firmware.  Read filter mode/mask and ingress config
9705 		 * straight from the hardware.
9706 		 */
9707 		t4_tp_pio_read(adap, &v, 1, A_TP_VLAN_PRI_MAP, true);
9708 		tpp->filter_mode = v & 0xffff;
9709 
9710 		hash_mask = 0;
9711 		if (chip_id(adap) > CHELSIO_T4) {
9712 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9713 			hash_mask = v;
9714 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9715 			hash_mask |= (u64)v << 32;
9716 		}
9717 		tpp->filter_mask = hashmask_to_filtermask(hash_mask,
9718 		    tpp->filter_mode);
9719 
9720 		t4_tp_pio_read(adap, &v, 1, A_TP_INGRESS_CONFIG, true);
9721 		if (v & F_VNIC)
9722 			tpp->vnic_mode = FW_VNIC_MODE_PF_VF;
9723 		else
9724 			tpp->vnic_mode = FW_VNIC_MODE_OUTER_VLAN;
9725 	}
9726 
9727 	/*
9728 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9729 	 * shift positions of several elements of the Compressed Filter Tuple
9730 	 * for this adapter which we need frequently ...
9731 	 */
9732 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9733 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9734 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9735 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9736 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9737 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9738 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9739 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9740 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9741 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9742 }
9743 
9744 /**
9745  *      t4_init_tp_params - initialize adap->params.tp
9746  *      @adap: the adapter
9747  *
9748  *      Initialize various fields of the adapter's TP Parameters structure.
9749  */
9750 int t4_init_tp_params(struct adapter *adap)
9751 {
9752 	int chan;
9753 	u32 tx_len, rx_len, r, v;
9754 	struct tp_params *tpp = &adap->params.tp;
9755 
9756 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9757 	tpp->tre = G_TIMERRESOLUTION(v);
9758 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9759 
9760 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9761 	for (chan = 0; chan < MAX_NCHAN; chan++)
9762 		tpp->tx_modq[chan] = chan;
9763 
9764 	read_filter_mode_and_ingress_config(adap);
9765 
9766 	if (chip_id(adap) > CHELSIO_T5) {
9767 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9768 		tpp->rx_pkt_encap = v & F_CRXPKTENC;
9769 	} else
9770 		tpp->rx_pkt_encap = false;
9771 
9772 	rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
9773 	tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
9774 
9775 	r = t4_read_reg(adap, A_TP_PARA_REG2);
9776 	rx_len = min(rx_len, G_MAXRXDATA(r));
9777 	tx_len = min(tx_len, G_MAXRXDATA(r));
9778 
9779 	r = t4_read_reg(adap, A_TP_PARA_REG7);
9780 	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
9781 	rx_len = min(rx_len, v);
9782 	tx_len = min(tx_len, v);
9783 
9784 	tpp->max_tx_pdu = tx_len;
9785 	tpp->max_rx_pdu = rx_len;
9786 
9787 	return 0;
9788 }
9789 
9790 /**
9791  *      t4_filter_field_shift - calculate filter field shift
9792  *      @adap: the adapter
9793  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9794  *
9795  *      Return the shift position of a filter field within the Compressed
9796  *      Filter Tuple.  The filter field is specified via its selection bit
9797  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9798  */
9799 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9800 {
9801 	const unsigned int filter_mode = adap->params.tp.filter_mode;
9802 	unsigned int sel;
9803 	int field_shift;
9804 
9805 	if ((filter_mode & filter_sel) == 0)
9806 		return -1;
9807 
9808 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9809 		switch (filter_mode & sel) {
9810 		case F_FCOE:
9811 			field_shift += W_FT_FCOE;
9812 			break;
9813 		case F_PORT:
9814 			field_shift += W_FT_PORT;
9815 			break;
9816 		case F_VNIC_ID:
9817 			field_shift += W_FT_VNIC_ID;
9818 			break;
9819 		case F_VLAN:
9820 			field_shift += W_FT_VLAN;
9821 			break;
9822 		case F_TOS:
9823 			field_shift += W_FT_TOS;
9824 			break;
9825 		case F_PROTOCOL:
9826 			field_shift += W_FT_PROTOCOL;
9827 			break;
9828 		case F_ETHERTYPE:
9829 			field_shift += W_FT_ETHERTYPE;
9830 			break;
9831 		case F_MACMATCH:
9832 			field_shift += W_FT_MACMATCH;
9833 			break;
9834 		case F_MPSHITTYPE:
9835 			field_shift += W_FT_MPSHITTYPE;
9836 			break;
9837 		case F_FRAGMENTATION:
9838 			field_shift += W_FT_FRAGMENTATION;
9839 			break;
9840 		}
9841 	}
9842 	return field_shift;
9843 }
9844 
9845 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9846 {
9847 	u8 addr[6];
9848 	int ret, i, j;
9849 	struct port_info *p = adap2pinfo(adap, port_id);
9850 	u32 param, val;
9851 	struct vi_info *vi = &p->vi[0];
9852 
9853 	for (i = 0, j = -1; i <= p->port_id; i++) {
9854 		do {
9855 			j++;
9856 		} while ((adap->params.portvec & (1 << j)) == 0);
9857 	}
9858 
9859 	p->tx_chan = j;
9860 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9861 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9862 	p->rx_c_chan = t4_get_rx_c_chan(adap, j);
9863 	p->lport = j;
9864 
9865 	if (!(adap->flags & IS_VF) ||
9866 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9867  		t4_update_port_info(p);
9868 	}
9869 
9870 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9871 	    &vi->vfvld, &vi->vin);
9872 	if (ret < 0)
9873 		return ret;
9874 
9875 	vi->viid = ret;
9876 	t4_os_set_hw_addr(p, addr);
9877 
9878 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9879 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9880 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
9881 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9882 	if (ret)
9883 		vi->rss_base = 0xffff;
9884 	else {
9885 		/* MPASS((val >> 16) == rss_size); */
9886 		vi->rss_base = val & 0xffff;
9887 	}
9888 
9889 	return 0;
9890 }
9891 
9892 /**
9893  *	t4_read_cimq_cfg - read CIM queue configuration
9894  *	@adap: the adapter
9895  *	@base: holds the queue base addresses in bytes
9896  *	@size: holds the queue sizes in bytes
9897  *	@thres: holds the queue full thresholds in bytes
9898  *
9899  *	Returns the current configuration of the CIM queues, starting with
9900  *	the IBQs, then the OBQs.
9901  */
9902 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9903 {
9904 	unsigned int i, v;
9905 	int cim_num_obq = adap->chip_params->cim_num_obq;
9906 
9907 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9908 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9909 			     V_QUENUMSELECT(i));
9910 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9911 		/* value is in 256-byte units */
9912 		*base++ = G_CIMQBASE(v) * 256;
9913 		*size++ = G_CIMQSIZE(v) * 256;
9914 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9915 	}
9916 	for (i = 0; i < cim_num_obq; i++) {
9917 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9918 			     V_QUENUMSELECT(i));
9919 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9920 		/* value is in 256-byte units */
9921 		*base++ = G_CIMQBASE(v) * 256;
9922 		*size++ = G_CIMQSIZE(v) * 256;
9923 	}
9924 }
9925 
9926 /**
9927  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9928  *	@adap: the adapter
9929  *	@qid: the queue index
9930  *	@data: where to store the queue contents
9931  *	@n: capacity of @data in 32-bit words
9932  *
9933  *	Reads the contents of the selected CIM queue starting at address 0 up
9934  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9935  *	error and the number of 32-bit words actually read on success.
9936  */
9937 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9938 {
9939 	int i, err, attempts;
9940 	unsigned int addr;
9941 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9942 
9943 	if (qid > 5 || (n & 3))
9944 		return -EINVAL;
9945 
9946 	addr = qid * nwords;
9947 	if (n > nwords)
9948 		n = nwords;
9949 
9950 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9951 	 * Wait for 1 Sec with a delay of 1 usec.
9952 	 */
9953 	attempts = 1000000;
9954 
9955 	for (i = 0; i < n; i++, addr++) {
9956 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9957 			     F_IBQDBGEN);
9958 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9959 				      attempts, 1);
9960 		if (err)
9961 			return err;
9962 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9963 	}
9964 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9965 	return i;
9966 }
9967 
9968 /**
9969  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9970  *	@adap: the adapter
9971  *	@qid: the queue index
9972  *	@data: where to store the queue contents
9973  *	@n: capacity of @data in 32-bit words
9974  *
9975  *	Reads the contents of the selected CIM queue starting at address 0 up
9976  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9977  *	error and the number of 32-bit words actually read on success.
9978  */
9979 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9980 {
9981 	int i, err;
9982 	unsigned int addr, v, nwords;
9983 	int cim_num_obq = adap->chip_params->cim_num_obq;
9984 
9985 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9986 		return -EINVAL;
9987 
9988 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9989 		     V_QUENUMSELECT(qid));
9990 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9991 
9992 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
9993 	nwords = G_CIMQSIZE(v) * 64;  /* same */
9994 	if (n > nwords)
9995 		n = nwords;
9996 
9997 	for (i = 0; i < n; i++, addr++) {
9998 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
9999 			     F_OBQDBGEN);
10000 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
10001 				      2, 1);
10002 		if (err)
10003 			return err;
10004 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
10005 	}
10006 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
10007 	return i;
10008 }
10009 
10010 enum {
10011 	CIM_QCTL_BASE     = 0,
10012 	CIM_CTL_BASE      = 0x2000,
10013 	CIM_PBT_ADDR_BASE = 0x2800,
10014 	CIM_PBT_LRF_BASE  = 0x3000,
10015 	CIM_PBT_DATA_BASE = 0x3800
10016 };
10017 
10018 /**
10019  *	t4_cim_read - read a block from CIM internal address space
10020  *	@adap: the adapter
10021  *	@addr: the start address within the CIM address space
10022  *	@n: number of words to read
10023  *	@valp: where to store the result
10024  *
10025  *	Reads a block of 4-byte words from the CIM intenal address space.
10026  */
10027 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
10028 		unsigned int *valp)
10029 {
10030 	int ret = 0;
10031 
10032 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10033 		return -EBUSY;
10034 
10035 	for ( ; !ret && n--; addr += 4) {
10036 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
10037 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10038 				      0, 5, 2);
10039 		if (!ret)
10040 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
10041 	}
10042 	return ret;
10043 }
10044 
10045 /**
10046  *	t4_cim_write - write a block into CIM internal address space
10047  *	@adap: the adapter
10048  *	@addr: the start address within the CIM address space
10049  *	@n: number of words to write
10050  *	@valp: set of values to write
10051  *
10052  *	Writes a block of 4-byte words into the CIM intenal address space.
10053  */
10054 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
10055 		 const unsigned int *valp)
10056 {
10057 	int ret = 0;
10058 
10059 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10060 		return -EBUSY;
10061 
10062 	for ( ; !ret && n--; addr += 4) {
10063 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
10064 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
10065 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10066 				      0, 5, 2);
10067 	}
10068 	return ret;
10069 }
10070 
10071 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
10072 			 unsigned int val)
10073 {
10074 	return t4_cim_write(adap, addr, 1, &val);
10075 }
10076 
10077 /**
10078  *	t4_cim_ctl_read - read a block from CIM control region
10079  *	@adap: the adapter
10080  *	@addr: the start address within the CIM control region
10081  *	@n: number of words to read
10082  *	@valp: where to store the result
10083  *
10084  *	Reads a block of 4-byte words from the CIM control region.
10085  */
10086 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
10087 		    unsigned int *valp)
10088 {
10089 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
10090 }
10091 
10092 /**
10093  *	t4_cim_read_la - read CIM LA capture buffer
10094  *	@adap: the adapter
10095  *	@la_buf: where to store the LA data
10096  *	@wrptr: the HW write pointer within the capture buffer
10097  *
10098  *	Reads the contents of the CIM LA buffer with the most recent entry at
10099  *	the end	of the returned data and with the entry at @wrptr first.
10100  *	We try to leave the LA in the running state we find it in.
10101  */
10102 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
10103 {
10104 	int i, ret;
10105 	unsigned int cfg, val, idx;
10106 
10107 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
10108 	if (ret)
10109 		return ret;
10110 
10111 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
10112 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
10113 		if (ret)
10114 			return ret;
10115 	}
10116 
10117 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10118 	if (ret)
10119 		goto restart;
10120 
10121 	idx = G_UPDBGLAWRPTR(val);
10122 	if (wrptr)
10123 		*wrptr = idx;
10124 
10125 	for (i = 0; i < adap->params.cim_la_size; i++) {
10126 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10127 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
10128 		if (ret)
10129 			break;
10130 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10131 		if (ret)
10132 			break;
10133 		if (val & F_UPDBGLARDEN) {
10134 			ret = -ETIMEDOUT;
10135 			break;
10136 		}
10137 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
10138 		if (ret)
10139 			break;
10140 
10141 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
10142 		 * identify the 32-bit portion of the full 312-bit data
10143 		 */
10144 		if (is_t6(adap) && (idx & 0xf) >= 9)
10145 			idx = (idx & 0xff0) + 0x10;
10146 		else
10147 			idx++;
10148 		/* address can't exceed 0xfff */
10149 		idx &= M_UPDBGLARDPTR;
10150 	}
10151 restart:
10152 	if (cfg & F_UPDBGLAEN) {
10153 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10154 				      cfg & ~F_UPDBGLARDEN);
10155 		if (!ret)
10156 			ret = r;
10157 	}
10158 	return ret;
10159 }
10160 
10161 /**
10162  *	t4_tp_read_la - read TP LA capture buffer
10163  *	@adap: the adapter
10164  *	@la_buf: where to store the LA data
10165  *	@wrptr: the HW write pointer within the capture buffer
10166  *
10167  *	Reads the contents of the TP LA buffer with the most recent entry at
10168  *	the end	of the returned data and with the entry at @wrptr first.
10169  *	We leave the LA in the running state we find it in.
10170  */
10171 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10172 {
10173 	bool last_incomplete;
10174 	unsigned int i, cfg, val, idx;
10175 
10176 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
10177 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
10178 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10179 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
10180 
10181 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
10182 	idx = G_DBGLAWPTR(val);
10183 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
10184 	if (last_incomplete)
10185 		idx = (idx + 1) & M_DBGLARPTR;
10186 	if (wrptr)
10187 		*wrptr = idx;
10188 
10189 	val &= 0xffff;
10190 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
10191 	val |= adap->params.tp.la_mask;
10192 
10193 	for (i = 0; i < TPLA_SIZE; i++) {
10194 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
10195 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
10196 		idx = (idx + 1) & M_DBGLARPTR;
10197 	}
10198 
10199 	/* Wipe out last entry if it isn't valid */
10200 	if (last_incomplete)
10201 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10202 
10203 	if (cfg & F_DBGLAENABLE)		/* restore running state */
10204 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10205 			     cfg | adap->params.tp.la_mask);
10206 }
10207 
10208 /*
10209  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10210  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10211  * state for more than the Warning Threshold then we'll issue a warning about
10212  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10213  * appears to be hung every Warning Repeat second till the situation clears.
10214  * If the situation clears, we'll note that as well.
10215  */
10216 #define SGE_IDMA_WARN_THRESH 1
10217 #define SGE_IDMA_WARN_REPEAT 300
10218 
10219 /**
10220  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10221  *	@adapter: the adapter
10222  *	@idma: the adapter IDMA Monitor state
10223  *
10224  *	Initialize the state of an SGE Ingress DMA Monitor.
10225  */
10226 void t4_idma_monitor_init(struct adapter *adapter,
10227 			  struct sge_idma_monitor_state *idma)
10228 {
10229 	/* Initialize the state variables for detecting an SGE Ingress DMA
10230 	 * hang.  The SGE has internal counters which count up on each clock
10231 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10232 	 * same state they were on the previous clock tick.  The clock used is
10233 	 * the Core Clock so we have a limit on the maximum "time" they can
10234 	 * record; typically a very small number of seconds.  For instance,
10235 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10236 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10237 	 * risk of having the "timers" overflow and give us the flexibility to
10238 	 * maintain a Hung SGE State Machine of our own which operates across
10239 	 * a longer time frame.
10240 	 */
10241 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10242 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
10243 }
10244 
10245 /**
10246  *	t4_idma_monitor - monitor SGE Ingress DMA state
10247  *	@adapter: the adapter
10248  *	@idma: the adapter IDMA Monitor state
10249  *	@hz: number of ticks/second
10250  *	@ticks: number of ticks since the last IDMA Monitor call
10251  */
10252 void t4_idma_monitor(struct adapter *adapter,
10253 		     struct sge_idma_monitor_state *idma,
10254 		     int hz, int ticks)
10255 {
10256 	int i, idma_same_state_cnt[2];
10257 
10258 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10259 	  * are counters inside the SGE which count up on each clock when the
10260 	  * SGE finds its Ingress DMA State Engines in the same states they
10261 	  * were in the previous clock.  The counters will peg out at
10262 	  * 0xffffffff without wrapping around so once they pass the 1s
10263 	  * threshold they'll stay above that till the IDMA state changes.
10264 	  */
10265 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
10266 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
10267 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10268 
10269 	for (i = 0; i < 2; i++) {
10270 		u32 debug0, debug11;
10271 
10272 		/* If the Ingress DMA Same State Counter ("timer") is less
10273 		 * than 1s, then we can reset our synthesized Stall Timer and
10274 		 * continue.  If we have previously emitted warnings about a
10275 		 * potential stalled Ingress Queue, issue a note indicating
10276 		 * that the Ingress Queue has resumed forward progress.
10277 		 */
10278 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10279 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
10280 				CH_WARN(adapter, "SGE idma%d, queue %u, "
10281 					"resumed after %d seconds\n",
10282 					i, idma->idma_qid[i],
10283 					idma->idma_stalled[i]/hz);
10284 			idma->idma_stalled[i] = 0;
10285 			continue;
10286 		}
10287 
10288 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10289 		 * domain.  The first time we get here it'll be because we
10290 		 * passed the 1s Threshold; each additional time it'll be
10291 		 * because the RX Timer Callback is being fired on its regular
10292 		 * schedule.
10293 		 *
10294 		 * If the stall is below our Potential Hung Ingress Queue
10295 		 * Warning Threshold, continue.
10296 		 */
10297 		if (idma->idma_stalled[i] == 0) {
10298 			idma->idma_stalled[i] = hz;
10299 			idma->idma_warn[i] = 0;
10300 		} else {
10301 			idma->idma_stalled[i] += ticks;
10302 			idma->idma_warn[i] -= ticks;
10303 		}
10304 
10305 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
10306 			continue;
10307 
10308 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10309 		 */
10310 		if (idma->idma_warn[i] > 0)
10311 			continue;
10312 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
10313 
10314 		/* Read and save the SGE IDMA State and Queue ID information.
10315 		 * We do this every time in case it changes across time ...
10316 		 * can't be too careful ...
10317 		 */
10318 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
10319 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10320 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10321 
10322 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
10323 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10324 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10325 
10326 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
10327 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10328 			i, idma->idma_qid[i], idma->idma_state[i],
10329 			idma->idma_stalled[i]/hz,
10330 			debug0, debug11);
10331 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10332 	}
10333 }
10334 
10335 /**
10336  *     t4_set_vf_mac - Set MAC address for the specified VF
10337  *     @adapter: The adapter
10338  *     @pf: the PF used to instantiate the VFs
10339  *     @vf: one of the VFs instantiated by the specified PF
10340  *     @naddr: the number of MAC addresses
10341  *     @addr: the MAC address(es) to be set to the specified VF
10342  */
10343 int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf,
10344 		  unsigned int naddr, u8 *addr)
10345 {
10346 	struct fw_acl_mac_cmd cmd;
10347 
10348 	memset(&cmd, 0, sizeof(cmd));
10349 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
10350 				    F_FW_CMD_REQUEST |
10351 				    F_FW_CMD_WRITE |
10352 				    V_FW_ACL_MAC_CMD_PFN(pf) |
10353 				    V_FW_ACL_MAC_CMD_VFN(vf));
10354 
10355 	/* Note: Do not enable the ACL */
10356 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10357 	cmd.nmac = naddr;
10358 
10359 	switch (pf) {
10360 	case 3:
10361 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10362 		break;
10363 	case 2:
10364 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10365 		break;
10366 	case 1:
10367 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10368 		break;
10369 	case 0:
10370 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10371 		break;
10372 	}
10373 
10374 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10375 }
10376 
10377 /**
10378  *	t4_read_pace_tbl - read the pace table
10379  *	@adap: the adapter
10380  *	@pace_vals: holds the returned values
10381  *
10382  *	Returns the values of TP's pace table in microseconds.
10383  */
10384 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10385 {
10386 	unsigned int i, v;
10387 
10388 	for (i = 0; i < NTX_SCHED; i++) {
10389 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
10390 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
10391 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10392 	}
10393 }
10394 
10395 /**
10396  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10397  *	@adap: the adapter
10398  *	@sched: the scheduler index
10399  *	@kbps: the byte rate in Kbps
10400  *	@ipg: the interpacket delay in tenths of nanoseconds
10401  *
10402  *	Return the current configuration of a HW Tx scheduler.
10403  */
10404 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
10405 		     unsigned int *ipg, bool sleep_ok)
10406 {
10407 	unsigned int v, addr, bpt, cpt;
10408 
10409 	if (kbps) {
10410 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
10411 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10412 		if (sched & 1)
10413 			v >>= 16;
10414 		bpt = (v >> 8) & 0xff;
10415 		cpt = v & 0xff;
10416 		if (!cpt)
10417 			*kbps = 0;	/* scheduler disabled */
10418 		else {
10419 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10420 			*kbps = (v * bpt) / 125;
10421 		}
10422 	}
10423 	if (ipg) {
10424 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
10425 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10426 		if (sched & 1)
10427 			v >>= 16;
10428 		v &= 0xffff;
10429 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10430 	}
10431 }
10432 
10433 /**
10434  *	t4_load_cfg - download config file
10435  *	@adap: the adapter
10436  *	@cfg_data: the cfg text file to write
10437  *	@size: text file size
10438  *
10439  *	Write the supplied config text file to the card's serial flash.
10440  */
10441 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10442 {
10443 	int ret, i, n, cfg_addr;
10444 	unsigned int addr;
10445 	unsigned int flash_cfg_start_sec;
10446 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10447 
10448 	cfg_addr = t4_flash_cfg_addr(adap);
10449 	if (cfg_addr < 0)
10450 		return cfg_addr;
10451 
10452 	addr = cfg_addr;
10453 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10454 
10455 	if (size > FLASH_CFG_MAX_SIZE) {
10456 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10457 		       FLASH_CFG_MAX_SIZE);
10458 		return -EFBIG;
10459 	}
10460 
10461 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10462 			 sf_sec_size);
10463 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10464 				     flash_cfg_start_sec + i - 1);
10465 	/*
10466 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10467 	 * with the on-adapter Firmware Configuration File.
10468 	 */
10469 	if (ret || size == 0)
10470 		goto out;
10471 
10472 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10473 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10474 		if ( (size - i) <  SF_PAGE_SIZE)
10475 			n = size - i;
10476 		else
10477 			n = SF_PAGE_SIZE;
10478 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10479 		if (ret)
10480 			goto out;
10481 
10482 		addr += SF_PAGE_SIZE;
10483 		cfg_data += SF_PAGE_SIZE;
10484 	}
10485 
10486 out:
10487 	if (ret)
10488 		CH_ERR(adap, "config file %s failed %d\n",
10489 		       (size == 0 ? "clear" : "download"), ret);
10490 	return ret;
10491 }
10492 
10493 /**
10494  *	t5_fw_init_extern_mem - initialize the external memory
10495  *	@adap: the adapter
10496  *
10497  *	Initializes the external memory on T5.
10498  */
10499 int t5_fw_init_extern_mem(struct adapter *adap)
10500 {
10501 	u32 params[1], val[1];
10502 	int ret;
10503 
10504 	if (!is_t5(adap))
10505 		return 0;
10506 
10507 	val[0] = 0xff; /* Initialize all MCs */
10508 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10509 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10510 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10511 			FW_CMD_MAX_TIMEOUT);
10512 
10513 	return ret;
10514 }
10515 
10516 /* BIOS boot headers */
10517 typedef struct pci_expansion_rom_header {
10518 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10519 	u8	reserved[22]; /* Reserved per processor Architecture data */
10520 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10521 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10522 
10523 /* Legacy PCI Expansion ROM Header */
10524 typedef struct legacy_pci_expansion_rom_header {
10525 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10526 	u8	size512; /* Current Image Size in units of 512 bytes */
10527 	u8	initentry_point[4];
10528 	u8	cksum; /* Checksum computed on the entire Image */
10529 	u8	reserved[16]; /* Reserved */
10530 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
10531 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10532 
10533 /* EFI PCI Expansion ROM Header */
10534 typedef struct efi_pci_expansion_rom_header {
10535 	u8	signature[2]; // ROM signature. The value 0xaa55
10536 	u8	initialization_size[2]; /* Units 512. Includes this header */
10537 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10538 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
10539 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
10540 	u8	compression_type[2]; /* Compression type. */
10541 		/*
10542 		 * Compression type definition
10543 		 * 0x0: uncompressed
10544 		 * 0x1: Compressed
10545 		 * 0x2-0xFFFF: Reserved
10546 		 */
10547 	u8	reserved[8]; /* Reserved */
10548 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
10549 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10550 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10551 
10552 /* PCI Data Structure Format */
10553 typedef struct pcir_data_structure { /* PCI Data Structure */
10554 	u8	signature[4]; /* Signature. The string "PCIR" */
10555 	u8	vendor_id[2]; /* Vendor Identification */
10556 	u8	device_id[2]; /* Device Identification */
10557 	u8	vital_product[2]; /* Pointer to Vital Product Data */
10558 	u8	length[2]; /* PCIR Data Structure Length */
10559 	u8	revision; /* PCIR Data Structure Revision */
10560 	u8	class_code[3]; /* Class Code */
10561 	u8	image_length[2]; /* Image Length. Multiple of 512B */
10562 	u8	code_revision[2]; /* Revision Level of Code/Data */
10563 	u8	code_type; /* Code Type. */
10564 		/*
10565 		 * PCI Expansion ROM Code Types
10566 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10567 		 * 0x01: Open Firmware standard for PCI. FCODE
10568 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10569 		 * 0x03: EFI Image. EFI
10570 		 * 0x04-0xFF: Reserved.
10571 		 */
10572 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10573 	u8	reserved[2]; /* Reserved */
10574 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10575 
10576 /* BOOT constants */
10577 enum {
10578 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10579 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10580 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10581 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10582 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10583 	VENDOR_ID = 0x1425, /* Vendor ID */
10584 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10585 };
10586 
10587 /*
10588  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10589  *	@adatper: the device ID to write.
10590  *	@boot_data: the boot image to modify.
10591  *
10592  *	Write the supplied device ID to the boot BIOS image.
10593  */
10594 static void modify_device_id(int device_id, u8 *boot_data)
10595 {
10596 	legacy_pci_exp_rom_header_t *header;
10597 	pcir_data_t *pcir_header;
10598 	u32 cur_header = 0;
10599 
10600 	/*
10601 	 * Loop through all chained images and change the device ID's
10602 	 */
10603 	while (1) {
10604 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10605 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10606 			      le16_to_cpu(*(u16*)header->pcir_offset)];
10607 
10608 		/*
10609 		 * Only modify the Device ID if code type is Legacy or HP.
10610 		 * 0x00: Okay to modify
10611 		 * 0x01: FCODE. Do not be modify
10612 		 * 0x03: Okay to modify
10613 		 * 0x04-0xFF: Do not modify
10614 		 */
10615 		if (pcir_header->code_type == 0x00) {
10616 			u8 csum = 0;
10617 			int i;
10618 
10619 			/*
10620 			 * Modify Device ID to match current adatper
10621 			 */
10622 			*(u16*) pcir_header->device_id = device_id;
10623 
10624 			/*
10625 			 * Set checksum temporarily to 0.
10626 			 * We will recalculate it later.
10627 			 */
10628 			header->cksum = 0x0;
10629 
10630 			/*
10631 			 * Calculate and update checksum
10632 			 */
10633 			for (i = 0; i < (header->size512 * 512); i++)
10634 				csum += (u8)boot_data[cur_header + i];
10635 
10636 			/*
10637 			 * Invert summed value to create the checksum
10638 			 * Writing new checksum value directly to the boot data
10639 			 */
10640 			boot_data[cur_header + 7] = -csum;
10641 
10642 		} else if (pcir_header->code_type == 0x03) {
10643 
10644 			/*
10645 			 * Modify Device ID to match current adatper
10646 			 */
10647 			*(u16*) pcir_header->device_id = device_id;
10648 
10649 		}
10650 
10651 
10652 		/*
10653 		 * Check indicator element to identify if this is the last
10654 		 * image in the ROM.
10655 		 */
10656 		if (pcir_header->indicator & 0x80)
10657 			break;
10658 
10659 		/*
10660 		 * Move header pointer up to the next image in the ROM.
10661 		 */
10662 		cur_header += header->size512 * 512;
10663 	}
10664 }
10665 
10666 /*
10667  *	t4_load_boot - download boot flash
10668  *	@adapter: the adapter
10669  *	@boot_data: the boot image to write
10670  *	@boot_addr: offset in flash to write boot_data
10671  *	@size: image size
10672  *
10673  *	Write the supplied boot image to the card's serial flash.
10674  *	The boot image has the following sections: a 28-byte header and the
10675  *	boot image.
10676  */
10677 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10678 		 unsigned int boot_addr, unsigned int size)
10679 {
10680 	pci_exp_rom_header_t *header;
10681 	int pcir_offset ;
10682 	pcir_data_t *pcir_header;
10683 	int ret, addr;
10684 	uint16_t device_id;
10685 	unsigned int i;
10686 	unsigned int boot_sector = (boot_addr * 1024 );
10687 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10688 
10689 	/*
10690 	 * Make sure the boot image does not encroach on the firmware region
10691 	 */
10692 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10693 		CH_ERR(adap, "boot image encroaching on firmware region\n");
10694 		return -EFBIG;
10695 	}
10696 
10697 	/*
10698 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10699 	 * and Boot configuration data sections. These 3 boot sections span
10700 	 * sectors 0 to 7 in flash and live right before the FW image location.
10701 	 */
10702 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10703 			sf_sec_size);
10704 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10705 				     (boot_sector >> 16) + i - 1);
10706 
10707 	/*
10708 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10709 	 * with the on-adapter option ROM file
10710 	 */
10711 	if (ret || (size == 0))
10712 		goto out;
10713 
10714 	/* Get boot header */
10715 	header = (pci_exp_rom_header_t *)boot_data;
10716 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10717 	/* PCIR Data Structure */
10718 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10719 
10720 	/*
10721 	 * Perform some primitive sanity testing to avoid accidentally
10722 	 * writing garbage over the boot sectors.  We ought to check for
10723 	 * more but it's not worth it for now ...
10724 	 */
10725 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10726 		CH_ERR(adap, "boot image too small/large\n");
10727 		return -EFBIG;
10728 	}
10729 
10730 #ifndef CHELSIO_T4_DIAGS
10731 	/*
10732 	 * Check BOOT ROM header signature
10733 	 */
10734 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10735 		CH_ERR(adap, "Boot image missing signature\n");
10736 		return -EINVAL;
10737 	}
10738 
10739 	/*
10740 	 * Check PCI header signature
10741 	 */
10742 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10743 		CH_ERR(adap, "PCI header missing signature\n");
10744 		return -EINVAL;
10745 	}
10746 
10747 	/*
10748 	 * Check Vendor ID matches Chelsio ID
10749 	 */
10750 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10751 		CH_ERR(adap, "Vendor ID missing signature\n");
10752 		return -EINVAL;
10753 	}
10754 #endif
10755 
10756 	/*
10757 	 * Retrieve adapter's device ID
10758 	 */
10759 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10760 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10761 	device_id = device_id & 0xf0ff;
10762 
10763 	/*
10764 	 * Check PCIE Device ID
10765 	 */
10766 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10767 		/*
10768 		 * Change the device ID in the Boot BIOS image to match
10769 		 * the Device ID of the current adapter.
10770 		 */
10771 		modify_device_id(device_id, boot_data);
10772 	}
10773 
10774 	/*
10775 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10776 	 * we finish copying the rest of the boot image. This will ensure
10777 	 * that the BIOS boot header will only be written if the boot image
10778 	 * was written in full.
10779 	 */
10780 	addr = boot_sector;
10781 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10782 		addr += SF_PAGE_SIZE;
10783 		boot_data += SF_PAGE_SIZE;
10784 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10785 		if (ret)
10786 			goto out;
10787 	}
10788 
10789 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10790 			     (const u8 *)header, 0);
10791 
10792 out:
10793 	if (ret)
10794 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10795 	return ret;
10796 }
10797 
10798 /*
10799  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10800  *	@adapter: the adapter
10801  *
10802  *	Return the address within the flash where the OptionROM Configuration
10803  *	is stored, or an error if the device FLASH is too small to contain
10804  *	a OptionROM Configuration.
10805  */
10806 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10807 {
10808 	/*
10809 	 * If the device FLASH isn't large enough to hold a Firmware
10810 	 * Configuration File, return an error.
10811 	 */
10812 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10813 		return -ENOSPC;
10814 
10815 	return FLASH_BOOTCFG_START;
10816 }
10817 
10818 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10819 {
10820 	int ret, i, n, cfg_addr;
10821 	unsigned int addr;
10822 	unsigned int flash_cfg_start_sec;
10823 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10824 
10825 	cfg_addr = t4_flash_bootcfg_addr(adap);
10826 	if (cfg_addr < 0)
10827 		return cfg_addr;
10828 
10829 	addr = cfg_addr;
10830 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10831 
10832 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10833 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10834 			FLASH_BOOTCFG_MAX_SIZE);
10835 		return -EFBIG;
10836 	}
10837 
10838 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10839 			 sf_sec_size);
10840 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10841 					flash_cfg_start_sec + i - 1);
10842 
10843 	/*
10844 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10845 	 * with the on-adapter OptionROM Configuration File.
10846 	 */
10847 	if (ret || size == 0)
10848 		goto out;
10849 
10850 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10851 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10852 		if ( (size - i) <  SF_PAGE_SIZE)
10853 			n = size - i;
10854 		else
10855 			n = SF_PAGE_SIZE;
10856 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10857 		if (ret)
10858 			goto out;
10859 
10860 		addr += SF_PAGE_SIZE;
10861 		cfg_data += SF_PAGE_SIZE;
10862 	}
10863 
10864 out:
10865 	if (ret)
10866 		CH_ERR(adap, "boot config data %s failed %d\n",
10867 				(size == 0 ? "clear" : "download"), ret);
10868 	return ret;
10869 }
10870 
10871 /**
10872  *	t4_set_filter_cfg - set up filter mode/mask and ingress config.
10873  *	@adap: the adapter
10874  *	@mode: a bitmap selecting which optional filter components to enable
10875  *	@mask: a bitmap selecting which components to enable in filter mask
10876  *	@vnic_mode: the ingress config/vnic mode setting
10877  *
10878  *	Sets the filter mode and mask by selecting the optional components to
10879  *	enable in filter tuples.  Returns 0 on success and a negative error if
10880  *	the requested mode needs more bits than are available for optional
10881  *	components.  The filter mask must be a subset of the filter mode.
10882  */
10883 int t4_set_filter_cfg(struct adapter *adap, int mode, int mask, int vnic_mode)
10884 {
10885 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
10886 	int i, nbits, rc;
10887 	uint32_t param, val;
10888 	uint16_t fmode, fmask;
10889 	const int maxbits = adap->chip_params->filter_opt_len;
10890 
10891 	if (mode != -1 || mask != -1) {
10892 		if (mode != -1) {
10893 			fmode = mode;
10894 			nbits = 0;
10895 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10896 				if (fmode & (1 << i))
10897 					nbits += width[i];
10898 			}
10899 			if (nbits > maxbits) {
10900 				CH_ERR(adap, "optional fields in the filter "
10901 				    "mode (0x%x) add up to %d bits "
10902 				    "(must be <= %db).  Remove some fields and "
10903 				    "try again.\n", fmode, nbits, maxbits);
10904 				return -E2BIG;
10905 			}
10906 
10907 			/*
10908 			 * Hardware wants the bits to be maxed out.  Keep
10909 			 * setting them until there's no room for more.
10910 			 */
10911 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10912 				if (fmode & (1 << i))
10913 					continue;
10914 				if (nbits + width[i] <= maxbits) {
10915 					fmode |= 1 << i;
10916 					nbits += width[i];
10917 					if (nbits == maxbits)
10918 						break;
10919 				}
10920 			}
10921 
10922 			fmask = fmode & adap->params.tp.filter_mask;
10923 			if (fmask != adap->params.tp.filter_mask) {
10924 				CH_WARN(adap,
10925 				    "filter mask will be changed from 0x%x to "
10926 				    "0x%x to comply with the filter mode (0x%x).\n",
10927 				    adap->params.tp.filter_mask, fmask, fmode);
10928 			}
10929 		} else {
10930 			fmode = adap->params.tp.filter_mode;
10931 			fmask = mask;
10932 			if ((fmode | fmask) != fmode) {
10933 				CH_ERR(adap,
10934 				    "filter mask (0x%x) must be a subset of "
10935 				    "the filter mode (0x%x).\n", fmask, fmode);
10936 				return -EINVAL;
10937 			}
10938 		}
10939 
10940 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10941 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10942 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
10943 		val = V_FW_PARAMS_PARAM_FILTER_MODE(fmode) |
10944 		    V_FW_PARAMS_PARAM_FILTER_MASK(fmask);
10945 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10946 		    &val);
10947 		if (rc < 0)
10948 			return rc;
10949 	}
10950 
10951 	if (vnic_mode != -1) {
10952 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10953 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10954 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
10955 		val = vnic_mode;
10956 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10957 		    &val);
10958 		if (rc < 0)
10959 			return rc;
10960 	}
10961 
10962 	/* Refresh. */
10963 	read_filter_mode_and_ingress_config(adap);
10964 
10965 	return 0;
10966 }
10967 
10968 /**
10969  *	t4_clr_port_stats - clear port statistics
10970  *	@adap: the adapter
10971  *	@idx: the port index
10972  *
10973  *	Clear HW statistics for the given port.
10974  */
10975 void t4_clr_port_stats(struct adapter *adap, int idx)
10976 {
10977 	unsigned int i;
10978 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10979 	u32 port_base_addr;
10980 
10981 	if (is_t4(adap))
10982 		port_base_addr = PORT_BASE(idx);
10983 	else
10984 		port_base_addr = T5_PORT_BASE(idx);
10985 
10986 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
10987 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
10988 		t4_write_reg(adap, port_base_addr + i, 0);
10989 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
10990 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
10991 		t4_write_reg(adap, port_base_addr + i, 0);
10992 	for (i = 0; i < 4; i++)
10993 		if (bgmap & (1 << i)) {
10994 			t4_write_reg(adap,
10995 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
10996 			t4_write_reg(adap,
10997 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
10998 		}
10999 }
11000 
11001 /**
11002  *	t4_i2c_io - read/write I2C data from adapter
11003  *	@adap: the adapter
11004  *	@port: Port number if per-port device; <0 if not
11005  *	@devid: per-port device ID or absolute device ID
11006  *	@offset: byte offset into device I2C space
11007  *	@len: byte length of I2C space data
11008  *	@buf: buffer in which to return I2C data for read
11009  *	      buffer which holds the I2C data for write
11010  *	@write: if true, do a write; else do a read
11011  *	Reads/Writes the I2C data from/to the indicated device and location.
11012  */
11013 int t4_i2c_io(struct adapter *adap, unsigned int mbox,
11014 	      int port, unsigned int devid,
11015 	      unsigned int offset, unsigned int len,
11016 	      u8 *buf, bool write)
11017 {
11018 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
11019 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
11020 	int ret = 0;
11021 
11022 	if (len > I2C_PAGE_SIZE)
11023 		return -EINVAL;
11024 
11025 	/* Dont allow reads that spans multiple pages */
11026 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
11027 		return -EINVAL;
11028 
11029 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11030 	ldst_cmd.op_to_addrspace =
11031 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11032 			    F_FW_CMD_REQUEST |
11033 			    (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
11034 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
11035 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
11036 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
11037 	ldst_cmd.u.i2c.did = devid;
11038 
11039 	while (len > 0) {
11040 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
11041 
11042 		ldst_cmd.u.i2c.boffset = offset;
11043 		ldst_cmd.u.i2c.blen = i2c_len;
11044 
11045 		if (write)
11046 			memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
11047 
11048 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
11049 				 write ? NULL : &ldst_rpl);
11050 		if (ret)
11051 			break;
11052 
11053 		if (!write)
11054 			memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
11055 		offset += i2c_len;
11056 		buf += i2c_len;
11057 		len -= i2c_len;
11058 	}
11059 
11060 	return ret;
11061 }
11062 
11063 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
11064 	      int port, unsigned int devid,
11065 	      unsigned int offset, unsigned int len,
11066 	      u8 *buf)
11067 {
11068 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
11069 }
11070 
11071 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
11072 	      int port, unsigned int devid,
11073 	      unsigned int offset, unsigned int len,
11074 	      u8 *buf)
11075 {
11076 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
11077 }
11078 
11079 /**
11080  * 	t4_sge_ctxt_rd - read an SGE context through FW
11081  * 	@adap: the adapter
11082  * 	@mbox: mailbox to use for the FW command
11083  * 	@cid: the context id
11084  * 	@ctype: the context type
11085  * 	@data: where to store the context data
11086  *
11087  * 	Issues a FW command through the given mailbox to read an SGE context.
11088  */
11089 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
11090 		   enum ctxt_type ctype, u32 *data)
11091 {
11092 	int ret;
11093 	struct fw_ldst_cmd c;
11094 
11095 	if (ctype == CTXT_EGRESS)
11096 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
11097 	else if (ctype == CTXT_INGRESS)
11098 		ret = FW_LDST_ADDRSPC_SGE_INGC;
11099 	else if (ctype == CTXT_FLM)
11100 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
11101 	else
11102 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
11103 
11104 	memset(&c, 0, sizeof(c));
11105 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11106 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
11107 					V_FW_LDST_CMD_ADDRSPACE(ret));
11108 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
11109 	c.u.idctxt.physid = cpu_to_be32(cid);
11110 
11111 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11112 	if (ret == 0) {
11113 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
11114 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
11115 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
11116 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
11117 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
11118 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
11119 	}
11120 	return ret;
11121 }
11122 
11123 /**
11124  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
11125  * 	@adap: the adapter
11126  * 	@cid: the context id
11127  * 	@ctype: the context type
11128  * 	@data: where to store the context data
11129  *
11130  * 	Reads an SGE context directly, bypassing FW.  This is only for
11131  * 	debugging when FW is unavailable.
11132  */
11133 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
11134 		      u32 *data)
11135 {
11136 	int i, ret;
11137 
11138 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
11139 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
11140 	if (!ret)
11141 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
11142 			*data++ = t4_read_reg(adap, i);
11143 	return ret;
11144 }
11145 
11146 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
11147     int sleep_ok)
11148 {
11149 	struct fw_sched_cmd cmd;
11150 
11151 	memset(&cmd, 0, sizeof(cmd));
11152 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11153 				      F_FW_CMD_REQUEST |
11154 				      F_FW_CMD_WRITE);
11155 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11156 
11157 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
11158 	cmd.u.config.type = type;
11159 	cmd.u.config.minmaxen = minmaxen;
11160 
11161 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11162 			       NULL, sleep_ok);
11163 }
11164 
11165 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
11166 		    int rateunit, int ratemode, int channel, int cl,
11167 		    int minrate, int maxrate, int weight, int pktsize,
11168 		    int burstsize, int sleep_ok)
11169 {
11170 	struct fw_sched_cmd cmd;
11171 
11172 	memset(&cmd, 0, sizeof(cmd));
11173 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11174 				      F_FW_CMD_REQUEST |
11175 				      F_FW_CMD_WRITE);
11176 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11177 
11178 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11179 	cmd.u.params.type = type;
11180 	cmd.u.params.level = level;
11181 	cmd.u.params.mode = mode;
11182 	cmd.u.params.ch = channel;
11183 	cmd.u.params.cl = cl;
11184 	cmd.u.params.unit = rateunit;
11185 	cmd.u.params.rate = ratemode;
11186 	cmd.u.params.min = cpu_to_be32(minrate);
11187 	cmd.u.params.max = cpu_to_be32(maxrate);
11188 	cmd.u.params.weight = cpu_to_be16(weight);
11189 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11190 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
11191 
11192 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11193 			       NULL, sleep_ok);
11194 }
11195 
11196 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
11197     unsigned int maxrate, int sleep_ok)
11198 {
11199 	struct fw_sched_cmd cmd;
11200 
11201 	memset(&cmd, 0, sizeof(cmd));
11202 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11203 				      F_FW_CMD_REQUEST |
11204 				      F_FW_CMD_WRITE);
11205 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11206 
11207 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11208 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11209 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
11210 	cmd.u.params.ch = channel;
11211 	cmd.u.params.rate = ratemode;		/* REL or ABS */
11212 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
11213 
11214 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11215 			       NULL, sleep_ok);
11216 }
11217 
11218 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
11219     int weight, int sleep_ok)
11220 {
11221 	struct fw_sched_cmd cmd;
11222 
11223 	if (weight < 0 || weight > 100)
11224 		return -EINVAL;
11225 
11226 	memset(&cmd, 0, sizeof(cmd));
11227 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11228 				      F_FW_CMD_REQUEST |
11229 				      F_FW_CMD_WRITE);
11230 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11231 
11232 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11233 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11234 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
11235 	cmd.u.params.ch = channel;
11236 	cmd.u.params.cl = cl;
11237 	cmd.u.params.weight = cpu_to_be16(weight);
11238 
11239 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11240 			       NULL, sleep_ok);
11241 }
11242 
11243 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
11244     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
11245 {
11246 	struct fw_sched_cmd cmd;
11247 
11248 	memset(&cmd, 0, sizeof(cmd));
11249 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11250 				      F_FW_CMD_REQUEST |
11251 				      F_FW_CMD_WRITE);
11252 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11253 
11254 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11255 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11256 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
11257 	cmd.u.params.mode = mode;
11258 	cmd.u.params.ch = channel;
11259 	cmd.u.params.cl = cl;
11260 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
11261 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
11262 	cmd.u.params.max = cpu_to_be32(maxrate);
11263 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11264 
11265 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11266 			       NULL, sleep_ok);
11267 }
11268 
11269 /*
11270  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
11271  *	@adapter: the adapter
11272  * 	@mbox: mailbox to use for the FW command
11273  * 	@pf: the PF owning the queue
11274  * 	@vf: the VF owning the queue
11275  *	@timeout: watchdog timeout in ms
11276  *	@action: watchdog timer / action
11277  *
11278  *	There are separate watchdog timers for each possible watchdog
11279  *	action.  Configure one of the watchdog timers by setting a non-zero
11280  *	timeout.  Disable a watchdog timer by using a timeout of zero.
11281  */
11282 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
11283 		       unsigned int pf, unsigned int vf,
11284 		       unsigned int timeout, unsigned int action)
11285 {
11286 	struct fw_watchdog_cmd wdog;
11287 	unsigned int ticks;
11288 
11289 	/*
11290 	 * The watchdog command expects a timeout in units of 10ms so we need
11291 	 * to convert it here (via rounding) and force a minimum of one 10ms
11292 	 * "tick" if the timeout is non-zero but the conversion results in 0
11293 	 * ticks.
11294 	 */
11295 	ticks = (timeout + 5)/10;
11296 	if (timeout && !ticks)
11297 		ticks = 1;
11298 
11299 	memset(&wdog, 0, sizeof wdog);
11300 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
11301 				     F_FW_CMD_REQUEST |
11302 				     F_FW_CMD_WRITE |
11303 				     V_FW_PARAMS_CMD_PFN(pf) |
11304 				     V_FW_PARAMS_CMD_VFN(vf));
11305 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
11306 	wdog.timeout = cpu_to_be32(ticks);
11307 	wdog.action = cpu_to_be32(action);
11308 
11309 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
11310 }
11311 
11312 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
11313 {
11314 	struct fw_devlog_cmd devlog_cmd;
11315 	int ret;
11316 
11317 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11318 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11319 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
11320 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11321 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11322 			 sizeof(devlog_cmd), &devlog_cmd);
11323 	if (ret)
11324 		return ret;
11325 
11326 	*level = devlog_cmd.level;
11327 	return 0;
11328 }
11329 
11330 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
11331 {
11332 	struct fw_devlog_cmd devlog_cmd;
11333 
11334 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11335 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11336 					     F_FW_CMD_REQUEST |
11337 					     F_FW_CMD_WRITE);
11338 	devlog_cmd.level = level;
11339 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11340 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11341 			  sizeof(devlog_cmd), &devlog_cmd);
11342 }
11343 
11344 int t4_configure_add_smac(struct adapter *adap)
11345 {
11346 	unsigned int param, val;
11347 	int ret = 0;
11348 
11349 	adap->params.smac_add_support = 0;
11350 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11351 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
11352 	/* Query FW to check if FW supports adding source mac address
11353 	 * to TCAM feature or not.
11354 	 * If FW returns 1, driver can use this feature and driver need to send
11355 	 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
11356 	 * enable adding smac to TCAM.
11357 	 */
11358 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11359 	if (ret)
11360 		return ret;
11361 
11362 	if (val == 1) {
11363 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
11364 				    &param, &val);
11365 		if (!ret)
11366 			/* Firmware allows adding explicit TCAM entries.
11367 			 * Save this internally.
11368 			 */
11369 			adap->params.smac_add_support = 1;
11370 	}
11371 
11372 	return ret;
11373 }
11374 
11375 int t4_configure_ringbb(struct adapter *adap)
11376 {
11377 	unsigned int param, val;
11378 	int ret = 0;
11379 
11380 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11381 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
11382 	/* Query FW to check if FW supports ring switch feature or not.
11383 	 * If FW returns 1, driver can use this feature and driver need to send
11384 	 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
11385 	 * enable the ring backbone configuration.
11386 	 */
11387 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11388 	if (ret < 0) {
11389 		CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
11390 			ret);
11391 		goto out;
11392 	}
11393 
11394 	if (val != 1) {
11395 		CH_ERR(adap, "FW doesnot support ringbackbone features\n");
11396 		goto out;
11397 	}
11398 
11399 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11400 	if (ret < 0) {
11401 		CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
11402 			ret);
11403 		goto out;
11404 	}
11405 
11406 out:
11407 	return ret;
11408 }
11409 
11410 /*
11411  *	t4_set_vlan_acl - Set a VLAN id for the specified VF
11412  *	@adapter: the adapter
11413  *	@mbox: mailbox to use for the FW command
11414  *	@vf: one of the VFs instantiated by the specified PF
11415  *	@vlan: The vlanid to be set
11416  *
11417  */
11418 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
11419 		    u16 vlan)
11420 {
11421 	struct fw_acl_vlan_cmd vlan_cmd;
11422 	unsigned int enable;
11423 
11424 	enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
11425 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
11426 	vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
11427 					 F_FW_CMD_REQUEST |
11428 					 F_FW_CMD_WRITE |
11429 					 F_FW_CMD_EXEC |
11430 					 V_FW_ACL_VLAN_CMD_PFN(adap->pf) |
11431 					 V_FW_ACL_VLAN_CMD_VFN(vf));
11432 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
11433 	/* Drop all packets that donot match vlan id */
11434 	vlan_cmd.dropnovlan_fm = (enable
11435 				  ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
11436 				     F_FW_ACL_VLAN_CMD_FM)
11437 				  : 0);
11438 	if (enable != 0) {
11439 		vlan_cmd.nvlan = 1;
11440 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
11441 	}
11442 
11443 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
11444 }
11445 
11446 /**
11447  *	t4_del_mac - Removes the exact-match filter for a MAC address
11448  *	@adap: the adapter
11449  *	@mbox: mailbox to use for the FW command
11450  *	@viid: the VI id
11451  *	@addr: the MAC address value
11452  *	@smac: if true, delete from only the smac region of MPS
11453  *
11454  *	Modifies an exact-match filter and sets it to the new MAC address if
11455  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11456  *	latter case the address is added persistently if @persist is %true.
11457  *
11458  *	Returns a negative error number or the index of the filter with the new
11459  *	MAC value.  Note that this index may differ from @idx.
11460  */
11461 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11462 	       const u8 *addr, bool smac)
11463 {
11464 	int ret;
11465 	struct fw_vi_mac_cmd c;
11466 	struct fw_vi_mac_exact *p = c.u.exact;
11467 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11468 
11469 	memset(&c, 0, sizeof(c));
11470 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11471 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11472 				   V_FW_VI_MAC_CMD_VIID(viid));
11473 	c.freemacs_to_len16 = cpu_to_be32(
11474 					V_FW_CMD_LEN16(1) |
11475 					(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11476 
11477 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11478 	p->valid_to_idx = cpu_to_be16(
11479 				F_FW_VI_MAC_CMD_VALID |
11480 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
11481 
11482 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11483 	if (ret == 0) {
11484 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11485 		if (ret < max_mac_addr)
11486 			return -ENOMEM;
11487 	}
11488 
11489 	return ret;
11490 }
11491 
11492 /**
11493  *	t4_add_mac - Adds an exact-match filter for a MAC address
11494  *	@adap: the adapter
11495  *	@mbox: mailbox to use for the FW command
11496  *	@viid: the VI id
11497  *	@idx: index of existing filter for old value of MAC address, or -1
11498  *	@addr: the new MAC address value
11499  *	@persist: whether a new MAC allocation should be persistent
11500  *	@add_smt: if true also add the address to the HW SMT
11501  *	@smac: if true, update only the smac region of MPS
11502  *
11503  *	Modifies an exact-match filter and sets it to the new MAC address if
11504  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11505  *	latter case the address is added persistently if @persist is %true.
11506  *
11507  *	Returns a negative error number or the index of the filter with the new
11508  *	MAC value.  Note that this index may differ from @idx.
11509  */
11510 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11511 	       int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
11512 {
11513 	int ret, mode;
11514 	struct fw_vi_mac_cmd c;
11515 	struct fw_vi_mac_exact *p = c.u.exact;
11516 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11517 
11518 	if (idx < 0)		/* new allocation */
11519 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
11520 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
11521 
11522 	memset(&c, 0, sizeof(c));
11523 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11524 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11525 				   V_FW_VI_MAC_CMD_VIID(viid));
11526 	c.freemacs_to_len16 = cpu_to_be32(
11527 				V_FW_CMD_LEN16(1) |
11528 				(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11529 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
11530 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
11531 				      V_FW_VI_MAC_CMD_IDX(idx));
11532 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11533 
11534 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11535 	if (ret == 0) {
11536 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11537 		if (ret >= max_mac_addr)
11538 			return -ENOMEM;
11539 		if (smt_idx) {
11540 			/* Does fw supports returning smt_idx? */
11541 			if (adap->params.viid_smt_extn_support)
11542 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
11543 			else {
11544 				/* In T4/T5, SMT contains 256 SMAC entries
11545 				 * organized in 128 rows of 2 entries each.
11546 				 * In T6, SMT contains 256 SMAC entries in
11547 				 * 256 rows.
11548 				 */
11549 				if (chip_id(adap) <= CHELSIO_T5)
11550 					*smt_idx = ((viid & M_FW_VIID_VIN) << 1);
11551 				else
11552 					*smt_idx = (viid & M_FW_VIID_VIN);
11553 			}
11554 		}
11555 	}
11556 
11557 	return ret;
11558 }
11559