xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 780fb4a2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR)
215 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
216 			reason[G_PCIE_FW_EVAL(pcie_fw)]);
217 }
218 
219 /*
220  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
221  */
222 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
223 			 u32 mbox_addr)
224 {
225 	for ( ; nflit; nflit--, mbox_addr += 8)
226 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
227 }
228 
229 /*
230  * Handle a FW assertion reported in a mailbox.
231  */
232 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
233 {
234 	CH_ALERT(adap,
235 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
236 		  asrt->u.assert.filename_0_7,
237 		  be32_to_cpu(asrt->u.assert.line),
238 		  be32_to_cpu(asrt->u.assert.x),
239 		  be32_to_cpu(asrt->u.assert.y));
240 }
241 
242 struct port_tx_state {
243 	uint64_t rx_pause;
244 	uint64_t tx_frames;
245 };
246 
247 static void
248 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
249 {
250 	uint32_t rx_pause_reg, tx_frames_reg;
251 
252 	if (is_t4(sc)) {
253 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
254 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
255 	} else {
256 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
257 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
258 	}
259 
260 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
261 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
262 }
263 
264 static void
265 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
266 {
267 	int i;
268 
269 	for_each_port(sc, i)
270 		read_tx_state_one(sc, i, &tx_state[i]);
271 }
272 
273 static void
274 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
275 {
276 	uint32_t port_ctl_reg;
277 	uint64_t tx_frames, rx_pause;
278 	int i;
279 
280 	for_each_port(sc, i) {
281 		rx_pause = tx_state[i].rx_pause;
282 		tx_frames = tx_state[i].tx_frames;
283 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
284 
285 		if (is_t4(sc))
286 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
287 		else
288 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
289 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
290 		    rx_pause != tx_state[i].rx_pause &&
291 		    tx_frames == tx_state[i].tx_frames) {
292 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
293 			mdelay(1);
294 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
295 		}
296 	}
297 }
298 
299 #define X_CIM_PF_NOACCESS 0xeeeeeeee
300 /**
301  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
302  *	@adap: the adapter
303  *	@mbox: index of the mailbox to use
304  *	@cmd: the command to write
305  *	@size: command length in bytes
306  *	@rpl: where to optionally store the reply
307  *	@sleep_ok: if true we may sleep while awaiting command completion
308  *	@timeout: time to wait for command to finish before timing out
309  *		(negative implies @sleep_ok=false)
310  *
311  *	Sends the given command to FW through the selected mailbox and waits
312  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
313  *	store the FW's reply to the command.  The command and its optional
314  *	reply are of the same length.  Some FW commands like RESET and
315  *	INITIALIZE can take a considerable amount of time to execute.
316  *	@sleep_ok determines whether we may sleep while awaiting the response.
317  *	If sleeping is allowed we use progressive backoff otherwise we spin.
318  *	Note that passing in a negative @timeout is an alternate mechanism
319  *	for specifying @sleep_ok=false.  This is useful when a higher level
320  *	interface allows for specification of @timeout but not @sleep_ok ...
321  *
322  *	The return value is 0 on success or a negative errno on failure.  A
323  *	failure can happen either because we are not able to execute the
324  *	command or FW executes it but signals an error.  In the latter case
325  *	the return value is the error code indicated by FW (negated).
326  */
327 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
328 			    int size, void *rpl, bool sleep_ok, int timeout)
329 {
330 	/*
331 	 * We delay in small increments at first in an effort to maintain
332 	 * responsiveness for simple, fast executing commands but then back
333 	 * off to larger delays to a maximum retry delay.
334 	 */
335 	static const int delay[] = {
336 		1, 1, 3, 5, 10, 10, 20, 50, 100
337 	};
338 	u32 v;
339 	u64 res;
340 	int i, ms, delay_idx, ret, next_tx_check;
341 	const __be64 *p = cmd;
342 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
343 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
344 	u32 ctl;
345 	__be64 cmd_rpl[MBOX_LEN/8];
346 	u32 pcie_fw;
347 	struct port_tx_state tx_state[MAX_NPORTS];
348 
349 	if (adap->flags & CHK_MBOX_ACCESS)
350 		ASSERT_SYNCHRONIZED_OP(adap);
351 
352 	if ((size & 15) || size > MBOX_LEN)
353 		return -EINVAL;
354 
355 	if (adap->flags & IS_VF) {
356 		if (is_t6(adap))
357 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
358 		else
359 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
360 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
361 	}
362 
363 	/*
364 	 * If we have a negative timeout, that implies that we can't sleep.
365 	 */
366 	if (timeout < 0) {
367 		sleep_ok = false;
368 		timeout = -timeout;
369 	}
370 
371 	/*
372 	 * Attempt to gain access to the mailbox.
373 	 */
374 	for (i = 0; i < 4; i++) {
375 		ctl = t4_read_reg(adap, ctl_reg);
376 		v = G_MBOWNER(ctl);
377 		if (v != X_MBOWNER_NONE)
378 			break;
379 	}
380 
381 	/*
382 	 * If we were unable to gain access, dequeue ourselves from the
383 	 * mailbox atomic access list and report the error to our caller.
384 	 */
385 	if (v != X_MBOWNER_PL) {
386 		t4_report_fw_error(adap);
387 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
388 		return ret;
389 	}
390 
391 	/*
392 	 * If we gain ownership of the mailbox and there's a "valid" message
393 	 * in it, this is likely an asynchronous error message from the
394 	 * firmware.  So we'll report that and then proceed on with attempting
395 	 * to issue our own command ... which may well fail if the error
396 	 * presaged the firmware crashing ...
397 	 */
398 	if (ctl & F_MBMSGVALID) {
399 		CH_ERR(adap, "found VALID command in mbox %u: %016llx %016llx "
400 		       "%016llx %016llx %016llx %016llx %016llx %016llx\n",
401 		       mbox, (unsigned long long)t4_read_reg64(adap, data_reg),
402 		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
403 		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
404 		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
405 		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
406 		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
407 		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
408 		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
409 	}
410 
411 	/*
412 	 * Copy in the new mailbox command and send it on its way ...
413 	 */
414 	for (i = 0; i < size; i += 8, p++)
415 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
416 
417 	if (adap->flags & IS_VF) {
418 		/*
419 		 * For the VFs, the Mailbox Data "registers" are
420 		 * actually backed by T4's "MA" interface rather than
421 		 * PL Registers (as is the case for the PFs).  Because
422 		 * these are in different coherency domains, the write
423 		 * to the VF's PL-register-backed Mailbox Control can
424 		 * race in front of the writes to the MA-backed VF
425 		 * Mailbox Data "registers".  So we need to do a
426 		 * read-back on at least one byte of the VF Mailbox
427 		 * Data registers before doing the write to the VF
428 		 * Mailbox Control register.
429 		 */
430 		t4_read_reg(adap, data_reg);
431 	}
432 
433 	CH_DUMP_MBOX(adap, mbox, data_reg);
434 
435 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
436 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
437 	next_tx_check = 1000;
438 	delay_idx = 0;
439 	ms = delay[0];
440 
441 	/*
442 	 * Loop waiting for the reply; bail out if we time out or the firmware
443 	 * reports an error.
444 	 */
445 	pcie_fw = 0;
446 	for (i = 0; i < timeout; i += ms) {
447 		if (!(adap->flags & IS_VF)) {
448 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
449 			if (pcie_fw & F_PCIE_FW_ERR)
450 				break;
451 		}
452 
453 		if (i >= next_tx_check) {
454 			check_tx_state(adap, &tx_state[0]);
455 			next_tx_check = i + 1000;
456 		}
457 
458 		if (sleep_ok) {
459 			ms = delay[delay_idx];  /* last element may repeat */
460 			if (delay_idx < ARRAY_SIZE(delay) - 1)
461 				delay_idx++;
462 			msleep(ms);
463 		} else {
464 			mdelay(ms);
465 		}
466 
467 		v = t4_read_reg(adap, ctl_reg);
468 		if (v == X_CIM_PF_NOACCESS)
469 			continue;
470 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
471 			if (!(v & F_MBMSGVALID)) {
472 				t4_write_reg(adap, ctl_reg,
473 					     V_MBOWNER(X_MBOWNER_NONE));
474 				continue;
475 			}
476 
477 			/*
478 			 * Retrieve the command reply and release the mailbox.
479 			 */
480 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
481 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
482 
483 			CH_DUMP_MBOX(adap, mbox, data_reg);
484 
485 			res = be64_to_cpu(cmd_rpl[0]);
486 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
487 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
488 				res = V_FW_CMD_RETVAL(EIO);
489 			} else if (rpl)
490 				memcpy(rpl, cmd_rpl, size);
491 			return -G_FW_CMD_RETVAL((int)res);
492 		}
493 	}
494 
495 	/*
496 	 * We timed out waiting for a reply to our mailbox command.  Report
497 	 * the error and also check to see if the firmware reported any
498 	 * errors ...
499 	 */
500 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
501 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
502 	       *(const u8 *)cmd, mbox);
503 
504 	/* If DUMP_MBOX is set the mbox has already been dumped */
505 	if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
506 		p = cmd;
507 		CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
508 		    "%016llx %016llx %016llx %016llx\n",
509 		    (unsigned long long)be64_to_cpu(p[0]),
510 		    (unsigned long long)be64_to_cpu(p[1]),
511 		    (unsigned long long)be64_to_cpu(p[2]),
512 		    (unsigned long long)be64_to_cpu(p[3]),
513 		    (unsigned long long)be64_to_cpu(p[4]),
514 		    (unsigned long long)be64_to_cpu(p[5]),
515 		    (unsigned long long)be64_to_cpu(p[6]),
516 		    (unsigned long long)be64_to_cpu(p[7]));
517 	}
518 
519 	t4_report_fw_error(adap);
520 	t4_fatal_err(adap);
521 	return ret;
522 }
523 
524 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
525 		    void *rpl, bool sleep_ok)
526 {
527 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
528 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
529 
530 }
531 
532 static int t4_edc_err_read(struct adapter *adap, int idx)
533 {
534 	u32 edc_ecc_err_addr_reg;
535 	u32 edc_bist_status_rdata_reg;
536 
537 	if (is_t4(adap)) {
538 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
539 		return 0;
540 	}
541 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
542 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
543 		return 0;
544 	}
545 
546 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
547 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
548 
549 	CH_WARN(adap,
550 		"edc%d err addr 0x%x: 0x%x.\n",
551 		idx, edc_ecc_err_addr_reg,
552 		t4_read_reg(adap, edc_ecc_err_addr_reg));
553 	CH_WARN(adap,
554 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
555 		edc_bist_status_rdata_reg,
556 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
557 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
558 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
559 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
560 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
561 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
562 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
563 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
564 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
565 
566 	return 0;
567 }
568 
569 /**
570  *	t4_mc_read - read from MC through backdoor accesses
571  *	@adap: the adapter
572  *	@idx: which MC to access
573  *	@addr: address of first byte requested
574  *	@data: 64 bytes of data containing the requested address
575  *	@ecc: where to store the corresponding 64-bit ECC word
576  *
577  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
578  *	that covers the requested address @addr.  If @parity is not %NULL it
579  *	is assigned the 64-bit ECC word for the read data.
580  */
581 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
582 {
583 	int i;
584 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
585 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
586 
587 	if (is_t4(adap)) {
588 		mc_bist_cmd_reg = A_MC_BIST_CMD;
589 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
590 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
591 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
592 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
593 	} else {
594 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
595 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
596 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
597 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
598 						  idx);
599 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
600 						  idx);
601 	}
602 
603 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
604 		return -EBUSY;
605 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
606 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
607 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
608 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
609 		     F_START_BIST | V_BIST_CMD_GAP(1));
610 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
611 	if (i)
612 		return i;
613 
614 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
615 
616 	for (i = 15; i >= 0; i--)
617 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
618 	if (ecc)
619 		*ecc = t4_read_reg64(adap, MC_DATA(16));
620 #undef MC_DATA
621 	return 0;
622 }
623 
624 /**
625  *	t4_edc_read - read from EDC through backdoor accesses
626  *	@adap: the adapter
627  *	@idx: which EDC to access
628  *	@addr: address of first byte requested
629  *	@data: 64 bytes of data containing the requested address
630  *	@ecc: where to store the corresponding 64-bit ECC word
631  *
632  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
633  *	that covers the requested address @addr.  If @parity is not %NULL it
634  *	is assigned the 64-bit ECC word for the read data.
635  */
636 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
637 {
638 	int i;
639 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
640 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
641 
642 	if (is_t4(adap)) {
643 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
649 						    idx);
650 	} else {
651 /*
652  * These macro are missing in t4_regs.h file.
653  * Added temporarily for testing.
654  */
655 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
656 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
657 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
658 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
659 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
660 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
661 						    idx);
662 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
663 						    idx);
664 #undef EDC_REG_T5
665 #undef EDC_STRIDE_T5
666 	}
667 
668 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
669 		return -EBUSY;
670 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
671 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
672 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
673 	t4_write_reg(adap, edc_bist_cmd_reg,
674 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
675 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
676 	if (i)
677 		return i;
678 
679 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
680 
681 	for (i = 15; i >= 0; i--)
682 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
683 	if (ecc)
684 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
685 #undef EDC_DATA
686 	return 0;
687 }
688 
689 /**
690  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
691  *	@adap: the adapter
692  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
693  *	@addr: address within indicated memory type
694  *	@len: amount of memory to read
695  *	@buf: host memory buffer
696  *
697  *	Reads an [almost] arbitrary memory region in the firmware: the
698  *	firmware memory address, length and host buffer must be aligned on
699  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
700  *	the firmware's memory.  If this memory contains data structures which
701  *	contain multi-byte integers, it's the callers responsibility to
702  *	perform appropriate byte order conversions.
703  */
704 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
705 		__be32 *buf)
706 {
707 	u32 pos, start, end, offset;
708 	int ret;
709 
710 	/*
711 	 * Argument sanity checks ...
712 	 */
713 	if ((addr & 0x3) || (len & 0x3))
714 		return -EINVAL;
715 
716 	/*
717 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
718 	 * need to round down the start and round up the end.  We'll start
719 	 * copying out of the first line at (addr - start) a word at a time.
720 	 */
721 	start = rounddown2(addr, 64);
722 	end = roundup2(addr + len, 64);
723 	offset = (addr - start)/sizeof(__be32);
724 
725 	for (pos = start; pos < end; pos += 64, offset = 0) {
726 		__be32 data[16];
727 
728 		/*
729 		 * Read the chip's memory block and bail if there's an error.
730 		 */
731 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
732 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
733 		else
734 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
735 		if (ret)
736 			return ret;
737 
738 		/*
739 		 * Copy the data into the caller's memory buffer.
740 		 */
741 		while (offset < 16 && len > 0) {
742 			*buf++ = data[offset++];
743 			len -= sizeof(__be32);
744 		}
745 	}
746 
747 	return 0;
748 }
749 
750 /*
751  * Return the specified PCI-E Configuration Space register from our Physical
752  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
753  * since we prefer to let the firmware own all of these registers, but if that
754  * fails we go for it directly ourselves.
755  */
756 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
757 {
758 
759 	/*
760 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
761 	 * retrieve the specified PCI-E Configuration Space register.
762 	 */
763 	if (drv_fw_attach != 0) {
764 		struct fw_ldst_cmd ldst_cmd;
765 		int ret;
766 
767 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
768 		ldst_cmd.op_to_addrspace =
769 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
770 				    F_FW_CMD_REQUEST |
771 				    F_FW_CMD_READ |
772 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
773 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
774 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
775 		ldst_cmd.u.pcie.ctrl_to_fn =
776 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
777 		ldst_cmd.u.pcie.r = reg;
778 
779 		/*
780 		 * If the LDST Command succeeds, return the result, otherwise
781 		 * fall through to reading it directly ourselves ...
782 		 */
783 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
784 				 &ldst_cmd);
785 		if (ret == 0)
786 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
787 
788 		CH_WARN(adap, "Firmware failed to return "
789 			"Configuration Space register %d, err = %d\n",
790 			reg, -ret);
791 	}
792 
793 	/*
794 	 * Read the desired Configuration Space register via the PCI-E
795 	 * Backdoor mechanism.
796 	 */
797 	return t4_hw_pci_read_cfg4(adap, reg);
798 }
799 
800 /**
801  *	t4_get_regs_len - return the size of the chips register set
802  *	@adapter: the adapter
803  *
804  *	Returns the size of the chip's BAR0 register space.
805  */
806 unsigned int t4_get_regs_len(struct adapter *adapter)
807 {
808 	unsigned int chip_version = chip_id(adapter);
809 
810 	switch (chip_version) {
811 	case CHELSIO_T4:
812 		if (adapter->flags & IS_VF)
813 			return FW_T4VF_REGMAP_SIZE;
814 		return T4_REGMAP_SIZE;
815 
816 	case CHELSIO_T5:
817 	case CHELSIO_T6:
818 		if (adapter->flags & IS_VF)
819 			return FW_T4VF_REGMAP_SIZE;
820 		return T5_REGMAP_SIZE;
821 	}
822 
823 	CH_ERR(adapter,
824 		"Unsupported chip version %d\n", chip_version);
825 	return 0;
826 }
827 
828 /**
829  *	t4_get_regs - read chip registers into provided buffer
830  *	@adap: the adapter
831  *	@buf: register buffer
832  *	@buf_size: size (in bytes) of register buffer
833  *
834  *	If the provided register buffer isn't large enough for the chip's
835  *	full register range, the register dump will be truncated to the
836  *	register buffer's size.
837  */
838 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
839 {
840 	static const unsigned int t4_reg_ranges[] = {
841 		0x1008, 0x1108,
842 		0x1180, 0x1184,
843 		0x1190, 0x1194,
844 		0x11a0, 0x11a4,
845 		0x11b0, 0x11b4,
846 		0x11fc, 0x123c,
847 		0x1300, 0x173c,
848 		0x1800, 0x18fc,
849 		0x3000, 0x30d8,
850 		0x30e0, 0x30e4,
851 		0x30ec, 0x5910,
852 		0x5920, 0x5924,
853 		0x5960, 0x5960,
854 		0x5968, 0x5968,
855 		0x5970, 0x5970,
856 		0x5978, 0x5978,
857 		0x5980, 0x5980,
858 		0x5988, 0x5988,
859 		0x5990, 0x5990,
860 		0x5998, 0x5998,
861 		0x59a0, 0x59d4,
862 		0x5a00, 0x5ae0,
863 		0x5ae8, 0x5ae8,
864 		0x5af0, 0x5af0,
865 		0x5af8, 0x5af8,
866 		0x6000, 0x6098,
867 		0x6100, 0x6150,
868 		0x6200, 0x6208,
869 		0x6240, 0x6248,
870 		0x6280, 0x62b0,
871 		0x62c0, 0x6338,
872 		0x6370, 0x638c,
873 		0x6400, 0x643c,
874 		0x6500, 0x6524,
875 		0x6a00, 0x6a04,
876 		0x6a14, 0x6a38,
877 		0x6a60, 0x6a70,
878 		0x6a78, 0x6a78,
879 		0x6b00, 0x6b0c,
880 		0x6b1c, 0x6b84,
881 		0x6bf0, 0x6bf8,
882 		0x6c00, 0x6c0c,
883 		0x6c1c, 0x6c84,
884 		0x6cf0, 0x6cf8,
885 		0x6d00, 0x6d0c,
886 		0x6d1c, 0x6d84,
887 		0x6df0, 0x6df8,
888 		0x6e00, 0x6e0c,
889 		0x6e1c, 0x6e84,
890 		0x6ef0, 0x6ef8,
891 		0x6f00, 0x6f0c,
892 		0x6f1c, 0x6f84,
893 		0x6ff0, 0x6ff8,
894 		0x7000, 0x700c,
895 		0x701c, 0x7084,
896 		0x70f0, 0x70f8,
897 		0x7100, 0x710c,
898 		0x711c, 0x7184,
899 		0x71f0, 0x71f8,
900 		0x7200, 0x720c,
901 		0x721c, 0x7284,
902 		0x72f0, 0x72f8,
903 		0x7300, 0x730c,
904 		0x731c, 0x7384,
905 		0x73f0, 0x73f8,
906 		0x7400, 0x7450,
907 		0x7500, 0x7530,
908 		0x7600, 0x760c,
909 		0x7614, 0x761c,
910 		0x7680, 0x76cc,
911 		0x7700, 0x7798,
912 		0x77c0, 0x77fc,
913 		0x7900, 0x79fc,
914 		0x7b00, 0x7b58,
915 		0x7b60, 0x7b84,
916 		0x7b8c, 0x7c38,
917 		0x7d00, 0x7d38,
918 		0x7d40, 0x7d80,
919 		0x7d8c, 0x7ddc,
920 		0x7de4, 0x7e04,
921 		0x7e10, 0x7e1c,
922 		0x7e24, 0x7e38,
923 		0x7e40, 0x7e44,
924 		0x7e4c, 0x7e78,
925 		0x7e80, 0x7ea4,
926 		0x7eac, 0x7edc,
927 		0x7ee8, 0x7efc,
928 		0x8dc0, 0x8e04,
929 		0x8e10, 0x8e1c,
930 		0x8e30, 0x8e78,
931 		0x8ea0, 0x8eb8,
932 		0x8ec0, 0x8f6c,
933 		0x8fc0, 0x9008,
934 		0x9010, 0x9058,
935 		0x9060, 0x9060,
936 		0x9068, 0x9074,
937 		0x90fc, 0x90fc,
938 		0x9400, 0x9408,
939 		0x9410, 0x9458,
940 		0x9600, 0x9600,
941 		0x9608, 0x9638,
942 		0x9640, 0x96bc,
943 		0x9800, 0x9808,
944 		0x9820, 0x983c,
945 		0x9850, 0x9864,
946 		0x9c00, 0x9c6c,
947 		0x9c80, 0x9cec,
948 		0x9d00, 0x9d6c,
949 		0x9d80, 0x9dec,
950 		0x9e00, 0x9e6c,
951 		0x9e80, 0x9eec,
952 		0x9f00, 0x9f6c,
953 		0x9f80, 0x9fec,
954 		0xd004, 0xd004,
955 		0xd010, 0xd03c,
956 		0xdfc0, 0xdfe0,
957 		0xe000, 0xea7c,
958 		0xf000, 0x11110,
959 		0x11118, 0x11190,
960 		0x19040, 0x1906c,
961 		0x19078, 0x19080,
962 		0x1908c, 0x190e4,
963 		0x190f0, 0x190f8,
964 		0x19100, 0x19110,
965 		0x19120, 0x19124,
966 		0x19150, 0x19194,
967 		0x1919c, 0x191b0,
968 		0x191d0, 0x191e8,
969 		0x19238, 0x1924c,
970 		0x193f8, 0x1943c,
971 		0x1944c, 0x19474,
972 		0x19490, 0x194e0,
973 		0x194f0, 0x194f8,
974 		0x19800, 0x19c08,
975 		0x19c10, 0x19c90,
976 		0x19ca0, 0x19ce4,
977 		0x19cf0, 0x19d40,
978 		0x19d50, 0x19d94,
979 		0x19da0, 0x19de8,
980 		0x19df0, 0x19e40,
981 		0x19e50, 0x19e90,
982 		0x19ea0, 0x19f4c,
983 		0x1a000, 0x1a004,
984 		0x1a010, 0x1a06c,
985 		0x1a0b0, 0x1a0e4,
986 		0x1a0ec, 0x1a0f4,
987 		0x1a100, 0x1a108,
988 		0x1a114, 0x1a120,
989 		0x1a128, 0x1a130,
990 		0x1a138, 0x1a138,
991 		0x1a190, 0x1a1c4,
992 		0x1a1fc, 0x1a1fc,
993 		0x1e040, 0x1e04c,
994 		0x1e284, 0x1e28c,
995 		0x1e2c0, 0x1e2c0,
996 		0x1e2e0, 0x1e2e0,
997 		0x1e300, 0x1e384,
998 		0x1e3c0, 0x1e3c8,
999 		0x1e440, 0x1e44c,
1000 		0x1e684, 0x1e68c,
1001 		0x1e6c0, 0x1e6c0,
1002 		0x1e6e0, 0x1e6e0,
1003 		0x1e700, 0x1e784,
1004 		0x1e7c0, 0x1e7c8,
1005 		0x1e840, 0x1e84c,
1006 		0x1ea84, 0x1ea8c,
1007 		0x1eac0, 0x1eac0,
1008 		0x1eae0, 0x1eae0,
1009 		0x1eb00, 0x1eb84,
1010 		0x1ebc0, 0x1ebc8,
1011 		0x1ec40, 0x1ec4c,
1012 		0x1ee84, 0x1ee8c,
1013 		0x1eec0, 0x1eec0,
1014 		0x1eee0, 0x1eee0,
1015 		0x1ef00, 0x1ef84,
1016 		0x1efc0, 0x1efc8,
1017 		0x1f040, 0x1f04c,
1018 		0x1f284, 0x1f28c,
1019 		0x1f2c0, 0x1f2c0,
1020 		0x1f2e0, 0x1f2e0,
1021 		0x1f300, 0x1f384,
1022 		0x1f3c0, 0x1f3c8,
1023 		0x1f440, 0x1f44c,
1024 		0x1f684, 0x1f68c,
1025 		0x1f6c0, 0x1f6c0,
1026 		0x1f6e0, 0x1f6e0,
1027 		0x1f700, 0x1f784,
1028 		0x1f7c0, 0x1f7c8,
1029 		0x1f840, 0x1f84c,
1030 		0x1fa84, 0x1fa8c,
1031 		0x1fac0, 0x1fac0,
1032 		0x1fae0, 0x1fae0,
1033 		0x1fb00, 0x1fb84,
1034 		0x1fbc0, 0x1fbc8,
1035 		0x1fc40, 0x1fc4c,
1036 		0x1fe84, 0x1fe8c,
1037 		0x1fec0, 0x1fec0,
1038 		0x1fee0, 0x1fee0,
1039 		0x1ff00, 0x1ff84,
1040 		0x1ffc0, 0x1ffc8,
1041 		0x20000, 0x2002c,
1042 		0x20100, 0x2013c,
1043 		0x20190, 0x201a0,
1044 		0x201a8, 0x201b8,
1045 		0x201c4, 0x201c8,
1046 		0x20200, 0x20318,
1047 		0x20400, 0x204b4,
1048 		0x204c0, 0x20528,
1049 		0x20540, 0x20614,
1050 		0x21000, 0x21040,
1051 		0x2104c, 0x21060,
1052 		0x210c0, 0x210ec,
1053 		0x21200, 0x21268,
1054 		0x21270, 0x21284,
1055 		0x212fc, 0x21388,
1056 		0x21400, 0x21404,
1057 		0x21500, 0x21500,
1058 		0x21510, 0x21518,
1059 		0x2152c, 0x21530,
1060 		0x2153c, 0x2153c,
1061 		0x21550, 0x21554,
1062 		0x21600, 0x21600,
1063 		0x21608, 0x2161c,
1064 		0x21624, 0x21628,
1065 		0x21630, 0x21634,
1066 		0x2163c, 0x2163c,
1067 		0x21700, 0x2171c,
1068 		0x21780, 0x2178c,
1069 		0x21800, 0x21818,
1070 		0x21820, 0x21828,
1071 		0x21830, 0x21848,
1072 		0x21850, 0x21854,
1073 		0x21860, 0x21868,
1074 		0x21870, 0x21870,
1075 		0x21878, 0x21898,
1076 		0x218a0, 0x218a8,
1077 		0x218b0, 0x218c8,
1078 		0x218d0, 0x218d4,
1079 		0x218e0, 0x218e8,
1080 		0x218f0, 0x218f0,
1081 		0x218f8, 0x21a18,
1082 		0x21a20, 0x21a28,
1083 		0x21a30, 0x21a48,
1084 		0x21a50, 0x21a54,
1085 		0x21a60, 0x21a68,
1086 		0x21a70, 0x21a70,
1087 		0x21a78, 0x21a98,
1088 		0x21aa0, 0x21aa8,
1089 		0x21ab0, 0x21ac8,
1090 		0x21ad0, 0x21ad4,
1091 		0x21ae0, 0x21ae8,
1092 		0x21af0, 0x21af0,
1093 		0x21af8, 0x21c18,
1094 		0x21c20, 0x21c20,
1095 		0x21c28, 0x21c30,
1096 		0x21c38, 0x21c38,
1097 		0x21c80, 0x21c98,
1098 		0x21ca0, 0x21ca8,
1099 		0x21cb0, 0x21cc8,
1100 		0x21cd0, 0x21cd4,
1101 		0x21ce0, 0x21ce8,
1102 		0x21cf0, 0x21cf0,
1103 		0x21cf8, 0x21d7c,
1104 		0x21e00, 0x21e04,
1105 		0x22000, 0x2202c,
1106 		0x22100, 0x2213c,
1107 		0x22190, 0x221a0,
1108 		0x221a8, 0x221b8,
1109 		0x221c4, 0x221c8,
1110 		0x22200, 0x22318,
1111 		0x22400, 0x224b4,
1112 		0x224c0, 0x22528,
1113 		0x22540, 0x22614,
1114 		0x23000, 0x23040,
1115 		0x2304c, 0x23060,
1116 		0x230c0, 0x230ec,
1117 		0x23200, 0x23268,
1118 		0x23270, 0x23284,
1119 		0x232fc, 0x23388,
1120 		0x23400, 0x23404,
1121 		0x23500, 0x23500,
1122 		0x23510, 0x23518,
1123 		0x2352c, 0x23530,
1124 		0x2353c, 0x2353c,
1125 		0x23550, 0x23554,
1126 		0x23600, 0x23600,
1127 		0x23608, 0x2361c,
1128 		0x23624, 0x23628,
1129 		0x23630, 0x23634,
1130 		0x2363c, 0x2363c,
1131 		0x23700, 0x2371c,
1132 		0x23780, 0x2378c,
1133 		0x23800, 0x23818,
1134 		0x23820, 0x23828,
1135 		0x23830, 0x23848,
1136 		0x23850, 0x23854,
1137 		0x23860, 0x23868,
1138 		0x23870, 0x23870,
1139 		0x23878, 0x23898,
1140 		0x238a0, 0x238a8,
1141 		0x238b0, 0x238c8,
1142 		0x238d0, 0x238d4,
1143 		0x238e0, 0x238e8,
1144 		0x238f0, 0x238f0,
1145 		0x238f8, 0x23a18,
1146 		0x23a20, 0x23a28,
1147 		0x23a30, 0x23a48,
1148 		0x23a50, 0x23a54,
1149 		0x23a60, 0x23a68,
1150 		0x23a70, 0x23a70,
1151 		0x23a78, 0x23a98,
1152 		0x23aa0, 0x23aa8,
1153 		0x23ab0, 0x23ac8,
1154 		0x23ad0, 0x23ad4,
1155 		0x23ae0, 0x23ae8,
1156 		0x23af0, 0x23af0,
1157 		0x23af8, 0x23c18,
1158 		0x23c20, 0x23c20,
1159 		0x23c28, 0x23c30,
1160 		0x23c38, 0x23c38,
1161 		0x23c80, 0x23c98,
1162 		0x23ca0, 0x23ca8,
1163 		0x23cb0, 0x23cc8,
1164 		0x23cd0, 0x23cd4,
1165 		0x23ce0, 0x23ce8,
1166 		0x23cf0, 0x23cf0,
1167 		0x23cf8, 0x23d7c,
1168 		0x23e00, 0x23e04,
1169 		0x24000, 0x2402c,
1170 		0x24100, 0x2413c,
1171 		0x24190, 0x241a0,
1172 		0x241a8, 0x241b8,
1173 		0x241c4, 0x241c8,
1174 		0x24200, 0x24318,
1175 		0x24400, 0x244b4,
1176 		0x244c0, 0x24528,
1177 		0x24540, 0x24614,
1178 		0x25000, 0x25040,
1179 		0x2504c, 0x25060,
1180 		0x250c0, 0x250ec,
1181 		0x25200, 0x25268,
1182 		0x25270, 0x25284,
1183 		0x252fc, 0x25388,
1184 		0x25400, 0x25404,
1185 		0x25500, 0x25500,
1186 		0x25510, 0x25518,
1187 		0x2552c, 0x25530,
1188 		0x2553c, 0x2553c,
1189 		0x25550, 0x25554,
1190 		0x25600, 0x25600,
1191 		0x25608, 0x2561c,
1192 		0x25624, 0x25628,
1193 		0x25630, 0x25634,
1194 		0x2563c, 0x2563c,
1195 		0x25700, 0x2571c,
1196 		0x25780, 0x2578c,
1197 		0x25800, 0x25818,
1198 		0x25820, 0x25828,
1199 		0x25830, 0x25848,
1200 		0x25850, 0x25854,
1201 		0x25860, 0x25868,
1202 		0x25870, 0x25870,
1203 		0x25878, 0x25898,
1204 		0x258a0, 0x258a8,
1205 		0x258b0, 0x258c8,
1206 		0x258d0, 0x258d4,
1207 		0x258e0, 0x258e8,
1208 		0x258f0, 0x258f0,
1209 		0x258f8, 0x25a18,
1210 		0x25a20, 0x25a28,
1211 		0x25a30, 0x25a48,
1212 		0x25a50, 0x25a54,
1213 		0x25a60, 0x25a68,
1214 		0x25a70, 0x25a70,
1215 		0x25a78, 0x25a98,
1216 		0x25aa0, 0x25aa8,
1217 		0x25ab0, 0x25ac8,
1218 		0x25ad0, 0x25ad4,
1219 		0x25ae0, 0x25ae8,
1220 		0x25af0, 0x25af0,
1221 		0x25af8, 0x25c18,
1222 		0x25c20, 0x25c20,
1223 		0x25c28, 0x25c30,
1224 		0x25c38, 0x25c38,
1225 		0x25c80, 0x25c98,
1226 		0x25ca0, 0x25ca8,
1227 		0x25cb0, 0x25cc8,
1228 		0x25cd0, 0x25cd4,
1229 		0x25ce0, 0x25ce8,
1230 		0x25cf0, 0x25cf0,
1231 		0x25cf8, 0x25d7c,
1232 		0x25e00, 0x25e04,
1233 		0x26000, 0x2602c,
1234 		0x26100, 0x2613c,
1235 		0x26190, 0x261a0,
1236 		0x261a8, 0x261b8,
1237 		0x261c4, 0x261c8,
1238 		0x26200, 0x26318,
1239 		0x26400, 0x264b4,
1240 		0x264c0, 0x26528,
1241 		0x26540, 0x26614,
1242 		0x27000, 0x27040,
1243 		0x2704c, 0x27060,
1244 		0x270c0, 0x270ec,
1245 		0x27200, 0x27268,
1246 		0x27270, 0x27284,
1247 		0x272fc, 0x27388,
1248 		0x27400, 0x27404,
1249 		0x27500, 0x27500,
1250 		0x27510, 0x27518,
1251 		0x2752c, 0x27530,
1252 		0x2753c, 0x2753c,
1253 		0x27550, 0x27554,
1254 		0x27600, 0x27600,
1255 		0x27608, 0x2761c,
1256 		0x27624, 0x27628,
1257 		0x27630, 0x27634,
1258 		0x2763c, 0x2763c,
1259 		0x27700, 0x2771c,
1260 		0x27780, 0x2778c,
1261 		0x27800, 0x27818,
1262 		0x27820, 0x27828,
1263 		0x27830, 0x27848,
1264 		0x27850, 0x27854,
1265 		0x27860, 0x27868,
1266 		0x27870, 0x27870,
1267 		0x27878, 0x27898,
1268 		0x278a0, 0x278a8,
1269 		0x278b0, 0x278c8,
1270 		0x278d0, 0x278d4,
1271 		0x278e0, 0x278e8,
1272 		0x278f0, 0x278f0,
1273 		0x278f8, 0x27a18,
1274 		0x27a20, 0x27a28,
1275 		0x27a30, 0x27a48,
1276 		0x27a50, 0x27a54,
1277 		0x27a60, 0x27a68,
1278 		0x27a70, 0x27a70,
1279 		0x27a78, 0x27a98,
1280 		0x27aa0, 0x27aa8,
1281 		0x27ab0, 0x27ac8,
1282 		0x27ad0, 0x27ad4,
1283 		0x27ae0, 0x27ae8,
1284 		0x27af0, 0x27af0,
1285 		0x27af8, 0x27c18,
1286 		0x27c20, 0x27c20,
1287 		0x27c28, 0x27c30,
1288 		0x27c38, 0x27c38,
1289 		0x27c80, 0x27c98,
1290 		0x27ca0, 0x27ca8,
1291 		0x27cb0, 0x27cc8,
1292 		0x27cd0, 0x27cd4,
1293 		0x27ce0, 0x27ce8,
1294 		0x27cf0, 0x27cf0,
1295 		0x27cf8, 0x27d7c,
1296 		0x27e00, 0x27e04,
1297 	};
1298 
1299 	static const unsigned int t4vf_reg_ranges[] = {
1300 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1301 		VF_MPS_REG(A_MPS_VF_CTL),
1302 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1303 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1304 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1305 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1306 		FW_T4VF_MBDATA_BASE_ADDR,
1307 		FW_T4VF_MBDATA_BASE_ADDR +
1308 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1309 	};
1310 
1311 	static const unsigned int t5_reg_ranges[] = {
1312 		0x1008, 0x10c0,
1313 		0x10cc, 0x10f8,
1314 		0x1100, 0x1100,
1315 		0x110c, 0x1148,
1316 		0x1180, 0x1184,
1317 		0x1190, 0x1194,
1318 		0x11a0, 0x11a4,
1319 		0x11b0, 0x11b4,
1320 		0x11fc, 0x123c,
1321 		0x1280, 0x173c,
1322 		0x1800, 0x18fc,
1323 		0x3000, 0x3028,
1324 		0x3060, 0x30b0,
1325 		0x30b8, 0x30d8,
1326 		0x30e0, 0x30fc,
1327 		0x3140, 0x357c,
1328 		0x35a8, 0x35cc,
1329 		0x35ec, 0x35ec,
1330 		0x3600, 0x5624,
1331 		0x56cc, 0x56ec,
1332 		0x56f4, 0x5720,
1333 		0x5728, 0x575c,
1334 		0x580c, 0x5814,
1335 		0x5890, 0x589c,
1336 		0x58a4, 0x58ac,
1337 		0x58b8, 0x58bc,
1338 		0x5940, 0x59c8,
1339 		0x59d0, 0x59dc,
1340 		0x59fc, 0x5a18,
1341 		0x5a60, 0x5a70,
1342 		0x5a80, 0x5a9c,
1343 		0x5b94, 0x5bfc,
1344 		0x6000, 0x6020,
1345 		0x6028, 0x6040,
1346 		0x6058, 0x609c,
1347 		0x60a8, 0x614c,
1348 		0x7700, 0x7798,
1349 		0x77c0, 0x78fc,
1350 		0x7b00, 0x7b58,
1351 		0x7b60, 0x7b84,
1352 		0x7b8c, 0x7c54,
1353 		0x7d00, 0x7d38,
1354 		0x7d40, 0x7d80,
1355 		0x7d8c, 0x7ddc,
1356 		0x7de4, 0x7e04,
1357 		0x7e10, 0x7e1c,
1358 		0x7e24, 0x7e38,
1359 		0x7e40, 0x7e44,
1360 		0x7e4c, 0x7e78,
1361 		0x7e80, 0x7edc,
1362 		0x7ee8, 0x7efc,
1363 		0x8dc0, 0x8de0,
1364 		0x8df8, 0x8e04,
1365 		0x8e10, 0x8e84,
1366 		0x8ea0, 0x8f84,
1367 		0x8fc0, 0x9058,
1368 		0x9060, 0x9060,
1369 		0x9068, 0x90f8,
1370 		0x9400, 0x9408,
1371 		0x9410, 0x9470,
1372 		0x9600, 0x9600,
1373 		0x9608, 0x9638,
1374 		0x9640, 0x96f4,
1375 		0x9800, 0x9808,
1376 		0x9820, 0x983c,
1377 		0x9850, 0x9864,
1378 		0x9c00, 0x9c6c,
1379 		0x9c80, 0x9cec,
1380 		0x9d00, 0x9d6c,
1381 		0x9d80, 0x9dec,
1382 		0x9e00, 0x9e6c,
1383 		0x9e80, 0x9eec,
1384 		0x9f00, 0x9f6c,
1385 		0x9f80, 0xa020,
1386 		0xd004, 0xd004,
1387 		0xd010, 0xd03c,
1388 		0xdfc0, 0xdfe0,
1389 		0xe000, 0x1106c,
1390 		0x11074, 0x11088,
1391 		0x1109c, 0x1117c,
1392 		0x11190, 0x11204,
1393 		0x19040, 0x1906c,
1394 		0x19078, 0x19080,
1395 		0x1908c, 0x190e8,
1396 		0x190f0, 0x190f8,
1397 		0x19100, 0x19110,
1398 		0x19120, 0x19124,
1399 		0x19150, 0x19194,
1400 		0x1919c, 0x191b0,
1401 		0x191d0, 0x191e8,
1402 		0x19238, 0x19290,
1403 		0x193f8, 0x19428,
1404 		0x19430, 0x19444,
1405 		0x1944c, 0x1946c,
1406 		0x19474, 0x19474,
1407 		0x19490, 0x194cc,
1408 		0x194f0, 0x194f8,
1409 		0x19c00, 0x19c08,
1410 		0x19c10, 0x19c60,
1411 		0x19c94, 0x19ce4,
1412 		0x19cf0, 0x19d40,
1413 		0x19d50, 0x19d94,
1414 		0x19da0, 0x19de8,
1415 		0x19df0, 0x19e10,
1416 		0x19e50, 0x19e90,
1417 		0x19ea0, 0x19f24,
1418 		0x19f34, 0x19f34,
1419 		0x19f40, 0x19f50,
1420 		0x19f90, 0x19fb4,
1421 		0x19fc4, 0x19fe4,
1422 		0x1a000, 0x1a004,
1423 		0x1a010, 0x1a06c,
1424 		0x1a0b0, 0x1a0e4,
1425 		0x1a0ec, 0x1a0f8,
1426 		0x1a100, 0x1a108,
1427 		0x1a114, 0x1a120,
1428 		0x1a128, 0x1a130,
1429 		0x1a138, 0x1a138,
1430 		0x1a190, 0x1a1c4,
1431 		0x1a1fc, 0x1a1fc,
1432 		0x1e008, 0x1e00c,
1433 		0x1e040, 0x1e044,
1434 		0x1e04c, 0x1e04c,
1435 		0x1e284, 0x1e290,
1436 		0x1e2c0, 0x1e2c0,
1437 		0x1e2e0, 0x1e2e0,
1438 		0x1e300, 0x1e384,
1439 		0x1e3c0, 0x1e3c8,
1440 		0x1e408, 0x1e40c,
1441 		0x1e440, 0x1e444,
1442 		0x1e44c, 0x1e44c,
1443 		0x1e684, 0x1e690,
1444 		0x1e6c0, 0x1e6c0,
1445 		0x1e6e0, 0x1e6e0,
1446 		0x1e700, 0x1e784,
1447 		0x1e7c0, 0x1e7c8,
1448 		0x1e808, 0x1e80c,
1449 		0x1e840, 0x1e844,
1450 		0x1e84c, 0x1e84c,
1451 		0x1ea84, 0x1ea90,
1452 		0x1eac0, 0x1eac0,
1453 		0x1eae0, 0x1eae0,
1454 		0x1eb00, 0x1eb84,
1455 		0x1ebc0, 0x1ebc8,
1456 		0x1ec08, 0x1ec0c,
1457 		0x1ec40, 0x1ec44,
1458 		0x1ec4c, 0x1ec4c,
1459 		0x1ee84, 0x1ee90,
1460 		0x1eec0, 0x1eec0,
1461 		0x1eee0, 0x1eee0,
1462 		0x1ef00, 0x1ef84,
1463 		0x1efc0, 0x1efc8,
1464 		0x1f008, 0x1f00c,
1465 		0x1f040, 0x1f044,
1466 		0x1f04c, 0x1f04c,
1467 		0x1f284, 0x1f290,
1468 		0x1f2c0, 0x1f2c0,
1469 		0x1f2e0, 0x1f2e0,
1470 		0x1f300, 0x1f384,
1471 		0x1f3c0, 0x1f3c8,
1472 		0x1f408, 0x1f40c,
1473 		0x1f440, 0x1f444,
1474 		0x1f44c, 0x1f44c,
1475 		0x1f684, 0x1f690,
1476 		0x1f6c0, 0x1f6c0,
1477 		0x1f6e0, 0x1f6e0,
1478 		0x1f700, 0x1f784,
1479 		0x1f7c0, 0x1f7c8,
1480 		0x1f808, 0x1f80c,
1481 		0x1f840, 0x1f844,
1482 		0x1f84c, 0x1f84c,
1483 		0x1fa84, 0x1fa90,
1484 		0x1fac0, 0x1fac0,
1485 		0x1fae0, 0x1fae0,
1486 		0x1fb00, 0x1fb84,
1487 		0x1fbc0, 0x1fbc8,
1488 		0x1fc08, 0x1fc0c,
1489 		0x1fc40, 0x1fc44,
1490 		0x1fc4c, 0x1fc4c,
1491 		0x1fe84, 0x1fe90,
1492 		0x1fec0, 0x1fec0,
1493 		0x1fee0, 0x1fee0,
1494 		0x1ff00, 0x1ff84,
1495 		0x1ffc0, 0x1ffc8,
1496 		0x30000, 0x30030,
1497 		0x30100, 0x30144,
1498 		0x30190, 0x301a0,
1499 		0x301a8, 0x301b8,
1500 		0x301c4, 0x301c8,
1501 		0x301d0, 0x301d0,
1502 		0x30200, 0x30318,
1503 		0x30400, 0x304b4,
1504 		0x304c0, 0x3052c,
1505 		0x30540, 0x3061c,
1506 		0x30800, 0x30828,
1507 		0x30834, 0x30834,
1508 		0x308c0, 0x30908,
1509 		0x30910, 0x309ac,
1510 		0x30a00, 0x30a14,
1511 		0x30a1c, 0x30a2c,
1512 		0x30a44, 0x30a50,
1513 		0x30a74, 0x30a74,
1514 		0x30a7c, 0x30afc,
1515 		0x30b08, 0x30c24,
1516 		0x30d00, 0x30d00,
1517 		0x30d08, 0x30d14,
1518 		0x30d1c, 0x30d20,
1519 		0x30d3c, 0x30d3c,
1520 		0x30d48, 0x30d50,
1521 		0x31200, 0x3120c,
1522 		0x31220, 0x31220,
1523 		0x31240, 0x31240,
1524 		0x31600, 0x3160c,
1525 		0x31a00, 0x31a1c,
1526 		0x31e00, 0x31e20,
1527 		0x31e38, 0x31e3c,
1528 		0x31e80, 0x31e80,
1529 		0x31e88, 0x31ea8,
1530 		0x31eb0, 0x31eb4,
1531 		0x31ec8, 0x31ed4,
1532 		0x31fb8, 0x32004,
1533 		0x32200, 0x32200,
1534 		0x32208, 0x32240,
1535 		0x32248, 0x32280,
1536 		0x32288, 0x322c0,
1537 		0x322c8, 0x322fc,
1538 		0x32600, 0x32630,
1539 		0x32a00, 0x32abc,
1540 		0x32b00, 0x32b10,
1541 		0x32b20, 0x32b30,
1542 		0x32b40, 0x32b50,
1543 		0x32b60, 0x32b70,
1544 		0x33000, 0x33028,
1545 		0x33030, 0x33048,
1546 		0x33060, 0x33068,
1547 		0x33070, 0x3309c,
1548 		0x330f0, 0x33128,
1549 		0x33130, 0x33148,
1550 		0x33160, 0x33168,
1551 		0x33170, 0x3319c,
1552 		0x331f0, 0x33238,
1553 		0x33240, 0x33240,
1554 		0x33248, 0x33250,
1555 		0x3325c, 0x33264,
1556 		0x33270, 0x332b8,
1557 		0x332c0, 0x332e4,
1558 		0x332f8, 0x33338,
1559 		0x33340, 0x33340,
1560 		0x33348, 0x33350,
1561 		0x3335c, 0x33364,
1562 		0x33370, 0x333b8,
1563 		0x333c0, 0x333e4,
1564 		0x333f8, 0x33428,
1565 		0x33430, 0x33448,
1566 		0x33460, 0x33468,
1567 		0x33470, 0x3349c,
1568 		0x334f0, 0x33528,
1569 		0x33530, 0x33548,
1570 		0x33560, 0x33568,
1571 		0x33570, 0x3359c,
1572 		0x335f0, 0x33638,
1573 		0x33640, 0x33640,
1574 		0x33648, 0x33650,
1575 		0x3365c, 0x33664,
1576 		0x33670, 0x336b8,
1577 		0x336c0, 0x336e4,
1578 		0x336f8, 0x33738,
1579 		0x33740, 0x33740,
1580 		0x33748, 0x33750,
1581 		0x3375c, 0x33764,
1582 		0x33770, 0x337b8,
1583 		0x337c0, 0x337e4,
1584 		0x337f8, 0x337fc,
1585 		0x33814, 0x33814,
1586 		0x3382c, 0x3382c,
1587 		0x33880, 0x3388c,
1588 		0x338e8, 0x338ec,
1589 		0x33900, 0x33928,
1590 		0x33930, 0x33948,
1591 		0x33960, 0x33968,
1592 		0x33970, 0x3399c,
1593 		0x339f0, 0x33a38,
1594 		0x33a40, 0x33a40,
1595 		0x33a48, 0x33a50,
1596 		0x33a5c, 0x33a64,
1597 		0x33a70, 0x33ab8,
1598 		0x33ac0, 0x33ae4,
1599 		0x33af8, 0x33b10,
1600 		0x33b28, 0x33b28,
1601 		0x33b3c, 0x33b50,
1602 		0x33bf0, 0x33c10,
1603 		0x33c28, 0x33c28,
1604 		0x33c3c, 0x33c50,
1605 		0x33cf0, 0x33cfc,
1606 		0x34000, 0x34030,
1607 		0x34100, 0x34144,
1608 		0x34190, 0x341a0,
1609 		0x341a8, 0x341b8,
1610 		0x341c4, 0x341c8,
1611 		0x341d0, 0x341d0,
1612 		0x34200, 0x34318,
1613 		0x34400, 0x344b4,
1614 		0x344c0, 0x3452c,
1615 		0x34540, 0x3461c,
1616 		0x34800, 0x34828,
1617 		0x34834, 0x34834,
1618 		0x348c0, 0x34908,
1619 		0x34910, 0x349ac,
1620 		0x34a00, 0x34a14,
1621 		0x34a1c, 0x34a2c,
1622 		0x34a44, 0x34a50,
1623 		0x34a74, 0x34a74,
1624 		0x34a7c, 0x34afc,
1625 		0x34b08, 0x34c24,
1626 		0x34d00, 0x34d00,
1627 		0x34d08, 0x34d14,
1628 		0x34d1c, 0x34d20,
1629 		0x34d3c, 0x34d3c,
1630 		0x34d48, 0x34d50,
1631 		0x35200, 0x3520c,
1632 		0x35220, 0x35220,
1633 		0x35240, 0x35240,
1634 		0x35600, 0x3560c,
1635 		0x35a00, 0x35a1c,
1636 		0x35e00, 0x35e20,
1637 		0x35e38, 0x35e3c,
1638 		0x35e80, 0x35e80,
1639 		0x35e88, 0x35ea8,
1640 		0x35eb0, 0x35eb4,
1641 		0x35ec8, 0x35ed4,
1642 		0x35fb8, 0x36004,
1643 		0x36200, 0x36200,
1644 		0x36208, 0x36240,
1645 		0x36248, 0x36280,
1646 		0x36288, 0x362c0,
1647 		0x362c8, 0x362fc,
1648 		0x36600, 0x36630,
1649 		0x36a00, 0x36abc,
1650 		0x36b00, 0x36b10,
1651 		0x36b20, 0x36b30,
1652 		0x36b40, 0x36b50,
1653 		0x36b60, 0x36b70,
1654 		0x37000, 0x37028,
1655 		0x37030, 0x37048,
1656 		0x37060, 0x37068,
1657 		0x37070, 0x3709c,
1658 		0x370f0, 0x37128,
1659 		0x37130, 0x37148,
1660 		0x37160, 0x37168,
1661 		0x37170, 0x3719c,
1662 		0x371f0, 0x37238,
1663 		0x37240, 0x37240,
1664 		0x37248, 0x37250,
1665 		0x3725c, 0x37264,
1666 		0x37270, 0x372b8,
1667 		0x372c0, 0x372e4,
1668 		0x372f8, 0x37338,
1669 		0x37340, 0x37340,
1670 		0x37348, 0x37350,
1671 		0x3735c, 0x37364,
1672 		0x37370, 0x373b8,
1673 		0x373c0, 0x373e4,
1674 		0x373f8, 0x37428,
1675 		0x37430, 0x37448,
1676 		0x37460, 0x37468,
1677 		0x37470, 0x3749c,
1678 		0x374f0, 0x37528,
1679 		0x37530, 0x37548,
1680 		0x37560, 0x37568,
1681 		0x37570, 0x3759c,
1682 		0x375f0, 0x37638,
1683 		0x37640, 0x37640,
1684 		0x37648, 0x37650,
1685 		0x3765c, 0x37664,
1686 		0x37670, 0x376b8,
1687 		0x376c0, 0x376e4,
1688 		0x376f8, 0x37738,
1689 		0x37740, 0x37740,
1690 		0x37748, 0x37750,
1691 		0x3775c, 0x37764,
1692 		0x37770, 0x377b8,
1693 		0x377c0, 0x377e4,
1694 		0x377f8, 0x377fc,
1695 		0x37814, 0x37814,
1696 		0x3782c, 0x3782c,
1697 		0x37880, 0x3788c,
1698 		0x378e8, 0x378ec,
1699 		0x37900, 0x37928,
1700 		0x37930, 0x37948,
1701 		0x37960, 0x37968,
1702 		0x37970, 0x3799c,
1703 		0x379f0, 0x37a38,
1704 		0x37a40, 0x37a40,
1705 		0x37a48, 0x37a50,
1706 		0x37a5c, 0x37a64,
1707 		0x37a70, 0x37ab8,
1708 		0x37ac0, 0x37ae4,
1709 		0x37af8, 0x37b10,
1710 		0x37b28, 0x37b28,
1711 		0x37b3c, 0x37b50,
1712 		0x37bf0, 0x37c10,
1713 		0x37c28, 0x37c28,
1714 		0x37c3c, 0x37c50,
1715 		0x37cf0, 0x37cfc,
1716 		0x38000, 0x38030,
1717 		0x38100, 0x38144,
1718 		0x38190, 0x381a0,
1719 		0x381a8, 0x381b8,
1720 		0x381c4, 0x381c8,
1721 		0x381d0, 0x381d0,
1722 		0x38200, 0x38318,
1723 		0x38400, 0x384b4,
1724 		0x384c0, 0x3852c,
1725 		0x38540, 0x3861c,
1726 		0x38800, 0x38828,
1727 		0x38834, 0x38834,
1728 		0x388c0, 0x38908,
1729 		0x38910, 0x389ac,
1730 		0x38a00, 0x38a14,
1731 		0x38a1c, 0x38a2c,
1732 		0x38a44, 0x38a50,
1733 		0x38a74, 0x38a74,
1734 		0x38a7c, 0x38afc,
1735 		0x38b08, 0x38c24,
1736 		0x38d00, 0x38d00,
1737 		0x38d08, 0x38d14,
1738 		0x38d1c, 0x38d20,
1739 		0x38d3c, 0x38d3c,
1740 		0x38d48, 0x38d50,
1741 		0x39200, 0x3920c,
1742 		0x39220, 0x39220,
1743 		0x39240, 0x39240,
1744 		0x39600, 0x3960c,
1745 		0x39a00, 0x39a1c,
1746 		0x39e00, 0x39e20,
1747 		0x39e38, 0x39e3c,
1748 		0x39e80, 0x39e80,
1749 		0x39e88, 0x39ea8,
1750 		0x39eb0, 0x39eb4,
1751 		0x39ec8, 0x39ed4,
1752 		0x39fb8, 0x3a004,
1753 		0x3a200, 0x3a200,
1754 		0x3a208, 0x3a240,
1755 		0x3a248, 0x3a280,
1756 		0x3a288, 0x3a2c0,
1757 		0x3a2c8, 0x3a2fc,
1758 		0x3a600, 0x3a630,
1759 		0x3aa00, 0x3aabc,
1760 		0x3ab00, 0x3ab10,
1761 		0x3ab20, 0x3ab30,
1762 		0x3ab40, 0x3ab50,
1763 		0x3ab60, 0x3ab70,
1764 		0x3b000, 0x3b028,
1765 		0x3b030, 0x3b048,
1766 		0x3b060, 0x3b068,
1767 		0x3b070, 0x3b09c,
1768 		0x3b0f0, 0x3b128,
1769 		0x3b130, 0x3b148,
1770 		0x3b160, 0x3b168,
1771 		0x3b170, 0x3b19c,
1772 		0x3b1f0, 0x3b238,
1773 		0x3b240, 0x3b240,
1774 		0x3b248, 0x3b250,
1775 		0x3b25c, 0x3b264,
1776 		0x3b270, 0x3b2b8,
1777 		0x3b2c0, 0x3b2e4,
1778 		0x3b2f8, 0x3b338,
1779 		0x3b340, 0x3b340,
1780 		0x3b348, 0x3b350,
1781 		0x3b35c, 0x3b364,
1782 		0x3b370, 0x3b3b8,
1783 		0x3b3c0, 0x3b3e4,
1784 		0x3b3f8, 0x3b428,
1785 		0x3b430, 0x3b448,
1786 		0x3b460, 0x3b468,
1787 		0x3b470, 0x3b49c,
1788 		0x3b4f0, 0x3b528,
1789 		0x3b530, 0x3b548,
1790 		0x3b560, 0x3b568,
1791 		0x3b570, 0x3b59c,
1792 		0x3b5f0, 0x3b638,
1793 		0x3b640, 0x3b640,
1794 		0x3b648, 0x3b650,
1795 		0x3b65c, 0x3b664,
1796 		0x3b670, 0x3b6b8,
1797 		0x3b6c0, 0x3b6e4,
1798 		0x3b6f8, 0x3b738,
1799 		0x3b740, 0x3b740,
1800 		0x3b748, 0x3b750,
1801 		0x3b75c, 0x3b764,
1802 		0x3b770, 0x3b7b8,
1803 		0x3b7c0, 0x3b7e4,
1804 		0x3b7f8, 0x3b7fc,
1805 		0x3b814, 0x3b814,
1806 		0x3b82c, 0x3b82c,
1807 		0x3b880, 0x3b88c,
1808 		0x3b8e8, 0x3b8ec,
1809 		0x3b900, 0x3b928,
1810 		0x3b930, 0x3b948,
1811 		0x3b960, 0x3b968,
1812 		0x3b970, 0x3b99c,
1813 		0x3b9f0, 0x3ba38,
1814 		0x3ba40, 0x3ba40,
1815 		0x3ba48, 0x3ba50,
1816 		0x3ba5c, 0x3ba64,
1817 		0x3ba70, 0x3bab8,
1818 		0x3bac0, 0x3bae4,
1819 		0x3baf8, 0x3bb10,
1820 		0x3bb28, 0x3bb28,
1821 		0x3bb3c, 0x3bb50,
1822 		0x3bbf0, 0x3bc10,
1823 		0x3bc28, 0x3bc28,
1824 		0x3bc3c, 0x3bc50,
1825 		0x3bcf0, 0x3bcfc,
1826 		0x3c000, 0x3c030,
1827 		0x3c100, 0x3c144,
1828 		0x3c190, 0x3c1a0,
1829 		0x3c1a8, 0x3c1b8,
1830 		0x3c1c4, 0x3c1c8,
1831 		0x3c1d0, 0x3c1d0,
1832 		0x3c200, 0x3c318,
1833 		0x3c400, 0x3c4b4,
1834 		0x3c4c0, 0x3c52c,
1835 		0x3c540, 0x3c61c,
1836 		0x3c800, 0x3c828,
1837 		0x3c834, 0x3c834,
1838 		0x3c8c0, 0x3c908,
1839 		0x3c910, 0x3c9ac,
1840 		0x3ca00, 0x3ca14,
1841 		0x3ca1c, 0x3ca2c,
1842 		0x3ca44, 0x3ca50,
1843 		0x3ca74, 0x3ca74,
1844 		0x3ca7c, 0x3cafc,
1845 		0x3cb08, 0x3cc24,
1846 		0x3cd00, 0x3cd00,
1847 		0x3cd08, 0x3cd14,
1848 		0x3cd1c, 0x3cd20,
1849 		0x3cd3c, 0x3cd3c,
1850 		0x3cd48, 0x3cd50,
1851 		0x3d200, 0x3d20c,
1852 		0x3d220, 0x3d220,
1853 		0x3d240, 0x3d240,
1854 		0x3d600, 0x3d60c,
1855 		0x3da00, 0x3da1c,
1856 		0x3de00, 0x3de20,
1857 		0x3de38, 0x3de3c,
1858 		0x3de80, 0x3de80,
1859 		0x3de88, 0x3dea8,
1860 		0x3deb0, 0x3deb4,
1861 		0x3dec8, 0x3ded4,
1862 		0x3dfb8, 0x3e004,
1863 		0x3e200, 0x3e200,
1864 		0x3e208, 0x3e240,
1865 		0x3e248, 0x3e280,
1866 		0x3e288, 0x3e2c0,
1867 		0x3e2c8, 0x3e2fc,
1868 		0x3e600, 0x3e630,
1869 		0x3ea00, 0x3eabc,
1870 		0x3eb00, 0x3eb10,
1871 		0x3eb20, 0x3eb30,
1872 		0x3eb40, 0x3eb50,
1873 		0x3eb60, 0x3eb70,
1874 		0x3f000, 0x3f028,
1875 		0x3f030, 0x3f048,
1876 		0x3f060, 0x3f068,
1877 		0x3f070, 0x3f09c,
1878 		0x3f0f0, 0x3f128,
1879 		0x3f130, 0x3f148,
1880 		0x3f160, 0x3f168,
1881 		0x3f170, 0x3f19c,
1882 		0x3f1f0, 0x3f238,
1883 		0x3f240, 0x3f240,
1884 		0x3f248, 0x3f250,
1885 		0x3f25c, 0x3f264,
1886 		0x3f270, 0x3f2b8,
1887 		0x3f2c0, 0x3f2e4,
1888 		0x3f2f8, 0x3f338,
1889 		0x3f340, 0x3f340,
1890 		0x3f348, 0x3f350,
1891 		0x3f35c, 0x3f364,
1892 		0x3f370, 0x3f3b8,
1893 		0x3f3c0, 0x3f3e4,
1894 		0x3f3f8, 0x3f428,
1895 		0x3f430, 0x3f448,
1896 		0x3f460, 0x3f468,
1897 		0x3f470, 0x3f49c,
1898 		0x3f4f0, 0x3f528,
1899 		0x3f530, 0x3f548,
1900 		0x3f560, 0x3f568,
1901 		0x3f570, 0x3f59c,
1902 		0x3f5f0, 0x3f638,
1903 		0x3f640, 0x3f640,
1904 		0x3f648, 0x3f650,
1905 		0x3f65c, 0x3f664,
1906 		0x3f670, 0x3f6b8,
1907 		0x3f6c0, 0x3f6e4,
1908 		0x3f6f8, 0x3f738,
1909 		0x3f740, 0x3f740,
1910 		0x3f748, 0x3f750,
1911 		0x3f75c, 0x3f764,
1912 		0x3f770, 0x3f7b8,
1913 		0x3f7c0, 0x3f7e4,
1914 		0x3f7f8, 0x3f7fc,
1915 		0x3f814, 0x3f814,
1916 		0x3f82c, 0x3f82c,
1917 		0x3f880, 0x3f88c,
1918 		0x3f8e8, 0x3f8ec,
1919 		0x3f900, 0x3f928,
1920 		0x3f930, 0x3f948,
1921 		0x3f960, 0x3f968,
1922 		0x3f970, 0x3f99c,
1923 		0x3f9f0, 0x3fa38,
1924 		0x3fa40, 0x3fa40,
1925 		0x3fa48, 0x3fa50,
1926 		0x3fa5c, 0x3fa64,
1927 		0x3fa70, 0x3fab8,
1928 		0x3fac0, 0x3fae4,
1929 		0x3faf8, 0x3fb10,
1930 		0x3fb28, 0x3fb28,
1931 		0x3fb3c, 0x3fb50,
1932 		0x3fbf0, 0x3fc10,
1933 		0x3fc28, 0x3fc28,
1934 		0x3fc3c, 0x3fc50,
1935 		0x3fcf0, 0x3fcfc,
1936 		0x40000, 0x4000c,
1937 		0x40040, 0x40050,
1938 		0x40060, 0x40068,
1939 		0x4007c, 0x4008c,
1940 		0x40094, 0x400b0,
1941 		0x400c0, 0x40144,
1942 		0x40180, 0x4018c,
1943 		0x40200, 0x40254,
1944 		0x40260, 0x40264,
1945 		0x40270, 0x40288,
1946 		0x40290, 0x40298,
1947 		0x402ac, 0x402c8,
1948 		0x402d0, 0x402e0,
1949 		0x402f0, 0x402f0,
1950 		0x40300, 0x4033c,
1951 		0x403f8, 0x403fc,
1952 		0x41304, 0x413c4,
1953 		0x41400, 0x4140c,
1954 		0x41414, 0x4141c,
1955 		0x41480, 0x414d0,
1956 		0x44000, 0x44054,
1957 		0x4405c, 0x44078,
1958 		0x440c0, 0x44174,
1959 		0x44180, 0x441ac,
1960 		0x441b4, 0x441b8,
1961 		0x441c0, 0x44254,
1962 		0x4425c, 0x44278,
1963 		0x442c0, 0x44374,
1964 		0x44380, 0x443ac,
1965 		0x443b4, 0x443b8,
1966 		0x443c0, 0x44454,
1967 		0x4445c, 0x44478,
1968 		0x444c0, 0x44574,
1969 		0x44580, 0x445ac,
1970 		0x445b4, 0x445b8,
1971 		0x445c0, 0x44654,
1972 		0x4465c, 0x44678,
1973 		0x446c0, 0x44774,
1974 		0x44780, 0x447ac,
1975 		0x447b4, 0x447b8,
1976 		0x447c0, 0x44854,
1977 		0x4485c, 0x44878,
1978 		0x448c0, 0x44974,
1979 		0x44980, 0x449ac,
1980 		0x449b4, 0x449b8,
1981 		0x449c0, 0x449fc,
1982 		0x45000, 0x45004,
1983 		0x45010, 0x45030,
1984 		0x45040, 0x45060,
1985 		0x45068, 0x45068,
1986 		0x45080, 0x45084,
1987 		0x450a0, 0x450b0,
1988 		0x45200, 0x45204,
1989 		0x45210, 0x45230,
1990 		0x45240, 0x45260,
1991 		0x45268, 0x45268,
1992 		0x45280, 0x45284,
1993 		0x452a0, 0x452b0,
1994 		0x460c0, 0x460e4,
1995 		0x47000, 0x4703c,
1996 		0x47044, 0x4708c,
1997 		0x47200, 0x47250,
1998 		0x47400, 0x47408,
1999 		0x47414, 0x47420,
2000 		0x47600, 0x47618,
2001 		0x47800, 0x47814,
2002 		0x48000, 0x4800c,
2003 		0x48040, 0x48050,
2004 		0x48060, 0x48068,
2005 		0x4807c, 0x4808c,
2006 		0x48094, 0x480b0,
2007 		0x480c0, 0x48144,
2008 		0x48180, 0x4818c,
2009 		0x48200, 0x48254,
2010 		0x48260, 0x48264,
2011 		0x48270, 0x48288,
2012 		0x48290, 0x48298,
2013 		0x482ac, 0x482c8,
2014 		0x482d0, 0x482e0,
2015 		0x482f0, 0x482f0,
2016 		0x48300, 0x4833c,
2017 		0x483f8, 0x483fc,
2018 		0x49304, 0x493c4,
2019 		0x49400, 0x4940c,
2020 		0x49414, 0x4941c,
2021 		0x49480, 0x494d0,
2022 		0x4c000, 0x4c054,
2023 		0x4c05c, 0x4c078,
2024 		0x4c0c0, 0x4c174,
2025 		0x4c180, 0x4c1ac,
2026 		0x4c1b4, 0x4c1b8,
2027 		0x4c1c0, 0x4c254,
2028 		0x4c25c, 0x4c278,
2029 		0x4c2c0, 0x4c374,
2030 		0x4c380, 0x4c3ac,
2031 		0x4c3b4, 0x4c3b8,
2032 		0x4c3c0, 0x4c454,
2033 		0x4c45c, 0x4c478,
2034 		0x4c4c0, 0x4c574,
2035 		0x4c580, 0x4c5ac,
2036 		0x4c5b4, 0x4c5b8,
2037 		0x4c5c0, 0x4c654,
2038 		0x4c65c, 0x4c678,
2039 		0x4c6c0, 0x4c774,
2040 		0x4c780, 0x4c7ac,
2041 		0x4c7b4, 0x4c7b8,
2042 		0x4c7c0, 0x4c854,
2043 		0x4c85c, 0x4c878,
2044 		0x4c8c0, 0x4c974,
2045 		0x4c980, 0x4c9ac,
2046 		0x4c9b4, 0x4c9b8,
2047 		0x4c9c0, 0x4c9fc,
2048 		0x4d000, 0x4d004,
2049 		0x4d010, 0x4d030,
2050 		0x4d040, 0x4d060,
2051 		0x4d068, 0x4d068,
2052 		0x4d080, 0x4d084,
2053 		0x4d0a0, 0x4d0b0,
2054 		0x4d200, 0x4d204,
2055 		0x4d210, 0x4d230,
2056 		0x4d240, 0x4d260,
2057 		0x4d268, 0x4d268,
2058 		0x4d280, 0x4d284,
2059 		0x4d2a0, 0x4d2b0,
2060 		0x4e0c0, 0x4e0e4,
2061 		0x4f000, 0x4f03c,
2062 		0x4f044, 0x4f08c,
2063 		0x4f200, 0x4f250,
2064 		0x4f400, 0x4f408,
2065 		0x4f414, 0x4f420,
2066 		0x4f600, 0x4f618,
2067 		0x4f800, 0x4f814,
2068 		0x50000, 0x50084,
2069 		0x50090, 0x500cc,
2070 		0x50400, 0x50400,
2071 		0x50800, 0x50884,
2072 		0x50890, 0x508cc,
2073 		0x50c00, 0x50c00,
2074 		0x51000, 0x5101c,
2075 		0x51300, 0x51308,
2076 	};
2077 
2078 	static const unsigned int t5vf_reg_ranges[] = {
2079 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2080 		VF_MPS_REG(A_MPS_VF_CTL),
2081 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2082 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2083 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2084 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2085 		FW_T4VF_MBDATA_BASE_ADDR,
2086 		FW_T4VF_MBDATA_BASE_ADDR +
2087 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2088 	};
2089 
2090 	static const unsigned int t6_reg_ranges[] = {
2091 		0x1008, 0x101c,
2092 		0x1024, 0x10a8,
2093 		0x10b4, 0x10f8,
2094 		0x1100, 0x1114,
2095 		0x111c, 0x112c,
2096 		0x1138, 0x113c,
2097 		0x1144, 0x114c,
2098 		0x1180, 0x1184,
2099 		0x1190, 0x1194,
2100 		0x11a0, 0x11a4,
2101 		0x11b0, 0x11b4,
2102 		0x11fc, 0x1274,
2103 		0x1280, 0x133c,
2104 		0x1800, 0x18fc,
2105 		0x3000, 0x302c,
2106 		0x3060, 0x30b0,
2107 		0x30b8, 0x30d8,
2108 		0x30e0, 0x30fc,
2109 		0x3140, 0x357c,
2110 		0x35a8, 0x35cc,
2111 		0x35ec, 0x35ec,
2112 		0x3600, 0x5624,
2113 		0x56cc, 0x56ec,
2114 		0x56f4, 0x5720,
2115 		0x5728, 0x575c,
2116 		0x580c, 0x5814,
2117 		0x5890, 0x589c,
2118 		0x58a4, 0x58ac,
2119 		0x58b8, 0x58bc,
2120 		0x5940, 0x595c,
2121 		0x5980, 0x598c,
2122 		0x59b0, 0x59c8,
2123 		0x59d0, 0x59dc,
2124 		0x59fc, 0x5a18,
2125 		0x5a60, 0x5a6c,
2126 		0x5a80, 0x5a8c,
2127 		0x5a94, 0x5a9c,
2128 		0x5b94, 0x5bfc,
2129 		0x5c10, 0x5e48,
2130 		0x5e50, 0x5e94,
2131 		0x5ea0, 0x5eb0,
2132 		0x5ec0, 0x5ec0,
2133 		0x5ec8, 0x5ed0,
2134 		0x5ee0, 0x5ee0,
2135 		0x5ef0, 0x5ef0,
2136 		0x5f00, 0x5f00,
2137 		0x6000, 0x6020,
2138 		0x6028, 0x6040,
2139 		0x6058, 0x609c,
2140 		0x60a8, 0x619c,
2141 		0x7700, 0x7798,
2142 		0x77c0, 0x7880,
2143 		0x78cc, 0x78fc,
2144 		0x7b00, 0x7b58,
2145 		0x7b60, 0x7b84,
2146 		0x7b8c, 0x7c54,
2147 		0x7d00, 0x7d38,
2148 		0x7d40, 0x7d84,
2149 		0x7d8c, 0x7ddc,
2150 		0x7de4, 0x7e04,
2151 		0x7e10, 0x7e1c,
2152 		0x7e24, 0x7e38,
2153 		0x7e40, 0x7e44,
2154 		0x7e4c, 0x7e78,
2155 		0x7e80, 0x7edc,
2156 		0x7ee8, 0x7efc,
2157 		0x8dc0, 0x8de4,
2158 		0x8df8, 0x8e04,
2159 		0x8e10, 0x8e84,
2160 		0x8ea0, 0x8f88,
2161 		0x8fb8, 0x9058,
2162 		0x9060, 0x9060,
2163 		0x9068, 0x90f8,
2164 		0x9100, 0x9124,
2165 		0x9400, 0x9470,
2166 		0x9600, 0x9600,
2167 		0x9608, 0x9638,
2168 		0x9640, 0x9704,
2169 		0x9710, 0x971c,
2170 		0x9800, 0x9808,
2171 		0x9820, 0x983c,
2172 		0x9850, 0x9864,
2173 		0x9c00, 0x9c6c,
2174 		0x9c80, 0x9cec,
2175 		0x9d00, 0x9d6c,
2176 		0x9d80, 0x9dec,
2177 		0x9e00, 0x9e6c,
2178 		0x9e80, 0x9eec,
2179 		0x9f00, 0x9f6c,
2180 		0x9f80, 0xa020,
2181 		0xd004, 0xd03c,
2182 		0xd100, 0xd118,
2183 		0xd200, 0xd214,
2184 		0xd220, 0xd234,
2185 		0xd240, 0xd254,
2186 		0xd260, 0xd274,
2187 		0xd280, 0xd294,
2188 		0xd2a0, 0xd2b4,
2189 		0xd2c0, 0xd2d4,
2190 		0xd2e0, 0xd2f4,
2191 		0xd300, 0xd31c,
2192 		0xdfc0, 0xdfe0,
2193 		0xe000, 0xf008,
2194 		0xf010, 0xf018,
2195 		0xf020, 0xf028,
2196 		0x11000, 0x11014,
2197 		0x11048, 0x1106c,
2198 		0x11074, 0x11088,
2199 		0x11098, 0x11120,
2200 		0x1112c, 0x1117c,
2201 		0x11190, 0x112e0,
2202 		0x11300, 0x1130c,
2203 		0x12000, 0x1206c,
2204 		0x19040, 0x1906c,
2205 		0x19078, 0x19080,
2206 		0x1908c, 0x190e8,
2207 		0x190f0, 0x190f8,
2208 		0x19100, 0x19110,
2209 		0x19120, 0x19124,
2210 		0x19150, 0x19194,
2211 		0x1919c, 0x191b0,
2212 		0x191d0, 0x191e8,
2213 		0x19238, 0x19290,
2214 		0x192a4, 0x192b0,
2215 		0x192bc, 0x192bc,
2216 		0x19348, 0x1934c,
2217 		0x193f8, 0x19418,
2218 		0x19420, 0x19428,
2219 		0x19430, 0x19444,
2220 		0x1944c, 0x1946c,
2221 		0x19474, 0x19474,
2222 		0x19490, 0x194cc,
2223 		0x194f0, 0x194f8,
2224 		0x19c00, 0x19c48,
2225 		0x19c50, 0x19c80,
2226 		0x19c94, 0x19c98,
2227 		0x19ca0, 0x19cbc,
2228 		0x19ce4, 0x19ce4,
2229 		0x19cf0, 0x19cf8,
2230 		0x19d00, 0x19d28,
2231 		0x19d50, 0x19d78,
2232 		0x19d94, 0x19d98,
2233 		0x19da0, 0x19dc8,
2234 		0x19df0, 0x19e10,
2235 		0x19e50, 0x19e6c,
2236 		0x19ea0, 0x19ebc,
2237 		0x19ec4, 0x19ef4,
2238 		0x19f04, 0x19f2c,
2239 		0x19f34, 0x19f34,
2240 		0x19f40, 0x19f50,
2241 		0x19f90, 0x19fac,
2242 		0x19fc4, 0x19fc8,
2243 		0x19fd0, 0x19fe4,
2244 		0x1a000, 0x1a004,
2245 		0x1a010, 0x1a06c,
2246 		0x1a0b0, 0x1a0e4,
2247 		0x1a0ec, 0x1a0f8,
2248 		0x1a100, 0x1a108,
2249 		0x1a114, 0x1a120,
2250 		0x1a128, 0x1a130,
2251 		0x1a138, 0x1a138,
2252 		0x1a190, 0x1a1c4,
2253 		0x1a1fc, 0x1a1fc,
2254 		0x1e008, 0x1e00c,
2255 		0x1e040, 0x1e044,
2256 		0x1e04c, 0x1e04c,
2257 		0x1e284, 0x1e290,
2258 		0x1e2c0, 0x1e2c0,
2259 		0x1e2e0, 0x1e2e0,
2260 		0x1e300, 0x1e384,
2261 		0x1e3c0, 0x1e3c8,
2262 		0x1e408, 0x1e40c,
2263 		0x1e440, 0x1e444,
2264 		0x1e44c, 0x1e44c,
2265 		0x1e684, 0x1e690,
2266 		0x1e6c0, 0x1e6c0,
2267 		0x1e6e0, 0x1e6e0,
2268 		0x1e700, 0x1e784,
2269 		0x1e7c0, 0x1e7c8,
2270 		0x1e808, 0x1e80c,
2271 		0x1e840, 0x1e844,
2272 		0x1e84c, 0x1e84c,
2273 		0x1ea84, 0x1ea90,
2274 		0x1eac0, 0x1eac0,
2275 		0x1eae0, 0x1eae0,
2276 		0x1eb00, 0x1eb84,
2277 		0x1ebc0, 0x1ebc8,
2278 		0x1ec08, 0x1ec0c,
2279 		0x1ec40, 0x1ec44,
2280 		0x1ec4c, 0x1ec4c,
2281 		0x1ee84, 0x1ee90,
2282 		0x1eec0, 0x1eec0,
2283 		0x1eee0, 0x1eee0,
2284 		0x1ef00, 0x1ef84,
2285 		0x1efc0, 0x1efc8,
2286 		0x1f008, 0x1f00c,
2287 		0x1f040, 0x1f044,
2288 		0x1f04c, 0x1f04c,
2289 		0x1f284, 0x1f290,
2290 		0x1f2c0, 0x1f2c0,
2291 		0x1f2e0, 0x1f2e0,
2292 		0x1f300, 0x1f384,
2293 		0x1f3c0, 0x1f3c8,
2294 		0x1f408, 0x1f40c,
2295 		0x1f440, 0x1f444,
2296 		0x1f44c, 0x1f44c,
2297 		0x1f684, 0x1f690,
2298 		0x1f6c0, 0x1f6c0,
2299 		0x1f6e0, 0x1f6e0,
2300 		0x1f700, 0x1f784,
2301 		0x1f7c0, 0x1f7c8,
2302 		0x1f808, 0x1f80c,
2303 		0x1f840, 0x1f844,
2304 		0x1f84c, 0x1f84c,
2305 		0x1fa84, 0x1fa90,
2306 		0x1fac0, 0x1fac0,
2307 		0x1fae0, 0x1fae0,
2308 		0x1fb00, 0x1fb84,
2309 		0x1fbc0, 0x1fbc8,
2310 		0x1fc08, 0x1fc0c,
2311 		0x1fc40, 0x1fc44,
2312 		0x1fc4c, 0x1fc4c,
2313 		0x1fe84, 0x1fe90,
2314 		0x1fec0, 0x1fec0,
2315 		0x1fee0, 0x1fee0,
2316 		0x1ff00, 0x1ff84,
2317 		0x1ffc0, 0x1ffc8,
2318 		0x30000, 0x30030,
2319 		0x30100, 0x30168,
2320 		0x30190, 0x301a0,
2321 		0x301a8, 0x301b8,
2322 		0x301c4, 0x301c8,
2323 		0x301d0, 0x301d0,
2324 		0x30200, 0x30320,
2325 		0x30400, 0x304b4,
2326 		0x304c0, 0x3052c,
2327 		0x30540, 0x3061c,
2328 		0x30800, 0x308a0,
2329 		0x308c0, 0x30908,
2330 		0x30910, 0x309b8,
2331 		0x30a00, 0x30a04,
2332 		0x30a0c, 0x30a14,
2333 		0x30a1c, 0x30a2c,
2334 		0x30a44, 0x30a50,
2335 		0x30a74, 0x30a74,
2336 		0x30a7c, 0x30afc,
2337 		0x30b08, 0x30c24,
2338 		0x30d00, 0x30d14,
2339 		0x30d1c, 0x30d3c,
2340 		0x30d44, 0x30d4c,
2341 		0x30d54, 0x30d74,
2342 		0x30d7c, 0x30d7c,
2343 		0x30de0, 0x30de0,
2344 		0x30e00, 0x30ed4,
2345 		0x30f00, 0x30fa4,
2346 		0x30fc0, 0x30fc4,
2347 		0x31000, 0x31004,
2348 		0x31080, 0x310fc,
2349 		0x31208, 0x31220,
2350 		0x3123c, 0x31254,
2351 		0x31300, 0x31300,
2352 		0x31308, 0x3131c,
2353 		0x31338, 0x3133c,
2354 		0x31380, 0x31380,
2355 		0x31388, 0x313a8,
2356 		0x313b4, 0x313b4,
2357 		0x31400, 0x31420,
2358 		0x31438, 0x3143c,
2359 		0x31480, 0x31480,
2360 		0x314a8, 0x314a8,
2361 		0x314b0, 0x314b4,
2362 		0x314c8, 0x314d4,
2363 		0x31a40, 0x31a4c,
2364 		0x31af0, 0x31b20,
2365 		0x31b38, 0x31b3c,
2366 		0x31b80, 0x31b80,
2367 		0x31ba8, 0x31ba8,
2368 		0x31bb0, 0x31bb4,
2369 		0x31bc8, 0x31bd4,
2370 		0x32140, 0x3218c,
2371 		0x321f0, 0x321f4,
2372 		0x32200, 0x32200,
2373 		0x32218, 0x32218,
2374 		0x32400, 0x32400,
2375 		0x32408, 0x3241c,
2376 		0x32618, 0x32620,
2377 		0x32664, 0x32664,
2378 		0x326a8, 0x326a8,
2379 		0x326ec, 0x326ec,
2380 		0x32a00, 0x32abc,
2381 		0x32b00, 0x32b18,
2382 		0x32b20, 0x32b38,
2383 		0x32b40, 0x32b58,
2384 		0x32b60, 0x32b78,
2385 		0x32c00, 0x32c00,
2386 		0x32c08, 0x32c3c,
2387 		0x33000, 0x3302c,
2388 		0x33034, 0x33050,
2389 		0x33058, 0x33058,
2390 		0x33060, 0x3308c,
2391 		0x3309c, 0x330ac,
2392 		0x330c0, 0x330c0,
2393 		0x330c8, 0x330d0,
2394 		0x330d8, 0x330e0,
2395 		0x330ec, 0x3312c,
2396 		0x33134, 0x33150,
2397 		0x33158, 0x33158,
2398 		0x33160, 0x3318c,
2399 		0x3319c, 0x331ac,
2400 		0x331c0, 0x331c0,
2401 		0x331c8, 0x331d0,
2402 		0x331d8, 0x331e0,
2403 		0x331ec, 0x33290,
2404 		0x33298, 0x332c4,
2405 		0x332e4, 0x33390,
2406 		0x33398, 0x333c4,
2407 		0x333e4, 0x3342c,
2408 		0x33434, 0x33450,
2409 		0x33458, 0x33458,
2410 		0x33460, 0x3348c,
2411 		0x3349c, 0x334ac,
2412 		0x334c0, 0x334c0,
2413 		0x334c8, 0x334d0,
2414 		0x334d8, 0x334e0,
2415 		0x334ec, 0x3352c,
2416 		0x33534, 0x33550,
2417 		0x33558, 0x33558,
2418 		0x33560, 0x3358c,
2419 		0x3359c, 0x335ac,
2420 		0x335c0, 0x335c0,
2421 		0x335c8, 0x335d0,
2422 		0x335d8, 0x335e0,
2423 		0x335ec, 0x33690,
2424 		0x33698, 0x336c4,
2425 		0x336e4, 0x33790,
2426 		0x33798, 0x337c4,
2427 		0x337e4, 0x337fc,
2428 		0x33814, 0x33814,
2429 		0x33854, 0x33868,
2430 		0x33880, 0x3388c,
2431 		0x338c0, 0x338d0,
2432 		0x338e8, 0x338ec,
2433 		0x33900, 0x3392c,
2434 		0x33934, 0x33950,
2435 		0x33958, 0x33958,
2436 		0x33960, 0x3398c,
2437 		0x3399c, 0x339ac,
2438 		0x339c0, 0x339c0,
2439 		0x339c8, 0x339d0,
2440 		0x339d8, 0x339e0,
2441 		0x339ec, 0x33a90,
2442 		0x33a98, 0x33ac4,
2443 		0x33ae4, 0x33b10,
2444 		0x33b24, 0x33b28,
2445 		0x33b38, 0x33b50,
2446 		0x33bf0, 0x33c10,
2447 		0x33c24, 0x33c28,
2448 		0x33c38, 0x33c50,
2449 		0x33cf0, 0x33cfc,
2450 		0x34000, 0x34030,
2451 		0x34100, 0x34168,
2452 		0x34190, 0x341a0,
2453 		0x341a8, 0x341b8,
2454 		0x341c4, 0x341c8,
2455 		0x341d0, 0x341d0,
2456 		0x34200, 0x34320,
2457 		0x34400, 0x344b4,
2458 		0x344c0, 0x3452c,
2459 		0x34540, 0x3461c,
2460 		0x34800, 0x348a0,
2461 		0x348c0, 0x34908,
2462 		0x34910, 0x349b8,
2463 		0x34a00, 0x34a04,
2464 		0x34a0c, 0x34a14,
2465 		0x34a1c, 0x34a2c,
2466 		0x34a44, 0x34a50,
2467 		0x34a74, 0x34a74,
2468 		0x34a7c, 0x34afc,
2469 		0x34b08, 0x34c24,
2470 		0x34d00, 0x34d14,
2471 		0x34d1c, 0x34d3c,
2472 		0x34d44, 0x34d4c,
2473 		0x34d54, 0x34d74,
2474 		0x34d7c, 0x34d7c,
2475 		0x34de0, 0x34de0,
2476 		0x34e00, 0x34ed4,
2477 		0x34f00, 0x34fa4,
2478 		0x34fc0, 0x34fc4,
2479 		0x35000, 0x35004,
2480 		0x35080, 0x350fc,
2481 		0x35208, 0x35220,
2482 		0x3523c, 0x35254,
2483 		0x35300, 0x35300,
2484 		0x35308, 0x3531c,
2485 		0x35338, 0x3533c,
2486 		0x35380, 0x35380,
2487 		0x35388, 0x353a8,
2488 		0x353b4, 0x353b4,
2489 		0x35400, 0x35420,
2490 		0x35438, 0x3543c,
2491 		0x35480, 0x35480,
2492 		0x354a8, 0x354a8,
2493 		0x354b0, 0x354b4,
2494 		0x354c8, 0x354d4,
2495 		0x35a40, 0x35a4c,
2496 		0x35af0, 0x35b20,
2497 		0x35b38, 0x35b3c,
2498 		0x35b80, 0x35b80,
2499 		0x35ba8, 0x35ba8,
2500 		0x35bb0, 0x35bb4,
2501 		0x35bc8, 0x35bd4,
2502 		0x36140, 0x3618c,
2503 		0x361f0, 0x361f4,
2504 		0x36200, 0x36200,
2505 		0x36218, 0x36218,
2506 		0x36400, 0x36400,
2507 		0x36408, 0x3641c,
2508 		0x36618, 0x36620,
2509 		0x36664, 0x36664,
2510 		0x366a8, 0x366a8,
2511 		0x366ec, 0x366ec,
2512 		0x36a00, 0x36abc,
2513 		0x36b00, 0x36b18,
2514 		0x36b20, 0x36b38,
2515 		0x36b40, 0x36b58,
2516 		0x36b60, 0x36b78,
2517 		0x36c00, 0x36c00,
2518 		0x36c08, 0x36c3c,
2519 		0x37000, 0x3702c,
2520 		0x37034, 0x37050,
2521 		0x37058, 0x37058,
2522 		0x37060, 0x3708c,
2523 		0x3709c, 0x370ac,
2524 		0x370c0, 0x370c0,
2525 		0x370c8, 0x370d0,
2526 		0x370d8, 0x370e0,
2527 		0x370ec, 0x3712c,
2528 		0x37134, 0x37150,
2529 		0x37158, 0x37158,
2530 		0x37160, 0x3718c,
2531 		0x3719c, 0x371ac,
2532 		0x371c0, 0x371c0,
2533 		0x371c8, 0x371d0,
2534 		0x371d8, 0x371e0,
2535 		0x371ec, 0x37290,
2536 		0x37298, 0x372c4,
2537 		0x372e4, 0x37390,
2538 		0x37398, 0x373c4,
2539 		0x373e4, 0x3742c,
2540 		0x37434, 0x37450,
2541 		0x37458, 0x37458,
2542 		0x37460, 0x3748c,
2543 		0x3749c, 0x374ac,
2544 		0x374c0, 0x374c0,
2545 		0x374c8, 0x374d0,
2546 		0x374d8, 0x374e0,
2547 		0x374ec, 0x3752c,
2548 		0x37534, 0x37550,
2549 		0x37558, 0x37558,
2550 		0x37560, 0x3758c,
2551 		0x3759c, 0x375ac,
2552 		0x375c0, 0x375c0,
2553 		0x375c8, 0x375d0,
2554 		0x375d8, 0x375e0,
2555 		0x375ec, 0x37690,
2556 		0x37698, 0x376c4,
2557 		0x376e4, 0x37790,
2558 		0x37798, 0x377c4,
2559 		0x377e4, 0x377fc,
2560 		0x37814, 0x37814,
2561 		0x37854, 0x37868,
2562 		0x37880, 0x3788c,
2563 		0x378c0, 0x378d0,
2564 		0x378e8, 0x378ec,
2565 		0x37900, 0x3792c,
2566 		0x37934, 0x37950,
2567 		0x37958, 0x37958,
2568 		0x37960, 0x3798c,
2569 		0x3799c, 0x379ac,
2570 		0x379c0, 0x379c0,
2571 		0x379c8, 0x379d0,
2572 		0x379d8, 0x379e0,
2573 		0x379ec, 0x37a90,
2574 		0x37a98, 0x37ac4,
2575 		0x37ae4, 0x37b10,
2576 		0x37b24, 0x37b28,
2577 		0x37b38, 0x37b50,
2578 		0x37bf0, 0x37c10,
2579 		0x37c24, 0x37c28,
2580 		0x37c38, 0x37c50,
2581 		0x37cf0, 0x37cfc,
2582 		0x40040, 0x40040,
2583 		0x40080, 0x40084,
2584 		0x40100, 0x40100,
2585 		0x40140, 0x401bc,
2586 		0x40200, 0x40214,
2587 		0x40228, 0x40228,
2588 		0x40240, 0x40258,
2589 		0x40280, 0x40280,
2590 		0x40304, 0x40304,
2591 		0x40330, 0x4033c,
2592 		0x41304, 0x413c8,
2593 		0x413d0, 0x413dc,
2594 		0x413f0, 0x413f0,
2595 		0x41400, 0x4140c,
2596 		0x41414, 0x4141c,
2597 		0x41480, 0x414d0,
2598 		0x44000, 0x4407c,
2599 		0x440c0, 0x441ac,
2600 		0x441b4, 0x4427c,
2601 		0x442c0, 0x443ac,
2602 		0x443b4, 0x4447c,
2603 		0x444c0, 0x445ac,
2604 		0x445b4, 0x4467c,
2605 		0x446c0, 0x447ac,
2606 		0x447b4, 0x4487c,
2607 		0x448c0, 0x449ac,
2608 		0x449b4, 0x44a7c,
2609 		0x44ac0, 0x44bac,
2610 		0x44bb4, 0x44c7c,
2611 		0x44cc0, 0x44dac,
2612 		0x44db4, 0x44e7c,
2613 		0x44ec0, 0x44fac,
2614 		0x44fb4, 0x4507c,
2615 		0x450c0, 0x451ac,
2616 		0x451b4, 0x451fc,
2617 		0x45800, 0x45804,
2618 		0x45810, 0x45830,
2619 		0x45840, 0x45860,
2620 		0x45868, 0x45868,
2621 		0x45880, 0x45884,
2622 		0x458a0, 0x458b0,
2623 		0x45a00, 0x45a04,
2624 		0x45a10, 0x45a30,
2625 		0x45a40, 0x45a60,
2626 		0x45a68, 0x45a68,
2627 		0x45a80, 0x45a84,
2628 		0x45aa0, 0x45ab0,
2629 		0x460c0, 0x460e4,
2630 		0x47000, 0x4703c,
2631 		0x47044, 0x4708c,
2632 		0x47200, 0x47250,
2633 		0x47400, 0x47408,
2634 		0x47414, 0x47420,
2635 		0x47600, 0x47618,
2636 		0x47800, 0x47814,
2637 		0x47820, 0x4782c,
2638 		0x50000, 0x50084,
2639 		0x50090, 0x500cc,
2640 		0x50300, 0x50384,
2641 		0x50400, 0x50400,
2642 		0x50800, 0x50884,
2643 		0x50890, 0x508cc,
2644 		0x50b00, 0x50b84,
2645 		0x50c00, 0x50c00,
2646 		0x51000, 0x51020,
2647 		0x51028, 0x510b0,
2648 		0x51300, 0x51324,
2649 	};
2650 
2651 	static const unsigned int t6vf_reg_ranges[] = {
2652 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2653 		VF_MPS_REG(A_MPS_VF_CTL),
2654 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2655 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2656 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2657 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2658 		FW_T6VF_MBDATA_BASE_ADDR,
2659 		FW_T6VF_MBDATA_BASE_ADDR +
2660 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2661 	};
2662 
2663 	u32 *buf_end = (u32 *)(buf + buf_size);
2664 	const unsigned int *reg_ranges;
2665 	int reg_ranges_size, range;
2666 	unsigned int chip_version = chip_id(adap);
2667 
2668 	/*
2669 	 * Select the right set of register ranges to dump depending on the
2670 	 * adapter chip type.
2671 	 */
2672 	switch (chip_version) {
2673 	case CHELSIO_T4:
2674 		if (adap->flags & IS_VF) {
2675 			reg_ranges = t4vf_reg_ranges;
2676 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2677 		} else {
2678 			reg_ranges = t4_reg_ranges;
2679 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2680 		}
2681 		break;
2682 
2683 	case CHELSIO_T5:
2684 		if (adap->flags & IS_VF) {
2685 			reg_ranges = t5vf_reg_ranges;
2686 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2687 		} else {
2688 			reg_ranges = t5_reg_ranges;
2689 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2690 		}
2691 		break;
2692 
2693 	case CHELSIO_T6:
2694 		if (adap->flags & IS_VF) {
2695 			reg_ranges = t6vf_reg_ranges;
2696 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2697 		} else {
2698 			reg_ranges = t6_reg_ranges;
2699 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2700 		}
2701 		break;
2702 
2703 	default:
2704 		CH_ERR(adap,
2705 			"Unsupported chip version %d\n", chip_version);
2706 		return;
2707 	}
2708 
2709 	/*
2710 	 * Clear the register buffer and insert the appropriate register
2711 	 * values selected by the above register ranges.
2712 	 */
2713 	memset(buf, 0, buf_size);
2714 	for (range = 0; range < reg_ranges_size; range += 2) {
2715 		unsigned int reg = reg_ranges[range];
2716 		unsigned int last_reg = reg_ranges[range + 1];
2717 		u32 *bufp = (u32 *)(buf + reg);
2718 
2719 		/*
2720 		 * Iterate across the register range filling in the register
2721 		 * buffer but don't write past the end of the register buffer.
2722 		 */
2723 		while (reg <= last_reg && bufp < buf_end) {
2724 			*bufp++ = t4_read_reg(adap, reg);
2725 			reg += sizeof(u32);
2726 		}
2727 	}
2728 }
2729 
2730 /*
2731  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2732  * header followed by one or more VPD-R sections, each with its own header.
2733  */
2734 struct t4_vpd_hdr {
2735 	u8  id_tag;
2736 	u8  id_len[2];
2737 	u8  id_data[ID_LEN];
2738 };
2739 
2740 struct t4_vpdr_hdr {
2741 	u8  vpdr_tag;
2742 	u8  vpdr_len[2];
2743 };
2744 
2745 /*
2746  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2747  */
2748 #define EEPROM_DELAY		10		/* 10us per poll spin */
2749 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2750 
2751 #define EEPROM_STAT_ADDR	0x7bfc
2752 #define VPD_SIZE		0x800
2753 #define VPD_BASE		0x400
2754 #define VPD_BASE_OLD		0
2755 #define VPD_LEN			1024
2756 #define VPD_INFO_FLD_HDR_SIZE	3
2757 #define CHELSIO_VPD_UNIQUE_ID	0x82
2758 
2759 /*
2760  * Small utility function to wait till any outstanding VPD Access is complete.
2761  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2762  * VPD Access in flight.  This allows us to handle the problem of having a
2763  * previous VPD Access time out and prevent an attempt to inject a new VPD
2764  * Request before any in-flight VPD reguest has completed.
2765  */
2766 static int t4_seeprom_wait(struct adapter *adapter)
2767 {
2768 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2769 	int max_poll;
2770 
2771 	/*
2772 	 * If no VPD Access is in flight, we can just return success right
2773 	 * away.
2774 	 */
2775 	if (!adapter->vpd_busy)
2776 		return 0;
2777 
2778 	/*
2779 	 * Poll the VPD Capability Address/Flag register waiting for it
2780 	 * to indicate that the operation is complete.
2781 	 */
2782 	max_poll = EEPROM_MAX_POLL;
2783 	do {
2784 		u16 val;
2785 
2786 		udelay(EEPROM_DELAY);
2787 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2788 
2789 		/*
2790 		 * If the operation is complete, mark the VPD as no longer
2791 		 * busy and return success.
2792 		 */
2793 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2794 			adapter->vpd_busy = 0;
2795 			return 0;
2796 		}
2797 	} while (--max_poll);
2798 
2799 	/*
2800 	 * Failure!  Note that we leave the VPD Busy status set in order to
2801 	 * avoid pushing a new VPD Access request into the VPD Capability till
2802 	 * the current operation eventually succeeds.  It's a bug to issue a
2803 	 * new request when an existing request is in flight and will result
2804 	 * in corrupt hardware state.
2805 	 */
2806 	return -ETIMEDOUT;
2807 }
2808 
2809 /**
2810  *	t4_seeprom_read - read a serial EEPROM location
2811  *	@adapter: adapter to read
2812  *	@addr: EEPROM virtual address
2813  *	@data: where to store the read data
2814  *
2815  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2816  *	VPD capability.  Note that this function must be called with a virtual
2817  *	address.
2818  */
2819 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2820 {
2821 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2822 	int ret;
2823 
2824 	/*
2825 	 * VPD Accesses must alway be 4-byte aligned!
2826 	 */
2827 	if (addr >= EEPROMVSIZE || (addr & 3))
2828 		return -EINVAL;
2829 
2830 	/*
2831 	 * Wait for any previous operation which may still be in flight to
2832 	 * complete.
2833 	 */
2834 	ret = t4_seeprom_wait(adapter);
2835 	if (ret) {
2836 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2837 		return ret;
2838 	}
2839 
2840 	/*
2841 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2842 	 * for our request to complete.  If it doesn't complete, note the
2843 	 * error and return it to our caller.  Note that we do not reset the
2844 	 * VPD Busy status!
2845 	 */
2846 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2847 	adapter->vpd_busy = 1;
2848 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2849 	ret = t4_seeprom_wait(adapter);
2850 	if (ret) {
2851 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2852 		return ret;
2853 	}
2854 
2855 	/*
2856 	 * Grab the returned data, swizzle it into our endianness and
2857 	 * return success.
2858 	 */
2859 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2860 	*data = le32_to_cpu(*data);
2861 	return 0;
2862 }
2863 
2864 /**
2865  *	t4_seeprom_write - write a serial EEPROM location
2866  *	@adapter: adapter to write
2867  *	@addr: virtual EEPROM address
2868  *	@data: value to write
2869  *
2870  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2871  *	VPD capability.  Note that this function must be called with a virtual
2872  *	address.
2873  */
2874 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2875 {
2876 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2877 	int ret;
2878 	u32 stats_reg;
2879 	int max_poll;
2880 
2881 	/*
2882 	 * VPD Accesses must alway be 4-byte aligned!
2883 	 */
2884 	if (addr >= EEPROMVSIZE || (addr & 3))
2885 		return -EINVAL;
2886 
2887 	/*
2888 	 * Wait for any previous operation which may still be in flight to
2889 	 * complete.
2890 	 */
2891 	ret = t4_seeprom_wait(adapter);
2892 	if (ret) {
2893 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2894 		return ret;
2895 	}
2896 
2897 	/*
2898 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2899 	 * for our request to complete.  If it doesn't complete, note the
2900 	 * error and return it to our caller.  Note that we do not reset the
2901 	 * VPD Busy status!
2902 	 */
2903 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2904 				 cpu_to_le32(data));
2905 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2906 				 (u16)addr | PCI_VPD_ADDR_F);
2907 	adapter->vpd_busy = 1;
2908 	adapter->vpd_flag = 0;
2909 	ret = t4_seeprom_wait(adapter);
2910 	if (ret) {
2911 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2912 		return ret;
2913 	}
2914 
2915 	/*
2916 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2917 	 * request to complete. If it doesn't complete, return error.
2918 	 */
2919 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2920 	max_poll = EEPROM_MAX_POLL;
2921 	do {
2922 		udelay(EEPROM_DELAY);
2923 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2924 	} while ((stats_reg & 0x1) && --max_poll);
2925 	if (!max_poll)
2926 		return -ETIMEDOUT;
2927 
2928 	/* Return success! */
2929 	return 0;
2930 }
2931 
2932 /**
2933  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2934  *	@phys_addr: the physical EEPROM address
2935  *	@fn: the PCI function number
2936  *	@sz: size of function-specific area
2937  *
2938  *	Translate a physical EEPROM address to virtual.  The first 1K is
2939  *	accessed through virtual addresses starting at 31K, the rest is
2940  *	accessed through virtual addresses starting at 0.
2941  *
2942  *	The mapping is as follows:
2943  *	[0..1K) -> [31K..32K)
2944  *	[1K..1K+A) -> [ES-A..ES)
2945  *	[1K+A..ES) -> [0..ES-A-1K)
2946  *
2947  *	where A = @fn * @sz, and ES = EEPROM size.
2948  */
2949 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2950 {
2951 	fn *= sz;
2952 	if (phys_addr < 1024)
2953 		return phys_addr + (31 << 10);
2954 	if (phys_addr < 1024 + fn)
2955 		return EEPROMSIZE - fn + phys_addr - 1024;
2956 	if (phys_addr < EEPROMSIZE)
2957 		return phys_addr - 1024 - fn;
2958 	return -EINVAL;
2959 }
2960 
2961 /**
2962  *	t4_seeprom_wp - enable/disable EEPROM write protection
2963  *	@adapter: the adapter
2964  *	@enable: whether to enable or disable write protection
2965  *
2966  *	Enables or disables write protection on the serial EEPROM.
2967  */
2968 int t4_seeprom_wp(struct adapter *adapter, int enable)
2969 {
2970 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2971 }
2972 
2973 /**
2974  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2975  *	@vpd: Pointer to buffered vpd data structure
2976  *	@kw: The keyword to search for
2977  *	@region: VPD region to search (starting from 0)
2978  *
2979  *	Returns the value of the information field keyword or
2980  *	-ENOENT otherwise.
2981  */
2982 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2983 {
2984 	int i, tag;
2985 	unsigned int offset, len;
2986 	const struct t4_vpdr_hdr *vpdr;
2987 
2988 	offset = sizeof(struct t4_vpd_hdr);
2989 	vpdr = (const void *)(vpd + offset);
2990 	tag = vpdr->vpdr_tag;
2991 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2992 	while (region--) {
2993 		offset += sizeof(struct t4_vpdr_hdr) + len;
2994 		vpdr = (const void *)(vpd + offset);
2995 		if (++tag != vpdr->vpdr_tag)
2996 			return -ENOENT;
2997 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2998 	}
2999 	offset += sizeof(struct t4_vpdr_hdr);
3000 
3001 	if (offset + len > VPD_LEN) {
3002 		return -ENOENT;
3003 	}
3004 
3005 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
3006 		if (memcmp(vpd + i , kw , 2) == 0){
3007 			i += VPD_INFO_FLD_HDR_SIZE;
3008 			return i;
3009 		}
3010 
3011 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
3012 	}
3013 
3014 	return -ENOENT;
3015 }
3016 
3017 
3018 /**
3019  *	get_vpd_params - read VPD parameters from VPD EEPROM
3020  *	@adapter: adapter to read
3021  *	@p: where to store the parameters
3022  *	@vpd: caller provided temporary space to read the VPD into
3023  *
3024  *	Reads card parameters stored in VPD EEPROM.
3025  */
3026 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3027     uint16_t device_id, u32 *buf)
3028 {
3029 	int i, ret, addr;
3030 	int ec, sn, pn, na, md;
3031 	u8 csum;
3032 	const u8 *vpd = (const u8 *)buf;
3033 
3034 	/*
3035 	 * Card information normally starts at VPD_BASE but early cards had
3036 	 * it at 0.
3037 	 */
3038 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3039 	if (ret)
3040 		return (ret);
3041 
3042 	/*
3043 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3044 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3045 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3046 	 * is expected to automatically put this entry at the
3047 	 * beginning of the VPD.
3048 	 */
3049 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3050 
3051 	for (i = 0; i < VPD_LEN; i += 4) {
3052 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3053 		if (ret)
3054 			return ret;
3055 	}
3056 
3057 #define FIND_VPD_KW(var,name) do { \
3058 	var = get_vpd_keyword_val(vpd, name, 0); \
3059 	if (var < 0) { \
3060 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3061 		return -EINVAL; \
3062 	} \
3063 } while (0)
3064 
3065 	FIND_VPD_KW(i, "RV");
3066 	for (csum = 0; i >= 0; i--)
3067 		csum += vpd[i];
3068 
3069 	if (csum) {
3070 		CH_ERR(adapter,
3071 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3072 		return -EINVAL;
3073 	}
3074 
3075 	FIND_VPD_KW(ec, "EC");
3076 	FIND_VPD_KW(sn, "SN");
3077 	FIND_VPD_KW(pn, "PN");
3078 	FIND_VPD_KW(na, "NA");
3079 #undef FIND_VPD_KW
3080 
3081 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3082 	strstrip(p->id);
3083 	memcpy(p->ec, vpd + ec, EC_LEN);
3084 	strstrip(p->ec);
3085 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3086 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3087 	strstrip(p->sn);
3088 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3089 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3090 	strstrip((char *)p->pn);
3091 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3092 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3093 	strstrip((char *)p->na);
3094 
3095 	if (device_id & 0x80)
3096 		return 0;	/* Custom card */
3097 
3098 	md = get_vpd_keyword_val(vpd, "VF", 1);
3099 	if (md < 0) {
3100 		snprintf(p->md, sizeof(p->md), "unknown");
3101 	} else {
3102 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3103 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3104 		strstrip((char *)p->md);
3105 	}
3106 
3107 	return 0;
3108 }
3109 
3110 /* serial flash and firmware constants and flash config file constants */
3111 enum {
3112 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3113 
3114 	/* flash command opcodes */
3115 	SF_PROG_PAGE    = 2,	/* program 256B page */
3116 	SF_WR_DISABLE   = 4,	/* disable writes */
3117 	SF_RD_STATUS    = 5,	/* read status register */
3118 	SF_WR_ENABLE    = 6,	/* enable writes */
3119 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3120 	SF_RD_ID	= 0x9f,	/* read ID */
3121 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3122 };
3123 
3124 /**
3125  *	sf1_read - read data from the serial flash
3126  *	@adapter: the adapter
3127  *	@byte_cnt: number of bytes to read
3128  *	@cont: whether another operation will be chained
3129  *	@lock: whether to lock SF for PL access only
3130  *	@valp: where to store the read data
3131  *
3132  *	Reads up to 4 bytes of data from the serial flash.  The location of
3133  *	the read needs to be specified prior to calling this by issuing the
3134  *	appropriate commands to the serial flash.
3135  */
3136 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3137 		    int lock, u32 *valp)
3138 {
3139 	int ret;
3140 
3141 	if (!byte_cnt || byte_cnt > 4)
3142 		return -EINVAL;
3143 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3144 		return -EBUSY;
3145 	t4_write_reg(adapter, A_SF_OP,
3146 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3147 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3148 	if (!ret)
3149 		*valp = t4_read_reg(adapter, A_SF_DATA);
3150 	return ret;
3151 }
3152 
3153 /**
3154  *	sf1_write - write data to the serial flash
3155  *	@adapter: the adapter
3156  *	@byte_cnt: number of bytes to write
3157  *	@cont: whether another operation will be chained
3158  *	@lock: whether to lock SF for PL access only
3159  *	@val: value to write
3160  *
3161  *	Writes up to 4 bytes of data to the serial flash.  The location of
3162  *	the write needs to be specified prior to calling this by issuing the
3163  *	appropriate commands to the serial flash.
3164  */
3165 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3166 		     int lock, u32 val)
3167 {
3168 	if (!byte_cnt || byte_cnt > 4)
3169 		return -EINVAL;
3170 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3171 		return -EBUSY;
3172 	t4_write_reg(adapter, A_SF_DATA, val);
3173 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3174 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3175 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3176 }
3177 
3178 /**
3179  *	flash_wait_op - wait for a flash operation to complete
3180  *	@adapter: the adapter
3181  *	@attempts: max number of polls of the status register
3182  *	@delay: delay between polls in ms
3183  *
3184  *	Wait for a flash operation to complete by polling the status register.
3185  */
3186 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3187 {
3188 	int ret;
3189 	u32 status;
3190 
3191 	while (1) {
3192 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3193 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3194 			return ret;
3195 		if (!(status & 1))
3196 			return 0;
3197 		if (--attempts == 0)
3198 			return -EAGAIN;
3199 		if (delay)
3200 			msleep(delay);
3201 	}
3202 }
3203 
3204 /**
3205  *	t4_read_flash - read words from serial flash
3206  *	@adapter: the adapter
3207  *	@addr: the start address for the read
3208  *	@nwords: how many 32-bit words to read
3209  *	@data: where to store the read data
3210  *	@byte_oriented: whether to store data as bytes or as words
3211  *
3212  *	Read the specified number of 32-bit words from the serial flash.
3213  *	If @byte_oriented is set the read data is stored as a byte array
3214  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3215  *	natural endianness.
3216  */
3217 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3218 		  unsigned int nwords, u32 *data, int byte_oriented)
3219 {
3220 	int ret;
3221 
3222 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3223 		return -EINVAL;
3224 
3225 	addr = swab32(addr) | SF_RD_DATA_FAST;
3226 
3227 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3228 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3229 		return ret;
3230 
3231 	for ( ; nwords; nwords--, data++) {
3232 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3233 		if (nwords == 1)
3234 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3235 		if (ret)
3236 			return ret;
3237 		if (byte_oriented)
3238 			*data = (__force __u32)(cpu_to_be32(*data));
3239 	}
3240 	return 0;
3241 }
3242 
3243 /**
3244  *	t4_write_flash - write up to a page of data to the serial flash
3245  *	@adapter: the adapter
3246  *	@addr: the start address to write
3247  *	@n: length of data to write in bytes
3248  *	@data: the data to write
3249  *	@byte_oriented: whether to store data as bytes or as words
3250  *
3251  *	Writes up to a page of data (256 bytes) to the serial flash starting
3252  *	at the given address.  All the data must be written to the same page.
3253  *	If @byte_oriented is set the write data is stored as byte stream
3254  *	(i.e. matches what on disk), otherwise in big-endian.
3255  */
3256 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3257 			  unsigned int n, const u8 *data, int byte_oriented)
3258 {
3259 	int ret;
3260 	u32 buf[SF_PAGE_SIZE / 4];
3261 	unsigned int i, c, left, val, offset = addr & 0xff;
3262 
3263 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3264 		return -EINVAL;
3265 
3266 	val = swab32(addr) | SF_PROG_PAGE;
3267 
3268 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3269 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3270 		goto unlock;
3271 
3272 	for (left = n; left; left -= c) {
3273 		c = min(left, 4U);
3274 		for (val = 0, i = 0; i < c; ++i)
3275 			val = (val << 8) + *data++;
3276 
3277 		if (!byte_oriented)
3278 			val = cpu_to_be32(val);
3279 
3280 		ret = sf1_write(adapter, c, c != left, 1, val);
3281 		if (ret)
3282 			goto unlock;
3283 	}
3284 	ret = flash_wait_op(adapter, 8, 1);
3285 	if (ret)
3286 		goto unlock;
3287 
3288 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3289 
3290 	/* Read the page to verify the write succeeded */
3291 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3292 			    byte_oriented);
3293 	if (ret)
3294 		return ret;
3295 
3296 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3297 		CH_ERR(adapter,
3298 			"failed to correctly write the flash page at %#x\n",
3299 			addr);
3300 		return -EIO;
3301 	}
3302 	return 0;
3303 
3304 unlock:
3305 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3306 	return ret;
3307 }
3308 
3309 /**
3310  *	t4_get_fw_version - read the firmware version
3311  *	@adapter: the adapter
3312  *	@vers: where to place the version
3313  *
3314  *	Reads the FW version from flash.
3315  */
3316 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3317 {
3318 	return t4_read_flash(adapter, FLASH_FW_START +
3319 			     offsetof(struct fw_hdr, fw_ver), 1,
3320 			     vers, 0);
3321 }
3322 
3323 /**
3324  *	t4_get_bs_version - read the firmware bootstrap version
3325  *	@adapter: the adapter
3326  *	@vers: where to place the version
3327  *
3328  *	Reads the FW Bootstrap version from flash.
3329  */
3330 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3331 {
3332 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3333 			     offsetof(struct fw_hdr, fw_ver), 1,
3334 			     vers, 0);
3335 }
3336 
3337 /**
3338  *	t4_get_tp_version - read the TP microcode version
3339  *	@adapter: the adapter
3340  *	@vers: where to place the version
3341  *
3342  *	Reads the TP microcode version from flash.
3343  */
3344 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3345 {
3346 	return t4_read_flash(adapter, FLASH_FW_START +
3347 			     offsetof(struct fw_hdr, tp_microcode_ver),
3348 			     1, vers, 0);
3349 }
3350 
3351 /**
3352  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3353  *	@adapter: the adapter
3354  *	@vers: where to place the version
3355  *
3356  *	Reads the Expansion ROM header from FLASH and returns the version
3357  *	number (if present) through the @vers return value pointer.  We return
3358  *	this in the Firmware Version Format since it's convenient.  Return
3359  *	0 on success, -ENOENT if no Expansion ROM is present.
3360  */
3361 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3362 {
3363 	struct exprom_header {
3364 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3365 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3366 	} *hdr;
3367 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3368 					   sizeof(u32))];
3369 	int ret;
3370 
3371 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3372 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3373 			    0);
3374 	if (ret)
3375 		return ret;
3376 
3377 	hdr = (struct exprom_header *)exprom_header_buf;
3378 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3379 		return -ENOENT;
3380 
3381 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3382 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3383 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3384 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3385 	return 0;
3386 }
3387 
3388 /**
3389  *	t4_get_scfg_version - return the Serial Configuration version
3390  *	@adapter: the adapter
3391  *	@vers: where to place the version
3392  *
3393  *	Reads the Serial Configuration Version via the Firmware interface
3394  *	(thus this can only be called once we're ready to issue Firmware
3395  *	commands).  The format of the Serial Configuration version is
3396  *	adapter specific.  Returns 0 on success, an error on failure.
3397  *
3398  *	Note that early versions of the Firmware didn't include the ability
3399  *	to retrieve the Serial Configuration version, so we zero-out the
3400  *	return-value parameter in that case to avoid leaving it with
3401  *	garbage in it.
3402  *
3403  *	Also note that the Firmware will return its cached copy of the Serial
3404  *	Initialization Revision ID, not the actual Revision ID as written in
3405  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3406  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3407  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3408  *	been issued if the Host Driver will be performing a full adapter
3409  *	initialization.
3410  */
3411 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3412 {
3413 	u32 scfgrev_param;
3414 	int ret;
3415 
3416 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3417 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3418 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3419 			      1, &scfgrev_param, vers);
3420 	if (ret)
3421 		*vers = 0;
3422 	return ret;
3423 }
3424 
3425 /**
3426  *	t4_get_vpd_version - return the VPD version
3427  *	@adapter: the adapter
3428  *	@vers: where to place the version
3429  *
3430  *	Reads the VPD via the Firmware interface (thus this can only be called
3431  *	once we're ready to issue Firmware commands).  The format of the
3432  *	VPD version is adapter specific.  Returns 0 on success, an error on
3433  *	failure.
3434  *
3435  *	Note that early versions of the Firmware didn't include the ability
3436  *	to retrieve the VPD version, so we zero-out the return-value parameter
3437  *	in that case to avoid leaving it with garbage in it.
3438  *
3439  *	Also note that the Firmware will return its cached copy of the VPD
3440  *	Revision ID, not the actual Revision ID as written in the Serial
3441  *	EEPROM.  This is only an issue if a new VPD has been written and the
3442  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3443  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3444  *	if the Host Driver will be performing a full adapter initialization.
3445  */
3446 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3447 {
3448 	u32 vpdrev_param;
3449 	int ret;
3450 
3451 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3452 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3453 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3454 			      1, &vpdrev_param, vers);
3455 	if (ret)
3456 		*vers = 0;
3457 	return ret;
3458 }
3459 
3460 /**
3461  *	t4_get_version_info - extract various chip/firmware version information
3462  *	@adapter: the adapter
3463  *
3464  *	Reads various chip/firmware version numbers and stores them into the
3465  *	adapter Adapter Parameters structure.  If any of the efforts fails
3466  *	the first failure will be returned, but all of the version numbers
3467  *	will be read.
3468  */
3469 int t4_get_version_info(struct adapter *adapter)
3470 {
3471 	int ret = 0;
3472 
3473 	#define FIRST_RET(__getvinfo) \
3474 	do { \
3475 		int __ret = __getvinfo; \
3476 		if (__ret && !ret) \
3477 			ret = __ret; \
3478 	} while (0)
3479 
3480 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3481 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3482 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3483 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3484 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3485 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3486 
3487 	#undef FIRST_RET
3488 
3489 	return ret;
3490 }
3491 
3492 /**
3493  *	t4_flash_erase_sectors - erase a range of flash sectors
3494  *	@adapter: the adapter
3495  *	@start: the first sector to erase
3496  *	@end: the last sector to erase
3497  *
3498  *	Erases the sectors in the given inclusive range.
3499  */
3500 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3501 {
3502 	int ret = 0;
3503 
3504 	if (end >= adapter->params.sf_nsec)
3505 		return -EINVAL;
3506 
3507 	while (start <= end) {
3508 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3509 		    (ret = sf1_write(adapter, 4, 0, 1,
3510 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3511 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3512 			CH_ERR(adapter,
3513 				"erase of flash sector %d failed, error %d\n",
3514 				start, ret);
3515 			break;
3516 		}
3517 		start++;
3518 	}
3519 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3520 	return ret;
3521 }
3522 
3523 /**
3524  *	t4_flash_cfg_addr - return the address of the flash configuration file
3525  *	@adapter: the adapter
3526  *
3527  *	Return the address within the flash where the Firmware Configuration
3528  *	File is stored, or an error if the device FLASH is too small to contain
3529  *	a Firmware Configuration File.
3530  */
3531 int t4_flash_cfg_addr(struct adapter *adapter)
3532 {
3533 	/*
3534 	 * If the device FLASH isn't large enough to hold a Firmware
3535 	 * Configuration File, return an error.
3536 	 */
3537 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3538 		return -ENOSPC;
3539 
3540 	return FLASH_CFG_START;
3541 }
3542 
3543 /*
3544  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3545  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3546  * and emit an error message for mismatched firmware to save our caller the
3547  * effort ...
3548  */
3549 static int t4_fw_matches_chip(struct adapter *adap,
3550 			      const struct fw_hdr *hdr)
3551 {
3552 	/*
3553 	 * The expression below will return FALSE for any unsupported adapter
3554 	 * which will keep us "honest" in the future ...
3555 	 */
3556 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3557 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3558 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3559 		return 1;
3560 
3561 	CH_ERR(adap,
3562 		"FW image (%d) is not suitable for this adapter (%d)\n",
3563 		hdr->chip, chip_id(adap));
3564 	return 0;
3565 }
3566 
3567 /**
3568  *	t4_load_fw - download firmware
3569  *	@adap: the adapter
3570  *	@fw_data: the firmware image to write
3571  *	@size: image size
3572  *
3573  *	Write the supplied firmware image to the card's serial flash.
3574  */
3575 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3576 {
3577 	u32 csum;
3578 	int ret, addr;
3579 	unsigned int i;
3580 	u8 first_page[SF_PAGE_SIZE];
3581 	const u32 *p = (const u32 *)fw_data;
3582 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3583 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3584 	unsigned int fw_start_sec;
3585 	unsigned int fw_start;
3586 	unsigned int fw_size;
3587 
3588 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3589 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3590 		fw_start = FLASH_FWBOOTSTRAP_START;
3591 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3592 	} else {
3593 		fw_start_sec = FLASH_FW_START_SEC;
3594  		fw_start = FLASH_FW_START;
3595 		fw_size = FLASH_FW_MAX_SIZE;
3596 	}
3597 
3598 	if (!size) {
3599 		CH_ERR(adap, "FW image has no data\n");
3600 		return -EINVAL;
3601 	}
3602 	if (size & 511) {
3603 		CH_ERR(adap,
3604 			"FW image size not multiple of 512 bytes\n");
3605 		return -EINVAL;
3606 	}
3607 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3608 		CH_ERR(adap,
3609 			"FW image size differs from size in FW header\n");
3610 		return -EINVAL;
3611 	}
3612 	if (size > fw_size) {
3613 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3614 			fw_size);
3615 		return -EFBIG;
3616 	}
3617 	if (!t4_fw_matches_chip(adap, hdr))
3618 		return -EINVAL;
3619 
3620 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3621 		csum += be32_to_cpu(p[i]);
3622 
3623 	if (csum != 0xffffffff) {
3624 		CH_ERR(adap,
3625 			"corrupted firmware image, checksum %#x\n", csum);
3626 		return -EINVAL;
3627 	}
3628 
3629 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3630 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3631 	if (ret)
3632 		goto out;
3633 
3634 	/*
3635 	 * We write the correct version at the end so the driver can see a bad
3636 	 * version if the FW write fails.  Start by writing a copy of the
3637 	 * first page with a bad version.
3638 	 */
3639 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3640 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3641 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3642 	if (ret)
3643 		goto out;
3644 
3645 	addr = fw_start;
3646 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3647 		addr += SF_PAGE_SIZE;
3648 		fw_data += SF_PAGE_SIZE;
3649 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3650 		if (ret)
3651 			goto out;
3652 	}
3653 
3654 	ret = t4_write_flash(adap,
3655 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3656 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3657 out:
3658 	if (ret)
3659 		CH_ERR(adap, "firmware download failed, error %d\n",
3660 			ret);
3661 	return ret;
3662 }
3663 
3664 /**
3665  *	t4_fwcache - firmware cache operation
3666  *	@adap: the adapter
3667  *	@op  : the operation (flush or flush and invalidate)
3668  */
3669 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3670 {
3671 	struct fw_params_cmd c;
3672 
3673 	memset(&c, 0, sizeof(c));
3674 	c.op_to_vfn =
3675 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3676 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3677 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3678 				V_FW_PARAMS_CMD_VFN(0));
3679 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3680 	c.param[0].mnem =
3681 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3682 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3683 	c.param[0].val = (__force __be32)op;
3684 
3685 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3686 }
3687 
3688 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3689 			unsigned int *pif_req_wrptr,
3690 			unsigned int *pif_rsp_wrptr)
3691 {
3692 	int i, j;
3693 	u32 cfg, val, req, rsp;
3694 
3695 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3696 	if (cfg & F_LADBGEN)
3697 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3698 
3699 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3700 	req = G_POLADBGWRPTR(val);
3701 	rsp = G_PILADBGWRPTR(val);
3702 	if (pif_req_wrptr)
3703 		*pif_req_wrptr = req;
3704 	if (pif_rsp_wrptr)
3705 		*pif_rsp_wrptr = rsp;
3706 
3707 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3708 		for (j = 0; j < 6; j++) {
3709 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3710 				     V_PILADBGRDPTR(rsp));
3711 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3712 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3713 			req++;
3714 			rsp++;
3715 		}
3716 		req = (req + 2) & M_POLADBGRDPTR;
3717 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3718 	}
3719 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3720 }
3721 
3722 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3723 {
3724 	u32 cfg;
3725 	int i, j, idx;
3726 
3727 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3728 	if (cfg & F_LADBGEN)
3729 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3730 
3731 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3732 		for (j = 0; j < 5; j++) {
3733 			idx = 8 * i + j;
3734 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3735 				     V_PILADBGRDPTR(idx));
3736 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3737 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3738 		}
3739 	}
3740 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3741 }
3742 
3743 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3744 {
3745 	unsigned int i, j;
3746 
3747 	for (i = 0; i < 8; i++) {
3748 		u32 *p = la_buf + i;
3749 
3750 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3751 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3752 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3753 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3754 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3755 	}
3756 }
3757 
3758 /**
3759  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3760  *	@phy: the PHY to setup
3761  *	@mac: the MAC to setup
3762  *	@lc: the requested link configuration
3763  *
3764  *	Set up a port's MAC and PHY according to a desired link configuration.
3765  *	- If the PHY can auto-negotiate first decide what to advertise, then
3766  *	  enable/disable auto-negotiation as desired, and reset.
3767  *	- If the PHY does not auto-negotiate just reset it.
3768  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3769  *	  otherwise do it later based on the outcome of auto-negotiation.
3770  */
3771 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3772 		  struct link_config *lc)
3773 {
3774 	struct fw_port_cmd c;
3775 	unsigned int mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3776 	unsigned int aneg, fc, fec, speed, rcap;
3777 
3778 	fc = 0;
3779 	if (lc->requested_fc & PAUSE_RX)
3780 		fc |= FW_PORT_CAP_FC_RX;
3781 	if (lc->requested_fc & PAUSE_TX)
3782 		fc |= FW_PORT_CAP_FC_TX;
3783 
3784 	fec = 0;
3785 	if (lc->requested_fec & FEC_RS)
3786 		fec = FW_PORT_CAP_FEC_RS;
3787 	else if (lc->requested_fec & FEC_BASER_RS)
3788 		fec = FW_PORT_CAP_FEC_BASER_RS;
3789 
3790 	if (!(lc->supported & FW_PORT_CAP_ANEG) ||
3791 	    lc->requested_aneg == AUTONEG_DISABLE) {
3792 		aneg = 0;
3793 		switch (lc->requested_speed) {
3794 		case 100000:
3795 			speed = FW_PORT_CAP_SPEED_100G;
3796 			break;
3797 		case 40000:
3798 			speed = FW_PORT_CAP_SPEED_40G;
3799 			break;
3800 		case 25000:
3801 			speed = FW_PORT_CAP_SPEED_25G;
3802 			break;
3803 		case 10000:
3804 			speed = FW_PORT_CAP_SPEED_10G;
3805 			break;
3806 		case 1000:
3807 			speed = FW_PORT_CAP_SPEED_1G;
3808 			break;
3809 		case 100:
3810 			speed = FW_PORT_CAP_SPEED_100M;
3811 			break;
3812 		default:
3813 			return -EINVAL;
3814 			break;
3815 		}
3816 	} else {
3817 		aneg = FW_PORT_CAP_ANEG;
3818 		speed = lc->supported &
3819 		    V_FW_PORT_CAP_SPEED(M_FW_PORT_CAP_SPEED);
3820 	}
3821 
3822 	rcap = aneg | speed | fc | fec;
3823 	if ((rcap | lc->supported) != lc->supported) {
3824 #ifdef INVARIANTS
3825 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3826 		    lc->supported);
3827 #endif
3828 		rcap &= lc->supported;
3829 	}
3830 	rcap |= mdi;
3831 
3832 	memset(&c, 0, sizeof(c));
3833 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3834 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3835 				     V_FW_PORT_CMD_PORTID(port));
3836 	c.action_to_len16 =
3837 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3838 			    FW_LEN16(c));
3839 	c.u.l1cfg.rcap = cpu_to_be32(rcap);
3840 
3841 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3842 }
3843 
3844 /**
3845  *	t4_restart_aneg - restart autonegotiation
3846  *	@adap: the adapter
3847  *	@mbox: mbox to use for the FW command
3848  *	@port: the port id
3849  *
3850  *	Restarts autonegotiation for the selected port.
3851  */
3852 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3853 {
3854 	struct fw_port_cmd c;
3855 
3856 	memset(&c, 0, sizeof(c));
3857 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3858 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3859 				     V_FW_PORT_CMD_PORTID(port));
3860 	c.action_to_len16 =
3861 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3862 			    FW_LEN16(c));
3863 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3864 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3865 }
3866 
3867 typedef void (*int_handler_t)(struct adapter *adap);
3868 
3869 struct intr_info {
3870 	unsigned int mask;	/* bits to check in interrupt status */
3871 	const char *msg;	/* message to print or NULL */
3872 	short stat_idx;		/* stat counter to increment or -1 */
3873 	unsigned short fatal;	/* whether the condition reported is fatal */
3874 	int_handler_t int_handler;	/* platform-specific int handler */
3875 };
3876 
3877 /**
3878  *	t4_handle_intr_status - table driven interrupt handler
3879  *	@adapter: the adapter that generated the interrupt
3880  *	@reg: the interrupt status register to process
3881  *	@acts: table of interrupt actions
3882  *
3883  *	A table driven interrupt handler that applies a set of masks to an
3884  *	interrupt status word and performs the corresponding actions if the
3885  *	interrupts described by the mask have occurred.  The actions include
3886  *	optionally emitting a warning or alert message.  The table is terminated
3887  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3888  *	conditions.
3889  */
3890 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3891 				 const struct intr_info *acts)
3892 {
3893 	int fatal = 0;
3894 	unsigned int mask = 0;
3895 	unsigned int status = t4_read_reg(adapter, reg);
3896 
3897 	for ( ; acts->mask; ++acts) {
3898 		if (!(status & acts->mask))
3899 			continue;
3900 		if (acts->fatal) {
3901 			fatal++;
3902 			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3903 				  status & acts->mask);
3904 		} else if (acts->msg)
3905 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3906 				 status & acts->mask);
3907 		if (acts->int_handler)
3908 			acts->int_handler(adapter);
3909 		mask |= acts->mask;
3910 	}
3911 	status &= mask;
3912 	if (status)	/* clear processed interrupts */
3913 		t4_write_reg(adapter, reg, status);
3914 	return fatal;
3915 }
3916 
3917 /*
3918  * Interrupt handler for the PCIE module.
3919  */
3920 static void pcie_intr_handler(struct adapter *adapter)
3921 {
3922 	static const struct intr_info sysbus_intr_info[] = {
3923 		{ F_RNPP, "RXNP array parity error", -1, 1 },
3924 		{ F_RPCP, "RXPC array parity error", -1, 1 },
3925 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3926 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3927 		{ F_RFTP, "RXFT array parity error", -1, 1 },
3928 		{ 0 }
3929 	};
3930 	static const struct intr_info pcie_port_intr_info[] = {
3931 		{ F_TPCP, "TXPC array parity error", -1, 1 },
3932 		{ F_TNPP, "TXNP array parity error", -1, 1 },
3933 		{ F_TFTP, "TXFT array parity error", -1, 1 },
3934 		{ F_TCAP, "TXCA array parity error", -1, 1 },
3935 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3936 		{ F_RCAP, "RXCA array parity error", -1, 1 },
3937 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3938 		{ F_RDPE, "Rx data parity error", -1, 1 },
3939 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3940 		{ 0 }
3941 	};
3942 	static const struct intr_info pcie_intr_info[] = {
3943 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3944 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3945 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3946 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3947 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3948 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3949 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3950 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3951 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3952 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3953 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3954 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3955 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3956 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3957 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3958 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3959 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3960 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3961 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3962 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3963 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3964 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3965 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3966 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3967 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3968 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3969 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3970 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3971 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3972 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3973 		  0 },
3974 		{ 0 }
3975 	};
3976 
3977 	static const struct intr_info t5_pcie_intr_info[] = {
3978 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3979 		  -1, 1 },
3980 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3981 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3982 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3983 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3984 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3985 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3986 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3987 		  -1, 1 },
3988 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3989 		  -1, 1 },
3990 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3991 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3992 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3993 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3994 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3995 		  -1, 1 },
3996 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3997 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3998 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3999 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
4000 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
4001 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
4002 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
4003 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
4004 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
4005 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
4006 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
4007 		  -1, 1 },
4008 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
4009 		  -1, 1 },
4010 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
4011 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
4012 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4013 		{ F_READRSPERR, "Outbound read error", -1,
4014 		  0 },
4015 		{ 0 }
4016 	};
4017 
4018 	int fat;
4019 
4020 	if (is_t4(adapter))
4021 		fat = t4_handle_intr_status(adapter,
4022 				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4023 				sysbus_intr_info) +
4024 			t4_handle_intr_status(adapter,
4025 					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4026 					pcie_port_intr_info) +
4027 			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
4028 					      pcie_intr_info);
4029 	else
4030 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
4031 					    t5_pcie_intr_info);
4032 	if (fat)
4033 		t4_fatal_err(adapter);
4034 }
4035 
4036 /*
4037  * TP interrupt handler.
4038  */
4039 static void tp_intr_handler(struct adapter *adapter)
4040 {
4041 	static const struct intr_info tp_intr_info[] = {
4042 		{ 0x3fffffff, "TP parity error", -1, 1 },
4043 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
4044 		{ 0 }
4045 	};
4046 
4047 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
4048 		t4_fatal_err(adapter);
4049 }
4050 
4051 /*
4052  * SGE interrupt handler.
4053  */
4054 static void sge_intr_handler(struct adapter *adapter)
4055 {
4056 	u64 v;
4057 	u32 err;
4058 
4059 	static const struct intr_info sge_intr_info[] = {
4060 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4061 		  "SGE received CPL exceeding IQE size", -1, 1 },
4062 		{ F_ERR_INVALID_CIDX_INC,
4063 		  "SGE GTS CIDX increment too large", -1, 0 },
4064 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
4065 		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
4066 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4067 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4068 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
4069 		  0 },
4070 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
4071 		  0 },
4072 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
4073 		  0 },
4074 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
4075 		  0 },
4076 		{ F_ERR_ING_CTXT_PRIO,
4077 		  "SGE too many priority ingress contexts", -1, 0 },
4078 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
4079 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
4080 		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 |
4081 		  F_ERR_PCIE_ERROR2 | F_ERR_PCIE_ERROR3,
4082 		  "SGE PCIe error for a DBP thread", -1, 0 },
4083 		{ 0 }
4084 	};
4085 
4086 	static const struct intr_info t4t5_sge_intr_info[] = {
4087 		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
4088 		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
4089 		{ F_ERR_EGR_CTXT_PRIO,
4090 		  "SGE too many priority egress contexts", -1, 0 },
4091 		{ 0 }
4092 	};
4093 
4094 	/*
4095  	* For now, treat below interrupts as fatal so that we disable SGE and
4096  	* get better debug */
4097 	static const struct intr_info t6_sge_intr_info[] = {
4098 		{ F_FATAL_WRE_LEN,
4099 		  "SGE Actual WRE packet is less than advertized length",
4100 		  -1, 1 },
4101 		{ 0 }
4102 	};
4103 
4104 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4105 		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4106 	if (v) {
4107 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4108 				(unsigned long long)v);
4109 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4110 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4111 	}
4112 
4113 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4114 	if (chip_id(adapter) <= CHELSIO_T5)
4115 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4116 					   t4t5_sge_intr_info);
4117 	else
4118 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4119 					   t6_sge_intr_info);
4120 
4121 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4122 	if (err & F_ERROR_QID_VALID) {
4123 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4124 		if (err & F_UNCAPTURED_ERROR)
4125 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4126 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4127 			     F_UNCAPTURED_ERROR);
4128 	}
4129 
4130 	if (v != 0)
4131 		t4_fatal_err(adapter);
4132 }
4133 
4134 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4135 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4136 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4137 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4138 
4139 /*
4140  * CIM interrupt handler.
4141  */
4142 static void cim_intr_handler(struct adapter *adapter)
4143 {
4144 	static const struct intr_info cim_intr_info[] = {
4145 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4146 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4147 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4148 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4149 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4150 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4151 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4152 		{ F_TIMER0INT, "CIM TIMER0 interrupt", -1, 1 },
4153 		{ 0 }
4154 	};
4155 	static const struct intr_info cim_upintr_info[] = {
4156 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4157 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4158 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4159 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4160 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4161 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4162 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4163 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4164 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4165 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4166 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4167 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4168 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4169 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4170 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4171 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4172 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4173 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4174 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4175 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4176 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4177 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4178 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4179 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4180 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4181 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4182 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4183 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4184 		{ 0 }
4185 	};
4186 	u32 val, fw_err;
4187 	int fat;
4188 
4189 	fw_err = t4_read_reg(adapter, A_PCIE_FW);
4190 	if (fw_err & F_PCIE_FW_ERR)
4191 		t4_report_fw_error(adapter);
4192 
4193 	/* When the Firmware detects an internal error which normally wouldn't
4194 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4195 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4196 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4197 	 * interrupt.
4198 	 */
4199 	val = t4_read_reg(adapter, A_CIM_HOST_INT_CAUSE);
4200 	if (val & F_TIMER0INT)
4201 		if (!(fw_err & F_PCIE_FW_ERR) ||
4202 		    (G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH))
4203 			t4_write_reg(adapter, A_CIM_HOST_INT_CAUSE,
4204 				     F_TIMER0INT);
4205 
4206 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4207 				    cim_intr_info) +
4208 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4209 				    cim_upintr_info);
4210 	if (fat)
4211 		t4_fatal_err(adapter);
4212 }
4213 
4214 /*
4215  * ULP RX interrupt handler.
4216  */
4217 static void ulprx_intr_handler(struct adapter *adapter)
4218 {
4219 	static const struct intr_info ulprx_intr_info[] = {
4220 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4221 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4222 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4223 		{ 0 }
4224 	};
4225 
4226 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4227 		t4_fatal_err(adapter);
4228 }
4229 
4230 /*
4231  * ULP TX interrupt handler.
4232  */
4233 static void ulptx_intr_handler(struct adapter *adapter)
4234 {
4235 	static const struct intr_info ulptx_intr_info[] = {
4236 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4237 		  0 },
4238 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4239 		  0 },
4240 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4241 		  0 },
4242 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4243 		  0 },
4244 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4245 		{ 0 }
4246 	};
4247 
4248 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4249 		t4_fatal_err(adapter);
4250 }
4251 
4252 /*
4253  * PM TX interrupt handler.
4254  */
4255 static void pmtx_intr_handler(struct adapter *adapter)
4256 {
4257 	static const struct intr_info pmtx_intr_info[] = {
4258 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4259 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4260 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4261 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4262 		{ 0xffffff0, "PMTX framing error", -1, 1 },
4263 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4264 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4265 		  1 },
4266 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4267 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4268 		{ 0 }
4269 	};
4270 
4271 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4272 		t4_fatal_err(adapter);
4273 }
4274 
4275 /*
4276  * PM RX interrupt handler.
4277  */
4278 static void pmrx_intr_handler(struct adapter *adapter)
4279 {
4280 	static const struct intr_info pmrx_intr_info[] = {
4281 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4282 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4283 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4284 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4285 		  1 },
4286 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4287 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4288 		{ 0 }
4289 	};
4290 
4291 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4292 		t4_fatal_err(adapter);
4293 }
4294 
4295 /*
4296  * CPL switch interrupt handler.
4297  */
4298 static void cplsw_intr_handler(struct adapter *adapter)
4299 {
4300 	static const struct intr_info cplsw_intr_info[] = {
4301 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4302 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4303 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4304 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4305 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4306 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4307 		{ 0 }
4308 	};
4309 
4310 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4311 		t4_fatal_err(adapter);
4312 }
4313 
4314 /*
4315  * LE interrupt handler.
4316  */
4317 static void le_intr_handler(struct adapter *adap)
4318 {
4319 	unsigned int chip_ver = chip_id(adap);
4320 	static const struct intr_info le_intr_info[] = {
4321 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4322 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4323 		{ F_PARITYERR, "LE parity error", -1, 1 },
4324 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4325 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4326 		{ 0 }
4327 	};
4328 
4329 	static const struct intr_info t6_le_intr_info[] = {
4330 		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4331 		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4332 		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4333 		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4334 		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4335 		{ 0 }
4336 	};
4337 
4338 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4339 				  (chip_ver <= CHELSIO_T5) ?
4340 				  le_intr_info : t6_le_intr_info))
4341 		t4_fatal_err(adap);
4342 }
4343 
4344 /*
4345  * MPS interrupt handler.
4346  */
4347 static void mps_intr_handler(struct adapter *adapter)
4348 {
4349 	static const struct intr_info mps_rx_intr_info[] = {
4350 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4351 		{ 0 }
4352 	};
4353 	static const struct intr_info mps_tx_intr_info[] = {
4354 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4355 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4356 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4357 		  -1, 1 },
4358 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4359 		  -1, 1 },
4360 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4361 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4362 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4363 		{ 0 }
4364 	};
4365 	static const struct intr_info mps_trc_intr_info[] = {
4366 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4367 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4368 		  1 },
4369 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4370 		{ 0 }
4371 	};
4372 	static const struct intr_info mps_stat_sram_intr_info[] = {
4373 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4374 		{ 0 }
4375 	};
4376 	static const struct intr_info mps_stat_tx_intr_info[] = {
4377 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4378 		{ 0 }
4379 	};
4380 	static const struct intr_info mps_stat_rx_intr_info[] = {
4381 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4382 		{ 0 }
4383 	};
4384 	static const struct intr_info mps_cls_intr_info[] = {
4385 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4386 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4387 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4388 		{ 0 }
4389 	};
4390 
4391 	int fat;
4392 
4393 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4394 				    mps_rx_intr_info) +
4395 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4396 				    mps_tx_intr_info) +
4397 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4398 				    mps_trc_intr_info) +
4399 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4400 				    mps_stat_sram_intr_info) +
4401 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4402 				    mps_stat_tx_intr_info) +
4403 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4404 				    mps_stat_rx_intr_info) +
4405 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4406 				    mps_cls_intr_info);
4407 
4408 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4409 	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4410 	if (fat)
4411 		t4_fatal_err(adapter);
4412 }
4413 
4414 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4415 		      F_ECC_UE_INT_CAUSE)
4416 
4417 /*
4418  * EDC/MC interrupt handler.
4419  */
4420 static void mem_intr_handler(struct adapter *adapter, int idx)
4421 {
4422 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4423 
4424 	unsigned int addr, cnt_addr, v;
4425 
4426 	if (idx <= MEM_EDC1) {
4427 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4428 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4429 	} else if (idx == MEM_MC) {
4430 		if (is_t4(adapter)) {
4431 			addr = A_MC_INT_CAUSE;
4432 			cnt_addr = A_MC_ECC_STATUS;
4433 		} else {
4434 			addr = A_MC_P_INT_CAUSE;
4435 			cnt_addr = A_MC_P_ECC_STATUS;
4436 		}
4437 	} else {
4438 		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4439 		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4440 	}
4441 
4442 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4443 	if (v & F_PERR_INT_CAUSE)
4444 		CH_ALERT(adapter, "%s FIFO parity error\n",
4445 			  name[idx]);
4446 	if (v & F_ECC_CE_INT_CAUSE) {
4447 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4448 
4449 		if (idx <= MEM_EDC1)
4450 			t4_edc_err_read(adapter, idx);
4451 
4452 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4453 		CH_WARN_RATELIMIT(adapter,
4454 				  "%u %s correctable ECC data error%s\n",
4455 				  cnt, name[idx], cnt > 1 ? "s" : "");
4456 	}
4457 	if (v & F_ECC_UE_INT_CAUSE)
4458 		CH_ALERT(adapter,
4459 			 "%s uncorrectable ECC data error\n", name[idx]);
4460 
4461 	t4_write_reg(adapter, addr, v);
4462 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4463 		t4_fatal_err(adapter);
4464 }
4465 
4466 /*
4467  * MA interrupt handler.
4468  */
4469 static void ma_intr_handler(struct adapter *adapter)
4470 {
4471 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4472 
4473 	if (status & F_MEM_PERR_INT_CAUSE) {
4474 		CH_ALERT(adapter,
4475 			  "MA parity error, parity status %#x\n",
4476 			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4477 		if (is_t5(adapter))
4478 			CH_ALERT(adapter,
4479 				  "MA parity error, parity status %#x\n",
4480 				  t4_read_reg(adapter,
4481 					      A_MA_PARITY_ERROR_STATUS2));
4482 	}
4483 	if (status & F_MEM_WRAP_INT_CAUSE) {
4484 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4485 		CH_ALERT(adapter, "MA address wrap-around error by "
4486 			  "client %u to address %#x\n",
4487 			  G_MEM_WRAP_CLIENT_NUM(v),
4488 			  G_MEM_WRAP_ADDRESS(v) << 4);
4489 	}
4490 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4491 	t4_fatal_err(adapter);
4492 }
4493 
4494 /*
4495  * SMB interrupt handler.
4496  */
4497 static void smb_intr_handler(struct adapter *adap)
4498 {
4499 	static const struct intr_info smb_intr_info[] = {
4500 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4501 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4502 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4503 		{ 0 }
4504 	};
4505 
4506 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4507 		t4_fatal_err(adap);
4508 }
4509 
4510 /*
4511  * NC-SI interrupt handler.
4512  */
4513 static void ncsi_intr_handler(struct adapter *adap)
4514 {
4515 	static const struct intr_info ncsi_intr_info[] = {
4516 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4517 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4518 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4519 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4520 		{ 0 }
4521 	};
4522 
4523 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4524 		t4_fatal_err(adap);
4525 }
4526 
4527 /*
4528  * XGMAC interrupt handler.
4529  */
4530 static void xgmac_intr_handler(struct adapter *adap, int port)
4531 {
4532 	u32 v, int_cause_reg;
4533 
4534 	if (is_t4(adap))
4535 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4536 	else
4537 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4538 
4539 	v = t4_read_reg(adap, int_cause_reg);
4540 
4541 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4542 	if (!v)
4543 		return;
4544 
4545 	if (v & F_TXFIFO_PRTY_ERR)
4546 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4547 			  port);
4548 	if (v & F_RXFIFO_PRTY_ERR)
4549 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4550 			  port);
4551 	t4_write_reg(adap, int_cause_reg, v);
4552 	t4_fatal_err(adap);
4553 }
4554 
4555 /*
4556  * PL interrupt handler.
4557  */
4558 static void pl_intr_handler(struct adapter *adap)
4559 {
4560 	static const struct intr_info pl_intr_info[] = {
4561 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4562 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4563 		{ 0 }
4564 	};
4565 
4566 	static const struct intr_info t5_pl_intr_info[] = {
4567 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4568 		{ 0 }
4569 	};
4570 
4571 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4572 				  is_t4(adap) ?
4573 				  pl_intr_info : t5_pl_intr_info))
4574 		t4_fatal_err(adap);
4575 }
4576 
4577 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4578 
4579 /**
4580  *	t4_slow_intr_handler - control path interrupt handler
4581  *	@adapter: the adapter
4582  *
4583  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4584  *	The designation 'slow' is because it involves register reads, while
4585  *	data interrupts typically don't involve any MMIOs.
4586  */
4587 int t4_slow_intr_handler(struct adapter *adapter)
4588 {
4589 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4590 
4591 	if (!(cause & GLBL_INTR_MASK))
4592 		return 0;
4593 	if (cause & F_CIM)
4594 		cim_intr_handler(adapter);
4595 	if (cause & F_MPS)
4596 		mps_intr_handler(adapter);
4597 	if (cause & F_NCSI)
4598 		ncsi_intr_handler(adapter);
4599 	if (cause & F_PL)
4600 		pl_intr_handler(adapter);
4601 	if (cause & F_SMB)
4602 		smb_intr_handler(adapter);
4603 	if (cause & F_MAC0)
4604 		xgmac_intr_handler(adapter, 0);
4605 	if (cause & F_MAC1)
4606 		xgmac_intr_handler(adapter, 1);
4607 	if (cause & F_MAC2)
4608 		xgmac_intr_handler(adapter, 2);
4609 	if (cause & F_MAC3)
4610 		xgmac_intr_handler(adapter, 3);
4611 	if (cause & F_PCIE)
4612 		pcie_intr_handler(adapter);
4613 	if (cause & F_MC0)
4614 		mem_intr_handler(adapter, MEM_MC);
4615 	if (is_t5(adapter) && (cause & F_MC1))
4616 		mem_intr_handler(adapter, MEM_MC1);
4617 	if (cause & F_EDC0)
4618 		mem_intr_handler(adapter, MEM_EDC0);
4619 	if (cause & F_EDC1)
4620 		mem_intr_handler(adapter, MEM_EDC1);
4621 	if (cause & F_LE)
4622 		le_intr_handler(adapter);
4623 	if (cause & F_TP)
4624 		tp_intr_handler(adapter);
4625 	if (cause & F_MA)
4626 		ma_intr_handler(adapter);
4627 	if (cause & F_PM_TX)
4628 		pmtx_intr_handler(adapter);
4629 	if (cause & F_PM_RX)
4630 		pmrx_intr_handler(adapter);
4631 	if (cause & F_ULP_RX)
4632 		ulprx_intr_handler(adapter);
4633 	if (cause & F_CPL_SWITCH)
4634 		cplsw_intr_handler(adapter);
4635 	if (cause & F_SGE)
4636 		sge_intr_handler(adapter);
4637 	if (cause & F_ULP_TX)
4638 		ulptx_intr_handler(adapter);
4639 
4640 	/* Clear the interrupts just processed for which we are the master. */
4641 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4642 	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4643 	return 1;
4644 }
4645 
4646 /**
4647  *	t4_intr_enable - enable interrupts
4648  *	@adapter: the adapter whose interrupts should be enabled
4649  *
4650  *	Enable PF-specific interrupts for the calling function and the top-level
4651  *	interrupt concentrator for global interrupts.  Interrupts are already
4652  *	enabled at each module,	here we just enable the roots of the interrupt
4653  *	hierarchies.
4654  *
4655  *	Note: this function should be called only when the driver manages
4656  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4657  *	function at a time should be doing this.
4658  */
4659 void t4_intr_enable(struct adapter *adapter)
4660 {
4661 	u32 val = 0;
4662 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4663 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4664 		  ? G_SOURCEPF(whoami)
4665 		  : G_T6_SOURCEPF(whoami));
4666 
4667 	if (chip_id(adapter) <= CHELSIO_T5)
4668 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4669 	else
4670 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4671 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4672 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4673 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4674 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4675 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4676 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4677 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4678 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4679 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4680 }
4681 
4682 /**
4683  *	t4_intr_disable - disable interrupts
4684  *	@adapter: the adapter whose interrupts should be disabled
4685  *
4686  *	Disable interrupts.  We only disable the top-level interrupt
4687  *	concentrators.  The caller must be a PCI function managing global
4688  *	interrupts.
4689  */
4690 void t4_intr_disable(struct adapter *adapter)
4691 {
4692 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4693 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4694 		  ? G_SOURCEPF(whoami)
4695 		  : G_T6_SOURCEPF(whoami));
4696 
4697 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4698 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4699 }
4700 
4701 /**
4702  *	t4_intr_clear - clear all interrupts
4703  *	@adapter: the adapter whose interrupts should be cleared
4704  *
4705  *	Clears all interrupts.  The caller must be a PCI function managing
4706  *	global interrupts.
4707  */
4708 void t4_intr_clear(struct adapter *adapter)
4709 {
4710 	static const unsigned int cause_reg[] = {
4711 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4712 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4713 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4714 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4715 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4716 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4717 		A_TP_INT_CAUSE,
4718 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4719 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4720 		A_MPS_RX_PERR_INT_CAUSE,
4721 		A_CPL_INTR_CAUSE,
4722 		MYPF_REG(A_PL_PF_INT_CAUSE),
4723 		A_PL_PL_INT_CAUSE,
4724 		A_LE_DB_INT_CAUSE,
4725 	};
4726 
4727 	unsigned int i;
4728 
4729 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4730 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4731 
4732 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4733 				A_MC_P_INT_CAUSE, 0xffffffff);
4734 
4735 	if (is_t4(adapter)) {
4736 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4737 				0xffffffff);
4738 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4739 				0xffffffff);
4740 	} else
4741 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4742 
4743 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4744 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4745 }
4746 
4747 /**
4748  *	hash_mac_addr - return the hash value of a MAC address
4749  *	@addr: the 48-bit Ethernet MAC address
4750  *
4751  *	Hashes a MAC address according to the hash function used by HW inexact
4752  *	(hash) address matching.
4753  */
4754 static int hash_mac_addr(const u8 *addr)
4755 {
4756 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4757 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4758 	a ^= b;
4759 	a ^= (a >> 12);
4760 	a ^= (a >> 6);
4761 	return a & 0x3f;
4762 }
4763 
4764 /**
4765  *	t4_config_rss_range - configure a portion of the RSS mapping table
4766  *	@adapter: the adapter
4767  *	@mbox: mbox to use for the FW command
4768  *	@viid: virtual interface whose RSS subtable is to be written
4769  *	@start: start entry in the table to write
4770  *	@n: how many table entries to write
4771  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4772  *	@nrspq: number of values in @rspq
4773  *
4774  *	Programs the selected part of the VI's RSS mapping table with the
4775  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4776  *	until the full table range is populated.
4777  *
4778  *	The caller must ensure the values in @rspq are in the range allowed for
4779  *	@viid.
4780  */
4781 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4782 			int start, int n, const u16 *rspq, unsigned int nrspq)
4783 {
4784 	int ret;
4785 	const u16 *rsp = rspq;
4786 	const u16 *rsp_end = rspq + nrspq;
4787 	struct fw_rss_ind_tbl_cmd cmd;
4788 
4789 	memset(&cmd, 0, sizeof(cmd));
4790 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4791 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4792 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4793 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4794 
4795 	/*
4796 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4797 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4798 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4799 	 * reserved.
4800 	 */
4801 	while (n > 0) {
4802 		int nq = min(n, 32);
4803 		int nq_packed = 0;
4804 		__be32 *qp = &cmd.iq0_to_iq2;
4805 
4806 		/*
4807 		 * Set up the firmware RSS command header to send the next
4808 		 * "nq" Ingress Queue IDs to the firmware.
4809 		 */
4810 		cmd.niqid = cpu_to_be16(nq);
4811 		cmd.startidx = cpu_to_be16(start);
4812 
4813 		/*
4814 		 * "nq" more done for the start of the next loop.
4815 		 */
4816 		start += nq;
4817 		n -= nq;
4818 
4819 		/*
4820 		 * While there are still Ingress Queue IDs to stuff into the
4821 		 * current firmware RSS command, retrieve them from the
4822 		 * Ingress Queue ID array and insert them into the command.
4823 		 */
4824 		while (nq > 0) {
4825 			/*
4826 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4827 			 * around the Ingress Queue ID array if necessary) and
4828 			 * insert them into the firmware RSS command at the
4829 			 * current 3-tuple position within the commad.
4830 			 */
4831 			u16 qbuf[3];
4832 			u16 *qbp = qbuf;
4833 			int nqbuf = min(3, nq);
4834 
4835 			nq -= nqbuf;
4836 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4837 			while (nqbuf && nq_packed < 32) {
4838 				nqbuf--;
4839 				nq_packed++;
4840 				*qbp++ = *rsp++;
4841 				if (rsp >= rsp_end)
4842 					rsp = rspq;
4843 			}
4844 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4845 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4846 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4847 		}
4848 
4849 		/*
4850 		 * Send this portion of the RRS table update to the firmware;
4851 		 * bail out on any errors.
4852 		 */
4853 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4854 		if (ret)
4855 			return ret;
4856 	}
4857 	return 0;
4858 }
4859 
4860 /**
4861  *	t4_config_glbl_rss - configure the global RSS mode
4862  *	@adapter: the adapter
4863  *	@mbox: mbox to use for the FW command
4864  *	@mode: global RSS mode
4865  *	@flags: mode-specific flags
4866  *
4867  *	Sets the global RSS mode.
4868  */
4869 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4870 		       unsigned int flags)
4871 {
4872 	struct fw_rss_glb_config_cmd c;
4873 
4874 	memset(&c, 0, sizeof(c));
4875 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4876 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4877 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4878 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4879 		c.u.manual.mode_pkd =
4880 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4881 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4882 		c.u.basicvirtual.mode_keymode =
4883 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4884 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4885 	} else
4886 		return -EINVAL;
4887 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4888 }
4889 
4890 /**
4891  *	t4_config_vi_rss - configure per VI RSS settings
4892  *	@adapter: the adapter
4893  *	@mbox: mbox to use for the FW command
4894  *	@viid: the VI id
4895  *	@flags: RSS flags
4896  *	@defq: id of the default RSS queue for the VI.
4897  *	@skeyidx: RSS secret key table index for non-global mode
4898  *	@skey: RSS vf_scramble key for VI.
4899  *
4900  *	Configures VI-specific RSS properties.
4901  */
4902 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4903 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
4904 		     unsigned int skey)
4905 {
4906 	struct fw_rss_vi_config_cmd c;
4907 
4908 	memset(&c, 0, sizeof(c));
4909 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4910 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4911 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4912 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4913 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4914 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4915 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4916 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4917 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4918 
4919 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4920 }
4921 
4922 /* Read an RSS table row */
4923 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4924 {
4925 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4926 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4927 				   5, 0, val);
4928 }
4929 
4930 /**
4931  *	t4_read_rss - read the contents of the RSS mapping table
4932  *	@adapter: the adapter
4933  *	@map: holds the contents of the RSS mapping table
4934  *
4935  *	Reads the contents of the RSS hash->queue mapping table.
4936  */
4937 int t4_read_rss(struct adapter *adapter, u16 *map)
4938 {
4939 	u32 val;
4940 	int i, ret;
4941 
4942 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4943 		ret = rd_rss_row(adapter, i, &val);
4944 		if (ret)
4945 			return ret;
4946 		*map++ = G_LKPTBLQUEUE0(val);
4947 		*map++ = G_LKPTBLQUEUE1(val);
4948 	}
4949 	return 0;
4950 }
4951 
4952 /**
4953  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
4954  * @adap: the adapter
4955  * @cmd: TP fw ldst address space type
4956  * @vals: where the indirect register values are stored/written
4957  * @nregs: how many indirect registers to read/write
4958  * @start_idx: index of first indirect register to read/write
4959  * @rw: Read (1) or Write (0)
4960  * @sleep_ok: if true we may sleep while awaiting command completion
4961  *
4962  * Access TP indirect registers through LDST
4963  **/
4964 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
4965 			    unsigned int nregs, unsigned int start_index,
4966 			    unsigned int rw, bool sleep_ok)
4967 {
4968 	int ret = 0;
4969 	unsigned int i;
4970 	struct fw_ldst_cmd c;
4971 
4972 	for (i = 0; i < nregs; i++) {
4973 		memset(&c, 0, sizeof(c));
4974 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4975 						F_FW_CMD_REQUEST |
4976 						(rw ? F_FW_CMD_READ :
4977 						      F_FW_CMD_WRITE) |
4978 						V_FW_LDST_CMD_ADDRSPACE(cmd));
4979 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4980 
4981 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4982 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4983 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
4984 				      sleep_ok);
4985 		if (ret)
4986 			return ret;
4987 
4988 		if (rw)
4989 			vals[i] = be32_to_cpu(c.u.addrval.val);
4990 	}
4991 	return 0;
4992 }
4993 
4994 /**
4995  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
4996  * @adap: the adapter
4997  * @reg_addr: Address Register
4998  * @reg_data: Data register
4999  * @buff: where the indirect register values are stored/written
5000  * @nregs: how many indirect registers to read/write
5001  * @start_index: index of first indirect register to read/write
5002  * @rw: READ(1) or WRITE(0)
5003  * @sleep_ok: if true we may sleep while awaiting command completion
5004  *
5005  * Read/Write TP indirect registers through LDST if possible.
5006  * Else, use backdoor access
5007  **/
5008 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5009 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5010 			      bool sleep_ok)
5011 {
5012 	int rc = -EINVAL;
5013 	int cmd;
5014 
5015 	switch (reg_addr) {
5016 	case A_TP_PIO_ADDR:
5017 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5018 		break;
5019 	case A_TP_TM_PIO_ADDR:
5020 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5021 		break;
5022 	case A_TP_MIB_INDEX:
5023 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5024 		break;
5025 	default:
5026 		goto indirect_access;
5027 	}
5028 
5029 	if (t4_use_ldst(adap))
5030 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5031 				      sleep_ok);
5032 
5033 indirect_access:
5034 
5035 	if (rc) {
5036 		if (rw)
5037 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5038 					 start_index);
5039 		else
5040 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5041 					  start_index);
5042 	}
5043 }
5044 
5045 /**
5046  * t4_tp_pio_read - Read TP PIO registers
5047  * @adap: the adapter
5048  * @buff: where the indirect register values are written
5049  * @nregs: how many indirect registers to read
5050  * @start_index: index of first indirect register to read
5051  * @sleep_ok: if true we may sleep while awaiting command completion
5052  *
5053  * Read TP PIO Registers
5054  **/
5055 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5056 		    u32 start_index, bool sleep_ok)
5057 {
5058 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5059 			  start_index, 1, sleep_ok);
5060 }
5061 
5062 /**
5063  * t4_tp_pio_write - Write TP PIO registers
5064  * @adap: the adapter
5065  * @buff: where the indirect register values are stored
5066  * @nregs: how many indirect registers to write
5067  * @start_index: index of first indirect register to write
5068  * @sleep_ok: if true we may sleep while awaiting command completion
5069  *
5070  * Write TP PIO Registers
5071  **/
5072 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5073 		     u32 start_index, bool sleep_ok)
5074 {
5075 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5076 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5077 }
5078 
5079 /**
5080  * t4_tp_tm_pio_read - Read TP TM PIO registers
5081  * @adap: the adapter
5082  * @buff: where the indirect register values are written
5083  * @nregs: how many indirect registers to read
5084  * @start_index: index of first indirect register to read
5085  * @sleep_ok: if true we may sleep while awaiting command completion
5086  *
5087  * Read TP TM PIO Registers
5088  **/
5089 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5090 		       u32 start_index, bool sleep_ok)
5091 {
5092 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5093 			  nregs, start_index, 1, sleep_ok);
5094 }
5095 
5096 /**
5097  * t4_tp_mib_read - Read TP MIB registers
5098  * @adap: the adapter
5099  * @buff: where the indirect register values are written
5100  * @nregs: how many indirect registers to read
5101  * @start_index: index of first indirect register to read
5102  * @sleep_ok: if true we may sleep while awaiting command completion
5103  *
5104  * Read TP MIB Registers
5105  **/
5106 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5107 		    bool sleep_ok)
5108 {
5109 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5110 			  start_index, 1, sleep_ok);
5111 }
5112 
5113 /**
5114  *	t4_read_rss_key - read the global RSS key
5115  *	@adap: the adapter
5116  *	@key: 10-entry array holding the 320-bit RSS key
5117  * 	@sleep_ok: if true we may sleep while awaiting command completion
5118  *
5119  *	Reads the global 320-bit RSS key.
5120  */
5121 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5122 {
5123 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5124 }
5125 
5126 /**
5127  *	t4_write_rss_key - program one of the RSS keys
5128  *	@adap: the adapter
5129  *	@key: 10-entry array holding the 320-bit RSS key
5130  *	@idx: which RSS key to write
5131  * 	@sleep_ok: if true we may sleep while awaiting command completion
5132  *
5133  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5134  *	0..15 the corresponding entry in the RSS key table is written,
5135  *	otherwise the global RSS key is written.
5136  */
5137 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5138 		      bool sleep_ok)
5139 {
5140 	u8 rss_key_addr_cnt = 16;
5141 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5142 
5143 	/*
5144 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5145 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5146 	 * as index[5:4](upper 2) into key table
5147 	 */
5148 	if ((chip_id(adap) > CHELSIO_T5) &&
5149 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5150 		rss_key_addr_cnt = 32;
5151 
5152 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5153 
5154 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5155 		if (rss_key_addr_cnt > 16)
5156 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5157 				     vrt | V_KEYWRADDRX(idx >> 4) |
5158 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5159 		else
5160 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5161 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5162 	}
5163 }
5164 
5165 /**
5166  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5167  *	@adapter: the adapter
5168  *	@index: the entry in the PF RSS table to read
5169  *	@valp: where to store the returned value
5170  * 	@sleep_ok: if true we may sleep while awaiting command completion
5171  *
5172  *	Reads the PF RSS Configuration Table at the specified index and returns
5173  *	the value found there.
5174  */
5175 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5176 			   u32 *valp, bool sleep_ok)
5177 {
5178 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5179 }
5180 
5181 /**
5182  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5183  *	@adapter: the adapter
5184  *	@index: the entry in the VF RSS table to read
5185  *	@val: the value to store
5186  * 	@sleep_ok: if true we may sleep while awaiting command completion
5187  *
5188  *	Writes the PF RSS Configuration Table at the specified index with the
5189  *	specified value.
5190  */
5191 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5192 			    u32 val, bool sleep_ok)
5193 {
5194 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5195 			sleep_ok);
5196 }
5197 
5198 /**
5199  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5200  *	@adapter: the adapter
5201  *	@index: the entry in the VF RSS table to read
5202  *	@vfl: where to store the returned VFL
5203  *	@vfh: where to store the returned VFH
5204  * 	@sleep_ok: if true we may sleep while awaiting command completion
5205  *
5206  *	Reads the VF RSS Configuration Table at the specified index and returns
5207  *	the (VFL, VFH) values found there.
5208  */
5209 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5210 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5211 {
5212 	u32 vrt, mask, data;
5213 
5214 	if (chip_id(adapter) <= CHELSIO_T5) {
5215 		mask = V_VFWRADDR(M_VFWRADDR);
5216 		data = V_VFWRADDR(index);
5217 	} else {
5218 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5219 		 data = V_T6_VFWRADDR(index);
5220 	}
5221 	/*
5222 	 * Request that the index'th VF Table values be read into VFL/VFH.
5223 	 */
5224 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5225 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5226 	vrt |= data | F_VFRDEN;
5227 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5228 
5229 	/*
5230 	 * Grab the VFL/VFH values ...
5231 	 */
5232 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5233 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5234 }
5235 
5236 /**
5237  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5238  *
5239  *	@adapter: the adapter
5240  *	@index: the entry in the VF RSS table to write
5241  *	@vfl: the VFL to store
5242  *	@vfh: the VFH to store
5243  *
5244  *	Writes the VF RSS Configuration Table at the specified index with the
5245  *	specified (VFL, VFH) values.
5246  */
5247 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5248 			    u32 vfl, u32 vfh, bool sleep_ok)
5249 {
5250 	u32 vrt, mask, data;
5251 
5252 	if (chip_id(adapter) <= CHELSIO_T5) {
5253 		mask = V_VFWRADDR(M_VFWRADDR);
5254 		data = V_VFWRADDR(index);
5255 	} else {
5256 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5257 		data = V_T6_VFWRADDR(index);
5258 	}
5259 
5260 	/*
5261 	 * Load up VFL/VFH with the values to be written ...
5262 	 */
5263 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5264 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5265 
5266 	/*
5267 	 * Write the VFL/VFH into the VF Table at index'th location.
5268 	 */
5269 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5270 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5271 	vrt |= data | F_VFRDEN;
5272 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5273 }
5274 
5275 /**
5276  *	t4_read_rss_pf_map - read PF RSS Map
5277  *	@adapter: the adapter
5278  * 	@sleep_ok: if true we may sleep while awaiting command completion
5279  *
5280  *	Reads the PF RSS Map register and returns its value.
5281  */
5282 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5283 {
5284 	u32 pfmap;
5285 
5286 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5287 
5288 	return pfmap;
5289 }
5290 
5291 /**
5292  *	t4_write_rss_pf_map - write PF RSS Map
5293  *	@adapter: the adapter
5294  *	@pfmap: PF RSS Map value
5295  *
5296  *	Writes the specified value to the PF RSS Map register.
5297  */
5298 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5299 {
5300 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5301 }
5302 
5303 /**
5304  *	t4_read_rss_pf_mask - read PF RSS Mask
5305  *	@adapter: the adapter
5306  * 	@sleep_ok: if true we may sleep while awaiting command completion
5307  *
5308  *	Reads the PF RSS Mask register and returns its value.
5309  */
5310 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5311 {
5312 	u32 pfmask;
5313 
5314 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5315 
5316 	return pfmask;
5317 }
5318 
5319 /**
5320  *	t4_write_rss_pf_mask - write PF RSS Mask
5321  *	@adapter: the adapter
5322  *	@pfmask: PF RSS Mask value
5323  *
5324  *	Writes the specified value to the PF RSS Mask register.
5325  */
5326 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
5327 {
5328 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5329 }
5330 
5331 /**
5332  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5333  *	@adap: the adapter
5334  *	@v4: holds the TCP/IP counter values
5335  *	@v6: holds the TCP/IPv6 counter values
5336  * 	@sleep_ok: if true we may sleep while awaiting command completion
5337  *
5338  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5339  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5340  */
5341 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5342 			 struct tp_tcp_stats *v6, bool sleep_ok)
5343 {
5344 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5345 
5346 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5347 #define STAT(x)     val[STAT_IDX(x)]
5348 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5349 
5350 	if (v4) {
5351 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5352 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
5353 		v4->tcp_out_rsts = STAT(OUT_RST);
5354 		v4->tcp_in_segs  = STAT64(IN_SEG);
5355 		v4->tcp_out_segs = STAT64(OUT_SEG);
5356 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5357 	}
5358 	if (v6) {
5359 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5360 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
5361 		v6->tcp_out_rsts = STAT(OUT_RST);
5362 		v6->tcp_in_segs  = STAT64(IN_SEG);
5363 		v6->tcp_out_segs = STAT64(OUT_SEG);
5364 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5365 	}
5366 #undef STAT64
5367 #undef STAT
5368 #undef STAT_IDX
5369 }
5370 
5371 /**
5372  *	t4_tp_get_err_stats - read TP's error MIB counters
5373  *	@adap: the adapter
5374  *	@st: holds the counter values
5375  * 	@sleep_ok: if true we may sleep while awaiting command completion
5376  *
5377  *	Returns the values of TP's error counters.
5378  */
5379 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5380 			 bool sleep_ok)
5381 {
5382 	int nchan = adap->chip_params->nchan;
5383 
5384 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
5385 		       sleep_ok);
5386 
5387 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
5388 		       sleep_ok);
5389 
5390 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
5391 		       sleep_ok);
5392 
5393 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5394 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
5395 
5396 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5397 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
5398 
5399 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
5400 		       sleep_ok);
5401 
5402 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5403 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
5404 
5405 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5406 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
5407 
5408 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
5409 		       sleep_ok);
5410 }
5411 
5412 /**
5413  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5414  *	@adap: the adapter
5415  *	@st: holds the counter values
5416  *
5417  *	Returns the values of TP's proxy counters.
5418  */
5419 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
5420     bool sleep_ok)
5421 {
5422 	int nchan = adap->chip_params->nchan;
5423 
5424 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
5425 }
5426 
5427 /**
5428  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5429  *	@adap: the adapter
5430  *	@st: holds the counter values
5431  * 	@sleep_ok: if true we may sleep while awaiting command completion
5432  *
5433  *	Returns the values of TP's CPL counters.
5434  */
5435 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5436 			 bool sleep_ok)
5437 {
5438 	int nchan = adap->chip_params->nchan;
5439 
5440 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
5441 
5442 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
5443 }
5444 
5445 /**
5446  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5447  *	@adap: the adapter
5448  *	@st: holds the counter values
5449  *
5450  *	Returns the values of TP's RDMA counters.
5451  */
5452 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5453 			  bool sleep_ok)
5454 {
5455 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
5456 		       sleep_ok);
5457 }
5458 
5459 /**
5460  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5461  *	@adap: the adapter
5462  *	@idx: the port index
5463  *	@st: holds the counter values
5464  * 	@sleep_ok: if true we may sleep while awaiting command completion
5465  *
5466  *	Returns the values of TP's FCoE counters for the selected port.
5467  */
5468 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5469 		       struct tp_fcoe_stats *st, bool sleep_ok)
5470 {
5471 	u32 val[2];
5472 
5473 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
5474 		       sleep_ok);
5475 
5476 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5477 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
5478 
5479 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
5480 		       sleep_ok);
5481 
5482 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5483 }
5484 
5485 /**
5486  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5487  *	@adap: the adapter
5488  *	@st: holds the counter values
5489  * 	@sleep_ok: if true we may sleep while awaiting command completion
5490  *
5491  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5492  */
5493 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5494 		      bool sleep_ok)
5495 {
5496 	u32 val[4];
5497 
5498 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
5499 
5500 	st->frames = val[0];
5501 	st->drops = val[1];
5502 	st->octets = ((u64)val[2] << 32) | val[3];
5503 }
5504 
5505 /**
5506  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5507  *	@adap: the adapter
5508  *	@mtus: where to store the MTU values
5509  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5510  *
5511  *	Reads the HW path MTU table.
5512  */
5513 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5514 {
5515 	u32 v;
5516 	int i;
5517 
5518 	for (i = 0; i < NMTUS; ++i) {
5519 		t4_write_reg(adap, A_TP_MTU_TABLE,
5520 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5521 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5522 		mtus[i] = G_MTUVALUE(v);
5523 		if (mtu_log)
5524 			mtu_log[i] = G_MTUWIDTH(v);
5525 	}
5526 }
5527 
5528 /**
5529  *	t4_read_cong_tbl - reads the congestion control table
5530  *	@adap: the adapter
5531  *	@incr: where to store the alpha values
5532  *
5533  *	Reads the additive increments programmed into the HW congestion
5534  *	control table.
5535  */
5536 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5537 {
5538 	unsigned int mtu, w;
5539 
5540 	for (mtu = 0; mtu < NMTUS; ++mtu)
5541 		for (w = 0; w < NCCTRL_WIN; ++w) {
5542 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5543 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5544 			incr[mtu][w] = (u16)t4_read_reg(adap,
5545 						A_TP_CCTRL_TABLE) & 0x1fff;
5546 		}
5547 }
5548 
5549 /**
5550  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5551  *	@adap: the adapter
5552  *	@addr: the indirect TP register address
5553  *	@mask: specifies the field within the register to modify
5554  *	@val: new value for the field
5555  *
5556  *	Sets a field of an indirect TP register to the given value.
5557  */
5558 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5559 			    unsigned int mask, unsigned int val)
5560 {
5561 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5562 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5563 	t4_write_reg(adap, A_TP_PIO_DATA, val);
5564 }
5565 
5566 /**
5567  *	init_cong_ctrl - initialize congestion control parameters
5568  *	@a: the alpha values for congestion control
5569  *	@b: the beta values for congestion control
5570  *
5571  *	Initialize the congestion control parameters.
5572  */
5573 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5574 {
5575 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5576 	a[9] = 2;
5577 	a[10] = 3;
5578 	a[11] = 4;
5579 	a[12] = 5;
5580 	a[13] = 6;
5581 	a[14] = 7;
5582 	a[15] = 8;
5583 	a[16] = 9;
5584 	a[17] = 10;
5585 	a[18] = 14;
5586 	a[19] = 17;
5587 	a[20] = 21;
5588 	a[21] = 25;
5589 	a[22] = 30;
5590 	a[23] = 35;
5591 	a[24] = 45;
5592 	a[25] = 60;
5593 	a[26] = 80;
5594 	a[27] = 100;
5595 	a[28] = 200;
5596 	a[29] = 300;
5597 	a[30] = 400;
5598 	a[31] = 500;
5599 
5600 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5601 	b[9] = b[10] = 1;
5602 	b[11] = b[12] = 2;
5603 	b[13] = b[14] = b[15] = b[16] = 3;
5604 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5605 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5606 	b[28] = b[29] = 6;
5607 	b[30] = b[31] = 7;
5608 }
5609 
5610 /* The minimum additive increment value for the congestion control table */
5611 #define CC_MIN_INCR 2U
5612 
5613 /**
5614  *	t4_load_mtus - write the MTU and congestion control HW tables
5615  *	@adap: the adapter
5616  *	@mtus: the values for the MTU table
5617  *	@alpha: the values for the congestion control alpha parameter
5618  *	@beta: the values for the congestion control beta parameter
5619  *
5620  *	Write the HW MTU table with the supplied MTUs and the high-speed
5621  *	congestion control table with the supplied alpha, beta, and MTUs.
5622  *	We write the two tables together because the additive increments
5623  *	depend on the MTUs.
5624  */
5625 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5626 		  const unsigned short *alpha, const unsigned short *beta)
5627 {
5628 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5629 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5630 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5631 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5632 	};
5633 
5634 	unsigned int i, w;
5635 
5636 	for (i = 0; i < NMTUS; ++i) {
5637 		unsigned int mtu = mtus[i];
5638 		unsigned int log2 = fls(mtu);
5639 
5640 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5641 			log2--;
5642 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5643 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5644 
5645 		for (w = 0; w < NCCTRL_WIN; ++w) {
5646 			unsigned int inc;
5647 
5648 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5649 				  CC_MIN_INCR);
5650 
5651 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5652 				     (w << 16) | (beta[w] << 13) | inc);
5653 		}
5654 	}
5655 }
5656 
5657 /**
5658  *	t4_set_pace_tbl - set the pace table
5659  *	@adap: the adapter
5660  *	@pace_vals: the pace values in microseconds
5661  *	@start: index of the first entry in the HW pace table to set
5662  *	@n: how many entries to set
5663  *
5664  *	Sets (a subset of the) HW pace table.
5665  */
5666 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5667 		     unsigned int start, unsigned int n)
5668 {
5669 	unsigned int vals[NTX_SCHED], i;
5670 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5671 
5672 	if (n > NTX_SCHED)
5673 	    return -ERANGE;
5674 
5675 	/* convert values from us to dack ticks, rounding to closest value */
5676 	for (i = 0; i < n; i++, pace_vals++) {
5677 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5678 		if (vals[i] > 0x7ff)
5679 			return -ERANGE;
5680 		if (*pace_vals && vals[i] == 0)
5681 			return -ERANGE;
5682 	}
5683 	for (i = 0; i < n; i++, start++)
5684 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5685 	return 0;
5686 }
5687 
5688 /**
5689  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5690  *	@adap: the adapter
5691  *	@kbps: target rate in Kbps
5692  *	@sched: the scheduler index
5693  *
5694  *	Configure a Tx HW scheduler for the target rate.
5695  */
5696 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5697 {
5698 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5699 	unsigned int clk = adap->params.vpd.cclk * 1000;
5700 	unsigned int selected_cpt = 0, selected_bpt = 0;
5701 
5702 	if (kbps > 0) {
5703 		kbps *= 125;     /* -> bytes */
5704 		for (cpt = 1; cpt <= 255; cpt++) {
5705 			tps = clk / cpt;
5706 			bpt = (kbps + tps / 2) / tps;
5707 			if (bpt > 0 && bpt <= 255) {
5708 				v = bpt * tps;
5709 				delta = v >= kbps ? v - kbps : kbps - v;
5710 				if (delta < mindelta) {
5711 					mindelta = delta;
5712 					selected_cpt = cpt;
5713 					selected_bpt = bpt;
5714 				}
5715 			} else if (selected_cpt)
5716 				break;
5717 		}
5718 		if (!selected_cpt)
5719 			return -EINVAL;
5720 	}
5721 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5722 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5723 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5724 	if (sched & 1)
5725 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5726 	else
5727 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5728 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5729 	return 0;
5730 }
5731 
5732 /**
5733  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5734  *	@adap: the adapter
5735  *	@sched: the scheduler index
5736  *	@ipg: the interpacket delay in tenths of nanoseconds
5737  *
5738  *	Set the interpacket delay for a HW packet rate scheduler.
5739  */
5740 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5741 {
5742 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5743 
5744 	/* convert ipg to nearest number of core clocks */
5745 	ipg *= core_ticks_per_usec(adap);
5746 	ipg = (ipg + 5000) / 10000;
5747 	if (ipg > M_TXTIMERSEPQ0)
5748 		return -EINVAL;
5749 
5750 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5751 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5752 	if (sched & 1)
5753 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5754 	else
5755 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5756 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5757 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5758 	return 0;
5759 }
5760 
5761 /*
5762  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5763  * clocks.  The formula is
5764  *
5765  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5766  *
5767  * which is equivalent to
5768  *
5769  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5770  */
5771 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5772 {
5773 	u64 v = bytes256 * adap->params.vpd.cclk;
5774 
5775 	return v * 62 + v / 2;
5776 }
5777 
5778 /**
5779  *	t4_get_chan_txrate - get the current per channel Tx rates
5780  *	@adap: the adapter
5781  *	@nic_rate: rates for NIC traffic
5782  *	@ofld_rate: rates for offloaded traffic
5783  *
5784  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5785  *	for each channel.
5786  */
5787 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5788 {
5789 	u32 v;
5790 
5791 	v = t4_read_reg(adap, A_TP_TX_TRATE);
5792 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5793 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5794 	if (adap->chip_params->nchan > 2) {
5795 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5796 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5797 	}
5798 
5799 	v = t4_read_reg(adap, A_TP_TX_ORATE);
5800 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5801 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5802 	if (adap->chip_params->nchan > 2) {
5803 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5804 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5805 	}
5806 }
5807 
5808 /**
5809  *	t4_set_trace_filter - configure one of the tracing filters
5810  *	@adap: the adapter
5811  *	@tp: the desired trace filter parameters
5812  *	@idx: which filter to configure
5813  *	@enable: whether to enable or disable the filter
5814  *
5815  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5816  *	it indicates that the filter is already written in the register and it
5817  *	just needs to be enabled or disabled.
5818  */
5819 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5820     int idx, int enable)
5821 {
5822 	int i, ofst = idx * 4;
5823 	u32 data_reg, mask_reg, cfg;
5824 	u32 multitrc = F_TRCMULTIFILTER;
5825 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5826 
5827 	if (idx < 0 || idx >= NTRACE)
5828 		return -EINVAL;
5829 
5830 	if (tp == NULL || !enable) {
5831 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5832 		    enable ? en : 0);
5833 		return 0;
5834 	}
5835 
5836 	/*
5837 	 * TODO - After T4 data book is updated, specify the exact
5838 	 * section below.
5839 	 *
5840 	 * See T4 data book - MPS section for a complete description
5841 	 * of the below if..else handling of A_MPS_TRC_CFG register
5842 	 * value.
5843 	 */
5844 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5845 	if (cfg & F_TRCMULTIFILTER) {
5846 		/*
5847 		 * If multiple tracers are enabled, then maximum
5848 		 * capture size is 2.5KB (FIFO size of a single channel)
5849 		 * minus 2 flits for CPL_TRACE_PKT header.
5850 		 */
5851 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5852 			return -EINVAL;
5853 	} else {
5854 		/*
5855 		 * If multiple tracers are disabled, to avoid deadlocks
5856 		 * maximum packet capture size of 9600 bytes is recommended.
5857 		 * Also in this mode, only trace0 can be enabled and running.
5858 		 */
5859 		multitrc = 0;
5860 		if (tp->snap_len > 9600 || idx)
5861 			return -EINVAL;
5862 	}
5863 
5864 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5865 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5866 	    tp->min_len > M_TFMINPKTSIZE)
5867 		return -EINVAL;
5868 
5869 	/* stop the tracer we'll be changing */
5870 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5871 
5872 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5873 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5874 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5875 
5876 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5877 		t4_write_reg(adap, data_reg, tp->data[i]);
5878 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5879 	}
5880 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5881 		     V_TFCAPTUREMAX(tp->snap_len) |
5882 		     V_TFMINPKTSIZE(tp->min_len));
5883 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5884 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5885 		     (is_t4(adap) ?
5886 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5887 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5888 
5889 	return 0;
5890 }
5891 
5892 /**
5893  *	t4_get_trace_filter - query one of the tracing filters
5894  *	@adap: the adapter
5895  *	@tp: the current trace filter parameters
5896  *	@idx: which trace filter to query
5897  *	@enabled: non-zero if the filter is enabled
5898  *
5899  *	Returns the current settings of one of the HW tracing filters.
5900  */
5901 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5902 			 int *enabled)
5903 {
5904 	u32 ctla, ctlb;
5905 	int i, ofst = idx * 4;
5906 	u32 data_reg, mask_reg;
5907 
5908 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5909 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5910 
5911 	if (is_t4(adap)) {
5912 		*enabled = !!(ctla & F_TFEN);
5913 		tp->port =  G_TFPORT(ctla);
5914 		tp->invert = !!(ctla & F_TFINVERTMATCH);
5915 	} else {
5916 		*enabled = !!(ctla & F_T5_TFEN);
5917 		tp->port = G_T5_TFPORT(ctla);
5918 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5919 	}
5920 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5921 	tp->min_len = G_TFMINPKTSIZE(ctlb);
5922 	tp->skip_ofst = G_TFOFFSET(ctla);
5923 	tp->skip_len = G_TFLENGTH(ctla);
5924 
5925 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5926 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5927 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5928 
5929 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5930 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5931 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5932 	}
5933 }
5934 
5935 /**
5936  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5937  *	@adap: the adapter
5938  *	@cnt: where to store the count statistics
5939  *	@cycles: where to store the cycle statistics
5940  *
5941  *	Returns performance statistics from PMTX.
5942  */
5943 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5944 {
5945 	int i;
5946 	u32 data[2];
5947 
5948 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5949 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5950 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5951 		if (is_t4(adap))
5952 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5953 		else {
5954 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5955 					 A_PM_TX_DBG_DATA, data, 2,
5956 					 A_PM_TX_DBG_STAT_MSB);
5957 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5958 		}
5959 	}
5960 }
5961 
5962 /**
5963  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5964  *	@adap: the adapter
5965  *	@cnt: where to store the count statistics
5966  *	@cycles: where to store the cycle statistics
5967  *
5968  *	Returns performance statistics from PMRX.
5969  */
5970 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5971 {
5972 	int i;
5973 	u32 data[2];
5974 
5975 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5976 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5977 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5978 		if (is_t4(adap)) {
5979 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5980 		} else {
5981 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5982 					 A_PM_RX_DBG_DATA, data, 2,
5983 					 A_PM_RX_DBG_STAT_MSB);
5984 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5985 		}
5986 	}
5987 }
5988 
5989 /**
5990  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5991  *	@adap: the adapter
5992  *	@idx: the port index
5993  *
5994  *	Returns a bitmap indicating which MPS buffer groups are associated
5995  *	with the given port.  Bit i is set if buffer group i is used by the
5996  *	port.
5997  */
5998 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5999 {
6000 	u32 n;
6001 
6002 	if (adap->params.mps_bg_map)
6003 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6004 
6005 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6006 	if (n == 0)
6007 		return idx == 0 ? 0xf : 0;
6008 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6009 		return idx < 2 ? (3 << (2 * idx)) : 0;
6010 	return 1 << idx;
6011 }
6012 
6013 /*
6014  * TP RX e-channels associated with the port.
6015  */
6016 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6017 {
6018 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6019 
6020 	if (n == 0)
6021 		return idx == 0 ? 0xf : 0;
6022 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6023 		return idx < 2 ? (3 << (2 * idx)) : 0;
6024 	return 1 << idx;
6025 }
6026 
6027 /**
6028  *      t4_get_port_type_description - return Port Type string description
6029  *      @port_type: firmware Port Type enumeration
6030  */
6031 const char *t4_get_port_type_description(enum fw_port_type port_type)
6032 {
6033 	static const char *const port_type_description[] = {
6034 		"Fiber_XFI",
6035 		"Fiber_XAUI",
6036 		"BT_SGMII",
6037 		"BT_XFI",
6038 		"BT_XAUI",
6039 		"KX4",
6040 		"CX4",
6041 		"KX",
6042 		"KR",
6043 		"SFP",
6044 		"BP_AP",
6045 		"BP4_AP",
6046 		"QSFP_10G",
6047 		"QSA",
6048 		"QSFP",
6049 		"BP40_BA",
6050 		"KR4_100G",
6051 		"CR4_QSFP",
6052 		"CR_QSFP",
6053 		"CR2_QSFP",
6054 		"SFP28",
6055 		"KR_SFP28",
6056 	};
6057 
6058 	if (port_type < ARRAY_SIZE(port_type_description))
6059 		return port_type_description[port_type];
6060 	return "UNKNOWN";
6061 }
6062 
6063 /**
6064  *      t4_get_port_stats_offset - collect port stats relative to a previous
6065  *				   snapshot
6066  *      @adap: The adapter
6067  *      @idx: The port
6068  *      @stats: Current stats to fill
6069  *      @offset: Previous stats snapshot
6070  */
6071 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6072 		struct port_stats *stats,
6073 		struct port_stats *offset)
6074 {
6075 	u64 *s, *o;
6076 	int i;
6077 
6078 	t4_get_port_stats(adap, idx, stats);
6079 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6080 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6081 			i++, s++, o++)
6082 		*s -= *o;
6083 }
6084 
6085 /**
6086  *	t4_get_port_stats - collect port statistics
6087  *	@adap: the adapter
6088  *	@idx: the port index
6089  *	@p: the stats structure to fill
6090  *
6091  *	Collect statistics related to the given port from HW.
6092  */
6093 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6094 {
6095 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6096 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6097 
6098 #define GET_STAT(name) \
6099 	t4_read_reg64(adap, \
6100 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6101 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6102 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6103 
6104 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6105 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6106 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6107 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6108 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6109 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6110 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6111 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6112 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6113 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6114 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6115 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6116 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6117 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6118 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6119 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6120 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6121 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6122 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6123 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6124 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6125 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6126 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6127 
6128 	if (chip_id(adap) >= CHELSIO_T5) {
6129 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6130 			p->tx_frames -= p->tx_pause;
6131 			p->tx_octets -= p->tx_pause * 64;
6132 		}
6133 		if (stat_ctl & F_COUNTPAUSEMCTX)
6134 			p->tx_mcast_frames -= p->tx_pause;
6135 	}
6136 
6137 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6138 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6139 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6140 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6141 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6142 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6143 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6144 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6145 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6146 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6147 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6148 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6149 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6150 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6151 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6152 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6153 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6154 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6155 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6156 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6157 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6158 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6159 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6160 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6161 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6162 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6163 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6164 
6165 	if (chip_id(adap) >= CHELSIO_T5) {
6166 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6167 			p->rx_frames -= p->rx_pause;
6168 			p->rx_octets -= p->rx_pause * 64;
6169 		}
6170 		if (stat_ctl & F_COUNTPAUSEMCRX)
6171 			p->rx_mcast_frames -= p->rx_pause;
6172 	}
6173 
6174 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6175 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6176 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6177 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6178 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6179 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6180 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6181 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6182 
6183 #undef GET_STAT
6184 #undef GET_STAT_COM
6185 }
6186 
6187 /**
6188  *	t4_get_lb_stats - collect loopback port statistics
6189  *	@adap: the adapter
6190  *	@idx: the loopback port index
6191  *	@p: the stats structure to fill
6192  *
6193  *	Return HW statistics for the given loopback port.
6194  */
6195 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6196 {
6197 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6198 
6199 #define GET_STAT(name) \
6200 	t4_read_reg64(adap, \
6201 	(is_t4(adap) ? \
6202 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6203 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6204 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6205 
6206 	p->octets	= GET_STAT(BYTES);
6207 	p->frames	= GET_STAT(FRAMES);
6208 	p->bcast_frames	= GET_STAT(BCAST);
6209 	p->mcast_frames	= GET_STAT(MCAST);
6210 	p->ucast_frames	= GET_STAT(UCAST);
6211 	p->error_frames	= GET_STAT(ERROR);
6212 
6213 	p->frames_64		= GET_STAT(64B);
6214 	p->frames_65_127	= GET_STAT(65B_127B);
6215 	p->frames_128_255	= GET_STAT(128B_255B);
6216 	p->frames_256_511	= GET_STAT(256B_511B);
6217 	p->frames_512_1023	= GET_STAT(512B_1023B);
6218 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6219 	p->frames_1519_max	= GET_STAT(1519B_MAX);
6220 	p->drop			= GET_STAT(DROP_FRAMES);
6221 
6222 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6223 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6224 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6225 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6226 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6227 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6228 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6229 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6230 
6231 #undef GET_STAT
6232 #undef GET_STAT_COM
6233 }
6234 
6235 /**
6236  *	t4_wol_magic_enable - enable/disable magic packet WoL
6237  *	@adap: the adapter
6238  *	@port: the physical port index
6239  *	@addr: MAC address expected in magic packets, %NULL to disable
6240  *
6241  *	Enables/disables magic packet wake-on-LAN for the selected port.
6242  */
6243 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6244 			 const u8 *addr)
6245 {
6246 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6247 
6248 	if (is_t4(adap)) {
6249 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6250 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6251 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6252 	} else {
6253 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6254 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6255 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6256 	}
6257 
6258 	if (addr) {
6259 		t4_write_reg(adap, mag_id_reg_l,
6260 			     (addr[2] << 24) | (addr[3] << 16) |
6261 			     (addr[4] << 8) | addr[5]);
6262 		t4_write_reg(adap, mag_id_reg_h,
6263 			     (addr[0] << 8) | addr[1]);
6264 	}
6265 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6266 			 V_MAGICEN(addr != NULL));
6267 }
6268 
6269 /**
6270  *	t4_wol_pat_enable - enable/disable pattern-based WoL
6271  *	@adap: the adapter
6272  *	@port: the physical port index
6273  *	@map: bitmap of which HW pattern filters to set
6274  *	@mask0: byte mask for bytes 0-63 of a packet
6275  *	@mask1: byte mask for bytes 64-127 of a packet
6276  *	@crc: Ethernet CRC for selected bytes
6277  *	@enable: enable/disable switch
6278  *
6279  *	Sets the pattern filters indicated in @map to mask out the bytes
6280  *	specified in @mask0/@mask1 in received packets and compare the CRC of
6281  *	the resulting packet against @crc.  If @enable is %true pattern-based
6282  *	WoL is enabled, otherwise disabled.
6283  */
6284 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6285 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6286 {
6287 	int i;
6288 	u32 port_cfg_reg;
6289 
6290 	if (is_t4(adap))
6291 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6292 	else
6293 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6294 
6295 	if (!enable) {
6296 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6297 		return 0;
6298 	}
6299 	if (map > 0xff)
6300 		return -EINVAL;
6301 
6302 #define EPIO_REG(name) \
6303 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6304 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6305 
6306 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6307 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6308 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6309 
6310 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6311 		if (!(map & 1))
6312 			continue;
6313 
6314 		/* write byte masks */
6315 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6316 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6317 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6318 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6319 			return -ETIMEDOUT;
6320 
6321 		/* write CRC */
6322 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6323 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6324 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6325 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6326 			return -ETIMEDOUT;
6327 	}
6328 #undef EPIO_REG
6329 
6330 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6331 	return 0;
6332 }
6333 
6334 /*     t4_mk_filtdelwr - create a delete filter WR
6335  *     @ftid: the filter ID
6336  *     @wr: the filter work request to populate
6337  *     @qid: ingress queue to receive the delete notification
6338  *
6339  *     Creates a filter work request to delete the supplied filter.  If @qid is
6340  *     negative the delete notification is suppressed.
6341  */
6342 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6343 {
6344 	memset(wr, 0, sizeof(*wr));
6345 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6346 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6347 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6348 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6349 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6350 	if (qid >= 0)
6351 		wr->rx_chan_rx_rpl_iq =
6352 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6353 }
6354 
6355 #define INIT_CMD(var, cmd, rd_wr) do { \
6356 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6357 					F_FW_CMD_REQUEST | \
6358 					F_FW_CMD_##rd_wr); \
6359 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6360 } while (0)
6361 
6362 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6363 			  u32 addr, u32 val)
6364 {
6365 	u32 ldst_addrspace;
6366 	struct fw_ldst_cmd c;
6367 
6368 	memset(&c, 0, sizeof(c));
6369 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6370 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6371 					F_FW_CMD_REQUEST |
6372 					F_FW_CMD_WRITE |
6373 					ldst_addrspace);
6374 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6375 	c.u.addrval.addr = cpu_to_be32(addr);
6376 	c.u.addrval.val = cpu_to_be32(val);
6377 
6378 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6379 }
6380 
6381 /**
6382  *	t4_mdio_rd - read a PHY register through MDIO
6383  *	@adap: the adapter
6384  *	@mbox: mailbox to use for the FW command
6385  *	@phy_addr: the PHY address
6386  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6387  *	@reg: the register to read
6388  *	@valp: where to store the value
6389  *
6390  *	Issues a FW command through the given mailbox to read a PHY register.
6391  */
6392 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6393 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6394 {
6395 	int ret;
6396 	u32 ldst_addrspace;
6397 	struct fw_ldst_cmd c;
6398 
6399 	memset(&c, 0, sizeof(c));
6400 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6401 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6402 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6403 					ldst_addrspace);
6404 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6405 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6406 					 V_FW_LDST_CMD_MMD(mmd));
6407 	c.u.mdio.raddr = cpu_to_be16(reg);
6408 
6409 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6410 	if (ret == 0)
6411 		*valp = be16_to_cpu(c.u.mdio.rval);
6412 	return ret;
6413 }
6414 
6415 /**
6416  *	t4_mdio_wr - write a PHY register through MDIO
6417  *	@adap: the adapter
6418  *	@mbox: mailbox to use for the FW command
6419  *	@phy_addr: the PHY address
6420  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6421  *	@reg: the register to write
6422  *	@valp: value to write
6423  *
6424  *	Issues a FW command through the given mailbox to write a PHY register.
6425  */
6426 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6427 	       unsigned int mmd, unsigned int reg, unsigned int val)
6428 {
6429 	u32 ldst_addrspace;
6430 	struct fw_ldst_cmd c;
6431 
6432 	memset(&c, 0, sizeof(c));
6433 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6434 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6435 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6436 					ldst_addrspace);
6437 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6438 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6439 					 V_FW_LDST_CMD_MMD(mmd));
6440 	c.u.mdio.raddr = cpu_to_be16(reg);
6441 	c.u.mdio.rval = cpu_to_be16(val);
6442 
6443 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6444 }
6445 
6446 /**
6447  *
6448  *	t4_sge_decode_idma_state - decode the idma state
6449  *	@adap: the adapter
6450  *	@state: the state idma is stuck in
6451  */
6452 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6453 {
6454 	static const char * const t4_decode[] = {
6455 		"IDMA_IDLE",
6456 		"IDMA_PUSH_MORE_CPL_FIFO",
6457 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6458 		"Not used",
6459 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6460 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6461 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6462 		"IDMA_SEND_FIFO_TO_IMSG",
6463 		"IDMA_FL_REQ_DATA_FL_PREP",
6464 		"IDMA_FL_REQ_DATA_FL",
6465 		"IDMA_FL_DROP",
6466 		"IDMA_FL_H_REQ_HEADER_FL",
6467 		"IDMA_FL_H_SEND_PCIEHDR",
6468 		"IDMA_FL_H_PUSH_CPL_FIFO",
6469 		"IDMA_FL_H_SEND_CPL",
6470 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6471 		"IDMA_FL_H_SEND_IP_HDR",
6472 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6473 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6474 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6475 		"IDMA_FL_D_SEND_PCIEHDR",
6476 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6477 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6478 		"IDMA_FL_SEND_PCIEHDR",
6479 		"IDMA_FL_PUSH_CPL_FIFO",
6480 		"IDMA_FL_SEND_CPL",
6481 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6482 		"IDMA_FL_SEND_PAYLOAD",
6483 		"IDMA_FL_REQ_NEXT_DATA_FL",
6484 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6485 		"IDMA_FL_SEND_PADDING",
6486 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6487 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6488 		"IDMA_FL_REQ_DATAFL_DONE",
6489 		"IDMA_FL_REQ_HEADERFL_DONE",
6490 	};
6491 	static const char * const t5_decode[] = {
6492 		"IDMA_IDLE",
6493 		"IDMA_ALMOST_IDLE",
6494 		"IDMA_PUSH_MORE_CPL_FIFO",
6495 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6496 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6497 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6498 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6499 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6500 		"IDMA_SEND_FIFO_TO_IMSG",
6501 		"IDMA_FL_REQ_DATA_FL",
6502 		"IDMA_FL_DROP",
6503 		"IDMA_FL_DROP_SEND_INC",
6504 		"IDMA_FL_H_REQ_HEADER_FL",
6505 		"IDMA_FL_H_SEND_PCIEHDR",
6506 		"IDMA_FL_H_PUSH_CPL_FIFO",
6507 		"IDMA_FL_H_SEND_CPL",
6508 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6509 		"IDMA_FL_H_SEND_IP_HDR",
6510 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6511 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6512 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6513 		"IDMA_FL_D_SEND_PCIEHDR",
6514 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6515 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6516 		"IDMA_FL_SEND_PCIEHDR",
6517 		"IDMA_FL_PUSH_CPL_FIFO",
6518 		"IDMA_FL_SEND_CPL",
6519 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6520 		"IDMA_FL_SEND_PAYLOAD",
6521 		"IDMA_FL_REQ_NEXT_DATA_FL",
6522 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6523 		"IDMA_FL_SEND_PADDING",
6524 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6525 	};
6526 	static const char * const t6_decode[] = {
6527 		"IDMA_IDLE",
6528 		"IDMA_PUSH_MORE_CPL_FIFO",
6529 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6530 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6531 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6532 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6533 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6534 		"IDMA_FL_REQ_DATA_FL",
6535 		"IDMA_FL_DROP",
6536 		"IDMA_FL_DROP_SEND_INC",
6537 		"IDMA_FL_H_REQ_HEADER_FL",
6538 		"IDMA_FL_H_SEND_PCIEHDR",
6539 		"IDMA_FL_H_PUSH_CPL_FIFO",
6540 		"IDMA_FL_H_SEND_CPL",
6541 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6542 		"IDMA_FL_H_SEND_IP_HDR",
6543 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6544 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6545 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6546 		"IDMA_FL_D_SEND_PCIEHDR",
6547 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6548 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6549 		"IDMA_FL_SEND_PCIEHDR",
6550 		"IDMA_FL_PUSH_CPL_FIFO",
6551 		"IDMA_FL_SEND_CPL",
6552 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6553 		"IDMA_FL_SEND_PAYLOAD",
6554 		"IDMA_FL_REQ_NEXT_DATA_FL",
6555 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6556 		"IDMA_FL_SEND_PADDING",
6557 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6558 	};
6559 	static const u32 sge_regs[] = {
6560 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6561 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6562 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6563 	};
6564 	const char * const *sge_idma_decode;
6565 	int sge_idma_decode_nstates;
6566 	int i;
6567 	unsigned int chip_version = chip_id(adapter);
6568 
6569 	/* Select the right set of decode strings to dump depending on the
6570 	 * adapter chip type.
6571 	 */
6572 	switch (chip_version) {
6573 	case CHELSIO_T4:
6574 		sge_idma_decode = (const char * const *)t4_decode;
6575 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6576 		break;
6577 
6578 	case CHELSIO_T5:
6579 		sge_idma_decode = (const char * const *)t5_decode;
6580 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6581 		break;
6582 
6583 	case CHELSIO_T6:
6584 		sge_idma_decode = (const char * const *)t6_decode;
6585 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6586 		break;
6587 
6588 	default:
6589 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6590 		return;
6591 	}
6592 
6593 	if (state < sge_idma_decode_nstates)
6594 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6595 	else
6596 		CH_WARN(adapter, "idma state %d unknown\n", state);
6597 
6598 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6599 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6600 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6601 }
6602 
6603 /**
6604  *      t4_sge_ctxt_flush - flush the SGE context cache
6605  *      @adap: the adapter
6606  *      @mbox: mailbox to use for the FW command
6607  *
6608  *      Issues a FW command through the given mailbox to flush the
6609  *      SGE context cache.
6610  */
6611 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6612 {
6613 	int ret;
6614 	u32 ldst_addrspace;
6615 	struct fw_ldst_cmd c;
6616 
6617 	memset(&c, 0, sizeof(c));
6618 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6619 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6620 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6621 					ldst_addrspace);
6622 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6623 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6624 
6625 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6626 	return ret;
6627 }
6628 
6629 /**
6630  *      t4_fw_hello - establish communication with FW
6631  *      @adap: the adapter
6632  *      @mbox: mailbox to use for the FW command
6633  *      @evt_mbox: mailbox to receive async FW events
6634  *      @master: specifies the caller's willingness to be the device master
6635  *	@state: returns the current device state (if non-NULL)
6636  *
6637  *	Issues a command to establish communication with FW.  Returns either
6638  *	an error (negative integer) or the mailbox of the Master PF.
6639  */
6640 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6641 		enum dev_master master, enum dev_state *state)
6642 {
6643 	int ret;
6644 	struct fw_hello_cmd c;
6645 	u32 v;
6646 	unsigned int master_mbox;
6647 	int retries = FW_CMD_HELLO_RETRIES;
6648 
6649 retry:
6650 	memset(&c, 0, sizeof(c));
6651 	INIT_CMD(c, HELLO, WRITE);
6652 	c.err_to_clearinit = cpu_to_be32(
6653 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6654 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6655 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6656 					mbox : M_FW_HELLO_CMD_MBMASTER) |
6657 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6658 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6659 		F_FW_HELLO_CMD_CLEARINIT);
6660 
6661 	/*
6662 	 * Issue the HELLO command to the firmware.  If it's not successful
6663 	 * but indicates that we got a "busy" or "timeout" condition, retry
6664 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6665 	 * retry limit, check to see if the firmware left us any error
6666 	 * information and report that if so ...
6667 	 */
6668 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6669 	if (ret != FW_SUCCESS) {
6670 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6671 			goto retry;
6672 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6673 			t4_report_fw_error(adap);
6674 		return ret;
6675 	}
6676 
6677 	v = be32_to_cpu(c.err_to_clearinit);
6678 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6679 	if (state) {
6680 		if (v & F_FW_HELLO_CMD_ERR)
6681 			*state = DEV_STATE_ERR;
6682 		else if (v & F_FW_HELLO_CMD_INIT)
6683 			*state = DEV_STATE_INIT;
6684 		else
6685 			*state = DEV_STATE_UNINIT;
6686 	}
6687 
6688 	/*
6689 	 * If we're not the Master PF then we need to wait around for the
6690 	 * Master PF Driver to finish setting up the adapter.
6691 	 *
6692 	 * Note that we also do this wait if we're a non-Master-capable PF and
6693 	 * there is no current Master PF; a Master PF may show up momentarily
6694 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6695 	 * OS loads lots of different drivers rapidly at the same time).  In
6696 	 * this case, the Master PF returned by the firmware will be
6697 	 * M_PCIE_FW_MASTER so the test below will work ...
6698 	 */
6699 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6700 	    master_mbox != mbox) {
6701 		int waiting = FW_CMD_HELLO_TIMEOUT;
6702 
6703 		/*
6704 		 * Wait for the firmware to either indicate an error or
6705 		 * initialized state.  If we see either of these we bail out
6706 		 * and report the issue to the caller.  If we exhaust the
6707 		 * "hello timeout" and we haven't exhausted our retries, try
6708 		 * again.  Otherwise bail with a timeout error.
6709 		 */
6710 		for (;;) {
6711 			u32 pcie_fw;
6712 
6713 			msleep(50);
6714 			waiting -= 50;
6715 
6716 			/*
6717 			 * If neither Error nor Initialialized are indicated
6718 			 * by the firmware keep waiting till we exhaust our
6719 			 * timeout ... and then retry if we haven't exhausted
6720 			 * our retries ...
6721 			 */
6722 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6723 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6724 				if (waiting <= 0) {
6725 					if (retries-- > 0)
6726 						goto retry;
6727 
6728 					return -ETIMEDOUT;
6729 				}
6730 				continue;
6731 			}
6732 
6733 			/*
6734 			 * We either have an Error or Initialized condition
6735 			 * report errors preferentially.
6736 			 */
6737 			if (state) {
6738 				if (pcie_fw & F_PCIE_FW_ERR)
6739 					*state = DEV_STATE_ERR;
6740 				else if (pcie_fw & F_PCIE_FW_INIT)
6741 					*state = DEV_STATE_INIT;
6742 			}
6743 
6744 			/*
6745 			 * If we arrived before a Master PF was selected and
6746 			 * there's not a valid Master PF, grab its identity
6747 			 * for our caller.
6748 			 */
6749 			if (master_mbox == M_PCIE_FW_MASTER &&
6750 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6751 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6752 			break;
6753 		}
6754 	}
6755 
6756 	return master_mbox;
6757 }
6758 
6759 /**
6760  *	t4_fw_bye - end communication with FW
6761  *	@adap: the adapter
6762  *	@mbox: mailbox to use for the FW command
6763  *
6764  *	Issues a command to terminate communication with FW.
6765  */
6766 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6767 {
6768 	struct fw_bye_cmd c;
6769 
6770 	memset(&c, 0, sizeof(c));
6771 	INIT_CMD(c, BYE, WRITE);
6772 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6773 }
6774 
6775 /**
6776  *	t4_fw_reset - issue a reset to FW
6777  *	@adap: the adapter
6778  *	@mbox: mailbox to use for the FW command
6779  *	@reset: specifies the type of reset to perform
6780  *
6781  *	Issues a reset command of the specified type to FW.
6782  */
6783 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6784 {
6785 	struct fw_reset_cmd c;
6786 
6787 	memset(&c, 0, sizeof(c));
6788 	INIT_CMD(c, RESET, WRITE);
6789 	c.val = cpu_to_be32(reset);
6790 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6791 }
6792 
6793 /**
6794  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6795  *	@adap: the adapter
6796  *	@mbox: mailbox to use for the FW RESET command (if desired)
6797  *	@force: force uP into RESET even if FW RESET command fails
6798  *
6799  *	Issues a RESET command to firmware (if desired) with a HALT indication
6800  *	and then puts the microprocessor into RESET state.  The RESET command
6801  *	will only be issued if a legitimate mailbox is provided (mbox <=
6802  *	M_PCIE_FW_MASTER).
6803  *
6804  *	This is generally used in order for the host to safely manipulate the
6805  *	adapter without fear of conflicting with whatever the firmware might
6806  *	be doing.  The only way out of this state is to RESTART the firmware
6807  *	...
6808  */
6809 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6810 {
6811 	int ret = 0;
6812 
6813 	/*
6814 	 * If a legitimate mailbox is provided, issue a RESET command
6815 	 * with a HALT indication.
6816 	 */
6817 	if (mbox <= M_PCIE_FW_MASTER) {
6818 		struct fw_reset_cmd c;
6819 
6820 		memset(&c, 0, sizeof(c));
6821 		INIT_CMD(c, RESET, WRITE);
6822 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6823 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6824 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6825 	}
6826 
6827 	/*
6828 	 * Normally we won't complete the operation if the firmware RESET
6829 	 * command fails but if our caller insists we'll go ahead and put the
6830 	 * uP into RESET.  This can be useful if the firmware is hung or even
6831 	 * missing ...  We'll have to take the risk of putting the uP into
6832 	 * RESET without the cooperation of firmware in that case.
6833 	 *
6834 	 * We also force the firmware's HALT flag to be on in case we bypassed
6835 	 * the firmware RESET command above or we're dealing with old firmware
6836 	 * which doesn't have the HALT capability.  This will serve as a flag
6837 	 * for the incoming firmware to know that it's coming out of a HALT
6838 	 * rather than a RESET ... if it's new enough to understand that ...
6839 	 */
6840 	if (ret == 0 || force) {
6841 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6842 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6843 				 F_PCIE_FW_HALT);
6844 	}
6845 
6846 	/*
6847 	 * And we always return the result of the firmware RESET command
6848 	 * even when we force the uP into RESET ...
6849 	 */
6850 	return ret;
6851 }
6852 
6853 /**
6854  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6855  *	@adap: the adapter
6856  *	@reset: if we want to do a RESET to restart things
6857  *
6858  *	Restart firmware previously halted by t4_fw_halt().  On successful
6859  *	return the previous PF Master remains as the new PF Master and there
6860  *	is no need to issue a new HELLO command, etc.
6861  *
6862  *	We do this in two ways:
6863  *
6864  *	 1. If we're dealing with newer firmware we'll simply want to take
6865  *	    the chip's microprocessor out of RESET.  This will cause the
6866  *	    firmware to start up from its start vector.  And then we'll loop
6867  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6868  *	    reset to 0) or we timeout.
6869  *
6870  *	 2. If we're dealing with older firmware then we'll need to RESET
6871  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6872  *	    flag and automatically RESET itself on startup.
6873  */
6874 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6875 {
6876 	if (reset) {
6877 		/*
6878 		 * Since we're directing the RESET instead of the firmware
6879 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6880 		 * bit.
6881 		 */
6882 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6883 
6884 		/*
6885 		 * If we've been given a valid mailbox, first try to get the
6886 		 * firmware to do the RESET.  If that works, great and we can
6887 		 * return success.  Otherwise, if we haven't been given a
6888 		 * valid mailbox or the RESET command failed, fall back to
6889 		 * hitting the chip with a hammer.
6890 		 */
6891 		if (mbox <= M_PCIE_FW_MASTER) {
6892 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6893 			msleep(100);
6894 			if (t4_fw_reset(adap, mbox,
6895 					F_PIORST | F_PIORSTMODE) == 0)
6896 				return 0;
6897 		}
6898 
6899 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6900 		msleep(2000);
6901 	} else {
6902 		int ms;
6903 
6904 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6905 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6906 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6907 				return FW_SUCCESS;
6908 			msleep(100);
6909 			ms += 100;
6910 		}
6911 		return -ETIMEDOUT;
6912 	}
6913 	return 0;
6914 }
6915 
6916 /**
6917  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6918  *	@adap: the adapter
6919  *	@mbox: mailbox to use for the FW RESET command (if desired)
6920  *	@fw_data: the firmware image to write
6921  *	@size: image size
6922  *	@force: force upgrade even if firmware doesn't cooperate
6923  *
6924  *	Perform all of the steps necessary for upgrading an adapter's
6925  *	firmware image.  Normally this requires the cooperation of the
6926  *	existing firmware in order to halt all existing activities
6927  *	but if an invalid mailbox token is passed in we skip that step
6928  *	(though we'll still put the adapter microprocessor into RESET in
6929  *	that case).
6930  *
6931  *	On successful return the new firmware will have been loaded and
6932  *	the adapter will have been fully RESET losing all previous setup
6933  *	state.  On unsuccessful return the adapter may be completely hosed ...
6934  *	positive errno indicates that the adapter is ~probably~ intact, a
6935  *	negative errno indicates that things are looking bad ...
6936  */
6937 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6938 		  const u8 *fw_data, unsigned int size, int force)
6939 {
6940 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6941 	unsigned int bootstrap =
6942 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6943 	int reset, ret;
6944 
6945 	if (!t4_fw_matches_chip(adap, fw_hdr))
6946 		return -EINVAL;
6947 
6948 	if (!bootstrap) {
6949 		ret = t4_fw_halt(adap, mbox, force);
6950 		if (ret < 0 && !force)
6951 			return ret;
6952 	}
6953 
6954 	ret = t4_load_fw(adap, fw_data, size);
6955 	if (ret < 0 || bootstrap)
6956 		return ret;
6957 
6958 	/*
6959 	 * Older versions of the firmware don't understand the new
6960 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6961 	 * restart.  So for newly loaded older firmware we'll have to do the
6962 	 * RESET for it so it starts up on a clean slate.  We can tell if
6963 	 * the newly loaded firmware will handle this right by checking
6964 	 * its header flags to see if it advertises the capability.
6965 	 */
6966 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6967 	return t4_fw_restart(adap, mbox, reset);
6968 }
6969 
6970 /*
6971  * Card doesn't have a firmware, install one.
6972  */
6973 int t4_fw_forceinstall(struct adapter *adap, const u8 *fw_data,
6974     unsigned int size)
6975 {
6976 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6977 	unsigned int bootstrap =
6978 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6979 	int ret;
6980 
6981 	if (!t4_fw_matches_chip(adap, fw_hdr) || bootstrap)
6982 		return -EINVAL;
6983 
6984 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6985 	t4_write_reg(adap, A_PCIE_FW, 0);	/* Clobber internal state */
6986 	ret = t4_load_fw(adap, fw_data, size);
6987 	if (ret < 0)
6988 		return ret;
6989 	t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6990 	msleep(1000);
6991 
6992 	return (0);
6993 }
6994 
6995 /**
6996  *	t4_fw_initialize - ask FW to initialize the device
6997  *	@adap: the adapter
6998  *	@mbox: mailbox to use for the FW command
6999  *
7000  *	Issues a command to FW to partially initialize the device.  This
7001  *	performs initialization that generally doesn't depend on user input.
7002  */
7003 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7004 {
7005 	struct fw_initialize_cmd c;
7006 
7007 	memset(&c, 0, sizeof(c));
7008 	INIT_CMD(c, INITIALIZE, WRITE);
7009 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7010 }
7011 
7012 /**
7013  *	t4_query_params_rw - query FW or device parameters
7014  *	@adap: the adapter
7015  *	@mbox: mailbox to use for the FW command
7016  *	@pf: the PF
7017  *	@vf: the VF
7018  *	@nparams: the number of parameters
7019  *	@params: the parameter names
7020  *	@val: the parameter values
7021  *	@rw: Write and read flag
7022  *
7023  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7024  *	queried at once.
7025  */
7026 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7027 		       unsigned int vf, unsigned int nparams, const u32 *params,
7028 		       u32 *val, int rw)
7029 {
7030 	int i, ret;
7031 	struct fw_params_cmd c;
7032 	__be32 *p = &c.param[0].mnem;
7033 
7034 	if (nparams > 7)
7035 		return -EINVAL;
7036 
7037 	memset(&c, 0, sizeof(c));
7038 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7039 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7040 				  V_FW_PARAMS_CMD_PFN(pf) |
7041 				  V_FW_PARAMS_CMD_VFN(vf));
7042 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7043 
7044 	for (i = 0; i < nparams; i++) {
7045 		*p++ = cpu_to_be32(*params++);
7046 		if (rw)
7047 			*p = cpu_to_be32(*(val + i));
7048 		p++;
7049 	}
7050 
7051 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7052 	if (ret == 0)
7053 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7054 			*val++ = be32_to_cpu(*p);
7055 	return ret;
7056 }
7057 
7058 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7059 		    unsigned int vf, unsigned int nparams, const u32 *params,
7060 		    u32 *val)
7061 {
7062 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7063 }
7064 
7065 /**
7066  *      t4_set_params_timeout - sets FW or device parameters
7067  *      @adap: the adapter
7068  *      @mbox: mailbox to use for the FW command
7069  *      @pf: the PF
7070  *      @vf: the VF
7071  *      @nparams: the number of parameters
7072  *      @params: the parameter names
7073  *      @val: the parameter values
7074  *      @timeout: the timeout time
7075  *
7076  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7077  *      specified at once.
7078  */
7079 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7080 			  unsigned int pf, unsigned int vf,
7081 			  unsigned int nparams, const u32 *params,
7082 			  const u32 *val, int timeout)
7083 {
7084 	struct fw_params_cmd c;
7085 	__be32 *p = &c.param[0].mnem;
7086 
7087 	if (nparams > 7)
7088 		return -EINVAL;
7089 
7090 	memset(&c, 0, sizeof(c));
7091 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7092 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7093 				  V_FW_PARAMS_CMD_PFN(pf) |
7094 				  V_FW_PARAMS_CMD_VFN(vf));
7095 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7096 
7097 	while (nparams--) {
7098 		*p++ = cpu_to_be32(*params++);
7099 		*p++ = cpu_to_be32(*val++);
7100 	}
7101 
7102 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7103 }
7104 
7105 /**
7106  *	t4_set_params - sets FW or device parameters
7107  *	@adap: the adapter
7108  *	@mbox: mailbox to use for the FW command
7109  *	@pf: the PF
7110  *	@vf: the VF
7111  *	@nparams: the number of parameters
7112  *	@params: the parameter names
7113  *	@val: the parameter values
7114  *
7115  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7116  *	specified at once.
7117  */
7118 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7119 		  unsigned int vf, unsigned int nparams, const u32 *params,
7120 		  const u32 *val)
7121 {
7122 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7123 				     FW_CMD_MAX_TIMEOUT);
7124 }
7125 
7126 /**
7127  *	t4_cfg_pfvf - configure PF/VF resource limits
7128  *	@adap: the adapter
7129  *	@mbox: mailbox to use for the FW command
7130  *	@pf: the PF being configured
7131  *	@vf: the VF being configured
7132  *	@txq: the max number of egress queues
7133  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7134  *	@rxqi: the max number of interrupt-capable ingress queues
7135  *	@rxq: the max number of interruptless ingress queues
7136  *	@tc: the PCI traffic class
7137  *	@vi: the max number of virtual interfaces
7138  *	@cmask: the channel access rights mask for the PF/VF
7139  *	@pmask: the port access rights mask for the PF/VF
7140  *	@nexact: the maximum number of exact MPS filters
7141  *	@rcaps: read capabilities
7142  *	@wxcaps: write/execute capabilities
7143  *
7144  *	Configures resource limits and capabilities for a physical or virtual
7145  *	function.
7146  */
7147 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7148 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7149 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7150 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7151 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7152 {
7153 	struct fw_pfvf_cmd c;
7154 
7155 	memset(&c, 0, sizeof(c));
7156 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7157 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7158 				  V_FW_PFVF_CMD_VFN(vf));
7159 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7160 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7161 				     V_FW_PFVF_CMD_NIQ(rxq));
7162 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7163 				    V_FW_PFVF_CMD_PMASK(pmask) |
7164 				    V_FW_PFVF_CMD_NEQ(txq));
7165 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7166 				      V_FW_PFVF_CMD_NVI(vi) |
7167 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7168 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7169 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7170 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7171 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7172 }
7173 
7174 /**
7175  *	t4_alloc_vi_func - allocate a virtual interface
7176  *	@adap: the adapter
7177  *	@mbox: mailbox to use for the FW command
7178  *	@port: physical port associated with the VI
7179  *	@pf: the PF owning the VI
7180  *	@vf: the VF owning the VI
7181  *	@nmac: number of MAC addresses needed (1 to 5)
7182  *	@mac: the MAC addresses of the VI
7183  *	@rss_size: size of RSS table slice associated with this VI
7184  *	@portfunc: which Port Application Function MAC Address is desired
7185  *	@idstype: Intrusion Detection Type
7186  *
7187  *	Allocates a virtual interface for the given physical port.  If @mac is
7188  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7189  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7190  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7191  *	stored consecutively so the space needed is @nmac * 6 bytes.
7192  *	Returns a negative error number or the non-negative VI id.
7193  */
7194 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7195 		     unsigned int port, unsigned int pf, unsigned int vf,
7196 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7197 		     unsigned int portfunc, unsigned int idstype)
7198 {
7199 	int ret;
7200 	struct fw_vi_cmd c;
7201 
7202 	memset(&c, 0, sizeof(c));
7203 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7204 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7205 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7206 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7207 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7208 				     V_FW_VI_CMD_FUNC(portfunc));
7209 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7210 	c.nmac = nmac - 1;
7211 	if(!rss_size)
7212 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7213 
7214 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7215 	if (ret)
7216 		return ret;
7217 
7218 	if (mac) {
7219 		memcpy(mac, c.mac, sizeof(c.mac));
7220 		switch (nmac) {
7221 		case 5:
7222 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7223 		case 4:
7224 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7225 		case 3:
7226 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7227 		case 2:
7228 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7229 		}
7230 	}
7231 	if (rss_size)
7232 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7233 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7234 }
7235 
7236 /**
7237  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7238  *      @adap: the adapter
7239  *      @mbox: mailbox to use for the FW command
7240  *      @port: physical port associated with the VI
7241  *      @pf: the PF owning the VI
7242  *      @vf: the VF owning the VI
7243  *      @nmac: number of MAC addresses needed (1 to 5)
7244  *      @mac: the MAC addresses of the VI
7245  *      @rss_size: size of RSS table slice associated with this VI
7246  *
7247  *	backwards compatible and convieniance routine to allocate a Virtual
7248  *	Interface with a Ethernet Port Application Function and Intrustion
7249  *	Detection System disabled.
7250  */
7251 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7252 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7253 		u16 *rss_size)
7254 {
7255 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7256 				FW_VI_FUNC_ETH, 0);
7257 }
7258 
7259 /**
7260  * 	t4_free_vi - free a virtual interface
7261  * 	@adap: the adapter
7262  * 	@mbox: mailbox to use for the FW command
7263  * 	@pf: the PF owning the VI
7264  * 	@vf: the VF owning the VI
7265  * 	@viid: virtual interface identifiler
7266  *
7267  * 	Free a previously allocated virtual interface.
7268  */
7269 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7270 	       unsigned int vf, unsigned int viid)
7271 {
7272 	struct fw_vi_cmd c;
7273 
7274 	memset(&c, 0, sizeof(c));
7275 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7276 				  F_FW_CMD_REQUEST |
7277 				  F_FW_CMD_EXEC |
7278 				  V_FW_VI_CMD_PFN(pf) |
7279 				  V_FW_VI_CMD_VFN(vf));
7280 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7281 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7282 
7283 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7284 }
7285 
7286 /**
7287  *	t4_set_rxmode - set Rx properties of a virtual interface
7288  *	@adap: the adapter
7289  *	@mbox: mailbox to use for the FW command
7290  *	@viid: the VI id
7291  *	@mtu: the new MTU or -1
7292  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7293  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7294  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7295  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7296  *	@sleep_ok: if true we may sleep while awaiting command completion
7297  *
7298  *	Sets Rx properties of a virtual interface.
7299  */
7300 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7301 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7302 		  bool sleep_ok)
7303 {
7304 	struct fw_vi_rxmode_cmd c;
7305 
7306 	/* convert to FW values */
7307 	if (mtu < 0)
7308 		mtu = M_FW_VI_RXMODE_CMD_MTU;
7309 	if (promisc < 0)
7310 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7311 	if (all_multi < 0)
7312 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7313 	if (bcast < 0)
7314 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7315 	if (vlanex < 0)
7316 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7317 
7318 	memset(&c, 0, sizeof(c));
7319 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7320 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7321 				   V_FW_VI_RXMODE_CMD_VIID(viid));
7322 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7323 	c.mtu_to_vlanexen =
7324 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7325 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7326 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7327 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7328 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7329 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7330 }
7331 
7332 /**
7333  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7334  *	@adap: the adapter
7335  *	@mbox: mailbox to use for the FW command
7336  *	@viid: the VI id
7337  *	@free: if true any existing filters for this VI id are first removed
7338  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7339  *	@addr: the MAC address(es)
7340  *	@idx: where to store the index of each allocated filter
7341  *	@hash: pointer to hash address filter bitmap
7342  *	@sleep_ok: call is allowed to sleep
7343  *
7344  *	Allocates an exact-match filter for each of the supplied addresses and
7345  *	sets it to the corresponding address.  If @idx is not %NULL it should
7346  *	have at least @naddr entries, each of which will be set to the index of
7347  *	the filter allocated for the corresponding MAC address.  If a filter
7348  *	could not be allocated for an address its index is set to 0xffff.
7349  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7350  *	are hashed and update the hash filter bitmap pointed at by @hash.
7351  *
7352  *	Returns a negative error number or the number of filters allocated.
7353  */
7354 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7355 		      unsigned int viid, bool free, unsigned int naddr,
7356 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7357 {
7358 	int offset, ret = 0;
7359 	struct fw_vi_mac_cmd c;
7360 	unsigned int nfilters = 0;
7361 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7362 	unsigned int rem = naddr;
7363 
7364 	if (naddr > max_naddr)
7365 		return -EINVAL;
7366 
7367 	for (offset = 0; offset < naddr ; /**/) {
7368 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7369 					 ? rem
7370 					 : ARRAY_SIZE(c.u.exact));
7371 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7372 						     u.exact[fw_naddr]), 16);
7373 		struct fw_vi_mac_exact *p;
7374 		int i;
7375 
7376 		memset(&c, 0, sizeof(c));
7377 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7378 					   F_FW_CMD_REQUEST |
7379 					   F_FW_CMD_WRITE |
7380 					   V_FW_CMD_EXEC(free) |
7381 					   V_FW_VI_MAC_CMD_VIID(viid));
7382 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7383 						  V_FW_CMD_LEN16(len16));
7384 
7385 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7386 			p->valid_to_idx =
7387 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7388 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7389 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7390 		}
7391 
7392 		/*
7393 		 * It's okay if we run out of space in our MAC address arena.
7394 		 * Some of the addresses we submit may get stored so we need
7395 		 * to run through the reply to see what the results were ...
7396 		 */
7397 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7398 		if (ret && ret != -FW_ENOMEM)
7399 			break;
7400 
7401 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7402 			u16 index = G_FW_VI_MAC_CMD_IDX(
7403 						be16_to_cpu(p->valid_to_idx));
7404 
7405 			if (idx)
7406 				idx[offset+i] = (index >=  max_naddr
7407 						 ? 0xffff
7408 						 : index);
7409 			if (index < max_naddr)
7410 				nfilters++;
7411 			else if (hash)
7412 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7413 		}
7414 
7415 		free = false;
7416 		offset += fw_naddr;
7417 		rem -= fw_naddr;
7418 	}
7419 
7420 	if (ret == 0 || ret == -FW_ENOMEM)
7421 		ret = nfilters;
7422 	return ret;
7423 }
7424 
7425 /**
7426  *	t4_change_mac - modifies the exact-match filter for a MAC address
7427  *	@adap: the adapter
7428  *	@mbox: mailbox to use for the FW command
7429  *	@viid: the VI id
7430  *	@idx: index of existing filter for old value of MAC address, or -1
7431  *	@addr: the new MAC address value
7432  *	@persist: whether a new MAC allocation should be persistent
7433  *	@add_smt: if true also add the address to the HW SMT
7434  *
7435  *	Modifies an exact-match filter and sets it to the new MAC address if
7436  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7437  *	latter case the address is added persistently if @persist is %true.
7438  *
7439  *	Note that in general it is not possible to modify the value of a given
7440  *	filter so the generic way to modify an address filter is to free the one
7441  *	being used by the old address value and allocate a new filter for the
7442  *	new address value.
7443  *
7444  *	Returns a negative error number or the index of the filter with the new
7445  *	MAC value.  Note that this index may differ from @idx.
7446  */
7447 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7448 		  int idx, const u8 *addr, bool persist, bool add_smt)
7449 {
7450 	int ret, mode;
7451 	struct fw_vi_mac_cmd c;
7452 	struct fw_vi_mac_exact *p = c.u.exact;
7453 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7454 
7455 	if (idx < 0)		/* new allocation */
7456 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7457 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7458 
7459 	memset(&c, 0, sizeof(c));
7460 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7461 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7462 				   V_FW_VI_MAC_CMD_VIID(viid));
7463 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7464 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7465 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7466 				      V_FW_VI_MAC_CMD_IDX(idx));
7467 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7468 
7469 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7470 	if (ret == 0) {
7471 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7472 		if (ret >= max_mac_addr)
7473 			ret = -ENOMEM;
7474 	}
7475 	return ret;
7476 }
7477 
7478 /**
7479  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7480  *	@adap: the adapter
7481  *	@mbox: mailbox to use for the FW command
7482  *	@viid: the VI id
7483  *	@ucast: whether the hash filter should also match unicast addresses
7484  *	@vec: the value to be written to the hash filter
7485  *	@sleep_ok: call is allowed to sleep
7486  *
7487  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7488  */
7489 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7490 		     bool ucast, u64 vec, bool sleep_ok)
7491 {
7492 	struct fw_vi_mac_cmd c;
7493 	u32 val;
7494 
7495 	memset(&c, 0, sizeof(c));
7496 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7497 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7498 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7499 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7500 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7501 	c.freemacs_to_len16 = cpu_to_be32(val);
7502 	c.u.hash.hashvec = cpu_to_be64(vec);
7503 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7504 }
7505 
7506 /**
7507  *      t4_enable_vi_params - enable/disable a virtual interface
7508  *      @adap: the adapter
7509  *      @mbox: mailbox to use for the FW command
7510  *      @viid: the VI id
7511  *      @rx_en: 1=enable Rx, 0=disable Rx
7512  *      @tx_en: 1=enable Tx, 0=disable Tx
7513  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7514  *
7515  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7516  *      only makes sense when enabling a Virtual Interface ...
7517  */
7518 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7519 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7520 {
7521 	struct fw_vi_enable_cmd c;
7522 
7523 	memset(&c, 0, sizeof(c));
7524 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7525 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7526 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7527 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7528 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7529 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7530 				     FW_LEN16(c));
7531 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7532 }
7533 
7534 /**
7535  *	t4_enable_vi - enable/disable a virtual interface
7536  *	@adap: the adapter
7537  *	@mbox: mailbox to use for the FW command
7538  *	@viid: the VI id
7539  *	@rx_en: 1=enable Rx, 0=disable Rx
7540  *	@tx_en: 1=enable Tx, 0=disable Tx
7541  *
7542  *	Enables/disables a virtual interface.  Note that setting DCB Enable
7543  *	only makes sense when enabling a Virtual Interface ...
7544  */
7545 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7546 		 bool rx_en, bool tx_en)
7547 {
7548 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7549 }
7550 
7551 /**
7552  *	t4_identify_port - identify a VI's port by blinking its LED
7553  *	@adap: the adapter
7554  *	@mbox: mailbox to use for the FW command
7555  *	@viid: the VI id
7556  *	@nblinks: how many times to blink LED at 2.5 Hz
7557  *
7558  *	Identifies a VI's port by blinking its LED.
7559  */
7560 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7561 		     unsigned int nblinks)
7562 {
7563 	struct fw_vi_enable_cmd c;
7564 
7565 	memset(&c, 0, sizeof(c));
7566 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7567 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7568 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7569 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7570 	c.blinkdur = cpu_to_be16(nblinks);
7571 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7572 }
7573 
7574 /**
7575  *	t4_iq_stop - stop an ingress queue and its FLs
7576  *	@adap: the adapter
7577  *	@mbox: mailbox to use for the FW command
7578  *	@pf: the PF owning the queues
7579  *	@vf: the VF owning the queues
7580  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7581  *	@iqid: ingress queue id
7582  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7583  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7584  *
7585  *	Stops an ingress queue and its associated FLs, if any.  This causes
7586  *	any current or future data/messages destined for these queues to be
7587  *	tossed.
7588  */
7589 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7590 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7591 	       unsigned int fl0id, unsigned int fl1id)
7592 {
7593 	struct fw_iq_cmd c;
7594 
7595 	memset(&c, 0, sizeof(c));
7596 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7597 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7598 				  V_FW_IQ_CMD_VFN(vf));
7599 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7600 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7601 	c.iqid = cpu_to_be16(iqid);
7602 	c.fl0id = cpu_to_be16(fl0id);
7603 	c.fl1id = cpu_to_be16(fl1id);
7604 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7605 }
7606 
7607 /**
7608  *	t4_iq_free - free an ingress queue and its FLs
7609  *	@adap: the adapter
7610  *	@mbox: mailbox to use for the FW command
7611  *	@pf: the PF owning the queues
7612  *	@vf: the VF owning the queues
7613  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7614  *	@iqid: ingress queue id
7615  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7616  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7617  *
7618  *	Frees an ingress queue and its associated FLs, if any.
7619  */
7620 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7621 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7622 	       unsigned int fl0id, unsigned int fl1id)
7623 {
7624 	struct fw_iq_cmd c;
7625 
7626 	memset(&c, 0, sizeof(c));
7627 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7628 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7629 				  V_FW_IQ_CMD_VFN(vf));
7630 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7631 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7632 	c.iqid = cpu_to_be16(iqid);
7633 	c.fl0id = cpu_to_be16(fl0id);
7634 	c.fl1id = cpu_to_be16(fl1id);
7635 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7636 }
7637 
7638 /**
7639  *	t4_eth_eq_free - free an Ethernet egress queue
7640  *	@adap: the adapter
7641  *	@mbox: mailbox to use for the FW command
7642  *	@pf: the PF owning the queue
7643  *	@vf: the VF owning the queue
7644  *	@eqid: egress queue id
7645  *
7646  *	Frees an Ethernet egress queue.
7647  */
7648 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7649 		   unsigned int vf, unsigned int eqid)
7650 {
7651 	struct fw_eq_eth_cmd c;
7652 
7653 	memset(&c, 0, sizeof(c));
7654 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7655 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7656 				  V_FW_EQ_ETH_CMD_PFN(pf) |
7657 				  V_FW_EQ_ETH_CMD_VFN(vf));
7658 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7659 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7660 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7661 }
7662 
7663 /**
7664  *	t4_ctrl_eq_free - free a control egress queue
7665  *	@adap: the adapter
7666  *	@mbox: mailbox to use for the FW command
7667  *	@pf: the PF owning the queue
7668  *	@vf: the VF owning the queue
7669  *	@eqid: egress queue id
7670  *
7671  *	Frees a control egress queue.
7672  */
7673 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7674 		    unsigned int vf, unsigned int eqid)
7675 {
7676 	struct fw_eq_ctrl_cmd c;
7677 
7678 	memset(&c, 0, sizeof(c));
7679 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7680 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7681 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7682 				  V_FW_EQ_CTRL_CMD_VFN(vf));
7683 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7684 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7685 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7686 }
7687 
7688 /**
7689  *	t4_ofld_eq_free - free an offload egress queue
7690  *	@adap: the adapter
7691  *	@mbox: mailbox to use for the FW command
7692  *	@pf: the PF owning the queue
7693  *	@vf: the VF owning the queue
7694  *	@eqid: egress queue id
7695  *
7696  *	Frees a control egress queue.
7697  */
7698 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7699 		    unsigned int vf, unsigned int eqid)
7700 {
7701 	struct fw_eq_ofld_cmd c;
7702 
7703 	memset(&c, 0, sizeof(c));
7704 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7705 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7706 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7707 				  V_FW_EQ_OFLD_CMD_VFN(vf));
7708 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7709 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7710 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7711 }
7712 
7713 /**
7714  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7715  *	@link_down_rc: Link Down Reason Code
7716  *
7717  *	Returns a string representation of the Link Down Reason Code.
7718  */
7719 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7720 {
7721 	static const char *reason[] = {
7722 		"Link Down",
7723 		"Remote Fault",
7724 		"Auto-negotiation Failure",
7725 		"Reserved3",
7726 		"Insufficient Airflow",
7727 		"Unable To Determine Reason",
7728 		"No RX Signal Detected",
7729 		"Reserved7",
7730 	};
7731 
7732 	if (link_down_rc >= ARRAY_SIZE(reason))
7733 		return "Bad Reason Code";
7734 
7735 	return reason[link_down_rc];
7736 }
7737 
7738 /*
7739  * Updates all fields owned by the common code in port_info and link_config
7740  * based on information provided by the firmware.  Does not touch any
7741  * requested_* field.
7742  */
7743 static void handle_port_info(struct port_info *pi, const struct fw_port_info *p)
7744 {
7745 	struct link_config *lc = &pi->link_cfg;
7746 	int speed;
7747 	unsigned char fc, fec;
7748 	u32 stat = be32_to_cpu(p->lstatus_to_modtype);
7749 
7750 	pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
7751 	pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
7752 	pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
7753 	    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
7754 
7755 	lc->supported = be16_to_cpu(p->pcap);
7756 	lc->advertising = be16_to_cpu(p->acap);
7757 	lc->lp_advertising = be16_to_cpu(p->lpacap);
7758 	lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7759 	lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7760 
7761 	speed = 0;
7762 	if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7763 		speed = 100;
7764 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7765 		speed = 1000;
7766 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7767 		speed = 10000;
7768 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7769 		speed = 25000;
7770 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7771 		speed = 40000;
7772 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7773 		speed = 100000;
7774 	lc->speed = speed;
7775 
7776 	fc = 0;
7777 	if (stat & F_FW_PORT_CMD_RXPAUSE)
7778 		fc |= PAUSE_RX;
7779 	if (stat & F_FW_PORT_CMD_TXPAUSE)
7780 		fc |= PAUSE_TX;
7781 	lc->fc = fc;
7782 
7783 	fec = 0;
7784 	if (lc->advertising & FW_PORT_CAP_FEC_RS)
7785 		fec = FEC_RS;
7786 	else if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS)
7787 		fec = FEC_BASER_RS;
7788 	lc->fec = fec;
7789 }
7790 
7791 /**
7792  *	t4_update_port_info - retrieve and update port information if changed
7793  *	@pi: the port_info
7794  *
7795  *	We issue a Get Port Information Command to the Firmware and, if
7796  *	successful, we check to see if anything is different from what we
7797  *	last recorded and update things accordingly.
7798  */
7799  int t4_update_port_info(struct port_info *pi)
7800  {
7801 	struct fw_port_cmd port_cmd;
7802 	int ret;
7803 
7804 	memset(&port_cmd, 0, sizeof port_cmd);
7805 	port_cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
7806 					    F_FW_CMD_REQUEST | F_FW_CMD_READ |
7807 					    V_FW_PORT_CMD_PORTID(pi->tx_chan));
7808 	port_cmd.action_to_len16 = cpu_to_be32(
7809 		V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
7810 		FW_LEN16(port_cmd));
7811 	ret = t4_wr_mbox_ns(pi->adapter, pi->adapter->mbox,
7812 			 &port_cmd, sizeof(port_cmd), &port_cmd);
7813 	if (ret)
7814 		return ret;
7815 
7816 	handle_port_info(pi, &port_cmd.u.info);
7817 	return 0;
7818 }
7819 
7820 /**
7821  *	t4_handle_fw_rpl - process a FW reply message
7822  *	@adap: the adapter
7823  *	@rpl: start of the FW message
7824  *
7825  *	Processes a FW message, such as link state change messages.
7826  */
7827 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7828 {
7829 	u8 opcode = *(const u8 *)rpl;
7830 	const struct fw_port_cmd *p = (const void *)rpl;
7831 	unsigned int action =
7832 			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7833 
7834 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7835 		/* link/module state change message */
7836 		int i, old_ptype, old_mtype;
7837 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7838 		struct port_info *pi = NULL;
7839 		struct link_config *lc, *old_lc;
7840 
7841 		for_each_port(adap, i) {
7842 			pi = adap2pinfo(adap, i);
7843 			if (pi->tx_chan == chan)
7844 				break;
7845 		}
7846 
7847 		lc = &pi->link_cfg;
7848 		PORT_LOCK(pi);
7849 		old_lc = &pi->old_link_cfg;
7850 		old_ptype = pi->port_type;
7851 		old_mtype = pi->mod_type;
7852 		handle_port_info(pi, &p->u.info);
7853 		PORT_UNLOCK(pi);
7854 		if (old_ptype != pi->port_type || old_mtype != pi->mod_type) {
7855 			t4_os_portmod_changed(pi);
7856 		}
7857 		PORT_LOCK(pi);
7858 		if (old_lc->link_ok != lc->link_ok ||
7859 		    old_lc->speed != lc->speed ||
7860 		    old_lc->fec != lc->fec ||
7861 		    old_lc->fc != lc->fc) {
7862 			t4_os_link_changed(pi);
7863 			*old_lc = *lc;
7864 		}
7865 		PORT_UNLOCK(pi);
7866 	} else {
7867 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7868 		return -EINVAL;
7869 	}
7870 	return 0;
7871 }
7872 
7873 /**
7874  *	get_pci_mode - determine a card's PCI mode
7875  *	@adapter: the adapter
7876  *	@p: where to store the PCI settings
7877  *
7878  *	Determines a card's PCI mode and associated parameters, such as speed
7879  *	and width.
7880  */
7881 static void get_pci_mode(struct adapter *adapter,
7882 				   struct pci_params *p)
7883 {
7884 	u16 val;
7885 	u32 pcie_cap;
7886 
7887 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7888 	if (pcie_cap) {
7889 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7890 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7891 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7892 	}
7893 }
7894 
7895 struct flash_desc {
7896 	u32 vendor_and_model_id;
7897 	u32 size_mb;
7898 };
7899 
7900 int t4_get_flash_params(struct adapter *adapter)
7901 {
7902 	/*
7903 	 * Table for non-standard supported Flash parts.  Note, all Flash
7904 	 * parts must have 64KB sectors.
7905 	 */
7906 	static struct flash_desc supported_flash[] = {
7907 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
7908 	};
7909 
7910 	int ret;
7911 	u32 flashid = 0;
7912 	unsigned int part, manufacturer;
7913 	unsigned int density, size = 0;
7914 
7915 
7916 	/*
7917 	 * Issue a Read ID Command to the Flash part.  We decode supported
7918 	 * Flash parts and their sizes from this.  There's a newer Query
7919 	 * Command which can retrieve detailed geometry information but many
7920 	 * Flash parts don't support it.
7921 	 */
7922 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7923 	if (!ret)
7924 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
7925 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7926 	if (ret < 0)
7927 		return ret;
7928 
7929 	/*
7930 	 * Check to see if it's one of our non-standard supported Flash parts.
7931 	 */
7932 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
7933 		if (supported_flash[part].vendor_and_model_id == flashid) {
7934 			adapter->params.sf_size =
7935 				supported_flash[part].size_mb;
7936 			adapter->params.sf_nsec =
7937 				adapter->params.sf_size / SF_SEC_SIZE;
7938 			goto found;
7939 		}
7940 
7941 	/*
7942 	 * Decode Flash part size.  The code below looks repetative with
7943 	 * common encodings, but that's not guaranteed in the JEDEC
7944 	 * specification for the Read JADEC ID command.  The only thing that
7945 	 * we're guaranteed by the JADEC specification is where the
7946 	 * Manufacturer ID is in the returned result.  After that each
7947 	 * Manufacturer ~could~ encode things completely differently.
7948 	 * Note, all Flash parts must have 64KB sectors.
7949 	 */
7950 	manufacturer = flashid & 0xff;
7951 	switch (manufacturer) {
7952 	case 0x20: /* Micron/Numonix */
7953 		/*
7954 		 * This Density -> Size decoding table is taken from Micron
7955 		 * Data Sheets.
7956 		 */
7957 		density = (flashid >> 16) & 0xff;
7958 		switch (density) {
7959 		case 0x14: size = 1 << 20; break; /*   1MB */
7960 		case 0x15: size = 1 << 21; break; /*   2MB */
7961 		case 0x16: size = 1 << 22; break; /*   4MB */
7962 		case 0x17: size = 1 << 23; break; /*   8MB */
7963 		case 0x18: size = 1 << 24; break; /*  16MB */
7964 		case 0x19: size = 1 << 25; break; /*  32MB */
7965 		case 0x20: size = 1 << 26; break; /*  64MB */
7966 		case 0x21: size = 1 << 27; break; /* 128MB */
7967 		case 0x22: size = 1 << 28; break; /* 256MB */
7968 		}
7969 		break;
7970 
7971 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
7972 		/*
7973 		 * This Density -> Size decoding table is taken from ISSI
7974 		 * Data Sheets.
7975 		 */
7976 		density = (flashid >> 16) & 0xff;
7977 		switch (density) {
7978 		case 0x16: size = 1 << 25; break; /*  32MB */
7979 		case 0x17: size = 1 << 26; break; /*  64MB */
7980 		}
7981 		break;
7982 
7983 	case 0xc2: /* Macronix */
7984 		/*
7985 		 * This Density -> Size decoding table is taken from Macronix
7986 		 * Data Sheets.
7987 		 */
7988 		density = (flashid >> 16) & 0xff;
7989 		switch (density) {
7990 		case 0x17: size = 1 << 23; break; /*   8MB */
7991 		case 0x18: size = 1 << 24; break; /*  16MB */
7992 		}
7993 		break;
7994 
7995 	case 0xef: /* Winbond */
7996 		/*
7997 		 * This Density -> Size decoding table is taken from Winbond
7998 		 * Data Sheets.
7999 		 */
8000 		density = (flashid >> 16) & 0xff;
8001 		switch (density) {
8002 		case 0x17: size = 1 << 23; break; /*   8MB */
8003 		case 0x18: size = 1 << 24; break; /*  16MB */
8004 		}
8005 		break;
8006 	}
8007 
8008 	/* If we didn't recognize the FLASH part, that's no real issue: the
8009 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
8010 	 * use a FLASH part which is at least 4MB in size and has 64KB
8011 	 * sectors.  The unrecognized FLASH part is likely to be much larger
8012 	 * than 4MB, but that's all we really need.
8013 	 */
8014 	if (size == 0) {
8015 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
8016 		size = 1 << 22;
8017 	}
8018 
8019 	/*
8020 	 * Store decoded Flash size and fall through into vetting code.
8021 	 */
8022 	adapter->params.sf_size = size;
8023 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
8024 
8025  found:
8026 	/*
8027 	 * We should ~probably~ reject adapters with FLASHes which are too
8028 	 * small but we have some legacy FPGAs with small FLASHes that we'd
8029 	 * still like to use.  So instead we emit a scary message ...
8030 	 */
8031 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
8032 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8033 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
8034 
8035 	return 0;
8036 }
8037 
8038 static void set_pcie_completion_timeout(struct adapter *adapter,
8039 						  u8 range)
8040 {
8041 	u16 val;
8042 	u32 pcie_cap;
8043 
8044 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8045 	if (pcie_cap) {
8046 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
8047 		val &= 0xfff0;
8048 		val |= range ;
8049 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
8050 	}
8051 }
8052 
8053 const struct chip_params *t4_get_chip_params(int chipid)
8054 {
8055 	static const struct chip_params chip_params[] = {
8056 		{
8057 			/* T4 */
8058 			.nchan = NCHAN,
8059 			.pm_stats_cnt = PM_NSTATS,
8060 			.cng_ch_bits_log = 2,
8061 			.nsched_cls = 15,
8062 			.cim_num_obq = CIM_NUM_OBQ,
8063 			.mps_rplc_size = 128,
8064 			.vfcount = 128,
8065 			.sge_fl_db = F_DBPRIO,
8066 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
8067 		},
8068 		{
8069 			/* T5 */
8070 			.nchan = NCHAN,
8071 			.pm_stats_cnt = PM_NSTATS,
8072 			.cng_ch_bits_log = 2,
8073 			.nsched_cls = 16,
8074 			.cim_num_obq = CIM_NUM_OBQ_T5,
8075 			.mps_rplc_size = 128,
8076 			.vfcount = 128,
8077 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
8078 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8079 		},
8080 		{
8081 			/* T6 */
8082 			.nchan = T6_NCHAN,
8083 			.pm_stats_cnt = T6_PM_NSTATS,
8084 			.cng_ch_bits_log = 3,
8085 			.nsched_cls = 16,
8086 			.cim_num_obq = CIM_NUM_OBQ_T5,
8087 			.mps_rplc_size = 256,
8088 			.vfcount = 256,
8089 			.sge_fl_db = 0,
8090 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8091 		},
8092 	};
8093 
8094 	chipid -= CHELSIO_T4;
8095 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8096 		return NULL;
8097 
8098 	return &chip_params[chipid];
8099 }
8100 
8101 /**
8102  *	t4_prep_adapter - prepare SW and HW for operation
8103  *	@adapter: the adapter
8104  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
8105  *
8106  *	Initialize adapter SW state for the various HW modules, set initial
8107  *	values for some adapter tunables, take PHYs out of reset, and
8108  *	initialize the MDIO interface.
8109  */
8110 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8111 {
8112 	int ret;
8113 	uint16_t device_id;
8114 	uint32_t pl_rev;
8115 
8116 	get_pci_mode(adapter, &adapter->params.pci);
8117 
8118 	pl_rev = t4_read_reg(adapter, A_PL_REV);
8119 	adapter->params.chipid = G_CHIPID(pl_rev);
8120 	adapter->params.rev = G_REV(pl_rev);
8121 	if (adapter->params.chipid == 0) {
8122 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
8123 		adapter->params.chipid = CHELSIO_T4;
8124 
8125 		/* T4A1 chip is not supported */
8126 		if (adapter->params.rev == 1) {
8127 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8128 			return -EINVAL;
8129 		}
8130 	}
8131 
8132 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8133 	if (adapter->chip_params == NULL)
8134 		return -EINVAL;
8135 
8136 	adapter->params.pci.vpd_cap_addr =
8137 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8138 
8139 	ret = t4_get_flash_params(adapter);
8140 	if (ret < 0)
8141 		return ret;
8142 
8143 	/* Cards with real ASICs have the chipid in the PCIe device id */
8144 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8145 	if (device_id >> 12 == chip_id(adapter))
8146 		adapter->params.cim_la_size = CIMLA_SIZE;
8147 	else {
8148 		/* FPGA */
8149 		adapter->params.fpga = 1;
8150 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8151 	}
8152 
8153 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
8154 	if (ret < 0)
8155 		return ret;
8156 
8157 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8158 
8159 	/*
8160 	 * Default port and clock for debugging in case we can't reach FW.
8161 	 */
8162 	adapter->params.nports = 1;
8163 	adapter->params.portvec = 1;
8164 	adapter->params.vpd.cclk = 50000;
8165 
8166 	/* Set pci completion timeout value to 4 seconds. */
8167 	set_pcie_completion_timeout(adapter, 0xd);
8168 	return 0;
8169 }
8170 
8171 /**
8172  *	t4_shutdown_adapter - shut down adapter, host & wire
8173  *	@adapter: the adapter
8174  *
8175  *	Perform an emergency shutdown of the adapter and stop it from
8176  *	continuing any further communication on the ports or DMA to the
8177  *	host.  This is typically used when the adapter and/or firmware
8178  *	have crashed and we want to prevent any further accidental
8179  *	communication with the rest of the world.  This will also force
8180  *	the port Link Status to go down -- if register writes work --
8181  *	which should help our peers figure out that we're down.
8182  */
8183 int t4_shutdown_adapter(struct adapter *adapter)
8184 {
8185 	int port;
8186 
8187 	t4_intr_disable(adapter);
8188 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8189 	for_each_port(adapter, port) {
8190 		u32 a_port_cfg = is_t4(adapter) ?
8191 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
8192 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
8193 
8194 		t4_write_reg(adapter, a_port_cfg,
8195 			     t4_read_reg(adapter, a_port_cfg)
8196 			     & ~V_SIGNAL_DET(1));
8197 	}
8198 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8199 
8200 	return 0;
8201 }
8202 
8203 /**
8204  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8205  *	@adapter: the adapter
8206  *	@qid: the Queue ID
8207  *	@qtype: the Ingress or Egress type for @qid
8208  *	@user: true if this request is for a user mode queue
8209  *	@pbar2_qoffset: BAR2 Queue Offset
8210  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8211  *
8212  *	Returns the BAR2 SGE Queue Registers information associated with the
8213  *	indicated Absolute Queue ID.  These are passed back in return value
8214  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8215  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8216  *
8217  *	This may return an error which indicates that BAR2 SGE Queue
8218  *	registers aren't available.  If an error is not returned, then the
8219  *	following values are returned:
8220  *
8221  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8222  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8223  *
8224  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8225  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8226  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8227  *	then these "Inferred Queue ID" register may not be used.
8228  */
8229 int t4_bar2_sge_qregs(struct adapter *adapter,
8230 		      unsigned int qid,
8231 		      enum t4_bar2_qtype qtype,
8232 		      int user,
8233 		      u64 *pbar2_qoffset,
8234 		      unsigned int *pbar2_qid)
8235 {
8236 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8237 	u64 bar2_page_offset, bar2_qoffset;
8238 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8239 
8240 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
8241 	 * mode queues.
8242 	 */
8243 	if (!user && is_t4(adapter))
8244 		return -EINVAL;
8245 
8246 	/* Get our SGE Page Size parameters.
8247 	 */
8248 	page_shift = adapter->params.sge.page_shift;
8249 	page_size = 1 << page_shift;
8250 
8251 	/* Get the right Queues per Page parameters for our Queue.
8252 	 */
8253 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8254 		     ? adapter->params.sge.eq_s_qpp
8255 		     : adapter->params.sge.iq_s_qpp);
8256 	qpp_mask = (1 << qpp_shift) - 1;
8257 
8258 	/* Calculate the basics of the BAR2 SGE Queue register area:
8259 	 *  o The BAR2 page the Queue registers will be in.
8260 	 *  o The BAR2 Queue ID.
8261 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8262 	 */
8263 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8264 	bar2_qid = qid & qpp_mask;
8265 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8266 
8267 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8268 	 * hardware will infer the Absolute Queue ID simply from the writes to
8269 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8270 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8271 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8272 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8273 	 * from the BAR2 Page and BAR2 Queue ID.
8274 	 *
8275 	 * One important censequence of this is that some BAR2 SGE registers
8276 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8277 	 * there.  But other registers synthesize the SGE Queue ID purely
8278 	 * from the writes to the registers -- the Write Combined Doorbell
8279 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8280 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8281 	 * Queue ID can be inferred from simple writes.
8282 	 */
8283 	bar2_qoffset = bar2_page_offset;
8284 	bar2_qinferred = (bar2_qid_offset < page_size);
8285 	if (bar2_qinferred) {
8286 		bar2_qoffset += bar2_qid_offset;
8287 		bar2_qid = 0;
8288 	}
8289 
8290 	*pbar2_qoffset = bar2_qoffset;
8291 	*pbar2_qid = bar2_qid;
8292 	return 0;
8293 }
8294 
8295 /**
8296  *	t4_init_devlog_params - initialize adapter->params.devlog
8297  *	@adap: the adapter
8298  *	@fw_attach: whether we can talk to the firmware
8299  *
8300  *	Initialize various fields of the adapter's Firmware Device Log
8301  *	Parameters structure.
8302  */
8303 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
8304 {
8305 	struct devlog_params *dparams = &adap->params.devlog;
8306 	u32 pf_dparams;
8307 	unsigned int devlog_meminfo;
8308 	struct fw_devlog_cmd devlog_cmd;
8309 	int ret;
8310 
8311 	/* If we're dealing with newer firmware, the Device Log Paramerters
8312 	 * are stored in a designated register which allows us to access the
8313 	 * Device Log even if we can't talk to the firmware.
8314 	 */
8315 	pf_dparams =
8316 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
8317 	if (pf_dparams) {
8318 		unsigned int nentries, nentries128;
8319 
8320 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
8321 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
8322 
8323 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
8324 		nentries = (nentries128 + 1) * 128;
8325 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8326 
8327 		return 0;
8328 	}
8329 
8330 	/*
8331 	 * For any failing returns ...
8332 	 */
8333 	memset(dparams, 0, sizeof *dparams);
8334 
8335 	/*
8336 	 * If we can't talk to the firmware, there's really nothing we can do
8337 	 * at this point.
8338 	 */
8339 	if (!fw_attach)
8340 		return -ENXIO;
8341 
8342 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8343 	 */
8344 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
8345 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
8346 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
8347 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8348 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8349 			 &devlog_cmd);
8350 	if (ret)
8351 		return ret;
8352 
8353 	devlog_meminfo =
8354 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8355 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
8356 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
8357 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8358 
8359 	return 0;
8360 }
8361 
8362 /**
8363  *	t4_init_sge_params - initialize adap->params.sge
8364  *	@adapter: the adapter
8365  *
8366  *	Initialize various fields of the adapter's SGE Parameters structure.
8367  */
8368 int t4_init_sge_params(struct adapter *adapter)
8369 {
8370 	u32 r;
8371 	struct sge_params *sp = &adapter->params.sge;
8372 	unsigned i, tscale = 1;
8373 
8374 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
8375 	sp->counter_val[0] = G_THRESHOLD_0(r);
8376 	sp->counter_val[1] = G_THRESHOLD_1(r);
8377 	sp->counter_val[2] = G_THRESHOLD_2(r);
8378 	sp->counter_val[3] = G_THRESHOLD_3(r);
8379 
8380 	if (chip_id(adapter) >= CHELSIO_T6) {
8381 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
8382 		tscale = G_TSCALE(r);
8383 		if (tscale == 0)
8384 			tscale = 1;
8385 		else
8386 			tscale += 2;
8387 	}
8388 
8389 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
8390 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
8391 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
8392 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
8393 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
8394 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
8395 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
8396 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
8397 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
8398 
8399 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
8400 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
8401 	if (is_t4(adapter))
8402 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
8403 	else if (is_t5(adapter))
8404 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
8405 	else
8406 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
8407 
8408 	/* egress queues: log2 of # of doorbells per BAR2 page */
8409 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
8410 	r >>= S_QUEUESPERPAGEPF0 +
8411 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8412 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
8413 
8414 	/* ingress queues: log2 of # of doorbells per BAR2 page */
8415 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
8416 	r >>= S_QUEUESPERPAGEPF0 +
8417 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8418 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
8419 
8420 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
8421 	r >>= S_HOSTPAGESIZEPF0 +
8422 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
8423 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
8424 
8425 	r = t4_read_reg(adapter, A_SGE_CONTROL);
8426 	sp->sge_control = r;
8427 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
8428 	sp->fl_pktshift = G_PKTSHIFT(r);
8429 	if (chip_id(adapter) <= CHELSIO_T5) {
8430 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8431 		    X_INGPADBOUNDARY_SHIFT);
8432 	} else {
8433 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8434 		    X_T6_INGPADBOUNDARY_SHIFT);
8435 	}
8436 	if (is_t4(adapter))
8437 		sp->pack_boundary = sp->pad_boundary;
8438 	else {
8439 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
8440 		if (G_INGPACKBOUNDARY(r) == 0)
8441 			sp->pack_boundary = 16;
8442 		else
8443 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
8444 	}
8445 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
8446 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
8447 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
8448 
8449 	return 0;
8450 }
8451 
8452 /*
8453  * Read and cache the adapter's compressed filter mode and ingress config.
8454  */
8455 static void read_filter_mode_and_ingress_config(struct adapter *adap,
8456     bool sleep_ok)
8457 {
8458 	uint32_t v;
8459 	struct tp_params *tpp = &adap->params.tp;
8460 
8461 	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
8462 	    sleep_ok);
8463 	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
8464 	    sleep_ok);
8465 
8466 	/*
8467 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8468 	 * shift positions of several elements of the Compressed Filter Tuple
8469 	 * for this adapter which we need frequently ...
8470 	 */
8471 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8472 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8473 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8474 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8475 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8476 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8477 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8478 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8479 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8480 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8481 
8482 	if (chip_id(adap) > CHELSIO_T4) {
8483 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
8484 		adap->params.tp.hash_filter_mask = v;
8485 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
8486 		adap->params.tp.hash_filter_mask |= (u64)v << 32;
8487 	}
8488 }
8489 
8490 /**
8491  *      t4_init_tp_params - initialize adap->params.tp
8492  *      @adap: the adapter
8493  *
8494  *      Initialize various fields of the adapter's TP Parameters structure.
8495  */
8496 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8497 {
8498 	int chan;
8499 	u32 v;
8500 	struct tp_params *tpp = &adap->params.tp;
8501 
8502 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8503 	tpp->tre = G_TIMERRESOLUTION(v);
8504 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8505 
8506 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8507 	for (chan = 0; chan < MAX_NCHAN; chan++)
8508 		tpp->tx_modq[chan] = chan;
8509 
8510 	read_filter_mode_and_ingress_config(adap, sleep_ok);
8511 
8512 	/*
8513 	 * Cache a mask of the bits that represent the error vector portion of
8514 	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8515 	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8516 	 */
8517 	tpp->err_vec_mask = htobe16(0xffff);
8518 	if (chip_id(adap) > CHELSIO_T5) {
8519 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8520 		if (v & F_CRXPKTENC) {
8521 			tpp->err_vec_mask =
8522 			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8523 		}
8524 	}
8525 
8526 	return 0;
8527 }
8528 
8529 /**
8530  *      t4_filter_field_shift - calculate filter field shift
8531  *      @adap: the adapter
8532  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8533  *
8534  *      Return the shift position of a filter field within the Compressed
8535  *      Filter Tuple.  The filter field is specified via its selection bit
8536  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8537  */
8538 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8539 {
8540 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8541 	unsigned int sel;
8542 	int field_shift;
8543 
8544 	if ((filter_mode & filter_sel) == 0)
8545 		return -1;
8546 
8547 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8548 		switch (filter_mode & sel) {
8549 		case F_FCOE:
8550 			field_shift += W_FT_FCOE;
8551 			break;
8552 		case F_PORT:
8553 			field_shift += W_FT_PORT;
8554 			break;
8555 		case F_VNIC_ID:
8556 			field_shift += W_FT_VNIC_ID;
8557 			break;
8558 		case F_VLAN:
8559 			field_shift += W_FT_VLAN;
8560 			break;
8561 		case F_TOS:
8562 			field_shift += W_FT_TOS;
8563 			break;
8564 		case F_PROTOCOL:
8565 			field_shift += W_FT_PROTOCOL;
8566 			break;
8567 		case F_ETHERTYPE:
8568 			field_shift += W_FT_ETHERTYPE;
8569 			break;
8570 		case F_MACMATCH:
8571 			field_shift += W_FT_MACMATCH;
8572 			break;
8573 		case F_MPSHITTYPE:
8574 			field_shift += W_FT_MPSHITTYPE;
8575 			break;
8576 		case F_FRAGMENTATION:
8577 			field_shift += W_FT_FRAGMENTATION;
8578 			break;
8579 		}
8580 	}
8581 	return field_shift;
8582 }
8583 
8584 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8585 {
8586 	u8 addr[6];
8587 	int ret, i, j;
8588 	u16 rss_size;
8589 	struct port_info *p = adap2pinfo(adap, port_id);
8590 	u32 param, val;
8591 
8592 	for (i = 0, j = -1; i <= p->port_id; i++) {
8593 		do {
8594 			j++;
8595 		} while ((adap->params.portvec & (1 << j)) == 0);
8596 	}
8597 
8598 	if (!(adap->flags & IS_VF) ||
8599 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8600  		t4_update_port_info(p);
8601 	}
8602 
8603 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8604 	if (ret < 0)
8605 		return ret;
8606 
8607 	p->vi[0].viid = ret;
8608 	if (chip_id(adap) <= CHELSIO_T5)
8609 		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8610 	else
8611 		p->vi[0].smt_idx = (ret & 0x7f);
8612 	p->tx_chan = j;
8613 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
8614 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
8615 	p->lport = j;
8616 	p->vi[0].rss_size = rss_size;
8617 	t4_os_set_hw_addr(p, addr);
8618 
8619 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8620 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8621 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8622 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8623 	if (ret)
8624 		p->vi[0].rss_base = 0xffff;
8625 	else {
8626 		/* MPASS((val >> 16) == rss_size); */
8627 		p->vi[0].rss_base = val & 0xffff;
8628 	}
8629 
8630 	return 0;
8631 }
8632 
8633 /**
8634  *	t4_read_cimq_cfg - read CIM queue configuration
8635  *	@adap: the adapter
8636  *	@base: holds the queue base addresses in bytes
8637  *	@size: holds the queue sizes in bytes
8638  *	@thres: holds the queue full thresholds in bytes
8639  *
8640  *	Returns the current configuration of the CIM queues, starting with
8641  *	the IBQs, then the OBQs.
8642  */
8643 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8644 {
8645 	unsigned int i, v;
8646 	int cim_num_obq = adap->chip_params->cim_num_obq;
8647 
8648 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8649 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8650 			     V_QUENUMSELECT(i));
8651 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8652 		/* value is in 256-byte units */
8653 		*base++ = G_CIMQBASE(v) * 256;
8654 		*size++ = G_CIMQSIZE(v) * 256;
8655 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8656 	}
8657 	for (i = 0; i < cim_num_obq; i++) {
8658 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8659 			     V_QUENUMSELECT(i));
8660 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8661 		/* value is in 256-byte units */
8662 		*base++ = G_CIMQBASE(v) * 256;
8663 		*size++ = G_CIMQSIZE(v) * 256;
8664 	}
8665 }
8666 
8667 /**
8668  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8669  *	@adap: the adapter
8670  *	@qid: the queue index
8671  *	@data: where to store the queue contents
8672  *	@n: capacity of @data in 32-bit words
8673  *
8674  *	Reads the contents of the selected CIM queue starting at address 0 up
8675  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8676  *	error and the number of 32-bit words actually read on success.
8677  */
8678 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8679 {
8680 	int i, err, attempts;
8681 	unsigned int addr;
8682 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8683 
8684 	if (qid > 5 || (n & 3))
8685 		return -EINVAL;
8686 
8687 	addr = qid * nwords;
8688 	if (n > nwords)
8689 		n = nwords;
8690 
8691 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8692 	 * Wait for 1 Sec with a delay of 1 usec.
8693 	 */
8694 	attempts = 1000000;
8695 
8696 	for (i = 0; i < n; i++, addr++) {
8697 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8698 			     F_IBQDBGEN);
8699 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8700 				      attempts, 1);
8701 		if (err)
8702 			return err;
8703 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8704 	}
8705 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8706 	return i;
8707 }
8708 
8709 /**
8710  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8711  *	@adap: the adapter
8712  *	@qid: the queue index
8713  *	@data: where to store the queue contents
8714  *	@n: capacity of @data in 32-bit words
8715  *
8716  *	Reads the contents of the selected CIM queue starting at address 0 up
8717  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8718  *	error and the number of 32-bit words actually read on success.
8719  */
8720 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8721 {
8722 	int i, err;
8723 	unsigned int addr, v, nwords;
8724 	int cim_num_obq = adap->chip_params->cim_num_obq;
8725 
8726 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8727 		return -EINVAL;
8728 
8729 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8730 		     V_QUENUMSELECT(qid));
8731 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8732 
8733 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8734 	nwords = G_CIMQSIZE(v) * 64;  /* same */
8735 	if (n > nwords)
8736 		n = nwords;
8737 
8738 	for (i = 0; i < n; i++, addr++) {
8739 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8740 			     F_OBQDBGEN);
8741 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8742 				      2, 1);
8743 		if (err)
8744 			return err;
8745 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8746 	}
8747 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8748 	return i;
8749 }
8750 
8751 enum {
8752 	CIM_QCTL_BASE     = 0,
8753 	CIM_CTL_BASE      = 0x2000,
8754 	CIM_PBT_ADDR_BASE = 0x2800,
8755 	CIM_PBT_LRF_BASE  = 0x3000,
8756 	CIM_PBT_DATA_BASE = 0x3800
8757 };
8758 
8759 /**
8760  *	t4_cim_read - read a block from CIM internal address space
8761  *	@adap: the adapter
8762  *	@addr: the start address within the CIM address space
8763  *	@n: number of words to read
8764  *	@valp: where to store the result
8765  *
8766  *	Reads a block of 4-byte words from the CIM intenal address space.
8767  */
8768 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8769 		unsigned int *valp)
8770 {
8771 	int ret = 0;
8772 
8773 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8774 		return -EBUSY;
8775 
8776 	for ( ; !ret && n--; addr += 4) {
8777 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8778 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8779 				      0, 5, 2);
8780 		if (!ret)
8781 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8782 	}
8783 	return ret;
8784 }
8785 
8786 /**
8787  *	t4_cim_write - write a block into CIM internal address space
8788  *	@adap: the adapter
8789  *	@addr: the start address within the CIM address space
8790  *	@n: number of words to write
8791  *	@valp: set of values to write
8792  *
8793  *	Writes a block of 4-byte words into the CIM intenal address space.
8794  */
8795 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8796 		 const unsigned int *valp)
8797 {
8798 	int ret = 0;
8799 
8800 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8801 		return -EBUSY;
8802 
8803 	for ( ; !ret && n--; addr += 4) {
8804 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8805 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8806 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8807 				      0, 5, 2);
8808 	}
8809 	return ret;
8810 }
8811 
8812 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8813 			 unsigned int val)
8814 {
8815 	return t4_cim_write(adap, addr, 1, &val);
8816 }
8817 
8818 /**
8819  *	t4_cim_ctl_read - read a block from CIM control region
8820  *	@adap: the adapter
8821  *	@addr: the start address within the CIM control region
8822  *	@n: number of words to read
8823  *	@valp: where to store the result
8824  *
8825  *	Reads a block of 4-byte words from the CIM control region.
8826  */
8827 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8828 		    unsigned int *valp)
8829 {
8830 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8831 }
8832 
8833 /**
8834  *	t4_cim_read_la - read CIM LA capture buffer
8835  *	@adap: the adapter
8836  *	@la_buf: where to store the LA data
8837  *	@wrptr: the HW write pointer within the capture buffer
8838  *
8839  *	Reads the contents of the CIM LA buffer with the most recent entry at
8840  *	the end	of the returned data and with the entry at @wrptr first.
8841  *	We try to leave the LA in the running state we find it in.
8842  */
8843 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8844 {
8845 	int i, ret;
8846 	unsigned int cfg, val, idx;
8847 
8848 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8849 	if (ret)
8850 		return ret;
8851 
8852 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8853 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8854 		if (ret)
8855 			return ret;
8856 	}
8857 
8858 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8859 	if (ret)
8860 		goto restart;
8861 
8862 	idx = G_UPDBGLAWRPTR(val);
8863 	if (wrptr)
8864 		*wrptr = idx;
8865 
8866 	for (i = 0; i < adap->params.cim_la_size; i++) {
8867 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8868 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8869 		if (ret)
8870 			break;
8871 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8872 		if (ret)
8873 			break;
8874 		if (val & F_UPDBGLARDEN) {
8875 			ret = -ETIMEDOUT;
8876 			break;
8877 		}
8878 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8879 		if (ret)
8880 			break;
8881 
8882 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8883 		idx = (idx + 1) & M_UPDBGLARDPTR;
8884 		/*
8885 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8886 		 * identify the 32-bit portion of the full 312-bit data
8887 		 */
8888 		if (is_t6(adap))
8889 			while ((idx & 0xf) > 9)
8890 				idx = (idx + 1) % M_UPDBGLARDPTR;
8891 	}
8892 restart:
8893 	if (cfg & F_UPDBGLAEN) {
8894 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8895 				      cfg & ~F_UPDBGLARDEN);
8896 		if (!ret)
8897 			ret = r;
8898 	}
8899 	return ret;
8900 }
8901 
8902 /**
8903  *	t4_tp_read_la - read TP LA capture buffer
8904  *	@adap: the adapter
8905  *	@la_buf: where to store the LA data
8906  *	@wrptr: the HW write pointer within the capture buffer
8907  *
8908  *	Reads the contents of the TP LA buffer with the most recent entry at
8909  *	the end	of the returned data and with the entry at @wrptr first.
8910  *	We leave the LA in the running state we find it in.
8911  */
8912 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8913 {
8914 	bool last_incomplete;
8915 	unsigned int i, cfg, val, idx;
8916 
8917 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8918 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8919 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8920 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8921 
8922 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8923 	idx = G_DBGLAWPTR(val);
8924 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8925 	if (last_incomplete)
8926 		idx = (idx + 1) & M_DBGLARPTR;
8927 	if (wrptr)
8928 		*wrptr = idx;
8929 
8930 	val &= 0xffff;
8931 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8932 	val |= adap->params.tp.la_mask;
8933 
8934 	for (i = 0; i < TPLA_SIZE; i++) {
8935 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8936 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8937 		idx = (idx + 1) & M_DBGLARPTR;
8938 	}
8939 
8940 	/* Wipe out last entry if it isn't valid */
8941 	if (last_incomplete)
8942 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8943 
8944 	if (cfg & F_DBGLAENABLE)		/* restore running state */
8945 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8946 			     cfg | adap->params.tp.la_mask);
8947 }
8948 
8949 /*
8950  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8951  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8952  * state for more than the Warning Threshold then we'll issue a warning about
8953  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8954  * appears to be hung every Warning Repeat second till the situation clears.
8955  * If the situation clears, we'll note that as well.
8956  */
8957 #define SGE_IDMA_WARN_THRESH 1
8958 #define SGE_IDMA_WARN_REPEAT 300
8959 
8960 /**
8961  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8962  *	@adapter: the adapter
8963  *	@idma: the adapter IDMA Monitor state
8964  *
8965  *	Initialize the state of an SGE Ingress DMA Monitor.
8966  */
8967 void t4_idma_monitor_init(struct adapter *adapter,
8968 			  struct sge_idma_monitor_state *idma)
8969 {
8970 	/* Initialize the state variables for detecting an SGE Ingress DMA
8971 	 * hang.  The SGE has internal counters which count up on each clock
8972 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8973 	 * same state they were on the previous clock tick.  The clock used is
8974 	 * the Core Clock so we have a limit on the maximum "time" they can
8975 	 * record; typically a very small number of seconds.  For instance,
8976 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8977 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8978 	 * risk of having the "timers" overflow and give us the flexibility to
8979 	 * maintain a Hung SGE State Machine of our own which operates across
8980 	 * a longer time frame.
8981 	 */
8982 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8983 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8984 }
8985 
8986 /**
8987  *	t4_idma_monitor - monitor SGE Ingress DMA state
8988  *	@adapter: the adapter
8989  *	@idma: the adapter IDMA Monitor state
8990  *	@hz: number of ticks/second
8991  *	@ticks: number of ticks since the last IDMA Monitor call
8992  */
8993 void t4_idma_monitor(struct adapter *adapter,
8994 		     struct sge_idma_monitor_state *idma,
8995 		     int hz, int ticks)
8996 {
8997 	int i, idma_same_state_cnt[2];
8998 
8999 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9000 	  * are counters inside the SGE which count up on each clock when the
9001 	  * SGE finds its Ingress DMA State Engines in the same states they
9002 	  * were in the previous clock.  The counters will peg out at
9003 	  * 0xffffffff without wrapping around so once they pass the 1s
9004 	  * threshold they'll stay above that till the IDMA state changes.
9005 	  */
9006 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
9007 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
9008 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9009 
9010 	for (i = 0; i < 2; i++) {
9011 		u32 debug0, debug11;
9012 
9013 		/* If the Ingress DMA Same State Counter ("timer") is less
9014 		 * than 1s, then we can reset our synthesized Stall Timer and
9015 		 * continue.  If we have previously emitted warnings about a
9016 		 * potential stalled Ingress Queue, issue a note indicating
9017 		 * that the Ingress Queue has resumed forward progress.
9018 		 */
9019 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9020 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
9021 				CH_WARN(adapter, "SGE idma%d, queue %u, "
9022 					"resumed after %d seconds\n",
9023 					i, idma->idma_qid[i],
9024 					idma->idma_stalled[i]/hz);
9025 			idma->idma_stalled[i] = 0;
9026 			continue;
9027 		}
9028 
9029 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9030 		 * domain.  The first time we get here it'll be because we
9031 		 * passed the 1s Threshold; each additional time it'll be
9032 		 * because the RX Timer Callback is being fired on its regular
9033 		 * schedule.
9034 		 *
9035 		 * If the stall is below our Potential Hung Ingress Queue
9036 		 * Warning Threshold, continue.
9037 		 */
9038 		if (idma->idma_stalled[i] == 0) {
9039 			idma->idma_stalled[i] = hz;
9040 			idma->idma_warn[i] = 0;
9041 		} else {
9042 			idma->idma_stalled[i] += ticks;
9043 			idma->idma_warn[i] -= ticks;
9044 		}
9045 
9046 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
9047 			continue;
9048 
9049 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9050 		 */
9051 		if (idma->idma_warn[i] > 0)
9052 			continue;
9053 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
9054 
9055 		/* Read and save the SGE IDMA State and Queue ID information.
9056 		 * We do this every time in case it changes across time ...
9057 		 * can't be too careful ...
9058 		 */
9059 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
9060 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9061 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9062 
9063 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
9064 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9065 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9066 
9067 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
9068 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9069 			i, idma->idma_qid[i], idma->idma_state[i],
9070 			idma->idma_stalled[i]/hz,
9071 			debug0, debug11);
9072 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9073 	}
9074 }
9075 
9076 /**
9077  *	t4_read_pace_tbl - read the pace table
9078  *	@adap: the adapter
9079  *	@pace_vals: holds the returned values
9080  *
9081  *	Returns the values of TP's pace table in microseconds.
9082  */
9083 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9084 {
9085 	unsigned int i, v;
9086 
9087 	for (i = 0; i < NTX_SCHED; i++) {
9088 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9089 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
9090 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9091 	}
9092 }
9093 
9094 /**
9095  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9096  *	@adap: the adapter
9097  *	@sched: the scheduler index
9098  *	@kbps: the byte rate in Kbps
9099  *	@ipg: the interpacket delay in tenths of nanoseconds
9100  *
9101  *	Return the current configuration of a HW Tx scheduler.
9102  */
9103 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9104 		     unsigned int *ipg, bool sleep_ok)
9105 {
9106 	unsigned int v, addr, bpt, cpt;
9107 
9108 	if (kbps) {
9109 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9110 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9111 		if (sched & 1)
9112 			v >>= 16;
9113 		bpt = (v >> 8) & 0xff;
9114 		cpt = v & 0xff;
9115 		if (!cpt)
9116 			*kbps = 0;	/* scheduler disabled */
9117 		else {
9118 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9119 			*kbps = (v * bpt) / 125;
9120 		}
9121 	}
9122 	if (ipg) {
9123 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9124 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9125 		if (sched & 1)
9126 			v >>= 16;
9127 		v &= 0xffff;
9128 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9129 	}
9130 }
9131 
9132 /**
9133  *	t4_load_cfg - download config file
9134  *	@adap: the adapter
9135  *	@cfg_data: the cfg text file to write
9136  *	@size: text file size
9137  *
9138  *	Write the supplied config text file to the card's serial flash.
9139  */
9140 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9141 {
9142 	int ret, i, n, cfg_addr;
9143 	unsigned int addr;
9144 	unsigned int flash_cfg_start_sec;
9145 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9146 
9147 	cfg_addr = t4_flash_cfg_addr(adap);
9148 	if (cfg_addr < 0)
9149 		return cfg_addr;
9150 
9151 	addr = cfg_addr;
9152 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9153 
9154 	if (size > FLASH_CFG_MAX_SIZE) {
9155 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9156 		       FLASH_CFG_MAX_SIZE);
9157 		return -EFBIG;
9158 	}
9159 
9160 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9161 			 sf_sec_size);
9162 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9163 				     flash_cfg_start_sec + i - 1);
9164 	/*
9165 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9166 	 * with the on-adapter Firmware Configuration File.
9167 	 */
9168 	if (ret || size == 0)
9169 		goto out;
9170 
9171 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9172 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9173 		if ( (size - i) <  SF_PAGE_SIZE)
9174 			n = size - i;
9175 		else
9176 			n = SF_PAGE_SIZE;
9177 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9178 		if (ret)
9179 			goto out;
9180 
9181 		addr += SF_PAGE_SIZE;
9182 		cfg_data += SF_PAGE_SIZE;
9183 	}
9184 
9185 out:
9186 	if (ret)
9187 		CH_ERR(adap, "config file %s failed %d\n",
9188 		       (size == 0 ? "clear" : "download"), ret);
9189 	return ret;
9190 }
9191 
9192 /**
9193  *	t5_fw_init_extern_mem - initialize the external memory
9194  *	@adap: the adapter
9195  *
9196  *	Initializes the external memory on T5.
9197  */
9198 int t5_fw_init_extern_mem(struct adapter *adap)
9199 {
9200 	u32 params[1], val[1];
9201 	int ret;
9202 
9203 	if (!is_t5(adap))
9204 		return 0;
9205 
9206 	val[0] = 0xff; /* Initialize all MCs */
9207 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9208 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9209 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9210 			FW_CMD_MAX_TIMEOUT);
9211 
9212 	return ret;
9213 }
9214 
9215 /* BIOS boot headers */
9216 typedef struct pci_expansion_rom_header {
9217 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9218 	u8	reserved[22]; /* Reserved per processor Architecture data */
9219 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9220 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9221 
9222 /* Legacy PCI Expansion ROM Header */
9223 typedef struct legacy_pci_expansion_rom_header {
9224 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9225 	u8	size512; /* Current Image Size in units of 512 bytes */
9226 	u8	initentry_point[4];
9227 	u8	cksum; /* Checksum computed on the entire Image */
9228 	u8	reserved[16]; /* Reserved */
9229 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
9230 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9231 
9232 /* EFI PCI Expansion ROM Header */
9233 typedef struct efi_pci_expansion_rom_header {
9234 	u8	signature[2]; // ROM signature. The value 0xaa55
9235 	u8	initialization_size[2]; /* Units 512. Includes this header */
9236 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9237 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
9238 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
9239 	u8	compression_type[2]; /* Compression type. */
9240 		/*
9241 		 * Compression type definition
9242 		 * 0x0: uncompressed
9243 		 * 0x1: Compressed
9244 		 * 0x2-0xFFFF: Reserved
9245 		 */
9246 	u8	reserved[8]; /* Reserved */
9247 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
9248 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9249 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9250 
9251 /* PCI Data Structure Format */
9252 typedef struct pcir_data_structure { /* PCI Data Structure */
9253 	u8	signature[4]; /* Signature. The string "PCIR" */
9254 	u8	vendor_id[2]; /* Vendor Identification */
9255 	u8	device_id[2]; /* Device Identification */
9256 	u8	vital_product[2]; /* Pointer to Vital Product Data */
9257 	u8	length[2]; /* PCIR Data Structure Length */
9258 	u8	revision; /* PCIR Data Structure Revision */
9259 	u8	class_code[3]; /* Class Code */
9260 	u8	image_length[2]; /* Image Length. Multiple of 512B */
9261 	u8	code_revision[2]; /* Revision Level of Code/Data */
9262 	u8	code_type; /* Code Type. */
9263 		/*
9264 		 * PCI Expansion ROM Code Types
9265 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
9266 		 * 0x01: Open Firmware standard for PCI. FCODE
9267 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
9268 		 * 0x03: EFI Image. EFI
9269 		 * 0x04-0xFF: Reserved.
9270 		 */
9271 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
9272 	u8	reserved[2]; /* Reserved */
9273 } pcir_data_t; /* PCI__DATA_STRUCTURE */
9274 
9275 /* BOOT constants */
9276 enum {
9277 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
9278 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
9279 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
9280 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
9281 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
9282 	VENDOR_ID = 0x1425, /* Vendor ID */
9283 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
9284 };
9285 
9286 /*
9287  *	modify_device_id - Modifies the device ID of the Boot BIOS image
9288  *	@adatper: the device ID to write.
9289  *	@boot_data: the boot image to modify.
9290  *
9291  *	Write the supplied device ID to the boot BIOS image.
9292  */
9293 static void modify_device_id(int device_id, u8 *boot_data)
9294 {
9295 	legacy_pci_exp_rom_header_t *header;
9296 	pcir_data_t *pcir_header;
9297 	u32 cur_header = 0;
9298 
9299 	/*
9300 	 * Loop through all chained images and change the device ID's
9301 	 */
9302 	while (1) {
9303 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
9304 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
9305 			      le16_to_cpu(*(u16*)header->pcir_offset)];
9306 
9307 		/*
9308 		 * Only modify the Device ID if code type is Legacy or HP.
9309 		 * 0x00: Okay to modify
9310 		 * 0x01: FCODE. Do not be modify
9311 		 * 0x03: Okay to modify
9312 		 * 0x04-0xFF: Do not modify
9313 		 */
9314 		if (pcir_header->code_type == 0x00) {
9315 			u8 csum = 0;
9316 			int i;
9317 
9318 			/*
9319 			 * Modify Device ID to match current adatper
9320 			 */
9321 			*(u16*) pcir_header->device_id = device_id;
9322 
9323 			/*
9324 			 * Set checksum temporarily to 0.
9325 			 * We will recalculate it later.
9326 			 */
9327 			header->cksum = 0x0;
9328 
9329 			/*
9330 			 * Calculate and update checksum
9331 			 */
9332 			for (i = 0; i < (header->size512 * 512); i++)
9333 				csum += (u8)boot_data[cur_header + i];
9334 
9335 			/*
9336 			 * Invert summed value to create the checksum
9337 			 * Writing new checksum value directly to the boot data
9338 			 */
9339 			boot_data[cur_header + 7] = -csum;
9340 
9341 		} else if (pcir_header->code_type == 0x03) {
9342 
9343 			/*
9344 			 * Modify Device ID to match current adatper
9345 			 */
9346 			*(u16*) pcir_header->device_id = device_id;
9347 
9348 		}
9349 
9350 
9351 		/*
9352 		 * Check indicator element to identify if this is the last
9353 		 * image in the ROM.
9354 		 */
9355 		if (pcir_header->indicator & 0x80)
9356 			break;
9357 
9358 		/*
9359 		 * Move header pointer up to the next image in the ROM.
9360 		 */
9361 		cur_header += header->size512 * 512;
9362 	}
9363 }
9364 
9365 /*
9366  *	t4_load_boot - download boot flash
9367  *	@adapter: the adapter
9368  *	@boot_data: the boot image to write
9369  *	@boot_addr: offset in flash to write boot_data
9370  *	@size: image size
9371  *
9372  *	Write the supplied boot image to the card's serial flash.
9373  *	The boot image has the following sections: a 28-byte header and the
9374  *	boot image.
9375  */
9376 int t4_load_boot(struct adapter *adap, u8 *boot_data,
9377 		 unsigned int boot_addr, unsigned int size)
9378 {
9379 	pci_exp_rom_header_t *header;
9380 	int pcir_offset ;
9381 	pcir_data_t *pcir_header;
9382 	int ret, addr;
9383 	uint16_t device_id;
9384 	unsigned int i;
9385 	unsigned int boot_sector = (boot_addr * 1024 );
9386 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9387 
9388 	/*
9389 	 * Make sure the boot image does not encroach on the firmware region
9390 	 */
9391 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
9392 		CH_ERR(adap, "boot image encroaching on firmware region\n");
9393 		return -EFBIG;
9394 	}
9395 
9396 	/*
9397 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
9398 	 * and Boot configuration data sections. These 3 boot sections span
9399 	 * sectors 0 to 7 in flash and live right before the FW image location.
9400 	 */
9401 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
9402 			sf_sec_size);
9403 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
9404 				     (boot_sector >> 16) + i - 1);
9405 
9406 	/*
9407 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9408 	 * with the on-adapter option ROM file
9409 	 */
9410 	if (ret || (size == 0))
9411 		goto out;
9412 
9413 	/* Get boot header */
9414 	header = (pci_exp_rom_header_t *)boot_data;
9415 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
9416 	/* PCIR Data Structure */
9417 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
9418 
9419 	/*
9420 	 * Perform some primitive sanity testing to avoid accidentally
9421 	 * writing garbage over the boot sectors.  We ought to check for
9422 	 * more but it's not worth it for now ...
9423 	 */
9424 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
9425 		CH_ERR(adap, "boot image too small/large\n");
9426 		return -EFBIG;
9427 	}
9428 
9429 #ifndef CHELSIO_T4_DIAGS
9430 	/*
9431 	 * Check BOOT ROM header signature
9432 	 */
9433 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
9434 		CH_ERR(adap, "Boot image missing signature\n");
9435 		return -EINVAL;
9436 	}
9437 
9438 	/*
9439 	 * Check PCI header signature
9440 	 */
9441 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
9442 		CH_ERR(adap, "PCI header missing signature\n");
9443 		return -EINVAL;
9444 	}
9445 
9446 	/*
9447 	 * Check Vendor ID matches Chelsio ID
9448 	 */
9449 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9450 		CH_ERR(adap, "Vendor ID missing signature\n");
9451 		return -EINVAL;
9452 	}
9453 #endif
9454 
9455 	/*
9456 	 * Retrieve adapter's device ID
9457 	 */
9458 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9459 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
9460 	device_id = device_id & 0xf0ff;
9461 
9462 	/*
9463 	 * Check PCIE Device ID
9464 	 */
9465 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9466 		/*
9467 		 * Change the device ID in the Boot BIOS image to match
9468 		 * the Device ID of the current adapter.
9469 		 */
9470 		modify_device_id(device_id, boot_data);
9471 	}
9472 
9473 	/*
9474 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
9475 	 * we finish copying the rest of the boot image. This will ensure
9476 	 * that the BIOS boot header will only be written if the boot image
9477 	 * was written in full.
9478 	 */
9479 	addr = boot_sector;
9480 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9481 		addr += SF_PAGE_SIZE;
9482 		boot_data += SF_PAGE_SIZE;
9483 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9484 		if (ret)
9485 			goto out;
9486 	}
9487 
9488 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9489 			     (const u8 *)header, 0);
9490 
9491 out:
9492 	if (ret)
9493 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
9494 	return ret;
9495 }
9496 
9497 /*
9498  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9499  *	@adapter: the adapter
9500  *
9501  *	Return the address within the flash where the OptionROM Configuration
9502  *	is stored, or an error if the device FLASH is too small to contain
9503  *	a OptionROM Configuration.
9504  */
9505 static int t4_flash_bootcfg_addr(struct adapter *adapter)
9506 {
9507 	/*
9508 	 * If the device FLASH isn't large enough to hold a Firmware
9509 	 * Configuration File, return an error.
9510 	 */
9511 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9512 		return -ENOSPC;
9513 
9514 	return FLASH_BOOTCFG_START;
9515 }
9516 
9517 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9518 {
9519 	int ret, i, n, cfg_addr;
9520 	unsigned int addr;
9521 	unsigned int flash_cfg_start_sec;
9522 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9523 
9524 	cfg_addr = t4_flash_bootcfg_addr(adap);
9525 	if (cfg_addr < 0)
9526 		return cfg_addr;
9527 
9528 	addr = cfg_addr;
9529 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9530 
9531 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9532 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9533 			FLASH_BOOTCFG_MAX_SIZE);
9534 		return -EFBIG;
9535 	}
9536 
9537 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9538 			 sf_sec_size);
9539 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9540 					flash_cfg_start_sec + i - 1);
9541 
9542 	/*
9543 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9544 	 * with the on-adapter OptionROM Configuration File.
9545 	 */
9546 	if (ret || size == 0)
9547 		goto out;
9548 
9549 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9550 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9551 		if ( (size - i) <  SF_PAGE_SIZE)
9552 			n = size - i;
9553 		else
9554 			n = SF_PAGE_SIZE;
9555 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9556 		if (ret)
9557 			goto out;
9558 
9559 		addr += SF_PAGE_SIZE;
9560 		cfg_data += SF_PAGE_SIZE;
9561 	}
9562 
9563 out:
9564 	if (ret)
9565 		CH_ERR(adap, "boot config data %s failed %d\n",
9566 				(size == 0 ? "clear" : "download"), ret);
9567 	return ret;
9568 }
9569 
9570 /**
9571  *	t4_set_filter_mode - configure the optional components of filter tuples
9572  *	@adap: the adapter
9573  *	@mode_map: a bitmap selcting which optional filter components to enable
9574  * 	@sleep_ok: if true we may sleep while awaiting command completion
9575  *
9576  *	Sets the filter mode by selecting the optional components to enable
9577  *	in filter tuples.  Returns 0 on success and a negative error if the
9578  *	requested mode needs more bits than are available for optional
9579  *	components.
9580  */
9581 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
9582 		       bool sleep_ok)
9583 {
9584 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9585 
9586 	int i, nbits = 0;
9587 
9588 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9589 		if (mode_map & (1 << i))
9590 			nbits += width[i];
9591 	if (nbits > FILTER_OPT_LEN)
9592 		return -EINVAL;
9593 	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
9594 	read_filter_mode_and_ingress_config(adap, sleep_ok);
9595 
9596 	return 0;
9597 }
9598 
9599 /**
9600  *	t4_clr_port_stats - clear port statistics
9601  *	@adap: the adapter
9602  *	@idx: the port index
9603  *
9604  *	Clear HW statistics for the given port.
9605  */
9606 void t4_clr_port_stats(struct adapter *adap, int idx)
9607 {
9608 	unsigned int i;
9609 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
9610 	u32 port_base_addr;
9611 
9612 	if (is_t4(adap))
9613 		port_base_addr = PORT_BASE(idx);
9614 	else
9615 		port_base_addr = T5_PORT_BASE(idx);
9616 
9617 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9618 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9619 		t4_write_reg(adap, port_base_addr + i, 0);
9620 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9621 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9622 		t4_write_reg(adap, port_base_addr + i, 0);
9623 	for (i = 0; i < 4; i++)
9624 		if (bgmap & (1 << i)) {
9625 			t4_write_reg(adap,
9626 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9627 			t4_write_reg(adap,
9628 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9629 		}
9630 }
9631 
9632 /**
9633  *	t4_i2c_rd - read I2C data from adapter
9634  *	@adap: the adapter
9635  *	@port: Port number if per-port device; <0 if not
9636  *	@devid: per-port device ID or absolute device ID
9637  *	@offset: byte offset into device I2C space
9638  *	@len: byte length of I2C space data
9639  *	@buf: buffer in which to return I2C data
9640  *
9641  *	Reads the I2C data from the indicated device and location.
9642  */
9643 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9644 	      int port, unsigned int devid,
9645 	      unsigned int offset, unsigned int len,
9646 	      u8 *buf)
9647 {
9648 	u32 ldst_addrspace;
9649 	struct fw_ldst_cmd ldst;
9650 	int ret;
9651 
9652 	if (port >= 4 ||
9653 	    devid >= 256 ||
9654 	    offset >= 256 ||
9655 	    len > sizeof ldst.u.i2c.data)
9656 		return -EINVAL;
9657 
9658 	memset(&ldst, 0, sizeof ldst);
9659 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9660 	ldst.op_to_addrspace =
9661 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9662 			    F_FW_CMD_REQUEST |
9663 			    F_FW_CMD_READ |
9664 			    ldst_addrspace);
9665 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9666 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9667 	ldst.u.i2c.did = devid;
9668 	ldst.u.i2c.boffset = offset;
9669 	ldst.u.i2c.blen = len;
9670 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9671 	if (!ret)
9672 		memcpy(buf, ldst.u.i2c.data, len);
9673 	return ret;
9674 }
9675 
9676 /**
9677  *	t4_i2c_wr - write I2C data to adapter
9678  *	@adap: the adapter
9679  *	@port: Port number if per-port device; <0 if not
9680  *	@devid: per-port device ID or absolute device ID
9681  *	@offset: byte offset into device I2C space
9682  *	@len: byte length of I2C space data
9683  *	@buf: buffer containing new I2C data
9684  *
9685  *	Write the I2C data to the indicated device and location.
9686  */
9687 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9688 	      int port, unsigned int devid,
9689 	      unsigned int offset, unsigned int len,
9690 	      u8 *buf)
9691 {
9692 	u32 ldst_addrspace;
9693 	struct fw_ldst_cmd ldst;
9694 
9695 	if (port >= 4 ||
9696 	    devid >= 256 ||
9697 	    offset >= 256 ||
9698 	    len > sizeof ldst.u.i2c.data)
9699 		return -EINVAL;
9700 
9701 	memset(&ldst, 0, sizeof ldst);
9702 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9703 	ldst.op_to_addrspace =
9704 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9705 			    F_FW_CMD_REQUEST |
9706 			    F_FW_CMD_WRITE |
9707 			    ldst_addrspace);
9708 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9709 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9710 	ldst.u.i2c.did = devid;
9711 	ldst.u.i2c.boffset = offset;
9712 	ldst.u.i2c.blen = len;
9713 	memcpy(ldst.u.i2c.data, buf, len);
9714 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9715 }
9716 
9717 /**
9718  * 	t4_sge_ctxt_rd - read an SGE context through FW
9719  * 	@adap: the adapter
9720  * 	@mbox: mailbox to use for the FW command
9721  * 	@cid: the context id
9722  * 	@ctype: the context type
9723  * 	@data: where to store the context data
9724  *
9725  * 	Issues a FW command through the given mailbox to read an SGE context.
9726  */
9727 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9728 		   enum ctxt_type ctype, u32 *data)
9729 {
9730 	int ret;
9731 	struct fw_ldst_cmd c;
9732 
9733 	if (ctype == CTXT_EGRESS)
9734 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9735 	else if (ctype == CTXT_INGRESS)
9736 		ret = FW_LDST_ADDRSPC_SGE_INGC;
9737 	else if (ctype == CTXT_FLM)
9738 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9739 	else
9740 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9741 
9742 	memset(&c, 0, sizeof(c));
9743 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9744 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9745 					V_FW_LDST_CMD_ADDRSPACE(ret));
9746 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9747 	c.u.idctxt.physid = cpu_to_be32(cid);
9748 
9749 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9750 	if (ret == 0) {
9751 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9752 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9753 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9754 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9755 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9756 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9757 	}
9758 	return ret;
9759 }
9760 
9761 /**
9762  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9763  * 	@adap: the adapter
9764  * 	@cid: the context id
9765  * 	@ctype: the context type
9766  * 	@data: where to store the context data
9767  *
9768  * 	Reads an SGE context directly, bypassing FW.  This is only for
9769  * 	debugging when FW is unavailable.
9770  */
9771 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9772 		      u32 *data)
9773 {
9774 	int i, ret;
9775 
9776 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9777 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9778 	if (!ret)
9779 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9780 			*data++ = t4_read_reg(adap, i);
9781 	return ret;
9782 }
9783 
9784 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9785     int sleep_ok)
9786 {
9787 	struct fw_sched_cmd cmd;
9788 
9789 	memset(&cmd, 0, sizeof(cmd));
9790 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9791 				      F_FW_CMD_REQUEST |
9792 				      F_FW_CMD_WRITE);
9793 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9794 
9795 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9796 	cmd.u.config.type = type;
9797 	cmd.u.config.minmaxen = minmaxen;
9798 
9799 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9800 			       NULL, sleep_ok);
9801 }
9802 
9803 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9804 		    int rateunit, int ratemode, int channel, int cl,
9805 		    int minrate, int maxrate, int weight, int pktsize,
9806 		    int sleep_ok)
9807 {
9808 	struct fw_sched_cmd cmd;
9809 
9810 	memset(&cmd, 0, sizeof(cmd));
9811 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9812 				      F_FW_CMD_REQUEST |
9813 				      F_FW_CMD_WRITE);
9814 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9815 
9816 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9817 	cmd.u.params.type = type;
9818 	cmd.u.params.level = level;
9819 	cmd.u.params.mode = mode;
9820 	cmd.u.params.ch = channel;
9821 	cmd.u.params.cl = cl;
9822 	cmd.u.params.unit = rateunit;
9823 	cmd.u.params.rate = ratemode;
9824 	cmd.u.params.min = cpu_to_be32(minrate);
9825 	cmd.u.params.max = cpu_to_be32(maxrate);
9826 	cmd.u.params.weight = cpu_to_be16(weight);
9827 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9828 
9829 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9830 			       NULL, sleep_ok);
9831 }
9832 
9833 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
9834     unsigned int maxrate, int sleep_ok)
9835 {
9836 	struct fw_sched_cmd cmd;
9837 
9838 	memset(&cmd, 0, sizeof(cmd));
9839 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9840 				      F_FW_CMD_REQUEST |
9841 				      F_FW_CMD_WRITE);
9842 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9843 
9844 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9845 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9846 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
9847 	cmd.u.params.ch = channel;
9848 	cmd.u.params.rate = ratemode;		/* REL or ABS */
9849 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
9850 
9851 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9852 			       NULL, sleep_ok);
9853 }
9854 
9855 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
9856     int weight, int sleep_ok)
9857 {
9858 	struct fw_sched_cmd cmd;
9859 
9860 	if (weight < 0 || weight > 100)
9861 		return -EINVAL;
9862 
9863 	memset(&cmd, 0, sizeof(cmd));
9864 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9865 				      F_FW_CMD_REQUEST |
9866 				      F_FW_CMD_WRITE);
9867 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9868 
9869 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9870 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9871 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
9872 	cmd.u.params.ch = channel;
9873 	cmd.u.params.cl = cl;
9874 	cmd.u.params.weight = cpu_to_be16(weight);
9875 
9876 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9877 			       NULL, sleep_ok);
9878 }
9879 
9880 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
9881     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
9882 {
9883 	struct fw_sched_cmd cmd;
9884 
9885 	memset(&cmd, 0, sizeof(cmd));
9886 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9887 				      F_FW_CMD_REQUEST |
9888 				      F_FW_CMD_WRITE);
9889 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9890 
9891 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9892 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9893 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
9894 	cmd.u.params.mode = mode;
9895 	cmd.u.params.ch = channel;
9896 	cmd.u.params.cl = cl;
9897 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
9898 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
9899 	cmd.u.params.max = cpu_to_be32(maxrate);
9900 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9901 
9902 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9903 			       NULL, sleep_ok);
9904 }
9905 
9906 /*
9907  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9908  *	@adapter: the adapter
9909  * 	@mbox: mailbox to use for the FW command
9910  * 	@pf: the PF owning the queue
9911  * 	@vf: the VF owning the queue
9912  *	@timeout: watchdog timeout in ms
9913  *	@action: watchdog timer / action
9914  *
9915  *	There are separate watchdog timers for each possible watchdog
9916  *	action.  Configure one of the watchdog timers by setting a non-zero
9917  *	timeout.  Disable a watchdog timer by using a timeout of zero.
9918  */
9919 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9920 		       unsigned int pf, unsigned int vf,
9921 		       unsigned int timeout, unsigned int action)
9922 {
9923 	struct fw_watchdog_cmd wdog;
9924 	unsigned int ticks;
9925 
9926 	/*
9927 	 * The watchdog command expects a timeout in units of 10ms so we need
9928 	 * to convert it here (via rounding) and force a minimum of one 10ms
9929 	 * "tick" if the timeout is non-zero but the conversion results in 0
9930 	 * ticks.
9931 	 */
9932 	ticks = (timeout + 5)/10;
9933 	if (timeout && !ticks)
9934 		ticks = 1;
9935 
9936 	memset(&wdog, 0, sizeof wdog);
9937 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9938 				     F_FW_CMD_REQUEST |
9939 				     F_FW_CMD_WRITE |
9940 				     V_FW_PARAMS_CMD_PFN(pf) |
9941 				     V_FW_PARAMS_CMD_VFN(vf));
9942 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9943 	wdog.timeout = cpu_to_be32(ticks);
9944 	wdog.action = cpu_to_be32(action);
9945 
9946 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9947 }
9948 
9949 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9950 {
9951 	struct fw_devlog_cmd devlog_cmd;
9952 	int ret;
9953 
9954 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9955 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9956 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9957 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9958 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9959 			 sizeof(devlog_cmd), &devlog_cmd);
9960 	if (ret)
9961 		return ret;
9962 
9963 	*level = devlog_cmd.level;
9964 	return 0;
9965 }
9966 
9967 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9968 {
9969 	struct fw_devlog_cmd devlog_cmd;
9970 
9971 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9972 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9973 					     F_FW_CMD_REQUEST |
9974 					     F_FW_CMD_WRITE);
9975 	devlog_cmd.level = level;
9976 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9977 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9978 			  sizeof(devlog_cmd), &devlog_cmd);
9979 }
9980