xref: /freebsd/sys/dev/cxgbe/common/t4vf_hw.c (revision f126890a)
1 /*-
2  * Copyright (c) 2016 Chelsio Communications, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 #include "common.h"
29 #include "t4_regs.h"
30 #include "t4_regs_values.h"
31 
32 #undef msleep
33 #define msleep(x) do { \
34 	if (cold) \
35 		DELAY((x) * 1000); \
36 	else \
37 		pause("t4hw", (x) * hz / 1000); \
38 } while (0)
39 
40 /*
41  * Wait for the device to become ready (signified by our "who am I" register
42  * returning a value other than all 1's).  Return an error if it doesn't
43  * become ready ...
44  */
45 int t4vf_wait_dev_ready(struct adapter *adapter)
46 {
47 	const u32 whoami = VF_PL_REG(A_PL_VF_WHOAMI);
48 	const u32 notready1 = 0xffffffff;
49 	const u32 notready2 = 0xeeeeeeee;
50 	u32 val;
51 
52 	val = t4_read_reg(adapter, whoami);
53 	if (val != notready1 && val != notready2)
54 		return 0;
55 	msleep(500);
56 	val = t4_read_reg(adapter, whoami);
57 	if (val != notready1 && val != notready2)
58 		return 0;
59 	else
60 		return -EIO;
61 }
62 
63 
64 /**
65  *      t4vf_fw_reset - issue a reset to FW
66  *      @adapter: the adapter
67  *
68  *	Issues a reset command to FW.  For a Physical Function this would
69  *	result in the Firmware reseting all of its state.  For a Virtual
70  *	Function this just resets the state associated with the VF.
71  */
72 int t4vf_fw_reset(struct adapter *adapter)
73 {
74 	struct fw_reset_cmd cmd;
75 
76 	memset(&cmd, 0, sizeof(cmd));
77 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RESET_CMD) |
78 				      F_FW_CMD_WRITE);
79 	cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(FW_LEN16(cmd)));
80 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
81 }
82 
83 /**
84  *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
85  *	@adapter: the adapter
86  *
87  *	Retrieves various core SGE parameters in the form of hardware SGE
88  *	register values.  The caller is responsible for decoding these as
89  *	needed.  The SGE parameters are stored in @adapter->params.sge.
90  */
91 int t4vf_get_sge_params(struct adapter *adapter)
92 {
93 	struct sge_params *sp = &adapter->params.sge;
94 	u32 params[7], vals[7];
95 	u32 whoami;
96 	unsigned int pf, s_hps;
97 	int i, v;
98 
99 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
100 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL));
101 	params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
102 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_HOST_PAGE_SIZE));
103 	params[2] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
104 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_0_AND_1));
105 	params[3] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
106 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_2_AND_3));
107 	params[4] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
108 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_4_AND_5));
109 	params[5] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
110 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_CONM_CTRL));
111 	params[6] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
112 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_RX_THRESHOLD));
113 	v = t4vf_query_params(adapter, 7, params, vals);
114 	if (v != FW_SUCCESS)
115 		return v;
116 
117 	sp->sge_control = vals[0];
118 	sp->counter_val[0] = G_THRESHOLD_0(vals[6]);
119 	sp->counter_val[1] = G_THRESHOLD_1(vals[6]);
120 	sp->counter_val[2] = G_THRESHOLD_2(vals[6]);
121 	sp->counter_val[3] = G_THRESHOLD_3(vals[6]);
122 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(vals[2]));
123 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(vals[2]));
124 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(vals[3]));
125 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(vals[3]));
126 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(vals[4]));
127 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(vals[4]));
128 
129 	sp->fl_starve_threshold = G_EGRTHRESHOLD(vals[5]) * 2 + 1;
130 	if (is_t4(adapter))
131 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
132 	else if (is_t5(adapter))
133 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(vals[5]) * 2 + 1;
134 	else
135 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(vals[5]) * 2 + 1;
136 
137 	/*
138 	 * We need the Queues/Page and Host Page Size for our VF.
139 	 * This is based on the PF from which we're instantiated.
140 	 */
141 	whoami = t4_read_reg(adapter, VF_PL_REG(A_PL_VF_WHOAMI));
142 	pf = G_SOURCEPF(whoami);
143 
144 	s_hps = (S_HOSTPAGESIZEPF0 +
145 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * pf);
146 	sp->page_shift = ((vals[1] >> s_hps) & M_HOSTPAGESIZEPF0) + 10;
147 
148 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
149 		params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
150 		    V_FW_PARAMS_PARAM_XYZ(A_SGE_FL_BUFFER_SIZE0 + (4 * i)));
151 		v = t4vf_query_params(adapter, 1, params, vals);
152 		if (v != FW_SUCCESS)
153 			return v;
154 
155 		sp->sge_fl_buffer_size[i] = vals[0];
156 	}
157 
158 	/*
159 	 * T4 uses a single control field to specify both the PCIe Padding and
160 	 * Packing Boundary.  T5 introduced the ability to specify these
161 	 * separately with the Padding Boundary in SGE_CONTROL and and Packing
162 	 * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
163 	 * SGE_CONTROL in order to determine how ingress packet data will be
164 	 * laid out in Packed Buffer Mode.  Unfortunately, older versions of
165 	 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
166 	 * failure grabbing it we throw an error since we can't figure out the
167 	 * right value.
168 	 */
169 	sp->spg_len = sp->sge_control & F_EGRSTATUSPAGESIZE ? 128 : 64;
170 	sp->fl_pktshift = G_PKTSHIFT(sp->sge_control);
171 	if (chip_id(adapter) <= CHELSIO_T5) {
172 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(sp->sge_control) +
173 		    X_INGPADBOUNDARY_SHIFT);
174 	} else {
175 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(sp->sge_control) +
176 		    X_T6_INGPADBOUNDARY_SHIFT);
177 	}
178 	if (is_t4(adapter))
179 		sp->pack_boundary = sp->pad_boundary;
180 	else {
181 		params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
182 			     V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL2));
183 		v = t4vf_query_params(adapter, 1, params, vals);
184 		if (v != FW_SUCCESS) {
185 			CH_ERR(adapter, "Unable to get SGE Control2; "
186 			       "probably old firmware.\n");
187 			return v;
188 		}
189 		if (G_INGPACKBOUNDARY(vals[0]) == 0)
190 			sp->pack_boundary = 16;
191 		else
192 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(vals[0]) +
193 			    5);
194 	}
195 
196 	/*
197 	 * For T5 and later we want to use the new BAR2 Doorbells.
198 	 * Unfortunately, older firmware didn't allow the this register to be
199 	 * read.
200 	 */
201 	if (!is_t4(adapter)) {
202 		unsigned int s_qpp;
203 
204 		params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
205 			     V_FW_PARAMS_PARAM_XYZ(A_SGE_EGRESS_QUEUES_PER_PAGE_VF));
206 		params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
207 			     V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_QUEUES_PER_PAGE_VF));
208 		v = t4vf_query_params(adapter, 2, params, vals);
209 		if (v != FW_SUCCESS) {
210 			CH_WARN(adapter, "Unable to get VF SGE Queues/Page; "
211 				"probably old firmware.\n");
212 			return v;
213 		}
214 
215 		s_qpp = (S_QUEUESPERPAGEPF0 +
216 			 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * pf);
217 		sp->eq_s_qpp = ((vals[0] >> s_qpp) & M_QUEUESPERPAGEPF0);
218 		sp->iq_s_qpp = ((vals[1] >> s_qpp) & M_QUEUESPERPAGEPF0);
219 	}
220 
221 	return 0;
222 }
223 
224 /**
225  *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
226  *	@adapter: the adapter
227  *
228  *	Retrieves global RSS mode and parameters with which we have to live
229  *	and stores them in the @adapter's RSS parameters.
230  */
231 int t4vf_get_rss_glb_config(struct adapter *adapter)
232 {
233 	struct rss_params *rss = &adapter->params.rss;
234 	struct fw_rss_glb_config_cmd cmd, rpl;
235 	int v;
236 
237 	/*
238 	 * Execute an RSS Global Configuration read command to retrieve
239 	 * our RSS configuration.
240 	 */
241 	memset(&cmd, 0, sizeof(cmd));
242 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
243 				      F_FW_CMD_REQUEST |
244 				      F_FW_CMD_READ);
245 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
246 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
247 	if (v != FW_SUCCESS)
248 		return v;
249 
250 	/*
251 	 * Transate the big-endian RSS Global Configuration into our
252 	 * cpu-endian format based on the RSS mode.  We also do first level
253 	 * filtering at this point to weed out modes which don't support
254 	 * VF Drivers ...
255 	 */
256 	rss->mode = G_FW_RSS_GLB_CONFIG_CMD_MODE(
257 			be32_to_cpu(rpl.u.manual.mode_pkd));
258 	switch (rss->mode) {
259 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
260 		u32 word = be32_to_cpu(
261 				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
262 
263 		rss->u.basicvirtual.synmapen =
264 			((word & F_FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0);
265 		rss->u.basicvirtual.syn4tupenipv6 =
266 			((word & F_FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0);
267 		rss->u.basicvirtual.syn2tupenipv6 =
268 			((word & F_FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0);
269 		rss->u.basicvirtual.syn4tupenipv4 =
270 			((word & F_FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0);
271 		rss->u.basicvirtual.syn2tupenipv4 =
272 			((word & F_FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0);
273 
274 		rss->u.basicvirtual.ofdmapen =
275 			((word & F_FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0);
276 
277 		rss->u.basicvirtual.tnlmapen =
278 			((word & F_FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0);
279 		rss->u.basicvirtual.tnlalllookup =
280 			((word  & F_FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0);
281 
282 		rss->u.basicvirtual.hashtoeplitz =
283 			((word & F_FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0);
284 
285 		/* we need at least Tunnel Map Enable to be set */
286 		if (!rss->u.basicvirtual.tnlmapen)
287 			return -EINVAL;
288 		break;
289 	}
290 
291 	default:
292 		/* all unknown/unsupported RSS modes result in an error */
293 		return -EINVAL;
294 	}
295 
296 	return 0;
297 }
298 
299 /**
300  *	t4vf_get_vfres - retrieve VF resource limits
301  *	@adapter: the adapter
302  *
303  *	Retrieves configured resource limits and capabilities for a virtual
304  *	function.  The results are stored in @adapter->vfres.
305  */
306 int t4vf_get_vfres(struct adapter *adapter)
307 {
308 	struct vf_resources *vfres = &adapter->params.vfres;
309 	struct fw_pfvf_cmd cmd, rpl;
310 	int v;
311 	u32 word;
312 
313 	/*
314 	 * Execute PFVF Read command to get VF resource limits; bail out early
315 	 * with error on command failure.
316 	 */
317 	memset(&cmd, 0, sizeof(cmd));
318 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) |
319 				    F_FW_CMD_REQUEST |
320 				    F_FW_CMD_READ);
321 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
322 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
323 	if (v != FW_SUCCESS)
324 		return v;
325 
326 	/*
327 	 * Extract VF resource limits and return success.
328 	 */
329 	word = be32_to_cpu(rpl.niqflint_niq);
330 	vfres->niqflint = G_FW_PFVF_CMD_NIQFLINT(word);
331 	vfres->niq = G_FW_PFVF_CMD_NIQ(word);
332 
333 	word = be32_to_cpu(rpl.type_to_neq);
334 	vfres->neq = G_FW_PFVF_CMD_NEQ(word);
335 	vfres->pmask = G_FW_PFVF_CMD_PMASK(word);
336 
337 	word = be32_to_cpu(rpl.tc_to_nexactf);
338 	vfres->tc = G_FW_PFVF_CMD_TC(word);
339 	vfres->nvi = G_FW_PFVF_CMD_NVI(word);
340 	vfres->nexactf = G_FW_PFVF_CMD_NEXACTF(word);
341 
342 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
343 	vfres->r_caps = G_FW_PFVF_CMD_R_CAPS(word);
344 	vfres->wx_caps = G_FW_PFVF_CMD_WX_CAPS(word);
345 	vfres->nethctrl = G_FW_PFVF_CMD_NETHCTRL(word);
346 
347 	return 0;
348 }
349 
350 /**
351  */
352 int t4vf_prep_adapter(struct adapter *adapter)
353 {
354 	int err;
355 
356 	/*
357 	 * Wait for the device to become ready before proceeding ...
358 	 */
359 	err = t4vf_wait_dev_ready(adapter);
360 	if (err)
361 		return err;
362 
363 	adapter->params.chipid = pci_get_device(adapter->dev) >> 12;
364 	if (adapter->params.chipid >= 0xa) {
365 		adapter->params.chipid -= (0xa - 0x4);
366 		adapter->params.fpga = 1;
367 	}
368 
369 	/*
370 	 * Default port and clock for debugging in case we can't reach
371 	 * firmware.
372 	 */
373 	adapter->params.nports = 1;
374 	adapter->params.vfres.pmask = 1;
375 	adapter->params.vpd.cclk = 50000;
376 
377 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
378 	if (adapter->chip_params == NULL)
379 		return -EINVAL;
380 
381 	return 0;
382 }
383 
384 /*
385  *	t4vf_get_vf_mac - Get the MAC address to be set to the VI of this VF.
386  *	@adapter: The adapter
387  *	@port: The port associated with vf
388  *	@naddr: the number of ACL MAC addresses returned in addr
389  *	@addr: Placeholder for MAC addresses
390  *
391  *	Find the MAC address to be set to the VF's VI. The requested MAC address
392  *	is from the host OS via callback in the PF driver.
393  */
394 int t4vf_get_vf_mac(struct adapter *adapter, unsigned int port,
395 		    unsigned int *naddr, u8 *addr)
396 {
397 	struct fw_acl_mac_cmd cmd;
398 	int ret;
399 
400 	memset(&cmd, 0, sizeof(cmd));
401 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
402 			      F_FW_CMD_REQUEST |
403 			      F_FW_CMD_READ);
404 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
405 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
406 	if (ret)
407 		return ret;
408 
409 	if (cmd.nmac < *naddr)
410 		*naddr = cmd.nmac;
411 
412 	switch (port) {
413 	case 3:
414 		memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
415 		break;
416 	case 2:
417 		memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
418 		break;
419 	case 1:
420 		memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
421 		break;
422 	case 0:
423 		memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
424 		break;
425 	}
426 
427 	return ret;
428 }
429