xref: /freebsd/sys/dev/cxgbe/tom/t4_ddp.c (revision d6b92ffa)
1 /*-
2  * Copyright (c) 2012 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 
33 #include <sys/param.h>
34 #include <sys/aio.h>
35 #include <sys/file.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/ktr.h>
39 #include <sys/module.h>
40 #include <sys/protosw.h>
41 #include <sys/proc.h>
42 #include <sys/domain.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/taskqueue.h>
46 #include <sys/uio.h>
47 #include <netinet/in.h>
48 #include <netinet/in_pcb.h>
49 #include <netinet/ip.h>
50 #include <netinet/tcp_var.h>
51 #define TCPSTATES
52 #include <netinet/tcp_fsm.h>
53 #include <netinet/toecore.h>
54 
55 #include <vm/vm.h>
56 #include <vm/vm_extern.h>
57 #include <vm/vm_param.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_map.h>
60 #include <vm/vm_page.h>
61 #include <vm/vm_object.h>
62 
63 #ifdef TCP_OFFLOAD
64 #include "common/common.h"
65 #include "common/t4_msg.h"
66 #include "common/t4_regs.h"
67 #include "common/t4_tcb.h"
68 #include "tom/t4_tom.h"
69 
70 VNET_DECLARE(int, tcp_do_autorcvbuf);
71 #define V_tcp_do_autorcvbuf VNET(tcp_do_autorcvbuf)
72 VNET_DECLARE(int, tcp_autorcvbuf_inc);
73 #define V_tcp_autorcvbuf_inc VNET(tcp_autorcvbuf_inc)
74 VNET_DECLARE(int, tcp_autorcvbuf_max);
75 #define V_tcp_autorcvbuf_max VNET(tcp_autorcvbuf_max)
76 
77 /*
78  * Use the 'backend3' field in AIO jobs to store the amount of data
79  * received by the AIO job so far.
80  */
81 #define	aio_received	backend3
82 
83 static void aio_ddp_requeue_task(void *context, int pending);
84 static void ddp_complete_all(struct toepcb *toep, int error);
85 static void t4_aio_cancel_active(struct kaiocb *job);
86 static void t4_aio_cancel_queued(struct kaiocb *job);
87 
88 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets;
89 static struct mtx ddp_orphan_pagesets_lock;
90 static struct task ddp_orphan_task;
91 
92 #define MAX_DDP_BUFFER_SIZE		(M_TCB_RX_DDP_BUF0_LEN)
93 
94 /*
95  * A page set holds information about a buffer used for DDP.  The page
96  * set holds resources such as the VM pages backing the buffer (either
97  * held or wired) and the page pods associated with the buffer.
98  * Recently used page sets are cached to allow for efficient reuse of
99  * buffers (avoiding the need to re-fault in pages, hold them, etc.).
100  * Note that cached page sets keep the backing pages wired.  The
101  * number of wired pages is capped by only allowing for two wired
102  * pagesets per connection.  This is not a perfect cap, but is a
103  * trade-off for performance.
104  *
105  * If an application ping-pongs two buffers for a connection via
106  * aio_read(2) then those buffers should remain wired and expensive VM
107  * fault lookups should be avoided after each buffer has been used
108  * once.  If an application uses more than two buffers then this will
109  * fall back to doing expensive VM fault lookups for each operation.
110  */
111 static void
112 free_pageset(struct tom_data *td, struct pageset *ps)
113 {
114 	vm_page_t p;
115 	int i;
116 
117 	if (ps->prsv.prsv_nppods > 0)
118 		t4_free_page_pods(&ps->prsv);
119 
120 	if (ps->flags & PS_WIRED) {
121 		for (i = 0; i < ps->npages; i++) {
122 			p = ps->pages[i];
123 			vm_page_lock(p);
124 			vm_page_unwire(p, PQ_INACTIVE);
125 			vm_page_unlock(p);
126 		}
127 	} else
128 		vm_page_unhold_pages(ps->pages, ps->npages);
129 	mtx_lock(&ddp_orphan_pagesets_lock);
130 	TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link);
131 	taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task);
132 	mtx_unlock(&ddp_orphan_pagesets_lock);
133 }
134 
135 static void
136 ddp_free_orphan_pagesets(void *context, int pending)
137 {
138 	struct pageset *ps;
139 
140 	mtx_lock(&ddp_orphan_pagesets_lock);
141 	while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) {
142 		ps = TAILQ_FIRST(&ddp_orphan_pagesets);
143 		TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link);
144 		mtx_unlock(&ddp_orphan_pagesets_lock);
145 		if (ps->vm)
146 			vmspace_free(ps->vm);
147 		free(ps, M_CXGBE);
148 		mtx_lock(&ddp_orphan_pagesets_lock);
149 	}
150 	mtx_unlock(&ddp_orphan_pagesets_lock);
151 }
152 
153 static void
154 recycle_pageset(struct toepcb *toep, struct pageset *ps)
155 {
156 
157 	DDP_ASSERT_LOCKED(toep);
158 	if (!(toep->ddp_flags & DDP_DEAD) && ps->flags & PS_WIRED) {
159 		KASSERT(toep->ddp_cached_count + toep->ddp_active_count <
160 		    nitems(toep->db), ("too many wired pagesets"));
161 		TAILQ_INSERT_HEAD(&toep->ddp_cached_pagesets, ps, link);
162 		toep->ddp_cached_count++;
163 	} else
164 		free_pageset(toep->td, ps);
165 }
166 
167 static void
168 ddp_complete_one(struct kaiocb *job, int error)
169 {
170 	long copied;
171 
172 	/*
173 	 * If this job had copied data out of the socket buffer before
174 	 * it was cancelled, report it as a short read rather than an
175 	 * error.
176 	 */
177 	copied = job->aio_received;
178 	if (copied != 0 || error == 0)
179 		aio_complete(job, copied, 0);
180 	else
181 		aio_complete(job, -1, error);
182 }
183 
184 static void
185 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db)
186 {
187 
188 	if (db->job) {
189 		/*
190 		 * XXX: If we are un-offloading the socket then we
191 		 * should requeue these on the socket somehow.  If we
192 		 * got a FIN from the remote end, then this completes
193 		 * any remaining requests with an EOF read.
194 		 */
195 		if (!aio_clear_cancel_function(db->job))
196 			ddp_complete_one(db->job, 0);
197 	}
198 
199 	if (db->ps)
200 		free_pageset(td, db->ps);
201 }
202 
203 void
204 ddp_init_toep(struct toepcb *toep)
205 {
206 
207 	TAILQ_INIT(&toep->ddp_aiojobq);
208 	TASK_INIT(&toep->ddp_requeue_task, 0, aio_ddp_requeue_task, toep);
209 	toep->ddp_active_id = -1;
210 	mtx_init(&toep->ddp_lock, "t4 ddp", NULL, MTX_DEF);
211 }
212 
213 void
214 ddp_uninit_toep(struct toepcb *toep)
215 {
216 
217 	mtx_destroy(&toep->ddp_lock);
218 }
219 
220 void
221 release_ddp_resources(struct toepcb *toep)
222 {
223 	struct pageset *ps;
224 	int i;
225 
226 	DDP_LOCK(toep);
227 	toep->flags |= DDP_DEAD;
228 	for (i = 0; i < nitems(toep->db); i++) {
229 		free_ddp_buffer(toep->td, &toep->db[i]);
230 	}
231 	while ((ps = TAILQ_FIRST(&toep->ddp_cached_pagesets)) != NULL) {
232 		TAILQ_REMOVE(&toep->ddp_cached_pagesets, ps, link);
233 		free_pageset(toep->td, ps);
234 	}
235 	ddp_complete_all(toep, 0);
236 	DDP_UNLOCK(toep);
237 }
238 
239 #ifdef INVARIANTS
240 void
241 ddp_assert_empty(struct toepcb *toep)
242 {
243 	int i;
244 
245 	MPASS(!(toep->ddp_flags & DDP_TASK_ACTIVE));
246 	for (i = 0; i < nitems(toep->db); i++) {
247 		MPASS(toep->db[i].job == NULL);
248 		MPASS(toep->db[i].ps == NULL);
249 	}
250 	MPASS(TAILQ_EMPTY(&toep->ddp_cached_pagesets));
251 	MPASS(TAILQ_EMPTY(&toep->ddp_aiojobq));
252 }
253 #endif
254 
255 static void
256 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db,
257     unsigned int db_idx)
258 {
259 	unsigned int db_flag;
260 
261 	toep->ddp_active_count--;
262 	if (toep->ddp_active_id == db_idx) {
263 		if (toep->ddp_active_count == 0) {
264 			KASSERT(toep->db[db_idx ^ 1].job == NULL,
265 			    ("%s: active_count mismatch", __func__));
266 			toep->ddp_active_id = -1;
267 		} else
268 			toep->ddp_active_id ^= 1;
269 #ifdef VERBOSE_TRACES
270 		CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
271 		    toep->ddp_active_id);
272 #endif
273 	} else {
274 		KASSERT(toep->ddp_active_count != 0 &&
275 		    toep->ddp_active_id != -1,
276 		    ("%s: active count mismatch", __func__));
277 	}
278 
279 	db->cancel_pending = 0;
280 	db->job = NULL;
281 	recycle_pageset(toep, db->ps);
282 	db->ps = NULL;
283 
284 	db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
285 	KASSERT(toep->ddp_flags & db_flag,
286 	    ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x",
287 	    __func__, toep, toep->ddp_flags));
288 	toep->ddp_flags &= ~db_flag;
289 }
290 
291 /* XXX: handle_ddp_data code duplication */
292 void
293 insert_ddp_data(struct toepcb *toep, uint32_t n)
294 {
295 	struct inpcb *inp = toep->inp;
296 	struct tcpcb *tp = intotcpcb(inp);
297 	struct ddp_buffer *db;
298 	struct kaiocb *job;
299 	size_t placed;
300 	long copied;
301 	unsigned int db_flag, db_idx;
302 
303 	INP_WLOCK_ASSERT(inp);
304 	DDP_ASSERT_LOCKED(toep);
305 
306 	tp->rcv_nxt += n;
307 #ifndef USE_DDP_RX_FLOW_CONTROL
308 	KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__));
309 	tp->rcv_wnd -= n;
310 #endif
311 #ifndef USE_DDP_RX_FLOW_CONTROL
312 	toep->rx_credits += n;
313 #endif
314 	CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP",
315 	    __func__, n);
316 	while (toep->ddp_active_count > 0) {
317 		MPASS(toep->ddp_active_id != -1);
318 		db_idx = toep->ddp_active_id;
319 		db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
320 		MPASS((toep->ddp_flags & db_flag) != 0);
321 		db = &toep->db[db_idx];
322 		job = db->job;
323 		copied = job->aio_received;
324 		placed = n;
325 		if (placed > job->uaiocb.aio_nbytes - copied)
326 			placed = job->uaiocb.aio_nbytes - copied;
327 		if (placed > 0)
328 			job->msgrcv = 1;
329 		if (!aio_clear_cancel_function(job)) {
330 			/*
331 			 * Update the copied length for when
332 			 * t4_aio_cancel_active() completes this
333 			 * request.
334 			 */
335 			job->aio_received += placed;
336 		} else if (copied + placed != 0) {
337 			CTR4(KTR_CXGBE,
338 			    "%s: completing %p (copied %ld, placed %lu)",
339 			    __func__, job, copied, placed);
340 			/* XXX: This always completes if there is some data. */
341 			aio_complete(job, copied + placed, 0);
342 		} else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) {
343 			TAILQ_INSERT_HEAD(&toep->ddp_aiojobq, job, list);
344 			toep->ddp_waiting_count++;
345 		} else
346 			aio_cancel(job);
347 		n -= placed;
348 		complete_ddp_buffer(toep, db, db_idx);
349 	}
350 
351 	MPASS(n == 0);
352 }
353 
354 /* SET_TCB_FIELD sent as a ULP command looks like this */
355 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \
356     sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core))
357 
358 /* RX_DATA_ACK sent as a ULP command looks like this */
359 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \
360     sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core))
361 
362 static inline void *
363 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep,
364     uint64_t word, uint64_t mask, uint64_t val)
365 {
366 	struct ulptx_idata *ulpsc;
367 	struct cpl_set_tcb_field_core *req;
368 
369 	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
370 	ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16));
371 
372 	ulpsc = (struct ulptx_idata *)(ulpmc + 1);
373 	ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
374 	ulpsc->len = htobe32(sizeof(*req));
375 
376 	req = (struct cpl_set_tcb_field_core *)(ulpsc + 1);
377 	OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid));
378 	req->reply_ctrl = htobe16(V_NO_REPLY(1) |
379 	    V_QUEUENO(toep->ofld_rxq->iq.abs_id));
380 	req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0));
381         req->mask = htobe64(mask);
382         req->val = htobe64(val);
383 
384 	ulpsc = (struct ulptx_idata *)(req + 1);
385 	if (LEN__SET_TCB_FIELD_ULP % 16) {
386 		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
387 		ulpsc->len = htobe32(0);
388 		return (ulpsc + 1);
389 	}
390 	return (ulpsc);
391 }
392 
393 static inline void *
394 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep)
395 {
396 	struct ulptx_idata *ulpsc;
397 	struct cpl_rx_data_ack_core *req;
398 
399 	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
400 	ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16));
401 
402 	ulpsc = (struct ulptx_idata *)(ulpmc + 1);
403 	ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
404 	ulpsc->len = htobe32(sizeof(*req));
405 
406 	req = (struct cpl_rx_data_ack_core *)(ulpsc + 1);
407 	OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid));
408 	req->credit_dack = htobe32(F_RX_MODULATE_RX);
409 
410 	ulpsc = (struct ulptx_idata *)(req + 1);
411 	if (LEN__RX_DATA_ACK_ULP % 16) {
412 		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
413 		ulpsc->len = htobe32(0);
414 		return (ulpsc + 1);
415 	}
416 	return (ulpsc);
417 }
418 
419 static struct wrqe *
420 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx,
421     struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask)
422 {
423 	struct wrqe *wr;
424 	struct work_request_hdr *wrh;
425 	struct ulp_txpkt *ulpmc;
426 	int len;
427 
428 	KASSERT(db_idx == 0 || db_idx == 1,
429 	    ("%s: bad DDP buffer index %d", __func__, db_idx));
430 
431 	/*
432 	 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an
433 	 * RX_DATA_ACK (with RX_MODULATE to speed up delivery).
434 	 *
435 	 * The work request header is 16B and always ends at a 16B boundary.
436 	 * The ULPTX master commands that follow must all end at 16B boundaries
437 	 * too so we round up the size to 16.
438 	 */
439 	len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) +
440 	    roundup2(LEN__RX_DATA_ACK_ULP, 16);
441 
442 	wr = alloc_wrqe(len, toep->ctrlq);
443 	if (wr == NULL)
444 		return (NULL);
445 	wrh = wrtod(wr);
446 	INIT_ULPTX_WRH(wrh, len, 1, 0);	/* atomic */
447 	ulpmc = (struct ulp_txpkt *)(wrh + 1);
448 
449 	/* Write the buffer's tag */
450 	ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
451 	    W_TCB_RX_DDP_BUF0_TAG + db_idx,
452 	    V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG),
453 	    V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag));
454 
455 	/* Update the current offset in the DDP buffer and its total length */
456 	if (db_idx == 0)
457 		ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
458 		    W_TCB_RX_DDP_BUF0_OFFSET,
459 		    V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) |
460 		    V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN),
461 		    V_TCB_RX_DDP_BUF0_OFFSET(offset) |
462 		    V_TCB_RX_DDP_BUF0_LEN(ps->len));
463 	else
464 		ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
465 		    W_TCB_RX_DDP_BUF1_OFFSET,
466 		    V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) |
467 		    V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32),
468 		    V_TCB_RX_DDP_BUF1_OFFSET(offset) |
469 		    V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32));
470 
471 	/* Update DDP flags */
472 	ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS,
473 	    ddp_flags_mask, ddp_flags);
474 
475 	/* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */
476 	ulpmc = mk_rx_data_ack_ulp(ulpmc, toep);
477 
478 	return (wr);
479 }
480 
481 static int
482 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len)
483 {
484 	uint32_t report = be32toh(ddp_report);
485 	unsigned int db_idx;
486 	struct inpcb *inp = toep->inp;
487 	struct ddp_buffer *db;
488 	struct tcpcb *tp;
489 	struct socket *so;
490 	struct sockbuf *sb;
491 	struct kaiocb *job;
492 	long copied;
493 
494 	db_idx = report & F_DDP_BUF_IDX ? 1 : 0;
495 
496 	if (__predict_false(!(report & F_DDP_INV)))
497 		CXGBE_UNIMPLEMENTED("DDP buffer still valid");
498 
499 	INP_WLOCK(inp);
500 	so = inp_inpcbtosocket(inp);
501 	sb = &so->so_rcv;
502 	DDP_LOCK(toep);
503 
504 	KASSERT(toep->ddp_active_id == db_idx,
505 	    ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx,
506 	    toep->ddp_active_id, toep->tid));
507 	db = &toep->db[db_idx];
508 	job = db->job;
509 
510 	if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) {
511 		/*
512 		 * This can happen due to an administrative tcpdrop(8).
513 		 * Just fail the request with ECONNRESET.
514 		 */
515 		CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x",
516 		    __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags);
517 		if (aio_clear_cancel_function(job))
518 			ddp_complete_one(job, ECONNRESET);
519 		goto completed;
520 	}
521 
522 	tp = intotcpcb(inp);
523 
524 	/*
525 	 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the
526 	 * sequence number of the next byte to receive.  The length of
527 	 * the data received for this message must be computed by
528 	 * comparing the new and old values of rcv_nxt.
529 	 *
530 	 * For RX_DATA_DDP, len might be non-zero, but it is only the
531 	 * length of the most recent DMA.  It does not include the
532 	 * total length of the data received since the previous update
533 	 * for this DDP buffer.  rcv_nxt is the sequence number of the
534 	 * first received byte from the most recent DMA.
535 	 */
536 	len += be32toh(rcv_nxt) - tp->rcv_nxt;
537 	tp->rcv_nxt += len;
538 	tp->t_rcvtime = ticks;
539 #ifndef USE_DDP_RX_FLOW_CONTROL
540 	KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__));
541 	tp->rcv_wnd -= len;
542 #endif
543 #ifdef VERBOSE_TRACES
544 	CTR4(KTR_CXGBE, "%s: DDP[%d] placed %d bytes (%#x)", __func__, db_idx,
545 	    len, report);
546 #endif
547 
548 	/* receive buffer autosize */
549 	MPASS(toep->vnet == so->so_vnet);
550 	CURVNET_SET(toep->vnet);
551 	SOCKBUF_LOCK(sb);
552 	if (sb->sb_flags & SB_AUTOSIZE &&
553 	    V_tcp_do_autorcvbuf &&
554 	    sb->sb_hiwat < V_tcp_autorcvbuf_max &&
555 	    len > (sbspace(sb) / 8 * 7)) {
556 		unsigned int hiwat = sb->sb_hiwat;
557 		unsigned int newsize = min(hiwat + V_tcp_autorcvbuf_inc,
558 		    V_tcp_autorcvbuf_max);
559 
560 		if (!sbreserve_locked(sb, newsize, so, NULL))
561 			sb->sb_flags &= ~SB_AUTOSIZE;
562 		else
563 			toep->rx_credits += newsize - hiwat;
564 	}
565 	SOCKBUF_UNLOCK(sb);
566 	CURVNET_RESTORE();
567 
568 #ifndef USE_DDP_RX_FLOW_CONTROL
569 	toep->rx_credits += len;
570 #endif
571 
572 	job->msgrcv = 1;
573 	if (db->cancel_pending) {
574 		/*
575 		 * Update the job's length but defer completion to the
576 		 * TCB_RPL callback.
577 		 */
578 		job->aio_received += len;
579 		goto out;
580 	} else if (!aio_clear_cancel_function(job)) {
581 		/*
582 		 * Update the copied length for when
583 		 * t4_aio_cancel_active() completes this request.
584 		 */
585 		job->aio_received += len;
586 	} else {
587 		copied = job->aio_received;
588 #ifdef VERBOSE_TRACES
589 		CTR4(KTR_CXGBE, "%s: completing %p (copied %ld, placed %d)",
590 		    __func__, job, copied, len);
591 #endif
592 		aio_complete(job, copied + len, 0);
593 		t4_rcvd(&toep->td->tod, tp);
594 	}
595 
596 completed:
597 	complete_ddp_buffer(toep, db, db_idx);
598 	if (toep->ddp_waiting_count > 0)
599 		ddp_queue_toep(toep);
600 out:
601 	DDP_UNLOCK(toep);
602 	INP_WUNLOCK(inp);
603 
604 	return (0);
605 }
606 
607 void
608 handle_ddp_indicate(struct toepcb *toep)
609 {
610 
611 	DDP_ASSERT_LOCKED(toep);
612 	MPASS(toep->ddp_active_count == 0);
613 	MPASS((toep->ddp_flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0);
614 	if (toep->ddp_waiting_count == 0) {
615 		/*
616 		 * The pending requests that triggered the request for an
617 		 * an indicate were cancelled.  Those cancels should have
618 		 * already disabled DDP.  Just ignore this as the data is
619 		 * going into the socket buffer anyway.
620 		 */
621 		return;
622 	}
623 	CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__,
624 	    toep->tid, toep->ddp_waiting_count);
625 	ddp_queue_toep(toep);
626 }
627 
628 enum {
629 	DDP_BUF0_INVALIDATED = 0x2,
630 	DDP_BUF1_INVALIDATED
631 };
632 
633 void
634 handle_ddp_tcb_rpl(struct toepcb *toep, const struct cpl_set_tcb_rpl *cpl)
635 {
636 	unsigned int db_idx;
637 	struct inpcb *inp = toep->inp;
638 	struct ddp_buffer *db;
639 	struct kaiocb *job;
640 	long copied;
641 
642 	if (cpl->status != CPL_ERR_NONE)
643 		panic("XXX: tcp_rpl failed: %d", cpl->status);
644 
645 	switch (cpl->cookie) {
646 	case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF0_INVALIDATED):
647 	case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF1_INVALIDATED):
648 		/*
649 		 * XXX: This duplicates a lot of code with handle_ddp_data().
650 		 */
651 		db_idx = G_COOKIE(cpl->cookie) - DDP_BUF0_INVALIDATED;
652 		INP_WLOCK(inp);
653 		DDP_LOCK(toep);
654 		db = &toep->db[db_idx];
655 
656 		/*
657 		 * handle_ddp_data() should leave the job around until
658 		 * this callback runs once a cancel is pending.
659 		 */
660 		MPASS(db != NULL);
661 		MPASS(db->job != NULL);
662 		MPASS(db->cancel_pending);
663 
664 		/*
665 		 * XXX: It's not clear what happens if there is data
666 		 * placed when the buffer is invalidated.  I suspect we
667 		 * need to read the TCB to see how much data was placed.
668 		 *
669 		 * For now this just pretends like nothing was placed.
670 		 *
671 		 * XXX: Note that if we did check the PCB we would need to
672 		 * also take care of updating the tp, etc.
673 		 */
674 		job = db->job;
675 		copied = job->aio_received;
676 		if (copied == 0) {
677 			CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job);
678 			aio_cancel(job);
679 		} else {
680 			CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)",
681 			    __func__, job, copied);
682 			aio_complete(job, copied, 0);
683 			t4_rcvd(&toep->td->tod, intotcpcb(inp));
684 		}
685 
686 		complete_ddp_buffer(toep, db, db_idx);
687 		if (toep->ddp_waiting_count > 0)
688 			ddp_queue_toep(toep);
689 		DDP_UNLOCK(toep);
690 		INP_WUNLOCK(inp);
691 		break;
692 	default:
693 		panic("XXX: unknown tcb_rpl offset %#x, cookie %#x",
694 		    G_WORD(cpl->cookie), G_COOKIE(cpl->cookie));
695 	}
696 }
697 
698 void
699 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt)
700 {
701 	struct ddp_buffer *db;
702 	struct kaiocb *job;
703 	long copied;
704 	unsigned int db_flag, db_idx;
705 	int len, placed;
706 
707 	INP_WLOCK_ASSERT(toep->inp);
708 	DDP_ASSERT_LOCKED(toep);
709 	len = be32toh(rcv_nxt) - tp->rcv_nxt;
710 
711 	tp->rcv_nxt += len;
712 #ifndef USE_DDP_RX_FLOW_CONTROL
713 	toep->rx_credits += len;
714 #endif
715 
716 	while (toep->ddp_active_count > 0) {
717 		MPASS(toep->ddp_active_id != -1);
718 		db_idx = toep->ddp_active_id;
719 		db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
720 		MPASS((toep->ddp_flags & db_flag) != 0);
721 		db = &toep->db[db_idx];
722 		job = db->job;
723 		copied = job->aio_received;
724 		placed = len;
725 		if (placed > job->uaiocb.aio_nbytes - copied)
726 			placed = job->uaiocb.aio_nbytes - copied;
727 		if (placed > 0)
728 			job->msgrcv = 1;
729 		if (!aio_clear_cancel_function(job)) {
730 			/*
731 			 * Update the copied length for when
732 			 * t4_aio_cancel_active() completes this
733 			 * request.
734 			 */
735 			job->aio_received += placed;
736 		} else {
737 			CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d",
738 			    __func__, toep->tid, db_idx, placed);
739 			aio_complete(job, copied + placed, 0);
740 		}
741 		len -= placed;
742 		complete_ddp_buffer(toep, db, db_idx);
743 	}
744 
745 	MPASS(len == 0);
746 	ddp_complete_all(toep, 0);
747 }
748 
749 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\
750 	 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\
751 	 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\
752 	 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR)
753 
754 extern cpl_handler_t t4_cpl_handler[];
755 
756 static int
757 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
758 {
759 	struct adapter *sc = iq->adapter;
760 	const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1);
761 	unsigned int tid = GET_TID(cpl);
762 	uint32_t vld;
763 	struct toepcb *toep = lookup_tid(sc, tid);
764 
765 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
766 	KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
767 	KASSERT(!(toep->flags & TPF_SYNQE),
768 	    ("%s: toep %p claims to be a synq entry", __func__, toep));
769 
770 	vld = be32toh(cpl->ddpvld);
771 	if (__predict_false(vld & DDP_ERR)) {
772 		panic("%s: DDP error 0x%x (tid %d, toep %p)",
773 		    __func__, vld, tid, toep);
774 	}
775 
776 	if (toep->ulp_mode == ULP_MODE_ISCSI) {
777 		t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m);
778 		return (0);
779 	}
780 
781 	handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len));
782 
783 	return (0);
784 }
785 
786 static int
787 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss,
788     struct mbuf *m)
789 {
790 	struct adapter *sc = iq->adapter;
791 	const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1);
792 	unsigned int tid = GET_TID(cpl);
793 	struct toepcb *toep = lookup_tid(sc, tid);
794 
795 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
796 	KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
797 	KASSERT(!(toep->flags & TPF_SYNQE),
798 	    ("%s: toep %p claims to be a synq entry", __func__, toep));
799 
800 	handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0);
801 
802 	return (0);
803 }
804 
805 static void
806 enable_ddp(struct adapter *sc, struct toepcb *toep)
807 {
808 
809 	KASSERT((toep->ddp_flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK,
810 	    ("%s: toep %p has bad ddp_flags 0x%x",
811 	    __func__, toep, toep->ddp_flags));
812 
813 	CTR3(KTR_CXGBE, "%s: tid %u (time %u)",
814 	    __func__, toep->tid, time_uptime);
815 
816 	DDP_ASSERT_LOCKED(toep);
817 	toep->ddp_flags |= DDP_SC_REQ;
818 	t4_set_tcb_field(sc, toep->ctrlq, toep->tid, W_TCB_RX_DDP_FLAGS,
819 	    V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) |
820 	    V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) |
821 	    V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1),
822 	    V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0,
823 	    toep->ofld_rxq->iq.abs_id);
824 	t4_set_tcb_field(sc, toep->ctrlq, toep->tid, W_TCB_T_FLAGS,
825 	    V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0, toep->ofld_rxq->iq.abs_id);
826 }
827 
828 static int
829 calculate_hcf(int n1, int n2)
830 {
831 	int a, b, t;
832 
833 	if (n1 <= n2) {
834 		a = n1;
835 		b = n2;
836 	} else {
837 		a = n2;
838 		b = n1;
839 	}
840 
841 	while (a != 0) {
842 		t = a;
843 		a = b % a;
844 		b = t;
845 	}
846 
847 	return (b);
848 }
849 
850 static inline int
851 pages_to_nppods(int npages, int ddp_page_shift)
852 {
853 
854 	MPASS(ddp_page_shift >= PAGE_SHIFT);
855 
856 	return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES));
857 }
858 
859 static int
860 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx,
861     struct ppod_reservation *prsv)
862 {
863 	vmem_addr_t addr;       /* relative to start of region */
864 
865 	if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT,
866 	    &addr) != 0)
867 		return (ENOMEM);
868 
869 	CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d",
870 	    __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask,
871 	    nppods, 1 << pr->pr_page_shift[pgsz_idx]);
872 
873 	/*
874 	 * The hardware tagmask includes an extra invalid bit but the arena was
875 	 * seeded with valid values only.  An allocation out of this arena will
876 	 * fit inside the tagmask but won't have the invalid bit set.
877 	 */
878 	MPASS((addr & pr->pr_tag_mask) == addr);
879 	MPASS((addr & pr->pr_invalid_bit) == 0);
880 
881 	prsv->prsv_pr = pr;
882 	prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr;
883 	prsv->prsv_nppods = nppods;
884 
885 	return (0);
886 }
887 
888 int
889 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps)
890 {
891 	int i, hcf, seglen, idx, nppods;
892 	struct ppod_reservation *prsv = &ps->prsv;
893 
894 	KASSERT(prsv->prsv_nppods == 0,
895 	    ("%s: page pods already allocated", __func__));
896 
897 	/*
898 	 * The DDP page size is unrelated to the VM page size.  We combine
899 	 * contiguous physical pages into larger segments to get the best DDP
900 	 * page size possible.  This is the largest of the four sizes in
901 	 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in
902 	 * the page list.
903 	 */
904 	hcf = 0;
905 	for (i = 0; i < ps->npages; i++) {
906 		seglen = PAGE_SIZE;
907 		while (i < ps->npages - 1 &&
908 		    ps->pages[i]->phys_addr + PAGE_SIZE ==
909 		    ps->pages[i + 1]->phys_addr) {
910 			seglen += PAGE_SIZE;
911 			i++;
912 		}
913 
914 		hcf = calculate_hcf(hcf, seglen);
915 		if (hcf < (1 << pr->pr_page_shift[1])) {
916 			idx = 0;
917 			goto have_pgsz;	/* give up, short circuit */
918 		}
919 	}
920 
921 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
922 	MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
923 	for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
924 		if ((hcf & PR_PAGE_MASK(idx)) == 0)
925 			break;
926 	}
927 #undef PR_PAGE_MASK
928 
929 have_pgsz:
930 	MPASS(idx <= M_PPOD_PGSZ);
931 
932 	nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]);
933 	if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
934 		return (0);
935 	MPASS(prsv->prsv_nppods > 0);
936 
937 	return (1);
938 }
939 
940 int
941 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len,
942     struct ppod_reservation *prsv)
943 {
944 	int hcf, seglen, idx, npages, nppods;
945 	uintptr_t start_pva, end_pva, pva, p1;
946 
947 	MPASS(buf > 0);
948 	MPASS(len > 0);
949 
950 	/*
951 	 * The DDP page size is unrelated to the VM page size.  We combine
952 	 * contiguous physical pages into larger segments to get the best DDP
953 	 * page size possible.  This is the largest of the four sizes in
954 	 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes
955 	 * in the page list.
956 	 */
957 	hcf = 0;
958 	start_pva = trunc_page(buf);
959 	end_pva = trunc_page(buf + len - 1);
960 	pva = start_pva;
961 	while (pva <= end_pva) {
962 		seglen = PAGE_SIZE;
963 		p1 = pmap_kextract(pva);
964 		pva += PAGE_SIZE;
965 		while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) {
966 			seglen += PAGE_SIZE;
967 			pva += PAGE_SIZE;
968 		}
969 
970 		hcf = calculate_hcf(hcf, seglen);
971 		if (hcf < (1 << pr->pr_page_shift[1])) {
972 			idx = 0;
973 			goto have_pgsz;	/* give up, short circuit */
974 		}
975 	}
976 
977 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
978 	MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
979 	for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
980 		if ((hcf & PR_PAGE_MASK(idx)) == 0)
981 			break;
982 	}
983 #undef PR_PAGE_MASK
984 
985 have_pgsz:
986 	MPASS(idx <= M_PPOD_PGSZ);
987 
988 	npages = 1;
989 	npages += (end_pva - start_pva) >> pr->pr_page_shift[idx];
990 	nppods = howmany(npages, PPOD_PAGES);
991 	if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
992 		return (ENOMEM);
993 	MPASS(prsv->prsv_nppods > 0);
994 
995 	return (0);
996 }
997 
998 void
999 t4_free_page_pods(struct ppod_reservation *prsv)
1000 {
1001 	struct ppod_region *pr = prsv->prsv_pr;
1002 	vmem_addr_t addr;
1003 
1004 	MPASS(prsv != NULL);
1005 	MPASS(prsv->prsv_nppods != 0);
1006 
1007 	addr = prsv->prsv_tag & pr->pr_tag_mask;
1008 	MPASS((addr & pr->pr_invalid_bit) == 0);
1009 
1010 	CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__,
1011 	    pr->pr_arena, addr, prsv->prsv_nppods);
1012 
1013 	vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods));
1014 	prsv->prsv_nppods = 0;
1015 }
1016 
1017 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE)
1018 
1019 int
1020 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid,
1021     struct pageset *ps)
1022 {
1023 	struct wrqe *wr;
1024 	struct ulp_mem_io *ulpmc;
1025 	struct ulptx_idata *ulpsc;
1026 	struct pagepod *ppod;
1027 	int i, j, k, n, chunk, len, ddp_pgsz, idx;
1028 	u_int ppod_addr;
1029 	uint32_t cmd;
1030 	struct ppod_reservation *prsv = &ps->prsv;
1031 	struct ppod_region *pr = prsv->prsv_pr;
1032 
1033 	KASSERT(!(ps->flags & PS_PPODS_WRITTEN),
1034 	    ("%s: page pods already written", __func__));
1035 	MPASS(prsv->prsv_nppods > 0);
1036 
1037 	cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1038 	if (is_t4(sc))
1039 		cmd |= htobe32(F_ULP_MEMIO_ORDER);
1040 	else
1041 		cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1042 	ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1043 	ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1044 	for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1045 
1046 		/* How many page pods are we writing in this cycle */
1047 		n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1048 		chunk = PPOD_SZ(n);
1049 		len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1050 
1051 		wr = alloc_wrqe(len, wrq);
1052 		if (wr == NULL)
1053 			return (ENOMEM);	/* ok to just bail out */
1054 		ulpmc = wrtod(wr);
1055 
1056 		INIT_ULPTX_WR(ulpmc, len, 0, 0);
1057 		ulpmc->cmd = cmd;
1058 		ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1059 		ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1060 		ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1061 
1062 		ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1063 		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1064 		ulpsc->len = htobe32(chunk);
1065 
1066 		ppod = (struct pagepod *)(ulpsc + 1);
1067 		for (j = 0; j < n; i++, j++, ppod++) {
1068 			ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1069 			    V_PPOD_TID(tid) | prsv->prsv_tag);
1070 			ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) |
1071 			    V_PPOD_OFST(ps->offset));
1072 			ppod->rsvd = 0;
1073 			idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE);
1074 			for (k = 0; k < nitems(ppod->addr); k++) {
1075 				if (idx < ps->npages) {
1076 					ppod->addr[k] =
1077 					    htobe64(ps->pages[idx]->phys_addr);
1078 					idx += ddp_pgsz / PAGE_SIZE;
1079 				} else
1080 					ppod->addr[k] = 0;
1081 #if 0
1082 				CTR5(KTR_CXGBE,
1083 				    "%s: tid %d ppod[%d]->addr[%d] = %p",
1084 				    __func__, toep->tid, i, k,
1085 				    htobe64(ppod->addr[k]));
1086 #endif
1087 			}
1088 
1089 		}
1090 
1091 		t4_wrq_tx(sc, wr);
1092 	}
1093 	ps->flags |= PS_PPODS_WRITTEN;
1094 
1095 	return (0);
1096 }
1097 
1098 int
1099 t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid,
1100     struct ppod_reservation *prsv, vm_offset_t buf, int buflen)
1101 {
1102 	struct wrqe *wr;
1103 	struct ulp_mem_io *ulpmc;
1104 	struct ulptx_idata *ulpsc;
1105 	struct pagepod *ppod;
1106 	int i, j, k, n, chunk, len, ddp_pgsz;
1107 	u_int ppod_addr, offset;
1108 	uint32_t cmd;
1109 	struct ppod_region *pr = prsv->prsv_pr;
1110 	uintptr_t end_pva, pva, pa;
1111 
1112 	cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1113 	if (is_t4(sc))
1114 		cmd |= htobe32(F_ULP_MEMIO_ORDER);
1115 	else
1116 		cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1117 	ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1118 	offset = buf & PAGE_MASK;
1119 	ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1120 	pva = trunc_page(buf);
1121 	end_pva = trunc_page(buf + buflen - 1);
1122 	for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1123 
1124 		/* How many page pods are we writing in this cycle */
1125 		n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1126 		MPASS(n > 0);
1127 		chunk = PPOD_SZ(n);
1128 		len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1129 
1130 		wr = alloc_wrqe(len, wrq);
1131 		if (wr == NULL)
1132 			return (ENOMEM);	/* ok to just bail out */
1133 		ulpmc = wrtod(wr);
1134 
1135 		INIT_ULPTX_WR(ulpmc, len, 0, 0);
1136 		ulpmc->cmd = cmd;
1137 		ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1138 		ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1139 		ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1140 
1141 		ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1142 		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1143 		ulpsc->len = htobe32(chunk);
1144 
1145 		ppod = (struct pagepod *)(ulpsc + 1);
1146 		for (j = 0; j < n; i++, j++, ppod++) {
1147 			ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1148 			    V_PPOD_TID(tid) |
1149 			    (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ)));
1150 			ppod->len_offset = htobe64(V_PPOD_LEN(buflen) |
1151 			    V_PPOD_OFST(offset));
1152 			ppod->rsvd = 0;
1153 
1154 			for (k = 0; k < nitems(ppod->addr); k++) {
1155 				if (pva > end_pva)
1156 					ppod->addr[k] = 0;
1157 				else {
1158 					pa = pmap_kextract(pva);
1159 					ppod->addr[k] = htobe64(pa);
1160 					pva += ddp_pgsz;
1161 				}
1162 #if 0
1163 				CTR5(KTR_CXGBE,
1164 				    "%s: tid %d ppod[%d]->addr[%d] = %p",
1165 				    __func__, tid, i, k,
1166 				    htobe64(ppod->addr[k]));
1167 #endif
1168 			}
1169 
1170 			/*
1171 			 * Walk back 1 segment so that the first address in the
1172 			 * next pod is the same as the last one in the current
1173 			 * pod.
1174 			 */
1175 			pva -= ddp_pgsz;
1176 		}
1177 
1178 		t4_wrq_tx(sc, wr);
1179 	}
1180 
1181 	MPASS(pva <= end_pva);
1182 
1183 	return (0);
1184 }
1185 
1186 static void
1187 wire_pageset(struct pageset *ps)
1188 {
1189 	vm_page_t p;
1190 	int i;
1191 
1192 	KASSERT(!(ps->flags & PS_WIRED), ("pageset already wired"));
1193 
1194 	for (i = 0; i < ps->npages; i++) {
1195 		p = ps->pages[i];
1196 		vm_page_lock(p);
1197 		vm_page_wire(p);
1198 		vm_page_unhold(p);
1199 		vm_page_unlock(p);
1200 	}
1201 	ps->flags |= PS_WIRED;
1202 }
1203 
1204 /*
1205  * Prepare a pageset for DDP.  This wires the pageset and sets up page
1206  * pods.
1207  */
1208 static int
1209 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps)
1210 {
1211 	struct tom_data *td = sc->tom_softc;
1212 
1213 	if (!(ps->flags & PS_WIRED))
1214 		wire_pageset(ps);
1215 	if (ps->prsv.prsv_nppods == 0 &&
1216 	    !t4_alloc_page_pods_for_ps(&td->pr, ps)) {
1217 		return (0);
1218 	}
1219 	if (!(ps->flags & PS_PPODS_WRITTEN) &&
1220 	    t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) {
1221 		return (0);
1222 	}
1223 
1224 	return (1);
1225 }
1226 
1227 int
1228 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz,
1229     const char *name)
1230 {
1231 	int i;
1232 
1233 	MPASS(pr != NULL);
1234 	MPASS(r->size > 0);
1235 
1236 	pr->pr_start = r->start;
1237 	pr->pr_len = r->size;
1238 	pr->pr_page_shift[0] = 12 + G_HPZ0(psz);
1239 	pr->pr_page_shift[1] = 12 + G_HPZ1(psz);
1240 	pr->pr_page_shift[2] = 12 + G_HPZ2(psz);
1241 	pr->pr_page_shift[3] = 12 + G_HPZ3(psz);
1242 
1243 	/* The SGL -> page pod algorithm requires the sizes to be in order. */
1244 	for (i = 1; i < nitems(pr->pr_page_shift); i++) {
1245 		if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1])
1246 			return (ENXIO);
1247 	}
1248 
1249 	pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG);
1250 	pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask;
1251 	if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0)
1252 		return (ENXIO);
1253 	pr->pr_alias_shift = fls(pr->pr_tag_mask);
1254 	pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1);
1255 
1256 	pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0,
1257 	    M_FIRSTFIT | M_NOWAIT);
1258 	if (pr->pr_arena == NULL)
1259 		return (ENOMEM);
1260 
1261 	return (0);
1262 }
1263 
1264 void
1265 t4_free_ppod_region(struct ppod_region *pr)
1266 {
1267 
1268 	MPASS(pr != NULL);
1269 
1270 	if (pr->pr_arena)
1271 		vmem_destroy(pr->pr_arena);
1272 	bzero(pr, sizeof(*pr));
1273 }
1274 
1275 static int
1276 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages,
1277     int pgoff, int len)
1278 {
1279 
1280 	if (ps->npages != npages || ps->offset != pgoff || ps->len != len)
1281 		return (1);
1282 
1283 	return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp);
1284 }
1285 
1286 static int
1287 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps)
1288 {
1289 	struct vmspace *vm;
1290 	vm_map_t map;
1291 	vm_offset_t start, end, pgoff;
1292 	struct pageset *ps;
1293 	int n;
1294 
1295 	DDP_ASSERT_LOCKED(toep);
1296 
1297 	/*
1298 	 * The AIO subsystem will cancel and drain all requests before
1299 	 * permitting a process to exit or exec, so p_vmspace should
1300 	 * be stable here.
1301 	 */
1302 	vm = job->userproc->p_vmspace;
1303 	map = &vm->vm_map;
1304 	start = (uintptr_t)job->uaiocb.aio_buf;
1305 	pgoff = start & PAGE_MASK;
1306 	end = round_page(start + job->uaiocb.aio_nbytes);
1307 	start = trunc_page(start);
1308 
1309 	if (end - start > MAX_DDP_BUFFER_SIZE) {
1310 		/*
1311 		 * Truncate the request to a short read.
1312 		 * Alternatively, we could DDP in chunks to the larger
1313 		 * buffer, but that would be quite a bit more work.
1314 		 *
1315 		 * When truncating, round the request down to avoid
1316 		 * crossing a cache line on the final transaction.
1317 		 */
1318 		end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE);
1319 #ifdef VERBOSE_TRACES
1320 		CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu",
1321 		    __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes,
1322 		    (unsigned long)(end - (start + pgoff)));
1323 		job->uaiocb.aio_nbytes = end - (start + pgoff);
1324 #endif
1325 		end = round_page(end);
1326 	}
1327 
1328 	n = atop(end - start);
1329 
1330 	/*
1331 	 * Try to reuse a cached pageset.
1332 	 */
1333 	TAILQ_FOREACH(ps, &toep->ddp_cached_pagesets, link) {
1334 		if (pscmp(ps, vm, start, n, pgoff,
1335 		    job->uaiocb.aio_nbytes) == 0) {
1336 			TAILQ_REMOVE(&toep->ddp_cached_pagesets, ps, link);
1337 			toep->ddp_cached_count--;
1338 			*pps = ps;
1339 			return (0);
1340 		}
1341 	}
1342 
1343 	/*
1344 	 * If there are too many cached pagesets to create a new one,
1345 	 * free a pageset before creating a new one.
1346 	 */
1347 	KASSERT(toep->ddp_active_count + toep->ddp_cached_count <=
1348 	    nitems(toep->db), ("%s: too many wired pagesets", __func__));
1349 	if (toep->ddp_active_count + toep->ddp_cached_count ==
1350 	    nitems(toep->db)) {
1351 		KASSERT(toep->ddp_cached_count > 0,
1352 		    ("no cached pageset to free"));
1353 		ps = TAILQ_LAST(&toep->ddp_cached_pagesets, pagesetq);
1354 		TAILQ_REMOVE(&toep->ddp_cached_pagesets, ps, link);
1355 		toep->ddp_cached_count--;
1356 		free_pageset(toep->td, ps);
1357 	}
1358 	DDP_UNLOCK(toep);
1359 
1360 	/* Create a new pageset. */
1361 	ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK |
1362 	    M_ZERO);
1363 	ps->pages = (vm_page_t *)(ps + 1);
1364 	ps->vm_timestamp = map->timestamp;
1365 	ps->npages = vm_fault_quick_hold_pages(map, start, end - start,
1366 	    VM_PROT_WRITE, ps->pages, n);
1367 
1368 	DDP_LOCK(toep);
1369 	if (ps->npages < 0) {
1370 		free(ps, M_CXGBE);
1371 		return (EFAULT);
1372 	}
1373 
1374 	KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d",
1375 	    ps->npages, n));
1376 
1377 	ps->offset = pgoff;
1378 	ps->len = job->uaiocb.aio_nbytes;
1379 	atomic_add_int(&vm->vm_refcnt, 1);
1380 	ps->vm = vm;
1381 
1382 	CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d",
1383 	    __func__, toep->tid, ps, job, ps->npages);
1384 	*pps = ps;
1385 	return (0);
1386 }
1387 
1388 static void
1389 ddp_complete_all(struct toepcb *toep, int error)
1390 {
1391 	struct kaiocb *job;
1392 
1393 	DDP_ASSERT_LOCKED(toep);
1394 	while (!TAILQ_EMPTY(&toep->ddp_aiojobq)) {
1395 		job = TAILQ_FIRST(&toep->ddp_aiojobq);
1396 		TAILQ_REMOVE(&toep->ddp_aiojobq, job, list);
1397 		toep->ddp_waiting_count--;
1398 		if (aio_clear_cancel_function(job))
1399 			ddp_complete_one(job, error);
1400 	}
1401 }
1402 
1403 static void
1404 aio_ddp_cancel_one(struct kaiocb *job)
1405 {
1406 	long copied;
1407 
1408 	/*
1409 	 * If this job had copied data out of the socket buffer before
1410 	 * it was cancelled, report it as a short read rather than an
1411 	 * error.
1412 	 */
1413 	copied = job->aio_received;
1414 	if (copied != 0)
1415 		aio_complete(job, copied, 0);
1416 	else
1417 		aio_cancel(job);
1418 }
1419 
1420 /*
1421  * Called when the main loop wants to requeue a job to retry it later.
1422  * Deals with the race of the job being cancelled while it was being
1423  * examined.
1424  */
1425 static void
1426 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job)
1427 {
1428 
1429 	DDP_ASSERT_LOCKED(toep);
1430 	if (!(toep->ddp_flags & DDP_DEAD) &&
1431 	    aio_set_cancel_function(job, t4_aio_cancel_queued)) {
1432 		TAILQ_INSERT_HEAD(&toep->ddp_aiojobq, job, list);
1433 		toep->ddp_waiting_count++;
1434 	} else
1435 		aio_ddp_cancel_one(job);
1436 }
1437 
1438 static void
1439 aio_ddp_requeue(struct toepcb *toep)
1440 {
1441 	struct adapter *sc = td_adapter(toep->td);
1442 	struct socket *so;
1443 	struct sockbuf *sb;
1444 	struct inpcb *inp;
1445 	struct kaiocb *job;
1446 	struct ddp_buffer *db;
1447 	size_t copied, offset, resid;
1448 	struct pageset *ps;
1449 	struct mbuf *m;
1450 	uint64_t ddp_flags, ddp_flags_mask;
1451 	struct wrqe *wr;
1452 	int buf_flag, db_idx, error;
1453 
1454 	DDP_ASSERT_LOCKED(toep);
1455 
1456 restart:
1457 	if (toep->ddp_flags & DDP_DEAD) {
1458 		MPASS(toep->ddp_waiting_count == 0);
1459 		MPASS(toep->ddp_active_count == 0);
1460 		return;
1461 	}
1462 
1463 	if (toep->ddp_waiting_count == 0 ||
1464 	    toep->ddp_active_count == nitems(toep->db)) {
1465 		return;
1466 	}
1467 
1468 	job = TAILQ_FIRST(&toep->ddp_aiojobq);
1469 	so = job->fd_file->f_data;
1470 	sb = &so->so_rcv;
1471 	SOCKBUF_LOCK(sb);
1472 
1473 	/* We will never get anything unless we are or were connected. */
1474 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
1475 		SOCKBUF_UNLOCK(sb);
1476 		ddp_complete_all(toep, ENOTCONN);
1477 		return;
1478 	}
1479 
1480 	KASSERT(toep->ddp_active_count == 0 || sbavail(sb) == 0,
1481 	    ("%s: pending sockbuf data and DDP is active", __func__));
1482 
1483 	/* Abort if socket has reported problems. */
1484 	/* XXX: Wait for any queued DDP's to finish and/or flush them? */
1485 	if (so->so_error && sbavail(sb) == 0) {
1486 		toep->ddp_waiting_count--;
1487 		TAILQ_REMOVE(&toep->ddp_aiojobq, job, list);
1488 		if (!aio_clear_cancel_function(job)) {
1489 			SOCKBUF_UNLOCK(sb);
1490 			goto restart;
1491 		}
1492 
1493 		/*
1494 		 * If this job has previously copied some data, report
1495 		 * a short read and leave the error to be reported by
1496 		 * a future request.
1497 		 */
1498 		copied = job->aio_received;
1499 		if (copied != 0) {
1500 			SOCKBUF_UNLOCK(sb);
1501 			aio_complete(job, copied, 0);
1502 			goto restart;
1503 		}
1504 		error = so->so_error;
1505 		so->so_error = 0;
1506 		SOCKBUF_UNLOCK(sb);
1507 		aio_complete(job, -1, error);
1508 		goto restart;
1509 	}
1510 
1511 	/*
1512 	 * Door is closed.  If there is pending data in the socket buffer,
1513 	 * deliver it.  If there are pending DDP requests, wait for those
1514 	 * to complete.  Once they have completed, return EOF reads.
1515 	 */
1516 	if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
1517 		SOCKBUF_UNLOCK(sb);
1518 		if (toep->ddp_active_count != 0)
1519 			return;
1520 		ddp_complete_all(toep, 0);
1521 		return;
1522 	}
1523 
1524 	/*
1525 	 * If DDP is not enabled and there is no pending socket buffer
1526 	 * data, try to enable DDP.
1527 	 */
1528 	if (sbavail(sb) == 0 && (toep->ddp_flags & DDP_ON) == 0) {
1529 		SOCKBUF_UNLOCK(sb);
1530 
1531 		/*
1532 		 * Wait for the card to ACK that DDP is enabled before
1533 		 * queueing any buffers.  Currently this waits for an
1534 		 * indicate to arrive.  This could use a TCB_SET_FIELD_RPL
1535 		 * message to know that DDP was enabled instead of waiting
1536 		 * for the indicate which would avoid copying the indicate
1537 		 * if no data is pending.
1538 		 *
1539 		 * XXX: Might want to limit the indicate size to the size
1540 		 * of the first queued request.
1541 		 */
1542 		if ((toep->ddp_flags & DDP_SC_REQ) == 0)
1543 			enable_ddp(sc, toep);
1544 		return;
1545 	}
1546 	SOCKBUF_UNLOCK(sb);
1547 
1548 	/*
1549 	 * If another thread is queueing a buffer for DDP, let it
1550 	 * drain any work and return.
1551 	 */
1552 	if (toep->ddp_queueing != NULL)
1553 		return;
1554 
1555 	/* Take the next job to prep it for DDP. */
1556 	toep->ddp_waiting_count--;
1557 	TAILQ_REMOVE(&toep->ddp_aiojobq, job, list);
1558 	if (!aio_clear_cancel_function(job))
1559 		goto restart;
1560 	toep->ddp_queueing = job;
1561 
1562 	/* NB: This drops DDP_LOCK while it holds the backing VM pages. */
1563 	error = hold_aio(toep, job, &ps);
1564 	if (error != 0) {
1565 		ddp_complete_one(job, error);
1566 		toep->ddp_queueing = NULL;
1567 		goto restart;
1568 	}
1569 
1570 	SOCKBUF_LOCK(sb);
1571 	if (so->so_error && sbavail(sb) == 0) {
1572 		copied = job->aio_received;
1573 		if (copied != 0) {
1574 			SOCKBUF_UNLOCK(sb);
1575 			recycle_pageset(toep, ps);
1576 			aio_complete(job, copied, 0);
1577 			toep->ddp_queueing = NULL;
1578 			goto restart;
1579 		}
1580 
1581 		error = so->so_error;
1582 		so->so_error = 0;
1583 		SOCKBUF_UNLOCK(sb);
1584 		recycle_pageset(toep, ps);
1585 		aio_complete(job, -1, error);
1586 		toep->ddp_queueing = NULL;
1587 		goto restart;
1588 	}
1589 
1590 	if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
1591 		SOCKBUF_UNLOCK(sb);
1592 		recycle_pageset(toep, ps);
1593 		if (toep->ddp_active_count != 0) {
1594 			/*
1595 			 * The door is closed, but there are still pending
1596 			 * DDP buffers.  Requeue.  These jobs will all be
1597 			 * completed once those buffers drain.
1598 			 */
1599 			aio_ddp_requeue_one(toep, job);
1600 			toep->ddp_queueing = NULL;
1601 			return;
1602 		}
1603 		ddp_complete_one(job, 0);
1604 		ddp_complete_all(toep, 0);
1605 		toep->ddp_queueing = NULL;
1606 		return;
1607 	}
1608 
1609 sbcopy:
1610 	/*
1611 	 * If the toep is dead, there shouldn't be any data in the socket
1612 	 * buffer, so the above case should have handled this.
1613 	 */
1614 	MPASS(!(toep->ddp_flags & DDP_DEAD));
1615 
1616 	/*
1617 	 * If there is pending data in the socket buffer (either
1618 	 * from before the requests were queued or a DDP indicate),
1619 	 * copy those mbufs out directly.
1620 	 */
1621 	copied = 0;
1622 	offset = ps->offset + job->aio_received;
1623 	MPASS(job->aio_received <= job->uaiocb.aio_nbytes);
1624 	resid = job->uaiocb.aio_nbytes - job->aio_received;
1625 	m = sb->sb_mb;
1626 	KASSERT(m == NULL || toep->ddp_active_count == 0,
1627 	    ("%s: sockbuf data with active DDP", __func__));
1628 	while (m != NULL && resid > 0) {
1629 		struct iovec iov[1];
1630 		struct uio uio;
1631 		int error;
1632 
1633 		iov[0].iov_base = mtod(m, void *);
1634 		iov[0].iov_len = m->m_len;
1635 		if (iov[0].iov_len > resid)
1636 			iov[0].iov_len = resid;
1637 		uio.uio_iov = iov;
1638 		uio.uio_iovcnt = 1;
1639 		uio.uio_offset = 0;
1640 		uio.uio_resid = iov[0].iov_len;
1641 		uio.uio_segflg = UIO_SYSSPACE;
1642 		uio.uio_rw = UIO_WRITE;
1643 		error = uiomove_fromphys(ps->pages, offset + copied,
1644 		    uio.uio_resid, &uio);
1645 		MPASS(error == 0 && uio.uio_resid == 0);
1646 		copied += uio.uio_offset;
1647 		resid -= uio.uio_offset;
1648 		m = m->m_next;
1649 	}
1650 	if (copied != 0) {
1651 		sbdrop_locked(sb, copied);
1652 		job->aio_received += copied;
1653 		job->msgrcv = 1;
1654 		copied = job->aio_received;
1655 		inp = sotoinpcb(so);
1656 		if (!INP_TRY_WLOCK(inp)) {
1657 			/*
1658 			 * The reference on the socket file descriptor in
1659 			 * the AIO job should keep 'sb' and 'inp' stable.
1660 			 * Our caller has a reference on the 'toep' that
1661 			 * keeps it stable.
1662 			 */
1663 			SOCKBUF_UNLOCK(sb);
1664 			DDP_UNLOCK(toep);
1665 			INP_WLOCK(inp);
1666 			DDP_LOCK(toep);
1667 			SOCKBUF_LOCK(sb);
1668 
1669 			/*
1670 			 * If the socket has been closed, we should detect
1671 			 * that and complete this request if needed on
1672 			 * the next trip around the loop.
1673 			 */
1674 		}
1675 		t4_rcvd_locked(&toep->td->tod, intotcpcb(inp));
1676 		INP_WUNLOCK(inp);
1677 		if (resid == 0 || toep->ddp_flags & DDP_DEAD) {
1678 			/*
1679 			 * We filled the entire buffer with socket
1680 			 * data, DDP is not being used, or the socket
1681 			 * is being shut down, so complete the
1682 			 * request.
1683 			 */
1684 			SOCKBUF_UNLOCK(sb);
1685 			recycle_pageset(toep, ps);
1686 			aio_complete(job, copied, 0);
1687 			toep->ddp_queueing = NULL;
1688 			goto restart;
1689 		}
1690 
1691 		/*
1692 		 * If DDP is not enabled, requeue this request and restart.
1693 		 * This will either enable DDP or wait for more data to
1694 		 * arrive on the socket buffer.
1695 		 */
1696 		if ((toep->ddp_flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) {
1697 			SOCKBUF_UNLOCK(sb);
1698 			recycle_pageset(toep, ps);
1699 			aio_ddp_requeue_one(toep, job);
1700 			toep->ddp_queueing = NULL;
1701 			goto restart;
1702 		}
1703 
1704 		/*
1705 		 * An indicate might have arrived and been added to
1706 		 * the socket buffer while it was unlocked after the
1707 		 * copy to lock the INP.  If so, restart the copy.
1708 		 */
1709 		if (sbavail(sb) != 0)
1710 			goto sbcopy;
1711 	}
1712 	SOCKBUF_UNLOCK(sb);
1713 
1714 	if (prep_pageset(sc, toep, ps) == 0) {
1715 		recycle_pageset(toep, ps);
1716 		aio_ddp_requeue_one(toep, job);
1717 		toep->ddp_queueing = NULL;
1718 
1719 		/*
1720 		 * XXX: Need to retry this later.  Mostly need a trigger
1721 		 * when page pods are freed up.
1722 		 */
1723 		printf("%s: prep_pageset failed\n", __func__);
1724 		return;
1725 	}
1726 
1727 	/* Determine which DDP buffer to use. */
1728 	if (toep->db[0].job == NULL) {
1729 		db_idx = 0;
1730 	} else {
1731 		MPASS(toep->db[1].job == NULL);
1732 		db_idx = 1;
1733 	}
1734 
1735 	ddp_flags = 0;
1736 	ddp_flags_mask = 0;
1737 	if (db_idx == 0) {
1738 		ddp_flags |= V_TF_DDP_BUF0_VALID(1);
1739 		if (so->so_state & SS_NBIO)
1740 			ddp_flags |= V_TF_DDP_BUF0_FLUSH(1);
1741 		ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) |
1742 		    V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) |
1743 		    V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1);
1744 		buf_flag = DDP_BUF0_ACTIVE;
1745 	} else {
1746 		ddp_flags |= V_TF_DDP_BUF1_VALID(1);
1747 		if (so->so_state & SS_NBIO)
1748 			ddp_flags |= V_TF_DDP_BUF1_FLUSH(1);
1749 		ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) |
1750 		    V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) |
1751 		    V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1);
1752 		buf_flag = DDP_BUF1_ACTIVE;
1753 	}
1754 	MPASS((toep->ddp_flags & buf_flag) == 0);
1755 	if ((toep->ddp_flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) {
1756 		MPASS(db_idx == 0);
1757 		MPASS(toep->ddp_active_id == -1);
1758 		MPASS(toep->ddp_active_count == 0);
1759 		ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1);
1760 	}
1761 
1762 	/*
1763 	 * The TID for this connection should still be valid.  If DDP_DEAD
1764 	 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be
1765 	 * this far anyway.  Even if the socket is closing on the other
1766 	 * end, the AIO job holds a reference on this end of the socket
1767 	 * which will keep it open and keep the TCP PCB attached until
1768 	 * after the job is completed.
1769 	 */
1770 	wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received,
1771 	    ddp_flags, ddp_flags_mask);
1772 	if (wr == NULL) {
1773 		recycle_pageset(toep, ps);
1774 		aio_ddp_requeue_one(toep, job);
1775 		toep->ddp_queueing = NULL;
1776 
1777 		/*
1778 		 * XXX: Need a way to kick a retry here.
1779 		 *
1780 		 * XXX: We know the fixed size needed and could
1781 		 * preallocate this using a blocking request at the
1782 		 * start of the task to avoid having to handle this
1783 		 * edge case.
1784 		 */
1785 		printf("%s: mk_update_tcb_for_ddp failed\n", __func__);
1786 		return;
1787 	}
1788 
1789 	if (!aio_set_cancel_function(job, t4_aio_cancel_active)) {
1790 		free_wrqe(wr);
1791 		recycle_pageset(toep, ps);
1792 		aio_ddp_cancel_one(job);
1793 		toep->ddp_queueing = NULL;
1794 		goto restart;
1795 	}
1796 
1797 #ifdef VERBOSE_TRACES
1798 	CTR5(KTR_CXGBE, "%s: scheduling %p for DDP[%d] (flags %#lx/%#lx)",
1799 	    __func__, job, db_idx, ddp_flags, ddp_flags_mask);
1800 #endif
1801 	/* Give the chip the go-ahead. */
1802 	t4_wrq_tx(sc, wr);
1803 	db = &toep->db[db_idx];
1804 	db->cancel_pending = 0;
1805 	db->job = job;
1806 	db->ps = ps;
1807 	toep->ddp_queueing = NULL;
1808 	toep->ddp_flags |= buf_flag;
1809 	toep->ddp_active_count++;
1810 	if (toep->ddp_active_count == 1) {
1811 		MPASS(toep->ddp_active_id == -1);
1812 		toep->ddp_active_id = db_idx;
1813 		CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
1814 		    toep->ddp_active_id);
1815 	}
1816 	goto restart;
1817 }
1818 
1819 void
1820 ddp_queue_toep(struct toepcb *toep)
1821 {
1822 
1823 	DDP_ASSERT_LOCKED(toep);
1824 	if (toep->ddp_flags & DDP_TASK_ACTIVE)
1825 		return;
1826 	toep->ddp_flags |= DDP_TASK_ACTIVE;
1827 	hold_toepcb(toep);
1828 	soaio_enqueue(&toep->ddp_requeue_task);
1829 }
1830 
1831 static void
1832 aio_ddp_requeue_task(void *context, int pending)
1833 {
1834 	struct toepcb *toep = context;
1835 
1836 	DDP_LOCK(toep);
1837 	aio_ddp_requeue(toep);
1838 	toep->ddp_flags &= ~DDP_TASK_ACTIVE;
1839 	DDP_UNLOCK(toep);
1840 
1841 	free_toepcb(toep);
1842 }
1843 
1844 static void
1845 t4_aio_cancel_active(struct kaiocb *job)
1846 {
1847 	struct socket *so = job->fd_file->f_data;
1848 	struct tcpcb *tp = so_sototcpcb(so);
1849 	struct toepcb *toep = tp->t_toe;
1850 	struct adapter *sc = td_adapter(toep->td);
1851 	uint64_t valid_flag;
1852 	int i;
1853 
1854 	DDP_LOCK(toep);
1855 	if (aio_cancel_cleared(job)) {
1856 		DDP_UNLOCK(toep);
1857 		aio_ddp_cancel_one(job);
1858 		return;
1859 	}
1860 
1861 	for (i = 0; i < nitems(toep->db); i++) {
1862 		if (toep->db[i].job == job) {
1863 			/* Should only ever get one cancel request for a job. */
1864 			MPASS(toep->db[i].cancel_pending == 0);
1865 
1866 			/*
1867 			 * Invalidate this buffer.  It will be
1868 			 * cancelled or partially completed once the
1869 			 * card ACKs the invalidate.
1870 			 */
1871 			valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) :
1872 			    V_TF_DDP_BUF1_VALID(1);
1873 			t4_set_tcb_field(sc, toep->ctrlq, toep->tid,
1874 			    W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1,
1875 			    i + DDP_BUF0_INVALIDATED,
1876 			    toep->ofld_rxq->iq.abs_id);
1877 			toep->db[i].cancel_pending = 1;
1878 			CTR2(KTR_CXGBE, "%s: request %p marked pending",
1879 			    __func__, job);
1880 			break;
1881 		}
1882 	}
1883 	DDP_UNLOCK(toep);
1884 }
1885 
1886 static void
1887 t4_aio_cancel_queued(struct kaiocb *job)
1888 {
1889 	struct socket *so = job->fd_file->f_data;
1890 	struct tcpcb *tp = so_sototcpcb(so);
1891 	struct toepcb *toep = tp->t_toe;
1892 
1893 	DDP_LOCK(toep);
1894 	if (!aio_cancel_cleared(job)) {
1895 		TAILQ_REMOVE(&toep->ddp_aiojobq, job, list);
1896 		toep->ddp_waiting_count--;
1897 		if (toep->ddp_waiting_count == 0)
1898 			ddp_queue_toep(toep);
1899 	}
1900 	CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job);
1901 	DDP_UNLOCK(toep);
1902 
1903 	aio_ddp_cancel_one(job);
1904 }
1905 
1906 int
1907 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job)
1908 {
1909 	struct tcpcb *tp = so_sototcpcb(so);
1910 	struct toepcb *toep = tp->t_toe;
1911 
1912 
1913 	/* Ignore writes. */
1914 	if (job->uaiocb.aio_lio_opcode != LIO_READ)
1915 		return (EOPNOTSUPP);
1916 
1917 	DDP_LOCK(toep);
1918 
1919 	/*
1920 	 * XXX: Think about possibly returning errors for ENOTCONN,
1921 	 * etc.  Perhaps the caller would only queue the request
1922 	 * if it failed with EOPNOTSUPP?
1923 	 */
1924 
1925 #ifdef VERBOSE_TRACES
1926 	CTR2(KTR_CXGBE, "%s: queueing %p", __func__, job);
1927 #endif
1928 	if (!aio_set_cancel_function(job, t4_aio_cancel_queued))
1929 		panic("new job was cancelled");
1930 	TAILQ_INSERT_TAIL(&toep->ddp_aiojobq, job, list);
1931 	toep->ddp_waiting_count++;
1932 	toep->ddp_flags |= DDP_OK;
1933 
1934 	/*
1935 	 * Try to handle this request synchronously.  If this has
1936 	 * to block because the task is running, it will just bail
1937 	 * and let the task handle it instead.
1938 	 */
1939 	aio_ddp_requeue(toep);
1940 	DDP_UNLOCK(toep);
1941 	return (0);
1942 }
1943 
1944 int
1945 t4_ddp_mod_load(void)
1946 {
1947 
1948 	t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp);
1949 	t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete);
1950 	TAILQ_INIT(&ddp_orphan_pagesets);
1951 	mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF);
1952 	TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL);
1953 	return (0);
1954 }
1955 
1956 void
1957 t4_ddp_mod_unload(void)
1958 {
1959 
1960 	taskqueue_drain(taskqueue_thread, &ddp_orphan_task);
1961 	MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets));
1962 	mtx_destroy(&ddp_orphan_pagesets_lock);
1963 	t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL);
1964 	t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL);
1965 }
1966 #endif
1967