xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 9768746b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_kern_tls.h"
36 #include "opt_ratelimit.h"
37 
38 #include <sys/types.h>
39 #include <sys/eventhandler.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/malloc.h>
45 #include <sys/msan.h>
46 #include <sys/queue.h>
47 #include <sys/sbuf.h>
48 #include <sys/taskqueue.h>
49 #include <sys/time.h>
50 #include <sys/sglist.h>
51 #include <sys/sysctl.h>
52 #include <sys/smp.h>
53 #include <sys/socketvar.h>
54 #include <sys/counter.h>
55 #include <net/bpf.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_vlan_var.h>
59 #include <net/if_vxlan.h>
60 #include <netinet/in.h>
61 #include <netinet/ip.h>
62 #include <netinet/ip6.h>
63 #include <netinet/tcp.h>
64 #include <netinet/udp.h>
65 #include <machine/in_cksum.h>
66 #include <machine/md_var.h>
67 #include <vm/vm.h>
68 #include <vm/pmap.h>
69 #ifdef DEV_NETMAP
70 #include <machine/bus.h>
71 #include <sys/selinfo.h>
72 #include <net/if_var.h>
73 #include <net/netmap.h>
74 #include <dev/netmap/netmap_kern.h>
75 #endif
76 
77 #include "common/common.h"
78 #include "common/t4_regs.h"
79 #include "common/t4_regs_values.h"
80 #include "common/t4_msg.h"
81 #include "t4_l2t.h"
82 #include "t4_mp_ring.h"
83 
84 #ifdef T4_PKT_TIMESTAMP
85 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
86 #else
87 #define RX_COPY_THRESHOLD MINCLSIZE
88 #endif
89 
90 /* Internal mbuf flags stored in PH_loc.eight[1]. */
91 #define	MC_NOMAP		0x01
92 #define	MC_RAW_WR		0x02
93 #define	MC_TLS			0x04
94 
95 /*
96  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
97  * 0-7 are valid values.
98  */
99 static int fl_pktshift = 0;
100 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
101     "payload DMA offset in rx buffer (bytes)");
102 
103 /*
104  * Pad ethernet payload up to this boundary.
105  * -1: driver should figure out a good value.
106  *  0: disable padding.
107  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
108  */
109 int fl_pad = -1;
110 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
111     "payload pad boundary (bytes)");
112 
113 /*
114  * Status page length.
115  * -1: driver should figure out a good value.
116  *  64 or 128 are the only other valid values.
117  */
118 static int spg_len = -1;
119 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
120     "status page size (bytes)");
121 
122 /*
123  * Congestion drops.
124  * -1: no congestion feedback (not recommended).
125  *  0: backpressure the channel instead of dropping packets right away.
126  *  1: no backpressure, drop packets for the congested queue immediately.
127  *  2: both backpressure and drop.
128  */
129 static int cong_drop = 0;
130 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
131     "Congestion control for NIC RX queues (0 = backpressure, 1 = drop, 2 = both");
132 #ifdef TCP_OFFLOAD
133 static int ofld_cong_drop = 0;
134 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ofld_cong_drop, CTLFLAG_RDTUN, &ofld_cong_drop, 0,
135     "Congestion control for TOE RX queues (0 = backpressure, 1 = drop, 2 = both");
136 #endif
137 
138 /*
139  * Deliver multiple frames in the same free list buffer if they fit.
140  * -1: let the driver decide whether to enable buffer packing or not.
141  *  0: disable buffer packing.
142  *  1: enable buffer packing.
143  */
144 static int buffer_packing = -1;
145 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
146     0, "Enable buffer packing");
147 
148 /*
149  * Start next frame in a packed buffer at this boundary.
150  * -1: driver should figure out a good value.
151  * T4: driver will ignore this and use the same value as fl_pad above.
152  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
153  */
154 static int fl_pack = -1;
155 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
156     "payload pack boundary (bytes)");
157 
158 /*
159  * Largest rx cluster size that the driver is allowed to allocate.
160  */
161 static int largest_rx_cluster = MJUM16BYTES;
162 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
163     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
164 
165 /*
166  * Size of cluster allocation that's most likely to succeed.  The driver will
167  * fall back to this size if it fails to allocate clusters larger than this.
168  */
169 static int safest_rx_cluster = PAGE_SIZE;
170 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
171     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
172 
173 #ifdef RATELIMIT
174 /*
175  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
176  * for rewriting.  -1 and 0-3 are all valid values.
177  * -1: hardware should leave the TCP timestamps alone.
178  * 0: 1ms
179  * 1: 100us
180  * 2: 10us
181  * 3: 1us
182  */
183 static int tsclk = -1;
184 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
185     "Control TCP timestamp rewriting when using pacing");
186 
187 static int eo_max_backlog = 1024 * 1024;
188 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
189     0, "Maximum backlog of ratelimited data per flow");
190 #endif
191 
192 /*
193  * The interrupt holdoff timers are multiplied by this value on T6+.
194  * 1 and 3-17 (both inclusive) are legal values.
195  */
196 static int tscale = 1;
197 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
198     "Interrupt holdoff timer scale on T6+");
199 
200 /*
201  * Number of LRO entries in the lro_ctrl structure per rx queue.
202  */
203 static int lro_entries = TCP_LRO_ENTRIES;
204 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
205     "Number of LRO entries per RX queue");
206 
207 /*
208  * This enables presorting of frames before they're fed into tcp_lro_rx.
209  */
210 static int lro_mbufs = 0;
211 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
212     "Enable presorting of LRO frames");
213 
214 static counter_u64_t pullups;
215 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
216     "Number of mbuf pullups performed");
217 
218 static counter_u64_t defrags;
219 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
220     "Number of mbuf defrags performed");
221 
222 static int t4_tx_coalesce = 1;
223 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
224     "tx coalescing allowed");
225 
226 /*
227  * The driver will make aggressive attempts at tx coalescing if it sees these
228  * many packets eligible for coalescing in quick succession, with no more than
229  * the specified gap in between the eth_tx calls that delivered the packets.
230  */
231 static int t4_tx_coalesce_pkts = 32;
232 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
233     &t4_tx_coalesce_pkts, 0,
234     "# of consecutive packets (1 - 255) that will trigger tx coalescing");
235 static int t4_tx_coalesce_gap = 5;
236 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
237     &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
238 
239 static int service_iq(struct sge_iq *, int);
240 static int service_iq_fl(struct sge_iq *, int);
241 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
242 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
243     u_int);
244 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
245     int, int, int);
246 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
247 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
248     struct sge_iq *, char *);
249 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
250     struct sysctl_ctx_list *, struct sysctl_oid *);
251 static void free_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
252 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
253     struct sge_iq *);
254 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
255     struct sysctl_oid *, struct sge_fl *);
256 static int alloc_iq_fl_hwq(struct vi_info *, struct sge_iq *, struct sge_fl *);
257 static int free_iq_fl_hwq(struct adapter *, struct sge_iq *, struct sge_fl *);
258 static int alloc_fwq(struct adapter *);
259 static void free_fwq(struct adapter *);
260 static int alloc_ctrlq(struct adapter *, int);
261 static void free_ctrlq(struct adapter *, int);
262 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, int);
263 static void free_rxq(struct vi_info *, struct sge_rxq *);
264 static void add_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
265     struct sge_rxq *);
266 #ifdef TCP_OFFLOAD
267 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
268     int);
269 static void free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
270 static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
271     struct sge_ofld_rxq *);
272 #endif
273 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
274 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
275 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
276 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
277 #endif
278 static int alloc_eq(struct adapter *, struct sge_eq *, struct sysctl_ctx_list *,
279     struct sysctl_oid *);
280 static void free_eq(struct adapter *, struct sge_eq *);
281 static void add_eq_sysctls(struct adapter *, struct sysctl_ctx_list *,
282     struct sysctl_oid *, struct sge_eq *);
283 static int alloc_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
284 static int free_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
285 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
286     struct sysctl_ctx_list *, struct sysctl_oid *);
287 static void free_wrq(struct adapter *, struct sge_wrq *);
288 static void add_wrq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
289     struct sge_wrq *);
290 static int alloc_txq(struct vi_info *, struct sge_txq *, int);
291 static void free_txq(struct vi_info *, struct sge_txq *);
292 static void add_txq_sysctls(struct vi_info *, struct sysctl_ctx_list *,
293     struct sysctl_oid *, struct sge_txq *);
294 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
295 static int alloc_ofld_txq(struct vi_info *, struct sge_ofld_txq *, int);
296 static void free_ofld_txq(struct vi_info *, struct sge_ofld_txq *);
297 static void add_ofld_txq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
298     struct sge_ofld_txq *);
299 #endif
300 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
301 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
302 static int refill_fl(struct adapter *, struct sge_fl *, int);
303 static void refill_sfl(void *);
304 static int find_refill_source(struct adapter *, int, bool);
305 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
306 
307 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
308 static inline u_int txpkt_len16(u_int, const u_int);
309 static inline u_int txpkt_vm_len16(u_int, const u_int);
310 static inline void calculate_mbuf_len16(struct mbuf *, bool);
311 static inline u_int txpkts0_len16(u_int);
312 static inline u_int txpkts1_len16(void);
313 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
314 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
315     u_int);
316 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
317     struct mbuf *);
318 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
319     int, bool *);
320 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
321     int, bool *);
322 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
323 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
324 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
325 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
326 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
327 static inline uint16_t read_hw_cidx(struct sge_eq *);
328 static inline u_int reclaimable_tx_desc(struct sge_eq *);
329 static inline u_int total_available_tx_desc(struct sge_eq *);
330 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
331 static void tx_reclaim(void *, int);
332 static __be64 get_flit(struct sglist_seg *, int, int);
333 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
334     struct mbuf *);
335 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
336     struct mbuf *);
337 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
338 static void wrq_tx_drain(void *, int);
339 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
340 
341 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
342 #ifdef RATELIMIT
343 #if defined(INET) || defined(INET6)
344 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
345 #endif
346 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
347     struct mbuf *);
348 #endif
349 
350 static counter_u64_t extfree_refs;
351 static counter_u64_t extfree_rels;
352 
353 an_handler_t t4_an_handler;
354 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
355 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
356 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
357 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
358 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
359 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
360 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
361 
362 void
363 t4_register_an_handler(an_handler_t h)
364 {
365 	uintptr_t *loc;
366 
367 	MPASS(h == NULL || t4_an_handler == NULL);
368 
369 	loc = (uintptr_t *)&t4_an_handler;
370 	atomic_store_rel_ptr(loc, (uintptr_t)h);
371 }
372 
373 void
374 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
375 {
376 	uintptr_t *loc;
377 
378 	MPASS(type < nitems(t4_fw_msg_handler));
379 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
380 	/*
381 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
382 	 * handler dispatch table.  Reject any attempt to install a handler for
383 	 * this subtype.
384 	 */
385 	MPASS(type != FW_TYPE_RSSCPL);
386 	MPASS(type != FW6_TYPE_RSSCPL);
387 
388 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
389 	atomic_store_rel_ptr(loc, (uintptr_t)h);
390 }
391 
392 void
393 t4_register_cpl_handler(int opcode, cpl_handler_t h)
394 {
395 	uintptr_t *loc;
396 
397 	MPASS(opcode < nitems(t4_cpl_handler));
398 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
399 
400 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
401 	atomic_store_rel_ptr(loc, (uintptr_t)h);
402 }
403 
404 static int
405 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
406     struct mbuf *m)
407 {
408 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
409 	u_int tid;
410 	int cookie;
411 
412 	MPASS(m == NULL);
413 
414 	tid = GET_TID(cpl);
415 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
416 		/*
417 		 * The return code for filter-write is put in the CPL cookie so
418 		 * we have to rely on the hardware tid (is_ftid) to determine
419 		 * that this is a response to a filter.
420 		 */
421 		cookie = CPL_COOKIE_FILTER;
422 	} else {
423 		cookie = G_COOKIE(cpl->cookie);
424 	}
425 	MPASS(cookie > CPL_COOKIE_RESERVED);
426 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
427 
428 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
429 }
430 
431 static int
432 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
433     struct mbuf *m)
434 {
435 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
436 	unsigned int cookie;
437 
438 	MPASS(m == NULL);
439 
440 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
441 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
442 }
443 
444 static int
445 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
446     struct mbuf *m)
447 {
448 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
449 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
450 
451 	MPASS(m == NULL);
452 	MPASS(cookie != CPL_COOKIE_RESERVED);
453 
454 	return (act_open_rpl_handlers[cookie](iq, rss, m));
455 }
456 
457 static int
458 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
459     struct mbuf *m)
460 {
461 	struct adapter *sc = iq->adapter;
462 	u_int cookie;
463 
464 	MPASS(m == NULL);
465 	if (is_hashfilter(sc))
466 		cookie = CPL_COOKIE_HASHFILTER;
467 	else
468 		cookie = CPL_COOKIE_TOM;
469 
470 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
471 }
472 
473 static int
474 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
475 {
476 	struct adapter *sc = iq->adapter;
477 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
478 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
479 	u_int cookie;
480 
481 	MPASS(m == NULL);
482 	if (is_etid(sc, tid))
483 		cookie = CPL_COOKIE_ETHOFLD;
484 	else
485 		cookie = CPL_COOKIE_TOM;
486 
487 	return (fw4_ack_handlers[cookie](iq, rss, m));
488 }
489 
490 static void
491 t4_init_shared_cpl_handlers(void)
492 {
493 
494 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
495 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
496 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
497 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
498 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
499 }
500 
501 void
502 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
503 {
504 	uintptr_t *loc;
505 
506 	MPASS(opcode < nitems(t4_cpl_handler));
507 	MPASS(cookie > CPL_COOKIE_RESERVED);
508 	MPASS(cookie < NUM_CPL_COOKIES);
509 	MPASS(t4_cpl_handler[opcode] != NULL);
510 
511 	switch (opcode) {
512 	case CPL_SET_TCB_RPL:
513 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
514 		break;
515 	case CPL_L2T_WRITE_RPL:
516 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
517 		break;
518 	case CPL_ACT_OPEN_RPL:
519 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
520 		break;
521 	case CPL_ABORT_RPL_RSS:
522 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
523 		break;
524 	case CPL_FW4_ACK:
525 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
526 		break;
527 	default:
528 		MPASS(0);
529 		return;
530 	}
531 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
532 	atomic_store_rel_ptr(loc, (uintptr_t)h);
533 }
534 
535 /*
536  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
537  */
538 void
539 t4_sge_modload(void)
540 {
541 
542 	if (fl_pktshift < 0 || fl_pktshift > 7) {
543 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
544 		    " using 0 instead.\n", fl_pktshift);
545 		fl_pktshift = 0;
546 	}
547 
548 	if (spg_len != 64 && spg_len != 128) {
549 		int len;
550 
551 #if defined(__i386__) || defined(__amd64__)
552 		len = cpu_clflush_line_size > 64 ? 128 : 64;
553 #else
554 		len = 64;
555 #endif
556 		if (spg_len != -1) {
557 			printf("Invalid hw.cxgbe.spg_len value (%d),"
558 			    " using %d instead.\n", spg_len, len);
559 		}
560 		spg_len = len;
561 	}
562 
563 	if (cong_drop < -1 || cong_drop > 2) {
564 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
565 		    " using 0 instead.\n", cong_drop);
566 		cong_drop = 0;
567 	}
568 #ifdef TCP_OFFLOAD
569 	if (ofld_cong_drop < -1 || ofld_cong_drop > 2) {
570 		printf("Invalid hw.cxgbe.ofld_cong_drop value (%d),"
571 		    " using 0 instead.\n", ofld_cong_drop);
572 		ofld_cong_drop = 0;
573 	}
574 #endif
575 
576 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
577 		printf("Invalid hw.cxgbe.tscale value (%d),"
578 		    " using 1 instead.\n", tscale);
579 		tscale = 1;
580 	}
581 
582 	if (largest_rx_cluster != MCLBYTES &&
583 	    largest_rx_cluster != MJUMPAGESIZE &&
584 	    largest_rx_cluster != MJUM9BYTES &&
585 	    largest_rx_cluster != MJUM16BYTES) {
586 		printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
587 		    " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
588 		largest_rx_cluster = MJUM16BYTES;
589 	}
590 
591 	if (safest_rx_cluster != MCLBYTES &&
592 	    safest_rx_cluster != MJUMPAGESIZE &&
593 	    safest_rx_cluster != MJUM9BYTES &&
594 	    safest_rx_cluster != MJUM16BYTES) {
595 		printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
596 		    " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
597 		safest_rx_cluster = MJUMPAGESIZE;
598 	}
599 
600 	extfree_refs = counter_u64_alloc(M_WAITOK);
601 	extfree_rels = counter_u64_alloc(M_WAITOK);
602 	pullups = counter_u64_alloc(M_WAITOK);
603 	defrags = counter_u64_alloc(M_WAITOK);
604 	counter_u64_zero(extfree_refs);
605 	counter_u64_zero(extfree_rels);
606 	counter_u64_zero(pullups);
607 	counter_u64_zero(defrags);
608 
609 	t4_init_shared_cpl_handlers();
610 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
611 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
612 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
613 #ifdef RATELIMIT
614 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
615 	    CPL_COOKIE_ETHOFLD);
616 #endif
617 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
618 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
619 }
620 
621 void
622 t4_sge_modunload(void)
623 {
624 
625 	counter_u64_free(extfree_refs);
626 	counter_u64_free(extfree_rels);
627 	counter_u64_free(pullups);
628 	counter_u64_free(defrags);
629 }
630 
631 uint64_t
632 t4_sge_extfree_refs(void)
633 {
634 	uint64_t refs, rels;
635 
636 	rels = counter_u64_fetch(extfree_rels);
637 	refs = counter_u64_fetch(extfree_refs);
638 
639 	return (refs - rels);
640 }
641 
642 /* max 4096 */
643 #define MAX_PACK_BOUNDARY 512
644 
645 static inline void
646 setup_pad_and_pack_boundaries(struct adapter *sc)
647 {
648 	uint32_t v, m;
649 	int pad, pack, pad_shift;
650 
651 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
652 	    X_INGPADBOUNDARY_SHIFT;
653 	pad = fl_pad;
654 	if (fl_pad < (1 << pad_shift) ||
655 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
656 	    !powerof2(fl_pad)) {
657 		/*
658 		 * If there is any chance that we might use buffer packing and
659 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
660 		 * it to the minimum allowed in all other cases.
661 		 */
662 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
663 
664 		/*
665 		 * For fl_pad = 0 we'll still write a reasonable value to the
666 		 * register but all the freelists will opt out of padding.
667 		 * We'll complain here only if the user tried to set it to a
668 		 * value greater than 0 that was invalid.
669 		 */
670 		if (fl_pad > 0) {
671 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
672 			    " (%d), using %d instead.\n", fl_pad, pad);
673 		}
674 	}
675 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
676 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
677 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
678 
679 	if (is_t4(sc)) {
680 		if (fl_pack != -1 && fl_pack != pad) {
681 			/* Complain but carry on. */
682 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
683 			    " using %d instead.\n", fl_pack, pad);
684 		}
685 		return;
686 	}
687 
688 	pack = fl_pack;
689 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
690 	    !powerof2(fl_pack)) {
691 		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
692 			pack = MAX_PACK_BOUNDARY;
693 		else
694 			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
695 		MPASS(powerof2(pack));
696 		if (pack < 16)
697 			pack = 16;
698 		if (pack == 32)
699 			pack = 64;
700 		if (pack > 4096)
701 			pack = 4096;
702 		if (fl_pack != -1) {
703 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
704 			    " (%d), using %d instead.\n", fl_pack, pack);
705 		}
706 	}
707 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
708 	if (pack == 16)
709 		v = V_INGPACKBOUNDARY(0);
710 	else
711 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
712 
713 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
714 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
715 }
716 
717 /*
718  * adap->params.vpd.cclk must be set up before this is called.
719  */
720 void
721 t4_tweak_chip_settings(struct adapter *sc)
722 {
723 	int i, reg;
724 	uint32_t v, m;
725 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
726 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
727 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
728 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
729 	static int sw_buf_sizes[] = {
730 		MCLBYTES,
731 		MJUMPAGESIZE,
732 		MJUM9BYTES,
733 		MJUM16BYTES
734 	};
735 
736 	KASSERT(sc->flags & MASTER_PF,
737 	    ("%s: trying to change chip settings when not master.", __func__));
738 
739 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
740 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
741 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
742 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
743 
744 	setup_pad_and_pack_boundaries(sc);
745 
746 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
747 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
748 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
749 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
750 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
751 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
752 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
753 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
754 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
755 
756 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
757 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
758 	reg = A_SGE_FL_BUFFER_SIZE2;
759 	for (i = 0; i < nitems(sw_buf_sizes); i++) {
760 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
761 		t4_write_reg(sc, reg, sw_buf_sizes[i]);
762 		reg += 4;
763 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
764 		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
765 		reg += 4;
766 	}
767 
768 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
769 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
770 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
771 
772 	KASSERT(intr_timer[0] <= timer_max,
773 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
774 	    timer_max));
775 	for (i = 1; i < nitems(intr_timer); i++) {
776 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
777 		    ("%s: timers not listed in increasing order (%d)",
778 		    __func__, i));
779 
780 		while (intr_timer[i] > timer_max) {
781 			if (i == nitems(intr_timer) - 1) {
782 				intr_timer[i] = timer_max;
783 				break;
784 			}
785 			intr_timer[i] += intr_timer[i - 1];
786 			intr_timer[i] /= 2;
787 		}
788 	}
789 
790 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
791 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
792 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
793 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
794 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
795 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
796 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
797 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
798 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
799 
800 	if (chip_id(sc) >= CHELSIO_T6) {
801 		m = V_TSCALE(M_TSCALE);
802 		if (tscale == 1)
803 			v = 0;
804 		else
805 			v = V_TSCALE(tscale - 2);
806 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
807 
808 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
809 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
810 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
811 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
812 			v &= ~m;
813 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
814 			    V_WRTHRTHRESH(16);
815 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
816 		}
817 	}
818 
819 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
820 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
821 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
822 
823 	/*
824 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
825 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
826 	 * may have to deal with is MAXPHYS + 1 page.
827 	 */
828 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
829 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
830 
831 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
832 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
833 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
834 
835 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
836 	    F_RESETDDPOFFSET;
837 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
838 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
839 }
840 
841 /*
842  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
843  * address mut be 16B aligned.  If padding is in use the buffer's start and end
844  * need to be aligned to the pad boundary as well.  We'll just make sure that
845  * the size is a multiple of the pad boundary here, it is up to the buffer
846  * allocation code to make sure the start of the buffer is aligned.
847  */
848 static inline int
849 hwsz_ok(struct adapter *sc, int hwsz)
850 {
851 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
852 
853 	return (hwsz >= 64 && (hwsz & mask) == 0);
854 }
855 
856 /*
857  * Initialize the rx buffer sizes and figure out which zones the buffers will
858  * be allocated from.
859  */
860 void
861 t4_init_rx_buf_info(struct adapter *sc)
862 {
863 	struct sge *s = &sc->sge;
864 	struct sge_params *sp = &sc->params.sge;
865 	int i, j, n;
866 	static int sw_buf_sizes[] = {	/* Sorted by size */
867 		MCLBYTES,
868 		MJUMPAGESIZE,
869 		MJUM9BYTES,
870 		MJUM16BYTES
871 	};
872 	struct rx_buf_info *rxb;
873 
874 	s->safe_zidx = -1;
875 	rxb = &s->rx_buf_info[0];
876 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
877 		rxb->size1 = sw_buf_sizes[i];
878 		rxb->zone = m_getzone(rxb->size1);
879 		rxb->type = m_gettype(rxb->size1);
880 		rxb->size2 = 0;
881 		rxb->hwidx1 = -1;
882 		rxb->hwidx2 = -1;
883 		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
884 			int hwsize = sp->sge_fl_buffer_size[j];
885 
886 			if (!hwsz_ok(sc, hwsize))
887 				continue;
888 
889 			/* hwidx for size1 */
890 			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
891 				rxb->hwidx1 = j;
892 
893 			/* hwidx for size2 (buffer packing) */
894 			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
895 				continue;
896 			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
897 			if (n == 0) {
898 				rxb->hwidx2 = j;
899 				rxb->size2 = hwsize;
900 				break;	/* stop looking */
901 			}
902 			if (rxb->hwidx2 != -1) {
903 				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
904 				    hwsize - CL_METADATA_SIZE) {
905 					rxb->hwidx2 = j;
906 					rxb->size2 = hwsize;
907 				}
908 			} else if (n <= 2 * CL_METADATA_SIZE) {
909 				rxb->hwidx2 = j;
910 				rxb->size2 = hwsize;
911 			}
912 		}
913 		if (rxb->hwidx2 != -1)
914 			sc->flags |= BUF_PACKING_OK;
915 		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
916 			s->safe_zidx = i;
917 	}
918 }
919 
920 /*
921  * Verify some basic SGE settings for the PF and VF driver, and other
922  * miscellaneous settings for the PF driver.
923  */
924 int
925 t4_verify_chip_settings(struct adapter *sc)
926 {
927 	struct sge_params *sp = &sc->params.sge;
928 	uint32_t m, v, r;
929 	int rc = 0;
930 	const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
931 
932 	m = F_RXPKTCPLMODE;
933 	v = F_RXPKTCPLMODE;
934 	r = sp->sge_control;
935 	if ((r & m) != v) {
936 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
937 		rc = EINVAL;
938 	}
939 
940 	/*
941 	 * If this changes then every single use of PAGE_SHIFT in the driver
942 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
943 	 */
944 	if (sp->page_shift != PAGE_SHIFT) {
945 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
946 		rc = EINVAL;
947 	}
948 
949 	if (sc->flags & IS_VF)
950 		return (0);
951 
952 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
953 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
954 	if (r != v) {
955 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
956 		if (sc->vres.ddp.size != 0)
957 			rc = EINVAL;
958 	}
959 
960 	m = v = F_TDDPTAGTCB;
961 	r = t4_read_reg(sc, A_ULP_RX_CTL);
962 	if ((r & m) != v) {
963 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
964 		if (sc->vres.ddp.size != 0)
965 			rc = EINVAL;
966 	}
967 
968 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
969 	    F_RESETDDPOFFSET;
970 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
971 	r = t4_read_reg(sc, A_TP_PARA_REG5);
972 	if ((r & m) != v) {
973 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
974 		if (sc->vres.ddp.size != 0)
975 			rc = EINVAL;
976 	}
977 
978 	return (rc);
979 }
980 
981 int
982 t4_create_dma_tag(struct adapter *sc)
983 {
984 	int rc;
985 
986 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
987 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
988 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
989 	    NULL, &sc->dmat);
990 	if (rc != 0) {
991 		device_printf(sc->dev,
992 		    "failed to create main DMA tag: %d\n", rc);
993 	}
994 
995 	return (rc);
996 }
997 
998 void
999 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
1000     struct sysctl_oid_list *children)
1001 {
1002 	struct sge_params *sp = &sc->params.sge;
1003 
1004 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
1005 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
1006 	    sysctl_bufsizes, "A", "freelist buffer sizes");
1007 
1008 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
1009 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
1010 
1011 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
1012 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
1013 
1014 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
1015 	    NULL, sp->spg_len, "status page size (bytes)");
1016 
1017 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
1018 	    NULL, cong_drop, "congestion drop setting");
1019 #ifdef TCP_OFFLOAD
1020 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ofld_cong_drop", CTLFLAG_RD,
1021 	    NULL, ofld_cong_drop, "congestion drop setting");
1022 #endif
1023 
1024 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
1025 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1026 }
1027 
1028 int
1029 t4_destroy_dma_tag(struct adapter *sc)
1030 {
1031 	if (sc->dmat)
1032 		bus_dma_tag_destroy(sc->dmat);
1033 
1034 	return (0);
1035 }
1036 
1037 /*
1038  * Allocate and initialize the firmware event queue, control queues, and special
1039  * purpose rx queues owned by the adapter.
1040  *
1041  * Returns errno on failure.  Resources allocated up to that point may still be
1042  * allocated.  Caller is responsible for cleanup in case this function fails.
1043  */
1044 int
1045 t4_setup_adapter_queues(struct adapter *sc)
1046 {
1047 	int rc, i;
1048 
1049 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1050 
1051 	/*
1052 	 * Firmware event queue
1053 	 */
1054 	rc = alloc_fwq(sc);
1055 	if (rc != 0)
1056 		return (rc);
1057 
1058 	/*
1059 	 * That's all for the VF driver.
1060 	 */
1061 	if (sc->flags & IS_VF)
1062 		return (rc);
1063 
1064 	/*
1065 	 * XXX: General purpose rx queues, one per port.
1066 	 */
1067 
1068 	/*
1069 	 * Control queues, one per port.
1070 	 */
1071 	for_each_port(sc, i) {
1072 		rc = alloc_ctrlq(sc, i);
1073 		if (rc != 0)
1074 			return (rc);
1075 	}
1076 
1077 	return (rc);
1078 }
1079 
1080 /*
1081  * Idempotent
1082  */
1083 int
1084 t4_teardown_adapter_queues(struct adapter *sc)
1085 {
1086 	int i;
1087 
1088 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1089 
1090 	if (sc->sge.ctrlq != NULL) {
1091 		MPASS(!(sc->flags & IS_VF));	/* VFs don't allocate ctrlq. */
1092 		for_each_port(sc, i)
1093 			free_ctrlq(sc, i);
1094 	}
1095 	free_fwq(sc);
1096 
1097 	return (0);
1098 }
1099 
1100 /* Maximum payload that could arrive with a single iq descriptor. */
1101 static inline int
1102 max_rx_payload(struct adapter *sc, struct ifnet *ifp, const bool ofld)
1103 {
1104 	int maxp;
1105 
1106 	/* large enough even when hw VLAN extraction is disabled */
1107 	maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1108 	    ETHER_VLAN_ENCAP_LEN + ifp->if_mtu;
1109 	if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1110 	    maxp < sc->params.tp.max_rx_pdu)
1111 		maxp = sc->params.tp.max_rx_pdu;
1112 	return (maxp);
1113 }
1114 
1115 int
1116 t4_setup_vi_queues(struct vi_info *vi)
1117 {
1118 	int rc = 0, i, intr_idx;
1119 	struct sge_rxq *rxq;
1120 	struct sge_txq *txq;
1121 #ifdef TCP_OFFLOAD
1122 	struct sge_ofld_rxq *ofld_rxq;
1123 #endif
1124 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1125 	struct sge_ofld_txq *ofld_txq;
1126 #endif
1127 #ifdef DEV_NETMAP
1128 	int saved_idx, iqidx;
1129 	struct sge_nm_rxq *nm_rxq;
1130 	struct sge_nm_txq *nm_txq;
1131 #endif
1132 	struct adapter *sc = vi->adapter;
1133 	struct ifnet *ifp = vi->ifp;
1134 	int maxp;
1135 
1136 	/* Interrupt vector to start from (when using multiple vectors) */
1137 	intr_idx = vi->first_intr;
1138 
1139 #ifdef DEV_NETMAP
1140 	saved_idx = intr_idx;
1141 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1142 
1143 		/* netmap is supported with direct interrupts only. */
1144 		MPASS(!forwarding_intr_to_fwq(sc));
1145 		MPASS(vi->first_intr >= 0);
1146 
1147 		/*
1148 		 * We don't have buffers to back the netmap rx queues
1149 		 * right now so we create the queues in a way that
1150 		 * doesn't set off any congestion signal in the chip.
1151 		 */
1152 		for_each_nm_rxq(vi, i, nm_rxq) {
1153 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i);
1154 			if (rc != 0)
1155 				goto done;
1156 			intr_idx++;
1157 		}
1158 
1159 		for_each_nm_txq(vi, i, nm_txq) {
1160 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1161 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i);
1162 			if (rc != 0)
1163 				goto done;
1164 		}
1165 	}
1166 
1167 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1168 	intr_idx = saved_idx;
1169 #endif
1170 
1171 	/*
1172 	 * Allocate rx queues first because a default iqid is required when
1173 	 * creating a tx queue.
1174 	 */
1175 	maxp = max_rx_payload(sc, ifp, false);
1176 	for_each_rxq(vi, i, rxq) {
1177 		rc = alloc_rxq(vi, rxq, i, intr_idx, maxp);
1178 		if (rc != 0)
1179 			goto done;
1180 		if (!forwarding_intr_to_fwq(sc))
1181 			intr_idx++;
1182 	}
1183 #ifdef DEV_NETMAP
1184 	if (ifp->if_capabilities & IFCAP_NETMAP)
1185 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1186 #endif
1187 #ifdef TCP_OFFLOAD
1188 	maxp = max_rx_payload(sc, ifp, true);
1189 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1190 		rc = alloc_ofld_rxq(vi, ofld_rxq, i, intr_idx, maxp);
1191 		if (rc != 0)
1192 			goto done;
1193 		if (!forwarding_intr_to_fwq(sc))
1194 			intr_idx++;
1195 	}
1196 #endif
1197 
1198 	/*
1199 	 * Now the tx queues.
1200 	 */
1201 	for_each_txq(vi, i, txq) {
1202 		rc = alloc_txq(vi, txq, i);
1203 		if (rc != 0)
1204 			goto done;
1205 	}
1206 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1207 	for_each_ofld_txq(vi, i, ofld_txq) {
1208 		rc = alloc_ofld_txq(vi, ofld_txq, i);
1209 		if (rc != 0)
1210 			goto done;
1211 	}
1212 #endif
1213 done:
1214 	if (rc)
1215 		t4_teardown_vi_queues(vi);
1216 
1217 	return (rc);
1218 }
1219 
1220 /*
1221  * Idempotent
1222  */
1223 int
1224 t4_teardown_vi_queues(struct vi_info *vi)
1225 {
1226 	int i;
1227 	struct sge_rxq *rxq;
1228 	struct sge_txq *txq;
1229 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1230 	struct sge_ofld_txq *ofld_txq;
1231 #endif
1232 #ifdef TCP_OFFLOAD
1233 	struct sge_ofld_rxq *ofld_rxq;
1234 #endif
1235 #ifdef DEV_NETMAP
1236 	struct sge_nm_rxq *nm_rxq;
1237 	struct sge_nm_txq *nm_txq;
1238 #endif
1239 
1240 #ifdef DEV_NETMAP
1241 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1242 		for_each_nm_txq(vi, i, nm_txq) {
1243 			free_nm_txq(vi, nm_txq);
1244 		}
1245 
1246 		for_each_nm_rxq(vi, i, nm_rxq) {
1247 			free_nm_rxq(vi, nm_rxq);
1248 		}
1249 	}
1250 #endif
1251 
1252 	/*
1253 	 * Take down all the tx queues first, as they reference the rx queues
1254 	 * (for egress updates, etc.).
1255 	 */
1256 
1257 	for_each_txq(vi, i, txq) {
1258 		free_txq(vi, txq);
1259 	}
1260 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1261 	for_each_ofld_txq(vi, i, ofld_txq) {
1262 		free_ofld_txq(vi, ofld_txq);
1263 	}
1264 #endif
1265 
1266 	/*
1267 	 * Then take down the rx queues.
1268 	 */
1269 
1270 	for_each_rxq(vi, i, rxq) {
1271 		free_rxq(vi, rxq);
1272 	}
1273 #ifdef TCP_OFFLOAD
1274 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1275 		free_ofld_rxq(vi, ofld_rxq);
1276 	}
1277 #endif
1278 
1279 	return (0);
1280 }
1281 
1282 /*
1283  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1284  * unusual scenario.
1285  *
1286  * a) Deals with errors, if any.
1287  * b) Services firmware event queue, which is taking interrupts for all other
1288  *    queues.
1289  */
1290 void
1291 t4_intr_all(void *arg)
1292 {
1293 	struct adapter *sc = arg;
1294 	struct sge_iq *fwq = &sc->sge.fwq;
1295 
1296 	MPASS(sc->intr_count == 1);
1297 
1298 	if (sc->intr_type == INTR_INTX)
1299 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1300 
1301 	t4_intr_err(arg);
1302 	t4_intr_evt(fwq);
1303 }
1304 
1305 /*
1306  * Interrupt handler for errors (installed directly when multiple interrupts are
1307  * being used, or called by t4_intr_all).
1308  */
1309 void
1310 t4_intr_err(void *arg)
1311 {
1312 	struct adapter *sc = arg;
1313 	uint32_t v;
1314 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1315 
1316 	if (atomic_load_int(&sc->error_flags) & ADAP_FATAL_ERR)
1317 		return;
1318 
1319 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1320 	if (v & F_PFSW) {
1321 		sc->swintr++;
1322 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1323 	}
1324 
1325 	if (t4_slow_intr_handler(sc, verbose))
1326 		t4_fatal_err(sc, false);
1327 }
1328 
1329 /*
1330  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1331  * such queue right now.
1332  */
1333 void
1334 t4_intr_evt(void *arg)
1335 {
1336 	struct sge_iq *iq = arg;
1337 
1338 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1339 		service_iq(iq, 0);
1340 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1341 	}
1342 }
1343 
1344 /*
1345  * Interrupt handler for iq+fl queues.
1346  */
1347 void
1348 t4_intr(void *arg)
1349 {
1350 	struct sge_iq *iq = arg;
1351 
1352 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1353 		service_iq_fl(iq, 0);
1354 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1355 	}
1356 }
1357 
1358 #ifdef DEV_NETMAP
1359 /*
1360  * Interrupt handler for netmap rx queues.
1361  */
1362 void
1363 t4_nm_intr(void *arg)
1364 {
1365 	struct sge_nm_rxq *nm_rxq = arg;
1366 
1367 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1368 		service_nm_rxq(nm_rxq);
1369 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1370 	}
1371 }
1372 
1373 /*
1374  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1375  */
1376 void
1377 t4_vi_intr(void *arg)
1378 {
1379 	struct irq *irq = arg;
1380 
1381 	MPASS(irq->nm_rxq != NULL);
1382 	t4_nm_intr(irq->nm_rxq);
1383 
1384 	MPASS(irq->rxq != NULL);
1385 	t4_intr(irq->rxq);
1386 }
1387 #endif
1388 
1389 /*
1390  * Deals with interrupts on an iq-only (no freelist) queue.
1391  */
1392 static int
1393 service_iq(struct sge_iq *iq, int budget)
1394 {
1395 	struct sge_iq *q;
1396 	struct adapter *sc = iq->adapter;
1397 	struct iq_desc *d = &iq->desc[iq->cidx];
1398 	int ndescs = 0, limit;
1399 	int rsp_type;
1400 	uint32_t lq;
1401 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1402 
1403 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1404 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1405 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1406 	    iq->flags));
1407 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1408 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1409 
1410 	limit = budget ? budget : iq->qsize / 16;
1411 
1412 	/*
1413 	 * We always come back and check the descriptor ring for new indirect
1414 	 * interrupts and other responses after running a single handler.
1415 	 */
1416 	for (;;) {
1417 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1418 
1419 			rmb();
1420 
1421 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1422 			lq = be32toh(d->rsp.pldbuflen_qid);
1423 
1424 			switch (rsp_type) {
1425 			case X_RSPD_TYPE_FLBUF:
1426 				panic("%s: data for an iq (%p) with no freelist",
1427 				    __func__, iq);
1428 
1429 				/* NOTREACHED */
1430 
1431 			case X_RSPD_TYPE_CPL:
1432 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1433 				    ("%s: bad opcode %02x.", __func__,
1434 				    d->rss.opcode));
1435 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1436 				break;
1437 
1438 			case X_RSPD_TYPE_INTR:
1439 				/*
1440 				 * There are 1K interrupt-capable queues (qids 0
1441 				 * through 1023).  A response type indicating a
1442 				 * forwarded interrupt with a qid >= 1K is an
1443 				 * iWARP async notification.
1444 				 */
1445 				if (__predict_true(lq >= 1024)) {
1446 					t4_an_handler(iq, &d->rsp);
1447 					break;
1448 				}
1449 
1450 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1451 				    sc->sge.iq_base];
1452 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1453 				    IQS_BUSY)) {
1454 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1455 						(void) atomic_cmpset_int(&q->state,
1456 						    IQS_BUSY, IQS_IDLE);
1457 					} else {
1458 						STAILQ_INSERT_TAIL(&iql, q,
1459 						    link);
1460 					}
1461 				}
1462 				break;
1463 
1464 			default:
1465 				KASSERT(0,
1466 				    ("%s: illegal response type %d on iq %p",
1467 				    __func__, rsp_type, iq));
1468 				log(LOG_ERR,
1469 				    "%s: illegal response type %d on iq %p",
1470 				    device_get_nameunit(sc->dev), rsp_type, iq);
1471 				break;
1472 			}
1473 
1474 			d++;
1475 			if (__predict_false(++iq->cidx == iq->sidx)) {
1476 				iq->cidx = 0;
1477 				iq->gen ^= F_RSPD_GEN;
1478 				d = &iq->desc[0];
1479 			}
1480 			if (__predict_false(++ndescs == limit)) {
1481 				t4_write_reg(sc, sc->sge_gts_reg,
1482 				    V_CIDXINC(ndescs) |
1483 				    V_INGRESSQID(iq->cntxt_id) |
1484 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1485 				ndescs = 0;
1486 
1487 				if (budget) {
1488 					return (EINPROGRESS);
1489 				}
1490 			}
1491 		}
1492 
1493 		if (STAILQ_EMPTY(&iql))
1494 			break;
1495 
1496 		/*
1497 		 * Process the head only, and send it to the back of the list if
1498 		 * it's still not done.
1499 		 */
1500 		q = STAILQ_FIRST(&iql);
1501 		STAILQ_REMOVE_HEAD(&iql, link);
1502 		if (service_iq_fl(q, q->qsize / 8) == 0)
1503 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1504 		else
1505 			STAILQ_INSERT_TAIL(&iql, q, link);
1506 	}
1507 
1508 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1509 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1510 
1511 	return (0);
1512 }
1513 
1514 #if defined(INET) || defined(INET6)
1515 static inline int
1516 sort_before_lro(struct lro_ctrl *lro)
1517 {
1518 
1519 	return (lro->lro_mbuf_max != 0);
1520 }
1521 #endif
1522 
1523 #define CGBE_SHIFT_SCALE 10
1524 
1525 static inline uint64_t
1526 t4_tstmp_to_ns(struct adapter *sc, uint64_t lf)
1527 {
1528 	struct clock_sync *cur, dcur;
1529 	uint64_t hw_clocks;
1530 	uint64_t hw_clk_div;
1531 	sbintime_t sbt_cur_to_prev, sbt;
1532 	uint64_t hw_tstmp = lf & 0xfffffffffffffffULL;	/* 60b, not 64b. */
1533 	seqc_t gen;
1534 
1535 	for (;;) {
1536 		cur = &sc->cal_info[sc->cal_current];
1537 		gen = seqc_read(&cur->gen);
1538 		if (gen == 0)
1539 			return (0);
1540 		dcur = *cur;
1541 		if (seqc_consistent(&cur->gen, gen))
1542 			break;
1543 	}
1544 
1545 	/*
1546 	 * Our goal here is to have a result that is:
1547 	 *
1548 	 * (                             (cur_time - prev_time)   )
1549 	 * ((hw_tstmp - hw_prev) *  ----------------------------- ) + prev_time
1550 	 * (                             (hw_cur - hw_prev)       )
1551 	 *
1552 	 * With the constraints that we cannot use float and we
1553 	 * don't want to overflow the uint64_t numbers we are using.
1554 	 */
1555 	hw_clocks = hw_tstmp - dcur.hw_prev;
1556 	sbt_cur_to_prev = (dcur.sbt_cur - dcur.sbt_prev);
1557 	hw_clk_div = dcur.hw_cur - dcur.hw_prev;
1558 	sbt = hw_clocks * sbt_cur_to_prev / hw_clk_div + dcur.sbt_prev;
1559 	return (sbttons(sbt));
1560 }
1561 
1562 static inline void
1563 move_to_next_rxbuf(struct sge_fl *fl)
1564 {
1565 
1566 	fl->rx_offset = 0;
1567 	if (__predict_false((++fl->cidx & 7) == 0)) {
1568 		uint16_t cidx = fl->cidx >> 3;
1569 
1570 		if (__predict_false(cidx == fl->sidx))
1571 			fl->cidx = cidx = 0;
1572 		fl->hw_cidx = cidx;
1573 	}
1574 }
1575 
1576 /*
1577  * Deals with interrupts on an iq+fl queue.
1578  */
1579 static int
1580 service_iq_fl(struct sge_iq *iq, int budget)
1581 {
1582 	struct sge_rxq *rxq = iq_to_rxq(iq);
1583 	struct sge_fl *fl;
1584 	struct adapter *sc = iq->adapter;
1585 	struct iq_desc *d = &iq->desc[iq->cidx];
1586 	int ndescs, limit;
1587 	int rsp_type, starved;
1588 	uint32_t lq;
1589 	uint16_t fl_hw_cidx;
1590 	struct mbuf *m0;
1591 #if defined(INET) || defined(INET6)
1592 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1593 	struct lro_ctrl *lro = &rxq->lro;
1594 #endif
1595 
1596 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1597 	MPASS(iq->flags & IQ_HAS_FL);
1598 
1599 	ndescs = 0;
1600 #if defined(INET) || defined(INET6)
1601 	if (iq->flags & IQ_ADJ_CREDIT) {
1602 		MPASS(sort_before_lro(lro));
1603 		iq->flags &= ~IQ_ADJ_CREDIT;
1604 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1605 			tcp_lro_flush_all(lro);
1606 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1607 			    V_INGRESSQID((u32)iq->cntxt_id) |
1608 			    V_SEINTARM(iq->intr_params));
1609 			return (0);
1610 		}
1611 		ndescs = 1;
1612 	}
1613 #else
1614 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1615 #endif
1616 
1617 	limit = budget ? budget : iq->qsize / 16;
1618 	fl = &rxq->fl;
1619 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1620 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1621 
1622 		rmb();
1623 
1624 		m0 = NULL;
1625 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1626 		lq = be32toh(d->rsp.pldbuflen_qid);
1627 
1628 		switch (rsp_type) {
1629 		case X_RSPD_TYPE_FLBUF:
1630 			if (lq & F_RSPD_NEWBUF) {
1631 				if (fl->rx_offset > 0)
1632 					move_to_next_rxbuf(fl);
1633 				lq = G_RSPD_LEN(lq);
1634 			}
1635 			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1636 				FL_LOCK(fl);
1637 				refill_fl(sc, fl, 64);
1638 				FL_UNLOCK(fl);
1639 				fl_hw_cidx = fl->hw_cidx;
1640 			}
1641 
1642 			if (d->rss.opcode == CPL_RX_PKT) {
1643 				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1644 					break;
1645 				goto out;
1646 			}
1647 			m0 = get_fl_payload(sc, fl, lq);
1648 			if (__predict_false(m0 == NULL))
1649 				goto out;
1650 
1651 			/* fall through */
1652 
1653 		case X_RSPD_TYPE_CPL:
1654 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1655 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1656 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1657 			break;
1658 
1659 		case X_RSPD_TYPE_INTR:
1660 
1661 			/*
1662 			 * There are 1K interrupt-capable queues (qids 0
1663 			 * through 1023).  A response type indicating a
1664 			 * forwarded interrupt with a qid >= 1K is an
1665 			 * iWARP async notification.  That is the only
1666 			 * acceptable indirect interrupt on this queue.
1667 			 */
1668 			if (__predict_false(lq < 1024)) {
1669 				panic("%s: indirect interrupt on iq_fl %p "
1670 				    "with qid %u", __func__, iq, lq);
1671 			}
1672 
1673 			t4_an_handler(iq, &d->rsp);
1674 			break;
1675 
1676 		default:
1677 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1678 			    __func__, rsp_type, iq));
1679 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1680 			    device_get_nameunit(sc->dev), rsp_type, iq);
1681 			break;
1682 		}
1683 
1684 		d++;
1685 		if (__predict_false(++iq->cidx == iq->sidx)) {
1686 			iq->cidx = 0;
1687 			iq->gen ^= F_RSPD_GEN;
1688 			d = &iq->desc[0];
1689 		}
1690 		if (__predict_false(++ndescs == limit)) {
1691 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1692 			    V_INGRESSQID(iq->cntxt_id) |
1693 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1694 
1695 #if defined(INET) || defined(INET6)
1696 			if (iq->flags & IQ_LRO_ENABLED &&
1697 			    !sort_before_lro(lro) &&
1698 			    sc->lro_timeout != 0) {
1699 				tcp_lro_flush_inactive(lro, &lro_timeout);
1700 			}
1701 #endif
1702 			if (budget)
1703 				return (EINPROGRESS);
1704 			ndescs = 0;
1705 		}
1706 	}
1707 out:
1708 #if defined(INET) || defined(INET6)
1709 	if (iq->flags & IQ_LRO_ENABLED) {
1710 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1711 			MPASS(sort_before_lro(lro));
1712 			/* hold back one credit and don't flush LRO state */
1713 			iq->flags |= IQ_ADJ_CREDIT;
1714 			ndescs--;
1715 		} else {
1716 			tcp_lro_flush_all(lro);
1717 		}
1718 	}
1719 #endif
1720 
1721 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1722 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1723 
1724 	FL_LOCK(fl);
1725 	starved = refill_fl(sc, fl, 64);
1726 	FL_UNLOCK(fl);
1727 	if (__predict_false(starved != 0))
1728 		add_fl_to_sfl(sc, fl);
1729 
1730 	return (0);
1731 }
1732 
1733 static inline struct cluster_metadata *
1734 cl_metadata(struct fl_sdesc *sd)
1735 {
1736 
1737 	return ((void *)(sd->cl + sd->moff));
1738 }
1739 
1740 static void
1741 rxb_free(struct mbuf *m)
1742 {
1743 	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1744 
1745 	uma_zfree(clm->zone, clm->cl);
1746 	counter_u64_add(extfree_rels, 1);
1747 }
1748 
1749 /*
1750  * The mbuf returned comes from zone_muf and carries the payload in one of these
1751  * ways
1752  * a) complete frame inside the mbuf
1753  * b) m_cljset (for clusters without metadata)
1754  * d) m_extaddref (cluster with metadata)
1755  */
1756 static struct mbuf *
1757 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1758     int remaining)
1759 {
1760 	struct mbuf *m;
1761 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1762 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1763 	struct cluster_metadata *clm;
1764 	int len, blen;
1765 	caddr_t payload;
1766 
1767 	if (fl->flags & FL_BUF_PACKING) {
1768 		u_int l, pad;
1769 
1770 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1771 		len = min(remaining, blen);
1772 		payload = sd->cl + fl->rx_offset;
1773 
1774 		l = fr_offset + len;
1775 		pad = roundup2(l, fl->buf_boundary) - l;
1776 		if (fl->rx_offset + len + pad < rxb->size2)
1777 			blen = len + pad;
1778 		MPASS(fl->rx_offset + blen <= rxb->size2);
1779 	} else {
1780 		MPASS(fl->rx_offset == 0);	/* not packing */
1781 		blen = rxb->size1;
1782 		len = min(remaining, blen);
1783 		payload = sd->cl;
1784 	}
1785 
1786 	if (fr_offset == 0) {
1787 		m = m_gethdr(M_NOWAIT, MT_DATA);
1788 		if (__predict_false(m == NULL))
1789 			return (NULL);
1790 		m->m_pkthdr.len = remaining;
1791 	} else {
1792 		m = m_get(M_NOWAIT, MT_DATA);
1793 		if (__predict_false(m == NULL))
1794 			return (NULL);
1795 	}
1796 	m->m_len = len;
1797 	kmsan_mark(payload, len, KMSAN_STATE_INITED);
1798 
1799 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1800 		/* copy data to mbuf */
1801 		bcopy(payload, mtod(m, caddr_t), len);
1802 		if (fl->flags & FL_BUF_PACKING) {
1803 			fl->rx_offset += blen;
1804 			MPASS(fl->rx_offset <= rxb->size2);
1805 			if (fl->rx_offset < rxb->size2)
1806 				return (m);	/* without advancing the cidx */
1807 		}
1808 	} else if (fl->flags & FL_BUF_PACKING) {
1809 		clm = cl_metadata(sd);
1810 		if (sd->nmbuf++ == 0) {
1811 			clm->refcount = 1;
1812 			clm->zone = rxb->zone;
1813 			clm->cl = sd->cl;
1814 			counter_u64_add(extfree_refs, 1);
1815 		}
1816 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1817 		    NULL);
1818 
1819 		fl->rx_offset += blen;
1820 		MPASS(fl->rx_offset <= rxb->size2);
1821 		if (fl->rx_offset < rxb->size2)
1822 			return (m);	/* without advancing the cidx */
1823 	} else {
1824 		m_cljset(m, sd->cl, rxb->type);
1825 		sd->cl = NULL;	/* consumed, not a recycle candidate */
1826 	}
1827 
1828 	move_to_next_rxbuf(fl);
1829 
1830 	return (m);
1831 }
1832 
1833 static struct mbuf *
1834 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1835 {
1836 	struct mbuf *m0, *m, **pnext;
1837 	u_int remaining;
1838 
1839 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1840 		M_ASSERTPKTHDR(fl->m0);
1841 		MPASS(fl->m0->m_pkthdr.len == plen);
1842 		MPASS(fl->remaining < plen);
1843 
1844 		m0 = fl->m0;
1845 		pnext = fl->pnext;
1846 		remaining = fl->remaining;
1847 		fl->flags &= ~FL_BUF_RESUME;
1848 		goto get_segment;
1849 	}
1850 
1851 	/*
1852 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1853 	 * 'len' and it may span multiple hw buffers.
1854 	 */
1855 
1856 	m0 = get_scatter_segment(sc, fl, 0, plen);
1857 	if (m0 == NULL)
1858 		return (NULL);
1859 	remaining = plen - m0->m_len;
1860 	pnext = &m0->m_next;
1861 	while (remaining > 0) {
1862 get_segment:
1863 		MPASS(fl->rx_offset == 0);
1864 		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1865 		if (__predict_false(m == NULL)) {
1866 			fl->m0 = m0;
1867 			fl->pnext = pnext;
1868 			fl->remaining = remaining;
1869 			fl->flags |= FL_BUF_RESUME;
1870 			return (NULL);
1871 		}
1872 		*pnext = m;
1873 		pnext = &m->m_next;
1874 		remaining -= m->m_len;
1875 	}
1876 	*pnext = NULL;
1877 
1878 	M_ASSERTPKTHDR(m0);
1879 	return (m0);
1880 }
1881 
1882 static int
1883 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1884     int remaining)
1885 {
1886 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1887 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1888 	int len, blen;
1889 
1890 	if (fl->flags & FL_BUF_PACKING) {
1891 		u_int l, pad;
1892 
1893 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1894 		len = min(remaining, blen);
1895 
1896 		l = fr_offset + len;
1897 		pad = roundup2(l, fl->buf_boundary) - l;
1898 		if (fl->rx_offset + len + pad < rxb->size2)
1899 			blen = len + pad;
1900 		fl->rx_offset += blen;
1901 		MPASS(fl->rx_offset <= rxb->size2);
1902 		if (fl->rx_offset < rxb->size2)
1903 			return (len);	/* without advancing the cidx */
1904 	} else {
1905 		MPASS(fl->rx_offset == 0);	/* not packing */
1906 		blen = rxb->size1;
1907 		len = min(remaining, blen);
1908 	}
1909 	move_to_next_rxbuf(fl);
1910 	return (len);
1911 }
1912 
1913 static inline void
1914 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1915 {
1916 	int remaining, fr_offset, len;
1917 
1918 	fr_offset = 0;
1919 	remaining = plen;
1920 	while (remaining > 0) {
1921 		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1922 		fr_offset += len;
1923 		remaining -= len;
1924 	}
1925 }
1926 
1927 static inline int
1928 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1929 {
1930 	int len;
1931 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1932 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1933 
1934 	if (fl->flags & FL_BUF_PACKING)
1935 		len = rxb->size2 - fl->rx_offset;
1936 	else
1937 		len = rxb->size1;
1938 
1939 	return (min(plen, len));
1940 }
1941 
1942 static int
1943 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1944     u_int plen)
1945 {
1946 	struct mbuf *m0;
1947 	struct ifnet *ifp = rxq->ifp;
1948 	struct sge_fl *fl = &rxq->fl;
1949 	struct vi_info *vi = ifp->if_softc;
1950 	const struct cpl_rx_pkt *cpl;
1951 #if defined(INET) || defined(INET6)
1952 	struct lro_ctrl *lro = &rxq->lro;
1953 #endif
1954 	uint16_t err_vec, tnl_type, tnlhdr_len;
1955 	static const int sw_hashtype[4][2] = {
1956 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1957 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1958 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1959 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1960 	};
1961 	static const int sw_csum_flags[2][2] = {
1962 		{
1963 			/* IP, inner IP */
1964 			CSUM_ENCAP_VXLAN |
1965 			    CSUM_L3_CALC | CSUM_L3_VALID |
1966 			    CSUM_L4_CALC | CSUM_L4_VALID |
1967 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1968 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1969 
1970 			/* IP, inner IP6 */
1971 			CSUM_ENCAP_VXLAN |
1972 			    CSUM_L3_CALC | CSUM_L3_VALID |
1973 			    CSUM_L4_CALC | CSUM_L4_VALID |
1974 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1975 		},
1976 		{
1977 			/* IP6, inner IP */
1978 			CSUM_ENCAP_VXLAN |
1979 			    CSUM_L4_CALC | CSUM_L4_VALID |
1980 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1981 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1982 
1983 			/* IP6, inner IP6 */
1984 			CSUM_ENCAP_VXLAN |
1985 			    CSUM_L4_CALC | CSUM_L4_VALID |
1986 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1987 		},
1988 	};
1989 
1990 	MPASS(plen > sc->params.sge.fl_pktshift);
1991 	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
1992 	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
1993 		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1994 		caddr_t frame;
1995 		int rc, slen;
1996 
1997 		slen = get_segment_len(sc, fl, plen) -
1998 		    sc->params.sge.fl_pktshift;
1999 		frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
2000 		CURVNET_SET_QUIET(ifp->if_vnet);
2001 		rc = pfil_run_hooks(vi->pfil, frame, ifp,
2002 		    slen | PFIL_MEMPTR | PFIL_IN, NULL);
2003 		CURVNET_RESTORE();
2004 		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
2005 			skip_fl_payload(sc, fl, plen);
2006 			return (0);
2007 		}
2008 		if (rc == PFIL_REALLOCED) {
2009 			skip_fl_payload(sc, fl, plen);
2010 			m0 = pfil_mem2mbuf(frame);
2011 			goto have_mbuf;
2012 		}
2013 	}
2014 
2015 	m0 = get_fl_payload(sc, fl, plen);
2016 	if (__predict_false(m0 == NULL))
2017 		return (ENOMEM);
2018 
2019 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
2020 	m0->m_len -= sc->params.sge.fl_pktshift;
2021 	m0->m_data += sc->params.sge.fl_pktshift;
2022 
2023 have_mbuf:
2024 	m0->m_pkthdr.rcvif = ifp;
2025 	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
2026 	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
2027 
2028 	cpl = (const void *)(&d->rss + 1);
2029 	if (sc->params.tp.rx_pkt_encap) {
2030 		const uint16_t ev = be16toh(cpl->err_vec);
2031 
2032 		err_vec = G_T6_COMPR_RXERR_VEC(ev);
2033 		tnl_type = G_T6_RX_TNL_TYPE(ev);
2034 		tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
2035 	} else {
2036 		err_vec = be16toh(cpl->err_vec);
2037 		tnl_type = 0;
2038 		tnlhdr_len = 0;
2039 	}
2040 	if (cpl->csum_calc && err_vec == 0) {
2041 		int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
2042 
2043 		/* checksum(s) calculated and found to be correct. */
2044 
2045 		MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
2046 		    (cpl->l2info & htobe32(F_RXF_IP6)));
2047 		m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2048 		if (tnl_type == 0) {
2049 			if (!ipv6 && ifp->if_capenable & IFCAP_RXCSUM) {
2050 				m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2051 				    CSUM_L3_VALID | CSUM_L4_CALC |
2052 				    CSUM_L4_VALID;
2053 			} else if (ipv6 && ifp->if_capenable & IFCAP_RXCSUM_IPV6) {
2054 				m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2055 				    CSUM_L4_VALID;
2056 			}
2057 			rxq->rxcsum++;
2058 		} else {
2059 			MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
2060 
2061 			M_HASHTYPE_SETINNER(m0);
2062 			if (__predict_false(cpl->ip_frag)) {
2063 				/*
2064 				 * csum_data is for the inner frame (which is an
2065 				 * IP fragment) and is not 0xffff.  There is no
2066 				 * way to pass the inner csum_data to the stack.
2067 				 * We don't want the stack to use the inner
2068 				 * csum_data to validate the outer frame or it
2069 				 * will get rejected.  So we fix csum_data here
2070 				 * and let sw do the checksum of inner IP
2071 				 * fragments.
2072 				 *
2073 				 * XXX: Need 32b for csum_data2 in an rx mbuf.
2074 				 * Maybe stuff it into rcv_tstmp?
2075 				 */
2076 				m0->m_pkthdr.csum_data = 0xffff;
2077 				if (ipv6) {
2078 					m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2079 					    CSUM_L4_VALID;
2080 				} else {
2081 					m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2082 					    CSUM_L3_VALID | CSUM_L4_CALC |
2083 					    CSUM_L4_VALID;
2084 				}
2085 			} else {
2086 				int outer_ipv6;
2087 
2088 				MPASS(m0->m_pkthdr.csum_data == 0xffff);
2089 
2090 				outer_ipv6 = tnlhdr_len >=
2091 				    sizeof(struct ether_header) +
2092 				    sizeof(struct ip6_hdr);
2093 				m0->m_pkthdr.csum_flags =
2094 				    sw_csum_flags[outer_ipv6][ipv6];
2095 			}
2096 			rxq->vxlan_rxcsum++;
2097 		}
2098 	}
2099 
2100 	if (cpl->vlan_ex) {
2101 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2102 		m0->m_flags |= M_VLANTAG;
2103 		rxq->vlan_extraction++;
2104 	}
2105 
2106 	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
2107 		/*
2108 		 * Fill up rcv_tstmp but do not set M_TSTMP as
2109 		 * long as we get a non-zero back from t4_tstmp_to_ns().
2110 		 */
2111 		m0->m_pkthdr.rcv_tstmp = t4_tstmp_to_ns(sc,
2112 		    be64toh(d->rsp.u.last_flit));
2113 		if (m0->m_pkthdr.rcv_tstmp != 0)
2114 			m0->m_flags |= M_TSTMP;
2115 	}
2116 
2117 #ifdef NUMA
2118 	m0->m_pkthdr.numa_domain = ifp->if_numa_domain;
2119 #endif
2120 #if defined(INET) || defined(INET6)
2121 	if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
2122 	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2123 	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2124 		if (sort_before_lro(lro)) {
2125 			tcp_lro_queue_mbuf(lro, m0);
2126 			return (0); /* queued for sort, then LRO */
2127 		}
2128 		if (tcp_lro_rx(lro, m0, 0) == 0)
2129 			return (0); /* queued for LRO */
2130 	}
2131 #endif
2132 	ifp->if_input(ifp, m0);
2133 
2134 	return (0);
2135 }
2136 
2137 /*
2138  * Must drain the wrq or make sure that someone else will.
2139  */
2140 static void
2141 wrq_tx_drain(void *arg, int n)
2142 {
2143 	struct sge_wrq *wrq = arg;
2144 	struct sge_eq *eq = &wrq->eq;
2145 
2146 	EQ_LOCK(eq);
2147 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2148 		drain_wrq_wr_list(wrq->adapter, wrq);
2149 	EQ_UNLOCK(eq);
2150 }
2151 
2152 static void
2153 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2154 {
2155 	struct sge_eq *eq = &wrq->eq;
2156 	u_int available, dbdiff;	/* # of hardware descriptors */
2157 	u_int n;
2158 	struct wrqe *wr;
2159 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2160 
2161 	EQ_LOCK_ASSERT_OWNED(eq);
2162 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2163 	wr = STAILQ_FIRST(&wrq->wr_list);
2164 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2165 	MPASS(eq->pidx == eq->dbidx);
2166 	dbdiff = 0;
2167 
2168 	do {
2169 		eq->cidx = read_hw_cidx(eq);
2170 		if (eq->pidx == eq->cidx)
2171 			available = eq->sidx - 1;
2172 		else
2173 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2174 
2175 		MPASS(wr->wrq == wrq);
2176 		n = howmany(wr->wr_len, EQ_ESIZE);
2177 		if (available < n)
2178 			break;
2179 
2180 		dst = (void *)&eq->desc[eq->pidx];
2181 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2182 			/* Won't wrap, won't end exactly at the status page. */
2183 			bcopy(&wr->wr[0], dst, wr->wr_len);
2184 			eq->pidx += n;
2185 		} else {
2186 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2187 
2188 			bcopy(&wr->wr[0], dst, first_portion);
2189 			if (wr->wr_len > first_portion) {
2190 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2191 				    wr->wr_len - first_portion);
2192 			}
2193 			eq->pidx = n - (eq->sidx - eq->pidx);
2194 		}
2195 		wrq->tx_wrs_copied++;
2196 
2197 		if (available < eq->sidx / 4 &&
2198 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2199 				/*
2200 				 * XXX: This is not 100% reliable with some
2201 				 * types of WRs.  But this is a very unusual
2202 				 * situation for an ofld/ctrl queue anyway.
2203 				 */
2204 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2205 			    F_FW_WR_EQUEQ);
2206 		}
2207 
2208 		dbdiff += n;
2209 		if (dbdiff >= 16) {
2210 			ring_eq_db(sc, eq, dbdiff);
2211 			dbdiff = 0;
2212 		}
2213 
2214 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2215 		free_wrqe(wr);
2216 		MPASS(wrq->nwr_pending > 0);
2217 		wrq->nwr_pending--;
2218 		MPASS(wrq->ndesc_needed >= n);
2219 		wrq->ndesc_needed -= n;
2220 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2221 
2222 	if (dbdiff)
2223 		ring_eq_db(sc, eq, dbdiff);
2224 }
2225 
2226 /*
2227  * Doesn't fail.  Holds on to work requests it can't send right away.
2228  */
2229 void
2230 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2231 {
2232 #ifdef INVARIANTS
2233 	struct sge_eq *eq = &wrq->eq;
2234 #endif
2235 
2236 	EQ_LOCK_ASSERT_OWNED(eq);
2237 	MPASS(wr != NULL);
2238 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2239 	MPASS((wr->wr_len & 0x7) == 0);
2240 
2241 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2242 	wrq->nwr_pending++;
2243 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2244 
2245 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2246 		return;	/* commit_wrq_wr will drain wr_list as well. */
2247 
2248 	drain_wrq_wr_list(sc, wrq);
2249 
2250 	/* Doorbell must have caught up to the pidx. */
2251 	MPASS(eq->pidx == eq->dbidx);
2252 }
2253 
2254 void
2255 t4_update_fl_bufsize(struct ifnet *ifp)
2256 {
2257 	struct vi_info *vi = ifp->if_softc;
2258 	struct adapter *sc = vi->adapter;
2259 	struct sge_rxq *rxq;
2260 #ifdef TCP_OFFLOAD
2261 	struct sge_ofld_rxq *ofld_rxq;
2262 #endif
2263 	struct sge_fl *fl;
2264 	int i, maxp;
2265 
2266 	maxp = max_rx_payload(sc, ifp, false);
2267 	for_each_rxq(vi, i, rxq) {
2268 		fl = &rxq->fl;
2269 
2270 		FL_LOCK(fl);
2271 		fl->zidx = find_refill_source(sc, maxp,
2272 		    fl->flags & FL_BUF_PACKING);
2273 		FL_UNLOCK(fl);
2274 	}
2275 #ifdef TCP_OFFLOAD
2276 	maxp = max_rx_payload(sc, ifp, true);
2277 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2278 		fl = &ofld_rxq->fl;
2279 
2280 		FL_LOCK(fl);
2281 		fl->zidx = find_refill_source(sc, maxp,
2282 		    fl->flags & FL_BUF_PACKING);
2283 		FL_UNLOCK(fl);
2284 	}
2285 #endif
2286 }
2287 
2288 static inline int
2289 mbuf_nsegs(struct mbuf *m)
2290 {
2291 
2292 	M_ASSERTPKTHDR(m);
2293 	KASSERT(m->m_pkthdr.inner_l5hlen > 0,
2294 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2295 
2296 	return (m->m_pkthdr.inner_l5hlen);
2297 }
2298 
2299 static inline void
2300 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2301 {
2302 
2303 	M_ASSERTPKTHDR(m);
2304 	m->m_pkthdr.inner_l5hlen = nsegs;
2305 }
2306 
2307 static inline int
2308 mbuf_cflags(struct mbuf *m)
2309 {
2310 
2311 	M_ASSERTPKTHDR(m);
2312 	return (m->m_pkthdr.PH_loc.eight[4]);
2313 }
2314 
2315 static inline void
2316 set_mbuf_cflags(struct mbuf *m, uint8_t flags)
2317 {
2318 
2319 	M_ASSERTPKTHDR(m);
2320 	m->m_pkthdr.PH_loc.eight[4] = flags;
2321 }
2322 
2323 static inline int
2324 mbuf_len16(struct mbuf *m)
2325 {
2326 	int n;
2327 
2328 	M_ASSERTPKTHDR(m);
2329 	n = m->m_pkthdr.PH_loc.eight[0];
2330 	if (!(mbuf_cflags(m) & MC_TLS))
2331 		MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2332 
2333 	return (n);
2334 }
2335 
2336 static inline void
2337 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2338 {
2339 
2340 	M_ASSERTPKTHDR(m);
2341 	if (!(mbuf_cflags(m) & MC_TLS))
2342 		MPASS(len16 > 0 && len16 <= SGE_MAX_WR_LEN / 16);
2343 	m->m_pkthdr.PH_loc.eight[0] = len16;
2344 }
2345 
2346 #ifdef RATELIMIT
2347 static inline int
2348 mbuf_eo_nsegs(struct mbuf *m)
2349 {
2350 
2351 	M_ASSERTPKTHDR(m);
2352 	return (m->m_pkthdr.PH_loc.eight[1]);
2353 }
2354 
2355 #if defined(INET) || defined(INET6)
2356 static inline void
2357 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2358 {
2359 
2360 	M_ASSERTPKTHDR(m);
2361 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2362 }
2363 #endif
2364 
2365 static inline int
2366 mbuf_eo_len16(struct mbuf *m)
2367 {
2368 	int n;
2369 
2370 	M_ASSERTPKTHDR(m);
2371 	n = m->m_pkthdr.PH_loc.eight[2];
2372 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2373 
2374 	return (n);
2375 }
2376 
2377 #if defined(INET) || defined(INET6)
2378 static inline void
2379 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2380 {
2381 
2382 	M_ASSERTPKTHDR(m);
2383 	m->m_pkthdr.PH_loc.eight[2] = len16;
2384 }
2385 #endif
2386 
2387 static inline int
2388 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2389 {
2390 
2391 	M_ASSERTPKTHDR(m);
2392 	return (m->m_pkthdr.PH_loc.eight[3]);
2393 }
2394 
2395 #if defined(INET) || defined(INET6)
2396 static inline void
2397 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2398 {
2399 
2400 	M_ASSERTPKTHDR(m);
2401 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2402 }
2403 #endif
2404 
2405 static inline int
2406 needs_eo(struct m_snd_tag *mst)
2407 {
2408 
2409 	return (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2410 }
2411 #endif
2412 
2413 /*
2414  * Try to allocate an mbuf to contain a raw work request.  To make it
2415  * easy to construct the work request, don't allocate a chain but a
2416  * single mbuf.
2417  */
2418 struct mbuf *
2419 alloc_wr_mbuf(int len, int how)
2420 {
2421 	struct mbuf *m;
2422 
2423 	if (len <= MHLEN)
2424 		m = m_gethdr(how, MT_DATA);
2425 	else if (len <= MCLBYTES)
2426 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2427 	else
2428 		m = NULL;
2429 	if (m == NULL)
2430 		return (NULL);
2431 	m->m_pkthdr.len = len;
2432 	m->m_len = len;
2433 	set_mbuf_cflags(m, MC_RAW_WR);
2434 	set_mbuf_len16(m, howmany(len, 16));
2435 	return (m);
2436 }
2437 
2438 static inline bool
2439 needs_hwcsum(struct mbuf *m)
2440 {
2441 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
2442 	    CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2443 	    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
2444 	    CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
2445 	    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
2446 
2447 	M_ASSERTPKTHDR(m);
2448 
2449 	return (m->m_pkthdr.csum_flags & csum_flags);
2450 }
2451 
2452 static inline bool
2453 needs_tso(struct mbuf *m)
2454 {
2455 	const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
2456 	    CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2457 
2458 	M_ASSERTPKTHDR(m);
2459 
2460 	return (m->m_pkthdr.csum_flags & csum_flags);
2461 }
2462 
2463 static inline bool
2464 needs_vxlan_csum(struct mbuf *m)
2465 {
2466 
2467 	M_ASSERTPKTHDR(m);
2468 
2469 	return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
2470 }
2471 
2472 static inline bool
2473 needs_vxlan_tso(struct mbuf *m)
2474 {
2475 	const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
2476 	    CSUM_INNER_IP6_TSO;
2477 
2478 	M_ASSERTPKTHDR(m);
2479 
2480 	return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
2481 	    (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
2482 }
2483 
2484 #if defined(INET) || defined(INET6)
2485 static inline bool
2486 needs_inner_tcp_csum(struct mbuf *m)
2487 {
2488 	const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2489 
2490 	M_ASSERTPKTHDR(m);
2491 
2492 	return (m->m_pkthdr.csum_flags & csum_flags);
2493 }
2494 #endif
2495 
2496 static inline bool
2497 needs_l3_csum(struct mbuf *m)
2498 {
2499 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
2500 	    CSUM_INNER_IP_TSO;
2501 
2502 	M_ASSERTPKTHDR(m);
2503 
2504 	return (m->m_pkthdr.csum_flags & csum_flags);
2505 }
2506 
2507 static inline bool
2508 needs_outer_tcp_csum(struct mbuf *m)
2509 {
2510 	const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
2511 	    CSUM_IP6_TSO;
2512 
2513 	M_ASSERTPKTHDR(m);
2514 
2515 	return (m->m_pkthdr.csum_flags & csum_flags);
2516 }
2517 
2518 #ifdef RATELIMIT
2519 static inline bool
2520 needs_outer_l4_csum(struct mbuf *m)
2521 {
2522 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
2523 	    CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
2524 
2525 	M_ASSERTPKTHDR(m);
2526 
2527 	return (m->m_pkthdr.csum_flags & csum_flags);
2528 }
2529 
2530 static inline bool
2531 needs_outer_udp_csum(struct mbuf *m)
2532 {
2533 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
2534 
2535 	M_ASSERTPKTHDR(m);
2536 
2537 	return (m->m_pkthdr.csum_flags & csum_flags);
2538 }
2539 #endif
2540 
2541 static inline bool
2542 needs_vlan_insertion(struct mbuf *m)
2543 {
2544 
2545 	M_ASSERTPKTHDR(m);
2546 
2547 	return (m->m_flags & M_VLANTAG);
2548 }
2549 
2550 #if defined(INET) || defined(INET6)
2551 static void *
2552 m_advance(struct mbuf **pm, int *poffset, int len)
2553 {
2554 	struct mbuf *m = *pm;
2555 	int offset = *poffset;
2556 	uintptr_t p = 0;
2557 
2558 	MPASS(len > 0);
2559 
2560 	for (;;) {
2561 		if (offset + len < m->m_len) {
2562 			offset += len;
2563 			p = mtod(m, uintptr_t) + offset;
2564 			break;
2565 		}
2566 		len -= m->m_len - offset;
2567 		m = m->m_next;
2568 		offset = 0;
2569 		MPASS(m != NULL);
2570 	}
2571 	*poffset = offset;
2572 	*pm = m;
2573 	return ((void *)p);
2574 }
2575 #endif
2576 
2577 static inline int
2578 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2579 {
2580 	vm_paddr_t paddr;
2581 	int i, len, off, pglen, pgoff, seglen, segoff;
2582 	int nsegs = 0;
2583 
2584 	M_ASSERTEXTPG(m);
2585 	off = mtod(m, vm_offset_t);
2586 	len = m->m_len;
2587 	off += skip;
2588 	len -= skip;
2589 
2590 	if (m->m_epg_hdrlen != 0) {
2591 		if (off >= m->m_epg_hdrlen) {
2592 			off -= m->m_epg_hdrlen;
2593 		} else {
2594 			seglen = m->m_epg_hdrlen - off;
2595 			segoff = off;
2596 			seglen = min(seglen, len);
2597 			off = 0;
2598 			len -= seglen;
2599 			paddr = pmap_kextract(
2600 			    (vm_offset_t)&m->m_epg_hdr[segoff]);
2601 			if (*nextaddr != paddr)
2602 				nsegs++;
2603 			*nextaddr = paddr + seglen;
2604 		}
2605 	}
2606 	pgoff = m->m_epg_1st_off;
2607 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2608 		pglen = m_epg_pagelen(m, i, pgoff);
2609 		if (off >= pglen) {
2610 			off -= pglen;
2611 			pgoff = 0;
2612 			continue;
2613 		}
2614 		seglen = pglen - off;
2615 		segoff = pgoff + off;
2616 		off = 0;
2617 		seglen = min(seglen, len);
2618 		len -= seglen;
2619 		paddr = m->m_epg_pa[i] + segoff;
2620 		if (*nextaddr != paddr)
2621 			nsegs++;
2622 		*nextaddr = paddr + seglen;
2623 		pgoff = 0;
2624 	};
2625 	if (len != 0) {
2626 		seglen = min(len, m->m_epg_trllen - off);
2627 		len -= seglen;
2628 		paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2629 		if (*nextaddr != paddr)
2630 			nsegs++;
2631 		*nextaddr = paddr + seglen;
2632 	}
2633 
2634 	return (nsegs);
2635 }
2636 
2637 
2638 /*
2639  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2640  * must have at least one mbuf that's not empty.  It is possible for this
2641  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2642  */
2643 static inline int
2644 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2645 {
2646 	vm_paddr_t nextaddr, paddr;
2647 	vm_offset_t va;
2648 	int len, nsegs;
2649 
2650 	M_ASSERTPKTHDR(m);
2651 	MPASS(m->m_pkthdr.len > 0);
2652 	MPASS(m->m_pkthdr.len >= skip);
2653 
2654 	nsegs = 0;
2655 	nextaddr = 0;
2656 	for (; m; m = m->m_next) {
2657 		len = m->m_len;
2658 		if (__predict_false(len == 0))
2659 			continue;
2660 		if (skip >= len) {
2661 			skip -= len;
2662 			continue;
2663 		}
2664 		if ((m->m_flags & M_EXTPG) != 0) {
2665 			*cflags |= MC_NOMAP;
2666 			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2667 			skip = 0;
2668 			continue;
2669 		}
2670 		va = mtod(m, vm_offset_t) + skip;
2671 		len -= skip;
2672 		skip = 0;
2673 		paddr = pmap_kextract(va);
2674 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2675 		if (paddr == nextaddr)
2676 			nsegs--;
2677 		nextaddr = pmap_kextract(va + len - 1) + 1;
2678 	}
2679 
2680 	return (nsegs);
2681 }
2682 
2683 /*
2684  * The maximum number of segments that can fit in a WR.
2685  */
2686 static int
2687 max_nsegs_allowed(struct mbuf *m, bool vm_wr)
2688 {
2689 
2690 	if (vm_wr) {
2691 		if (needs_tso(m))
2692 			return (TX_SGL_SEGS_VM_TSO);
2693 		return (TX_SGL_SEGS_VM);
2694 	}
2695 
2696 	if (needs_tso(m)) {
2697 		if (needs_vxlan_tso(m))
2698 			return (TX_SGL_SEGS_VXLAN_TSO);
2699 		else
2700 			return (TX_SGL_SEGS_TSO);
2701 	}
2702 
2703 	return (TX_SGL_SEGS);
2704 }
2705 
2706 static struct timeval txerr_ratecheck = {0};
2707 static const struct timeval txerr_interval = {3, 0};
2708 
2709 /*
2710  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2711  * a) caller can assume it's been freed if this function returns with an error.
2712  * b) it may get defragged up if the gather list is too long for the hardware.
2713  */
2714 int
2715 parse_pkt(struct mbuf **mp, bool vm_wr)
2716 {
2717 	struct mbuf *m0 = *mp, *m;
2718 	int rc, nsegs, defragged = 0;
2719 	struct ether_header *eh;
2720 #ifdef INET
2721 	void *l3hdr;
2722 #endif
2723 #if defined(INET) || defined(INET6)
2724 	int offset;
2725 	struct tcphdr *tcp;
2726 #endif
2727 #if defined(KERN_TLS) || defined(RATELIMIT)
2728 	struct m_snd_tag *mst;
2729 #endif
2730 	uint16_t eh_type;
2731 	uint8_t cflags;
2732 
2733 	cflags = 0;
2734 	M_ASSERTPKTHDR(m0);
2735 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2736 		rc = EINVAL;
2737 fail:
2738 		m_freem(m0);
2739 		*mp = NULL;
2740 		return (rc);
2741 	}
2742 restart:
2743 	/*
2744 	 * First count the number of gather list segments in the payload.
2745 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2746 	 */
2747 	M_ASSERTPKTHDR(m0);
2748 	MPASS(m0->m_pkthdr.len > 0);
2749 	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2750 #if defined(KERN_TLS) || defined(RATELIMIT)
2751 	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2752 		mst = m0->m_pkthdr.snd_tag;
2753 	else
2754 		mst = NULL;
2755 #endif
2756 #ifdef KERN_TLS
2757 	if (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_TLS) {
2758 		int len16;
2759 
2760 		cflags |= MC_TLS;
2761 		set_mbuf_cflags(m0, cflags);
2762 		rc = t6_ktls_parse_pkt(m0, &nsegs, &len16);
2763 		if (rc != 0)
2764 			goto fail;
2765 		set_mbuf_nsegs(m0, nsegs);
2766 		set_mbuf_len16(m0, len16);
2767 		return (0);
2768 	}
2769 #endif
2770 	if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
2771 		if (defragged++ > 0) {
2772 			rc = EFBIG;
2773 			goto fail;
2774 		}
2775 		counter_u64_add(defrags, 1);
2776 		if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
2777 			rc = ENOMEM;
2778 			goto fail;
2779 		}
2780 		*mp = m0 = m;	/* update caller's copy after defrag */
2781 		goto restart;
2782 	}
2783 
2784 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2785 	    !(cflags & MC_NOMAP))) {
2786 		counter_u64_add(pullups, 1);
2787 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2788 		if (m0 == NULL) {
2789 			/* Should have left well enough alone. */
2790 			rc = EFBIG;
2791 			goto fail;
2792 		}
2793 		*mp = m0;	/* update caller's copy after pullup */
2794 		goto restart;
2795 	}
2796 	set_mbuf_nsegs(m0, nsegs);
2797 	set_mbuf_cflags(m0, cflags);
2798 	calculate_mbuf_len16(m0, vm_wr);
2799 
2800 #ifdef RATELIMIT
2801 	/*
2802 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2803 	 * checksumming is enabled.  needs_outer_l4_csum happens to check for
2804 	 * all the right things.
2805 	 */
2806 	if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
2807 		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2808 		m0->m_pkthdr.snd_tag = NULL;
2809 		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2810 		mst = NULL;
2811 	}
2812 #endif
2813 
2814 	if (!needs_hwcsum(m0)
2815 #ifdef RATELIMIT
2816 		 && !needs_eo(mst)
2817 #endif
2818 	)
2819 		return (0);
2820 
2821 	m = m0;
2822 	eh = mtod(m, struct ether_header *);
2823 	eh_type = ntohs(eh->ether_type);
2824 	if (eh_type == ETHERTYPE_VLAN) {
2825 		struct ether_vlan_header *evh = (void *)eh;
2826 
2827 		eh_type = ntohs(evh->evl_proto);
2828 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2829 	} else
2830 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2831 
2832 #if defined(INET) || defined(INET6)
2833 	offset = 0;
2834 #ifdef INET
2835 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2836 #else
2837 	m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2838 #endif
2839 #endif
2840 
2841 	switch (eh_type) {
2842 #ifdef INET6
2843 	case ETHERTYPE_IPV6:
2844 		m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
2845 		break;
2846 #endif
2847 #ifdef INET
2848 	case ETHERTYPE_IP:
2849 	{
2850 		struct ip *ip = l3hdr;
2851 
2852 		if (needs_vxlan_csum(m0)) {
2853 			/* Driver will do the outer IP hdr checksum. */
2854 			ip->ip_sum = 0;
2855 			if (needs_vxlan_tso(m0)) {
2856 				const uint16_t ipl = ip->ip_len;
2857 
2858 				ip->ip_len = 0;
2859 				ip->ip_sum = ~in_cksum_hdr(ip);
2860 				ip->ip_len = ipl;
2861 			} else
2862 				ip->ip_sum = in_cksum_hdr(ip);
2863 		}
2864 		m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
2865 		break;
2866 	}
2867 #endif
2868 	default:
2869 		if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2870 			log(LOG_ERR, "%s: ethertype 0x%04x unknown.  "
2871 			    "if_cxgbe must be compiled with the same "
2872 			    "INET/INET6 options as the kernel.\n", __func__,
2873 			    eh_type);
2874 		}
2875 		rc = EINVAL;
2876 		goto fail;
2877 	}
2878 
2879 #if defined(INET) || defined(INET6)
2880 	if (needs_vxlan_csum(m0)) {
2881 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2882 		m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
2883 
2884 		/* Inner headers. */
2885 		eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
2886 		    sizeof(struct udphdr) + sizeof(struct vxlan_header));
2887 		eh_type = ntohs(eh->ether_type);
2888 		if (eh_type == ETHERTYPE_VLAN) {
2889 			struct ether_vlan_header *evh = (void *)eh;
2890 
2891 			eh_type = ntohs(evh->evl_proto);
2892 			m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
2893 		} else
2894 			m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
2895 #ifdef INET
2896 		l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2897 #else
2898 		m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2899 #endif
2900 
2901 		switch (eh_type) {
2902 #ifdef INET6
2903 		case ETHERTYPE_IPV6:
2904 			m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
2905 			break;
2906 #endif
2907 #ifdef INET
2908 		case ETHERTYPE_IP:
2909 		{
2910 			struct ip *ip = l3hdr;
2911 
2912 			m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
2913 			break;
2914 		}
2915 #endif
2916 		default:
2917 			if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2918 				log(LOG_ERR, "%s: VXLAN hw offload requested"
2919 				    "with unknown ethertype 0x%04x.  if_cxgbe "
2920 				    "must be compiled with the same INET/INET6 "
2921 				    "options as the kernel.\n", __func__,
2922 				    eh_type);
2923 			}
2924 			rc = EINVAL;
2925 			goto fail;
2926 		}
2927 		if (needs_inner_tcp_csum(m0)) {
2928 			tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
2929 			m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
2930 		}
2931 		MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
2932 		m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
2933 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
2934 		    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
2935 		    CSUM_ENCAP_VXLAN;
2936 	}
2937 
2938 	if (needs_outer_tcp_csum(m0)) {
2939 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2940 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2941 #ifdef RATELIMIT
2942 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2943 			set_mbuf_eo_tsclk_tsoff(m0,
2944 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2945 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2946 		} else
2947 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2948 	} else if (needs_outer_udp_csum(m0)) {
2949 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2950 #endif
2951 	}
2952 #ifdef RATELIMIT
2953 	if (needs_eo(mst)) {
2954 		u_int immhdrs;
2955 
2956 		/* EO WRs have the headers in the WR and not the GL. */
2957 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2958 		    m0->m_pkthdr.l4hlen;
2959 		cflags = 0;
2960 		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2961 		MPASS(cflags == mbuf_cflags(m0));
2962 		set_mbuf_eo_nsegs(m0, nsegs);
2963 		set_mbuf_eo_len16(m0,
2964 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2965 	}
2966 #endif
2967 #endif
2968 	MPASS(m0 == *mp);
2969 	return (0);
2970 }
2971 
2972 void *
2973 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2974 {
2975 	struct sge_eq *eq = &wrq->eq;
2976 	struct adapter *sc = wrq->adapter;
2977 	int ndesc, available;
2978 	struct wrqe *wr;
2979 	void *w;
2980 
2981 	MPASS(len16 > 0);
2982 	ndesc = tx_len16_to_desc(len16);
2983 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2984 
2985 	EQ_LOCK(eq);
2986 
2987 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2988 		drain_wrq_wr_list(sc, wrq);
2989 
2990 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2991 slowpath:
2992 		EQ_UNLOCK(eq);
2993 		wr = alloc_wrqe(len16 * 16, wrq);
2994 		if (__predict_false(wr == NULL))
2995 			return (NULL);
2996 		cookie->pidx = -1;
2997 		cookie->ndesc = ndesc;
2998 		return (&wr->wr);
2999 	}
3000 
3001 	eq->cidx = read_hw_cidx(eq);
3002 	if (eq->pidx == eq->cidx)
3003 		available = eq->sidx - 1;
3004 	else
3005 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3006 	if (available < ndesc)
3007 		goto slowpath;
3008 
3009 	cookie->pidx = eq->pidx;
3010 	cookie->ndesc = ndesc;
3011 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
3012 
3013 	w = &eq->desc[eq->pidx];
3014 	IDXINCR(eq->pidx, ndesc, eq->sidx);
3015 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
3016 		w = &wrq->ss[0];
3017 		wrq->ss_pidx = cookie->pidx;
3018 		wrq->ss_len = len16 * 16;
3019 	}
3020 
3021 	EQ_UNLOCK(eq);
3022 
3023 	return (w);
3024 }
3025 
3026 void
3027 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
3028 {
3029 	struct sge_eq *eq = &wrq->eq;
3030 	struct adapter *sc = wrq->adapter;
3031 	int ndesc, pidx;
3032 	struct wrq_cookie *prev, *next;
3033 
3034 	if (cookie->pidx == -1) {
3035 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
3036 
3037 		t4_wrq_tx(sc, wr);
3038 		return;
3039 	}
3040 
3041 	if (__predict_false(w == &wrq->ss[0])) {
3042 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
3043 
3044 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
3045 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
3046 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
3047 		wrq->tx_wrs_ss++;
3048 	} else
3049 		wrq->tx_wrs_direct++;
3050 
3051 	EQ_LOCK(eq);
3052 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
3053 	pidx = cookie->pidx;
3054 	MPASS(pidx >= 0 && pidx < eq->sidx);
3055 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
3056 	next = TAILQ_NEXT(cookie, link);
3057 	if (prev == NULL) {
3058 		MPASS(pidx == eq->dbidx);
3059 		if (next == NULL || ndesc >= 16) {
3060 			int available;
3061 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
3062 
3063 			/*
3064 			 * Note that the WR via which we'll request tx updates
3065 			 * is at pidx and not eq->pidx, which has moved on
3066 			 * already.
3067 			 */
3068 			dst = (void *)&eq->desc[pidx];
3069 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3070 			if (available < eq->sidx / 4 &&
3071 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3072 				/*
3073 				 * XXX: This is not 100% reliable with some
3074 				 * types of WRs.  But this is a very unusual
3075 				 * situation for an ofld/ctrl queue anyway.
3076 				 */
3077 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
3078 				    F_FW_WR_EQUEQ);
3079 			}
3080 
3081 			ring_eq_db(wrq->adapter, eq, ndesc);
3082 		} else {
3083 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
3084 			next->pidx = pidx;
3085 			next->ndesc += ndesc;
3086 		}
3087 	} else {
3088 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
3089 		prev->ndesc += ndesc;
3090 	}
3091 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
3092 
3093 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
3094 		drain_wrq_wr_list(sc, wrq);
3095 
3096 #ifdef INVARIANTS
3097 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
3098 		/* Doorbell must have caught up to the pidx. */
3099 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
3100 	}
3101 #endif
3102 	EQ_UNLOCK(eq);
3103 }
3104 
3105 static u_int
3106 can_resume_eth_tx(struct mp_ring *r)
3107 {
3108 	struct sge_eq *eq = r->cookie;
3109 
3110 	return (total_available_tx_desc(eq) > eq->sidx / 8);
3111 }
3112 
3113 static inline bool
3114 cannot_use_txpkts(struct mbuf *m)
3115 {
3116 	/* maybe put a GL limit too, to avoid silliness? */
3117 
3118 	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
3119 }
3120 
3121 static inline int
3122 discard_tx(struct sge_eq *eq)
3123 {
3124 
3125 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
3126 }
3127 
3128 static inline int
3129 wr_can_update_eq(void *p)
3130 {
3131 	struct fw_eth_tx_pkts_wr *wr = p;
3132 
3133 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
3134 	case FW_ULPTX_WR:
3135 	case FW_ETH_TX_PKT_WR:
3136 	case FW_ETH_TX_PKTS_WR:
3137 	case FW_ETH_TX_PKTS2_WR:
3138 	case FW_ETH_TX_PKT_VM_WR:
3139 	case FW_ETH_TX_PKTS_VM_WR:
3140 		return (1);
3141 	default:
3142 		return (0);
3143 	}
3144 }
3145 
3146 static inline void
3147 set_txupdate_flags(struct sge_txq *txq, u_int avail,
3148     struct fw_eth_tx_pkt_wr *wr)
3149 {
3150 	struct sge_eq *eq = &txq->eq;
3151 	struct txpkts *txp = &txq->txp;
3152 
3153 	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
3154 	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3155 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3156 		eq->equeqidx = eq->pidx;
3157 	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
3158 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3159 		eq->equeqidx = eq->pidx;
3160 	}
3161 }
3162 
3163 #if defined(__i386__) || defined(__amd64__)
3164 extern uint64_t tsc_freq;
3165 #endif
3166 
3167 static inline bool
3168 record_eth_tx_time(struct sge_txq *txq)
3169 {
3170 	const uint64_t cycles = get_cyclecount();
3171 	const uint64_t last_tx = txq->last_tx;
3172 #if defined(__i386__) || defined(__amd64__)
3173 	const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
3174 #else
3175 	const uint64_t itg = 0;
3176 #endif
3177 
3178 	MPASS(cycles >= last_tx);
3179 	txq->last_tx = cycles;
3180 	return (cycles - last_tx < itg);
3181 }
3182 
3183 /*
3184  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
3185  * be consumed.  Return the actual number consumed.  0 indicates a stall.
3186  */
3187 static u_int
3188 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
3189 {
3190 	struct sge_txq *txq = r->cookie;
3191 	struct ifnet *ifp = txq->ifp;
3192 	struct sge_eq *eq = &txq->eq;
3193 	struct txpkts *txp = &txq->txp;
3194 	struct vi_info *vi = ifp->if_softc;
3195 	struct adapter *sc = vi->adapter;
3196 	u_int total, remaining;		/* # of packets */
3197 	u_int n, avail, dbdiff;		/* # of hardware descriptors */
3198 	int i, rc;
3199 	struct mbuf *m0;
3200 	bool snd, recent_tx;
3201 	void *wr;	/* start of the last WR written to the ring */
3202 
3203 	TXQ_LOCK_ASSERT_OWNED(txq);
3204 	recent_tx = record_eth_tx_time(txq);
3205 
3206 	remaining = IDXDIFF(pidx, cidx, r->size);
3207 	if (__predict_false(discard_tx(eq))) {
3208 		for (i = 0; i < txp->npkt; i++)
3209 			m_freem(txp->mb[i]);
3210 		txp->npkt = 0;
3211 		while (cidx != pidx) {
3212 			m0 = r->items[cidx];
3213 			m_freem(m0);
3214 			if (++cidx == r->size)
3215 				cidx = 0;
3216 		}
3217 		reclaim_tx_descs(txq, eq->sidx);
3218 		*coalescing = false;
3219 		return (remaining);	/* emptied */
3220 	}
3221 
3222 	/* How many hardware descriptors do we have readily available. */
3223 	if (eq->pidx == eq->cidx)
3224 		avail = eq->sidx - 1;
3225 	else
3226 		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3227 
3228 	total = 0;
3229 	if (remaining == 0) {
3230 		txp->score = 0;
3231 		txq->txpkts_flush++;
3232 		goto send_txpkts;
3233 	}
3234 
3235 	dbdiff = 0;
3236 	MPASS(remaining > 0);
3237 	while (remaining > 0) {
3238 		m0 = r->items[cidx];
3239 		M_ASSERTPKTHDR(m0);
3240 		MPASS(m0->m_nextpkt == NULL);
3241 
3242 		if (avail < 2 * SGE_MAX_WR_NDESC)
3243 			avail += reclaim_tx_descs(txq, 64);
3244 
3245 		if (t4_tx_coalesce == 0 && txp->npkt == 0)
3246 			goto skip_coalescing;
3247 		if (cannot_use_txpkts(m0))
3248 			txp->score = 0;
3249 		else if (recent_tx) {
3250 			if (++txp->score == 0)
3251 				txp->score = UINT8_MAX;
3252 		} else
3253 			txp->score = 1;
3254 		if (txp->npkt > 0 || remaining > 1 ||
3255 		    txp->score >= t4_tx_coalesce_pkts ||
3256 		    atomic_load_int(&txq->eq.equiq) != 0) {
3257 			if (vi->flags & TX_USES_VM_WR)
3258 				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
3259 			else
3260 				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
3261 		} else {
3262 			snd = false;
3263 			rc = EINVAL;
3264 		}
3265 		if (snd) {
3266 			MPASS(txp->npkt > 0);
3267 			for (i = 0; i < txp->npkt; i++)
3268 				ETHER_BPF_MTAP(ifp, txp->mb[i]);
3269 			if (txp->npkt > 1) {
3270 				MPASS(avail >= tx_len16_to_desc(txp->len16));
3271 				if (vi->flags & TX_USES_VM_WR)
3272 					n = write_txpkts_vm_wr(sc, txq);
3273 				else
3274 					n = write_txpkts_wr(sc, txq);
3275 			} else {
3276 				MPASS(avail >=
3277 				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3278 				if (vi->flags & TX_USES_VM_WR)
3279 					n = write_txpkt_vm_wr(sc, txq,
3280 					    txp->mb[0]);
3281 				else
3282 					n = write_txpkt_wr(sc, txq, txp->mb[0],
3283 					    avail);
3284 			}
3285 			MPASS(n <= SGE_MAX_WR_NDESC);
3286 			avail -= n;
3287 			dbdiff += n;
3288 			wr = &eq->desc[eq->pidx];
3289 			IDXINCR(eq->pidx, n, eq->sidx);
3290 			txp->npkt = 0;	/* emptied */
3291 		}
3292 		if (rc == 0) {
3293 			/* m0 was coalesced into txq->txpkts. */
3294 			goto next_mbuf;
3295 		}
3296 		if (rc == EAGAIN) {
3297 			/*
3298 			 * m0 is suitable for tx coalescing but could not be
3299 			 * combined with the existing txq->txpkts, which has now
3300 			 * been transmitted.  Start a new txpkts with m0.
3301 			 */
3302 			MPASS(snd);
3303 			MPASS(txp->npkt == 0);
3304 			continue;
3305 		}
3306 
3307 		MPASS(rc != 0 && rc != EAGAIN);
3308 		MPASS(txp->npkt == 0);
3309 skip_coalescing:
3310 		n = tx_len16_to_desc(mbuf_len16(m0));
3311 		if (__predict_false(avail < n)) {
3312 			avail += reclaim_tx_descs(txq, min(n, 32));
3313 			if (avail < n)
3314 				break;	/* out of descriptors */
3315 		}
3316 
3317 		wr = &eq->desc[eq->pidx];
3318 		if (mbuf_cflags(m0) & MC_RAW_WR) {
3319 			n = write_raw_wr(txq, wr, m0, avail);
3320 #ifdef KERN_TLS
3321 		} else if (mbuf_cflags(m0) & MC_TLS) {
3322 			ETHER_BPF_MTAP(ifp, m0);
3323 			n = t6_ktls_write_wr(txq, wr, m0, mbuf_nsegs(m0),
3324 			    avail);
3325 #endif
3326 		} else {
3327 			ETHER_BPF_MTAP(ifp, m0);
3328 			if (vi->flags & TX_USES_VM_WR)
3329 				n = write_txpkt_vm_wr(sc, txq, m0);
3330 			else
3331 				n = write_txpkt_wr(sc, txq, m0, avail);
3332 		}
3333 		MPASS(n >= 1 && n <= avail);
3334 		if (!(mbuf_cflags(m0) & MC_TLS))
3335 			MPASS(n <= SGE_MAX_WR_NDESC);
3336 
3337 		avail -= n;
3338 		dbdiff += n;
3339 		IDXINCR(eq->pidx, n, eq->sidx);
3340 
3341 		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3342 			if (wr_can_update_eq(wr))
3343 				set_txupdate_flags(txq, avail, wr);
3344 			ring_eq_db(sc, eq, dbdiff);
3345 			avail += reclaim_tx_descs(txq, 32);
3346 			dbdiff = 0;
3347 		}
3348 next_mbuf:
3349 		total++;
3350 		remaining--;
3351 		if (__predict_false(++cidx == r->size))
3352 			cidx = 0;
3353 	}
3354 	if (dbdiff != 0) {
3355 		if (wr_can_update_eq(wr))
3356 			set_txupdate_flags(txq, avail, wr);
3357 		ring_eq_db(sc, eq, dbdiff);
3358 		reclaim_tx_descs(txq, 32);
3359 	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3360 	    atomic_load_int(&txq->eq.equiq) == 0) {
3361 		/*
3362 		 * If nothing was submitted to the chip for tx (it was coalesced
3363 		 * into txpkts instead) and there is no tx update outstanding
3364 		 * then we need to send txpkts now.
3365 		 */
3366 send_txpkts:
3367 		MPASS(txp->npkt > 0);
3368 		for (i = 0; i < txp->npkt; i++)
3369 			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3370 		if (txp->npkt > 1) {
3371 			MPASS(avail >= tx_len16_to_desc(txp->len16));
3372 			if (vi->flags & TX_USES_VM_WR)
3373 				n = write_txpkts_vm_wr(sc, txq);
3374 			else
3375 				n = write_txpkts_wr(sc, txq);
3376 		} else {
3377 			MPASS(avail >=
3378 			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3379 			if (vi->flags & TX_USES_VM_WR)
3380 				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3381 			else
3382 				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3383 		}
3384 		MPASS(n <= SGE_MAX_WR_NDESC);
3385 		wr = &eq->desc[eq->pidx];
3386 		IDXINCR(eq->pidx, n, eq->sidx);
3387 		txp->npkt = 0;	/* emptied */
3388 
3389 		MPASS(wr_can_update_eq(wr));
3390 		set_txupdate_flags(txq, avail - n, wr);
3391 		ring_eq_db(sc, eq, n);
3392 		reclaim_tx_descs(txq, 32);
3393 	}
3394 	*coalescing = txp->npkt > 0;
3395 
3396 	return (total);
3397 }
3398 
3399 static inline void
3400 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3401     int qsize, int intr_idx, int cong, int qtype)
3402 {
3403 
3404 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3405 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3406 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3407 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3408 	KASSERT(intr_idx >= -1 && intr_idx < sc->intr_count,
3409 	    ("%s: bad intr_idx %d", __func__, intr_idx));
3410 	KASSERT(qtype == FW_IQ_IQTYPE_OTHER || qtype == FW_IQ_IQTYPE_NIC ||
3411 	    qtype == FW_IQ_IQTYPE_OFLD, ("%s: bad qtype %d", __func__, qtype));
3412 
3413 	iq->flags = 0;
3414 	iq->state = IQS_DISABLED;
3415 	iq->adapter = sc;
3416 	iq->qtype = qtype;
3417 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3418 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3419 	if (pktc_idx >= 0) {
3420 		iq->intr_params |= F_QINTR_CNT_EN;
3421 		iq->intr_pktc_idx = pktc_idx;
3422 	}
3423 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3424 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3425 	iq->intr_idx = intr_idx;
3426 	iq->cong_drop = cong;
3427 }
3428 
3429 static inline void
3430 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3431 {
3432 	struct sge_params *sp = &sc->params.sge;
3433 
3434 	fl->qsize = qsize;
3435 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3436 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3437 	mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3438 	if (sc->flags & BUF_PACKING_OK &&
3439 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3440 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3441 		fl->flags |= FL_BUF_PACKING;
3442 	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3443 	fl->safe_zidx = sc->sge.safe_zidx;
3444 	if (fl->flags & FL_BUF_PACKING) {
3445 		fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3446 		fl->buf_boundary = sp->pack_boundary;
3447 	} else {
3448 		fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3449 		fl->buf_boundary = 16;
3450 	}
3451 	if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3452 		fl->buf_boundary = sp->pad_boundary;
3453 }
3454 
3455 static inline void
3456 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3457     uint8_t tx_chan, struct sge_iq *iq, char *name)
3458 {
3459 	KASSERT(eqtype >= EQ_CTRL && eqtype <= EQ_OFLD,
3460 	    ("%s: bad qtype %d", __func__, eqtype));
3461 
3462 	eq->type = eqtype;
3463 	eq->tx_chan = tx_chan;
3464 	eq->iq = iq;
3465 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3466 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3467 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3468 }
3469 
3470 int
3471 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3472     bus_dmamap_t *map, bus_addr_t *pa, void **va)
3473 {
3474 	int rc;
3475 
3476 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3477 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3478 	if (rc != 0) {
3479 		CH_ERR(sc, "cannot allocate DMA tag: %d\n", rc);
3480 		goto done;
3481 	}
3482 
3483 	rc = bus_dmamem_alloc(*tag, va,
3484 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3485 	if (rc != 0) {
3486 		CH_ERR(sc, "cannot allocate DMA memory: %d\n", rc);
3487 		goto done;
3488 	}
3489 
3490 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3491 	if (rc != 0) {
3492 		CH_ERR(sc, "cannot load DMA map: %d\n", rc);
3493 		goto done;
3494 	}
3495 done:
3496 	if (rc)
3497 		free_ring(sc, *tag, *map, *pa, *va);
3498 
3499 	return (rc);
3500 }
3501 
3502 int
3503 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3504     bus_addr_t pa, void *va)
3505 {
3506 	if (pa)
3507 		bus_dmamap_unload(tag, map);
3508 	if (va)
3509 		bus_dmamem_free(tag, va, map);
3510 	if (tag)
3511 		bus_dma_tag_destroy(tag);
3512 
3513 	return (0);
3514 }
3515 
3516 /*
3517  * Allocates the software resources (mainly memory and sysctl nodes) for an
3518  * ingress queue and an optional freelist.
3519  *
3520  * Sets IQ_SW_ALLOCATED and returns 0 on success.
3521  */
3522 static int
3523 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3524     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
3525 {
3526 	int rc;
3527 	size_t len;
3528 	struct adapter *sc = vi->adapter;
3529 
3530 	MPASS(!(iq->flags & IQ_SW_ALLOCATED));
3531 
3532 	len = iq->qsize * IQ_ESIZE;
3533 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3534 	    (void **)&iq->desc);
3535 	if (rc != 0)
3536 		return (rc);
3537 
3538 	if (fl) {
3539 		len = fl->qsize * EQ_ESIZE;
3540 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3541 		    &fl->ba, (void **)&fl->desc);
3542 		if (rc) {
3543 			free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba,
3544 			    iq->desc);
3545 			return (rc);
3546 		}
3547 
3548 		/* Allocate space for one software descriptor per buffer. */
3549 		fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc),
3550 		    M_CXGBE, M_ZERO | M_WAITOK);
3551 
3552 		add_fl_sysctls(sc, ctx, oid, fl);
3553 		iq->flags |= IQ_HAS_FL;
3554 	}
3555 	add_iq_sysctls(ctx, oid, iq);
3556 	iq->flags |= IQ_SW_ALLOCATED;
3557 
3558 	return (0);
3559 }
3560 
3561 /*
3562  * Frees all software resources (memory and locks) associated with an ingress
3563  * queue and an optional freelist.
3564  */
3565 static void
3566 free_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3567 {
3568 	MPASS(iq->flags & IQ_SW_ALLOCATED);
3569 
3570 	if (fl) {
3571 		MPASS(iq->flags & IQ_HAS_FL);
3572 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc);
3573 		free_fl_buffers(sc, fl);
3574 		free(fl->sdesc, M_CXGBE);
3575 		mtx_destroy(&fl->fl_lock);
3576 		bzero(fl, sizeof(*fl));
3577 	}
3578 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3579 	bzero(iq, sizeof(*iq));
3580 }
3581 
3582 /*
3583  * Allocates a hardware ingress queue and an optional freelist that will be
3584  * associated with it.
3585  *
3586  * Returns errno on failure.  Resources allocated up to that point may still be
3587  * allocated.  Caller is responsible for cleanup in case this function fails.
3588  */
3589 static int
3590 alloc_iq_fl_hwq(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3591 {
3592 	int rc, cntxt_id, cong_map;
3593 	struct fw_iq_cmd c;
3594 	struct adapter *sc = vi->adapter;
3595 	struct port_info *pi = vi->pi;
3596 	__be32 v = 0;
3597 
3598 	MPASS (!(iq->flags & IQ_HW_ALLOCATED));
3599 
3600 	bzero(&c, sizeof(c));
3601 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3602 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3603 	    V_FW_IQ_CMD_VFN(0));
3604 
3605 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3606 	    FW_LEN16(c));
3607 
3608 	/* Special handling for firmware event queue */
3609 	if (iq == &sc->sge.fwq)
3610 		v |= F_FW_IQ_CMD_IQASYNCH;
3611 
3612 	if (iq->intr_idx < 0) {
3613 		/* Forwarded interrupts, all headed to fwq */
3614 		v |= F_FW_IQ_CMD_IQANDST;
3615 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3616 	} else {
3617 		KASSERT(iq->intr_idx < sc->intr_count,
3618 		    ("%s: invalid direct intr_idx %d", __func__, iq->intr_idx));
3619 		v |= V_FW_IQ_CMD_IQANDSTINDEX(iq->intr_idx);
3620 	}
3621 
3622 	bzero(iq->desc, iq->qsize * IQ_ESIZE);
3623 	c.type_to_iqandstindex = htobe32(v |
3624 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3625 	    V_FW_IQ_CMD_VIID(vi->viid) |
3626 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3627 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
3628 	    F_FW_IQ_CMD_IQGTSMODE |
3629 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3630 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3631 	c.iqsize = htobe16(iq->qsize);
3632 	c.iqaddr = htobe64(iq->ba);
3633 	c.iqns_to_fl0congen = htobe32(V_FW_IQ_CMD_IQTYPE(iq->qtype));
3634 	if (iq->cong_drop != -1) {
3635 		cong_map = iq->qtype == IQ_ETH ? pi->rx_e_chan_map : 0;
3636 		c.iqns_to_fl0congen |= htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3637 	}
3638 
3639 	if (fl) {
3640 		bzero(fl->desc, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len);
3641 		c.iqns_to_fl0congen |=
3642 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3643 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3644 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3645 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3646 			    0));
3647 		if (iq->cong_drop != -1) {
3648 			c.iqns_to_fl0congen |=
3649 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong_map) |
3650 				    F_FW_IQ_CMD_FL0CONGCIF |
3651 				    F_FW_IQ_CMD_FL0CONGEN);
3652 		}
3653 		c.fl0dcaen_to_fl0cidxfthresh =
3654 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3655 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3656 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3657 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3658 		c.fl0size = htobe16(fl->qsize);
3659 		c.fl0addr = htobe64(fl->ba);
3660 	}
3661 
3662 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3663 	if (rc != 0) {
3664 		CH_ERR(sc, "failed to create hw ingress queue: %d\n", rc);
3665 		return (rc);
3666 	}
3667 
3668 	iq->cidx = 0;
3669 	iq->gen = F_RSPD_GEN;
3670 	iq->cntxt_id = be16toh(c.iqid);
3671 	iq->abs_id = be16toh(c.physiqid);
3672 
3673 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3674 	if (cntxt_id >= sc->sge.iqmap_sz) {
3675 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3676 		    cntxt_id, sc->sge.iqmap_sz - 1);
3677 	}
3678 	sc->sge.iqmap[cntxt_id] = iq;
3679 
3680 	if (fl) {
3681 		u_int qid;
3682 #ifdef INVARIANTS
3683 		int i;
3684 
3685 		MPASS(!(fl->flags & FL_BUF_RESUME));
3686 		for (i = 0; i < fl->sidx * 8; i++)
3687 			MPASS(fl->sdesc[i].cl == NULL);
3688 #endif
3689 		fl->cntxt_id = be16toh(c.fl0id);
3690 		fl->pidx = fl->cidx = fl->hw_cidx = fl->dbidx = 0;
3691 		fl->rx_offset = 0;
3692 		fl->flags &= ~(FL_STARVING | FL_DOOMED);
3693 
3694 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3695 		if (cntxt_id >= sc->sge.eqmap_sz) {
3696 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3697 			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
3698 		}
3699 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3700 
3701 		qid = fl->cntxt_id;
3702 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3703 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3704 			uint32_t mask = (1 << s_qpp) - 1;
3705 			volatile uint8_t *udb;
3706 
3707 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3708 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3709 			qid &= mask;
3710 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3711 				udb += qid << UDBS_SEG_SHIFT;
3712 				qid = 0;
3713 			}
3714 			fl->udb = (volatile void *)udb;
3715 		}
3716 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3717 
3718 		FL_LOCK(fl);
3719 		/* Enough to make sure the SGE doesn't think it's starved */
3720 		refill_fl(sc, fl, fl->lowat);
3721 		FL_UNLOCK(fl);
3722 	}
3723 
3724 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) &&
3725 	    iq->cong_drop != -1) {
3726 		t4_sge_set_conm_context(sc, iq->cntxt_id, iq->cong_drop,
3727 		    cong_map);
3728 	}
3729 
3730 	/* Enable IQ interrupts */
3731 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3732 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3733 	    V_INGRESSQID(iq->cntxt_id));
3734 
3735 	iq->flags |= IQ_HW_ALLOCATED;
3736 
3737 	return (0);
3738 }
3739 
3740 static int
3741 free_iq_fl_hwq(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3742 {
3743 	int rc;
3744 
3745 	MPASS(iq->flags & IQ_HW_ALLOCATED);
3746 	rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3747 	    iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
3748 	if (rc != 0) {
3749 		CH_ERR(sc, "failed to free iq %p: %d\n", iq, rc);
3750 		return (rc);
3751 	}
3752 	iq->flags &= ~IQ_HW_ALLOCATED;
3753 
3754 	return (0);
3755 }
3756 
3757 static void
3758 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3759     struct sge_iq *iq)
3760 {
3761 	struct sysctl_oid_list *children;
3762 
3763 	if (ctx == NULL || oid == NULL)
3764 		return;
3765 
3766 	children = SYSCTL_CHILDREN(oid);
3767 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3768 	    "bus address of descriptor ring");
3769 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3770 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3771 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3772 	    &iq->abs_id, 0, "absolute id of the queue");
3773 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3774 	    &iq->cntxt_id, 0, "SGE context id of the queue");
3775 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &iq->cidx,
3776 	    0, "consumer index");
3777 }
3778 
3779 static void
3780 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3781     struct sysctl_oid *oid, struct sge_fl *fl)
3782 {
3783 	struct sysctl_oid_list *children;
3784 
3785 	if (ctx == NULL || oid == NULL)
3786 		return;
3787 
3788 	children = SYSCTL_CHILDREN(oid);
3789 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3790 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3791 	children = SYSCTL_CHILDREN(oid);
3792 
3793 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3794 	    &fl->ba, "bus address of descriptor ring");
3795 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3796 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3797 	    "desc ring size in bytes");
3798 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3799 	    &fl->cntxt_id, 0, "SGE context id of the freelist");
3800 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3801 	    fl_pad ? 1 : 0, "padding enabled");
3802 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3803 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3804 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3805 	    0, "consumer index");
3806 	if (fl->flags & FL_BUF_PACKING) {
3807 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3808 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3809 	}
3810 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3811 	    0, "producer index");
3812 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3813 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3814 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3815 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3816 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3817 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3818 }
3819 
3820 /*
3821  * Idempotent.
3822  */
3823 static int
3824 alloc_fwq(struct adapter *sc)
3825 {
3826 	int rc, intr_idx;
3827 	struct sge_iq *fwq = &sc->sge.fwq;
3828 	struct vi_info *vi = &sc->port[0]->vi[0];
3829 
3830 	if (!(fwq->flags & IQ_SW_ALLOCATED)) {
3831 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3832 
3833 		if (sc->flags & IS_VF)
3834 			intr_idx = 0;
3835 		else
3836 			intr_idx = sc->intr_count > 1 ? 1 : 0;
3837 		init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, intr_idx, -1, IQ_OTHER);
3838 		rc = alloc_iq_fl(vi, fwq, NULL, &sc->ctx, sc->fwq_oid);
3839 		if (rc != 0) {
3840 			CH_ERR(sc, "failed to allocate fwq: %d\n", rc);
3841 			return (rc);
3842 		}
3843 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3844 	}
3845 
3846 	if (!(fwq->flags & IQ_HW_ALLOCATED)) {
3847 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3848 
3849 		rc = alloc_iq_fl_hwq(vi, fwq, NULL);
3850 		if (rc != 0) {
3851 			CH_ERR(sc, "failed to create hw fwq: %d\n", rc);
3852 			return (rc);
3853 		}
3854 		MPASS(fwq->flags & IQ_HW_ALLOCATED);
3855 	}
3856 
3857 	return (0);
3858 }
3859 
3860 /*
3861  * Idempotent.
3862  */
3863 static void
3864 free_fwq(struct adapter *sc)
3865 {
3866 	struct sge_iq *fwq = &sc->sge.fwq;
3867 
3868 	if (fwq->flags & IQ_HW_ALLOCATED) {
3869 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3870 		free_iq_fl_hwq(sc, fwq, NULL);
3871 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3872 	}
3873 
3874 	if (fwq->flags & IQ_SW_ALLOCATED) {
3875 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3876 		free_iq_fl(sc, fwq, NULL);
3877 		MPASS(!(fwq->flags & IQ_SW_ALLOCATED));
3878 	}
3879 }
3880 
3881 /*
3882  * Idempotent.
3883  */
3884 static int
3885 alloc_ctrlq(struct adapter *sc, int idx)
3886 {
3887 	int rc;
3888 	char name[16];
3889 	struct sysctl_oid *oid;
3890 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3891 
3892 	MPASS(idx < sc->params.nports);
3893 
3894 	if (!(ctrlq->eq.flags & EQ_SW_ALLOCATED)) {
3895 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3896 
3897 		snprintf(name, sizeof(name), "%d", idx);
3898 		oid = SYSCTL_ADD_NODE(&sc->ctx, SYSCTL_CHILDREN(sc->ctrlq_oid),
3899 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3900 		    "ctrl queue");
3901 
3902 		snprintf(name, sizeof(name), "%s ctrlq%d",
3903 		    device_get_nameunit(sc->dev), idx);
3904 		init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE,
3905 		    sc->port[idx]->tx_chan, &sc->sge.fwq, name);
3906 		rc = alloc_wrq(sc, NULL, ctrlq, &sc->ctx, oid);
3907 		if (rc != 0) {
3908 			CH_ERR(sc, "failed to allocate ctrlq%d: %d\n", idx, rc);
3909 			sysctl_remove_oid(oid, 1, 1);
3910 			return (rc);
3911 		}
3912 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3913 	}
3914 
3915 	if (!(ctrlq->eq.flags & EQ_HW_ALLOCATED)) {
3916 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3917 
3918 		rc = alloc_eq_hwq(sc, NULL, &ctrlq->eq);
3919 		if (rc != 0) {
3920 			CH_ERR(sc, "failed to create hw ctrlq%d: %d\n", idx, rc);
3921 			return (rc);
3922 		}
3923 		MPASS(ctrlq->eq.flags & EQ_HW_ALLOCATED);
3924 	}
3925 
3926 	return (0);
3927 }
3928 
3929 /*
3930  * Idempotent.
3931  */
3932 static void
3933 free_ctrlq(struct adapter *sc, int idx)
3934 {
3935 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3936 
3937 	if (ctrlq->eq.flags & EQ_HW_ALLOCATED) {
3938 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3939 		free_eq_hwq(sc, NULL, &ctrlq->eq);
3940 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3941 	}
3942 
3943 	if (ctrlq->eq.flags & EQ_SW_ALLOCATED) {
3944 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3945 		free_wrq(sc, ctrlq);
3946 		MPASS(!(ctrlq->eq.flags & EQ_SW_ALLOCATED));
3947 	}
3948 }
3949 
3950 int
3951 t4_sge_set_conm_context(struct adapter *sc, int cntxt_id, int cong_drop,
3952     int cong_map)
3953 {
3954 	const int cng_ch_bits_log = sc->chip_params->cng_ch_bits_log;
3955 	uint32_t param, val;
3956 	uint16_t ch_map;
3957 	int cong_mode, rc, i;
3958 
3959 	if (chip_id(sc) < CHELSIO_T5)
3960 		return (ENOTSUP);
3961 
3962 	/* Convert the driver knob to the mode understood by the firmware. */
3963 	switch (cong_drop) {
3964 	case -1:
3965 		cong_mode = X_CONMCTXT_CNGTPMODE_DISABLE;
3966 		break;
3967 	case 0:
3968 		cong_mode = X_CONMCTXT_CNGTPMODE_CHANNEL;
3969 		break;
3970 	case 1:
3971 		cong_mode = X_CONMCTXT_CNGTPMODE_QUEUE;
3972 		break;
3973 	case 2:
3974 		cong_mode = X_CONMCTXT_CNGTPMODE_BOTH;
3975 		break;
3976 	default:
3977 		MPASS(0);
3978 		CH_ERR(sc, "cong_drop = %d is invalid (ingress queue %d).\n",
3979 		    cong_drop, cntxt_id);
3980 		return (EINVAL);
3981 	}
3982 
3983 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3984 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3985 	    V_FW_PARAMS_PARAM_YZ(cntxt_id);
3986 	val = V_CONMCTXT_CNGTPMODE(cong_mode);
3987 	if (cong_mode == X_CONMCTXT_CNGTPMODE_CHANNEL ||
3988 	    cong_mode == X_CONMCTXT_CNGTPMODE_BOTH) {
3989 		for (i = 0, ch_map = 0; i < 4; i++) {
3990 			if (cong_map & (1 << i))
3991 				ch_map |= 1 << (i << cng_ch_bits_log);
3992 		}
3993 		val |= V_CONMCTXT_CNGCHMAP(ch_map);
3994 	}
3995 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3996 	if (rc != 0) {
3997 		CH_ERR(sc, "failed to set congestion manager context "
3998 		    "for ingress queue %d: %d\n", cntxt_id, rc);
3999 	}
4000 
4001 	return (rc);
4002 }
4003 
4004 /*
4005  * Idempotent.
4006  */
4007 static int
4008 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int idx, int intr_idx,
4009     int maxp)
4010 {
4011 	int rc;
4012 	struct adapter *sc = vi->adapter;
4013 	struct ifnet *ifp = vi->ifp;
4014 	struct sysctl_oid *oid;
4015 	char name[16];
4016 
4017 	if (!(rxq->iq.flags & IQ_SW_ALLOCATED)) {
4018 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4019 #if defined(INET) || defined(INET6)
4020 		rc = tcp_lro_init_args(&rxq->lro, ifp, lro_entries, lro_mbufs);
4021 		if (rc != 0)
4022 			return (rc);
4023 		MPASS(rxq->lro.ifp == ifp);	/* also indicates LRO init'ed */
4024 #endif
4025 		rxq->ifp = ifp;
4026 
4027 		snprintf(name, sizeof(name), "%d", idx);
4028 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->rxq_oid),
4029 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4030 		    "rx queue");
4031 
4032 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq,
4033 		    intr_idx, cong_drop, IQ_ETH);
4034 #if defined(INET) || defined(INET6)
4035 		if (ifp->if_capenable & IFCAP_LRO)
4036 			rxq->iq.flags |= IQ_LRO_ENABLED;
4037 #endif
4038 		if (ifp->if_capenable & IFCAP_HWRXTSTMP)
4039 			rxq->iq.flags |= IQ_RX_TIMESTAMP;
4040 		snprintf(name, sizeof(name), "%s rxq%d-fl",
4041 		    device_get_nameunit(vi->dev), idx);
4042 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
4043 		rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, &vi->ctx, oid);
4044 		if (rc != 0) {
4045 			CH_ERR(vi, "failed to allocate rxq%d: %d\n", idx, rc);
4046 			sysctl_remove_oid(oid, 1, 1);
4047 #if defined(INET) || defined(INET6)
4048 			tcp_lro_free(&rxq->lro);
4049 			rxq->lro.ifp = NULL;
4050 #endif
4051 			return (rc);
4052 		}
4053 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4054 		add_rxq_sysctls(&vi->ctx, oid, rxq);
4055 	}
4056 
4057 	if (!(rxq->iq.flags & IQ_HW_ALLOCATED)) {
4058 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4059 		rc = alloc_iq_fl_hwq(vi, &rxq->iq, &rxq->fl);
4060 		if (rc != 0) {
4061 			CH_ERR(vi, "failed to create hw rxq%d: %d\n", idx, rc);
4062 			return (rc);
4063 		}
4064 		MPASS(rxq->iq.flags & IQ_HW_ALLOCATED);
4065 
4066 		if (idx == 0)
4067 			sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
4068 		else
4069 			KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
4070 			    ("iq_base mismatch"));
4071 		KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
4072 		    ("PF with non-zero iq_base"));
4073 
4074 		/*
4075 		 * The freelist is just barely above the starvation threshold
4076 		 * right now, fill it up a bit more.
4077 		 */
4078 		FL_LOCK(&rxq->fl);
4079 		refill_fl(sc, &rxq->fl, 128);
4080 		FL_UNLOCK(&rxq->fl);
4081 	}
4082 
4083 	return (0);
4084 }
4085 
4086 /*
4087  * Idempotent.
4088  */
4089 static void
4090 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
4091 {
4092 	if (rxq->iq.flags & IQ_HW_ALLOCATED) {
4093 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4094 		free_iq_fl_hwq(vi->adapter, &rxq->iq, &rxq->fl);
4095 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4096 	}
4097 
4098 	if (rxq->iq.flags & IQ_SW_ALLOCATED) {
4099 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4100 #if defined(INET) || defined(INET6)
4101 		tcp_lro_free(&rxq->lro);
4102 #endif
4103 		free_iq_fl(vi->adapter, &rxq->iq, &rxq->fl);
4104 		MPASS(!(rxq->iq.flags & IQ_SW_ALLOCATED));
4105 		bzero(rxq, sizeof(*rxq));
4106 	}
4107 }
4108 
4109 static void
4110 add_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4111     struct sge_rxq *rxq)
4112 {
4113 	struct sysctl_oid_list *children;
4114 
4115 	if (ctx == NULL || oid == NULL)
4116 		return;
4117 
4118 	children = SYSCTL_CHILDREN(oid);
4119 #if defined(INET) || defined(INET6)
4120 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
4121 	    &rxq->lro.lro_queued, 0, NULL);
4122 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
4123 	    &rxq->lro.lro_flushed, 0, NULL);
4124 #endif
4125 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
4126 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
4127 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD,
4128 	    &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag");
4129 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_rxcsum", CTLFLAG_RD,
4130 	    &rxq->vxlan_rxcsum,
4131 	    "# of times hardware assisted with inner checksum (VXLAN)");
4132 }
4133 
4134 #ifdef TCP_OFFLOAD
4135 /*
4136  * Idempotent.
4137  */
4138 static int
4139 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int idx,
4140     int intr_idx, int maxp)
4141 {
4142 	int rc;
4143 	struct adapter *sc = vi->adapter;
4144 	struct sysctl_oid *oid;
4145 	char name[16];
4146 
4147 	if (!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)) {
4148 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4149 
4150 		snprintf(name, sizeof(name), "%d", idx);
4151 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4152 		    SYSCTL_CHILDREN(vi->ofld_rxq_oid), OID_AUTO, name,
4153 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload rx queue");
4154 
4155 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
4156 		    vi->qsize_rxq, intr_idx, ofld_cong_drop, IQ_OFLD);
4157 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
4158 		    device_get_nameunit(vi->dev), idx);
4159 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
4160 		rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, &vi->ctx,
4161 		    oid);
4162 		if (rc != 0) {
4163 			CH_ERR(vi, "failed to allocate ofld_rxq%d: %d\n", idx,
4164 			    rc);
4165 			sysctl_remove_oid(oid, 1, 1);
4166 			return (rc);
4167 		}
4168 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4169 		ofld_rxq->rx_iscsi_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
4170 		ofld_rxq->rx_iscsi_ddp_setup_error =
4171 		    counter_u64_alloc(M_WAITOK);
4172 		add_ofld_rxq_sysctls(&vi->ctx, oid, ofld_rxq);
4173 	}
4174 
4175 	if (!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)) {
4176 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4177 		rc = alloc_iq_fl_hwq(vi, &ofld_rxq->iq, &ofld_rxq->fl);
4178 		if (rc != 0) {
4179 			CH_ERR(vi, "failed to create hw ofld_rxq%d: %d\n", idx,
4180 			    rc);
4181 			return (rc);
4182 		}
4183 		MPASS(ofld_rxq->iq.flags & IQ_HW_ALLOCATED);
4184 	}
4185 	return (rc);
4186 }
4187 
4188 /*
4189  * Idempotent.
4190  */
4191 static void
4192 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
4193 {
4194 	if (ofld_rxq->iq.flags & IQ_HW_ALLOCATED) {
4195 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4196 		free_iq_fl_hwq(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4197 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4198 	}
4199 
4200 	if (ofld_rxq->iq.flags & IQ_SW_ALLOCATED) {
4201 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4202 		free_iq_fl(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4203 		MPASS(!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED));
4204 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_ok);
4205 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_error);
4206 		bzero(ofld_rxq, sizeof(*ofld_rxq));
4207 	}
4208 }
4209 
4210 static void
4211 add_ofld_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4212     struct sge_ofld_rxq *ofld_rxq)
4213 {
4214 	struct sysctl_oid_list *children;
4215 
4216 	if (ctx == NULL || oid == NULL)
4217 		return;
4218 
4219 	children = SYSCTL_CHILDREN(oid);
4220 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4221 	    "rx_toe_tls_records", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_records,
4222 	    "# of TOE TLS records received");
4223 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4224 	    "rx_toe_tls_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_octets,
4225 	    "# of payload octets in received TOE TLS records");
4226 
4227 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "iscsi",
4228 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE iSCSI statistics");
4229 	children = SYSCTL_CHILDREN(oid);
4230 
4231 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
4232 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_ok,
4233 	    "# of times DDP buffer was setup successfully.");
4234 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
4235 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_error,
4236 	    "# of times DDP buffer setup failed.");
4237 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_octets",
4238 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_octets, 0,
4239 	    "# of octets placed directly");
4240 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_pdus",
4241 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_pdus, 0,
4242 	    "# of PDUs with data placed directly.");
4243 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_octets",
4244 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_octets, 0,
4245 	    "# of data octets delivered in freelist");
4246 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_pdus",
4247 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_pdus, 0,
4248 	    "# of PDUs with data delivered in freelist");
4249 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "padding_errors",
4250 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_padding_errors, 0,
4251 	    "# of PDUs with invalid padding");
4252 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "header_digest_errors",
4253 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_header_digest_errors, 0,
4254 	    "# of PDUs with invalid header digests");
4255 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "data_digest_errors",
4256 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_data_digest_errors, 0,
4257 	    "# of PDUs with invalid data digests");
4258 }
4259 #endif
4260 
4261 /*
4262  * Returns a reasonable automatic cidx flush threshold for a given queue size.
4263  */
4264 static u_int
4265 qsize_to_fthresh(int qsize)
4266 {
4267 	u_int fthresh;
4268 
4269 	while (!powerof2(qsize))
4270 		qsize++;
4271 	fthresh = ilog2(qsize);
4272 	if (fthresh > X_CIDXFLUSHTHRESH_128)
4273 		fthresh = X_CIDXFLUSHTHRESH_128;
4274 
4275 	return (fthresh);
4276 }
4277 
4278 static int
4279 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
4280 {
4281 	int rc, cntxt_id;
4282 	struct fw_eq_ctrl_cmd c;
4283 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4284 
4285 	bzero(&c, sizeof(c));
4286 
4287 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
4288 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
4289 	    V_FW_EQ_CTRL_CMD_VFN(0));
4290 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
4291 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
4292 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
4293 	c.physeqid_pkd = htobe32(0);
4294 	c.fetchszm_to_iqid =
4295 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4296 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
4297 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
4298 	c.dcaen_to_eqsize =
4299 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4300 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4301 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4302 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4303 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
4304 	c.eqaddr = htobe64(eq->ba);
4305 
4306 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4307 	if (rc != 0) {
4308 		CH_ERR(sc, "failed to create hw ctrlq for tx_chan %d: %d\n",
4309 		    eq->tx_chan, rc);
4310 		return (rc);
4311 	}
4312 
4313 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
4314 	eq->abs_id = G_FW_EQ_CTRL_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4315 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4316 	if (cntxt_id >= sc->sge.eqmap_sz)
4317 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4318 		cntxt_id, sc->sge.eqmap_sz - 1);
4319 	sc->sge.eqmap[cntxt_id] = eq;
4320 
4321 	return (rc);
4322 }
4323 
4324 static int
4325 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4326 {
4327 	int rc, cntxt_id;
4328 	struct fw_eq_eth_cmd c;
4329 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4330 
4331 	bzero(&c, sizeof(c));
4332 
4333 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
4334 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
4335 	    V_FW_EQ_ETH_CMD_VFN(0));
4336 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
4337 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
4338 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
4339 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
4340 	c.fetchszm_to_iqid =
4341 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
4342 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
4343 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
4344 	c.dcaen_to_eqsize =
4345 	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4346 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4347 		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4348 		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
4349 	c.eqaddr = htobe64(eq->ba);
4350 
4351 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4352 	if (rc != 0) {
4353 		device_printf(vi->dev,
4354 		    "failed to create Ethernet egress queue: %d\n", rc);
4355 		return (rc);
4356 	}
4357 
4358 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
4359 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4360 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4361 	if (cntxt_id >= sc->sge.eqmap_sz)
4362 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4363 		cntxt_id, sc->sge.eqmap_sz - 1);
4364 	sc->sge.eqmap[cntxt_id] = eq;
4365 
4366 	return (rc);
4367 }
4368 
4369 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4370 static int
4371 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4372 {
4373 	int rc, cntxt_id;
4374 	struct fw_eq_ofld_cmd c;
4375 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4376 
4377 	bzero(&c, sizeof(c));
4378 
4379 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
4380 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
4381 	    V_FW_EQ_OFLD_CMD_VFN(0));
4382 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
4383 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
4384 	c.fetchszm_to_iqid =
4385 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4386 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
4387 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
4388 	c.dcaen_to_eqsize =
4389 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4390 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4391 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4392 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4393 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
4394 	c.eqaddr = htobe64(eq->ba);
4395 
4396 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4397 	if (rc != 0) {
4398 		device_printf(vi->dev,
4399 		    "failed to create egress queue for TCP offload: %d\n", rc);
4400 		return (rc);
4401 	}
4402 
4403 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
4404 	eq->abs_id = G_FW_EQ_OFLD_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4405 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4406 	if (cntxt_id >= sc->sge.eqmap_sz)
4407 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4408 		cntxt_id, sc->sge.eqmap_sz - 1);
4409 	sc->sge.eqmap[cntxt_id] = eq;
4410 
4411 	return (rc);
4412 }
4413 #endif
4414 
4415 /* SW only */
4416 static int
4417 alloc_eq(struct adapter *sc, struct sge_eq *eq, struct sysctl_ctx_list *ctx,
4418     struct sysctl_oid *oid)
4419 {
4420 	int rc, qsize;
4421 	size_t len;
4422 
4423 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4424 
4425 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4426 	len = qsize * EQ_ESIZE;
4427 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba,
4428 	    (void **)&eq->desc);
4429 	if (rc)
4430 		return (rc);
4431 	if (ctx != NULL && oid != NULL)
4432 		add_eq_sysctls(sc, ctx, oid, eq);
4433 	eq->flags |= EQ_SW_ALLOCATED;
4434 
4435 	return (0);
4436 }
4437 
4438 /* SW only */
4439 static void
4440 free_eq(struct adapter *sc, struct sge_eq *eq)
4441 {
4442 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4443 	if (eq->type == EQ_ETH)
4444 		MPASS(eq->pidx == eq->cidx);
4445 
4446 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4447 	mtx_destroy(&eq->eq_lock);
4448 	bzero(eq, sizeof(*eq));
4449 }
4450 
4451 static void
4452 add_eq_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
4453     struct sysctl_oid *oid, struct sge_eq *eq)
4454 {
4455 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4456 
4457 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba,
4458 	    "bus address of descriptor ring");
4459 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4460 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4461 	    "desc ring size in bytes");
4462 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4463 	    &eq->abs_id, 0, "absolute id of the queue");
4464 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4465 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4466 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &eq->cidx,
4467 	    0, "consumer index");
4468 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &eq->pidx,
4469 	    0, "producer index");
4470 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4471 	    eq->sidx, "status page index");
4472 }
4473 
4474 static int
4475 alloc_eq_hwq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4476 {
4477 	int rc;
4478 
4479 	MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4480 
4481 	eq->iqid = eq->iq->cntxt_id;
4482 	eq->pidx = eq->cidx = eq->dbidx = 0;
4483 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4484 	eq->equeqidx = 0;
4485 	eq->doorbells = sc->doorbells;
4486 	bzero(eq->desc, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len);
4487 
4488 	switch (eq->type) {
4489 	case EQ_CTRL:
4490 		rc = ctrl_eq_alloc(sc, eq);
4491 		break;
4492 
4493 	case EQ_ETH:
4494 		rc = eth_eq_alloc(sc, vi, eq);
4495 		break;
4496 
4497 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4498 	case EQ_OFLD:
4499 		rc = ofld_eq_alloc(sc, vi, eq);
4500 		break;
4501 #endif
4502 
4503 	default:
4504 		panic("%s: invalid eq type %d.", __func__, eq->type);
4505 	}
4506 	if (rc != 0) {
4507 		CH_ERR(sc, "failed to allocate egress queue(%d): %d\n",
4508 		    eq->type, rc);
4509 		return (rc);
4510 	}
4511 
4512 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4513 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4514 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4515 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4516 		uint32_t mask = (1 << s_qpp) - 1;
4517 		volatile uint8_t *udb;
4518 
4519 		udb = sc->udbs_base + UDBS_DB_OFFSET;
4520 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4521 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4522 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4523 			clrbit(&eq->doorbells, DOORBELL_WCWR);
4524 		else {
4525 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4526 			eq->udb_qid = 0;
4527 		}
4528 		eq->udb = (volatile void *)udb;
4529 	}
4530 
4531 	eq->flags |= EQ_HW_ALLOCATED;
4532 	return (0);
4533 }
4534 
4535 static int
4536 free_eq_hwq(struct adapter *sc, struct vi_info *vi __unused, struct sge_eq *eq)
4537 {
4538 	int rc;
4539 
4540 	MPASS(eq->flags & EQ_HW_ALLOCATED);
4541 
4542 	switch (eq->type) {
4543 	case EQ_CTRL:
4544 		rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4545 		break;
4546 	case EQ_ETH:
4547 		rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4548 		break;
4549 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4550 	case EQ_OFLD:
4551 		rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4552 		break;
4553 #endif
4554 	default:
4555 		panic("%s: invalid eq type %d.", __func__, eq->type);
4556 	}
4557 	if (rc != 0) {
4558 		CH_ERR(sc, "failed to free eq (type %d): %d\n", eq->type, rc);
4559 		return (rc);
4560 	}
4561 	eq->flags &= ~EQ_HW_ALLOCATED;
4562 
4563 	return (0);
4564 }
4565 
4566 static int
4567 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4568     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
4569 {
4570 	struct sge_eq *eq = &wrq->eq;
4571 	int rc;
4572 
4573 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4574 
4575 	rc = alloc_eq(sc, eq, ctx, oid);
4576 	if (rc)
4577 		return (rc);
4578 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4579 	/* Can't fail after this. */
4580 
4581 	wrq->adapter = sc;
4582 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4583 	TAILQ_INIT(&wrq->incomplete_wrs);
4584 	STAILQ_INIT(&wrq->wr_list);
4585 	wrq->nwr_pending = 0;
4586 	wrq->ndesc_needed = 0;
4587 	add_wrq_sysctls(ctx, oid, wrq);
4588 
4589 	return (0);
4590 }
4591 
4592 static void
4593 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4594 {
4595 	free_eq(sc, &wrq->eq);
4596 	MPASS(wrq->nwr_pending == 0);
4597 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
4598 	MPASS(STAILQ_EMPTY(&wrq->wr_list));
4599 	bzero(wrq, sizeof(*wrq));
4600 }
4601 
4602 static void
4603 add_wrq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4604     struct sge_wrq *wrq)
4605 {
4606 	struct sysctl_oid_list *children;
4607 
4608 	if (ctx == NULL || oid == NULL)
4609 		return;
4610 
4611 	children = SYSCTL_CHILDREN(oid);
4612 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4613 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4614 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4615 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4616 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4617 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4618 }
4619 
4620 /*
4621  * Idempotent.
4622  */
4623 static int
4624 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx)
4625 {
4626 	int rc, iqidx;
4627 	struct port_info *pi = vi->pi;
4628 	struct adapter *sc = vi->adapter;
4629 	struct sge_eq *eq = &txq->eq;
4630 	struct txpkts *txp;
4631 	char name[16];
4632 	struct sysctl_oid *oid;
4633 
4634 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4635 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4636 
4637 		snprintf(name, sizeof(name), "%d", idx);
4638 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->txq_oid),
4639 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4640 		    "tx queue");
4641 
4642 		iqidx = vi->first_rxq + (idx % vi->nrxq);
4643 		snprintf(name, sizeof(name), "%s txq%d",
4644 		    device_get_nameunit(vi->dev), idx);
4645 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
4646 		    &sc->sge.rxq[iqidx].iq, name);
4647 
4648 		rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx,
4649 		    can_resume_eth_tx, M_CXGBE, &eq->eq_lock, M_WAITOK);
4650 		if (rc != 0) {
4651 			CH_ERR(vi, "failed to allocate mp_ring for txq%d: %d\n",
4652 			    idx, rc);
4653 failed:
4654 			sysctl_remove_oid(oid, 1, 1);
4655 			return (rc);
4656 		}
4657 
4658 		rc = alloc_eq(sc, eq, &vi->ctx, oid);
4659 		if (rc) {
4660 			CH_ERR(vi, "failed to allocate txq%d: %d\n", idx, rc);
4661 			mp_ring_free(txq->r);
4662 			goto failed;
4663 		}
4664 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4665 		/* Can't fail after this point. */
4666 
4667 		TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4668 		txq->ifp = vi->ifp;
4669 		txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4670 		txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4671 		    M_ZERO | M_WAITOK);
4672 
4673 		add_txq_sysctls(vi, &vi->ctx, oid, txq);
4674 	}
4675 
4676 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4677 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4678 		rc = alloc_eq_hwq(sc, vi, eq);
4679 		if (rc != 0) {
4680 			CH_ERR(vi, "failed to create hw txq%d: %d\n", idx, rc);
4681 			return (rc);
4682 		}
4683 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4684 		/* Can't fail after this point. */
4685 
4686 		if (idx == 0)
4687 			sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4688 		else
4689 			KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4690 			    ("eq_base mismatch"));
4691 		KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4692 		    ("PF with non-zero eq_base"));
4693 
4694 		txp = &txq->txp;
4695 		MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4696 		txq->txp.max_npkt = min(nitems(txp->mb),
4697 		    sc->params.max_pkts_per_eth_tx_pkts_wr);
4698 		if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
4699 			txq->txp.max_npkt--;
4700 
4701 		if (vi->flags & TX_USES_VM_WR)
4702 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4703 			    V_TXPKT_INTF(pi->tx_chan));
4704 		else
4705 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4706 			    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4707 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4708 
4709 		txq->tc_idx = -1;
4710 	}
4711 
4712 	return (0);
4713 }
4714 
4715 /*
4716  * Idempotent.
4717  */
4718 static void
4719 free_txq(struct vi_info *vi, struct sge_txq *txq)
4720 {
4721 	struct adapter *sc = vi->adapter;
4722 	struct sge_eq *eq = &txq->eq;
4723 
4724 	if (eq->flags & EQ_HW_ALLOCATED) {
4725 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4726 		free_eq_hwq(sc, NULL, eq);
4727 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4728 	}
4729 
4730 	if (eq->flags & EQ_SW_ALLOCATED) {
4731 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4732 		sglist_free(txq->gl);
4733 		free(txq->sdesc, M_CXGBE);
4734 		mp_ring_free(txq->r);
4735 		free_eq(sc, eq);
4736 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4737 		bzero(txq, sizeof(*txq));
4738 	}
4739 }
4740 
4741 static void
4742 add_txq_sysctls(struct vi_info *vi, struct sysctl_ctx_list *ctx,
4743     struct sysctl_oid *oid, struct sge_txq *txq)
4744 {
4745 	struct adapter *sc;
4746 	struct sysctl_oid_list *children;
4747 
4748 	if (ctx == NULL || oid == NULL)
4749 		return;
4750 
4751 	sc = vi->adapter;
4752 	children = SYSCTL_CHILDREN(oid);
4753 
4754 	mp_ring_sysctls(txq->r, ctx, children);
4755 
4756 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tc",
4757 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, txq - sc->sge.txq,
4758 	    sysctl_tc, "I", "traffic class (-1 means none)");
4759 
4760 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4761 	    &txq->txcsum, "# of times hardware assisted with checksum");
4762 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD,
4763 	    &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag");
4764 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4765 	    &txq->tso_wrs, "# of TSO work requests");
4766 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4767 	    &txq->imm_wrs, "# of work requests with immediate data");
4768 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4769 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4770 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4771 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4772 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD,
4773 	    &txq->txpkts0_wrs, "# of txpkts (type 0) work requests");
4774 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD,
4775 	    &txq->txpkts1_wrs, "# of txpkts (type 1) work requests");
4776 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD,
4777 	    &txq->txpkts0_pkts,
4778 	    "# of frames tx'd using type0 txpkts work requests");
4779 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD,
4780 	    &txq->txpkts1_pkts,
4781 	    "# of frames tx'd using type1 txpkts work requests");
4782 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts_flush", CTLFLAG_RD,
4783 	    &txq->txpkts_flush,
4784 	    "# of times txpkts had to be flushed out by an egress-update");
4785 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4786 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4787 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_tso_wrs", CTLFLAG_RD,
4788 	    &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
4789 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_txcsum", CTLFLAG_RD,
4790 	    &txq->vxlan_txcsum,
4791 	    "# of times hardware assisted with inner checksums (VXLAN)");
4792 
4793 #ifdef KERN_TLS
4794 	if (is_ktls(sc)) {
4795 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_records",
4796 		    CTLFLAG_RD, &txq->kern_tls_records,
4797 		    "# of NIC TLS records transmitted");
4798 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_short",
4799 		    CTLFLAG_RD, &txq->kern_tls_short,
4800 		    "# of short NIC TLS records transmitted");
4801 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_partial",
4802 		    CTLFLAG_RD, &txq->kern_tls_partial,
4803 		    "# of partial NIC TLS records transmitted");
4804 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_full",
4805 		    CTLFLAG_RD, &txq->kern_tls_full,
4806 		    "# of full NIC TLS records transmitted");
4807 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_octets",
4808 		    CTLFLAG_RD, &txq->kern_tls_octets,
4809 		    "# of payload octets in transmitted NIC TLS records");
4810 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_waste",
4811 		    CTLFLAG_RD, &txq->kern_tls_waste,
4812 		    "# of octets DMAd but not transmitted in NIC TLS records");
4813 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_options",
4814 		    CTLFLAG_RD, &txq->kern_tls_options,
4815 		    "# of NIC TLS options-only packets transmitted");
4816 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_header",
4817 		    CTLFLAG_RD, &txq->kern_tls_header,
4818 		    "# of NIC TLS header-only packets transmitted");
4819 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin",
4820 		    CTLFLAG_RD, &txq->kern_tls_fin,
4821 		    "# of NIC TLS FIN-only packets transmitted");
4822 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin_short",
4823 		    CTLFLAG_RD, &txq->kern_tls_fin_short,
4824 		    "# of NIC TLS padded FIN packets on short TLS records");
4825 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_cbc",
4826 		    CTLFLAG_RD, &txq->kern_tls_cbc,
4827 		    "# of NIC TLS sessions using AES-CBC");
4828 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_gcm",
4829 		    CTLFLAG_RD, &txq->kern_tls_gcm,
4830 		    "# of NIC TLS sessions using AES-GCM");
4831 	}
4832 #endif
4833 }
4834 
4835 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4836 /*
4837  * Idempotent.
4838  */
4839 static int
4840 alloc_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq, int idx)
4841 {
4842 	struct sysctl_oid *oid;
4843 	struct port_info *pi = vi->pi;
4844 	struct adapter *sc = vi->adapter;
4845 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4846 	int rc, iqidx;
4847 	char name[16];
4848 
4849 	MPASS(idx >= 0);
4850 	MPASS(idx < vi->nofldtxq);
4851 
4852 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4853 		snprintf(name, sizeof(name), "%d", idx);
4854 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4855 		    SYSCTL_CHILDREN(vi->ofld_txq_oid), OID_AUTO, name,
4856 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
4857 
4858 		snprintf(name, sizeof(name), "%s ofld_txq%d",
4859 		    device_get_nameunit(vi->dev), idx);
4860 		if (vi->nofldrxq > 0) {
4861 			iqidx = vi->first_ofld_rxq + (idx % vi->nofldrxq);
4862 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
4863 			    &sc->sge.ofld_rxq[iqidx].iq, name);
4864 		} else {
4865 			iqidx = vi->first_rxq + (idx % vi->nrxq);
4866 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
4867 			    &sc->sge.rxq[iqidx].iq, name);
4868 		}
4869 
4870 		rc = alloc_wrq(sc, vi, &ofld_txq->wrq, &vi->ctx, oid);
4871 		if (rc != 0) {
4872 			CH_ERR(vi, "failed to allocate ofld_txq%d: %d\n", idx,
4873 			    rc);
4874 			sysctl_remove_oid(oid, 1, 1);
4875 			return (rc);
4876 		}
4877 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4878 		/* Can't fail after this point. */
4879 
4880 		ofld_txq->tx_iscsi_pdus = counter_u64_alloc(M_WAITOK);
4881 		ofld_txq->tx_iscsi_octets = counter_u64_alloc(M_WAITOK);
4882 		ofld_txq->tx_iscsi_iso_wrs = counter_u64_alloc(M_WAITOK);
4883 		ofld_txq->tx_toe_tls_records = counter_u64_alloc(M_WAITOK);
4884 		ofld_txq->tx_toe_tls_octets = counter_u64_alloc(M_WAITOK);
4885 		add_ofld_txq_sysctls(&vi->ctx, oid, ofld_txq);
4886 	}
4887 
4888 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4889 		rc = alloc_eq_hwq(sc, vi, eq);
4890 		if (rc != 0) {
4891 			CH_ERR(vi, "failed to create hw ofld_txq%d: %d\n", idx,
4892 			    rc);
4893 			return (rc);
4894 		}
4895 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4896 	}
4897 
4898 	return (0);
4899 }
4900 
4901 /*
4902  * Idempotent.
4903  */
4904 static void
4905 free_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq)
4906 {
4907 	struct adapter *sc = vi->adapter;
4908 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4909 
4910 	if (eq->flags & EQ_HW_ALLOCATED) {
4911 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4912 		free_eq_hwq(sc, NULL, eq);
4913 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4914 	}
4915 
4916 	if (eq->flags & EQ_SW_ALLOCATED) {
4917 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4918 		counter_u64_free(ofld_txq->tx_iscsi_pdus);
4919 		counter_u64_free(ofld_txq->tx_iscsi_octets);
4920 		counter_u64_free(ofld_txq->tx_iscsi_iso_wrs);
4921 		counter_u64_free(ofld_txq->tx_toe_tls_records);
4922 		counter_u64_free(ofld_txq->tx_toe_tls_octets);
4923 		free_wrq(sc, &ofld_txq->wrq);
4924 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4925 		bzero(ofld_txq, sizeof(*ofld_txq));
4926 	}
4927 }
4928 
4929 static void
4930 add_ofld_txq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4931     struct sge_ofld_txq *ofld_txq)
4932 {
4933 	struct sysctl_oid_list *children;
4934 
4935 	if (ctx == NULL || oid == NULL)
4936 		return;
4937 
4938 	children = SYSCTL_CHILDREN(oid);
4939 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_pdus",
4940 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_pdus,
4941 	    "# of iSCSI PDUs transmitted");
4942 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_octets",
4943 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_octets,
4944 	    "# of payload octets in transmitted iSCSI PDUs");
4945 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_iso_wrs",
4946 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_iso_wrs,
4947 	    "# of iSCSI segmentation offload work requests");
4948 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_records",
4949 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_records,
4950 	    "# of TOE TLS records transmitted");
4951 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_octets",
4952 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_octets,
4953 	    "# of payload octets in transmitted TOE TLS records");
4954 }
4955 #endif
4956 
4957 static void
4958 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4959 {
4960 	bus_addr_t *ba = arg;
4961 
4962 	KASSERT(nseg == 1,
4963 	    ("%s meant for single segment mappings only.", __func__));
4964 
4965 	*ba = error ? 0 : segs->ds_addr;
4966 }
4967 
4968 static inline void
4969 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4970 {
4971 	uint32_t n, v;
4972 
4973 	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
4974 	MPASS(n > 0);
4975 
4976 	wmb();
4977 	v = fl->dbval | V_PIDX(n);
4978 	if (fl->udb)
4979 		*fl->udb = htole32(v);
4980 	else
4981 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4982 	IDXINCR(fl->dbidx, n, fl->sidx);
4983 }
4984 
4985 /*
4986  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4987  * recycled do not count towards this allocation budget.
4988  *
4989  * Returns non-zero to indicate that this freelist should be added to the list
4990  * of starving freelists.
4991  */
4992 static int
4993 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4994 {
4995 	__be64 *d;
4996 	struct fl_sdesc *sd;
4997 	uintptr_t pa;
4998 	caddr_t cl;
4999 	struct rx_buf_info *rxb;
5000 	struct cluster_metadata *clm;
5001 	uint16_t max_pidx, zidx = fl->zidx;
5002 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
5003 
5004 	FL_LOCK_ASSERT_OWNED(fl);
5005 
5006 	/*
5007 	 * We always stop at the beginning of the hardware descriptor that's just
5008 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
5009 	 * which would mean an empty freelist to the chip.
5010 	 */
5011 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
5012 	if (fl->pidx == max_pidx * 8)
5013 		return (0);
5014 
5015 	d = &fl->desc[fl->pidx];
5016 	sd = &fl->sdesc[fl->pidx];
5017 	rxb = &sc->sge.rx_buf_info[zidx];
5018 
5019 	while (n > 0) {
5020 
5021 		if (sd->cl != NULL) {
5022 
5023 			if (sd->nmbuf == 0) {
5024 				/*
5025 				 * Fast recycle without involving any atomics on
5026 				 * the cluster's metadata (if the cluster has
5027 				 * metadata).  This happens when all frames
5028 				 * received in the cluster were small enough to
5029 				 * fit within a single mbuf each.
5030 				 */
5031 				fl->cl_fast_recycled++;
5032 				goto recycled;
5033 			}
5034 
5035 			/*
5036 			 * Cluster is guaranteed to have metadata.  Clusters
5037 			 * without metadata always take the fast recycle path
5038 			 * when they're recycled.
5039 			 */
5040 			clm = cl_metadata(sd);
5041 			MPASS(clm != NULL);
5042 
5043 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5044 				fl->cl_recycled++;
5045 				counter_u64_add(extfree_rels, 1);
5046 				goto recycled;
5047 			}
5048 			sd->cl = NULL;	/* gave up my reference */
5049 		}
5050 		MPASS(sd->cl == NULL);
5051 		cl = uma_zalloc(rxb->zone, M_NOWAIT);
5052 		if (__predict_false(cl == NULL)) {
5053 			if (zidx != fl->safe_zidx) {
5054 				zidx = fl->safe_zidx;
5055 				rxb = &sc->sge.rx_buf_info[zidx];
5056 				cl = uma_zalloc(rxb->zone, M_NOWAIT);
5057 			}
5058 			if (cl == NULL)
5059 				break;
5060 		}
5061 		fl->cl_allocated++;
5062 		n--;
5063 
5064 		pa = pmap_kextract((vm_offset_t)cl);
5065 		sd->cl = cl;
5066 		sd->zidx = zidx;
5067 
5068 		if (fl->flags & FL_BUF_PACKING) {
5069 			*d = htobe64(pa | rxb->hwidx2);
5070 			sd->moff = rxb->size2;
5071 		} else {
5072 			*d = htobe64(pa | rxb->hwidx1);
5073 			sd->moff = 0;
5074 		}
5075 recycled:
5076 		sd->nmbuf = 0;
5077 		d++;
5078 		sd++;
5079 		if (__predict_false((++fl->pidx & 7) == 0)) {
5080 			uint16_t pidx = fl->pidx >> 3;
5081 
5082 			if (__predict_false(pidx == fl->sidx)) {
5083 				fl->pidx = 0;
5084 				pidx = 0;
5085 				sd = fl->sdesc;
5086 				d = fl->desc;
5087 			}
5088 			if (n < 8 || pidx == max_pidx)
5089 				break;
5090 
5091 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
5092 				ring_fl_db(sc, fl);
5093 		}
5094 	}
5095 
5096 	if ((fl->pidx >> 3) != fl->dbidx)
5097 		ring_fl_db(sc, fl);
5098 
5099 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
5100 }
5101 
5102 /*
5103  * Attempt to refill all starving freelists.
5104  */
5105 static void
5106 refill_sfl(void *arg)
5107 {
5108 	struct adapter *sc = arg;
5109 	struct sge_fl *fl, *fl_temp;
5110 
5111 	mtx_assert(&sc->sfl_lock, MA_OWNED);
5112 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
5113 		FL_LOCK(fl);
5114 		refill_fl(sc, fl, 64);
5115 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
5116 			TAILQ_REMOVE(&sc->sfl, fl, link);
5117 			fl->flags &= ~FL_STARVING;
5118 		}
5119 		FL_UNLOCK(fl);
5120 	}
5121 
5122 	if (!TAILQ_EMPTY(&sc->sfl))
5123 		callout_schedule(&sc->sfl_callout, hz / 5);
5124 }
5125 
5126 /*
5127  * Release the driver's reference on all buffers in the given freelist.  Buffers
5128  * with kernel references cannot be freed and will prevent the driver from being
5129  * unloaded safely.
5130  */
5131 void
5132 free_fl_buffers(struct adapter *sc, struct sge_fl *fl)
5133 {
5134 	struct fl_sdesc *sd;
5135 	struct cluster_metadata *clm;
5136 	int i;
5137 
5138 	sd = fl->sdesc;
5139 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
5140 		if (sd->cl == NULL)
5141 			continue;
5142 
5143 		if (sd->nmbuf == 0)
5144 			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
5145 		else if (fl->flags & FL_BUF_PACKING) {
5146 			clm = cl_metadata(sd);
5147 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5148 				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
5149 				    sd->cl);
5150 				counter_u64_add(extfree_rels, 1);
5151 			}
5152 		}
5153 		sd->cl = NULL;
5154 	}
5155 
5156 	if (fl->flags & FL_BUF_RESUME) {
5157 		m_freem(fl->m0);
5158 		fl->flags &= ~FL_BUF_RESUME;
5159 	}
5160 }
5161 
5162 static inline void
5163 get_pkt_gl(struct mbuf *m, struct sglist *gl)
5164 {
5165 	int rc;
5166 
5167 	M_ASSERTPKTHDR(m);
5168 
5169 	sglist_reset(gl);
5170 	rc = sglist_append_mbuf(gl, m);
5171 	if (__predict_false(rc != 0)) {
5172 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
5173 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
5174 	}
5175 
5176 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
5177 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
5178 	    mbuf_nsegs(m), gl->sg_nseg));
5179 #if 0	/* vm_wr not readily available here. */
5180 	KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
5181 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
5182 		gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
5183 #endif
5184 }
5185 
5186 /*
5187  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5188  */
5189 static inline u_int
5190 txpkt_len16(u_int nsegs, const u_int extra)
5191 {
5192 	u_int n;
5193 
5194 	MPASS(nsegs > 0);
5195 
5196 	nsegs--; /* first segment is part of ulptx_sgl */
5197 	n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
5198 	    sizeof(struct cpl_tx_pkt_core) +
5199 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5200 
5201 	return (howmany(n, 16));
5202 }
5203 
5204 /*
5205  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
5206  * request header.
5207  */
5208 static inline u_int
5209 txpkt_vm_len16(u_int nsegs, const u_int extra)
5210 {
5211 	u_int n;
5212 
5213 	MPASS(nsegs > 0);
5214 
5215 	nsegs--; /* first segment is part of ulptx_sgl */
5216 	n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
5217 	    sizeof(struct cpl_tx_pkt_core) +
5218 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5219 
5220 	return (howmany(n, 16));
5221 }
5222 
5223 static inline void
5224 calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
5225 {
5226 	const int lso = sizeof(struct cpl_tx_pkt_lso_core);
5227 	const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
5228 
5229 	if (vm_wr) {
5230 		if (needs_tso(m))
5231 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
5232 		else
5233 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
5234 		return;
5235 	}
5236 
5237 	if (needs_tso(m)) {
5238 		if (needs_vxlan_tso(m))
5239 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
5240 		else
5241 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
5242 	} else
5243 		set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
5244 }
5245 
5246 /*
5247  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
5248  * request header.
5249  */
5250 static inline u_int
5251 txpkts0_len16(u_int nsegs)
5252 {
5253 	u_int n;
5254 
5255 	MPASS(nsegs > 0);
5256 
5257 	nsegs--; /* first segment is part of ulptx_sgl */
5258 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
5259 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
5260 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
5261 
5262 	return (howmany(n, 16));
5263 }
5264 
5265 /*
5266  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
5267  * request header.
5268  */
5269 static inline u_int
5270 txpkts1_len16(void)
5271 {
5272 	u_int n;
5273 
5274 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
5275 
5276 	return (howmany(n, 16));
5277 }
5278 
5279 static inline u_int
5280 imm_payload(u_int ndesc)
5281 {
5282 	u_int n;
5283 
5284 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
5285 	    sizeof(struct cpl_tx_pkt_core);
5286 
5287 	return (n);
5288 }
5289 
5290 static inline uint64_t
5291 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
5292 {
5293 	uint64_t ctrl;
5294 	int csum_type, l2hlen, l3hlen;
5295 	int x, y;
5296 	static const int csum_types[3][2] = {
5297 		{TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
5298 		{TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
5299 		{TX_CSUM_IP, 0}
5300 	};
5301 
5302 	M_ASSERTPKTHDR(m);
5303 
5304 	if (!needs_hwcsum(m))
5305 		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
5306 
5307 	MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
5308 	MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
5309 
5310 	if (needs_vxlan_csum(m)) {
5311 		MPASS(m->m_pkthdr.l4hlen > 0);
5312 		MPASS(m->m_pkthdr.l5hlen > 0);
5313 		MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
5314 		MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
5315 
5316 		l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
5317 		    m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
5318 		    m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
5319 		l3hlen = m->m_pkthdr.inner_l3hlen;
5320 	} else {
5321 		l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
5322 		l3hlen = m->m_pkthdr.l3hlen;
5323 	}
5324 
5325 	ctrl = 0;
5326 	if (!needs_l3_csum(m))
5327 		ctrl |= F_TXPKT_IPCSUM_DIS;
5328 
5329 	if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
5330 	    CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
5331 		x = 0;	/* TCP */
5332 	else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
5333 	    CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
5334 		x = 1;	/* UDP */
5335 	else
5336 		x = 2;
5337 
5338 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
5339 	    CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
5340 		y = 0;	/* IPv4 */
5341 	else {
5342 		MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
5343 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
5344 		y = 1;	/* IPv6 */
5345 	}
5346 	/*
5347 	 * needs_hwcsum returned true earlier so there must be some kind of
5348 	 * checksum to calculate.
5349 	 */
5350 	csum_type = csum_types[x][y];
5351 	MPASS(csum_type != 0);
5352 	if (csum_type == TX_CSUM_IP)
5353 		ctrl |= F_TXPKT_L4CSUM_DIS;
5354 	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
5355 	if (chip_id(sc) <= CHELSIO_T5)
5356 		ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
5357 	else
5358 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
5359 
5360 	return (ctrl);
5361 }
5362 
5363 static inline void *
5364 write_lso_cpl(void *cpl, struct mbuf *m0)
5365 {
5366 	struct cpl_tx_pkt_lso_core *lso;
5367 	uint32_t ctrl;
5368 
5369 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5370 	    m0->m_pkthdr.l4hlen > 0,
5371 	    ("%s: mbuf %p needs TSO but missing header lengths",
5372 		__func__, m0));
5373 
5374 	ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5375 	    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5376 	    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5377 	    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5378 	    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5379 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5380 		ctrl |= F_LSO_IPV6;
5381 
5382 	lso = cpl;
5383 	lso->lso_ctrl = htobe32(ctrl);
5384 	lso->ipid_ofst = htobe16(0);
5385 	lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5386 	lso->seqno_offset = htobe32(0);
5387 	lso->len = htobe32(m0->m_pkthdr.len);
5388 
5389 	return (lso + 1);
5390 }
5391 
5392 static void *
5393 write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
5394 {
5395 	struct cpl_tx_tnl_lso *tnl_lso = cpl;
5396 	uint32_t ctrl;
5397 
5398 	KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
5399 	    m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
5400 	    m0->m_pkthdr.inner_l5hlen > 0,
5401 	    ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
5402 		__func__, m0));
5403 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5404 	    m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
5405 	    ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
5406 		__func__, m0));
5407 
5408 	/* Outer headers. */
5409 	ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
5410 	    F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
5411 	    V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
5412 		(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5413 	    V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
5414 	    F_CPL_TX_TNL_LSO_IPLENSETOUT;
5415 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5416 		ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
5417 	else {
5418 		ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
5419 		    F_CPL_TX_TNL_LSO_IPIDINCOUT;
5420 	}
5421 	tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
5422 	tnl_lso->IpIdOffsetOut = 0;
5423 	tnl_lso->UdpLenSetOut_to_TnlHdrLen =
5424 		htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
5425 		    F_CPL_TX_TNL_LSO_UDPLENSETOUT |
5426 		    V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
5427 			m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
5428 			m0->m_pkthdr.l5hlen) |
5429 		    V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
5430 	tnl_lso->r1 = 0;
5431 
5432 	/* Inner headers. */
5433 	ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
5434 	    (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
5435 	    V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
5436 	    V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
5437 	if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
5438 		ctrl |= F_CPL_TX_TNL_LSO_IPV6;
5439 	tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
5440 	tnl_lso->IpIdOffset = 0;
5441 	tnl_lso->IpIdSplit_to_Mss =
5442 	    htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
5443 	tnl_lso->TCPSeqOffset = 0;
5444 	tnl_lso->EthLenOffset_Size =
5445 	    htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
5446 
5447 	return (tnl_lso + 1);
5448 }
5449 
5450 #define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
5451 
5452 /*
5453  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
5454  * software descriptor, and advance the pidx.  It is guaranteed that enough
5455  * descriptors are available.
5456  *
5457  * The return value is the # of hardware descriptors used.
5458  */
5459 static u_int
5460 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
5461 {
5462 	struct sge_eq *eq;
5463 	struct fw_eth_tx_pkt_vm_wr *wr;
5464 	struct tx_sdesc *txsd;
5465 	struct cpl_tx_pkt_core *cpl;
5466 	uint32_t ctrl;	/* used in many unrelated places */
5467 	uint64_t ctrl1;
5468 	int len16, ndesc, pktlen;
5469 	caddr_t dst;
5470 
5471 	TXQ_LOCK_ASSERT_OWNED(txq);
5472 	M_ASSERTPKTHDR(m0);
5473 
5474 	len16 = mbuf_len16(m0);
5475 	pktlen = m0->m_pkthdr.len;
5476 	ctrl = sizeof(struct cpl_tx_pkt_core);
5477 	if (needs_tso(m0))
5478 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5479 	ndesc = tx_len16_to_desc(len16);
5480 
5481 	/* Firmware work request header */
5482 	eq = &txq->eq;
5483 	wr = (void *)&eq->desc[eq->pidx];
5484 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
5485 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5486 
5487 	ctrl = V_FW_WR_LEN16(len16);
5488 	wr->equiq_to_len16 = htobe32(ctrl);
5489 	wr->r3[0] = 0;
5490 	wr->r3[1] = 0;
5491 
5492 	/*
5493 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
5494 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
5495 	 * simpler to always copy it rather than making it
5496 	 * conditional.  Also, it seems that we do not have to set
5497 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
5498 	 */
5499 	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
5500 
5501 	if (needs_tso(m0)) {
5502 		cpl = write_lso_cpl(wr + 1, m0);
5503 		txq->tso_wrs++;
5504 	} else
5505 		cpl = (void *)(wr + 1);
5506 
5507 	/* Checksum offload */
5508 	ctrl1 = csum_to_ctrl(sc, m0);
5509 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5510 		txq->txcsum++;	/* some hardware assistance provided */
5511 
5512 	/* VLAN tag insertion */
5513 	if (needs_vlan_insertion(m0)) {
5514 		ctrl1 |= F_TXPKT_VLAN_VLD |
5515 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5516 		txq->vlan_insertion++;
5517 	}
5518 
5519 	/* CPL header */
5520 	cpl->ctrl0 = txq->cpl_ctrl0;
5521 	cpl->pack = 0;
5522 	cpl->len = htobe16(pktlen);
5523 	cpl->ctrl1 = htobe64(ctrl1);
5524 
5525 	/* SGL */
5526 	dst = (void *)(cpl + 1);
5527 
5528 	/*
5529 	 * A packet using TSO will use up an entire descriptor for the
5530 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
5531 	 * If this descriptor is the last descriptor in the ring, wrap
5532 	 * around to the front of the ring explicitly for the start of
5533 	 * the sgl.
5534 	 */
5535 	if (dst == (void *)&eq->desc[eq->sidx]) {
5536 		dst = (void *)&eq->desc[0];
5537 		write_gl_to_txd(txq, m0, &dst, 0);
5538 	} else
5539 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5540 	txq->sgl_wrs++;
5541 	txq->txpkt_wrs++;
5542 
5543 	txsd = &txq->sdesc[eq->pidx];
5544 	txsd->m = m0;
5545 	txsd->desc_used = ndesc;
5546 
5547 	return (ndesc);
5548 }
5549 
5550 /*
5551  * Write a raw WR to the hardware descriptors, update the software
5552  * descriptor, and advance the pidx.  It is guaranteed that enough
5553  * descriptors are available.
5554  *
5555  * The return value is the # of hardware descriptors used.
5556  */
5557 static u_int
5558 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
5559 {
5560 	struct sge_eq *eq = &txq->eq;
5561 	struct tx_sdesc *txsd;
5562 	struct mbuf *m;
5563 	caddr_t dst;
5564 	int len16, ndesc;
5565 
5566 	len16 = mbuf_len16(m0);
5567 	ndesc = tx_len16_to_desc(len16);
5568 	MPASS(ndesc <= available);
5569 
5570 	dst = wr;
5571 	for (m = m0; m != NULL; m = m->m_next)
5572 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5573 
5574 	txq->raw_wrs++;
5575 
5576 	txsd = &txq->sdesc[eq->pidx];
5577 	txsd->m = m0;
5578 	txsd->desc_used = ndesc;
5579 
5580 	return (ndesc);
5581 }
5582 
5583 /*
5584  * Write a txpkt WR for this packet to the hardware descriptors, update the
5585  * software descriptor, and advance the pidx.  It is guaranteed that enough
5586  * descriptors are available.
5587  *
5588  * The return value is the # of hardware descriptors used.
5589  */
5590 static u_int
5591 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
5592     u_int available)
5593 {
5594 	struct sge_eq *eq;
5595 	struct fw_eth_tx_pkt_wr *wr;
5596 	struct tx_sdesc *txsd;
5597 	struct cpl_tx_pkt_core *cpl;
5598 	uint32_t ctrl;	/* used in many unrelated places */
5599 	uint64_t ctrl1;
5600 	int len16, ndesc, pktlen, nsegs;
5601 	caddr_t dst;
5602 
5603 	TXQ_LOCK_ASSERT_OWNED(txq);
5604 	M_ASSERTPKTHDR(m0);
5605 
5606 	len16 = mbuf_len16(m0);
5607 	nsegs = mbuf_nsegs(m0);
5608 	pktlen = m0->m_pkthdr.len;
5609 	ctrl = sizeof(struct cpl_tx_pkt_core);
5610 	if (needs_tso(m0)) {
5611 		if (needs_vxlan_tso(m0))
5612 			ctrl += sizeof(struct cpl_tx_tnl_lso);
5613 		else
5614 			ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5615 	} else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
5616 	    available >= 2) {
5617 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
5618 		ctrl += pktlen;
5619 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
5620 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
5621 		nsegs = 0;
5622 	}
5623 	ndesc = tx_len16_to_desc(len16);
5624 	MPASS(ndesc <= available);
5625 
5626 	/* Firmware work request header */
5627 	eq = &txq->eq;
5628 	wr = (void *)&eq->desc[eq->pidx];
5629 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
5630 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5631 
5632 	ctrl = V_FW_WR_LEN16(len16);
5633 	wr->equiq_to_len16 = htobe32(ctrl);
5634 	wr->r3 = 0;
5635 
5636 	if (needs_tso(m0)) {
5637 		if (needs_vxlan_tso(m0)) {
5638 			cpl = write_tnl_lso_cpl(wr + 1, m0);
5639 			txq->vxlan_tso_wrs++;
5640 		} else {
5641 			cpl = write_lso_cpl(wr + 1, m0);
5642 			txq->tso_wrs++;
5643 		}
5644 	} else
5645 		cpl = (void *)(wr + 1);
5646 
5647 	/* Checksum offload */
5648 	ctrl1 = csum_to_ctrl(sc, m0);
5649 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5650 		/* some hardware assistance provided */
5651 		if (needs_vxlan_csum(m0))
5652 			txq->vxlan_txcsum++;
5653 		else
5654 			txq->txcsum++;
5655 	}
5656 
5657 	/* VLAN tag insertion */
5658 	if (needs_vlan_insertion(m0)) {
5659 		ctrl1 |= F_TXPKT_VLAN_VLD |
5660 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5661 		txq->vlan_insertion++;
5662 	}
5663 
5664 	/* CPL header */
5665 	cpl->ctrl0 = txq->cpl_ctrl0;
5666 	cpl->pack = 0;
5667 	cpl->len = htobe16(pktlen);
5668 	cpl->ctrl1 = htobe64(ctrl1);
5669 
5670 	/* SGL */
5671 	dst = (void *)(cpl + 1);
5672 	if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
5673 		dst = (caddr_t)&eq->desc[0];
5674 	if (nsegs > 0) {
5675 
5676 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5677 		txq->sgl_wrs++;
5678 	} else {
5679 		struct mbuf *m;
5680 
5681 		for (m = m0; m != NULL; m = m->m_next) {
5682 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5683 #ifdef INVARIANTS
5684 			pktlen -= m->m_len;
5685 #endif
5686 		}
5687 #ifdef INVARIANTS
5688 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
5689 #endif
5690 		txq->imm_wrs++;
5691 	}
5692 
5693 	txq->txpkt_wrs++;
5694 
5695 	txsd = &txq->sdesc[eq->pidx];
5696 	txsd->m = m0;
5697 	txsd->desc_used = ndesc;
5698 
5699 	return (ndesc);
5700 }
5701 
5702 static inline bool
5703 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
5704 {
5705 	int len;
5706 
5707 	MPASS(txp->npkt > 0);
5708 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5709 
5710 	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5711 		len = VM_TX_L2HDR_LEN;
5712 	else
5713 		len = sizeof(struct ether_header);
5714 
5715 	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5716 }
5717 
5718 static inline void
5719 save_l2hdr(struct txpkts *txp, struct mbuf *m)
5720 {
5721 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5722 
5723 	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5724 }
5725 
5726 static int
5727 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5728     int avail, bool *send)
5729 {
5730 	struct txpkts *txp = &txq->txp;
5731 
5732 	/* Cannot have TSO and coalesce at the same time. */
5733 	if (cannot_use_txpkts(m)) {
5734 cannot_coalesce:
5735 		*send = txp->npkt > 0;
5736 		return (EINVAL);
5737 	}
5738 
5739 	/* VF allows coalescing of type 1 (1 GL) only */
5740 	if (mbuf_nsegs(m) > 1)
5741 		goto cannot_coalesce;
5742 
5743 	*send = false;
5744 	if (txp->npkt > 0) {
5745 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5746 		MPASS(txp->npkt < txp->max_npkt);
5747 		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5748 
5749 		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5750 retry_after_send:
5751 			*send = true;
5752 			return (EAGAIN);
5753 		}
5754 		if (m->m_pkthdr.len + txp->plen > 65535)
5755 			goto retry_after_send;
5756 		if (cmp_l2hdr(txp, m))
5757 			goto retry_after_send;
5758 
5759 		txp->len16 += txpkts1_len16();
5760 		txp->plen += m->m_pkthdr.len;
5761 		txp->mb[txp->npkt++] = m;
5762 		if (txp->npkt == txp->max_npkt)
5763 			*send = true;
5764 	} else {
5765 		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5766 		    txpkts1_len16();
5767 		if (tx_len16_to_desc(txp->len16) > avail)
5768 			goto cannot_coalesce;
5769 		txp->npkt = 1;
5770 		txp->wr_type = 1;
5771 		txp->plen = m->m_pkthdr.len;
5772 		txp->mb[0] = m;
5773 		save_l2hdr(txp, m);
5774 	}
5775 	return (0);
5776 }
5777 
5778 static int
5779 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5780     int avail, bool *send)
5781 {
5782 	struct txpkts *txp = &txq->txp;
5783 	int nsegs;
5784 
5785 	MPASS(!(sc->flags & IS_VF));
5786 
5787 	/* Cannot have TSO and coalesce at the same time. */
5788 	if (cannot_use_txpkts(m)) {
5789 cannot_coalesce:
5790 		*send = txp->npkt > 0;
5791 		return (EINVAL);
5792 	}
5793 
5794 	*send = false;
5795 	nsegs = mbuf_nsegs(m);
5796 	if (txp->npkt == 0) {
5797 		if (m->m_pkthdr.len > 65535)
5798 			goto cannot_coalesce;
5799 		if (nsegs > 1) {
5800 			txp->wr_type = 0;
5801 			txp->len16 =
5802 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5803 			    txpkts0_len16(nsegs);
5804 		} else {
5805 			txp->wr_type = 1;
5806 			txp->len16 =
5807 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5808 			    txpkts1_len16();
5809 		}
5810 		if (tx_len16_to_desc(txp->len16) > avail)
5811 			goto cannot_coalesce;
5812 		txp->npkt = 1;
5813 		txp->plen = m->m_pkthdr.len;
5814 		txp->mb[0] = m;
5815 	} else {
5816 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5817 		MPASS(txp->npkt < txp->max_npkt);
5818 
5819 		if (m->m_pkthdr.len + txp->plen > 65535) {
5820 retry_after_send:
5821 			*send = true;
5822 			return (EAGAIN);
5823 		}
5824 
5825 		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5826 		if (txp->wr_type == 0) {
5827 			if (tx_len16_to_desc(txp->len16 +
5828 			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
5829 				goto retry_after_send;
5830 			txp->len16 += txpkts0_len16(nsegs);
5831 		} else {
5832 			if (nsegs != 1)
5833 				goto retry_after_send;
5834 			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
5835 			    avail)
5836 				goto retry_after_send;
5837 			txp->len16 += txpkts1_len16();
5838 		}
5839 
5840 		txp->plen += m->m_pkthdr.len;
5841 		txp->mb[txp->npkt++] = m;
5842 		if (txp->npkt == txp->max_npkt)
5843 			*send = true;
5844 	}
5845 	return (0);
5846 }
5847 
5848 /*
5849  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
5850  * the software descriptor, and advance the pidx.  It is guaranteed that enough
5851  * descriptors are available.
5852  *
5853  * The return value is the # of hardware descriptors used.
5854  */
5855 static u_int
5856 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
5857 {
5858 	const struct txpkts *txp = &txq->txp;
5859 	struct sge_eq *eq = &txq->eq;
5860 	struct fw_eth_tx_pkts_wr *wr;
5861 	struct tx_sdesc *txsd;
5862 	struct cpl_tx_pkt_core *cpl;
5863 	uint64_t ctrl1;
5864 	int ndesc, i, checkwrap;
5865 	struct mbuf *m, *last;
5866 	void *flitp;
5867 
5868 	TXQ_LOCK_ASSERT_OWNED(txq);
5869 	MPASS(txp->npkt > 0);
5870 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5871 
5872 	wr = (void *)&eq->desc[eq->pidx];
5873 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
5874 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5875 	wr->plen = htobe16(txp->plen);
5876 	wr->npkt = txp->npkt;
5877 	wr->r3 = 0;
5878 	wr->type = txp->wr_type;
5879 	flitp = wr + 1;
5880 
5881 	/*
5882 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
5883 	 * set then we know the WR is going to wrap around somewhere.  We'll
5884 	 * check for that at appropriate points.
5885 	 */
5886 	ndesc = tx_len16_to_desc(txp->len16);
5887 	last = NULL;
5888 	checkwrap = eq->sidx - ndesc < eq->pidx;
5889 	for (i = 0; i < txp->npkt; i++) {
5890 		m = txp->mb[i];
5891 		if (txp->wr_type == 0) {
5892 			struct ulp_txpkt *ulpmc;
5893 			struct ulptx_idata *ulpsc;
5894 
5895 			/* ULP master command */
5896 			ulpmc = flitp;
5897 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
5898 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
5899 			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
5900 
5901 			/* ULP subcommand */
5902 			ulpsc = (void *)(ulpmc + 1);
5903 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
5904 			    F_ULP_TX_SC_MORE);
5905 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
5906 
5907 			cpl = (void *)(ulpsc + 1);
5908 			if (checkwrap &&
5909 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
5910 				cpl = (void *)&eq->desc[0];
5911 		} else {
5912 			cpl = flitp;
5913 		}
5914 
5915 		/* Checksum offload */
5916 		ctrl1 = csum_to_ctrl(sc, m);
5917 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5918 			/* some hardware assistance provided */
5919 			if (needs_vxlan_csum(m))
5920 				txq->vxlan_txcsum++;
5921 			else
5922 				txq->txcsum++;
5923 		}
5924 
5925 		/* VLAN tag insertion */
5926 		if (needs_vlan_insertion(m)) {
5927 			ctrl1 |= F_TXPKT_VLAN_VLD |
5928 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5929 			txq->vlan_insertion++;
5930 		}
5931 
5932 		/* CPL header */
5933 		cpl->ctrl0 = txq->cpl_ctrl0;
5934 		cpl->pack = 0;
5935 		cpl->len = htobe16(m->m_pkthdr.len);
5936 		cpl->ctrl1 = htobe64(ctrl1);
5937 
5938 		flitp = cpl + 1;
5939 		if (checkwrap &&
5940 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5941 			flitp = (void *)&eq->desc[0];
5942 
5943 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
5944 
5945 		if (last != NULL)
5946 			last->m_nextpkt = m;
5947 		last = m;
5948 	}
5949 
5950 	txq->sgl_wrs++;
5951 	if (txp->wr_type == 0) {
5952 		txq->txpkts0_pkts += txp->npkt;
5953 		txq->txpkts0_wrs++;
5954 	} else {
5955 		txq->txpkts1_pkts += txp->npkt;
5956 		txq->txpkts1_wrs++;
5957 	}
5958 
5959 	txsd = &txq->sdesc[eq->pidx];
5960 	txsd->m = txp->mb[0];
5961 	txsd->desc_used = ndesc;
5962 
5963 	return (ndesc);
5964 }
5965 
5966 static u_int
5967 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
5968 {
5969 	const struct txpkts *txp = &txq->txp;
5970 	struct sge_eq *eq = &txq->eq;
5971 	struct fw_eth_tx_pkts_vm_wr *wr;
5972 	struct tx_sdesc *txsd;
5973 	struct cpl_tx_pkt_core *cpl;
5974 	uint64_t ctrl1;
5975 	int ndesc, i;
5976 	struct mbuf *m, *last;
5977 	void *flitp;
5978 
5979 	TXQ_LOCK_ASSERT_OWNED(txq);
5980 	MPASS(txp->npkt > 0);
5981 	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5982 	MPASS(txp->mb[0] != NULL);
5983 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5984 
5985 	wr = (void *)&eq->desc[eq->pidx];
5986 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
5987 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5988 	wr->r3 = 0;
5989 	wr->plen = htobe16(txp->plen);
5990 	wr->npkt = txp->npkt;
5991 	wr->r4 = 0;
5992 	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
5993 	flitp = wr + 1;
5994 
5995 	/*
5996 	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
5997 	 * the WR will take 32B so we check for the end of the descriptor ring
5998 	 * before writing odd mbufs (mb[1], 3, 5, ..)
5999 	 */
6000 	ndesc = tx_len16_to_desc(txp->len16);
6001 	last = NULL;
6002 	for (i = 0; i < txp->npkt; i++) {
6003 		m = txp->mb[i];
6004 		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
6005 			flitp = &eq->desc[0];
6006 		cpl = flitp;
6007 
6008 		/* Checksum offload */
6009 		ctrl1 = csum_to_ctrl(sc, m);
6010 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
6011 			txq->txcsum++;	/* some hardware assistance provided */
6012 
6013 		/* VLAN tag insertion */
6014 		if (needs_vlan_insertion(m)) {
6015 			ctrl1 |= F_TXPKT_VLAN_VLD |
6016 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
6017 			txq->vlan_insertion++;
6018 		}
6019 
6020 		/* CPL header */
6021 		cpl->ctrl0 = txq->cpl_ctrl0;
6022 		cpl->pack = 0;
6023 		cpl->len = htobe16(m->m_pkthdr.len);
6024 		cpl->ctrl1 = htobe64(ctrl1);
6025 
6026 		flitp = cpl + 1;
6027 		MPASS(mbuf_nsegs(m) == 1);
6028 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
6029 
6030 		if (last != NULL)
6031 			last->m_nextpkt = m;
6032 		last = m;
6033 	}
6034 
6035 	txq->sgl_wrs++;
6036 	txq->txpkts1_pkts += txp->npkt;
6037 	txq->txpkts1_wrs++;
6038 
6039 	txsd = &txq->sdesc[eq->pidx];
6040 	txsd->m = txp->mb[0];
6041 	txsd->desc_used = ndesc;
6042 
6043 	return (ndesc);
6044 }
6045 
6046 /*
6047  * If the SGL ends on an address that is not 16 byte aligned, this function will
6048  * add a 0 filled flit at the end.
6049  */
6050 static void
6051 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
6052 {
6053 	struct sge_eq *eq = &txq->eq;
6054 	struct sglist *gl = txq->gl;
6055 	struct sglist_seg *seg;
6056 	__be64 *flitp, *wrap;
6057 	struct ulptx_sgl *usgl;
6058 	int i, nflits, nsegs;
6059 
6060 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
6061 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
6062 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6063 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6064 
6065 	get_pkt_gl(m, gl);
6066 	nsegs = gl->sg_nseg;
6067 	MPASS(nsegs > 0);
6068 
6069 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
6070 	flitp = (__be64 *)(*to);
6071 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
6072 	seg = &gl->sg_segs[0];
6073 	usgl = (void *)flitp;
6074 
6075 	/*
6076 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
6077 	 * ring, so we're at least 16 bytes away from the status page.  There is
6078 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
6079 	 */
6080 
6081 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6082 	    V_ULPTX_NSGE(nsegs));
6083 	usgl->len0 = htobe32(seg->ss_len);
6084 	usgl->addr0 = htobe64(seg->ss_paddr);
6085 	seg++;
6086 
6087 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
6088 
6089 		/* Won't wrap around at all */
6090 
6091 		for (i = 0; i < nsegs - 1; i++, seg++) {
6092 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
6093 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
6094 		}
6095 		if (i & 1)
6096 			usgl->sge[i / 2].len[1] = htobe32(0);
6097 		flitp += nflits;
6098 	} else {
6099 
6100 		/* Will wrap somewhere in the rest of the SGL */
6101 
6102 		/* 2 flits already written, write the rest flit by flit */
6103 		flitp = (void *)(usgl + 1);
6104 		for (i = 0; i < nflits - 2; i++) {
6105 			if (flitp == wrap)
6106 				flitp = (void *)eq->desc;
6107 			*flitp++ = get_flit(seg, nsegs - 1, i);
6108 		}
6109 	}
6110 
6111 	if (nflits & 1) {
6112 		MPASS(((uintptr_t)flitp) & 0xf);
6113 		*flitp++ = 0;
6114 	}
6115 
6116 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
6117 	if (__predict_false(flitp == wrap))
6118 		*to = (void *)eq->desc;
6119 	else
6120 		*to = (void *)flitp;
6121 }
6122 
6123 static inline void
6124 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
6125 {
6126 
6127 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6128 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6129 
6130 	if (__predict_true((uintptr_t)(*to) + len <=
6131 	    (uintptr_t)&eq->desc[eq->sidx])) {
6132 		bcopy(from, *to, len);
6133 		(*to) += len;
6134 	} else {
6135 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
6136 
6137 		bcopy(from, *to, portion);
6138 		from += portion;
6139 		portion = len - portion;	/* remaining */
6140 		bcopy(from, (void *)eq->desc, portion);
6141 		(*to) = (caddr_t)eq->desc + portion;
6142 	}
6143 }
6144 
6145 static inline void
6146 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
6147 {
6148 	u_int db;
6149 
6150 	MPASS(n > 0);
6151 
6152 	db = eq->doorbells;
6153 	if (n > 1)
6154 		clrbit(&db, DOORBELL_WCWR);
6155 	wmb();
6156 
6157 	switch (ffs(db) - 1) {
6158 	case DOORBELL_UDB:
6159 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6160 		break;
6161 
6162 	case DOORBELL_WCWR: {
6163 		volatile uint64_t *dst, *src;
6164 		int i;
6165 
6166 		/*
6167 		 * Queues whose 128B doorbell segment fits in the page do not
6168 		 * use relative qid (udb_qid is always 0).  Only queues with
6169 		 * doorbell segments can do WCWR.
6170 		 */
6171 		KASSERT(eq->udb_qid == 0 && n == 1,
6172 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
6173 		    __func__, eq->doorbells, n, eq->dbidx, eq));
6174 
6175 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
6176 		    UDBS_DB_OFFSET);
6177 		i = eq->dbidx;
6178 		src = (void *)&eq->desc[i];
6179 		while (src != (void *)&eq->desc[i + 1])
6180 			*dst++ = *src++;
6181 		wmb();
6182 		break;
6183 	}
6184 
6185 	case DOORBELL_UDBWC:
6186 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6187 		wmb();
6188 		break;
6189 
6190 	case DOORBELL_KDB:
6191 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
6192 		    V_QID(eq->cntxt_id) | V_PIDX(n));
6193 		break;
6194 	}
6195 
6196 	IDXINCR(eq->dbidx, n, eq->sidx);
6197 }
6198 
6199 static inline u_int
6200 reclaimable_tx_desc(struct sge_eq *eq)
6201 {
6202 	uint16_t hw_cidx;
6203 
6204 	hw_cidx = read_hw_cidx(eq);
6205 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
6206 }
6207 
6208 static inline u_int
6209 total_available_tx_desc(struct sge_eq *eq)
6210 {
6211 	uint16_t hw_cidx, pidx;
6212 
6213 	hw_cidx = read_hw_cidx(eq);
6214 	pidx = eq->pidx;
6215 
6216 	if (pidx == hw_cidx)
6217 		return (eq->sidx - 1);
6218 	else
6219 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
6220 }
6221 
6222 static inline uint16_t
6223 read_hw_cidx(struct sge_eq *eq)
6224 {
6225 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6226 	uint16_t cidx = spg->cidx;	/* stable snapshot */
6227 
6228 	return (be16toh(cidx));
6229 }
6230 
6231 /*
6232  * Reclaim 'n' descriptors approximately.
6233  */
6234 static u_int
6235 reclaim_tx_descs(struct sge_txq *txq, u_int n)
6236 {
6237 	struct tx_sdesc *txsd;
6238 	struct sge_eq *eq = &txq->eq;
6239 	u_int can_reclaim, reclaimed;
6240 
6241 	TXQ_LOCK_ASSERT_OWNED(txq);
6242 	MPASS(n > 0);
6243 
6244 	reclaimed = 0;
6245 	can_reclaim = reclaimable_tx_desc(eq);
6246 	while (can_reclaim && reclaimed < n) {
6247 		int ndesc;
6248 		struct mbuf *m, *nextpkt;
6249 
6250 		txsd = &txq->sdesc[eq->cidx];
6251 		ndesc = txsd->desc_used;
6252 
6253 		/* Firmware doesn't return "partial" credits. */
6254 		KASSERT(can_reclaim >= ndesc,
6255 		    ("%s: unexpected number of credits: %d, %d",
6256 		    __func__, can_reclaim, ndesc));
6257 		KASSERT(ndesc != 0,
6258 		    ("%s: descriptor with no credits: cidx %d",
6259 		    __func__, eq->cidx));
6260 
6261 		for (m = txsd->m; m != NULL; m = nextpkt) {
6262 			nextpkt = m->m_nextpkt;
6263 			m->m_nextpkt = NULL;
6264 			m_freem(m);
6265 		}
6266 		reclaimed += ndesc;
6267 		can_reclaim -= ndesc;
6268 		IDXINCR(eq->cidx, ndesc, eq->sidx);
6269 	}
6270 
6271 	return (reclaimed);
6272 }
6273 
6274 static void
6275 tx_reclaim(void *arg, int n)
6276 {
6277 	struct sge_txq *txq = arg;
6278 	struct sge_eq *eq = &txq->eq;
6279 
6280 	do {
6281 		if (TXQ_TRYLOCK(txq) == 0)
6282 			break;
6283 		n = reclaim_tx_descs(txq, 32);
6284 		if (eq->cidx == eq->pidx)
6285 			eq->equeqidx = eq->pidx;
6286 		TXQ_UNLOCK(txq);
6287 	} while (n > 0);
6288 }
6289 
6290 static __be64
6291 get_flit(struct sglist_seg *segs, int nsegs, int idx)
6292 {
6293 	int i = (idx / 3) * 2;
6294 
6295 	switch (idx % 3) {
6296 	case 0: {
6297 		uint64_t rc;
6298 
6299 		rc = (uint64_t)segs[i].ss_len << 32;
6300 		if (i + 1 < nsegs)
6301 			rc |= (uint64_t)(segs[i + 1].ss_len);
6302 
6303 		return (htobe64(rc));
6304 	}
6305 	case 1:
6306 		return (htobe64(segs[i].ss_paddr));
6307 	case 2:
6308 		return (htobe64(segs[i + 1].ss_paddr));
6309 	}
6310 
6311 	return (0);
6312 }
6313 
6314 static int
6315 find_refill_source(struct adapter *sc, int maxp, bool packing)
6316 {
6317 	int i, zidx = -1;
6318 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6319 
6320 	if (packing) {
6321 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6322 			if (rxb->hwidx2 == -1)
6323 				continue;
6324 			if (rxb->size1 < PAGE_SIZE &&
6325 			    rxb->size1 < largest_rx_cluster)
6326 				continue;
6327 			if (rxb->size1 > largest_rx_cluster)
6328 				break;
6329 			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
6330 			if (rxb->size2 >= maxp)
6331 				return (i);
6332 			zidx = i;
6333 		}
6334 	} else {
6335 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6336 			if (rxb->hwidx1 == -1)
6337 				continue;
6338 			if (rxb->size1 > largest_rx_cluster)
6339 				break;
6340 			if (rxb->size1 >= maxp)
6341 				return (i);
6342 			zidx = i;
6343 		}
6344 	}
6345 
6346 	return (zidx);
6347 }
6348 
6349 static void
6350 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
6351 {
6352 	mtx_lock(&sc->sfl_lock);
6353 	FL_LOCK(fl);
6354 	if ((fl->flags & FL_DOOMED) == 0) {
6355 		fl->flags |= FL_STARVING;
6356 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
6357 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
6358 	}
6359 	FL_UNLOCK(fl);
6360 	mtx_unlock(&sc->sfl_lock);
6361 }
6362 
6363 static void
6364 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
6365 {
6366 	struct sge_wrq *wrq = (void *)eq;
6367 
6368 	atomic_readandclear_int(&eq->equiq);
6369 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
6370 }
6371 
6372 static void
6373 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
6374 {
6375 	struct sge_txq *txq = (void *)eq;
6376 
6377 	MPASS(eq->type == EQ_ETH);
6378 
6379 	atomic_readandclear_int(&eq->equiq);
6380 	if (mp_ring_is_idle(txq->r))
6381 		taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
6382 	else
6383 		mp_ring_check_drainage(txq->r, 64);
6384 }
6385 
6386 static int
6387 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
6388     struct mbuf *m)
6389 {
6390 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
6391 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
6392 	struct adapter *sc = iq->adapter;
6393 	struct sge *s = &sc->sge;
6394 	struct sge_eq *eq;
6395 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
6396 		&handle_wrq_egr_update, &handle_eth_egr_update,
6397 		&handle_wrq_egr_update};
6398 
6399 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6400 	    rss->opcode));
6401 
6402 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
6403 	(*h[eq->type])(sc, eq);
6404 
6405 	return (0);
6406 }
6407 
6408 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
6409 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
6410     offsetof(struct cpl_fw6_msg, data));
6411 
6412 static int
6413 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
6414 {
6415 	struct adapter *sc = iq->adapter;
6416 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
6417 
6418 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6419 	    rss->opcode));
6420 
6421 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
6422 		const struct rss_header *rss2;
6423 
6424 		rss2 = (const struct rss_header *)&cpl->data[0];
6425 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
6426 	}
6427 
6428 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
6429 }
6430 
6431 /**
6432  *	t4_handle_wrerr_rpl - process a FW work request error message
6433  *	@adap: the adapter
6434  *	@rpl: start of the FW message
6435  */
6436 static int
6437 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
6438 {
6439 	u8 opcode = *(const u8 *)rpl;
6440 	const struct fw_error_cmd *e = (const void *)rpl;
6441 	unsigned int i;
6442 
6443 	if (opcode != FW_ERROR_CMD) {
6444 		log(LOG_ERR,
6445 		    "%s: Received WRERR_RPL message with opcode %#x\n",
6446 		    device_get_nameunit(adap->dev), opcode);
6447 		return (EINVAL);
6448 	}
6449 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
6450 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
6451 	    "non-fatal");
6452 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
6453 	case FW_ERROR_TYPE_EXCEPTION:
6454 		log(LOG_ERR, "exception info:\n");
6455 		for (i = 0; i < nitems(e->u.exception.info); i++)
6456 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
6457 			    be32toh(e->u.exception.info[i]));
6458 		log(LOG_ERR, "\n");
6459 		break;
6460 	case FW_ERROR_TYPE_HWMODULE:
6461 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
6462 		    be32toh(e->u.hwmodule.regaddr),
6463 		    be32toh(e->u.hwmodule.regval));
6464 		break;
6465 	case FW_ERROR_TYPE_WR:
6466 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
6467 		    be16toh(e->u.wr.cidx),
6468 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
6469 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
6470 		    be32toh(e->u.wr.eqid));
6471 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
6472 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
6473 			    e->u.wr.wrhdr[i]);
6474 		log(LOG_ERR, "\n");
6475 		break;
6476 	case FW_ERROR_TYPE_ACL:
6477 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
6478 		    be16toh(e->u.acl.cidx),
6479 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
6480 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
6481 		    be32toh(e->u.acl.eqid),
6482 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
6483 		    "MAC");
6484 		for (i = 0; i < nitems(e->u.acl.val); i++)
6485 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
6486 		log(LOG_ERR, "\n");
6487 		break;
6488 	default:
6489 		log(LOG_ERR, "type %#x\n",
6490 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
6491 		return (EINVAL);
6492 	}
6493 	return (0);
6494 }
6495 
6496 static inline bool
6497 bufidx_used(struct adapter *sc, int idx)
6498 {
6499 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6500 	int i;
6501 
6502 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6503 		if (rxb->size1 > largest_rx_cluster)
6504 			continue;
6505 		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
6506 			return (true);
6507 	}
6508 
6509 	return (false);
6510 }
6511 
6512 static int
6513 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
6514 {
6515 	struct adapter *sc = arg1;
6516 	struct sge_params *sp = &sc->params.sge;
6517 	int i, rc;
6518 	struct sbuf sb;
6519 	char c;
6520 
6521 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
6522 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
6523 		if (bufidx_used(sc, i))
6524 			c = '*';
6525 		else
6526 			c = '\0';
6527 
6528 		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
6529 	}
6530 	sbuf_trim(&sb);
6531 	sbuf_finish(&sb);
6532 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
6533 	sbuf_delete(&sb);
6534 	return (rc);
6535 }
6536 
6537 #ifdef RATELIMIT
6538 #if defined(INET) || defined(INET6)
6539 /*
6540  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
6541  */
6542 static inline u_int
6543 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
6544 {
6545 	u_int n;
6546 
6547 	MPASS(immhdrs > 0);
6548 
6549 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
6550 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
6551 	if (__predict_false(nsegs == 0))
6552 		goto done;
6553 
6554 	nsegs--; /* first segment is part of ulptx_sgl */
6555 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
6556 	if (tso)
6557 		n += sizeof(struct cpl_tx_pkt_lso_core);
6558 
6559 done:
6560 	return (howmany(n, 16));
6561 }
6562 #endif
6563 
6564 #define ETID_FLOWC_NPARAMS 6
6565 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
6566     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
6567 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
6568 
6569 static int
6570 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
6571     struct vi_info *vi)
6572 {
6573 	struct wrq_cookie cookie;
6574 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
6575 	struct fw_flowc_wr *flowc;
6576 
6577 	mtx_assert(&cst->lock, MA_OWNED);
6578 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
6579 	    EO_FLOWC_PENDING);
6580 
6581 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLOWC_LEN16, &cookie);
6582 	if (__predict_false(flowc == NULL))
6583 		return (ENOMEM);
6584 
6585 	bzero(flowc, ETID_FLOWC_LEN);
6586 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6587 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
6588 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
6589 	    V_FW_WR_FLOWID(cst->etid));
6590 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
6591 	flowc->mnemval[0].val = htobe32(pfvf);
6592 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
6593 	flowc->mnemval[1].val = htobe32(pi->tx_chan);
6594 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
6595 	flowc->mnemval[2].val = htobe32(pi->tx_chan);
6596 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
6597 	flowc->mnemval[3].val = htobe32(cst->iqid);
6598 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
6599 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
6600 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
6601 	flowc->mnemval[5].val = htobe32(cst->schedcl);
6602 
6603 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6604 
6605 	cst->flags &= ~EO_FLOWC_PENDING;
6606 	cst->flags |= EO_FLOWC_RPL_PENDING;
6607 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
6608 	cst->tx_credits -= ETID_FLOWC_LEN16;
6609 
6610 	return (0);
6611 }
6612 
6613 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
6614 
6615 void
6616 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
6617 {
6618 	struct fw_flowc_wr *flowc;
6619 	struct wrq_cookie cookie;
6620 
6621 	mtx_assert(&cst->lock, MA_OWNED);
6622 
6623 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLUSH_LEN16, &cookie);
6624 	if (__predict_false(flowc == NULL))
6625 		CXGBE_UNIMPLEMENTED(__func__);
6626 
6627 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
6628 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6629 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
6630 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
6631 	    V_FW_WR_FLOWID(cst->etid));
6632 
6633 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6634 
6635 	cst->flags |= EO_FLUSH_RPL_PENDING;
6636 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
6637 	cst->tx_credits -= ETID_FLUSH_LEN16;
6638 	cst->ncompl++;
6639 }
6640 
6641 static void
6642 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
6643     struct mbuf *m0, int compl)
6644 {
6645 	struct cpl_tx_pkt_core *cpl;
6646 	uint64_t ctrl1;
6647 	uint32_t ctrl;	/* used in many unrelated places */
6648 	int len16, pktlen, nsegs, immhdrs;
6649 	uintptr_t p;
6650 	struct ulptx_sgl *usgl;
6651 	struct sglist sg;
6652 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
6653 
6654 	mtx_assert(&cst->lock, MA_OWNED);
6655 	M_ASSERTPKTHDR(m0);
6656 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
6657 	    m0->m_pkthdr.l4hlen > 0,
6658 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
6659 
6660 	len16 = mbuf_eo_len16(m0);
6661 	nsegs = mbuf_eo_nsegs(m0);
6662 	pktlen = m0->m_pkthdr.len;
6663 	ctrl = sizeof(struct cpl_tx_pkt_core);
6664 	if (needs_tso(m0))
6665 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
6666 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
6667 	ctrl += immhdrs;
6668 
6669 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
6670 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
6671 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
6672 	    V_FW_WR_FLOWID(cst->etid));
6673 	wr->r3 = 0;
6674 	if (needs_outer_udp_csum(m0)) {
6675 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
6676 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
6677 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6678 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
6679 		wr->u.udpseg.rtplen = 0;
6680 		wr->u.udpseg.r4 = 0;
6681 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
6682 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
6683 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
6684 		cpl = (void *)(wr + 1);
6685 	} else {
6686 		MPASS(needs_outer_tcp_csum(m0));
6687 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
6688 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
6689 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6690 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
6691 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
6692 		wr->u.tcpseg.r4 = 0;
6693 		wr->u.tcpseg.r5 = 0;
6694 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
6695 
6696 		if (needs_tso(m0)) {
6697 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
6698 
6699 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
6700 
6701 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
6702 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
6703 			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6704 				ETHER_HDR_LEN) >> 2) |
6705 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6706 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6707 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6708 				ctrl |= F_LSO_IPV6;
6709 			lso->lso_ctrl = htobe32(ctrl);
6710 			lso->ipid_ofst = htobe16(0);
6711 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6712 			lso->seqno_offset = htobe32(0);
6713 			lso->len = htobe32(pktlen);
6714 
6715 			cpl = (void *)(lso + 1);
6716 		} else {
6717 			wr->u.tcpseg.mss = htobe16(0xffff);
6718 			cpl = (void *)(wr + 1);
6719 		}
6720 	}
6721 
6722 	/* Checksum offload must be requested for ethofld. */
6723 	MPASS(needs_outer_l4_csum(m0));
6724 	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6725 
6726 	/* VLAN tag insertion */
6727 	if (needs_vlan_insertion(m0)) {
6728 		ctrl1 |= F_TXPKT_VLAN_VLD |
6729 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6730 	}
6731 
6732 	/* CPL header */
6733 	cpl->ctrl0 = cst->ctrl0;
6734 	cpl->pack = 0;
6735 	cpl->len = htobe16(pktlen);
6736 	cpl->ctrl1 = htobe64(ctrl1);
6737 
6738 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6739 	p = (uintptr_t)(cpl + 1);
6740 	m_copydata(m0, 0, immhdrs, (void *)p);
6741 
6742 	/* SGL */
6743 	if (nsegs > 0) {
6744 		int i, pad;
6745 
6746 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6747 		p += immhdrs;
6748 		pad = 16 - (immhdrs & 0xf);
6749 		bzero((void *)p, pad);
6750 
6751 		usgl = (void *)(p + pad);
6752 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6753 		    V_ULPTX_NSGE(nsegs));
6754 
6755 		sglist_init(&sg, nitems(segs), segs);
6756 		for (; m0 != NULL; m0 = m0->m_next) {
6757 			if (__predict_false(m0->m_len == 0))
6758 				continue;
6759 			if (immhdrs >= m0->m_len) {
6760 				immhdrs -= m0->m_len;
6761 				continue;
6762 			}
6763 			if (m0->m_flags & M_EXTPG)
6764 				sglist_append_mbuf_epg(&sg, m0,
6765 				    mtod(m0, vm_offset_t), m0->m_len);
6766                         else
6767 				sglist_append(&sg, mtod(m0, char *) + immhdrs,
6768 				    m0->m_len - immhdrs);
6769 			immhdrs = 0;
6770 		}
6771 		MPASS(sg.sg_nseg == nsegs);
6772 
6773 		/*
6774 		 * Zero pad last 8B in case the WR doesn't end on a 16B
6775 		 * boundary.
6776 		 */
6777 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6778 
6779 		usgl->len0 = htobe32(segs[0].ss_len);
6780 		usgl->addr0 = htobe64(segs[0].ss_paddr);
6781 		for (i = 0; i < nsegs - 1; i++) {
6782 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6783 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6784 		}
6785 		if (i & 1)
6786 			usgl->sge[i / 2].len[1] = htobe32(0);
6787 	}
6788 
6789 }
6790 
6791 static void
6792 ethofld_tx(struct cxgbe_rate_tag *cst)
6793 {
6794 	struct mbuf *m;
6795 	struct wrq_cookie cookie;
6796 	int next_credits, compl;
6797 	struct fw_eth_tx_eo_wr *wr;
6798 
6799 	mtx_assert(&cst->lock, MA_OWNED);
6800 
6801 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6802 		M_ASSERTPKTHDR(m);
6803 
6804 		/* How many len16 credits do we need to send this mbuf. */
6805 		next_credits = mbuf_eo_len16(m);
6806 		MPASS(next_credits > 0);
6807 		if (next_credits > cst->tx_credits) {
6808 			/*
6809 			 * Tx will make progress eventually because there is at
6810 			 * least one outstanding fw4_ack that will return
6811 			 * credits and kick the tx.
6812 			 */
6813 			MPASS(cst->ncompl > 0);
6814 			return;
6815 		}
6816 		wr = start_wrq_wr(&cst->eo_txq->wrq, next_credits, &cookie);
6817 		if (__predict_false(wr == NULL)) {
6818 			/* XXX: wishful thinking, not a real assertion. */
6819 			MPASS(cst->ncompl > 0);
6820 			return;
6821 		}
6822 		cst->tx_credits -= next_credits;
6823 		cst->tx_nocompl += next_credits;
6824 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
6825 		ETHER_BPF_MTAP(cst->com.ifp, m);
6826 		write_ethofld_wr(cst, wr, m, compl);
6827 		commit_wrq_wr(&cst->eo_txq->wrq, wr, &cookie);
6828 		if (compl) {
6829 			cst->ncompl++;
6830 			cst->tx_nocompl	= 0;
6831 		}
6832 		(void) mbufq_dequeue(&cst->pending_tx);
6833 
6834 		/*
6835 		 * Drop the mbuf's reference on the tag now rather
6836 		 * than waiting until m_freem().  This ensures that
6837 		 * cxgbe_rate_tag_free gets called when the inp drops
6838 		 * its reference on the tag and there are no more
6839 		 * mbufs in the pending_tx queue and can flush any
6840 		 * pending requests.  Otherwise if the last mbuf
6841 		 * doesn't request a completion the etid will never be
6842 		 * released.
6843 		 */
6844 		m->m_pkthdr.snd_tag = NULL;
6845 		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
6846 		m_snd_tag_rele(&cst->com);
6847 
6848 		mbufq_enqueue(&cst->pending_fwack, m);
6849 	}
6850 }
6851 
6852 int
6853 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
6854 {
6855 	struct cxgbe_rate_tag *cst;
6856 	int rc;
6857 
6858 	MPASS(m0->m_nextpkt == NULL);
6859 	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
6860 	MPASS(m0->m_pkthdr.snd_tag != NULL);
6861 	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
6862 
6863 	mtx_lock(&cst->lock);
6864 	MPASS(cst->flags & EO_SND_TAG_REF);
6865 
6866 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
6867 		struct vi_info *vi = ifp->if_softc;
6868 		struct port_info *pi = vi->pi;
6869 		struct adapter *sc = pi->adapter;
6870 		const uint32_t rss_mask = vi->rss_size - 1;
6871 		uint32_t rss_hash;
6872 
6873 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
6874 		if (M_HASHTYPE_ISHASH(m0))
6875 			rss_hash = m0->m_pkthdr.flowid;
6876 		else
6877 			rss_hash = arc4random();
6878 		/* We assume RSS hashing */
6879 		cst->iqid = vi->rss[rss_hash & rss_mask];
6880 		cst->eo_txq += rss_hash % vi->nofldtxq;
6881 		rc = send_etid_flowc_wr(cst, pi, vi);
6882 		if (rc != 0)
6883 			goto done;
6884 	}
6885 
6886 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
6887 		rc = ENOBUFS;
6888 		goto done;
6889 	}
6890 
6891 	mbufq_enqueue(&cst->pending_tx, m0);
6892 	cst->plen += m0->m_pkthdr.len;
6893 
6894 	/*
6895 	 * Hold an extra reference on the tag while generating work
6896 	 * requests to ensure that we don't try to free the tag during
6897 	 * ethofld_tx() in case we are sending the final mbuf after
6898 	 * the inp was freed.
6899 	 */
6900 	m_snd_tag_ref(&cst->com);
6901 	ethofld_tx(cst);
6902 	mtx_unlock(&cst->lock);
6903 	m_snd_tag_rele(&cst->com);
6904 	return (0);
6905 
6906 done:
6907 	mtx_unlock(&cst->lock);
6908 	if (__predict_false(rc != 0))
6909 		m_freem(m0);
6910 	return (rc);
6911 }
6912 
6913 static int
6914 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
6915 {
6916 	struct adapter *sc = iq->adapter;
6917 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
6918 	struct mbuf *m;
6919 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
6920 	struct cxgbe_rate_tag *cst;
6921 	uint8_t credits = cpl->credits;
6922 
6923 	cst = lookup_etid(sc, etid);
6924 	mtx_lock(&cst->lock);
6925 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
6926 		MPASS(credits >= ETID_FLOWC_LEN16);
6927 		credits -= ETID_FLOWC_LEN16;
6928 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
6929 	}
6930 
6931 	KASSERT(cst->ncompl > 0,
6932 	    ("%s: etid %u (%p) wasn't expecting completion.",
6933 	    __func__, etid, cst));
6934 	cst->ncompl--;
6935 
6936 	while (credits > 0) {
6937 		m = mbufq_dequeue(&cst->pending_fwack);
6938 		if (__predict_false(m == NULL)) {
6939 			/*
6940 			 * The remaining credits are for the final flush that
6941 			 * was issued when the tag was freed by the kernel.
6942 			 */
6943 			MPASS((cst->flags &
6944 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
6945 			    EO_FLUSH_RPL_PENDING);
6946 			MPASS(credits == ETID_FLUSH_LEN16);
6947 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
6948 			MPASS(cst->ncompl == 0);
6949 
6950 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
6951 			cst->tx_credits += cpl->credits;
6952 			cxgbe_rate_tag_free_locked(cst);
6953 			return (0);	/* cst is gone. */
6954 		}
6955 		KASSERT(m != NULL,
6956 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
6957 		    credits));
6958 		KASSERT(credits >= mbuf_eo_len16(m),
6959 		    ("%s: too few credits (%u, %u, %u)", __func__,
6960 		    cpl->credits, credits, mbuf_eo_len16(m)));
6961 		credits -= mbuf_eo_len16(m);
6962 		cst->plen -= m->m_pkthdr.len;
6963 		m_freem(m);
6964 	}
6965 
6966 	cst->tx_credits += cpl->credits;
6967 	MPASS(cst->tx_credits <= cst->tx_total);
6968 
6969 	if (cst->flags & EO_SND_TAG_REF) {
6970 		/*
6971 		 * As with ethofld_transmit(), hold an extra reference
6972 		 * so that the tag is stable across ethold_tx().
6973 		 */
6974 		m_snd_tag_ref(&cst->com);
6975 		m = mbufq_first(&cst->pending_tx);
6976 		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
6977 			ethofld_tx(cst);
6978 		mtx_unlock(&cst->lock);
6979 		m_snd_tag_rele(&cst->com);
6980 	} else {
6981 		/*
6982 		 * There shouldn't be any pending packets if the tag
6983 		 * was freed by the kernel since any pending packet
6984 		 * should hold a reference to the tag.
6985 		 */
6986 		MPASS(mbufq_first(&cst->pending_tx) == NULL);
6987 		mtx_unlock(&cst->lock);
6988 	}
6989 
6990 	return (0);
6991 }
6992 #endif
6993