xref: /freebsd/sys/dev/cxgbe/iw_cxgbe/mem.c (revision 4e8d558c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2009-2013 Chelsio, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_inet.h"
38 
39 #ifdef TCP_OFFLOAD
40 #include <linux/types.h>
41 #include <linux/kref.h>
42 #include <rdma/ib_umem.h>
43 #include <asm/atomic.h>
44 
45 #include <common/t4_msg.h>
46 #include "iw_cxgbe.h"
47 
48 #define T4_ULPTX_MIN_IO 32
49 #define C4IW_MAX_INLINE_SIZE 96
50 #define T4_ULPTX_MAX_DMA 1024
51 
52 static int
53 mr_exceeds_hw_limits(struct c4iw_dev *dev, u64 length)
54 {
55 
56 	return (is_t5(dev->rdev.adap) && length >= 8*1024*1024*1024ULL);
57 }
58 
59 static int
60 _c4iw_write_mem_dma_aligned(struct c4iw_rdev *rdev, u32 addr, u32 len,
61 				void *data, int wait)
62 {
63 	struct adapter *sc = rdev->adap;
64 	struct ulp_mem_io *ulpmc;
65 	struct ulptx_sgl *sgl;
66 	u8 wr_len;
67 	int ret = 0;
68 	struct c4iw_wr_wait wr_wait;
69 	struct wrqe *wr;
70 
71 	addr &= 0x7FFFFFF;
72 
73 	if (wait)
74 		c4iw_init_wr_wait(&wr_wait);
75 	wr_len = roundup(sizeof *ulpmc + sizeof *sgl, 16);
76 
77 	wr = alloc_wrqe(wr_len, &sc->sge.ctrlq[0]);
78 	if (wr == NULL)
79 		return -ENOMEM;
80 	ulpmc = wrtod(wr);
81 
82 	memset(ulpmc, 0, wr_len);
83 	INIT_ULPTX_WR(ulpmc, wr_len, 0, 0);
84 	ulpmc->wr.wr_hi = cpu_to_be32(V_FW_WR_OP(FW_ULPTX_WR) |
85 				    (wait ? F_FW_WR_COMPL : 0));
86 	ulpmc->wr.wr_lo = wait ? (u64)(unsigned long)&wr_wait : 0;
87 	ulpmc->wr.wr_mid = cpu_to_be32(V_FW_WR_LEN16(DIV_ROUND_UP(wr_len, 16)));
88 	ulpmc->cmd = cpu_to_be32(V_ULPTX_CMD(ULP_TX_MEM_WRITE) |
89 			       V_T5_ULP_MEMIO_ORDER(1) |
90 			V_T5_ULP_MEMIO_FID(sc->sge.ofld_rxq[0].iq.abs_id));
91 	ulpmc->dlen = cpu_to_be32(V_ULP_MEMIO_DATA_LEN(len>>5));
92 	ulpmc->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(ulpmc->wr), 16));
93 	ulpmc->lock_addr = cpu_to_be32(V_ULP_MEMIO_ADDR(addr));
94 
95 	sgl = (struct ulptx_sgl *)(ulpmc + 1);
96 	sgl->cmd_nsge = cpu_to_be32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
97 				    V_ULPTX_NSGE(1));
98 	sgl->len0 = cpu_to_be32(len);
99 	sgl->addr0 = cpu_to_be64((u64)data);
100 
101 	t4_wrq_tx(sc, wr);
102 
103 	if (wait)
104 		ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, NULL, __func__);
105 	return ret;
106 }
107 
108 
109 static int
110 _c4iw_write_mem_inline(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data)
111 {
112 	struct adapter *sc = rdev->adap;
113 	struct ulp_mem_io *ulpmc;
114 	struct ulptx_idata *ulpsc;
115 	u8 wr_len, *to_dp, *from_dp;
116 	int copy_len, num_wqe, i, ret = 0;
117 	struct c4iw_wr_wait wr_wait;
118 	struct wrqe *wr;
119 	u32 cmd;
120 
121 	cmd = cpu_to_be32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
122 
123 	cmd |= cpu_to_be32(F_T5_ULP_MEMIO_IMM);
124 
125 	addr &= 0x7FFFFFF;
126 	CTR3(KTR_IW_CXGBE, "%s addr 0x%x len %u", __func__, addr, len);
127 	num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE);
128 	c4iw_init_wr_wait(&wr_wait);
129 	for (i = 0; i < num_wqe; i++) {
130 
131 		copy_len = min(len, C4IW_MAX_INLINE_SIZE);
132 		wr_len = roundup(sizeof *ulpmc + sizeof *ulpsc +
133 				 roundup(copy_len, T4_ULPTX_MIN_IO), 16);
134 
135 		wr = alloc_wrqe(wr_len, &sc->sge.ctrlq[0]);
136 		if (wr == NULL)
137 			return -ENOMEM;
138 		ulpmc = wrtod(wr);
139 
140 		memset(ulpmc, 0, wr_len);
141 		INIT_ULPTX_WR(ulpmc, wr_len, 0, 0);
142 
143 		if (i == (num_wqe-1)) {
144 			ulpmc->wr.wr_hi = cpu_to_be32(V_FW_WR_OP(FW_ULPTX_WR) |
145 						    F_FW_WR_COMPL);
146 			ulpmc->wr.wr_lo =
147 				       (__force __be64)(unsigned long) &wr_wait;
148 		} else
149 			ulpmc->wr.wr_hi = cpu_to_be32(V_FW_WR_OP(FW_ULPTX_WR));
150 		ulpmc->wr.wr_mid = cpu_to_be32(
151 				       V_FW_WR_LEN16(DIV_ROUND_UP(wr_len, 16)));
152 
153 		ulpmc->cmd = cmd;
154 		ulpmc->dlen = cpu_to_be32(V_ULP_MEMIO_DATA_LEN(
155 		    DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO)));
156 		ulpmc->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(ulpmc->wr),
157 						      16));
158 		ulpmc->lock_addr = cpu_to_be32(V_ULP_MEMIO_ADDR(addr + i * 3));
159 
160 		ulpsc = (struct ulptx_idata *)(ulpmc + 1);
161 		ulpsc->cmd_more = cpu_to_be32(V_ULPTX_CMD(ULP_TX_SC_IMM));
162 		ulpsc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO));
163 
164 		to_dp = (u8 *)(ulpsc + 1);
165 		from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE;
166 		if (data)
167 			memcpy(to_dp, from_dp, copy_len);
168 		else
169 			memset(to_dp, 0, copy_len);
170 		if (copy_len % T4_ULPTX_MIN_IO)
171 			memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO -
172 			       (copy_len % T4_ULPTX_MIN_IO));
173 		t4_wrq_tx(sc, wr);
174 		len -= C4IW_MAX_INLINE_SIZE;
175 	}
176 
177 	ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, NULL, __func__);
178 	return ret;
179 }
180 
181 static int
182 _c4iw_write_mem_dma(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data)
183 {
184 	struct c4iw_dev *rhp = rdev_to_c4iw_dev(rdev);
185 	u32 remain = len;
186 	u32 dmalen;
187 	int ret = 0;
188 	dma_addr_t daddr;
189 	dma_addr_t save;
190 
191 	daddr = dma_map_single(rhp->ibdev.dma_device, data, len, DMA_TO_DEVICE);
192 	if (dma_mapping_error(rhp->ibdev.dma_device, daddr))
193 		return -1;
194 	save = daddr;
195 
196 	while (remain > inline_threshold) {
197 		if (remain < T4_ULPTX_MAX_DMA) {
198 			if (remain & ~T4_ULPTX_MIN_IO)
199 				dmalen = remain & ~(T4_ULPTX_MIN_IO-1);
200 			else
201 				dmalen = remain;
202 		} else
203 			dmalen = T4_ULPTX_MAX_DMA;
204 		remain -= dmalen;
205 		ret = _c4iw_write_mem_dma_aligned(rdev, addr, dmalen,
206 				(void *)daddr, !remain);
207 		if (ret)
208 			goto out;
209 		addr += dmalen >> 5;
210 		data = (u8 *)data + dmalen;
211 		daddr = daddr + dmalen;
212 	}
213 	if (remain)
214 		ret = _c4iw_write_mem_inline(rdev, addr, remain, data);
215 out:
216 	dma_unmap_single(rhp->ibdev.dma_device, save, len, DMA_TO_DEVICE);
217 	return ret;
218 }
219 
220 /*
221  * write len bytes of data into addr (32B aligned address)
222  * If data is NULL, clear len byte of memory to zero.
223  */
224 static int
225 write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len,
226 			     void *data)
227 {
228 	if (rdev->adap->params.ulptx_memwrite_dsgl && use_dsgl) {
229 		if (len > inline_threshold) {
230 			if (_c4iw_write_mem_dma(rdev, addr, len, data)) {
231 				log(LOG_ERR, "%s: dma map "
232 				       "failure (non fatal)\n", __func__);
233 				return _c4iw_write_mem_inline(rdev, addr, len,
234 							      data);
235 			} else
236 				return 0;
237 		} else
238 			return _c4iw_write_mem_inline(rdev, addr, len, data);
239 	} else
240 		return _c4iw_write_mem_inline(rdev, addr, len, data);
241 }
242 
243 
244 /*
245  * Build and write a TPT entry.
246  * IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size,
247  *     pbl_size and pbl_addr
248  * OUT: stag index
249  */
250 static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry,
251 			   u32 *stag, u8 stag_state, u32 pdid,
252 			   enum fw_ri_stag_type type, enum fw_ri_mem_perms perm,
253 			   int bind_enabled, u32 zbva, u64 to,
254 			   u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr)
255 {
256 	int err;
257 	struct fw_ri_tpte tpt;
258 	u32 stag_idx;
259 	static atomic_t key;
260 
261 	if (c4iw_fatal_error(rdev))
262 		return -EIO;
263 
264 	stag_state = stag_state > 0;
265 	stag_idx = (*stag) >> 8;
266 
267 	if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) {
268 		stag_idx = c4iw_get_resource(&rdev->resource.tpt_table);
269 		if (!stag_idx) {
270 			mutex_lock(&rdev->stats.lock);
271 			rdev->stats.stag.fail++;
272 			mutex_unlock(&rdev->stats.lock);
273 			return -ENOMEM;
274 		}
275 		mutex_lock(&rdev->stats.lock);
276 		rdev->stats.stag.cur += 32;
277 		if (rdev->stats.stag.cur > rdev->stats.stag.max)
278 			rdev->stats.stag.max = rdev->stats.stag.cur;
279 		mutex_unlock(&rdev->stats.lock);
280 		*stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff);
281 	}
282 	CTR5(KTR_IW_CXGBE,
283 	    "%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x",
284 	    __func__, stag_state, type, pdid, stag_idx);
285 
286 	/* write TPT entry */
287 	if (reset_tpt_entry)
288 		memset(&tpt, 0, sizeof(tpt));
289 	else {
290 		if (page_size > ilog2(C4IW_MAX_PAGE_SIZE) - 12)
291 			return -EINVAL;
292 		tpt.valid_to_pdid = cpu_to_be32(F_FW_RI_TPTE_VALID |
293 			V_FW_RI_TPTE_STAGKEY((*stag & M_FW_RI_TPTE_STAGKEY)) |
294 			V_FW_RI_TPTE_STAGSTATE(stag_state) |
295 			V_FW_RI_TPTE_STAGTYPE(type) | V_FW_RI_TPTE_PDID(pdid));
296 		tpt.locread_to_qpid = cpu_to_be32(V_FW_RI_TPTE_PERM(perm) |
297 			(bind_enabled ? F_FW_RI_TPTE_MWBINDEN : 0) |
298 			V_FW_RI_TPTE_ADDRTYPE((zbva ? FW_RI_ZERO_BASED_TO :
299 						      FW_RI_VA_BASED_TO))|
300 			V_FW_RI_TPTE_PS(page_size));
301 		tpt.nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32(
302 			V_FW_RI_TPTE_PBLADDR(PBL_OFF(rdev, pbl_addr)>>3));
303 		tpt.len_lo = cpu_to_be32((u32)(len & 0xffffffffUL));
304 		tpt.va_hi = cpu_to_be32((u32)(to >> 32));
305 		tpt.va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL));
306 		tpt.dca_mwbcnt_pstag = cpu_to_be32(0);
307 		tpt.len_hi = cpu_to_be32((u32)(len >> 32));
308 	}
309 	err = write_adapter_mem(rdev, stag_idx +
310 				(rdev->adap->vres.stag.start >> 5),
311 				sizeof(tpt), &tpt);
312 
313 	if (reset_tpt_entry) {
314 		c4iw_put_resource(&rdev->resource.tpt_table, stag_idx);
315 		mutex_lock(&rdev->stats.lock);
316 		rdev->stats.stag.cur -= 32;
317 		mutex_unlock(&rdev->stats.lock);
318 	}
319 	return err;
320 }
321 
322 static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl,
323 		     u32 pbl_addr, u32 pbl_size)
324 {
325 	int err;
326 
327 	CTR4(KTR_IW_CXGBE, "%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d",
328 	     __func__, pbl_addr, rdev->adap->vres.pbl.start, pbl_size);
329 
330 	err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl);
331 	return err;
332 }
333 
334 static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size,
335 		     u32 pbl_addr)
336 {
337 	return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0,
338 			       pbl_size, pbl_addr);
339 }
340 
341 static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid)
342 {
343 	*stag = T4_STAG_UNSET;
344 	return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0,
345 			       0UL, 0, 0, 0, 0);
346 }
347 
348 static int deallocate_window(struct c4iw_rdev *rdev, u32 stag)
349 {
350 	return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0,
351 			       0);
352 }
353 
354 static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid,
355 			 u32 pbl_size, u32 pbl_addr)
356 {
357 	*stag = T4_STAG_UNSET;
358 	return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0,
359 			       0UL, 0, 0, pbl_size, pbl_addr);
360 }
361 
362 static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag)
363 {
364 	u32 mmid;
365 
366 	mhp->attr.state = 1;
367 	mhp->attr.stag = stag;
368 	mmid = stag >> 8;
369 	mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
370 	CTR3(KTR_IW_CXGBE, "%s mmid 0x%x mhp %p", __func__, mmid, mhp);
371 	return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid);
372 }
373 
374 static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
375 		      struct c4iw_mr *mhp, int shift)
376 {
377 	u32 stag = T4_STAG_UNSET;
378 	int ret;
379 
380 	ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
381 			      FW_RI_STAG_NSMR, mhp->attr.len ? mhp->attr.perms : 0,
382 			      mhp->attr.mw_bind_enable, mhp->attr.zbva,
383 			      mhp->attr.va_fbo, mhp->attr.len ? mhp->attr.len : -1, shift - 12,
384 			      mhp->attr.pbl_size, mhp->attr.pbl_addr);
385 	if (ret)
386 		return ret;
387 
388 	ret = finish_mem_reg(mhp, stag);
389 	if (ret)
390 		dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
391 		       mhp->attr.pbl_addr);
392 	return ret;
393 }
394 
395 static int alloc_pbl(struct c4iw_mr *mhp, int npages)
396 {
397 	mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev,
398 						    npages << 3);
399 
400 	if (!mhp->attr.pbl_addr)
401 		return -ENOMEM;
402 
403 	mhp->attr.pbl_size = npages;
404 
405 	return 0;
406 }
407 
408 struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc)
409 {
410 	struct c4iw_dev *rhp;
411 	struct c4iw_pd *php;
412 	struct c4iw_mr *mhp;
413 	int ret;
414 	u32 stag = T4_STAG_UNSET;
415 
416 	CTR2(KTR_IW_CXGBE, "%s ib_pd %p", __func__, pd);
417 	php = to_c4iw_pd(pd);
418 	rhp = php->rhp;
419 
420 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
421 	if (!mhp)
422 		return ERR_PTR(-ENOMEM);
423 
424 	mhp->rhp = rhp;
425 	mhp->attr.pdid = php->pdid;
426 	mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
427 	mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND;
428 	mhp->attr.zbva = 0;
429 	mhp->attr.va_fbo = 0;
430 	mhp->attr.page_size = 0;
431 	mhp->attr.len = ~0ULL;
432 	mhp->attr.pbl_size = 0;
433 
434 	ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid,
435 			      FW_RI_STAG_NSMR, mhp->attr.perms,
436 			      mhp->attr.mw_bind_enable, 0, 0, ~0ULL, 0, 0, 0);
437 	if (ret)
438 		goto err1;
439 
440 	ret = finish_mem_reg(mhp, stag);
441 	if (ret)
442 		goto err2;
443 	return &mhp->ibmr;
444 err2:
445 	dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
446 		  mhp->attr.pbl_addr);
447 err1:
448 	kfree(mhp);
449 	return ERR_PTR(ret);
450 }
451 
452 struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
453 		u64 virt, int acc, struct ib_udata *udata)
454 {
455 	__be64 *pages;
456 	int shift, n, len;
457 	int i, k, entry;
458 	int err = 0;
459 	struct scatterlist *sg;
460 	struct c4iw_dev *rhp;
461 	struct c4iw_pd *php;
462 	struct c4iw_mr *mhp;
463 
464 	CTR2(KTR_IW_CXGBE, "%s ib_pd %p", __func__, pd);
465 
466 	if (length == ~0ULL)
467 		return ERR_PTR(-EINVAL);
468 
469 	if ((length + start) < start)
470 		return ERR_PTR(-EINVAL);
471 
472 	php = to_c4iw_pd(pd);
473 	rhp = php->rhp;
474 
475 	if (mr_exceeds_hw_limits(rhp, length))
476 		return ERR_PTR(-EINVAL);
477 
478 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
479 	if (!mhp)
480 		return ERR_PTR(-ENOMEM);
481 
482 	mhp->rhp = rhp;
483 
484 	mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0);
485 	if (IS_ERR(mhp->umem)) {
486 		err = PTR_ERR(mhp->umem);
487 		kfree(mhp);
488 		return ERR_PTR(err);
489 	}
490 
491 	shift = ffs(mhp->umem->page_size) - 1;
492 
493 	n = mhp->umem->nmap;
494 	err = alloc_pbl(mhp, n);
495 	if (err)
496 		goto err;
497 
498 	pages = (__be64 *) __get_free_page(GFP_KERNEL);
499 	if (!pages) {
500 		err = -ENOMEM;
501 		goto err_pbl;
502 	}
503 
504 	i = n = 0;
505 	for_each_sg(mhp->umem->sg_head.sgl, sg, mhp->umem->nmap, entry) {
506 		len = sg_dma_len(sg) >> shift;
507 		for (k = 0; k < len; ++k) {
508 			pages[i++] = cpu_to_be64(sg_dma_address(sg) +
509 					mhp->umem->page_size * k);
510 			if (i == PAGE_SIZE / sizeof *pages) {
511 				err = write_pbl(&mhp->rhp->rdev,
512 						pages,
513 						mhp->attr.pbl_addr + (n << 3), i);
514 				if (err)
515 					goto pbl_done;
516 				n += i;
517 				i = 0;
518 
519 			}
520 		}
521 	}
522 
523 	if (i)
524 		err = write_pbl(&mhp->rhp->rdev, pages,
525 				     mhp->attr.pbl_addr + (n << 3), i);
526 
527 pbl_done:
528 	free_page((unsigned long) pages);
529 	if (err)
530 		goto err_pbl;
531 
532 	mhp->attr.pdid = php->pdid;
533 	mhp->attr.zbva = 0;
534 	mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
535 	mhp->attr.va_fbo = virt;
536 	mhp->attr.page_size = shift - 12;
537 	mhp->attr.len = length;
538 
539 	err = register_mem(rhp, php, mhp, shift);
540 	if (err)
541 		goto err_pbl;
542 
543 	return &mhp->ibmr;
544 
545 err_pbl:
546 	c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
547 			      mhp->attr.pbl_size << 3);
548 
549 err:
550 	ib_umem_release(mhp->umem);
551 	kfree(mhp);
552 	return ERR_PTR(err);
553 }
554 
555 struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
556 	struct ib_udata *udata)
557 {
558 	struct c4iw_dev *rhp;
559 	struct c4iw_pd *php;
560 	struct c4iw_mw *mhp;
561 	u32 mmid;
562 	u32 stag = 0;
563 	int ret;
564 
565 	if (type != IB_MW_TYPE_1)
566 		return ERR_PTR(-EINVAL);
567 
568 	php = to_c4iw_pd(pd);
569 	rhp = php->rhp;
570 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
571 	if (!mhp)
572 		return ERR_PTR(-ENOMEM);
573 	ret = allocate_window(&rhp->rdev, &stag, php->pdid);
574 	if (ret) {
575 		kfree(mhp);
576 		return ERR_PTR(ret);
577 	}
578 	mhp->rhp = rhp;
579 	mhp->attr.pdid = php->pdid;
580 	mhp->attr.type = FW_RI_STAG_MW;
581 	mhp->attr.stag = stag;
582 	mmid = (stag) >> 8;
583 	mhp->ibmw.rkey = stag;
584 	if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
585 		deallocate_window(&rhp->rdev, mhp->attr.stag);
586 		kfree(mhp);
587 		return ERR_PTR(-ENOMEM);
588 	}
589 	CTR4(KTR_IW_CXGBE, "%s mmid 0x%x mhp %p stag 0x%x", __func__, mmid, mhp,
590 	    stag);
591 	return &(mhp->ibmw);
592 }
593 
594 int c4iw_dealloc_mw(struct ib_mw *mw)
595 {
596 	struct c4iw_dev *rhp;
597 	struct c4iw_mw *mhp;
598 	u32 mmid;
599 
600 	mhp = to_c4iw_mw(mw);
601 	rhp = mhp->rhp;
602 	mmid = (mw->rkey) >> 8;
603 	remove_handle(rhp, &rhp->mmidr, mmid);
604 	deallocate_window(&rhp->rdev, mhp->attr.stag);
605 	kfree(mhp);
606 	CTR4(KTR_IW_CXGBE, "%s ib_mw %p mmid 0x%x ptr %p", __func__, mw, mmid,
607 	    mhp);
608 	return 0;
609 }
610 
611 struct ib_mr *c4iw_alloc_mr(struct ib_pd *pd,
612 			    enum ib_mr_type mr_type,
613 			    u32 max_num_sg, struct ib_udata *udata)
614 {
615 	struct c4iw_dev *rhp;
616 	struct c4iw_pd *php;
617 	struct c4iw_mr *mhp;
618 	u32 mmid;
619 	u32 stag = 0;
620 	int ret = 0;
621 	int length = roundup(max_num_sg * sizeof(u64), 32);
622 
623 	php = to_c4iw_pd(pd);
624 	rhp = php->rhp;
625 
626 	if (mr_type != IB_MR_TYPE_MEM_REG ||
627 	    max_num_sg > t4_max_fr_depth(&rhp->rdev, use_dsgl))
628 		return ERR_PTR(-EINVAL);
629 
630 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
631 	if (!mhp) {
632 		ret = -ENOMEM;
633 		goto err;
634 	}
635 
636 	mhp->mpl = dma_alloc_coherent(rhp->ibdev.dma_device,
637 				      length, &mhp->mpl_addr, GFP_KERNEL);
638 	if (!mhp->mpl) {
639 		ret = -ENOMEM;
640 		goto err_mpl;
641 	}
642 	mhp->max_mpl_len = length;
643 
644 	mhp->rhp = rhp;
645 	ret = alloc_pbl(mhp, max_num_sg);
646 	if (ret)
647 		goto err1;
648 	mhp->attr.pbl_size = max_num_sg;
649 	ret = allocate_stag(&rhp->rdev, &stag, php->pdid,
650 			    mhp->attr.pbl_size, mhp->attr.pbl_addr);
651 	if (ret)
652 		goto err2;
653 	mhp->attr.pdid = php->pdid;
654 	mhp->attr.type = FW_RI_STAG_NSMR;
655 	mhp->attr.stag = stag;
656 	mhp->attr.state = 0;
657 	mmid = (stag) >> 8;
658 	mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
659 	if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
660 		ret = -ENOMEM;
661 		goto err3;
662 	}
663 
664 	PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
665 	return &(mhp->ibmr);
666 err3:
667 	dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size,
668 		       mhp->attr.pbl_addr);
669 err2:
670 	c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
671 			      mhp->attr.pbl_size << 3);
672 err1:
673 	dma_free_coherent(rhp->ibdev.dma_device,
674 			  mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr);
675 err_mpl:
676 	kfree(mhp);
677 err:
678 	return ERR_PTR(ret);
679 }
680 static int c4iw_set_page(struct ib_mr *ibmr, u64 addr)
681 {
682 	struct c4iw_mr *mhp = to_c4iw_mr(ibmr);
683 
684 	if (unlikely(mhp->mpl_len == mhp->attr.pbl_size))
685 		return -ENOMEM;
686 
687 	mhp->mpl[mhp->mpl_len++] = addr;
688 
689 	return 0;
690 }
691 
692 int c4iw_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
693 		   int sg_nents, unsigned int *sg_offset)
694 {
695 	struct c4iw_mr *mhp = to_c4iw_mr(ibmr);
696 
697 	mhp->mpl_len = 0;
698 
699 	return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, c4iw_set_page);
700 }
701 
702 
703 int c4iw_dereg_mr(struct ib_mr *ib_mr, struct ib_udata *udata)
704 {
705 	struct c4iw_dev *rhp;
706 	struct c4iw_mr *mhp;
707 	u32 mmid;
708 
709 	CTR2(KTR_IW_CXGBE, "%s ib_mr %p", __func__, ib_mr);
710 
711 	mhp = to_c4iw_mr(ib_mr);
712 	rhp = mhp->rhp;
713 	mmid = mhp->attr.stag >> 8;
714 	remove_handle(rhp, &rhp->mmidr, mmid);
715 	dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
716 		       mhp->attr.pbl_addr);
717 	if (mhp->attr.pbl_size)
718 		c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
719 				  mhp->attr.pbl_size << 3);
720 	if (mhp->kva)
721 		kfree((void *) (unsigned long) mhp->kva);
722 	if (mhp->umem)
723 		ib_umem_release(mhp->umem);
724 	CTR3(KTR_IW_CXGBE, "%s mmid 0x%x ptr %p", __func__, mmid, mhp);
725 	kfree(mhp);
726 	return 0;
727 }
728 
729 void c4iw_invalidate_mr(struct c4iw_dev *rhp, u32 rkey)
730 {
731 	struct c4iw_mr *mhp;
732 	unsigned long flags;
733 
734 	spin_lock_irqsave(&rhp->lock, flags);
735 	mhp = get_mhp(rhp, rkey >> 8);
736 	if (mhp)
737 		mhp->attr.state = 0;
738 	spin_unlock_irqrestore(&rhp->lock, flags);
739 }
740 #endif
741