xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision e17f5b1d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_kern_tls.h"
36 #include "opt_ratelimit.h"
37 
38 #include <sys/types.h>
39 #include <sys/eventhandler.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/malloc.h>
45 #include <sys/queue.h>
46 #include <sys/sbuf.h>
47 #include <sys/taskqueue.h>
48 #include <sys/time.h>
49 #include <sys/sglist.h>
50 #include <sys/sysctl.h>
51 #include <sys/smp.h>
52 #include <sys/socketvar.h>
53 #include <sys/counter.h>
54 #include <net/bpf.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_vlan_var.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/ip6.h>
61 #include <netinet/tcp.h>
62 #include <netinet/udp.h>
63 #include <machine/in_cksum.h>
64 #include <machine/md_var.h>
65 #include <vm/vm.h>
66 #include <vm/pmap.h>
67 #ifdef DEV_NETMAP
68 #include <machine/bus.h>
69 #include <sys/selinfo.h>
70 #include <net/if_var.h>
71 #include <net/netmap.h>
72 #include <dev/netmap/netmap_kern.h>
73 #endif
74 
75 #include "common/common.h"
76 #include "common/t4_regs.h"
77 #include "common/t4_regs_values.h"
78 #include "common/t4_msg.h"
79 #include "t4_l2t.h"
80 #include "t4_mp_ring.h"
81 
82 #ifdef T4_PKT_TIMESTAMP
83 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
84 #else
85 #define RX_COPY_THRESHOLD MINCLSIZE
86 #endif
87 
88 /* Internal mbuf flags stored in PH_loc.eight[1]. */
89 #define	MC_NOMAP		0x01
90 #define	MC_RAW_WR		0x02
91 #define	MC_TLS			0x04
92 
93 /*
94  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
95  * 0-7 are valid values.
96  */
97 static int fl_pktshift = 0;
98 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
99     "payload DMA offset in rx buffer (bytes)");
100 
101 /*
102  * Pad ethernet payload up to this boundary.
103  * -1: driver should figure out a good value.
104  *  0: disable padding.
105  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
106  */
107 int fl_pad = -1;
108 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
109     "payload pad boundary (bytes)");
110 
111 /*
112  * Status page length.
113  * -1: driver should figure out a good value.
114  *  64 or 128 are the only other valid values.
115  */
116 static int spg_len = -1;
117 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
118     "status page size (bytes)");
119 
120 /*
121  * Congestion drops.
122  * -1: no congestion feedback (not recommended).
123  *  0: backpressure the channel instead of dropping packets right away.
124  *  1: no backpressure, drop packets for the congested queue immediately.
125  */
126 static int cong_drop = 0;
127 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
128     "Congestion control for RX queues (0 = backpressure, 1 = drop");
129 
130 /*
131  * Deliver multiple frames in the same free list buffer if they fit.
132  * -1: let the driver decide whether to enable buffer packing or not.
133  *  0: disable buffer packing.
134  *  1: enable buffer packing.
135  */
136 static int buffer_packing = -1;
137 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
138     0, "Enable buffer packing");
139 
140 /*
141  * Start next frame in a packed buffer at this boundary.
142  * -1: driver should figure out a good value.
143  * T4: driver will ignore this and use the same value as fl_pad above.
144  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
145  */
146 static int fl_pack = -1;
147 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
148     "payload pack boundary (bytes)");
149 
150 /*
151  * Largest rx cluster size that the driver is allowed to allocate.
152  */
153 static int largest_rx_cluster = MJUM16BYTES;
154 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
155     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
156 
157 /*
158  * Size of cluster allocation that's most likely to succeed.  The driver will
159  * fall back to this size if it fails to allocate clusters larger than this.
160  */
161 static int safest_rx_cluster = PAGE_SIZE;
162 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
163     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
164 
165 #ifdef RATELIMIT
166 /*
167  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
168  * for rewriting.  -1 and 0-3 are all valid values.
169  * -1: hardware should leave the TCP timestamps alone.
170  * 0: 1ms
171  * 1: 100us
172  * 2: 10us
173  * 3: 1us
174  */
175 static int tsclk = -1;
176 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
177     "Control TCP timestamp rewriting when using pacing");
178 
179 static int eo_max_backlog = 1024 * 1024;
180 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
181     0, "Maximum backlog of ratelimited data per flow");
182 #endif
183 
184 /*
185  * The interrupt holdoff timers are multiplied by this value on T6+.
186  * 1 and 3-17 (both inclusive) are legal values.
187  */
188 static int tscale = 1;
189 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
190     "Interrupt holdoff timer scale on T6+");
191 
192 /*
193  * Number of LRO entries in the lro_ctrl structure per rx queue.
194  */
195 static int lro_entries = TCP_LRO_ENTRIES;
196 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
197     "Number of LRO entries per RX queue");
198 
199 /*
200  * This enables presorting of frames before they're fed into tcp_lro_rx.
201  */
202 static int lro_mbufs = 0;
203 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
204     "Enable presorting of LRO frames");
205 
206 static int service_iq(struct sge_iq *, int);
207 static int service_iq_fl(struct sge_iq *, int);
208 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
209 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
210     u_int);
211 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
212 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
213 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
214     uint16_t, char *);
215 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
216     bus_addr_t *, void **);
217 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
218     void *);
219 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
220     int, int);
221 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
222 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
223     struct sge_iq *);
224 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
225     struct sysctl_oid *, struct sge_fl *);
226 static int alloc_fwq(struct adapter *);
227 static int free_fwq(struct adapter *);
228 static int alloc_ctrlq(struct adapter *, struct sge_wrq *, int,
229     struct sysctl_oid *);
230 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
231     struct sysctl_oid *);
232 static int free_rxq(struct vi_info *, struct sge_rxq *);
233 #ifdef TCP_OFFLOAD
234 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
235     struct sysctl_oid *);
236 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
237 #endif
238 #ifdef DEV_NETMAP
239 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
240     struct sysctl_oid *);
241 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
242 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
243     struct sysctl_oid *);
244 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
245 #endif
246 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
247 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
248 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
249 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
250 #endif
251 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
252 static int free_eq(struct adapter *, struct sge_eq *);
253 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
254     struct sysctl_oid *);
255 static int free_wrq(struct adapter *, struct sge_wrq *);
256 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
257     struct sysctl_oid *);
258 static int free_txq(struct vi_info *, struct sge_txq *);
259 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
260 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
261 static int refill_fl(struct adapter *, struct sge_fl *, int);
262 static void refill_sfl(void *);
263 static int alloc_fl_sdesc(struct sge_fl *);
264 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
265 static int find_refill_source(struct adapter *, int, bool);
266 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
267 
268 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
269 static inline u_int txpkt_len16(u_int, u_int);
270 static inline u_int txpkt_vm_len16(u_int, u_int);
271 static inline u_int txpkts0_len16(u_int);
272 static inline u_int txpkts1_len16(void);
273 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
274 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
275     u_int);
276 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
277     struct mbuf *);
278 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
279     int, bool *);
280 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
281     int, bool *);
282 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
283 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
284 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
285 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
286 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
287 static inline uint16_t read_hw_cidx(struct sge_eq *);
288 static inline u_int reclaimable_tx_desc(struct sge_eq *);
289 static inline u_int total_available_tx_desc(struct sge_eq *);
290 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
291 static void tx_reclaim(void *, int);
292 static __be64 get_flit(struct sglist_seg *, int, int);
293 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
294     struct mbuf *);
295 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
296     struct mbuf *);
297 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
298 static void wrq_tx_drain(void *, int);
299 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
300 
301 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
302 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
303 #ifdef RATELIMIT
304 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
305 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
306     struct mbuf *);
307 #endif
308 
309 static counter_u64_t extfree_refs;
310 static counter_u64_t extfree_rels;
311 
312 an_handler_t t4_an_handler;
313 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
314 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
315 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
316 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
317 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
318 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
319 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
320 
321 void
322 t4_register_an_handler(an_handler_t h)
323 {
324 	uintptr_t *loc;
325 
326 	MPASS(h == NULL || t4_an_handler == NULL);
327 
328 	loc = (uintptr_t *)&t4_an_handler;
329 	atomic_store_rel_ptr(loc, (uintptr_t)h);
330 }
331 
332 void
333 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
334 {
335 	uintptr_t *loc;
336 
337 	MPASS(type < nitems(t4_fw_msg_handler));
338 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
339 	/*
340 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
341 	 * handler dispatch table.  Reject any attempt to install a handler for
342 	 * this subtype.
343 	 */
344 	MPASS(type != FW_TYPE_RSSCPL);
345 	MPASS(type != FW6_TYPE_RSSCPL);
346 
347 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
348 	atomic_store_rel_ptr(loc, (uintptr_t)h);
349 }
350 
351 void
352 t4_register_cpl_handler(int opcode, cpl_handler_t h)
353 {
354 	uintptr_t *loc;
355 
356 	MPASS(opcode < nitems(t4_cpl_handler));
357 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
358 
359 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
360 	atomic_store_rel_ptr(loc, (uintptr_t)h);
361 }
362 
363 static int
364 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
365     struct mbuf *m)
366 {
367 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
368 	u_int tid;
369 	int cookie;
370 
371 	MPASS(m == NULL);
372 
373 	tid = GET_TID(cpl);
374 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
375 		/*
376 		 * The return code for filter-write is put in the CPL cookie so
377 		 * we have to rely on the hardware tid (is_ftid) to determine
378 		 * that this is a response to a filter.
379 		 */
380 		cookie = CPL_COOKIE_FILTER;
381 	} else {
382 		cookie = G_COOKIE(cpl->cookie);
383 	}
384 	MPASS(cookie > CPL_COOKIE_RESERVED);
385 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
386 
387 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
388 }
389 
390 static int
391 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
392     struct mbuf *m)
393 {
394 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
395 	unsigned int cookie;
396 
397 	MPASS(m == NULL);
398 
399 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
400 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
401 }
402 
403 static int
404 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
405     struct mbuf *m)
406 {
407 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
408 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
409 
410 	MPASS(m == NULL);
411 	MPASS(cookie != CPL_COOKIE_RESERVED);
412 
413 	return (act_open_rpl_handlers[cookie](iq, rss, m));
414 }
415 
416 static int
417 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
418     struct mbuf *m)
419 {
420 	struct adapter *sc = iq->adapter;
421 	u_int cookie;
422 
423 	MPASS(m == NULL);
424 	if (is_hashfilter(sc))
425 		cookie = CPL_COOKIE_HASHFILTER;
426 	else
427 		cookie = CPL_COOKIE_TOM;
428 
429 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
430 }
431 
432 static int
433 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
434 {
435 	struct adapter *sc = iq->adapter;
436 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
437 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
438 	u_int cookie;
439 
440 	MPASS(m == NULL);
441 	if (is_etid(sc, tid))
442 		cookie = CPL_COOKIE_ETHOFLD;
443 	else
444 		cookie = CPL_COOKIE_TOM;
445 
446 	return (fw4_ack_handlers[cookie](iq, rss, m));
447 }
448 
449 static void
450 t4_init_shared_cpl_handlers(void)
451 {
452 
453 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
454 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
455 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
456 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
457 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
458 }
459 
460 void
461 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
462 {
463 	uintptr_t *loc;
464 
465 	MPASS(opcode < nitems(t4_cpl_handler));
466 	MPASS(cookie > CPL_COOKIE_RESERVED);
467 	MPASS(cookie < NUM_CPL_COOKIES);
468 	MPASS(t4_cpl_handler[opcode] != NULL);
469 
470 	switch (opcode) {
471 	case CPL_SET_TCB_RPL:
472 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
473 		break;
474 	case CPL_L2T_WRITE_RPL:
475 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
476 		break;
477 	case CPL_ACT_OPEN_RPL:
478 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
479 		break;
480 	case CPL_ABORT_RPL_RSS:
481 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
482 		break;
483 	case CPL_FW4_ACK:
484 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
485 		break;
486 	default:
487 		MPASS(0);
488 		return;
489 	}
490 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
491 	atomic_store_rel_ptr(loc, (uintptr_t)h);
492 }
493 
494 /*
495  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
496  */
497 void
498 t4_sge_modload(void)
499 {
500 
501 	if (fl_pktshift < 0 || fl_pktshift > 7) {
502 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
503 		    " using 0 instead.\n", fl_pktshift);
504 		fl_pktshift = 0;
505 	}
506 
507 	if (spg_len != 64 && spg_len != 128) {
508 		int len;
509 
510 #if defined(__i386__) || defined(__amd64__)
511 		len = cpu_clflush_line_size > 64 ? 128 : 64;
512 #else
513 		len = 64;
514 #endif
515 		if (spg_len != -1) {
516 			printf("Invalid hw.cxgbe.spg_len value (%d),"
517 			    " using %d instead.\n", spg_len, len);
518 		}
519 		spg_len = len;
520 	}
521 
522 	if (cong_drop < -1 || cong_drop > 1) {
523 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
524 		    " using 0 instead.\n", cong_drop);
525 		cong_drop = 0;
526 	}
527 
528 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
529 		printf("Invalid hw.cxgbe.tscale value (%d),"
530 		    " using 1 instead.\n", tscale);
531 		tscale = 1;
532 	}
533 
534 	extfree_refs = counter_u64_alloc(M_WAITOK);
535 	extfree_rels = counter_u64_alloc(M_WAITOK);
536 	counter_u64_zero(extfree_refs);
537 	counter_u64_zero(extfree_rels);
538 
539 	t4_init_shared_cpl_handlers();
540 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
541 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
542 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
543 #ifdef RATELIMIT
544 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
545 	    CPL_COOKIE_ETHOFLD);
546 #endif
547 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
548 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
549 }
550 
551 void
552 t4_sge_modunload(void)
553 {
554 
555 	counter_u64_free(extfree_refs);
556 	counter_u64_free(extfree_rels);
557 }
558 
559 uint64_t
560 t4_sge_extfree_refs(void)
561 {
562 	uint64_t refs, rels;
563 
564 	rels = counter_u64_fetch(extfree_rels);
565 	refs = counter_u64_fetch(extfree_refs);
566 
567 	return (refs - rels);
568 }
569 
570 /* max 4096 */
571 #define MAX_PACK_BOUNDARY 512
572 
573 static inline void
574 setup_pad_and_pack_boundaries(struct adapter *sc)
575 {
576 	uint32_t v, m;
577 	int pad, pack, pad_shift;
578 
579 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
580 	    X_INGPADBOUNDARY_SHIFT;
581 	pad = fl_pad;
582 	if (fl_pad < (1 << pad_shift) ||
583 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
584 	    !powerof2(fl_pad)) {
585 		/*
586 		 * If there is any chance that we might use buffer packing and
587 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
588 		 * it to the minimum allowed in all other cases.
589 		 */
590 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
591 
592 		/*
593 		 * For fl_pad = 0 we'll still write a reasonable value to the
594 		 * register but all the freelists will opt out of padding.
595 		 * We'll complain here only if the user tried to set it to a
596 		 * value greater than 0 that was invalid.
597 		 */
598 		if (fl_pad > 0) {
599 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
600 			    " (%d), using %d instead.\n", fl_pad, pad);
601 		}
602 	}
603 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
604 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
605 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
606 
607 	if (is_t4(sc)) {
608 		if (fl_pack != -1 && fl_pack != pad) {
609 			/* Complain but carry on. */
610 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
611 			    " using %d instead.\n", fl_pack, pad);
612 		}
613 		return;
614 	}
615 
616 	pack = fl_pack;
617 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
618 	    !powerof2(fl_pack)) {
619 		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
620 			pack = MAX_PACK_BOUNDARY;
621 		else
622 			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
623 		MPASS(powerof2(pack));
624 		if (pack < 16)
625 			pack = 16;
626 		if (pack == 32)
627 			pack = 64;
628 		if (pack > 4096)
629 			pack = 4096;
630 		if (fl_pack != -1) {
631 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
632 			    " (%d), using %d instead.\n", fl_pack, pack);
633 		}
634 	}
635 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
636 	if (pack == 16)
637 		v = V_INGPACKBOUNDARY(0);
638 	else
639 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
640 
641 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
642 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
643 }
644 
645 /*
646  * adap->params.vpd.cclk must be set up before this is called.
647  */
648 void
649 t4_tweak_chip_settings(struct adapter *sc)
650 {
651 	int i, reg;
652 	uint32_t v, m;
653 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
654 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
655 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
656 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
657 	static int sw_buf_sizes[] = {
658 		MCLBYTES,
659 #if MJUMPAGESIZE != MCLBYTES
660 		MJUMPAGESIZE,
661 #endif
662 		MJUM9BYTES,
663 		MJUM16BYTES
664 	};
665 
666 	KASSERT(sc->flags & MASTER_PF,
667 	    ("%s: trying to change chip settings when not master.", __func__));
668 
669 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
670 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
671 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
672 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
673 
674 	setup_pad_and_pack_boundaries(sc);
675 
676 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
677 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
678 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
679 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
680 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
681 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
682 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
683 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
684 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
685 
686 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
687 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
688 	reg = A_SGE_FL_BUFFER_SIZE2;
689 	for (i = 0; i < nitems(sw_buf_sizes); i++) {
690 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
691 		t4_write_reg(sc, reg, sw_buf_sizes[i]);
692 		reg += 4;
693 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
694 		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
695 		reg += 4;
696 	}
697 
698 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
699 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
700 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
701 
702 	KASSERT(intr_timer[0] <= timer_max,
703 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
704 	    timer_max));
705 	for (i = 1; i < nitems(intr_timer); i++) {
706 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
707 		    ("%s: timers not listed in increasing order (%d)",
708 		    __func__, i));
709 
710 		while (intr_timer[i] > timer_max) {
711 			if (i == nitems(intr_timer) - 1) {
712 				intr_timer[i] = timer_max;
713 				break;
714 			}
715 			intr_timer[i] += intr_timer[i - 1];
716 			intr_timer[i] /= 2;
717 		}
718 	}
719 
720 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
721 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
722 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
723 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
724 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
725 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
726 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
727 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
728 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
729 
730 	if (chip_id(sc) >= CHELSIO_T6) {
731 		m = V_TSCALE(M_TSCALE);
732 		if (tscale == 1)
733 			v = 0;
734 		else
735 			v = V_TSCALE(tscale - 2);
736 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
737 
738 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
739 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
740 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
741 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
742 			v &= ~m;
743 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
744 			    V_WRTHRTHRESH(16);
745 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
746 		}
747 	}
748 
749 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
750 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
751 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
752 
753 	/*
754 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
755 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
756 	 * may have to deal with is MAXPHYS + 1 page.
757 	 */
758 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
759 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
760 
761 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
762 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
763 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
764 
765 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
766 	    F_RESETDDPOFFSET;
767 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
768 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
769 }
770 
771 /*
772  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
773  * address mut be 16B aligned.  If padding is in use the buffer's start and end
774  * need to be aligned to the pad boundary as well.  We'll just make sure that
775  * the size is a multiple of the pad boundary here, it is up to the buffer
776  * allocation code to make sure the start of the buffer is aligned.
777  */
778 static inline int
779 hwsz_ok(struct adapter *sc, int hwsz)
780 {
781 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
782 
783 	return (hwsz >= 64 && (hwsz & mask) == 0);
784 }
785 
786 /*
787  * XXX: driver really should be able to deal with unexpected settings.
788  */
789 int
790 t4_read_chip_settings(struct adapter *sc)
791 {
792 	struct sge *s = &sc->sge;
793 	struct sge_params *sp = &sc->params.sge;
794 	int i, j, n, rc = 0;
795 	uint32_t m, v, r;
796 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
797 	static int sw_buf_sizes[] = {	/* Sorted by size */
798 		MCLBYTES,
799 #if MJUMPAGESIZE != MCLBYTES
800 		MJUMPAGESIZE,
801 #endif
802 		MJUM9BYTES,
803 		MJUM16BYTES
804 	};
805 	struct rx_buf_info *rxb;
806 
807 	m = F_RXPKTCPLMODE;
808 	v = F_RXPKTCPLMODE;
809 	r = sc->params.sge.sge_control;
810 	if ((r & m) != v) {
811 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
812 		rc = EINVAL;
813 	}
814 
815 	/*
816 	 * If this changes then every single use of PAGE_SHIFT in the driver
817 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
818 	 */
819 	if (sp->page_shift != PAGE_SHIFT) {
820 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
821 		rc = EINVAL;
822 	}
823 
824 	s->safe_zidx = -1;
825 	rxb = &s->rx_buf_info[0];
826 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
827 		rxb->size1 = sw_buf_sizes[i];
828 		rxb->zone = m_getzone(rxb->size1);
829 		rxb->type = m_gettype(rxb->size1);
830 		rxb->size2 = 0;
831 		rxb->hwidx1 = -1;
832 		rxb->hwidx2 = -1;
833 		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
834 			int hwsize = sp->sge_fl_buffer_size[j];
835 
836 			if (!hwsz_ok(sc, hwsize))
837 				continue;
838 
839 			/* hwidx for size1 */
840 			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
841 				rxb->hwidx1 = j;
842 
843 			/* hwidx for size2 (buffer packing) */
844 			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
845 				continue;
846 			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
847 			if (n == 0) {
848 				rxb->hwidx2 = j;
849 				rxb->size2 = hwsize;
850 				break;	/* stop looking */
851 			}
852 			if (rxb->hwidx2 != -1) {
853 				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
854 				    hwsize - CL_METADATA_SIZE) {
855 					rxb->hwidx2 = j;
856 					rxb->size2 = hwsize;
857 				}
858 			} else if (n <= 2 * CL_METADATA_SIZE) {
859 				rxb->hwidx2 = j;
860 				rxb->size2 = hwsize;
861 			}
862 		}
863 		if (rxb->hwidx2 != -1)
864 			sc->flags |= BUF_PACKING_OK;
865 		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
866 			s->safe_zidx = i;
867 	}
868 
869 	if (sc->flags & IS_VF)
870 		return (0);
871 
872 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
873 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
874 	if (r != v) {
875 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
876 		rc = EINVAL;
877 	}
878 
879 	m = v = F_TDDPTAGTCB;
880 	r = t4_read_reg(sc, A_ULP_RX_CTL);
881 	if ((r & m) != v) {
882 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
883 		rc = EINVAL;
884 	}
885 
886 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
887 	    F_RESETDDPOFFSET;
888 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
889 	r = t4_read_reg(sc, A_TP_PARA_REG5);
890 	if ((r & m) != v) {
891 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
892 		rc = EINVAL;
893 	}
894 
895 	t4_init_tp_params(sc, 1);
896 
897 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
898 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
899 
900 	return (rc);
901 }
902 
903 int
904 t4_create_dma_tag(struct adapter *sc)
905 {
906 	int rc;
907 
908 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
909 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
910 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
911 	    NULL, &sc->dmat);
912 	if (rc != 0) {
913 		device_printf(sc->dev,
914 		    "failed to create main DMA tag: %d\n", rc);
915 	}
916 
917 	return (rc);
918 }
919 
920 void
921 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
922     struct sysctl_oid_list *children)
923 {
924 	struct sge_params *sp = &sc->params.sge;
925 
926 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
927 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
928 	    sysctl_bufsizes, "A", "freelist buffer sizes");
929 
930 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
931 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
932 
933 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
934 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
935 
936 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
937 	    NULL, sp->spg_len, "status page size (bytes)");
938 
939 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
940 	    NULL, cong_drop, "congestion drop setting");
941 
942 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
943 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
944 }
945 
946 int
947 t4_destroy_dma_tag(struct adapter *sc)
948 {
949 	if (sc->dmat)
950 		bus_dma_tag_destroy(sc->dmat);
951 
952 	return (0);
953 }
954 
955 /*
956  * Allocate and initialize the firmware event queue, control queues, and special
957  * purpose rx queues owned by the adapter.
958  *
959  * Returns errno on failure.  Resources allocated up to that point may still be
960  * allocated.  Caller is responsible for cleanup in case this function fails.
961  */
962 int
963 t4_setup_adapter_queues(struct adapter *sc)
964 {
965 	struct sysctl_oid *oid;
966 	struct sysctl_oid_list *children;
967 	int rc, i;
968 
969 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
970 
971 	sysctl_ctx_init(&sc->ctx);
972 	sc->flags |= ADAP_SYSCTL_CTX;
973 
974 	/*
975 	 * Firmware event queue
976 	 */
977 	rc = alloc_fwq(sc);
978 	if (rc != 0)
979 		return (rc);
980 
981 	/*
982 	 * That's all for the VF driver.
983 	 */
984 	if (sc->flags & IS_VF)
985 		return (rc);
986 
987 	oid = device_get_sysctl_tree(sc->dev);
988 	children = SYSCTL_CHILDREN(oid);
989 
990 	/*
991 	 * XXX: General purpose rx queues, one per port.
992 	 */
993 
994 	/*
995 	 * Control queues, one per port.
996 	 */
997 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "ctrlq",
998 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
999 	for_each_port(sc, i) {
1000 		struct sge_wrq *ctrlq = &sc->sge.ctrlq[i];
1001 
1002 		rc = alloc_ctrlq(sc, ctrlq, i, oid);
1003 		if (rc != 0)
1004 			return (rc);
1005 	}
1006 
1007 	return (rc);
1008 }
1009 
1010 /*
1011  * Idempotent
1012  */
1013 int
1014 t4_teardown_adapter_queues(struct adapter *sc)
1015 {
1016 	int i;
1017 
1018 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1019 
1020 	/* Do this before freeing the queue */
1021 	if (sc->flags & ADAP_SYSCTL_CTX) {
1022 		sysctl_ctx_free(&sc->ctx);
1023 		sc->flags &= ~ADAP_SYSCTL_CTX;
1024 	}
1025 
1026 	if (!(sc->flags & IS_VF)) {
1027 		for_each_port(sc, i)
1028 			free_wrq(sc, &sc->sge.ctrlq[i]);
1029 	}
1030 	free_fwq(sc);
1031 
1032 	return (0);
1033 }
1034 
1035 /* Maximum payload that can be delivered with a single iq descriptor */
1036 static inline int
1037 mtu_to_max_payload(struct adapter *sc, int mtu)
1038 {
1039 
1040 	/* large enough even when hw VLAN extraction is disabled */
1041 	return (sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1042 	    ETHER_VLAN_ENCAP_LEN + mtu);
1043 }
1044 
1045 int
1046 t4_setup_vi_queues(struct vi_info *vi)
1047 {
1048 	int rc = 0, i, intr_idx, iqidx;
1049 	struct sge_rxq *rxq;
1050 	struct sge_txq *txq;
1051 #ifdef TCP_OFFLOAD
1052 	struct sge_ofld_rxq *ofld_rxq;
1053 #endif
1054 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1055 	struct sge_wrq *ofld_txq;
1056 #endif
1057 #ifdef DEV_NETMAP
1058 	int saved_idx;
1059 	struct sge_nm_rxq *nm_rxq;
1060 	struct sge_nm_txq *nm_txq;
1061 #endif
1062 	char name[16];
1063 	struct port_info *pi = vi->pi;
1064 	struct adapter *sc = pi->adapter;
1065 	struct ifnet *ifp = vi->ifp;
1066 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
1067 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1068 	int maxp, mtu = ifp->if_mtu;
1069 
1070 	/* Interrupt vector to start from (when using multiple vectors) */
1071 	intr_idx = vi->first_intr;
1072 
1073 #ifdef DEV_NETMAP
1074 	saved_idx = intr_idx;
1075 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1076 
1077 		/* netmap is supported with direct interrupts only. */
1078 		MPASS(!forwarding_intr_to_fwq(sc));
1079 
1080 		/*
1081 		 * We don't have buffers to back the netmap rx queues
1082 		 * right now so we create the queues in a way that
1083 		 * doesn't set off any congestion signal in the chip.
1084 		 */
1085 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1086 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queues");
1087 		for_each_nm_rxq(vi, i, nm_rxq) {
1088 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1089 			if (rc != 0)
1090 				goto done;
1091 			intr_idx++;
1092 		}
1093 
1094 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1095 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queues");
1096 		for_each_nm_txq(vi, i, nm_txq) {
1097 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1098 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid);
1099 			if (rc != 0)
1100 				goto done;
1101 		}
1102 	}
1103 
1104 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1105 	intr_idx = saved_idx;
1106 #endif
1107 
1108 	/*
1109 	 * Allocate rx queues first because a default iqid is required when
1110 	 * creating a tx queue.
1111 	 */
1112 	maxp = mtu_to_max_payload(sc, mtu);
1113 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1114 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queues");
1115 	for_each_rxq(vi, i, rxq) {
1116 
1117 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1118 
1119 		snprintf(name, sizeof(name), "%s rxq%d-fl",
1120 		    device_get_nameunit(vi->dev), i);
1121 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1122 
1123 		rc = alloc_rxq(vi, rxq,
1124 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1125 		if (rc != 0)
1126 			goto done;
1127 		intr_idx++;
1128 	}
1129 #ifdef DEV_NETMAP
1130 	if (ifp->if_capabilities & IFCAP_NETMAP)
1131 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1132 #endif
1133 #ifdef TCP_OFFLOAD
1134 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1135 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queues for offloaded TCP connections");
1136 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1137 
1138 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
1139 		    vi->qsize_rxq);
1140 
1141 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1142 		    device_get_nameunit(vi->dev), i);
1143 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1144 
1145 		rc = alloc_ofld_rxq(vi, ofld_rxq,
1146 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1147 		if (rc != 0)
1148 			goto done;
1149 		intr_idx++;
1150 	}
1151 #endif
1152 
1153 	/*
1154 	 * Now the tx queues.
1155 	 */
1156 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq",
1157 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queues");
1158 	for_each_txq(vi, i, txq) {
1159 		iqidx = vi->first_rxq + (i % vi->nrxq);
1160 		snprintf(name, sizeof(name), "%s txq%d",
1161 		    device_get_nameunit(vi->dev), i);
1162 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
1163 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1164 
1165 		rc = alloc_txq(vi, txq, i, oid);
1166 		if (rc != 0)
1167 			goto done;
1168 	}
1169 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1170 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1171 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queues for TOE/ETHOFLD");
1172 	for_each_ofld_txq(vi, i, ofld_txq) {
1173 		struct sysctl_oid *oid2;
1174 
1175 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1176 		    device_get_nameunit(vi->dev), i);
1177 		if (vi->nofldrxq > 0) {
1178 			iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq);
1179 			init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq,
1180 			    pi->tx_chan, sc->sge.ofld_rxq[iqidx].iq.cntxt_id,
1181 			    name);
1182 		} else {
1183 			iqidx = vi->first_rxq + (i % vi->nrxq);
1184 			init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq,
1185 			    pi->tx_chan, sc->sge.rxq[iqidx].iq.cntxt_id, name);
1186 		}
1187 
1188 		snprintf(name, sizeof(name), "%d", i);
1189 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1190 		    name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
1191 
1192 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1193 		if (rc != 0)
1194 			goto done;
1195 	}
1196 #endif
1197 done:
1198 	if (rc)
1199 		t4_teardown_vi_queues(vi);
1200 
1201 	return (rc);
1202 }
1203 
1204 /*
1205  * Idempotent
1206  */
1207 int
1208 t4_teardown_vi_queues(struct vi_info *vi)
1209 {
1210 	int i;
1211 	struct sge_rxq *rxq;
1212 	struct sge_txq *txq;
1213 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1214 	struct port_info *pi = vi->pi;
1215 	struct adapter *sc = pi->adapter;
1216 	struct sge_wrq *ofld_txq;
1217 #endif
1218 #ifdef TCP_OFFLOAD
1219 	struct sge_ofld_rxq *ofld_rxq;
1220 #endif
1221 #ifdef DEV_NETMAP
1222 	struct sge_nm_rxq *nm_rxq;
1223 	struct sge_nm_txq *nm_txq;
1224 #endif
1225 
1226 	/* Do this before freeing the queues */
1227 	if (vi->flags & VI_SYSCTL_CTX) {
1228 		sysctl_ctx_free(&vi->ctx);
1229 		vi->flags &= ~VI_SYSCTL_CTX;
1230 	}
1231 
1232 #ifdef DEV_NETMAP
1233 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1234 		for_each_nm_txq(vi, i, nm_txq) {
1235 			free_nm_txq(vi, nm_txq);
1236 		}
1237 
1238 		for_each_nm_rxq(vi, i, nm_rxq) {
1239 			free_nm_rxq(vi, nm_rxq);
1240 		}
1241 	}
1242 #endif
1243 
1244 	/*
1245 	 * Take down all the tx queues first, as they reference the rx queues
1246 	 * (for egress updates, etc.).
1247 	 */
1248 
1249 	for_each_txq(vi, i, txq) {
1250 		free_txq(vi, txq);
1251 	}
1252 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1253 	for_each_ofld_txq(vi, i, ofld_txq) {
1254 		free_wrq(sc, ofld_txq);
1255 	}
1256 #endif
1257 
1258 	/*
1259 	 * Then take down the rx queues.
1260 	 */
1261 
1262 	for_each_rxq(vi, i, rxq) {
1263 		free_rxq(vi, rxq);
1264 	}
1265 #ifdef TCP_OFFLOAD
1266 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1267 		free_ofld_rxq(vi, ofld_rxq);
1268 	}
1269 #endif
1270 
1271 	return (0);
1272 }
1273 
1274 /*
1275  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1276  * unusual scenario.
1277  *
1278  * a) Deals with errors, if any.
1279  * b) Services firmware event queue, which is taking interrupts for all other
1280  *    queues.
1281  */
1282 void
1283 t4_intr_all(void *arg)
1284 {
1285 	struct adapter *sc = arg;
1286 	struct sge_iq *fwq = &sc->sge.fwq;
1287 
1288 	MPASS(sc->intr_count == 1);
1289 
1290 	if (sc->intr_type == INTR_INTX)
1291 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1292 
1293 	t4_intr_err(arg);
1294 	t4_intr_evt(fwq);
1295 }
1296 
1297 /*
1298  * Interrupt handler for errors (installed directly when multiple interrupts are
1299  * being used, or called by t4_intr_all).
1300  */
1301 void
1302 t4_intr_err(void *arg)
1303 {
1304 	struct adapter *sc = arg;
1305 	uint32_t v;
1306 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1307 
1308 	if (sc->flags & ADAP_ERR)
1309 		return;
1310 
1311 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1312 	if (v & F_PFSW) {
1313 		sc->swintr++;
1314 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1315 	}
1316 
1317 	t4_slow_intr_handler(sc, verbose);
1318 }
1319 
1320 /*
1321  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1322  * such queue right now.
1323  */
1324 void
1325 t4_intr_evt(void *arg)
1326 {
1327 	struct sge_iq *iq = arg;
1328 
1329 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1330 		service_iq(iq, 0);
1331 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1332 	}
1333 }
1334 
1335 /*
1336  * Interrupt handler for iq+fl queues.
1337  */
1338 void
1339 t4_intr(void *arg)
1340 {
1341 	struct sge_iq *iq = arg;
1342 
1343 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1344 		service_iq_fl(iq, 0);
1345 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1346 	}
1347 }
1348 
1349 #ifdef DEV_NETMAP
1350 /*
1351  * Interrupt handler for netmap rx queues.
1352  */
1353 void
1354 t4_nm_intr(void *arg)
1355 {
1356 	struct sge_nm_rxq *nm_rxq = arg;
1357 
1358 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1359 		service_nm_rxq(nm_rxq);
1360 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1361 	}
1362 }
1363 
1364 /*
1365  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1366  */
1367 void
1368 t4_vi_intr(void *arg)
1369 {
1370 	struct irq *irq = arg;
1371 
1372 	MPASS(irq->nm_rxq != NULL);
1373 	t4_nm_intr(irq->nm_rxq);
1374 
1375 	MPASS(irq->rxq != NULL);
1376 	t4_intr(irq->rxq);
1377 }
1378 #endif
1379 
1380 /*
1381  * Deals with interrupts on an iq-only (no freelist) queue.
1382  */
1383 static int
1384 service_iq(struct sge_iq *iq, int budget)
1385 {
1386 	struct sge_iq *q;
1387 	struct adapter *sc = iq->adapter;
1388 	struct iq_desc *d = &iq->desc[iq->cidx];
1389 	int ndescs = 0, limit;
1390 	int rsp_type;
1391 	uint32_t lq;
1392 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1393 
1394 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1395 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1396 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1397 	    iq->flags));
1398 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1399 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1400 
1401 	limit = budget ? budget : iq->qsize / 16;
1402 
1403 	/*
1404 	 * We always come back and check the descriptor ring for new indirect
1405 	 * interrupts and other responses after running a single handler.
1406 	 */
1407 	for (;;) {
1408 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1409 
1410 			rmb();
1411 
1412 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1413 			lq = be32toh(d->rsp.pldbuflen_qid);
1414 
1415 			switch (rsp_type) {
1416 			case X_RSPD_TYPE_FLBUF:
1417 				panic("%s: data for an iq (%p) with no freelist",
1418 				    __func__, iq);
1419 
1420 				/* NOTREACHED */
1421 
1422 			case X_RSPD_TYPE_CPL:
1423 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1424 				    ("%s: bad opcode %02x.", __func__,
1425 				    d->rss.opcode));
1426 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1427 				break;
1428 
1429 			case X_RSPD_TYPE_INTR:
1430 				/*
1431 				 * There are 1K interrupt-capable queues (qids 0
1432 				 * through 1023).  A response type indicating a
1433 				 * forwarded interrupt with a qid >= 1K is an
1434 				 * iWARP async notification.
1435 				 */
1436 				if (__predict_true(lq >= 1024)) {
1437 					t4_an_handler(iq, &d->rsp);
1438 					break;
1439 				}
1440 
1441 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1442 				    sc->sge.iq_base];
1443 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1444 				    IQS_BUSY)) {
1445 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1446 						(void) atomic_cmpset_int(&q->state,
1447 						    IQS_BUSY, IQS_IDLE);
1448 					} else {
1449 						STAILQ_INSERT_TAIL(&iql, q,
1450 						    link);
1451 					}
1452 				}
1453 				break;
1454 
1455 			default:
1456 				KASSERT(0,
1457 				    ("%s: illegal response type %d on iq %p",
1458 				    __func__, rsp_type, iq));
1459 				log(LOG_ERR,
1460 				    "%s: illegal response type %d on iq %p",
1461 				    device_get_nameunit(sc->dev), rsp_type, iq);
1462 				break;
1463 			}
1464 
1465 			d++;
1466 			if (__predict_false(++iq->cidx == iq->sidx)) {
1467 				iq->cidx = 0;
1468 				iq->gen ^= F_RSPD_GEN;
1469 				d = &iq->desc[0];
1470 			}
1471 			if (__predict_false(++ndescs == limit)) {
1472 				t4_write_reg(sc, sc->sge_gts_reg,
1473 				    V_CIDXINC(ndescs) |
1474 				    V_INGRESSQID(iq->cntxt_id) |
1475 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1476 				ndescs = 0;
1477 
1478 				if (budget) {
1479 					return (EINPROGRESS);
1480 				}
1481 			}
1482 		}
1483 
1484 		if (STAILQ_EMPTY(&iql))
1485 			break;
1486 
1487 		/*
1488 		 * Process the head only, and send it to the back of the list if
1489 		 * it's still not done.
1490 		 */
1491 		q = STAILQ_FIRST(&iql);
1492 		STAILQ_REMOVE_HEAD(&iql, link);
1493 		if (service_iq_fl(q, q->qsize / 8) == 0)
1494 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1495 		else
1496 			STAILQ_INSERT_TAIL(&iql, q, link);
1497 	}
1498 
1499 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1500 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1501 
1502 	return (0);
1503 }
1504 
1505 static inline int
1506 sort_before_lro(struct lro_ctrl *lro)
1507 {
1508 
1509 	return (lro->lro_mbuf_max != 0);
1510 }
1511 
1512 static inline uint64_t
1513 last_flit_to_ns(struct adapter *sc, uint64_t lf)
1514 {
1515 	uint64_t n = be64toh(lf) & 0xfffffffffffffff;	/* 60b, not 64b. */
1516 
1517 	if (n > UINT64_MAX / 1000000)
1518 		return (n / sc->params.vpd.cclk * 1000000);
1519 	else
1520 		return (n * 1000000 / sc->params.vpd.cclk);
1521 }
1522 
1523 static inline void
1524 move_to_next_rxbuf(struct sge_fl *fl)
1525 {
1526 
1527 	fl->rx_offset = 0;
1528 	if (__predict_false((++fl->cidx & 7) == 0)) {
1529 		uint16_t cidx = fl->cidx >> 3;
1530 
1531 		if (__predict_false(cidx == fl->sidx))
1532 			fl->cidx = cidx = 0;
1533 		fl->hw_cidx = cidx;
1534 	}
1535 }
1536 
1537 /*
1538  * Deals with interrupts on an iq+fl queue.
1539  */
1540 static int
1541 service_iq_fl(struct sge_iq *iq, int budget)
1542 {
1543 	struct sge_rxq *rxq = iq_to_rxq(iq);
1544 	struct sge_fl *fl;
1545 	struct adapter *sc = iq->adapter;
1546 	struct iq_desc *d = &iq->desc[iq->cidx];
1547 	int ndescs, limit;
1548 	int rsp_type, starved;
1549 	uint32_t lq;
1550 	uint16_t fl_hw_cidx;
1551 	struct mbuf *m0;
1552 #if defined(INET) || defined(INET6)
1553 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1554 	struct lro_ctrl *lro = &rxq->lro;
1555 #endif
1556 
1557 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1558 	MPASS(iq->flags & IQ_HAS_FL);
1559 
1560 	ndescs = 0;
1561 #if defined(INET) || defined(INET6)
1562 	if (iq->flags & IQ_ADJ_CREDIT) {
1563 		MPASS(sort_before_lro(lro));
1564 		iq->flags &= ~IQ_ADJ_CREDIT;
1565 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1566 			tcp_lro_flush_all(lro);
1567 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1568 			    V_INGRESSQID((u32)iq->cntxt_id) |
1569 			    V_SEINTARM(iq->intr_params));
1570 			return (0);
1571 		}
1572 		ndescs = 1;
1573 	}
1574 #else
1575 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1576 #endif
1577 
1578 	limit = budget ? budget : iq->qsize / 16;
1579 	fl = &rxq->fl;
1580 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1581 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1582 
1583 		rmb();
1584 
1585 		m0 = NULL;
1586 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1587 		lq = be32toh(d->rsp.pldbuflen_qid);
1588 
1589 		switch (rsp_type) {
1590 		case X_RSPD_TYPE_FLBUF:
1591 			if (lq & F_RSPD_NEWBUF) {
1592 				if (fl->rx_offset > 0)
1593 					move_to_next_rxbuf(fl);
1594 				lq = G_RSPD_LEN(lq);
1595 			}
1596 			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1597 				FL_LOCK(fl);
1598 				refill_fl(sc, fl, 64);
1599 				FL_UNLOCK(fl);
1600 				fl_hw_cidx = fl->hw_cidx;
1601 			}
1602 
1603 			if (d->rss.opcode == CPL_RX_PKT) {
1604 				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1605 					break;
1606 				goto out;
1607 			}
1608 			m0 = get_fl_payload(sc, fl, lq);
1609 			if (__predict_false(m0 == NULL))
1610 				goto out;
1611 
1612 			/* fall through */
1613 
1614 		case X_RSPD_TYPE_CPL:
1615 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1616 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1617 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1618 			break;
1619 
1620 		case X_RSPD_TYPE_INTR:
1621 
1622 			/*
1623 			 * There are 1K interrupt-capable queues (qids 0
1624 			 * through 1023).  A response type indicating a
1625 			 * forwarded interrupt with a qid >= 1K is an
1626 			 * iWARP async notification.  That is the only
1627 			 * acceptable indirect interrupt on this queue.
1628 			 */
1629 			if (__predict_false(lq < 1024)) {
1630 				panic("%s: indirect interrupt on iq_fl %p "
1631 				    "with qid %u", __func__, iq, lq);
1632 			}
1633 
1634 			t4_an_handler(iq, &d->rsp);
1635 			break;
1636 
1637 		default:
1638 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1639 			    __func__, rsp_type, iq));
1640 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1641 			    device_get_nameunit(sc->dev), rsp_type, iq);
1642 			break;
1643 		}
1644 
1645 		d++;
1646 		if (__predict_false(++iq->cidx == iq->sidx)) {
1647 			iq->cidx = 0;
1648 			iq->gen ^= F_RSPD_GEN;
1649 			d = &iq->desc[0];
1650 		}
1651 		if (__predict_false(++ndescs == limit)) {
1652 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1653 			    V_INGRESSQID(iq->cntxt_id) |
1654 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1655 
1656 #if defined(INET) || defined(INET6)
1657 			if (iq->flags & IQ_LRO_ENABLED &&
1658 			    !sort_before_lro(lro) &&
1659 			    sc->lro_timeout != 0) {
1660 				tcp_lro_flush_inactive(lro, &lro_timeout);
1661 			}
1662 #endif
1663 			if (budget)
1664 				return (EINPROGRESS);
1665 			ndescs = 0;
1666 		}
1667 	}
1668 out:
1669 #if defined(INET) || defined(INET6)
1670 	if (iq->flags & IQ_LRO_ENABLED) {
1671 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1672 			MPASS(sort_before_lro(lro));
1673 			/* hold back one credit and don't flush LRO state */
1674 			iq->flags |= IQ_ADJ_CREDIT;
1675 			ndescs--;
1676 		} else {
1677 			tcp_lro_flush_all(lro);
1678 		}
1679 	}
1680 #endif
1681 
1682 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1683 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1684 
1685 	FL_LOCK(fl);
1686 	starved = refill_fl(sc, fl, 64);
1687 	FL_UNLOCK(fl);
1688 	if (__predict_false(starved != 0))
1689 		add_fl_to_sfl(sc, fl);
1690 
1691 	return (0);
1692 }
1693 
1694 static inline struct cluster_metadata *
1695 cl_metadata(struct fl_sdesc *sd)
1696 {
1697 
1698 	return ((void *)(sd->cl + sd->moff));
1699 }
1700 
1701 static void
1702 rxb_free(struct mbuf *m)
1703 {
1704 	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1705 
1706 	uma_zfree(clm->zone, clm->cl);
1707 	counter_u64_add(extfree_rels, 1);
1708 }
1709 
1710 /*
1711  * The mbuf returned comes from zone_muf and carries the payload in one of these
1712  * ways
1713  * a) complete frame inside the mbuf
1714  * b) m_cljset (for clusters without metadata)
1715  * d) m_extaddref (cluster with metadata)
1716  */
1717 static struct mbuf *
1718 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1719     int remaining)
1720 {
1721 	struct mbuf *m;
1722 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1723 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1724 	struct cluster_metadata *clm;
1725 	int len, blen;
1726 	caddr_t payload;
1727 
1728 	if (fl->flags & FL_BUF_PACKING) {
1729 		u_int l, pad;
1730 
1731 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1732 		len = min(remaining, blen);
1733 		payload = sd->cl + fl->rx_offset;
1734 
1735 		l = fr_offset + len;
1736 		pad = roundup2(l, fl->buf_boundary) - l;
1737 		if (fl->rx_offset + len + pad < rxb->size2)
1738 			blen = len + pad;
1739 		MPASS(fl->rx_offset + blen <= rxb->size2);
1740 	} else {
1741 		MPASS(fl->rx_offset == 0);	/* not packing */
1742 		blen = rxb->size1;
1743 		len = min(remaining, blen);
1744 		payload = sd->cl;
1745 	}
1746 
1747 	if (fr_offset == 0) {
1748 		m = m_gethdr(M_NOWAIT, MT_DATA);
1749 		if (__predict_false(m == NULL))
1750 			return (NULL);
1751 		m->m_pkthdr.len = remaining;
1752 	} else {
1753 		m = m_get(M_NOWAIT, MT_DATA);
1754 		if (__predict_false(m == NULL))
1755 			return (NULL);
1756 	}
1757 	m->m_len = len;
1758 
1759 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1760 		/* copy data to mbuf */
1761 		bcopy(payload, mtod(m, caddr_t), len);
1762 		if (fl->flags & FL_BUF_PACKING) {
1763 			fl->rx_offset += blen;
1764 			MPASS(fl->rx_offset <= rxb->size2);
1765 			if (fl->rx_offset < rxb->size2)
1766 				return (m);	/* without advancing the cidx */
1767 		}
1768 	} else if (fl->flags & FL_BUF_PACKING) {
1769 		clm = cl_metadata(sd);
1770 		if (sd->nmbuf++ == 0) {
1771 			clm->refcount = 1;
1772 			clm->zone = rxb->zone;
1773 			clm->cl = sd->cl;
1774 			counter_u64_add(extfree_refs, 1);
1775 		}
1776 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1777 		    NULL);
1778 
1779 		fl->rx_offset += blen;
1780 		MPASS(fl->rx_offset <= rxb->size2);
1781 		if (fl->rx_offset < rxb->size2)
1782 			return (m);	/* without advancing the cidx */
1783 	} else {
1784 		m_cljset(m, sd->cl, rxb->type);
1785 		sd->cl = NULL;	/* consumed, not a recycle candidate */
1786 	}
1787 
1788 	move_to_next_rxbuf(fl);
1789 
1790 	return (m);
1791 }
1792 
1793 static struct mbuf *
1794 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1795 {
1796 	struct mbuf *m0, *m, **pnext;
1797 	u_int remaining;
1798 
1799 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1800 		M_ASSERTPKTHDR(fl->m0);
1801 		MPASS(fl->m0->m_pkthdr.len == plen);
1802 		MPASS(fl->remaining < plen);
1803 
1804 		m0 = fl->m0;
1805 		pnext = fl->pnext;
1806 		remaining = fl->remaining;
1807 		fl->flags &= ~FL_BUF_RESUME;
1808 		goto get_segment;
1809 	}
1810 
1811 	/*
1812 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1813 	 * 'len' and it may span multiple hw buffers.
1814 	 */
1815 
1816 	m0 = get_scatter_segment(sc, fl, 0, plen);
1817 	if (m0 == NULL)
1818 		return (NULL);
1819 	remaining = plen - m0->m_len;
1820 	pnext = &m0->m_next;
1821 	while (remaining > 0) {
1822 get_segment:
1823 		MPASS(fl->rx_offset == 0);
1824 		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1825 		if (__predict_false(m == NULL)) {
1826 			fl->m0 = m0;
1827 			fl->pnext = pnext;
1828 			fl->remaining = remaining;
1829 			fl->flags |= FL_BUF_RESUME;
1830 			return (NULL);
1831 		}
1832 		*pnext = m;
1833 		pnext = &m->m_next;
1834 		remaining -= m->m_len;
1835 	}
1836 	*pnext = NULL;
1837 
1838 	M_ASSERTPKTHDR(m0);
1839 	return (m0);
1840 }
1841 
1842 static int
1843 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1844     int remaining)
1845 {
1846 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1847 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1848 	int len, blen;
1849 
1850 	if (fl->flags & FL_BUF_PACKING) {
1851 		u_int l, pad;
1852 
1853 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1854 		len = min(remaining, blen);
1855 
1856 		l = fr_offset + len;
1857 		pad = roundup2(l, fl->buf_boundary) - l;
1858 		if (fl->rx_offset + len + pad < rxb->size2)
1859 			blen = len + pad;
1860 		fl->rx_offset += blen;
1861 		MPASS(fl->rx_offset <= rxb->size2);
1862 		if (fl->rx_offset < rxb->size2)
1863 			return (len);	/* without advancing the cidx */
1864 	} else {
1865 		MPASS(fl->rx_offset == 0);	/* not packing */
1866 		blen = rxb->size1;
1867 		len = min(remaining, blen);
1868 	}
1869 	move_to_next_rxbuf(fl);
1870 	return (len);
1871 }
1872 
1873 static inline void
1874 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1875 {
1876 	int remaining, fr_offset, len;
1877 
1878 	fr_offset = 0;
1879 	remaining = plen;
1880 	while (remaining > 0) {
1881 		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1882 		fr_offset += len;
1883 		remaining -= len;
1884 	}
1885 }
1886 
1887 static inline int
1888 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1889 {
1890 	int len;
1891 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1892 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1893 
1894 	if (fl->flags & FL_BUF_PACKING)
1895 		len = rxb->size2 - fl->rx_offset;
1896 	else
1897 		len = rxb->size1;
1898 
1899 	return (min(plen, len));
1900 }
1901 
1902 static int
1903 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1904     u_int plen)
1905 {
1906 	struct mbuf *m0;
1907 	struct ifnet *ifp = rxq->ifp;
1908 	struct sge_fl *fl = &rxq->fl;
1909 	struct vi_info *vi = ifp->if_softc;
1910 	const struct cpl_rx_pkt *cpl;
1911 #if defined(INET) || defined(INET6)
1912 	struct lro_ctrl *lro = &rxq->lro;
1913 #endif
1914 	static const int sw_hashtype[4][2] = {
1915 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1916 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1917 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1918 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1919 	};
1920 
1921 	MPASS(plen > sc->params.sge.fl_pktshift);
1922 	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
1923 	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
1924 		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1925 		caddr_t frame;
1926 		int rc, slen;
1927 
1928 		slen = get_segment_len(sc, fl, plen) -
1929 		    sc->params.sge.fl_pktshift;
1930 		frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
1931 		CURVNET_SET_QUIET(ifp->if_vnet);
1932 		rc = pfil_run_hooks(vi->pfil, frame, ifp,
1933 		    slen | PFIL_MEMPTR | PFIL_IN, NULL);
1934 		CURVNET_RESTORE();
1935 		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
1936 			skip_fl_payload(sc, fl, plen);
1937 			return (0);
1938 		}
1939 		if (rc == PFIL_REALLOCED) {
1940 			skip_fl_payload(sc, fl, plen);
1941 			m0 = pfil_mem2mbuf(frame);
1942 			goto have_mbuf;
1943 		}
1944 	}
1945 
1946 	m0 = get_fl_payload(sc, fl, plen);
1947 	if (__predict_false(m0 == NULL))
1948 		return (ENOMEM);
1949 
1950 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1951 	m0->m_len -= sc->params.sge.fl_pktshift;
1952 	m0->m_data += sc->params.sge.fl_pktshift;
1953 
1954 have_mbuf:
1955 	m0->m_pkthdr.rcvif = ifp;
1956 	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
1957 	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
1958 
1959 	cpl = (const void *)(&d->rss + 1);
1960 	if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) {
1961 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1962 		    cpl->l2info & htobe32(F_RXF_IP)) {
1963 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1964 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1965 			rxq->rxcsum++;
1966 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1967 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1968 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1969 			    CSUM_PSEUDO_HDR);
1970 			rxq->rxcsum++;
1971 		}
1972 
1973 		if (__predict_false(cpl->ip_frag))
1974 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1975 		else
1976 			m0->m_pkthdr.csum_data = 0xffff;
1977 	}
1978 
1979 	if (cpl->vlan_ex) {
1980 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1981 		m0->m_flags |= M_VLANTAG;
1982 		rxq->vlan_extraction++;
1983 	}
1984 
1985 	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
1986 		/*
1987 		 * Fill up rcv_tstmp but do not set M_TSTMP.
1988 		 * rcv_tstmp is not in the format that the
1989 		 * kernel expects and we don't want to mislead
1990 		 * it.  For now this is only for custom code
1991 		 * that knows how to interpret cxgbe's stamp.
1992 		 */
1993 		m0->m_pkthdr.rcv_tstmp =
1994 		    last_flit_to_ns(sc, d->rsp.u.last_flit);
1995 #ifdef notyet
1996 		m0->m_flags |= M_TSTMP;
1997 #endif
1998 	}
1999 
2000 #ifdef NUMA
2001 	m0->m_pkthdr.numa_domain = ifp->if_numa_domain;
2002 #endif
2003 #if defined(INET) || defined(INET6)
2004 	if (rxq->iq.flags & IQ_LRO_ENABLED &&
2005 	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2006 	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2007 		if (sort_before_lro(lro)) {
2008 			tcp_lro_queue_mbuf(lro, m0);
2009 			return (0); /* queued for sort, then LRO */
2010 		}
2011 		if (tcp_lro_rx(lro, m0, 0) == 0)
2012 			return (0); /* queued for LRO */
2013 	}
2014 #endif
2015 	ifp->if_input(ifp, m0);
2016 
2017 	return (0);
2018 }
2019 
2020 /*
2021  * Must drain the wrq or make sure that someone else will.
2022  */
2023 static void
2024 wrq_tx_drain(void *arg, int n)
2025 {
2026 	struct sge_wrq *wrq = arg;
2027 	struct sge_eq *eq = &wrq->eq;
2028 
2029 	EQ_LOCK(eq);
2030 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2031 		drain_wrq_wr_list(wrq->adapter, wrq);
2032 	EQ_UNLOCK(eq);
2033 }
2034 
2035 static void
2036 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2037 {
2038 	struct sge_eq *eq = &wrq->eq;
2039 	u_int available, dbdiff;	/* # of hardware descriptors */
2040 	u_int n;
2041 	struct wrqe *wr;
2042 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2043 
2044 	EQ_LOCK_ASSERT_OWNED(eq);
2045 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2046 	wr = STAILQ_FIRST(&wrq->wr_list);
2047 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2048 	MPASS(eq->pidx == eq->dbidx);
2049 	dbdiff = 0;
2050 
2051 	do {
2052 		eq->cidx = read_hw_cidx(eq);
2053 		if (eq->pidx == eq->cidx)
2054 			available = eq->sidx - 1;
2055 		else
2056 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2057 
2058 		MPASS(wr->wrq == wrq);
2059 		n = howmany(wr->wr_len, EQ_ESIZE);
2060 		if (available < n)
2061 			break;
2062 
2063 		dst = (void *)&eq->desc[eq->pidx];
2064 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2065 			/* Won't wrap, won't end exactly at the status page. */
2066 			bcopy(&wr->wr[0], dst, wr->wr_len);
2067 			eq->pidx += n;
2068 		} else {
2069 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2070 
2071 			bcopy(&wr->wr[0], dst, first_portion);
2072 			if (wr->wr_len > first_portion) {
2073 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2074 				    wr->wr_len - first_portion);
2075 			}
2076 			eq->pidx = n - (eq->sidx - eq->pidx);
2077 		}
2078 		wrq->tx_wrs_copied++;
2079 
2080 		if (available < eq->sidx / 4 &&
2081 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2082 				/*
2083 				 * XXX: This is not 100% reliable with some
2084 				 * types of WRs.  But this is a very unusual
2085 				 * situation for an ofld/ctrl queue anyway.
2086 				 */
2087 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2088 			    F_FW_WR_EQUEQ);
2089 		}
2090 
2091 		dbdiff += n;
2092 		if (dbdiff >= 16) {
2093 			ring_eq_db(sc, eq, dbdiff);
2094 			dbdiff = 0;
2095 		}
2096 
2097 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2098 		free_wrqe(wr);
2099 		MPASS(wrq->nwr_pending > 0);
2100 		wrq->nwr_pending--;
2101 		MPASS(wrq->ndesc_needed >= n);
2102 		wrq->ndesc_needed -= n;
2103 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2104 
2105 	if (dbdiff)
2106 		ring_eq_db(sc, eq, dbdiff);
2107 }
2108 
2109 /*
2110  * Doesn't fail.  Holds on to work requests it can't send right away.
2111  */
2112 void
2113 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2114 {
2115 #ifdef INVARIANTS
2116 	struct sge_eq *eq = &wrq->eq;
2117 #endif
2118 
2119 	EQ_LOCK_ASSERT_OWNED(eq);
2120 	MPASS(wr != NULL);
2121 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2122 	MPASS((wr->wr_len & 0x7) == 0);
2123 
2124 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2125 	wrq->nwr_pending++;
2126 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2127 
2128 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2129 		return;	/* commit_wrq_wr will drain wr_list as well. */
2130 
2131 	drain_wrq_wr_list(sc, wrq);
2132 
2133 	/* Doorbell must have caught up to the pidx. */
2134 	MPASS(eq->pidx == eq->dbidx);
2135 }
2136 
2137 void
2138 t4_update_fl_bufsize(struct ifnet *ifp)
2139 {
2140 	struct vi_info *vi = ifp->if_softc;
2141 	struct adapter *sc = vi->adapter;
2142 	struct sge_rxq *rxq;
2143 #ifdef TCP_OFFLOAD
2144 	struct sge_ofld_rxq *ofld_rxq;
2145 #endif
2146 	struct sge_fl *fl;
2147 	int i, maxp, mtu = ifp->if_mtu;
2148 
2149 	maxp = mtu_to_max_payload(sc, mtu);
2150 	for_each_rxq(vi, i, rxq) {
2151 		fl = &rxq->fl;
2152 
2153 		FL_LOCK(fl);
2154 		fl->zidx = find_refill_source(sc, maxp,
2155 		    fl->flags & FL_BUF_PACKING);
2156 		FL_UNLOCK(fl);
2157 	}
2158 #ifdef TCP_OFFLOAD
2159 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2160 		fl = &ofld_rxq->fl;
2161 
2162 		FL_LOCK(fl);
2163 		fl->zidx = find_refill_source(sc, maxp,
2164 		    fl->flags & FL_BUF_PACKING);
2165 		FL_UNLOCK(fl);
2166 	}
2167 #endif
2168 }
2169 
2170 static inline int
2171 mbuf_nsegs(struct mbuf *m)
2172 {
2173 
2174 	M_ASSERTPKTHDR(m);
2175 	KASSERT(m->m_pkthdr.l5hlen > 0,
2176 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2177 
2178 	return (m->m_pkthdr.l5hlen);
2179 }
2180 
2181 static inline void
2182 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2183 {
2184 
2185 	M_ASSERTPKTHDR(m);
2186 	m->m_pkthdr.l5hlen = nsegs;
2187 }
2188 
2189 static inline int
2190 mbuf_cflags(struct mbuf *m)
2191 {
2192 
2193 	M_ASSERTPKTHDR(m);
2194 	return (m->m_pkthdr.PH_loc.eight[4]);
2195 }
2196 
2197 static inline void
2198 set_mbuf_cflags(struct mbuf *m, uint8_t flags)
2199 {
2200 
2201 	M_ASSERTPKTHDR(m);
2202 	m->m_pkthdr.PH_loc.eight[4] = flags;
2203 }
2204 
2205 static inline int
2206 mbuf_len16(struct mbuf *m)
2207 {
2208 	int n;
2209 
2210 	M_ASSERTPKTHDR(m);
2211 	n = m->m_pkthdr.PH_loc.eight[0];
2212 	if (!(mbuf_cflags(m) & MC_TLS))
2213 		MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2214 
2215 	return (n);
2216 }
2217 
2218 static inline void
2219 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2220 {
2221 
2222 	M_ASSERTPKTHDR(m);
2223 	m->m_pkthdr.PH_loc.eight[0] = len16;
2224 }
2225 
2226 #ifdef RATELIMIT
2227 static inline int
2228 mbuf_eo_nsegs(struct mbuf *m)
2229 {
2230 
2231 	M_ASSERTPKTHDR(m);
2232 	return (m->m_pkthdr.PH_loc.eight[1]);
2233 }
2234 
2235 static inline void
2236 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2237 {
2238 
2239 	M_ASSERTPKTHDR(m);
2240 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2241 }
2242 
2243 static inline int
2244 mbuf_eo_len16(struct mbuf *m)
2245 {
2246 	int n;
2247 
2248 	M_ASSERTPKTHDR(m);
2249 	n = m->m_pkthdr.PH_loc.eight[2];
2250 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2251 
2252 	return (n);
2253 }
2254 
2255 static inline void
2256 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2257 {
2258 
2259 	M_ASSERTPKTHDR(m);
2260 	m->m_pkthdr.PH_loc.eight[2] = len16;
2261 }
2262 
2263 static inline int
2264 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2265 {
2266 
2267 	M_ASSERTPKTHDR(m);
2268 	return (m->m_pkthdr.PH_loc.eight[3]);
2269 }
2270 
2271 static inline void
2272 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2273 {
2274 
2275 	M_ASSERTPKTHDR(m);
2276 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2277 }
2278 
2279 static inline int
2280 needs_eo(struct cxgbe_snd_tag *cst)
2281 {
2282 
2283 	return (cst != NULL && cst->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2284 }
2285 #endif
2286 
2287 /*
2288  * Try to allocate an mbuf to contain a raw work request.  To make it
2289  * easy to construct the work request, don't allocate a chain but a
2290  * single mbuf.
2291  */
2292 struct mbuf *
2293 alloc_wr_mbuf(int len, int how)
2294 {
2295 	struct mbuf *m;
2296 
2297 	if (len <= MHLEN)
2298 		m = m_gethdr(how, MT_DATA);
2299 	else if (len <= MCLBYTES)
2300 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2301 	else
2302 		m = NULL;
2303 	if (m == NULL)
2304 		return (NULL);
2305 	m->m_pkthdr.len = len;
2306 	m->m_len = len;
2307 	set_mbuf_cflags(m, MC_RAW_WR);
2308 	set_mbuf_len16(m, howmany(len, 16));
2309 	return (m);
2310 }
2311 
2312 static inline int
2313 needs_hwcsum(struct mbuf *m)
2314 {
2315 
2316 	M_ASSERTPKTHDR(m);
2317 
2318 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_IP |
2319 	    CSUM_TSO | CSUM_UDP_IPV6 | CSUM_TCP_IPV6));
2320 }
2321 
2322 static inline int
2323 needs_tso(struct mbuf *m)
2324 {
2325 
2326 	M_ASSERTPKTHDR(m);
2327 
2328 	return (m->m_pkthdr.csum_flags & CSUM_TSO);
2329 }
2330 
2331 static inline int
2332 needs_l3_csum(struct mbuf *m)
2333 {
2334 
2335 	M_ASSERTPKTHDR(m);
2336 
2337 	return (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO));
2338 }
2339 
2340 static inline int
2341 needs_tcp_csum(struct mbuf *m)
2342 {
2343 
2344 	M_ASSERTPKTHDR(m);
2345 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_TCP_IPV6 | CSUM_TSO));
2346 }
2347 
2348 #ifdef RATELIMIT
2349 static inline int
2350 needs_l4_csum(struct mbuf *m)
2351 {
2352 
2353 	M_ASSERTPKTHDR(m);
2354 
2355 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2356 	    CSUM_TCP_IPV6 | CSUM_TSO));
2357 }
2358 
2359 static inline int
2360 needs_udp_csum(struct mbuf *m)
2361 {
2362 
2363 	M_ASSERTPKTHDR(m);
2364 	return (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_UDP_IPV6));
2365 }
2366 #endif
2367 
2368 static inline int
2369 needs_vlan_insertion(struct mbuf *m)
2370 {
2371 
2372 	M_ASSERTPKTHDR(m);
2373 
2374 	return (m->m_flags & M_VLANTAG);
2375 }
2376 
2377 static void *
2378 m_advance(struct mbuf **pm, int *poffset, int len)
2379 {
2380 	struct mbuf *m = *pm;
2381 	int offset = *poffset;
2382 	uintptr_t p = 0;
2383 
2384 	MPASS(len > 0);
2385 
2386 	for (;;) {
2387 		if (offset + len < m->m_len) {
2388 			offset += len;
2389 			p = mtod(m, uintptr_t) + offset;
2390 			break;
2391 		}
2392 		len -= m->m_len - offset;
2393 		m = m->m_next;
2394 		offset = 0;
2395 		MPASS(m != NULL);
2396 	}
2397 	*poffset = offset;
2398 	*pm = m;
2399 	return ((void *)p);
2400 }
2401 
2402 static inline int
2403 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2404 {
2405 	vm_paddr_t paddr;
2406 	int i, len, off, pglen, pgoff, seglen, segoff;
2407 	int nsegs = 0;
2408 
2409 	M_ASSERTEXTPG(m);
2410 	off = mtod(m, vm_offset_t);
2411 	len = m->m_len;
2412 	off += skip;
2413 	len -= skip;
2414 
2415 	if (m->m_epg_hdrlen != 0) {
2416 		if (off >= m->m_epg_hdrlen) {
2417 			off -= m->m_epg_hdrlen;
2418 		} else {
2419 			seglen = m->m_epg_hdrlen - off;
2420 			segoff = off;
2421 			seglen = min(seglen, len);
2422 			off = 0;
2423 			len -= seglen;
2424 			paddr = pmap_kextract(
2425 			    (vm_offset_t)&m->m_epg_hdr[segoff]);
2426 			if (*nextaddr != paddr)
2427 				nsegs++;
2428 			*nextaddr = paddr + seglen;
2429 		}
2430 	}
2431 	pgoff = m->m_epg_1st_off;
2432 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2433 		pglen = m_epg_pagelen(m, i, pgoff);
2434 		if (off >= pglen) {
2435 			off -= pglen;
2436 			pgoff = 0;
2437 			continue;
2438 		}
2439 		seglen = pglen - off;
2440 		segoff = pgoff + off;
2441 		off = 0;
2442 		seglen = min(seglen, len);
2443 		len -= seglen;
2444 		paddr = m->m_epg_pa[i] + segoff;
2445 		if (*nextaddr != paddr)
2446 			nsegs++;
2447 		*nextaddr = paddr + seglen;
2448 		pgoff = 0;
2449 	};
2450 	if (len != 0) {
2451 		seglen = min(len, m->m_epg_trllen - off);
2452 		len -= seglen;
2453 		paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2454 		if (*nextaddr != paddr)
2455 			nsegs++;
2456 		*nextaddr = paddr + seglen;
2457 	}
2458 
2459 	return (nsegs);
2460 }
2461 
2462 
2463 /*
2464  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2465  * must have at least one mbuf that's not empty.  It is possible for this
2466  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2467  */
2468 static inline int
2469 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2470 {
2471 	vm_paddr_t nextaddr, paddr;
2472 	vm_offset_t va;
2473 	int len, nsegs;
2474 
2475 	M_ASSERTPKTHDR(m);
2476 	MPASS(m->m_pkthdr.len > 0);
2477 	MPASS(m->m_pkthdr.len >= skip);
2478 
2479 	nsegs = 0;
2480 	nextaddr = 0;
2481 	for (; m; m = m->m_next) {
2482 		len = m->m_len;
2483 		if (__predict_false(len == 0))
2484 			continue;
2485 		if (skip >= len) {
2486 			skip -= len;
2487 			continue;
2488 		}
2489 		if ((m->m_flags & M_EXTPG) != 0) {
2490 			*cflags |= MC_NOMAP;
2491 			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2492 			skip = 0;
2493 			continue;
2494 		}
2495 		va = mtod(m, vm_offset_t) + skip;
2496 		len -= skip;
2497 		skip = 0;
2498 		paddr = pmap_kextract(va);
2499 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2500 		if (paddr == nextaddr)
2501 			nsegs--;
2502 		nextaddr = pmap_kextract(va + len - 1) + 1;
2503 	}
2504 
2505 	return (nsegs);
2506 }
2507 
2508 /*
2509  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2510  * a) caller can assume it's been freed if this function returns with an error.
2511  * b) it may get defragged up if the gather list is too long for the hardware.
2512  */
2513 int
2514 parse_pkt(struct adapter *sc, struct mbuf **mp)
2515 {
2516 	struct mbuf *m0 = *mp, *m;
2517 	int rc, nsegs, defragged = 0, offset;
2518 	struct ether_header *eh;
2519 	void *l3hdr;
2520 #if defined(INET) || defined(INET6)
2521 	struct tcphdr *tcp;
2522 #endif
2523 #if defined(KERN_TLS) || defined(RATELIMIT)
2524 	struct cxgbe_snd_tag *cst;
2525 #endif
2526 	uint16_t eh_type;
2527 	uint8_t cflags;
2528 
2529 	cflags = 0;
2530 	M_ASSERTPKTHDR(m0);
2531 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2532 		rc = EINVAL;
2533 fail:
2534 		m_freem(m0);
2535 		*mp = NULL;
2536 		return (rc);
2537 	}
2538 restart:
2539 	/*
2540 	 * First count the number of gather list segments in the payload.
2541 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2542 	 */
2543 	M_ASSERTPKTHDR(m0);
2544 	MPASS(m0->m_pkthdr.len > 0);
2545 	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2546 #if defined(KERN_TLS) || defined(RATELIMIT)
2547 	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2548 		cst = mst_to_cst(m0->m_pkthdr.snd_tag);
2549 	else
2550 		cst = NULL;
2551 #endif
2552 #ifdef KERN_TLS
2553 	if (cst != NULL && cst->type == IF_SND_TAG_TYPE_TLS) {
2554 		int len16;
2555 
2556 		cflags |= MC_TLS;
2557 		set_mbuf_cflags(m0, cflags);
2558 		rc = t6_ktls_parse_pkt(m0, &nsegs, &len16);
2559 		if (rc != 0)
2560 			goto fail;
2561 		set_mbuf_nsegs(m0, nsegs);
2562 		set_mbuf_len16(m0, len16);
2563 		return (0);
2564 	}
2565 #endif
2566 	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2567 		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2568 			rc = EFBIG;
2569 			goto fail;
2570 		}
2571 		*mp = m0 = m;	/* update caller's copy after defrag */
2572 		goto restart;
2573 	}
2574 
2575 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2576 	    !(cflags & MC_NOMAP))) {
2577 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2578 		if (m0 == NULL) {
2579 			/* Should have left well enough alone. */
2580 			rc = EFBIG;
2581 			goto fail;
2582 		}
2583 		*mp = m0;	/* update caller's copy after pullup */
2584 		goto restart;
2585 	}
2586 	set_mbuf_nsegs(m0, nsegs);
2587 	set_mbuf_cflags(m0, cflags);
2588 	if (sc->flags & IS_VF)
2589 		set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0)));
2590 	else
2591 		set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2592 
2593 #ifdef RATELIMIT
2594 	/*
2595 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2596 	 * checksumming is enabled.  needs_l4_csum happens to check for all the
2597 	 * right things.
2598 	 */
2599 	if (__predict_false(needs_eo(cst) && !needs_l4_csum(m0))) {
2600 		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2601 		m0->m_pkthdr.snd_tag = NULL;
2602 		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2603 		cst = NULL;
2604 	}
2605 #endif
2606 
2607 	if (!needs_hwcsum(m0)
2608 #ifdef RATELIMIT
2609    		 && !needs_eo(cst)
2610 #endif
2611 	)
2612 		return (0);
2613 
2614 	m = m0;
2615 	eh = mtod(m, struct ether_header *);
2616 	eh_type = ntohs(eh->ether_type);
2617 	if (eh_type == ETHERTYPE_VLAN) {
2618 		struct ether_vlan_header *evh = (void *)eh;
2619 
2620 		eh_type = ntohs(evh->evl_proto);
2621 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2622 	} else
2623 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2624 
2625 	offset = 0;
2626 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2627 
2628 	switch (eh_type) {
2629 #ifdef INET6
2630 	case ETHERTYPE_IPV6:
2631 	{
2632 		struct ip6_hdr *ip6 = l3hdr;
2633 
2634 		MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP);
2635 
2636 		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2637 		break;
2638 	}
2639 #endif
2640 #ifdef INET
2641 	case ETHERTYPE_IP:
2642 	{
2643 		struct ip *ip = l3hdr;
2644 
2645 		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2646 		break;
2647 	}
2648 #endif
2649 	default:
2650 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2651 		    " with the same INET/INET6 options as the kernel.",
2652 		    __func__, eh_type);
2653 	}
2654 
2655 #if defined(INET) || defined(INET6)
2656 	if (needs_tcp_csum(m0)) {
2657 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2658 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2659 #ifdef RATELIMIT
2660 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2661 			set_mbuf_eo_tsclk_tsoff(m0,
2662 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2663 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2664 		} else
2665 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2666 	} else if (needs_udp_csum(m0)) {
2667 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2668 #endif
2669 	}
2670 #ifdef RATELIMIT
2671 	if (needs_eo(cst)) {
2672 		u_int immhdrs;
2673 
2674 		/* EO WRs have the headers in the WR and not the GL. */
2675 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2676 		    m0->m_pkthdr.l4hlen;
2677 		cflags = 0;
2678 		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2679 		MPASS(cflags == mbuf_cflags(m0));
2680 		set_mbuf_eo_nsegs(m0, nsegs);
2681 		set_mbuf_eo_len16(m0,
2682 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2683 	}
2684 #endif
2685 #endif
2686 	MPASS(m0 == *mp);
2687 	return (0);
2688 }
2689 
2690 void *
2691 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2692 {
2693 	struct sge_eq *eq = &wrq->eq;
2694 	struct adapter *sc = wrq->adapter;
2695 	int ndesc, available;
2696 	struct wrqe *wr;
2697 	void *w;
2698 
2699 	MPASS(len16 > 0);
2700 	ndesc = tx_len16_to_desc(len16);
2701 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2702 
2703 	EQ_LOCK(eq);
2704 
2705 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2706 		drain_wrq_wr_list(sc, wrq);
2707 
2708 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2709 slowpath:
2710 		EQ_UNLOCK(eq);
2711 		wr = alloc_wrqe(len16 * 16, wrq);
2712 		if (__predict_false(wr == NULL))
2713 			return (NULL);
2714 		cookie->pidx = -1;
2715 		cookie->ndesc = ndesc;
2716 		return (&wr->wr);
2717 	}
2718 
2719 	eq->cidx = read_hw_cidx(eq);
2720 	if (eq->pidx == eq->cidx)
2721 		available = eq->sidx - 1;
2722 	else
2723 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2724 	if (available < ndesc)
2725 		goto slowpath;
2726 
2727 	cookie->pidx = eq->pidx;
2728 	cookie->ndesc = ndesc;
2729 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2730 
2731 	w = &eq->desc[eq->pidx];
2732 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2733 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2734 		w = &wrq->ss[0];
2735 		wrq->ss_pidx = cookie->pidx;
2736 		wrq->ss_len = len16 * 16;
2737 	}
2738 
2739 	EQ_UNLOCK(eq);
2740 
2741 	return (w);
2742 }
2743 
2744 void
2745 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2746 {
2747 	struct sge_eq *eq = &wrq->eq;
2748 	struct adapter *sc = wrq->adapter;
2749 	int ndesc, pidx;
2750 	struct wrq_cookie *prev, *next;
2751 
2752 	if (cookie->pidx == -1) {
2753 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2754 
2755 		t4_wrq_tx(sc, wr);
2756 		return;
2757 	}
2758 
2759 	if (__predict_false(w == &wrq->ss[0])) {
2760 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2761 
2762 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2763 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2764 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2765 		wrq->tx_wrs_ss++;
2766 	} else
2767 		wrq->tx_wrs_direct++;
2768 
2769 	EQ_LOCK(eq);
2770 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2771 	pidx = cookie->pidx;
2772 	MPASS(pidx >= 0 && pidx < eq->sidx);
2773 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2774 	next = TAILQ_NEXT(cookie, link);
2775 	if (prev == NULL) {
2776 		MPASS(pidx == eq->dbidx);
2777 		if (next == NULL || ndesc >= 16) {
2778 			int available;
2779 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2780 
2781 			/*
2782 			 * Note that the WR via which we'll request tx updates
2783 			 * is at pidx and not eq->pidx, which has moved on
2784 			 * already.
2785 			 */
2786 			dst = (void *)&eq->desc[pidx];
2787 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2788 			if (available < eq->sidx / 4 &&
2789 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2790 				/*
2791 				 * XXX: This is not 100% reliable with some
2792 				 * types of WRs.  But this is a very unusual
2793 				 * situation for an ofld/ctrl queue anyway.
2794 				 */
2795 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2796 				    F_FW_WR_EQUEQ);
2797 			}
2798 
2799 			ring_eq_db(wrq->adapter, eq, ndesc);
2800 		} else {
2801 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2802 			next->pidx = pidx;
2803 			next->ndesc += ndesc;
2804 		}
2805 	} else {
2806 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2807 		prev->ndesc += ndesc;
2808 	}
2809 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2810 
2811 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2812 		drain_wrq_wr_list(sc, wrq);
2813 
2814 #ifdef INVARIANTS
2815 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2816 		/* Doorbell must have caught up to the pidx. */
2817 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2818 	}
2819 #endif
2820 	EQ_UNLOCK(eq);
2821 }
2822 
2823 static u_int
2824 can_resume_eth_tx(struct mp_ring *r)
2825 {
2826 	struct sge_eq *eq = r->cookie;
2827 
2828 	return (total_available_tx_desc(eq) > eq->sidx / 8);
2829 }
2830 
2831 static inline bool
2832 cannot_use_txpkts(struct mbuf *m)
2833 {
2834 	/* maybe put a GL limit too, to avoid silliness? */
2835 
2836 	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
2837 }
2838 
2839 static inline int
2840 discard_tx(struct sge_eq *eq)
2841 {
2842 
2843 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
2844 }
2845 
2846 static inline int
2847 wr_can_update_eq(void *p)
2848 {
2849 	struct fw_eth_tx_pkts_wr *wr = p;
2850 
2851 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
2852 	case FW_ULPTX_WR:
2853 	case FW_ETH_TX_PKT_WR:
2854 	case FW_ETH_TX_PKTS_WR:
2855 	case FW_ETH_TX_PKTS2_WR:
2856 	case FW_ETH_TX_PKT_VM_WR:
2857 	case FW_ETH_TX_PKTS_VM_WR:
2858 		return (1);
2859 	default:
2860 		return (0);
2861 	}
2862 }
2863 
2864 static inline void
2865 set_txupdate_flags(struct sge_txq *txq, u_int avail,
2866     struct fw_eth_tx_pkt_wr *wr)
2867 {
2868 	struct sge_eq *eq = &txq->eq;
2869 	struct txpkts *txp = &txq->txp;
2870 
2871 	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
2872 	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2873 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
2874 		eq->equeqidx = eq->pidx;
2875 	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2876 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2877 		eq->equeqidx = eq->pidx;
2878 	}
2879 }
2880 
2881 /*
2882  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2883  * be consumed.  Return the actual number consumed.  0 indicates a stall.
2884  */
2885 static u_int
2886 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
2887 {
2888 	struct sge_txq *txq = r->cookie;
2889 	struct ifnet *ifp = txq->ifp;
2890 	struct sge_eq *eq = &txq->eq;
2891 	struct txpkts *txp = &txq->txp;
2892 	struct vi_info *vi = ifp->if_softc;
2893 	struct adapter *sc = vi->adapter;
2894 	u_int total, remaining;		/* # of packets */
2895 	u_int n, avail, dbdiff;		/* # of hardware descriptors */
2896 	int i, rc;
2897 	struct mbuf *m0;
2898 	bool snd;
2899 	void *wr;	/* start of the last WR written to the ring */
2900 
2901 	TXQ_LOCK_ASSERT_OWNED(txq);
2902 
2903 	remaining = IDXDIFF(pidx, cidx, r->size);
2904 	if (__predict_false(discard_tx(eq))) {
2905 		for (i = 0; i < txp->npkt; i++)
2906 			m_freem(txp->mb[i]);
2907 		txp->npkt = 0;
2908 		while (cidx != pidx) {
2909 			m0 = r->items[cidx];
2910 			m_freem(m0);
2911 			if (++cidx == r->size)
2912 				cidx = 0;
2913 		}
2914 		reclaim_tx_descs(txq, eq->sidx);
2915 		*coalescing = false;
2916 		return (remaining);	/* emptied */
2917 	}
2918 
2919 	/* How many hardware descriptors do we have readily available. */
2920 	if (eq->pidx == eq->cidx) {
2921 		avail = eq->sidx - 1;
2922 		if (txp->score++ >= 5)
2923 			txp->score = 5;	/* tx is completely idle, reset. */
2924 	} else
2925 		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2926 
2927 	total = 0;
2928 	if (remaining == 0) {
2929 		if (txp->score-- == 1)	/* egr_update had to drain txpkts */
2930 			txp->score = 1;
2931 		goto send_txpkts;
2932 	}
2933 
2934 	dbdiff = 0;
2935 	MPASS(remaining > 0);
2936 	while (remaining > 0) {
2937 		m0 = r->items[cidx];
2938 		M_ASSERTPKTHDR(m0);
2939 		MPASS(m0->m_nextpkt == NULL);
2940 
2941 		if (avail < 2 * SGE_MAX_WR_NDESC)
2942 			avail += reclaim_tx_descs(txq, 64);
2943 
2944 		if (txp->npkt > 0 || remaining > 1 || txp->score > 3 ||
2945 		    atomic_load_int(&txq->eq.equiq) != 0) {
2946 			if (sc->flags & IS_VF)
2947 				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
2948 			else
2949 				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
2950 		} else {
2951 			snd = false;
2952 			rc = EINVAL;
2953 		}
2954 		if (snd) {
2955 			MPASS(txp->npkt > 0);
2956 			for (i = 0; i < txp->npkt; i++)
2957 				ETHER_BPF_MTAP(ifp, txp->mb[i]);
2958 			if (txp->npkt > 1) {
2959 				if (txp->score++ >= 10)
2960 					txp->score = 10;
2961 				MPASS(avail >= tx_len16_to_desc(txp->len16));
2962 				if (sc->flags & IS_VF)
2963 					n = write_txpkts_vm_wr(sc, txq);
2964 				else
2965 					n = write_txpkts_wr(sc, txq);
2966 			} else {
2967 				MPASS(avail >=
2968 				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
2969 				if (sc->flags & IS_VF)
2970 					n = write_txpkt_vm_wr(sc, txq,
2971 					    txp->mb[0]);
2972 				else
2973 					n = write_txpkt_wr(sc, txq, txp->mb[0],
2974 					    avail);
2975 			}
2976 			MPASS(n <= SGE_MAX_WR_NDESC);
2977 			avail -= n;
2978 			dbdiff += n;
2979 			wr = &eq->desc[eq->pidx];
2980 			IDXINCR(eq->pidx, n, eq->sidx);
2981 			txp->npkt = 0;	/* emptied */
2982 		}
2983 		if (rc == 0) {
2984 			/* m0 was coalesced into txq->txpkts. */
2985 			goto next_mbuf;
2986 		}
2987 		if (rc == EAGAIN) {
2988 			/*
2989 			 * m0 is suitable for tx coalescing but could not be
2990 			 * combined with the existing txq->txpkts, which has now
2991 			 * been transmitted.  Start a new txpkts with m0.
2992 			 */
2993 			MPASS(snd);
2994 			MPASS(txp->npkt == 0);
2995 			continue;
2996 		}
2997 
2998 		MPASS(rc != 0 && rc != EAGAIN);
2999 		MPASS(txp->npkt == 0);
3000 		wr = &eq->desc[eq->pidx];
3001 		if (mbuf_cflags(m0) & MC_RAW_WR) {
3002 			n = write_raw_wr(txq, wr, m0, avail);
3003 #ifdef KERN_TLS
3004 		} else if (mbuf_cflags(m0) & MC_TLS) {
3005 			ETHER_BPF_MTAP(ifp, m0);
3006 			n = t6_ktls_write_wr(txq, wr, m0, mbuf_nsegs(m0),
3007 			    avail);
3008 #endif
3009 		} else {
3010 			n = tx_len16_to_desc(mbuf_len16(m0));
3011 			if (__predict_false(avail < n)) {
3012 				avail += reclaim_tx_descs(txq, 32);
3013 				if (avail < n)
3014 					break;	/* out of descriptors */
3015 			}
3016 			ETHER_BPF_MTAP(ifp, m0);
3017 			if (sc->flags & IS_VF)
3018 				n = write_txpkt_vm_wr(sc, txq, m0);
3019 			else
3020 				n = write_txpkt_wr(sc, txq, m0, avail);
3021 		}
3022 		MPASS(n >= 1 && n <= avail);
3023 		if (!(mbuf_cflags(m0) & MC_TLS))
3024 			MPASS(n <= SGE_MAX_WR_NDESC);
3025 
3026 		avail -= n;
3027 		dbdiff += n;
3028 		IDXINCR(eq->pidx, n, eq->sidx);
3029 
3030 		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3031 			if (wr_can_update_eq(wr))
3032 				set_txupdate_flags(txq, avail, wr);
3033 			ring_eq_db(sc, eq, dbdiff);
3034 			avail += reclaim_tx_descs(txq, 32);
3035 			dbdiff = 0;
3036 		}
3037 next_mbuf:
3038 		total++;
3039 		remaining--;
3040 		if (__predict_false(++cidx == r->size))
3041 			cidx = 0;
3042 	}
3043 	if (dbdiff != 0) {
3044 		if (wr_can_update_eq(wr))
3045 			set_txupdate_flags(txq, avail, wr);
3046 		ring_eq_db(sc, eq, dbdiff);
3047 		reclaim_tx_descs(txq, 32);
3048 	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3049 	    atomic_load_int(&txq->eq.equiq) == 0) {
3050 		/*
3051 		 * If nothing was submitted to the chip for tx (it was coalesced
3052 		 * into txpkts instead) and there is no tx update outstanding
3053 		 * then we need to send txpkts now.
3054 		 */
3055 send_txpkts:
3056 		MPASS(txp->npkt > 0);
3057 		for (i = 0; i < txp->npkt; i++)
3058 			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3059 		if (txp->npkt > 1) {
3060 			MPASS(avail >= tx_len16_to_desc(txp->len16));
3061 			if (sc->flags & IS_VF)
3062 				n = write_txpkts_vm_wr(sc, txq);
3063 			else
3064 				n = write_txpkts_wr(sc, txq);
3065 		} else {
3066 			MPASS(avail >=
3067 			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3068 			if (sc->flags & IS_VF)
3069 				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3070 			else
3071 				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3072 		}
3073 		MPASS(n <= SGE_MAX_WR_NDESC);
3074 		wr = &eq->desc[eq->pidx];
3075 		IDXINCR(eq->pidx, n, eq->sidx);
3076 		txp->npkt = 0;	/* emptied */
3077 
3078 		MPASS(wr_can_update_eq(wr));
3079 		set_txupdate_flags(txq, avail - n, wr);
3080 		ring_eq_db(sc, eq, n);
3081 		reclaim_tx_descs(txq, 32);
3082 	}
3083 	*coalescing = txp->npkt > 0;
3084 
3085 	return (total);
3086 }
3087 
3088 static inline void
3089 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3090     int qsize)
3091 {
3092 
3093 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3094 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3095 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3096 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3097 
3098 	iq->flags = 0;
3099 	iq->adapter = sc;
3100 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3101 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3102 	if (pktc_idx >= 0) {
3103 		iq->intr_params |= F_QINTR_CNT_EN;
3104 		iq->intr_pktc_idx = pktc_idx;
3105 	}
3106 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3107 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3108 }
3109 
3110 static inline void
3111 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3112 {
3113 
3114 	fl->qsize = qsize;
3115 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3116 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3117 	if (sc->flags & BUF_PACKING_OK &&
3118 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3119 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3120 		fl->flags |= FL_BUF_PACKING;
3121 	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3122 	fl->safe_zidx = sc->sge.safe_zidx;
3123 }
3124 
3125 static inline void
3126 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3127     uint8_t tx_chan, uint16_t iqid, char *name)
3128 {
3129 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
3130 
3131 	eq->flags = eqtype & EQ_TYPEMASK;
3132 	eq->tx_chan = tx_chan;
3133 	eq->iqid = iqid;
3134 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3135 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3136 }
3137 
3138 static int
3139 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3140     bus_dmamap_t *map, bus_addr_t *pa, void **va)
3141 {
3142 	int rc;
3143 
3144 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3145 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3146 	if (rc != 0) {
3147 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
3148 		goto done;
3149 	}
3150 
3151 	rc = bus_dmamem_alloc(*tag, va,
3152 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3153 	if (rc != 0) {
3154 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
3155 		goto done;
3156 	}
3157 
3158 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3159 	if (rc != 0) {
3160 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
3161 		goto done;
3162 	}
3163 done:
3164 	if (rc)
3165 		free_ring(sc, *tag, *map, *pa, *va);
3166 
3167 	return (rc);
3168 }
3169 
3170 static int
3171 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3172     bus_addr_t pa, void *va)
3173 {
3174 	if (pa)
3175 		bus_dmamap_unload(tag, map);
3176 	if (va)
3177 		bus_dmamem_free(tag, va, map);
3178 	if (tag)
3179 		bus_dma_tag_destroy(tag);
3180 
3181 	return (0);
3182 }
3183 
3184 /*
3185  * Allocates the ring for an ingress queue and an optional freelist.  If the
3186  * freelist is specified it will be allocated and then associated with the
3187  * ingress queue.
3188  *
3189  * Returns errno on failure.  Resources allocated up to that point may still be
3190  * allocated.  Caller is responsible for cleanup in case this function fails.
3191  *
3192  * If the ingress queue will take interrupts directly then the intr_idx
3193  * specifies the vector, starting from 0.  -1 means the interrupts for this
3194  * queue should be forwarded to the fwq.
3195  */
3196 static int
3197 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3198     int intr_idx, int cong)
3199 {
3200 	int rc, i, cntxt_id;
3201 	size_t len;
3202 	struct fw_iq_cmd c;
3203 	struct port_info *pi = vi->pi;
3204 	struct adapter *sc = iq->adapter;
3205 	struct sge_params *sp = &sc->params.sge;
3206 	__be32 v = 0;
3207 
3208 	len = iq->qsize * IQ_ESIZE;
3209 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3210 	    (void **)&iq->desc);
3211 	if (rc != 0)
3212 		return (rc);
3213 
3214 	bzero(&c, sizeof(c));
3215 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3216 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3217 	    V_FW_IQ_CMD_VFN(0));
3218 
3219 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3220 	    FW_LEN16(c));
3221 
3222 	/* Special handling for firmware event queue */
3223 	if (iq == &sc->sge.fwq)
3224 		v |= F_FW_IQ_CMD_IQASYNCH;
3225 
3226 	if (intr_idx < 0) {
3227 		/* Forwarded interrupts, all headed to fwq */
3228 		v |= F_FW_IQ_CMD_IQANDST;
3229 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3230 	} else {
3231 		KASSERT(intr_idx < sc->intr_count,
3232 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
3233 		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
3234 	}
3235 
3236 	c.type_to_iqandstindex = htobe32(v |
3237 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3238 	    V_FW_IQ_CMD_VIID(vi->viid) |
3239 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3240 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
3241 	    F_FW_IQ_CMD_IQGTSMODE |
3242 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3243 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3244 	c.iqsize = htobe16(iq->qsize);
3245 	c.iqaddr = htobe64(iq->ba);
3246 	if (cong >= 0)
3247 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3248 
3249 	if (fl) {
3250 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3251 
3252 		len = fl->qsize * EQ_ESIZE;
3253 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3254 		    &fl->ba, (void **)&fl->desc);
3255 		if (rc)
3256 			return (rc);
3257 
3258 		/* Allocate space for one software descriptor per buffer. */
3259 		rc = alloc_fl_sdesc(fl);
3260 		if (rc != 0) {
3261 			device_printf(sc->dev,
3262 			    "failed to setup fl software descriptors: %d\n",
3263 			    rc);
3264 			return (rc);
3265 		}
3266 
3267 		if (fl->flags & FL_BUF_PACKING) {
3268 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3269 			fl->buf_boundary = sp->pack_boundary;
3270 		} else {
3271 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3272 			fl->buf_boundary = 16;
3273 		}
3274 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3275 			fl->buf_boundary = sp->pad_boundary;
3276 
3277 		c.iqns_to_fl0congen |=
3278 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3279 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3280 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3281 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3282 			    0));
3283 		if (cong >= 0) {
3284 			c.iqns_to_fl0congen |=
3285 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
3286 				    F_FW_IQ_CMD_FL0CONGCIF |
3287 				    F_FW_IQ_CMD_FL0CONGEN);
3288 		}
3289 		c.fl0dcaen_to_fl0cidxfthresh =
3290 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3291 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3292 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3293 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3294 		c.fl0size = htobe16(fl->qsize);
3295 		c.fl0addr = htobe64(fl->ba);
3296 	}
3297 
3298 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3299 	if (rc != 0) {
3300 		device_printf(sc->dev,
3301 		    "failed to create ingress queue: %d\n", rc);
3302 		return (rc);
3303 	}
3304 
3305 	iq->cidx = 0;
3306 	iq->gen = F_RSPD_GEN;
3307 	iq->intr_next = iq->intr_params;
3308 	iq->cntxt_id = be16toh(c.iqid);
3309 	iq->abs_id = be16toh(c.physiqid);
3310 	iq->flags |= IQ_ALLOCATED;
3311 
3312 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3313 	if (cntxt_id >= sc->sge.niq) {
3314 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3315 		    cntxt_id, sc->sge.niq - 1);
3316 	}
3317 	sc->sge.iqmap[cntxt_id] = iq;
3318 
3319 	if (fl) {
3320 		u_int qid;
3321 
3322 		iq->flags |= IQ_HAS_FL;
3323 		fl->cntxt_id = be16toh(c.fl0id);
3324 		fl->pidx = fl->cidx = 0;
3325 
3326 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3327 		if (cntxt_id >= sc->sge.neq) {
3328 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3329 			    __func__, cntxt_id, sc->sge.neq - 1);
3330 		}
3331 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3332 
3333 		qid = fl->cntxt_id;
3334 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3335 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3336 			uint32_t mask = (1 << s_qpp) - 1;
3337 			volatile uint8_t *udb;
3338 
3339 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3340 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3341 			qid &= mask;
3342 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3343 				udb += qid << UDBS_SEG_SHIFT;
3344 				qid = 0;
3345 			}
3346 			fl->udb = (volatile void *)udb;
3347 		}
3348 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3349 
3350 		FL_LOCK(fl);
3351 		/* Enough to make sure the SGE doesn't think it's starved */
3352 		refill_fl(sc, fl, fl->lowat);
3353 		FL_UNLOCK(fl);
3354 	}
3355 
3356 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) {
3357 		uint32_t param, val;
3358 
3359 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3360 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3361 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
3362 		if (cong == 0)
3363 			val = 1 << 19;
3364 		else {
3365 			val = 2 << 19;
3366 			for (i = 0; i < 4; i++) {
3367 				if (cong & (1 << i))
3368 					val |= 1 << (i << 2);
3369 			}
3370 		}
3371 
3372 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3373 		if (rc != 0) {
3374 			/* report error but carry on */
3375 			device_printf(sc->dev,
3376 			    "failed to set congestion manager context for "
3377 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
3378 		}
3379 	}
3380 
3381 	/* Enable IQ interrupts */
3382 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3383 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3384 	    V_INGRESSQID(iq->cntxt_id));
3385 
3386 	return (0);
3387 }
3388 
3389 static int
3390 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3391 {
3392 	int rc;
3393 	struct adapter *sc = iq->adapter;
3394 	device_t dev;
3395 
3396 	if (sc == NULL)
3397 		return (0);	/* nothing to do */
3398 
3399 	dev = vi ? vi->dev : sc->dev;
3400 
3401 	if (iq->flags & IQ_ALLOCATED) {
3402 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
3403 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
3404 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
3405 		if (rc != 0) {
3406 			device_printf(dev,
3407 			    "failed to free queue %p: %d\n", iq, rc);
3408 			return (rc);
3409 		}
3410 		iq->flags &= ~IQ_ALLOCATED;
3411 	}
3412 
3413 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3414 
3415 	bzero(iq, sizeof(*iq));
3416 
3417 	if (fl) {
3418 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
3419 		    fl->desc);
3420 
3421 		if (fl->sdesc)
3422 			free_fl_sdesc(sc, fl);
3423 
3424 		if (mtx_initialized(&fl->fl_lock))
3425 			mtx_destroy(&fl->fl_lock);
3426 
3427 		bzero(fl, sizeof(*fl));
3428 	}
3429 
3430 	return (0);
3431 }
3432 
3433 static void
3434 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3435     struct sge_iq *iq)
3436 {
3437 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3438 
3439 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3440 	    "bus address of descriptor ring");
3441 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3442 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3443 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3444 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &iq->abs_id, 0,
3445 	    sysctl_uint16, "I", "absolute id of the queue");
3446 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3447 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &iq->cntxt_id, 0,
3448 	    sysctl_uint16, "I", "SGE context id of the queue");
3449 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3450 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &iq->cidx, 0,
3451 	    sysctl_uint16, "I", "consumer index");
3452 }
3453 
3454 static void
3455 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3456     struct sysctl_oid *oid, struct sge_fl *fl)
3457 {
3458 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3459 
3460 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3461 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3462 	children = SYSCTL_CHILDREN(oid);
3463 
3464 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3465 	    &fl->ba, "bus address of descriptor ring");
3466 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3467 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3468 	    "desc ring size in bytes");
3469 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3470 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &fl->cntxt_id, 0,
3471 	    sysctl_uint16, "I", "SGE context id of the freelist");
3472 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3473 	    fl_pad ? 1 : 0, "padding enabled");
3474 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3475 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3476 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3477 	    0, "consumer index");
3478 	if (fl->flags & FL_BUF_PACKING) {
3479 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3480 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3481 	}
3482 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3483 	    0, "producer index");
3484 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3485 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3486 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3487 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3488 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3489 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3490 }
3491 
3492 static int
3493 alloc_fwq(struct adapter *sc)
3494 {
3495 	int rc, intr_idx;
3496 	struct sge_iq *fwq = &sc->sge.fwq;
3497 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
3498 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3499 
3500 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
3501 	if (sc->flags & IS_VF)
3502 		intr_idx = 0;
3503 	else
3504 		intr_idx = sc->intr_count > 1 ? 1 : 0;
3505 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
3506 	if (rc != 0) {
3507 		device_printf(sc->dev,
3508 		    "failed to create firmware event queue: %d\n", rc);
3509 		return (rc);
3510 	}
3511 
3512 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq",
3513 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
3514 	add_iq_sysctls(&sc->ctx, oid, fwq);
3515 
3516 	return (0);
3517 }
3518 
3519 static int
3520 free_fwq(struct adapter *sc)
3521 {
3522 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
3523 }
3524 
3525 static int
3526 alloc_ctrlq(struct adapter *sc, struct sge_wrq *ctrlq, int idx,
3527     struct sysctl_oid *oid)
3528 {
3529 	int rc;
3530 	char name[16];
3531 	struct sysctl_oid_list *children;
3532 
3533 	snprintf(name, sizeof(name), "%s ctrlq%d", device_get_nameunit(sc->dev),
3534 	    idx);
3535 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[idx]->tx_chan,
3536 	    sc->sge.fwq.cntxt_id, name);
3537 
3538 	children = SYSCTL_CHILDREN(oid);
3539 	snprintf(name, sizeof(name), "%d", idx);
3540 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, name,
3541 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ctrl queue");
3542 	rc = alloc_wrq(sc, NULL, ctrlq, oid);
3543 
3544 	return (rc);
3545 }
3546 
3547 int
3548 tnl_cong(struct port_info *pi, int drop)
3549 {
3550 
3551 	if (drop == -1)
3552 		return (-1);
3553 	else if (drop == 1)
3554 		return (0);
3555 	else
3556 		return (pi->rx_e_chan_map);
3557 }
3558 
3559 static int
3560 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
3561     struct sysctl_oid *oid)
3562 {
3563 	int rc;
3564 	struct adapter *sc = vi->adapter;
3565 	struct sysctl_oid_list *children;
3566 	char name[16];
3567 
3568 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
3569 	    tnl_cong(vi->pi, cong_drop));
3570 	if (rc != 0)
3571 		return (rc);
3572 
3573 	if (idx == 0)
3574 		sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3575 	else
3576 		KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3577 		    ("iq_base mismatch"));
3578 	KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3579 	    ("PF with non-zero iq_base"));
3580 
3581 	/*
3582 	 * The freelist is just barely above the starvation threshold right now,
3583 	 * fill it up a bit more.
3584 	 */
3585 	FL_LOCK(&rxq->fl);
3586 	refill_fl(sc, &rxq->fl, 128);
3587 	FL_UNLOCK(&rxq->fl);
3588 
3589 #if defined(INET) || defined(INET6)
3590 	rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs);
3591 	if (rc != 0)
3592 		return (rc);
3593 	MPASS(rxq->lro.ifp == vi->ifp);	/* also indicates LRO init'ed */
3594 
3595 	if (vi->ifp->if_capenable & IFCAP_LRO)
3596 		rxq->iq.flags |= IQ_LRO_ENABLED;
3597 #endif
3598 	if (vi->ifp->if_capenable & IFCAP_HWRXTSTMP)
3599 		rxq->iq.flags |= IQ_RX_TIMESTAMP;
3600 	rxq->ifp = vi->ifp;
3601 
3602 	children = SYSCTL_CHILDREN(oid);
3603 
3604 	snprintf(name, sizeof(name), "%d", idx);
3605 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name,
3606 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queue");
3607 	children = SYSCTL_CHILDREN(oid);
3608 
3609 	add_iq_sysctls(&vi->ctx, oid, &rxq->iq);
3610 #if defined(INET) || defined(INET6)
3611 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3612 	    &rxq->lro.lro_queued, 0, NULL);
3613 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3614 	    &rxq->lro.lro_flushed, 0, NULL);
3615 #endif
3616 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3617 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3618 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3619 	    CTLFLAG_RD, &rxq->vlan_extraction,
3620 	    "# of times hardware extracted 802.1Q tag");
3621 
3622 	add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl);
3623 
3624 	return (rc);
3625 }
3626 
3627 static int
3628 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3629 {
3630 	int rc;
3631 
3632 #if defined(INET) || defined(INET6)
3633 	if (rxq->lro.ifp) {
3634 		tcp_lro_free(&rxq->lro);
3635 		rxq->lro.ifp = NULL;
3636 	}
3637 #endif
3638 
3639 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3640 	if (rc == 0)
3641 		bzero(rxq, sizeof(*rxq));
3642 
3643 	return (rc);
3644 }
3645 
3646 #ifdef TCP_OFFLOAD
3647 static int
3648 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3649     int intr_idx, int idx, struct sysctl_oid *oid)
3650 {
3651 	struct port_info *pi = vi->pi;
3652 	int rc;
3653 	struct sysctl_oid_list *children;
3654 	char name[16];
3655 
3656 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0);
3657 	if (rc != 0)
3658 		return (rc);
3659 
3660 	children = SYSCTL_CHILDREN(oid);
3661 
3662 	snprintf(name, sizeof(name), "%d", idx);
3663 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name,
3664 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queue");
3665 	add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq);
3666 	add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl);
3667 
3668 	return (rc);
3669 }
3670 
3671 static int
3672 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3673 {
3674 	int rc;
3675 
3676 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3677 	if (rc == 0)
3678 		bzero(ofld_rxq, sizeof(*ofld_rxq));
3679 
3680 	return (rc);
3681 }
3682 #endif
3683 
3684 #ifdef DEV_NETMAP
3685 static int
3686 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3687     int idx, struct sysctl_oid *oid)
3688 {
3689 	int rc;
3690 	struct sysctl_oid_list *children;
3691 	struct sysctl_ctx_list *ctx;
3692 	char name[16];
3693 	size_t len;
3694 	struct adapter *sc = vi->adapter;
3695 	struct netmap_adapter *na = NA(vi->ifp);
3696 
3697 	MPASS(na != NULL);
3698 
3699 	len = vi->qsize_rxq * IQ_ESIZE;
3700 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3701 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3702 	if (rc != 0)
3703 		return (rc);
3704 
3705 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3706 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3707 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3708 	if (rc != 0)
3709 		return (rc);
3710 
3711 	nm_rxq->vi = vi;
3712 	nm_rxq->nid = idx;
3713 	nm_rxq->iq_cidx = 0;
3714 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3715 	nm_rxq->iq_gen = F_RSPD_GEN;
3716 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3717 	nm_rxq->fl_sidx = na->num_rx_desc;
3718 	nm_rxq->fl_sidx2 = nm_rxq->fl_sidx;	/* copy for rxsync cacheline */
3719 	nm_rxq->intr_idx = intr_idx;
3720 	nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID;
3721 
3722 	ctx = &vi->ctx;
3723 	children = SYSCTL_CHILDREN(oid);
3724 
3725 	snprintf(name, sizeof(name), "%d", idx);
3726 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name,
3727 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queue");
3728 	children = SYSCTL_CHILDREN(oid);
3729 
3730 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3731 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &nm_rxq->iq_abs_id,
3732 	    0, sysctl_uint16, "I", "absolute id of the queue");
3733 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3734 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &nm_rxq->iq_cntxt_id,
3735 	    0, sysctl_uint16, "I", "SGE context id of the queue");
3736 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3737 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &nm_rxq->iq_cidx, 0,
3738 	    sysctl_uint16, "I", "consumer index");
3739 
3740 	children = SYSCTL_CHILDREN(oid);
3741 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3742 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3743 	children = SYSCTL_CHILDREN(oid);
3744 
3745 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3746 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &nm_rxq->fl_cntxt_id,
3747 	    0, sysctl_uint16, "I", "SGE context id of the freelist");
3748 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3749 	    &nm_rxq->fl_cidx, 0, "consumer index");
3750 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3751 	    &nm_rxq->fl_pidx, 0, "producer index");
3752 
3753 	return (rc);
3754 }
3755 
3756 
3757 static int
3758 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3759 {
3760 	struct adapter *sc = vi->adapter;
3761 
3762 	if (vi->flags & VI_INIT_DONE)
3763 		MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID);
3764 	else
3765 		MPASS(nm_rxq->iq_cntxt_id == 0);
3766 
3767 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3768 	    nm_rxq->iq_desc);
3769 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3770 	    nm_rxq->fl_desc);
3771 
3772 	return (0);
3773 }
3774 
3775 static int
3776 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3777     struct sysctl_oid *oid)
3778 {
3779 	int rc;
3780 	size_t len;
3781 	struct port_info *pi = vi->pi;
3782 	struct adapter *sc = pi->adapter;
3783 	struct netmap_adapter *na = NA(vi->ifp);
3784 	char name[16];
3785 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3786 
3787 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3788 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3789 	    &nm_txq->ba, (void **)&nm_txq->desc);
3790 	if (rc)
3791 		return (rc);
3792 
3793 	nm_txq->pidx = nm_txq->cidx = 0;
3794 	nm_txq->sidx = na->num_tx_desc;
3795 	nm_txq->nid = idx;
3796 	nm_txq->iqidx = iqidx;
3797 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3798 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
3799 	    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
3800 	if (sc->params.fw_vers >= FW_VERSION32(1, 24, 11, 0))
3801 		nm_txq->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR));
3802 	else
3803 		nm_txq->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3804 	nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID;
3805 
3806 	snprintf(name, sizeof(name), "%d", idx);
3807 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name,
3808 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queue");
3809 	children = SYSCTL_CHILDREN(oid);
3810 
3811 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3812 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3813 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3814 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &nm_txq->cidx, 0,
3815 	    sysctl_uint16, "I", "consumer index");
3816 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3817 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &nm_txq->pidx, 0,
3818 	    sysctl_uint16, "I", "producer index");
3819 
3820 	return (rc);
3821 }
3822 
3823 static int
3824 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3825 {
3826 	struct adapter *sc = vi->adapter;
3827 
3828 	if (vi->flags & VI_INIT_DONE)
3829 		MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID);
3830 	else
3831 		MPASS(nm_txq->cntxt_id == 0);
3832 
3833 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3834 	    nm_txq->desc);
3835 
3836 	return (0);
3837 }
3838 #endif
3839 
3840 /*
3841  * Returns a reasonable automatic cidx flush threshold for a given queue size.
3842  */
3843 static u_int
3844 qsize_to_fthresh(int qsize)
3845 {
3846 	u_int fthresh;
3847 
3848 	while (!powerof2(qsize))
3849 		qsize++;
3850 	fthresh = ilog2(qsize);
3851 	if (fthresh > X_CIDXFLUSHTHRESH_128)
3852 		fthresh = X_CIDXFLUSHTHRESH_128;
3853 
3854 	return (fthresh);
3855 }
3856 
3857 static int
3858 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3859 {
3860 	int rc, cntxt_id;
3861 	struct fw_eq_ctrl_cmd c;
3862 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3863 
3864 	bzero(&c, sizeof(c));
3865 
3866 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3867 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3868 	    V_FW_EQ_CTRL_CMD_VFN(0));
3869 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3870 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3871 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3872 	c.physeqid_pkd = htobe32(0);
3873 	c.fetchszm_to_iqid =
3874 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3875 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3876 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3877 	c.dcaen_to_eqsize =
3878 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3879 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
3880 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3881 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
3882 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3883 	c.eqaddr = htobe64(eq->ba);
3884 
3885 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3886 	if (rc != 0) {
3887 		device_printf(sc->dev,
3888 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3889 		return (rc);
3890 	}
3891 	eq->flags |= EQ_ALLOCATED;
3892 
3893 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3894 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3895 	if (cntxt_id >= sc->sge.neq)
3896 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3897 		cntxt_id, sc->sge.neq - 1);
3898 	sc->sge.eqmap[cntxt_id] = eq;
3899 
3900 	return (rc);
3901 }
3902 
3903 static int
3904 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3905 {
3906 	int rc, cntxt_id;
3907 	struct fw_eq_eth_cmd c;
3908 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3909 
3910 	bzero(&c, sizeof(c));
3911 
3912 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3913 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3914 	    V_FW_EQ_ETH_CMD_VFN(0));
3915 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3916 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3917 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3918 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3919 	c.fetchszm_to_iqid =
3920 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3921 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3922 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3923 	c.dcaen_to_eqsize =
3924 	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3925 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
3926 		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3927 		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3928 	c.eqaddr = htobe64(eq->ba);
3929 
3930 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3931 	if (rc != 0) {
3932 		device_printf(vi->dev,
3933 		    "failed to create Ethernet egress queue: %d\n", rc);
3934 		return (rc);
3935 	}
3936 	eq->flags |= EQ_ALLOCATED;
3937 
3938 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3939 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
3940 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3941 	if (cntxt_id >= sc->sge.neq)
3942 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3943 		cntxt_id, sc->sge.neq - 1);
3944 	sc->sge.eqmap[cntxt_id] = eq;
3945 
3946 	return (rc);
3947 }
3948 
3949 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3950 static int
3951 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3952 {
3953 	int rc, cntxt_id;
3954 	struct fw_eq_ofld_cmd c;
3955 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3956 
3957 	bzero(&c, sizeof(c));
3958 
3959 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3960 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3961 	    V_FW_EQ_OFLD_CMD_VFN(0));
3962 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3963 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3964 	c.fetchszm_to_iqid =
3965 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3966 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3967 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3968 	c.dcaen_to_eqsize =
3969 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3970 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
3971 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3972 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
3973 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3974 	c.eqaddr = htobe64(eq->ba);
3975 
3976 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3977 	if (rc != 0) {
3978 		device_printf(vi->dev,
3979 		    "failed to create egress queue for TCP offload: %d\n", rc);
3980 		return (rc);
3981 	}
3982 	eq->flags |= EQ_ALLOCATED;
3983 
3984 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3985 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3986 	if (cntxt_id >= sc->sge.neq)
3987 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3988 		cntxt_id, sc->sge.neq - 1);
3989 	sc->sge.eqmap[cntxt_id] = eq;
3990 
3991 	return (rc);
3992 }
3993 #endif
3994 
3995 static int
3996 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3997 {
3998 	int rc, qsize;
3999 	size_t len;
4000 
4001 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
4002 
4003 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4004 	len = qsize * EQ_ESIZE;
4005 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
4006 	    &eq->ba, (void **)&eq->desc);
4007 	if (rc)
4008 		return (rc);
4009 
4010 	eq->pidx = eq->cidx = eq->dbidx = 0;
4011 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4012 	eq->equeqidx = 0;
4013 	eq->doorbells = sc->doorbells;
4014 
4015 	switch (eq->flags & EQ_TYPEMASK) {
4016 	case EQ_CTRL:
4017 		rc = ctrl_eq_alloc(sc, eq);
4018 		break;
4019 
4020 	case EQ_ETH:
4021 		rc = eth_eq_alloc(sc, vi, eq);
4022 		break;
4023 
4024 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4025 	case EQ_OFLD:
4026 		rc = ofld_eq_alloc(sc, vi, eq);
4027 		break;
4028 #endif
4029 
4030 	default:
4031 		panic("%s: invalid eq type %d.", __func__,
4032 		    eq->flags & EQ_TYPEMASK);
4033 	}
4034 	if (rc != 0) {
4035 		device_printf(sc->dev,
4036 		    "failed to allocate egress queue(%d): %d\n",
4037 		    eq->flags & EQ_TYPEMASK, rc);
4038 	}
4039 
4040 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4041 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4042 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4043 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4044 		uint32_t mask = (1 << s_qpp) - 1;
4045 		volatile uint8_t *udb;
4046 
4047 		udb = sc->udbs_base + UDBS_DB_OFFSET;
4048 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4049 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4050 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4051 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
4052 		else {
4053 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4054 			eq->udb_qid = 0;
4055 		}
4056 		eq->udb = (volatile void *)udb;
4057 	}
4058 
4059 	return (rc);
4060 }
4061 
4062 static int
4063 free_eq(struct adapter *sc, struct sge_eq *eq)
4064 {
4065 	int rc;
4066 
4067 	if (eq->flags & EQ_ALLOCATED) {
4068 		switch (eq->flags & EQ_TYPEMASK) {
4069 		case EQ_CTRL:
4070 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
4071 			    eq->cntxt_id);
4072 			break;
4073 
4074 		case EQ_ETH:
4075 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
4076 			    eq->cntxt_id);
4077 			break;
4078 
4079 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4080 		case EQ_OFLD:
4081 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
4082 			    eq->cntxt_id);
4083 			break;
4084 #endif
4085 
4086 		default:
4087 			panic("%s: invalid eq type %d.", __func__,
4088 			    eq->flags & EQ_TYPEMASK);
4089 		}
4090 		if (rc != 0) {
4091 			device_printf(sc->dev,
4092 			    "failed to free egress queue (%d): %d\n",
4093 			    eq->flags & EQ_TYPEMASK, rc);
4094 			return (rc);
4095 		}
4096 		eq->flags &= ~EQ_ALLOCATED;
4097 	}
4098 
4099 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4100 
4101 	if (mtx_initialized(&eq->eq_lock))
4102 		mtx_destroy(&eq->eq_lock);
4103 
4104 	bzero(eq, sizeof(*eq));
4105 	return (0);
4106 }
4107 
4108 static int
4109 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4110     struct sysctl_oid *oid)
4111 {
4112 	int rc;
4113 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
4114 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4115 
4116 	rc = alloc_eq(sc, vi, &wrq->eq);
4117 	if (rc)
4118 		return (rc);
4119 
4120 	wrq->adapter = sc;
4121 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4122 	TAILQ_INIT(&wrq->incomplete_wrs);
4123 	STAILQ_INIT(&wrq->wr_list);
4124 	wrq->nwr_pending = 0;
4125 	wrq->ndesc_needed = 0;
4126 
4127 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
4128 	    &wrq->eq.ba, "bus address of descriptor ring");
4129 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4130 	    wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len,
4131 	    "desc ring size in bytes");
4132 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4133 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
4134 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
4135 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &wrq->eq.cidx, 0,
4136 	    sysctl_uint16, "I", "consumer index");
4137 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
4138 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &wrq->eq.pidx, 0,
4139 	    sysctl_uint16, "I", "producer index");
4140 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4141 	    wrq->eq.sidx, "status page index");
4142 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4143 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4144 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4145 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4146 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4147 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4148 
4149 	return (rc);
4150 }
4151 
4152 static int
4153 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4154 {
4155 	int rc;
4156 
4157 	rc = free_eq(sc, &wrq->eq);
4158 	if (rc)
4159 		return (rc);
4160 
4161 	bzero(wrq, sizeof(*wrq));
4162 	return (0);
4163 }
4164 
4165 static int
4166 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
4167     struct sysctl_oid *oid)
4168 {
4169 	int rc;
4170 	struct port_info *pi = vi->pi;
4171 	struct adapter *sc = pi->adapter;
4172 	struct sge_eq *eq = &txq->eq;
4173 	struct txpkts *txp;
4174 	char name[16];
4175 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4176 
4177 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
4178 	    M_CXGBE, &eq->eq_lock, M_WAITOK);
4179 	if (rc != 0) {
4180 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
4181 		return (rc);
4182 	}
4183 
4184 	rc = alloc_eq(sc, vi, eq);
4185 	if (rc != 0) {
4186 		mp_ring_free(txq->r);
4187 		txq->r = NULL;
4188 		return (rc);
4189 	}
4190 
4191 	/* Can't fail after this point. */
4192 
4193 	if (idx == 0)
4194 		sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4195 	else
4196 		KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4197 		    ("eq_base mismatch"));
4198 	KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4199 	    ("PF with non-zero eq_base"));
4200 
4201 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4202 	txq->ifp = vi->ifp;
4203 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4204 	if (sc->flags & IS_VF)
4205 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4206 		    V_TXPKT_INTF(pi->tx_chan));
4207 	else
4208 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4209 		    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4210 		    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4211 	txq->tc_idx = -1;
4212 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4213 	    M_ZERO | M_WAITOK);
4214 
4215 	txp = &txq->txp;
4216 	txp->score = 5;
4217 	MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4218 	txq->txp.max_npkt = min(nitems(txp->mb),
4219 	    sc->params.max_pkts_per_eth_tx_pkts_wr);
4220 
4221 	snprintf(name, sizeof(name), "%d", idx);
4222 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name,
4223 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queue");
4224 	children = SYSCTL_CHILDREN(oid);
4225 
4226 	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
4227 	    &eq->ba, "bus address of descriptor ring");
4228 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4229 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4230 	    "desc ring size in bytes");
4231 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4232 	    &eq->abs_id, 0, "absolute id of the queue");
4233 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4234 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4235 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
4236 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &eq->cidx, 0,
4237 	    sysctl_uint16, "I", "consumer index");
4238 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
4239 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &eq->pidx, 0,
4240 	    sysctl_uint16, "I", "producer index");
4241 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4242 	    eq->sidx, "status page index");
4243 
4244 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
4245 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, vi, idx, sysctl_tc,
4246 	    "I", "traffic class (-1 means none)");
4247 
4248 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4249 	    &txq->txcsum, "# of times hardware assisted with checksum");
4250 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
4251 	    CTLFLAG_RD, &txq->vlan_insertion,
4252 	    "# of times hardware inserted 802.1Q tag");
4253 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4254 	    &txq->tso_wrs, "# of TSO work requests");
4255 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4256 	    &txq->imm_wrs, "# of work requests with immediate data");
4257 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4258 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4259 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4260 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4261 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
4262 	    CTLFLAG_RD, &txq->txpkts0_wrs,
4263 	    "# of txpkts (type 0) work requests");
4264 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
4265 	    CTLFLAG_RD, &txq->txpkts1_wrs,
4266 	    "# of txpkts (type 1) work requests");
4267 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
4268 	    CTLFLAG_RD, &txq->txpkts0_pkts,
4269 	    "# of frames tx'd using type0 txpkts work requests");
4270 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
4271 	    CTLFLAG_RD, &txq->txpkts1_pkts,
4272 	    "# of frames tx'd using type1 txpkts work requests");
4273 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4274 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4275 
4276 #ifdef KERN_TLS
4277 	if (sc->flags & KERN_TLS_OK) {
4278 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4279 		    "kern_tls_records", CTLFLAG_RD, &txq->kern_tls_records,
4280 		    "# of NIC TLS records transmitted");
4281 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4282 		    "kern_tls_short", CTLFLAG_RD, &txq->kern_tls_short,
4283 		    "# of short NIC TLS records transmitted");
4284 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4285 		    "kern_tls_partial", CTLFLAG_RD, &txq->kern_tls_partial,
4286 		    "# of partial NIC TLS records transmitted");
4287 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4288 		    "kern_tls_full", CTLFLAG_RD, &txq->kern_tls_full,
4289 		    "# of full NIC TLS records transmitted");
4290 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4291 		    "kern_tls_octets", CTLFLAG_RD, &txq->kern_tls_octets,
4292 		    "# of payload octets in transmitted NIC TLS records");
4293 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4294 		    "kern_tls_waste", CTLFLAG_RD, &txq->kern_tls_waste,
4295 		    "# of octets DMAd but not transmitted in NIC TLS records");
4296 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4297 		    "kern_tls_options", CTLFLAG_RD, &txq->kern_tls_options,
4298 		    "# of NIC TLS options-only packets transmitted");
4299 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4300 		    "kern_tls_header", CTLFLAG_RD, &txq->kern_tls_header,
4301 		    "# of NIC TLS header-only packets transmitted");
4302 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4303 		    "kern_tls_fin", CTLFLAG_RD, &txq->kern_tls_fin,
4304 		    "# of NIC TLS FIN-only packets transmitted");
4305 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4306 		    "kern_tls_fin_short", CTLFLAG_RD, &txq->kern_tls_fin_short,
4307 		    "# of NIC TLS padded FIN packets on short TLS records");
4308 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4309 		    "kern_tls_cbc", CTLFLAG_RD, &txq->kern_tls_cbc,
4310 		    "# of NIC TLS sessions using AES-CBC");
4311 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4312 		    "kern_tls_gcm", CTLFLAG_RD, &txq->kern_tls_gcm,
4313 		    "# of NIC TLS sessions using AES-GCM");
4314 	}
4315 #endif
4316 	mp_ring_sysctls(txq->r, &vi->ctx, children);
4317 
4318 	return (0);
4319 }
4320 
4321 static int
4322 free_txq(struct vi_info *vi, struct sge_txq *txq)
4323 {
4324 	int rc;
4325 	struct adapter *sc = vi->adapter;
4326 	struct sge_eq *eq = &txq->eq;
4327 
4328 	rc = free_eq(sc, eq);
4329 	if (rc)
4330 		return (rc);
4331 
4332 	sglist_free(txq->gl);
4333 	free(txq->sdesc, M_CXGBE);
4334 	mp_ring_free(txq->r);
4335 
4336 	bzero(txq, sizeof(*txq));
4337 	return (0);
4338 }
4339 
4340 static void
4341 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4342 {
4343 	bus_addr_t *ba = arg;
4344 
4345 	KASSERT(nseg == 1,
4346 	    ("%s meant for single segment mappings only.", __func__));
4347 
4348 	*ba = error ? 0 : segs->ds_addr;
4349 }
4350 
4351 static inline void
4352 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4353 {
4354 	uint32_t n, v;
4355 
4356 	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
4357 	MPASS(n > 0);
4358 
4359 	wmb();
4360 	v = fl->dbval | V_PIDX(n);
4361 	if (fl->udb)
4362 		*fl->udb = htole32(v);
4363 	else
4364 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4365 	IDXINCR(fl->dbidx, n, fl->sidx);
4366 }
4367 
4368 /*
4369  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4370  * recycled do not count towards this allocation budget.
4371  *
4372  * Returns non-zero to indicate that this freelist should be added to the list
4373  * of starving freelists.
4374  */
4375 static int
4376 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4377 {
4378 	__be64 *d;
4379 	struct fl_sdesc *sd;
4380 	uintptr_t pa;
4381 	caddr_t cl;
4382 	struct rx_buf_info *rxb;
4383 	struct cluster_metadata *clm;
4384 	uint16_t max_pidx;
4385 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
4386 
4387 	FL_LOCK_ASSERT_OWNED(fl);
4388 
4389 	/*
4390 	 * We always stop at the beginning of the hardware descriptor that's just
4391 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
4392 	 * which would mean an empty freelist to the chip.
4393 	 */
4394 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
4395 	if (fl->pidx == max_pidx * 8)
4396 		return (0);
4397 
4398 	d = &fl->desc[fl->pidx];
4399 	sd = &fl->sdesc[fl->pidx];
4400 
4401 	while (n > 0) {
4402 
4403 		if (sd->cl != NULL) {
4404 
4405 			if (sd->nmbuf == 0) {
4406 				/*
4407 				 * Fast recycle without involving any atomics on
4408 				 * the cluster's metadata (if the cluster has
4409 				 * metadata).  This happens when all frames
4410 				 * received in the cluster were small enough to
4411 				 * fit within a single mbuf each.
4412 				 */
4413 				fl->cl_fast_recycled++;
4414 				goto recycled;
4415 			}
4416 
4417 			/*
4418 			 * Cluster is guaranteed to have metadata.  Clusters
4419 			 * without metadata always take the fast recycle path
4420 			 * when they're recycled.
4421 			 */
4422 			clm = cl_metadata(sd);
4423 			MPASS(clm != NULL);
4424 
4425 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4426 				fl->cl_recycled++;
4427 				counter_u64_add(extfree_rels, 1);
4428 				goto recycled;
4429 			}
4430 			sd->cl = NULL;	/* gave up my reference */
4431 		}
4432 		MPASS(sd->cl == NULL);
4433 		rxb = &sc->sge.rx_buf_info[fl->zidx];
4434 		cl = uma_zalloc(rxb->zone, M_NOWAIT);
4435 		if (__predict_false(cl == NULL)) {
4436 			if (fl->zidx != fl->safe_zidx) {
4437 				rxb = &sc->sge.rx_buf_info[fl->safe_zidx];
4438 				cl = uma_zalloc(rxb->zone, M_NOWAIT);
4439 			}
4440 			if (cl == NULL)
4441 				break;
4442 		}
4443 		fl->cl_allocated++;
4444 		n--;
4445 
4446 		pa = pmap_kextract((vm_offset_t)cl);
4447 		sd->cl = cl;
4448 		sd->zidx = fl->zidx;
4449 
4450 		if (fl->flags & FL_BUF_PACKING) {
4451 			*d = htobe64(pa | rxb->hwidx2);
4452 			sd->moff = rxb->size2;
4453 		} else {
4454 			*d = htobe64(pa | rxb->hwidx1);
4455 			sd->moff = 0;
4456 		}
4457 recycled:
4458 		sd->nmbuf = 0;
4459 		d++;
4460 		sd++;
4461 		if (__predict_false((++fl->pidx & 7) == 0)) {
4462 			uint16_t pidx = fl->pidx >> 3;
4463 
4464 			if (__predict_false(pidx == fl->sidx)) {
4465 				fl->pidx = 0;
4466 				pidx = 0;
4467 				sd = fl->sdesc;
4468 				d = fl->desc;
4469 			}
4470 			if (n < 8 || pidx == max_pidx)
4471 				break;
4472 
4473 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
4474 				ring_fl_db(sc, fl);
4475 		}
4476 	}
4477 
4478 	if ((fl->pidx >> 3) != fl->dbidx)
4479 		ring_fl_db(sc, fl);
4480 
4481 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
4482 }
4483 
4484 /*
4485  * Attempt to refill all starving freelists.
4486  */
4487 static void
4488 refill_sfl(void *arg)
4489 {
4490 	struct adapter *sc = arg;
4491 	struct sge_fl *fl, *fl_temp;
4492 
4493 	mtx_assert(&sc->sfl_lock, MA_OWNED);
4494 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
4495 		FL_LOCK(fl);
4496 		refill_fl(sc, fl, 64);
4497 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
4498 			TAILQ_REMOVE(&sc->sfl, fl, link);
4499 			fl->flags &= ~FL_STARVING;
4500 		}
4501 		FL_UNLOCK(fl);
4502 	}
4503 
4504 	if (!TAILQ_EMPTY(&sc->sfl))
4505 		callout_schedule(&sc->sfl_callout, hz / 5);
4506 }
4507 
4508 static int
4509 alloc_fl_sdesc(struct sge_fl *fl)
4510 {
4511 
4512 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
4513 	    M_ZERO | M_WAITOK);
4514 
4515 	return (0);
4516 }
4517 
4518 static void
4519 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
4520 {
4521 	struct fl_sdesc *sd;
4522 	struct cluster_metadata *clm;
4523 	int i;
4524 
4525 	sd = fl->sdesc;
4526 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
4527 		if (sd->cl == NULL)
4528 			continue;
4529 
4530 		if (sd->nmbuf == 0)
4531 			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
4532 		else if (fl->flags & FL_BUF_PACKING) {
4533 			clm = cl_metadata(sd);
4534 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4535 				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
4536 				    sd->cl);
4537 				counter_u64_add(extfree_rels, 1);
4538 			}
4539 		}
4540 		sd->cl = NULL;
4541 	}
4542 
4543 	free(fl->sdesc, M_CXGBE);
4544 	fl->sdesc = NULL;
4545 }
4546 
4547 static inline void
4548 get_pkt_gl(struct mbuf *m, struct sglist *gl)
4549 {
4550 	int rc;
4551 
4552 	M_ASSERTPKTHDR(m);
4553 
4554 	sglist_reset(gl);
4555 	rc = sglist_append_mbuf(gl, m);
4556 	if (__predict_false(rc != 0)) {
4557 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
4558 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
4559 	}
4560 
4561 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
4562 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
4563 	    mbuf_nsegs(m), gl->sg_nseg));
4564 	KASSERT(gl->sg_nseg > 0 &&
4565 	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
4566 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
4567 		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
4568 }
4569 
4570 /*
4571  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
4572  */
4573 static inline u_int
4574 txpkt_len16(u_int nsegs, u_int tso)
4575 {
4576 	u_int n;
4577 
4578 	MPASS(nsegs > 0);
4579 
4580 	nsegs--; /* first segment is part of ulptx_sgl */
4581 	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
4582 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4583 	if (tso)
4584 		n += sizeof(struct cpl_tx_pkt_lso_core);
4585 
4586 	return (howmany(n, 16));
4587 }
4588 
4589 /*
4590  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
4591  * request header.
4592  */
4593 static inline u_int
4594 txpkt_vm_len16(u_int nsegs, u_int tso)
4595 {
4596 	u_int n;
4597 
4598 	MPASS(nsegs > 0);
4599 
4600 	nsegs--; /* first segment is part of ulptx_sgl */
4601 	n = sizeof(struct fw_eth_tx_pkt_vm_wr) +
4602 	    sizeof(struct cpl_tx_pkt_core) +
4603 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4604 	if (tso)
4605 		n += sizeof(struct cpl_tx_pkt_lso_core);
4606 
4607 	return (howmany(n, 16));
4608 }
4609 
4610 /*
4611  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
4612  * request header.
4613  */
4614 static inline u_int
4615 txpkts0_len16(u_int nsegs)
4616 {
4617 	u_int n;
4618 
4619 	MPASS(nsegs > 0);
4620 
4621 	nsegs--; /* first segment is part of ulptx_sgl */
4622 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
4623 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
4624 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
4625 
4626 	return (howmany(n, 16));
4627 }
4628 
4629 /*
4630  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
4631  * request header.
4632  */
4633 static inline u_int
4634 txpkts1_len16(void)
4635 {
4636 	u_int n;
4637 
4638 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
4639 
4640 	return (howmany(n, 16));
4641 }
4642 
4643 static inline u_int
4644 imm_payload(u_int ndesc)
4645 {
4646 	u_int n;
4647 
4648 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
4649 	    sizeof(struct cpl_tx_pkt_core);
4650 
4651 	return (n);
4652 }
4653 
4654 static inline uint64_t
4655 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
4656 {
4657 	uint64_t ctrl;
4658 	int csum_type;
4659 
4660 	M_ASSERTPKTHDR(m);
4661 
4662 	if (needs_hwcsum(m) == 0)
4663 		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
4664 
4665 	ctrl = 0;
4666 	if (needs_l3_csum(m) == 0)
4667 		ctrl |= F_TXPKT_IPCSUM_DIS;
4668 	switch (m->m_pkthdr.csum_flags &
4669 	    (CSUM_IP_TCP | CSUM_IP_UDP | CSUM_IP6_TCP | CSUM_IP6_UDP)) {
4670 	case CSUM_IP_TCP:
4671 		csum_type = TX_CSUM_TCPIP;
4672 		break;
4673 	case CSUM_IP_UDP:
4674 		csum_type = TX_CSUM_UDPIP;
4675 		break;
4676 	case CSUM_IP6_TCP:
4677 		csum_type = TX_CSUM_TCPIP6;
4678 		break;
4679 	case CSUM_IP6_UDP:
4680 		csum_type = TX_CSUM_UDPIP6;
4681 		break;
4682 	default:
4683 		/* needs_hwcsum told us that at least some hwcsum is needed. */
4684 		MPASS(ctrl == 0);
4685 		MPASS(m->m_pkthdr.csum_flags & CSUM_IP);
4686 		ctrl |= F_TXPKT_L4CSUM_DIS;
4687 		csum_type = TX_CSUM_IP;
4688 		break;
4689 	}
4690 
4691 	MPASS(m->m_pkthdr.l2hlen > 0);
4692 	MPASS(m->m_pkthdr.l3hlen > 0);
4693 	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) |
4694 	    V_TXPKT_IPHDR_LEN(m->m_pkthdr.l3hlen);
4695 	if (chip_id(sc) <= CHELSIO_T5)
4696 		ctrl |= V_TXPKT_ETHHDR_LEN(m->m_pkthdr.l2hlen - ETHER_HDR_LEN);
4697 	else
4698 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(m->m_pkthdr.l2hlen - ETHER_HDR_LEN);
4699 
4700 	return (ctrl);
4701 }
4702 
4703 #define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
4704 
4705 /*
4706  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
4707  * software descriptor, and advance the pidx.  It is guaranteed that enough
4708  * descriptors are available.
4709  *
4710  * The return value is the # of hardware descriptors used.
4711  */
4712 static u_int
4713 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
4714 {
4715 	struct sge_eq *eq;
4716 	struct fw_eth_tx_pkt_vm_wr *wr;
4717 	struct tx_sdesc *txsd;
4718 	struct cpl_tx_pkt_core *cpl;
4719 	uint32_t ctrl;	/* used in many unrelated places */
4720 	uint64_t ctrl1;
4721 	int len16, ndesc, pktlen, nsegs;
4722 	caddr_t dst;
4723 
4724 	TXQ_LOCK_ASSERT_OWNED(txq);
4725 	M_ASSERTPKTHDR(m0);
4726 
4727 	len16 = mbuf_len16(m0);
4728 	nsegs = mbuf_nsegs(m0);
4729 	pktlen = m0->m_pkthdr.len;
4730 	ctrl = sizeof(struct cpl_tx_pkt_core);
4731 	if (needs_tso(m0))
4732 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4733 	ndesc = tx_len16_to_desc(len16);
4734 
4735 	/* Firmware work request header */
4736 	eq = &txq->eq;
4737 	wr = (void *)&eq->desc[eq->pidx];
4738 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
4739 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4740 
4741 	ctrl = V_FW_WR_LEN16(len16);
4742 	wr->equiq_to_len16 = htobe32(ctrl);
4743 	wr->r3[0] = 0;
4744 	wr->r3[1] = 0;
4745 
4746 	/*
4747 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
4748 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
4749 	 * simpler to always copy it rather than making it
4750 	 * conditional.  Also, it seems that we do not have to set
4751 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
4752 	 */
4753 	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
4754 
4755 	if (needs_tso(m0)) {
4756 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4757 
4758 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4759 		    m0->m_pkthdr.l4hlen > 0,
4760 		    ("%s: mbuf %p needs TSO but missing header lengths",
4761 			__func__, m0));
4762 
4763 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4764 		    F_LSO_LAST_SLICE | V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
4765 			ETHER_HDR_LEN) >> 2) |
4766 		    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
4767 		    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4768 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4769 			ctrl |= F_LSO_IPV6;
4770 
4771 		lso->lso_ctrl = htobe32(ctrl);
4772 		lso->ipid_ofst = htobe16(0);
4773 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4774 		lso->seqno_offset = htobe32(0);
4775 		lso->len = htobe32(pktlen);
4776 
4777 		cpl = (void *)(lso + 1);
4778 
4779 		txq->tso_wrs++;
4780 	} else
4781 		cpl = (void *)(wr + 1);
4782 
4783 	/* Checksum offload */
4784 	ctrl1 = csum_to_ctrl(sc, m0);
4785 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
4786 		txq->txcsum++;	/* some hardware assistance provided */
4787 
4788 	/* VLAN tag insertion */
4789 	if (needs_vlan_insertion(m0)) {
4790 		ctrl1 |= F_TXPKT_VLAN_VLD |
4791 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4792 		txq->vlan_insertion++;
4793 	}
4794 
4795 	/* CPL header */
4796 	cpl->ctrl0 = txq->cpl_ctrl0;
4797 	cpl->pack = 0;
4798 	cpl->len = htobe16(pktlen);
4799 	cpl->ctrl1 = htobe64(ctrl1);
4800 
4801 	/* SGL */
4802 	dst = (void *)(cpl + 1);
4803 
4804 	/*
4805 	 * A packet using TSO will use up an entire descriptor for the
4806 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
4807 	 * If this descriptor is the last descriptor in the ring, wrap
4808 	 * around to the front of the ring explicitly for the start of
4809 	 * the sgl.
4810 	 */
4811 	if (dst == (void *)&eq->desc[eq->sidx]) {
4812 		dst = (void *)&eq->desc[0];
4813 		write_gl_to_txd(txq, m0, &dst, 0);
4814 	} else
4815 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4816 	txq->sgl_wrs++;
4817 	txq->txpkt_wrs++;
4818 
4819 	txsd = &txq->sdesc[eq->pidx];
4820 	txsd->m = m0;
4821 	txsd->desc_used = ndesc;
4822 
4823 	return (ndesc);
4824 }
4825 
4826 /*
4827  * Write a raw WR to the hardware descriptors, update the software
4828  * descriptor, and advance the pidx.  It is guaranteed that enough
4829  * descriptors are available.
4830  *
4831  * The return value is the # of hardware descriptors used.
4832  */
4833 static u_int
4834 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
4835 {
4836 	struct sge_eq *eq = &txq->eq;
4837 	struct tx_sdesc *txsd;
4838 	struct mbuf *m;
4839 	caddr_t dst;
4840 	int len16, ndesc;
4841 
4842 	len16 = mbuf_len16(m0);
4843 	ndesc = tx_len16_to_desc(len16);
4844 	MPASS(ndesc <= available);
4845 
4846 	dst = wr;
4847 	for (m = m0; m != NULL; m = m->m_next)
4848 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4849 
4850 	txq->raw_wrs++;
4851 
4852 	txsd = &txq->sdesc[eq->pidx];
4853 	txsd->m = m0;
4854 	txsd->desc_used = ndesc;
4855 
4856 	return (ndesc);
4857 }
4858 
4859 /*
4860  * Write a txpkt WR for this packet to the hardware descriptors, update the
4861  * software descriptor, and advance the pidx.  It is guaranteed that enough
4862  * descriptors are available.
4863  *
4864  * The return value is the # of hardware descriptors used.
4865  */
4866 static u_int
4867 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
4868     u_int available)
4869 {
4870 	struct sge_eq *eq;
4871 	struct fw_eth_tx_pkt_wr *wr;
4872 	struct tx_sdesc *txsd;
4873 	struct cpl_tx_pkt_core *cpl;
4874 	uint32_t ctrl;	/* used in many unrelated places */
4875 	uint64_t ctrl1;
4876 	int len16, ndesc, pktlen, nsegs;
4877 	caddr_t dst;
4878 
4879 	TXQ_LOCK_ASSERT_OWNED(txq);
4880 	M_ASSERTPKTHDR(m0);
4881 
4882 	len16 = mbuf_len16(m0);
4883 	nsegs = mbuf_nsegs(m0);
4884 	pktlen = m0->m_pkthdr.len;
4885 	ctrl = sizeof(struct cpl_tx_pkt_core);
4886 	if (needs_tso(m0))
4887 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4888 	else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
4889 	    available >= 2) {
4890 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
4891 		ctrl += pktlen;
4892 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
4893 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
4894 		nsegs = 0;
4895 	}
4896 	ndesc = tx_len16_to_desc(len16);
4897 	MPASS(ndesc <= available);
4898 
4899 	/* Firmware work request header */
4900 	eq = &txq->eq;
4901 	wr = (void *)&eq->desc[eq->pidx];
4902 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
4903 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4904 
4905 	ctrl = V_FW_WR_LEN16(len16);
4906 	wr->equiq_to_len16 = htobe32(ctrl);
4907 	wr->r3 = 0;
4908 
4909 	if (needs_tso(m0)) {
4910 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4911 
4912 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4913 		    m0->m_pkthdr.l4hlen > 0,
4914 		    ("%s: mbuf %p needs TSO but missing header lengths",
4915 			__func__, m0));
4916 
4917 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4918 		    F_LSO_LAST_SLICE | V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
4919 			ETHER_HDR_LEN) >> 2) |
4920 		    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
4921 		    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4922 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4923 			ctrl |= F_LSO_IPV6;
4924 
4925 		lso->lso_ctrl = htobe32(ctrl);
4926 		lso->ipid_ofst = htobe16(0);
4927 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4928 		lso->seqno_offset = htobe32(0);
4929 		lso->len = htobe32(pktlen);
4930 
4931 		cpl = (void *)(lso + 1);
4932 
4933 		txq->tso_wrs++;
4934 	} else
4935 		cpl = (void *)(wr + 1);
4936 
4937 	/* Checksum offload */
4938 	ctrl1 = csum_to_ctrl(sc, m0);
4939 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
4940 		txq->txcsum++;	/* some hardware assistance provided */
4941 
4942 	/* VLAN tag insertion */
4943 	if (needs_vlan_insertion(m0)) {
4944 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4945 		txq->vlan_insertion++;
4946 	}
4947 
4948 	/* CPL header */
4949 	cpl->ctrl0 = txq->cpl_ctrl0;
4950 	cpl->pack = 0;
4951 	cpl->len = htobe16(pktlen);
4952 	cpl->ctrl1 = htobe64(ctrl1);
4953 
4954 	/* SGL */
4955 	dst = (void *)(cpl + 1);
4956 	if (nsegs > 0) {
4957 
4958 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4959 		txq->sgl_wrs++;
4960 	} else {
4961 		struct mbuf *m;
4962 
4963 		for (m = m0; m != NULL; m = m->m_next) {
4964 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4965 #ifdef INVARIANTS
4966 			pktlen -= m->m_len;
4967 #endif
4968 		}
4969 #ifdef INVARIANTS
4970 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
4971 #endif
4972 		txq->imm_wrs++;
4973 	}
4974 
4975 	txq->txpkt_wrs++;
4976 
4977 	txsd = &txq->sdesc[eq->pidx];
4978 	txsd->m = m0;
4979 	txsd->desc_used = ndesc;
4980 
4981 	return (ndesc);
4982 }
4983 
4984 static inline bool
4985 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
4986 {
4987 	int len;
4988 
4989 	MPASS(txp->npkt > 0);
4990 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
4991 
4992 	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
4993 		len = VM_TX_L2HDR_LEN;
4994 	else
4995 		len = sizeof(struct ether_header);
4996 
4997 	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
4998 }
4999 
5000 static inline void
5001 save_l2hdr(struct txpkts *txp, struct mbuf *m)
5002 {
5003 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5004 
5005 	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5006 }
5007 
5008 static int
5009 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5010     int avail, bool *send)
5011 {
5012 	struct txpkts *txp = &txq->txp;
5013 
5014 	MPASS(sc->flags & IS_VF);
5015 
5016 	/* Cannot have TSO and coalesce at the same time. */
5017 	if (cannot_use_txpkts(m)) {
5018 cannot_coalesce:
5019 		*send = txp->npkt > 0;
5020 		return (EINVAL);
5021 	}
5022 
5023 	/* VF allows coalescing of type 1 (1 GL) only */
5024 	if (mbuf_nsegs(m) > 1)
5025 		goto cannot_coalesce;
5026 
5027 	*send = false;
5028 	if (txp->npkt > 0) {
5029 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5030 		MPASS(txp->npkt < txp->max_npkt);
5031 		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5032 
5033 		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5034 retry_after_send:
5035 			*send = true;
5036 			return (EAGAIN);
5037 		}
5038 		if (m->m_pkthdr.len + txp->plen > 65535)
5039 			goto retry_after_send;
5040 		if (cmp_l2hdr(txp, m))
5041 			goto retry_after_send;
5042 
5043 		txp->len16 += txpkts1_len16();
5044 		txp->plen += m->m_pkthdr.len;
5045 		txp->mb[txp->npkt++] = m;
5046 		if (txp->npkt == txp->max_npkt)
5047 			*send = true;
5048 	} else {
5049 		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5050 		    txpkts1_len16();
5051 		if (tx_len16_to_desc(txp->len16) > avail)
5052 			goto cannot_coalesce;
5053 		txp->npkt = 1;
5054 		txp->wr_type = 1;
5055 		txp->plen = m->m_pkthdr.len;
5056 		txp->mb[0] = m;
5057 		save_l2hdr(txp, m);
5058 	}
5059 	return (0);
5060 }
5061 
5062 static int
5063 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5064     int avail, bool *send)
5065 {
5066 	struct txpkts *txp = &txq->txp;
5067 	int nsegs;
5068 
5069 	MPASS(!(sc->flags & IS_VF));
5070 
5071 	/* Cannot have TSO and coalesce at the same time. */
5072 	if (cannot_use_txpkts(m)) {
5073 cannot_coalesce:
5074 		*send = txp->npkt > 0;
5075 		return (EINVAL);
5076 	}
5077 
5078 	*send = false;
5079 	nsegs = mbuf_nsegs(m);
5080 	if (txp->npkt == 0) {
5081 		if (m->m_pkthdr.len > 65535)
5082 			goto cannot_coalesce;
5083 		if (nsegs > 1) {
5084 			txp->wr_type = 0;
5085 			txp->len16 =
5086 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5087 			    txpkts0_len16(nsegs);
5088 		} else {
5089 			txp->wr_type = 1;
5090 			txp->len16 =
5091 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5092 			    txpkts1_len16();
5093 		}
5094 		if (tx_len16_to_desc(txp->len16) > avail)
5095 			goto cannot_coalesce;
5096 		txp->npkt = 1;
5097 		txp->plen = m->m_pkthdr.len;
5098 		txp->mb[0] = m;
5099 	} else {
5100 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5101 		MPASS(txp->npkt < txp->max_npkt);
5102 
5103 		if (m->m_pkthdr.len + txp->plen > 65535) {
5104 retry_after_send:
5105 			*send = true;
5106 			return (EAGAIN);
5107 		}
5108 
5109 		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5110 		if (txp->wr_type == 0) {
5111 			if (tx_len16_to_desc(txp->len16 +
5112 			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
5113 				goto retry_after_send;
5114 			txp->len16 += txpkts0_len16(nsegs);
5115 		} else {
5116 			if (nsegs != 1)
5117 				goto retry_after_send;
5118 			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
5119 			    avail)
5120 				goto retry_after_send;
5121 			txp->len16 += txpkts1_len16();
5122 		}
5123 
5124 		txp->plen += m->m_pkthdr.len;
5125 		txp->mb[txp->npkt++] = m;
5126 		if (txp->npkt == txp->max_npkt)
5127 			*send = true;
5128 	}
5129 	return (0);
5130 }
5131 
5132 /*
5133  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
5134  * the software descriptor, and advance the pidx.  It is guaranteed that enough
5135  * descriptors are available.
5136  *
5137  * The return value is the # of hardware descriptors used.
5138  */
5139 static u_int
5140 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
5141 {
5142 	const struct txpkts *txp = &txq->txp;
5143 	struct sge_eq *eq = &txq->eq;
5144 	struct fw_eth_tx_pkts_wr *wr;
5145 	struct tx_sdesc *txsd;
5146 	struct cpl_tx_pkt_core *cpl;
5147 	uint64_t ctrl1;
5148 	int ndesc, i, checkwrap;
5149 	struct mbuf *m, *last;
5150 	void *flitp;
5151 
5152 	TXQ_LOCK_ASSERT_OWNED(txq);
5153 	MPASS(txp->npkt > 0);
5154 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5155 
5156 	wr = (void *)&eq->desc[eq->pidx];
5157 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
5158 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5159 	wr->plen = htobe16(txp->plen);
5160 	wr->npkt = txp->npkt;
5161 	wr->r3 = 0;
5162 	wr->type = txp->wr_type;
5163 	flitp = wr + 1;
5164 
5165 	/*
5166 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
5167 	 * set then we know the WR is going to wrap around somewhere.  We'll
5168 	 * check for that at appropriate points.
5169 	 */
5170 	ndesc = tx_len16_to_desc(txp->len16);
5171 	last = NULL;
5172 	checkwrap = eq->sidx - ndesc < eq->pidx;
5173 	for (i = 0; i < txp->npkt; i++) {
5174 		m = txp->mb[i];
5175 		if (txp->wr_type == 0) {
5176 			struct ulp_txpkt *ulpmc;
5177 			struct ulptx_idata *ulpsc;
5178 
5179 			/* ULP master command */
5180 			ulpmc = flitp;
5181 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
5182 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
5183 			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
5184 
5185 			/* ULP subcommand */
5186 			ulpsc = (void *)(ulpmc + 1);
5187 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
5188 			    F_ULP_TX_SC_MORE);
5189 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
5190 
5191 			cpl = (void *)(ulpsc + 1);
5192 			if (checkwrap &&
5193 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
5194 				cpl = (void *)&eq->desc[0];
5195 		} else {
5196 			cpl = flitp;
5197 		}
5198 
5199 		/* Checksum offload */
5200 		ctrl1 = csum_to_ctrl(sc, m);
5201 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5202 			txq->txcsum++;	/* some hardware assistance provided */
5203 
5204 		/* VLAN tag insertion */
5205 		if (needs_vlan_insertion(m)) {
5206 			ctrl1 |= F_TXPKT_VLAN_VLD |
5207 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5208 			txq->vlan_insertion++;
5209 		}
5210 
5211 		/* CPL header */
5212 		cpl->ctrl0 = txq->cpl_ctrl0;
5213 		cpl->pack = 0;
5214 		cpl->len = htobe16(m->m_pkthdr.len);
5215 		cpl->ctrl1 = htobe64(ctrl1);
5216 
5217 		flitp = cpl + 1;
5218 		if (checkwrap &&
5219 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5220 			flitp = (void *)&eq->desc[0];
5221 
5222 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
5223 
5224 		if (last != NULL)
5225 			last->m_nextpkt = m;
5226 		last = m;
5227 	}
5228 
5229 	txq->sgl_wrs++;
5230 	if (txp->wr_type == 0) {
5231 		txq->txpkts0_pkts += txp->npkt;
5232 		txq->txpkts0_wrs++;
5233 	} else {
5234 		txq->txpkts1_pkts += txp->npkt;
5235 		txq->txpkts1_wrs++;
5236 	}
5237 
5238 	txsd = &txq->sdesc[eq->pidx];
5239 	txsd->m = txp->mb[0];
5240 	txsd->desc_used = ndesc;
5241 
5242 	return (ndesc);
5243 }
5244 
5245 static u_int
5246 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
5247 {
5248 	const struct txpkts *txp = &txq->txp;
5249 	struct sge_eq *eq = &txq->eq;
5250 	struct fw_eth_tx_pkts_vm_wr *wr;
5251 	struct tx_sdesc *txsd;
5252 	struct cpl_tx_pkt_core *cpl;
5253 	uint64_t ctrl1;
5254 	int ndesc, i;
5255 	struct mbuf *m, *last;
5256 	void *flitp;
5257 
5258 	TXQ_LOCK_ASSERT_OWNED(txq);
5259 	MPASS(txp->npkt > 0);
5260 	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5261 	MPASS(txp->mb[0] != NULL);
5262 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5263 
5264 	wr = (void *)&eq->desc[eq->pidx];
5265 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
5266 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5267 	wr->r3 = 0;
5268 	wr->plen = htobe16(txp->plen);
5269 	wr->npkt = txp->npkt;
5270 	wr->r4 = 0;
5271 	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
5272 	flitp = wr + 1;
5273 
5274 	/*
5275 	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
5276 	 * the WR will take 32B so we check for the end of the descriptor ring
5277 	 * before writing odd mbufs (mb[1], 3, 5, ..)
5278 	 */
5279 	ndesc = tx_len16_to_desc(txp->len16);
5280 	last = NULL;
5281 	for (i = 0; i < txp->npkt; i++) {
5282 		m = txp->mb[i];
5283 		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5284 			flitp = &eq->desc[0];
5285 		cpl = flitp;
5286 
5287 		/* Checksum offload */
5288 		ctrl1 = csum_to_ctrl(sc, m);
5289 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5290 			txq->txcsum++;	/* some hardware assistance provided */
5291 
5292 		/* VLAN tag insertion */
5293 		if (needs_vlan_insertion(m)) {
5294 			ctrl1 |= F_TXPKT_VLAN_VLD |
5295 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5296 			txq->vlan_insertion++;
5297 		}
5298 
5299 		/* CPL header */
5300 		cpl->ctrl0 = txq->cpl_ctrl0;
5301 		cpl->pack = 0;
5302 		cpl->len = htobe16(m->m_pkthdr.len);
5303 		cpl->ctrl1 = htobe64(ctrl1);
5304 
5305 		flitp = cpl + 1;
5306 		MPASS(mbuf_nsegs(m) == 1);
5307 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
5308 
5309 		if (last != NULL)
5310 			last->m_nextpkt = m;
5311 		last = m;
5312 	}
5313 
5314 	txq->sgl_wrs++;
5315 	txq->txpkts1_pkts += txp->npkt;
5316 	txq->txpkts1_wrs++;
5317 
5318 	txsd = &txq->sdesc[eq->pidx];
5319 	txsd->m = txp->mb[0];
5320 	txsd->desc_used = ndesc;
5321 
5322 	return (ndesc);
5323 }
5324 
5325 /*
5326  * If the SGL ends on an address that is not 16 byte aligned, this function will
5327  * add a 0 filled flit at the end.
5328  */
5329 static void
5330 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
5331 {
5332 	struct sge_eq *eq = &txq->eq;
5333 	struct sglist *gl = txq->gl;
5334 	struct sglist_seg *seg;
5335 	__be64 *flitp, *wrap;
5336 	struct ulptx_sgl *usgl;
5337 	int i, nflits, nsegs;
5338 
5339 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
5340 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
5341 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5342 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5343 
5344 	get_pkt_gl(m, gl);
5345 	nsegs = gl->sg_nseg;
5346 	MPASS(nsegs > 0);
5347 
5348 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
5349 	flitp = (__be64 *)(*to);
5350 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
5351 	seg = &gl->sg_segs[0];
5352 	usgl = (void *)flitp;
5353 
5354 	/*
5355 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
5356 	 * ring, so we're at least 16 bytes away from the status page.  There is
5357 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
5358 	 */
5359 
5360 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
5361 	    V_ULPTX_NSGE(nsegs));
5362 	usgl->len0 = htobe32(seg->ss_len);
5363 	usgl->addr0 = htobe64(seg->ss_paddr);
5364 	seg++;
5365 
5366 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
5367 
5368 		/* Won't wrap around at all */
5369 
5370 		for (i = 0; i < nsegs - 1; i++, seg++) {
5371 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
5372 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
5373 		}
5374 		if (i & 1)
5375 			usgl->sge[i / 2].len[1] = htobe32(0);
5376 		flitp += nflits;
5377 	} else {
5378 
5379 		/* Will wrap somewhere in the rest of the SGL */
5380 
5381 		/* 2 flits already written, write the rest flit by flit */
5382 		flitp = (void *)(usgl + 1);
5383 		for (i = 0; i < nflits - 2; i++) {
5384 			if (flitp == wrap)
5385 				flitp = (void *)eq->desc;
5386 			*flitp++ = get_flit(seg, nsegs - 1, i);
5387 		}
5388 	}
5389 
5390 	if (nflits & 1) {
5391 		MPASS(((uintptr_t)flitp) & 0xf);
5392 		*flitp++ = 0;
5393 	}
5394 
5395 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
5396 	if (__predict_false(flitp == wrap))
5397 		*to = (void *)eq->desc;
5398 	else
5399 		*to = (void *)flitp;
5400 }
5401 
5402 static inline void
5403 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
5404 {
5405 
5406 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5407 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5408 
5409 	if (__predict_true((uintptr_t)(*to) + len <=
5410 	    (uintptr_t)&eq->desc[eq->sidx])) {
5411 		bcopy(from, *to, len);
5412 		(*to) += len;
5413 	} else {
5414 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
5415 
5416 		bcopy(from, *to, portion);
5417 		from += portion;
5418 		portion = len - portion;	/* remaining */
5419 		bcopy(from, (void *)eq->desc, portion);
5420 		(*to) = (caddr_t)eq->desc + portion;
5421 	}
5422 }
5423 
5424 static inline void
5425 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
5426 {
5427 	u_int db;
5428 
5429 	MPASS(n > 0);
5430 
5431 	db = eq->doorbells;
5432 	if (n > 1)
5433 		clrbit(&db, DOORBELL_WCWR);
5434 	wmb();
5435 
5436 	switch (ffs(db) - 1) {
5437 	case DOORBELL_UDB:
5438 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
5439 		break;
5440 
5441 	case DOORBELL_WCWR: {
5442 		volatile uint64_t *dst, *src;
5443 		int i;
5444 
5445 		/*
5446 		 * Queues whose 128B doorbell segment fits in the page do not
5447 		 * use relative qid (udb_qid is always 0).  Only queues with
5448 		 * doorbell segments can do WCWR.
5449 		 */
5450 		KASSERT(eq->udb_qid == 0 && n == 1,
5451 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
5452 		    __func__, eq->doorbells, n, eq->dbidx, eq));
5453 
5454 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
5455 		    UDBS_DB_OFFSET);
5456 		i = eq->dbidx;
5457 		src = (void *)&eq->desc[i];
5458 		while (src != (void *)&eq->desc[i + 1])
5459 			*dst++ = *src++;
5460 		wmb();
5461 		break;
5462 	}
5463 
5464 	case DOORBELL_UDBWC:
5465 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
5466 		wmb();
5467 		break;
5468 
5469 	case DOORBELL_KDB:
5470 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
5471 		    V_QID(eq->cntxt_id) | V_PIDX(n));
5472 		break;
5473 	}
5474 
5475 	IDXINCR(eq->dbidx, n, eq->sidx);
5476 }
5477 
5478 static inline u_int
5479 reclaimable_tx_desc(struct sge_eq *eq)
5480 {
5481 	uint16_t hw_cidx;
5482 
5483 	hw_cidx = read_hw_cidx(eq);
5484 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
5485 }
5486 
5487 static inline u_int
5488 total_available_tx_desc(struct sge_eq *eq)
5489 {
5490 	uint16_t hw_cidx, pidx;
5491 
5492 	hw_cidx = read_hw_cidx(eq);
5493 	pidx = eq->pidx;
5494 
5495 	if (pidx == hw_cidx)
5496 		return (eq->sidx - 1);
5497 	else
5498 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
5499 }
5500 
5501 static inline uint16_t
5502 read_hw_cidx(struct sge_eq *eq)
5503 {
5504 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5505 	uint16_t cidx = spg->cidx;	/* stable snapshot */
5506 
5507 	return (be16toh(cidx));
5508 }
5509 
5510 /*
5511  * Reclaim 'n' descriptors approximately.
5512  */
5513 static u_int
5514 reclaim_tx_descs(struct sge_txq *txq, u_int n)
5515 {
5516 	struct tx_sdesc *txsd;
5517 	struct sge_eq *eq = &txq->eq;
5518 	u_int can_reclaim, reclaimed;
5519 
5520 	TXQ_LOCK_ASSERT_OWNED(txq);
5521 	MPASS(n > 0);
5522 
5523 	reclaimed = 0;
5524 	can_reclaim = reclaimable_tx_desc(eq);
5525 	while (can_reclaim && reclaimed < n) {
5526 		int ndesc;
5527 		struct mbuf *m, *nextpkt;
5528 
5529 		txsd = &txq->sdesc[eq->cidx];
5530 		ndesc = txsd->desc_used;
5531 
5532 		/* Firmware doesn't return "partial" credits. */
5533 		KASSERT(can_reclaim >= ndesc,
5534 		    ("%s: unexpected number of credits: %d, %d",
5535 		    __func__, can_reclaim, ndesc));
5536 		KASSERT(ndesc != 0,
5537 		    ("%s: descriptor with no credits: cidx %d",
5538 		    __func__, eq->cidx));
5539 
5540 		for (m = txsd->m; m != NULL; m = nextpkt) {
5541 			nextpkt = m->m_nextpkt;
5542 			m->m_nextpkt = NULL;
5543 			m_freem(m);
5544 		}
5545 		reclaimed += ndesc;
5546 		can_reclaim -= ndesc;
5547 		IDXINCR(eq->cidx, ndesc, eq->sidx);
5548 	}
5549 
5550 	return (reclaimed);
5551 }
5552 
5553 static void
5554 tx_reclaim(void *arg, int n)
5555 {
5556 	struct sge_txq *txq = arg;
5557 	struct sge_eq *eq = &txq->eq;
5558 
5559 	do {
5560 		if (TXQ_TRYLOCK(txq) == 0)
5561 			break;
5562 		n = reclaim_tx_descs(txq, 32);
5563 		if (eq->cidx == eq->pidx)
5564 			eq->equeqidx = eq->pidx;
5565 		TXQ_UNLOCK(txq);
5566 	} while (n > 0);
5567 }
5568 
5569 static __be64
5570 get_flit(struct sglist_seg *segs, int nsegs, int idx)
5571 {
5572 	int i = (idx / 3) * 2;
5573 
5574 	switch (idx % 3) {
5575 	case 0: {
5576 		uint64_t rc;
5577 
5578 		rc = (uint64_t)segs[i].ss_len << 32;
5579 		if (i + 1 < nsegs)
5580 			rc |= (uint64_t)(segs[i + 1].ss_len);
5581 
5582 		return (htobe64(rc));
5583 	}
5584 	case 1:
5585 		return (htobe64(segs[i].ss_paddr));
5586 	case 2:
5587 		return (htobe64(segs[i + 1].ss_paddr));
5588 	}
5589 
5590 	return (0);
5591 }
5592 
5593 static int
5594 find_refill_source(struct adapter *sc, int maxp, bool packing)
5595 {
5596 	int i, zidx = -1;
5597 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
5598 
5599 	if (packing) {
5600 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
5601 			if (rxb->hwidx2 == -1)
5602 				continue;
5603 			if (rxb->size1 < PAGE_SIZE &&
5604 			    rxb->size1 < largest_rx_cluster)
5605 				continue;
5606 			if (rxb->size1 > largest_rx_cluster)
5607 				break;
5608 			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
5609 			if (rxb->size2 >= maxp)
5610 				return (i);
5611 			zidx = i;
5612 		}
5613 	} else {
5614 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
5615 			if (rxb->hwidx1 == -1)
5616 				continue;
5617 			if (rxb->size1 > largest_rx_cluster)
5618 				break;
5619 			if (rxb->size1 >= maxp)
5620 				return (i);
5621 			zidx = i;
5622 		}
5623 	}
5624 
5625 	return (zidx);
5626 }
5627 
5628 static void
5629 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
5630 {
5631 	mtx_lock(&sc->sfl_lock);
5632 	FL_LOCK(fl);
5633 	if ((fl->flags & FL_DOOMED) == 0) {
5634 		fl->flags |= FL_STARVING;
5635 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
5636 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
5637 	}
5638 	FL_UNLOCK(fl);
5639 	mtx_unlock(&sc->sfl_lock);
5640 }
5641 
5642 static void
5643 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
5644 {
5645 	struct sge_wrq *wrq = (void *)eq;
5646 
5647 	atomic_readandclear_int(&eq->equiq);
5648 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
5649 }
5650 
5651 static void
5652 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
5653 {
5654 	struct sge_txq *txq = (void *)eq;
5655 
5656 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
5657 
5658 	atomic_readandclear_int(&eq->equiq);
5659 	if (mp_ring_is_idle(txq->r))
5660 		taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
5661 	else
5662 		mp_ring_check_drainage(txq->r, 64);
5663 }
5664 
5665 static int
5666 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
5667     struct mbuf *m)
5668 {
5669 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
5670 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
5671 	struct adapter *sc = iq->adapter;
5672 	struct sge *s = &sc->sge;
5673 	struct sge_eq *eq;
5674 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
5675 		&handle_wrq_egr_update, &handle_eth_egr_update,
5676 		&handle_wrq_egr_update};
5677 
5678 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5679 	    rss->opcode));
5680 
5681 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
5682 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
5683 
5684 	return (0);
5685 }
5686 
5687 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
5688 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
5689     offsetof(struct cpl_fw6_msg, data));
5690 
5691 static int
5692 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
5693 {
5694 	struct adapter *sc = iq->adapter;
5695 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
5696 
5697 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5698 	    rss->opcode));
5699 
5700 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
5701 		const struct rss_header *rss2;
5702 
5703 		rss2 = (const struct rss_header *)&cpl->data[0];
5704 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
5705 	}
5706 
5707 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
5708 }
5709 
5710 /**
5711  *	t4_handle_wrerr_rpl - process a FW work request error message
5712  *	@adap: the adapter
5713  *	@rpl: start of the FW message
5714  */
5715 static int
5716 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
5717 {
5718 	u8 opcode = *(const u8 *)rpl;
5719 	const struct fw_error_cmd *e = (const void *)rpl;
5720 	unsigned int i;
5721 
5722 	if (opcode != FW_ERROR_CMD) {
5723 		log(LOG_ERR,
5724 		    "%s: Received WRERR_RPL message with opcode %#x\n",
5725 		    device_get_nameunit(adap->dev), opcode);
5726 		return (EINVAL);
5727 	}
5728 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
5729 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
5730 	    "non-fatal");
5731 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
5732 	case FW_ERROR_TYPE_EXCEPTION:
5733 		log(LOG_ERR, "exception info:\n");
5734 		for (i = 0; i < nitems(e->u.exception.info); i++)
5735 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
5736 			    be32toh(e->u.exception.info[i]));
5737 		log(LOG_ERR, "\n");
5738 		break;
5739 	case FW_ERROR_TYPE_HWMODULE:
5740 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
5741 		    be32toh(e->u.hwmodule.regaddr),
5742 		    be32toh(e->u.hwmodule.regval));
5743 		break;
5744 	case FW_ERROR_TYPE_WR:
5745 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
5746 		    be16toh(e->u.wr.cidx),
5747 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
5748 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
5749 		    be32toh(e->u.wr.eqid));
5750 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
5751 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
5752 			    e->u.wr.wrhdr[i]);
5753 		log(LOG_ERR, "\n");
5754 		break;
5755 	case FW_ERROR_TYPE_ACL:
5756 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
5757 		    be16toh(e->u.acl.cidx),
5758 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
5759 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
5760 		    be32toh(e->u.acl.eqid),
5761 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
5762 		    "MAC");
5763 		for (i = 0; i < nitems(e->u.acl.val); i++)
5764 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
5765 		log(LOG_ERR, "\n");
5766 		break;
5767 	default:
5768 		log(LOG_ERR, "type %#x\n",
5769 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
5770 		return (EINVAL);
5771 	}
5772 	return (0);
5773 }
5774 
5775 static int
5776 sysctl_uint16(SYSCTL_HANDLER_ARGS)
5777 {
5778 	uint16_t *id = arg1;
5779 	int i = *id;
5780 
5781 	return sysctl_handle_int(oidp, &i, 0, req);
5782 }
5783 
5784 static inline bool
5785 bufidx_used(struct adapter *sc, int idx)
5786 {
5787 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
5788 	int i;
5789 
5790 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
5791 		if (rxb->size1 > largest_rx_cluster)
5792 			continue;
5793 		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
5794 			return (true);
5795 	}
5796 
5797 	return (false);
5798 }
5799 
5800 static int
5801 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
5802 {
5803 	struct adapter *sc = arg1;
5804 	struct sge_params *sp = &sc->params.sge;
5805 	int i, rc;
5806 	struct sbuf sb;
5807 	char c;
5808 
5809 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
5810 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
5811 		if (bufidx_used(sc, i))
5812 			c = '*';
5813 		else
5814 			c = '\0';
5815 
5816 		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
5817 	}
5818 	sbuf_trim(&sb);
5819 	sbuf_finish(&sb);
5820 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
5821 	sbuf_delete(&sb);
5822 	return (rc);
5823 }
5824 
5825 #ifdef RATELIMIT
5826 /*
5827  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5828  */
5829 static inline u_int
5830 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
5831 {
5832 	u_int n;
5833 
5834 	MPASS(immhdrs > 0);
5835 
5836 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
5837 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
5838 	if (__predict_false(nsegs == 0))
5839 		goto done;
5840 
5841 	nsegs--; /* first segment is part of ulptx_sgl */
5842 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5843 	if (tso)
5844 		n += sizeof(struct cpl_tx_pkt_lso_core);
5845 
5846 done:
5847 	return (howmany(n, 16));
5848 }
5849 
5850 #define ETID_FLOWC_NPARAMS 6
5851 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
5852     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
5853 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
5854 
5855 static int
5856 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
5857     struct vi_info *vi)
5858 {
5859 	struct wrq_cookie cookie;
5860 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
5861 	struct fw_flowc_wr *flowc;
5862 
5863 	mtx_assert(&cst->lock, MA_OWNED);
5864 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
5865 	    EO_FLOWC_PENDING);
5866 
5867 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLOWC_LEN16, &cookie);
5868 	if (__predict_false(flowc == NULL))
5869 		return (ENOMEM);
5870 
5871 	bzero(flowc, ETID_FLOWC_LEN);
5872 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
5873 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
5874 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
5875 	    V_FW_WR_FLOWID(cst->etid));
5876 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
5877 	flowc->mnemval[0].val = htobe32(pfvf);
5878 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
5879 	flowc->mnemval[1].val = htobe32(pi->tx_chan);
5880 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
5881 	flowc->mnemval[2].val = htobe32(pi->tx_chan);
5882 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
5883 	flowc->mnemval[3].val = htobe32(cst->iqid);
5884 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
5885 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
5886 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
5887 	flowc->mnemval[5].val = htobe32(cst->schedcl);
5888 
5889 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
5890 
5891 	cst->flags &= ~EO_FLOWC_PENDING;
5892 	cst->flags |= EO_FLOWC_RPL_PENDING;
5893 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
5894 	cst->tx_credits -= ETID_FLOWC_LEN16;
5895 
5896 	return (0);
5897 }
5898 
5899 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
5900 
5901 void
5902 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
5903 {
5904 	struct fw_flowc_wr *flowc;
5905 	struct wrq_cookie cookie;
5906 
5907 	mtx_assert(&cst->lock, MA_OWNED);
5908 
5909 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLUSH_LEN16, &cookie);
5910 	if (__predict_false(flowc == NULL))
5911 		CXGBE_UNIMPLEMENTED(__func__);
5912 
5913 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
5914 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
5915 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
5916 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
5917 	    V_FW_WR_FLOWID(cst->etid));
5918 
5919 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
5920 
5921 	cst->flags |= EO_FLUSH_RPL_PENDING;
5922 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
5923 	cst->tx_credits -= ETID_FLUSH_LEN16;
5924 	cst->ncompl++;
5925 }
5926 
5927 static void
5928 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
5929     struct mbuf *m0, int compl)
5930 {
5931 	struct cpl_tx_pkt_core *cpl;
5932 	uint64_t ctrl1;
5933 	uint32_t ctrl;	/* used in many unrelated places */
5934 	int len16, pktlen, nsegs, immhdrs;
5935 	caddr_t dst;
5936 	uintptr_t p;
5937 	struct ulptx_sgl *usgl;
5938 	struct sglist sg;
5939 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
5940 
5941 	mtx_assert(&cst->lock, MA_OWNED);
5942 	M_ASSERTPKTHDR(m0);
5943 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5944 	    m0->m_pkthdr.l4hlen > 0,
5945 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
5946 
5947 	len16 = mbuf_eo_len16(m0);
5948 	nsegs = mbuf_eo_nsegs(m0);
5949 	pktlen = m0->m_pkthdr.len;
5950 	ctrl = sizeof(struct cpl_tx_pkt_core);
5951 	if (needs_tso(m0))
5952 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5953 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
5954 	ctrl += immhdrs;
5955 
5956 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
5957 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
5958 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
5959 	    V_FW_WR_FLOWID(cst->etid));
5960 	wr->r3 = 0;
5961 	if (needs_udp_csum(m0)) {
5962 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
5963 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
5964 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
5965 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
5966 		wr->u.udpseg.rtplen = 0;
5967 		wr->u.udpseg.r4 = 0;
5968 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
5969 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
5970 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
5971 		cpl = (void *)(wr + 1);
5972 	} else {
5973 		MPASS(needs_tcp_csum(m0));
5974 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
5975 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
5976 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
5977 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
5978 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
5979 		wr->u.tcpseg.r4 = 0;
5980 		wr->u.tcpseg.r5 = 0;
5981 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
5982 
5983 		if (needs_tso(m0)) {
5984 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
5985 
5986 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
5987 
5988 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5989 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5990 			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
5991 				ETHER_HDR_LEN) >> 2) |
5992 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5993 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5994 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5995 				ctrl |= F_LSO_IPV6;
5996 			lso->lso_ctrl = htobe32(ctrl);
5997 			lso->ipid_ofst = htobe16(0);
5998 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5999 			lso->seqno_offset = htobe32(0);
6000 			lso->len = htobe32(pktlen);
6001 
6002 			cpl = (void *)(lso + 1);
6003 		} else {
6004 			wr->u.tcpseg.mss = htobe16(0xffff);
6005 			cpl = (void *)(wr + 1);
6006 		}
6007 	}
6008 
6009 	/* Checksum offload must be requested for ethofld. */
6010 	MPASS(needs_l4_csum(m0));
6011 	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6012 
6013 	/* VLAN tag insertion */
6014 	if (needs_vlan_insertion(m0)) {
6015 		ctrl1 |= F_TXPKT_VLAN_VLD |
6016 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6017 	}
6018 
6019 	/* CPL header */
6020 	cpl->ctrl0 = cst->ctrl0;
6021 	cpl->pack = 0;
6022 	cpl->len = htobe16(pktlen);
6023 	cpl->ctrl1 = htobe64(ctrl1);
6024 
6025 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6026 	p = (uintptr_t)(cpl + 1);
6027 	m_copydata(m0, 0, immhdrs, (void *)p);
6028 
6029 	/* SGL */
6030 	dst = (void *)(cpl + 1);
6031 	if (nsegs > 0) {
6032 		int i, pad;
6033 
6034 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6035 		p += immhdrs;
6036 		pad = 16 - (immhdrs & 0xf);
6037 		bzero((void *)p, pad);
6038 
6039 		usgl = (void *)(p + pad);
6040 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6041 		    V_ULPTX_NSGE(nsegs));
6042 
6043 		sglist_init(&sg, nitems(segs), segs);
6044 		for (; m0 != NULL; m0 = m0->m_next) {
6045 			if (__predict_false(m0->m_len == 0))
6046 				continue;
6047 			if (immhdrs >= m0->m_len) {
6048 				immhdrs -= m0->m_len;
6049 				continue;
6050 			}
6051 			if (m0->m_flags & M_EXTPG)
6052 				sglist_append_mbuf_epg(&sg, m0,
6053 				    mtod(m0, vm_offset_t), m0->m_len);
6054                         else
6055 				sglist_append(&sg, mtod(m0, char *) + immhdrs,
6056 				    m0->m_len - immhdrs);
6057 			immhdrs = 0;
6058 		}
6059 		MPASS(sg.sg_nseg == nsegs);
6060 
6061 		/*
6062 		 * Zero pad last 8B in case the WR doesn't end on a 16B
6063 		 * boundary.
6064 		 */
6065 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6066 
6067 		usgl->len0 = htobe32(segs[0].ss_len);
6068 		usgl->addr0 = htobe64(segs[0].ss_paddr);
6069 		for (i = 0; i < nsegs - 1; i++) {
6070 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6071 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6072 		}
6073 		if (i & 1)
6074 			usgl->sge[i / 2].len[1] = htobe32(0);
6075 	}
6076 
6077 }
6078 
6079 static void
6080 ethofld_tx(struct cxgbe_rate_tag *cst)
6081 {
6082 	struct mbuf *m;
6083 	struct wrq_cookie cookie;
6084 	int next_credits, compl;
6085 	struct fw_eth_tx_eo_wr *wr;
6086 
6087 	mtx_assert(&cst->lock, MA_OWNED);
6088 
6089 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6090 		M_ASSERTPKTHDR(m);
6091 
6092 		/* How many len16 credits do we need to send this mbuf. */
6093 		next_credits = mbuf_eo_len16(m);
6094 		MPASS(next_credits > 0);
6095 		if (next_credits > cst->tx_credits) {
6096 			/*
6097 			 * Tx will make progress eventually because there is at
6098 			 * least one outstanding fw4_ack that will return
6099 			 * credits and kick the tx.
6100 			 */
6101 			MPASS(cst->ncompl > 0);
6102 			return;
6103 		}
6104 		wr = start_wrq_wr(cst->eo_txq, next_credits, &cookie);
6105 		if (__predict_false(wr == NULL)) {
6106 			/* XXX: wishful thinking, not a real assertion. */
6107 			MPASS(cst->ncompl > 0);
6108 			return;
6109 		}
6110 		cst->tx_credits -= next_credits;
6111 		cst->tx_nocompl += next_credits;
6112 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
6113 		ETHER_BPF_MTAP(cst->com.com.ifp, m);
6114 		write_ethofld_wr(cst, wr, m, compl);
6115 		commit_wrq_wr(cst->eo_txq, wr, &cookie);
6116 		if (compl) {
6117 			cst->ncompl++;
6118 			cst->tx_nocompl	= 0;
6119 		}
6120 		(void) mbufq_dequeue(&cst->pending_tx);
6121 
6122 		/*
6123 		 * Drop the mbuf's reference on the tag now rather
6124 		 * than waiting until m_freem().  This ensures that
6125 		 * cxgbe_rate_tag_free gets called when the inp drops
6126 		 * its reference on the tag and there are no more
6127 		 * mbufs in the pending_tx queue and can flush any
6128 		 * pending requests.  Otherwise if the last mbuf
6129 		 * doesn't request a completion the etid will never be
6130 		 * released.
6131 		 */
6132 		m->m_pkthdr.snd_tag = NULL;
6133 		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
6134 		m_snd_tag_rele(&cst->com.com);
6135 
6136 		mbufq_enqueue(&cst->pending_fwack, m);
6137 	}
6138 }
6139 
6140 int
6141 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
6142 {
6143 	struct cxgbe_rate_tag *cst;
6144 	int rc;
6145 
6146 	MPASS(m0->m_nextpkt == NULL);
6147 	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
6148 	MPASS(m0->m_pkthdr.snd_tag != NULL);
6149 	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
6150 
6151 	mtx_lock(&cst->lock);
6152 	MPASS(cst->flags & EO_SND_TAG_REF);
6153 
6154 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
6155 		struct vi_info *vi = ifp->if_softc;
6156 		struct port_info *pi = vi->pi;
6157 		struct adapter *sc = pi->adapter;
6158 		const uint32_t rss_mask = vi->rss_size - 1;
6159 		uint32_t rss_hash;
6160 
6161 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
6162 		if (M_HASHTYPE_ISHASH(m0))
6163 			rss_hash = m0->m_pkthdr.flowid;
6164 		else
6165 			rss_hash = arc4random();
6166 		/* We assume RSS hashing */
6167 		cst->iqid = vi->rss[rss_hash & rss_mask];
6168 		cst->eo_txq += rss_hash % vi->nofldtxq;
6169 		rc = send_etid_flowc_wr(cst, pi, vi);
6170 		if (rc != 0)
6171 			goto done;
6172 	}
6173 
6174 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
6175 		rc = ENOBUFS;
6176 		goto done;
6177 	}
6178 
6179 	mbufq_enqueue(&cst->pending_tx, m0);
6180 	cst->plen += m0->m_pkthdr.len;
6181 
6182 	/*
6183 	 * Hold an extra reference on the tag while generating work
6184 	 * requests to ensure that we don't try to free the tag during
6185 	 * ethofld_tx() in case we are sending the final mbuf after
6186 	 * the inp was freed.
6187 	 */
6188 	m_snd_tag_ref(&cst->com.com);
6189 	ethofld_tx(cst);
6190 	mtx_unlock(&cst->lock);
6191 	m_snd_tag_rele(&cst->com.com);
6192 	return (0);
6193 
6194 done:
6195 	mtx_unlock(&cst->lock);
6196 	if (__predict_false(rc != 0))
6197 		m_freem(m0);
6198 	return (rc);
6199 }
6200 
6201 static int
6202 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
6203 {
6204 	struct adapter *sc = iq->adapter;
6205 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
6206 	struct mbuf *m;
6207 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
6208 	struct cxgbe_rate_tag *cst;
6209 	uint8_t credits = cpl->credits;
6210 
6211 	cst = lookup_etid(sc, etid);
6212 	mtx_lock(&cst->lock);
6213 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
6214 		MPASS(credits >= ETID_FLOWC_LEN16);
6215 		credits -= ETID_FLOWC_LEN16;
6216 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
6217 	}
6218 
6219 	KASSERT(cst->ncompl > 0,
6220 	    ("%s: etid %u (%p) wasn't expecting completion.",
6221 	    __func__, etid, cst));
6222 	cst->ncompl--;
6223 
6224 	while (credits > 0) {
6225 		m = mbufq_dequeue(&cst->pending_fwack);
6226 		if (__predict_false(m == NULL)) {
6227 			/*
6228 			 * The remaining credits are for the final flush that
6229 			 * was issued when the tag was freed by the kernel.
6230 			 */
6231 			MPASS((cst->flags &
6232 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
6233 			    EO_FLUSH_RPL_PENDING);
6234 			MPASS(credits == ETID_FLUSH_LEN16);
6235 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
6236 			MPASS(cst->ncompl == 0);
6237 
6238 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
6239 			cst->tx_credits += cpl->credits;
6240 			cxgbe_rate_tag_free_locked(cst);
6241 			return (0);	/* cst is gone. */
6242 		}
6243 		KASSERT(m != NULL,
6244 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
6245 		    credits));
6246 		KASSERT(credits >= mbuf_eo_len16(m),
6247 		    ("%s: too few credits (%u, %u, %u)", __func__,
6248 		    cpl->credits, credits, mbuf_eo_len16(m)));
6249 		credits -= mbuf_eo_len16(m);
6250 		cst->plen -= m->m_pkthdr.len;
6251 		m_freem(m);
6252 	}
6253 
6254 	cst->tx_credits += cpl->credits;
6255 	MPASS(cst->tx_credits <= cst->tx_total);
6256 
6257 	if (cst->flags & EO_SND_TAG_REF) {
6258 		/*
6259 		 * As with ethofld_transmit(), hold an extra reference
6260 		 * so that the tag is stable across ethold_tx().
6261 		 */
6262 		m_snd_tag_ref(&cst->com.com);
6263 		m = mbufq_first(&cst->pending_tx);
6264 		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
6265 			ethofld_tx(cst);
6266 		mtx_unlock(&cst->lock);
6267 		m_snd_tag_rele(&cst->com.com);
6268 	} else {
6269 		/*
6270 		 * There shouldn't be any pending packets if the tag
6271 		 * was freed by the kernel since any pending packet
6272 		 * should hold a reference to the tag.
6273 		 */
6274 		MPASS(mbufq_first(&cst->pending_tx) == NULL);
6275 		mtx_unlock(&cst->lock);
6276 	}
6277 
6278 	return (0);
6279 }
6280 #endif
6281