xref: /freebsd/sys/dev/cxgbe/tom/t4_tom.c (revision b00ab754)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ratelimit.h"
36 
37 #include <sys/param.h>
38 #include <sys/types.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/ktr.h>
42 #include <sys/lock.h>
43 #include <sys/limits.h>
44 #include <sys/module.h>
45 #include <sys/protosw.h>
46 #include <sys/domain.h>
47 #include <sys/refcount.h>
48 #include <sys/rmlock.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/taskqueue.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 #include <netinet/in.h>
57 #include <netinet/in_pcb.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 #include <netinet/ip6.h>
61 #include <netinet6/scope6_var.h>
62 #define TCPSTATES
63 #include <netinet/tcp_fsm.h>
64 #include <netinet/tcp_timer.h>
65 #include <netinet/tcp_var.h>
66 #include <netinet/toecore.h>
67 
68 #ifdef TCP_OFFLOAD
69 #include "common/common.h"
70 #include "common/t4_msg.h"
71 #include "common/t4_regs.h"
72 #include "common/t4_regs_values.h"
73 #include "common/t4_tcb.h"
74 #include "tom/t4_tom_l2t.h"
75 #include "tom/t4_tom.h"
76 #include "tom/t4_tls.h"
77 
78 static struct protosw toe_protosw;
79 static struct pr_usrreqs toe_usrreqs;
80 
81 static struct protosw toe6_protosw;
82 static struct pr_usrreqs toe6_usrreqs;
83 
84 /* Module ops */
85 static int t4_tom_mod_load(void);
86 static int t4_tom_mod_unload(void);
87 static int t4_tom_modevent(module_t, int, void *);
88 
89 /* ULD ops and helpers */
90 static int t4_tom_activate(struct adapter *);
91 static int t4_tom_deactivate(struct adapter *);
92 
93 static struct uld_info tom_uld_info = {
94 	.uld_id = ULD_TOM,
95 	.activate = t4_tom_activate,
96 	.deactivate = t4_tom_deactivate,
97 };
98 
99 static void release_offload_resources(struct toepcb *);
100 static int alloc_tid_tabs(struct tid_info *);
101 static void free_tid_tabs(struct tid_info *);
102 static int add_lip(struct adapter *, struct in6_addr *);
103 static int delete_lip(struct adapter *, struct in6_addr *);
104 static struct clip_entry *search_lip(struct tom_data *, struct in6_addr *);
105 static void init_clip_table(struct adapter *, struct tom_data *);
106 static void update_clip(struct adapter *, void *);
107 static void t4_clip_task(void *, int);
108 static void update_clip_table(struct adapter *, struct tom_data *);
109 static void destroy_clip_table(struct adapter *, struct tom_data *);
110 static void free_tom_data(struct adapter *, struct tom_data *);
111 static void reclaim_wr_resources(void *, int);
112 
113 static int in6_ifaddr_gen;
114 static eventhandler_tag ifaddr_evhandler;
115 static struct timeout_task clip_task;
116 
117 struct toepcb *
118 alloc_toepcb(struct vi_info *vi, int txqid, int rxqid, int flags)
119 {
120 	struct port_info *pi = vi->pi;
121 	struct adapter *sc = pi->adapter;
122 	struct toepcb *toep;
123 	int tx_credits, txsd_total, len;
124 
125 	/*
126 	 * The firmware counts tx work request credits in units of 16 bytes
127 	 * each.  Reserve room for an ABORT_REQ so the driver never has to worry
128 	 * about tx credits if it wants to abort a connection.
129 	 */
130 	tx_credits = sc->params.ofldq_wr_cred;
131 	tx_credits -= howmany(sizeof(struct cpl_abort_req), 16);
132 
133 	/*
134 	 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte
135 	 * immediate payload, and firmware counts tx work request credits in
136 	 * units of 16 byte.  Calculate the maximum work requests possible.
137 	 */
138 	txsd_total = tx_credits /
139 	    howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16);
140 
141 	KASSERT(txqid >= vi->first_ofld_txq &&
142 	    txqid < vi->first_ofld_txq + vi->nofldtxq,
143 	    ("%s: txqid %d for vi %p (first %d, n %d)", __func__, txqid, vi,
144 		vi->first_ofld_txq, vi->nofldtxq));
145 
146 	KASSERT(rxqid >= vi->first_ofld_rxq &&
147 	    rxqid < vi->first_ofld_rxq + vi->nofldrxq,
148 	    ("%s: rxqid %d for vi %p (first %d, n %d)", __func__, rxqid, vi,
149 		vi->first_ofld_rxq, vi->nofldrxq));
150 
151 	len = offsetof(struct toepcb, txsd) +
152 	    txsd_total * sizeof(struct ofld_tx_sdesc);
153 
154 	toep = malloc(len, M_CXGBE, M_ZERO | flags);
155 	if (toep == NULL)
156 		return (NULL);
157 
158 	refcount_init(&toep->refcount, 1);
159 	toep->td = sc->tom_softc;
160 	toep->vi = vi;
161 	toep->tc_idx = -1;
162 	toep->tx_total = tx_credits;
163 	toep->tx_credits = tx_credits;
164 	toep->ofld_txq = &sc->sge.ofld_txq[txqid];
165 	toep->ofld_rxq = &sc->sge.ofld_rxq[rxqid];
166 	toep->ctrlq = &sc->sge.ctrlq[pi->port_id];
167 	mbufq_init(&toep->ulp_pduq, INT_MAX);
168 	mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX);
169 	toep->txsd_total = txsd_total;
170 	toep->txsd_avail = txsd_total;
171 	toep->txsd_pidx = 0;
172 	toep->txsd_cidx = 0;
173 	aiotx_init_toep(toep);
174 
175 	return (toep);
176 }
177 
178 struct toepcb *
179 hold_toepcb(struct toepcb *toep)
180 {
181 
182 	refcount_acquire(&toep->refcount);
183 	return (toep);
184 }
185 
186 void
187 free_toepcb(struct toepcb *toep)
188 {
189 
190 	if (refcount_release(&toep->refcount) == 0)
191 		return;
192 
193 	KASSERT(!(toep->flags & TPF_ATTACHED),
194 	    ("%s: attached to an inpcb", __func__));
195 	KASSERT(!(toep->flags & TPF_CPL_PENDING),
196 	    ("%s: CPL pending", __func__));
197 
198 	if (toep->ulp_mode == ULP_MODE_TCPDDP)
199 		ddp_uninit_toep(toep);
200 	tls_uninit_toep(toep);
201 	free(toep, M_CXGBE);
202 }
203 
204 /*
205  * Set up the socket for TCP offload.
206  */
207 void
208 offload_socket(struct socket *so, struct toepcb *toep)
209 {
210 	struct tom_data *td = toep->td;
211 	struct inpcb *inp = sotoinpcb(so);
212 	struct tcpcb *tp = intotcpcb(inp);
213 	struct sockbuf *sb;
214 
215 	INP_WLOCK_ASSERT(inp);
216 
217 	/* Update socket */
218 	sb = &so->so_snd;
219 	SOCKBUF_LOCK(sb);
220 	sb->sb_flags |= SB_NOCOALESCE;
221 	SOCKBUF_UNLOCK(sb);
222 	sb = &so->so_rcv;
223 	SOCKBUF_LOCK(sb);
224 	sb->sb_flags |= SB_NOCOALESCE;
225 	if (inp->inp_vflag & INP_IPV6)
226 		so->so_proto = &toe6_protosw;
227 	else
228 		so->so_proto = &toe_protosw;
229 	SOCKBUF_UNLOCK(sb);
230 
231 	/* Update TCP PCB */
232 	tp->tod = &td->tod;
233 	tp->t_toe = toep;
234 	tp->t_flags |= TF_TOE;
235 
236 	/* Install an extra hold on inp */
237 	toep->inp = inp;
238 	toep->flags |= TPF_ATTACHED;
239 	in_pcbref(inp);
240 
241 	/* Add the TOE PCB to the active list */
242 	mtx_lock(&td->toep_list_lock);
243 	TAILQ_INSERT_HEAD(&td->toep_list, toep, link);
244 	mtx_unlock(&td->toep_list_lock);
245 }
246 
247 /* This is _not_ the normal way to "unoffload" a socket. */
248 void
249 undo_offload_socket(struct socket *so)
250 {
251 	struct inpcb *inp = sotoinpcb(so);
252 	struct tcpcb *tp = intotcpcb(inp);
253 	struct toepcb *toep = tp->t_toe;
254 	struct tom_data *td = toep->td;
255 	struct sockbuf *sb;
256 
257 	INP_WLOCK_ASSERT(inp);
258 
259 	sb = &so->so_snd;
260 	SOCKBUF_LOCK(sb);
261 	sb->sb_flags &= ~SB_NOCOALESCE;
262 	SOCKBUF_UNLOCK(sb);
263 	sb = &so->so_rcv;
264 	SOCKBUF_LOCK(sb);
265 	sb->sb_flags &= ~SB_NOCOALESCE;
266 	SOCKBUF_UNLOCK(sb);
267 
268 	tp->tod = NULL;
269 	tp->t_toe = NULL;
270 	tp->t_flags &= ~TF_TOE;
271 
272 	toep->inp = NULL;
273 	toep->flags &= ~TPF_ATTACHED;
274 	if (in_pcbrele_wlocked(inp))
275 		panic("%s: inp freed.", __func__);
276 
277 	mtx_lock(&td->toep_list_lock);
278 	TAILQ_REMOVE(&td->toep_list, toep, link);
279 	mtx_unlock(&td->toep_list_lock);
280 }
281 
282 static void
283 release_offload_resources(struct toepcb *toep)
284 {
285 	struct tom_data *td = toep->td;
286 	struct adapter *sc = td_adapter(td);
287 	int tid = toep->tid;
288 
289 	KASSERT(!(toep->flags & TPF_CPL_PENDING),
290 	    ("%s: %p has CPL pending.", __func__, toep));
291 	KASSERT(!(toep->flags & TPF_ATTACHED),
292 	    ("%s: %p is still attached.", __func__, toep));
293 
294 	CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)",
295 	    __func__, toep, tid, toep->l2te, toep->ce);
296 
297 	/*
298 	 * These queues should have been emptied at approximately the same time
299 	 * that a normal connection's socket's so_snd would have been purged or
300 	 * drained.  Do _not_ clean up here.
301 	 */
302 	MPASS(mbufq_len(&toep->ulp_pduq) == 0);
303 	MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0);
304 #ifdef INVARIANTS
305 	if (toep->ulp_mode == ULP_MODE_TCPDDP)
306 		ddp_assert_empty(toep);
307 #endif
308 
309 	if (toep->l2te)
310 		t4_l2t_release(toep->l2te);
311 
312 	if (tid >= 0) {
313 		remove_tid(sc, tid, toep->ce ? 2 : 1);
314 		release_tid(sc, tid, toep->ctrlq);
315 	}
316 
317 	if (toep->ce)
318 		release_lip(td, toep->ce);
319 
320 #ifdef RATELIMIT
321 	if (toep->tc_idx != -1)
322 		t4_release_cl_rl_kbps(sc, toep->vi->pi->port_id, toep->tc_idx);
323 #endif
324 	mtx_lock(&td->toep_list_lock);
325 	TAILQ_REMOVE(&td->toep_list, toep, link);
326 	mtx_unlock(&td->toep_list_lock);
327 
328 	free_toepcb(toep);
329 }
330 
331 /*
332  * The kernel is done with the TCP PCB and this is our opportunity to unhook the
333  * toepcb hanging off of it.  If the TOE driver is also done with the toepcb (no
334  * pending CPL) then it is time to release all resources tied to the toepcb.
335  *
336  * Also gets called when an offloaded active open fails and the TOM wants the
337  * kernel to take the TCP PCB back.
338  */
339 static void
340 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp)
341 {
342 #if defined(KTR) || defined(INVARIANTS)
343 	struct inpcb *inp = tp->t_inpcb;
344 #endif
345 	struct toepcb *toep = tp->t_toe;
346 
347 	INP_WLOCK_ASSERT(inp);
348 
349 	KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
350 	KASSERT(toep->flags & TPF_ATTACHED,
351 	    ("%s: not attached", __func__));
352 
353 #ifdef KTR
354 	if (tp->t_state == TCPS_SYN_SENT) {
355 		CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)",
356 		    __func__, toep->tid, toep, toep->flags, inp,
357 		    inp->inp_flags);
358 	} else {
359 		CTR6(KTR_CXGBE,
360 		    "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)",
361 		    toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp,
362 		    inp->inp_flags);
363 	}
364 #endif
365 
366 	tp->t_toe = NULL;
367 	tp->t_flags &= ~TF_TOE;
368 	toep->flags &= ~TPF_ATTACHED;
369 
370 	if (!(toep->flags & TPF_CPL_PENDING))
371 		release_offload_resources(toep);
372 }
373 
374 /*
375  * setsockopt handler.
376  */
377 static void
378 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name)
379 {
380 	struct adapter *sc = tod->tod_softc;
381 	struct toepcb *toep = tp->t_toe;
382 
383 	if (dir == SOPT_GET)
384 		return;
385 
386 	CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name);
387 
388 	switch (name) {
389 	case TCP_NODELAY:
390 		if (tp->t_state != TCPS_ESTABLISHED)
391 			break;
392 		t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS,
393 		    V_TF_NAGLE(1), V_TF_NAGLE(tp->t_flags & TF_NODELAY ? 0 : 1),
394 		    0, 0);
395 		break;
396 	default:
397 		break;
398 	}
399 }
400 
401 static inline int
402 get_tcb_bit(u_char *tcb, int bit)
403 {
404 	int ix, shift;
405 
406 	ix = 127 - (bit >> 3);
407 	shift = bit & 0x7;
408 
409 	return ((tcb[ix] >> shift) & 1);
410 }
411 
412 static inline uint64_t
413 get_tcb_bits(u_char *tcb, int hi, int lo)
414 {
415 	uint64_t rc = 0;
416 
417 	while (hi >= lo) {
418 		rc = (rc << 1) | get_tcb_bit(tcb, hi);
419 		--hi;
420 	}
421 
422 	return (rc);
423 }
424 
425 /*
426  * Called by the kernel to allow the TOE driver to "refine" values filled up in
427  * the tcp_info for an offloaded connection.
428  */
429 static void
430 t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti)
431 {
432 	int i, j, k, rc;
433 	struct adapter *sc = tod->tod_softc;
434 	struct toepcb *toep = tp->t_toe;
435 	uint32_t addr, v;
436 	uint32_t buf[TCB_SIZE / sizeof(uint32_t)];
437 	u_char *tcb, tmp;
438 
439 	INP_WLOCK_ASSERT(tp->t_inpcb);
440 	MPASS(ti != NULL);
441 
442 	addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + toep->tid * TCB_SIZE;
443 	rc = read_via_memwin(sc, 2, addr, &buf[0], TCB_SIZE);
444 	if (rc != 0)
445 		return;
446 
447 	tcb = (u_char *)&buf[0];
448 	for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) {
449 		for (k = 0; k < 16; k++) {
450 			tmp = tcb[i + k];
451 			tcb[i + k] = tcb[j + k];
452 			tcb[j + k] = tmp;
453 		}
454 	}
455 
456 	ti->tcpi_state = get_tcb_bits(tcb, 115, 112);
457 
458 	v = get_tcb_bits(tcb, 271, 256);
459 	ti->tcpi_rtt = tcp_ticks_to_us(sc, v);
460 
461 	v = get_tcb_bits(tcb, 287, 272);
462 	ti->tcpi_rttvar = tcp_ticks_to_us(sc, v);
463 
464 	ti->tcpi_snd_ssthresh = get_tcb_bits(tcb, 487, 460);
465 	ti->tcpi_snd_cwnd = get_tcb_bits(tcb, 459, 432);
466 	ti->tcpi_rcv_nxt = get_tcb_bits(tcb, 553, 522);
467 
468 	ti->tcpi_snd_nxt = get_tcb_bits(tcb, 319, 288) -
469 	    get_tcb_bits(tcb, 375, 348);
470 
471 	/* Receive window being advertised by us. */
472 	ti->tcpi_rcv_space = get_tcb_bits(tcb, 581, 554);
473 
474 	/* Send window ceiling. */
475 	v = get_tcb_bits(tcb, 159, 144) << get_tcb_bits(tcb, 131, 128);
476 	ti->tcpi_snd_wnd = min(v, ti->tcpi_snd_cwnd);
477 }
478 
479 /*
480  * The TOE driver will not receive any more CPLs for the tid associated with the
481  * toepcb; release the hold on the inpcb.
482  */
483 void
484 final_cpl_received(struct toepcb *toep)
485 {
486 	struct inpcb *inp = toep->inp;
487 
488 	KASSERT(inp != NULL, ("%s: inp is NULL", __func__));
489 	INP_WLOCK_ASSERT(inp);
490 	KASSERT(toep->flags & TPF_CPL_PENDING,
491 	    ("%s: CPL not pending already?", __func__));
492 
493 	CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)",
494 	    __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags);
495 
496 	if (toep->ulp_mode == ULP_MODE_TCPDDP)
497 		release_ddp_resources(toep);
498 	toep->inp = NULL;
499 	toep->flags &= ~TPF_CPL_PENDING;
500 	mbufq_drain(&toep->ulp_pdu_reclaimq);
501 
502 	if (!(toep->flags & TPF_ATTACHED))
503 		release_offload_resources(toep);
504 
505 	if (!in_pcbrele_wlocked(inp))
506 		INP_WUNLOCK(inp);
507 }
508 
509 void
510 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids)
511 {
512 	struct tid_info *t = &sc->tids;
513 
514 	t->tid_tab[tid] = ctx;
515 	atomic_add_int(&t->tids_in_use, ntids);
516 }
517 
518 void *
519 lookup_tid(struct adapter *sc, int tid)
520 {
521 	struct tid_info *t = &sc->tids;
522 
523 	return (t->tid_tab[tid]);
524 }
525 
526 void
527 update_tid(struct adapter *sc, int tid, void *ctx)
528 {
529 	struct tid_info *t = &sc->tids;
530 
531 	t->tid_tab[tid] = ctx;
532 }
533 
534 void
535 remove_tid(struct adapter *sc, int tid, int ntids)
536 {
537 	struct tid_info *t = &sc->tids;
538 
539 	t->tid_tab[tid] = NULL;
540 	atomic_subtract_int(&t->tids_in_use, ntids);
541 }
542 
543 /*
544  * What mtu_idx to use, given a 4-tuple.  Note that both s->mss and tcp_mssopt
545  * have the MSS that we should advertise in our SYN.  Advertised MSS doesn't
546  * account for any TCP options so the effective MSS (only payload, no headers or
547  * options) could be different.  We fill up tp->t_maxseg with the effective MSS
548  * at the end of the 3-way handshake.
549  */
550 int
551 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc,
552     struct offload_settings *s)
553 {
554 	unsigned short *mtus = &sc->params.mtus[0];
555 	int i, mss, mtu;
556 
557 	MPASS(inc != NULL);
558 
559 	mss = s->mss > 0 ? s->mss : tcp_mssopt(inc);
560 	if (inc->inc_flags & INC_ISIPV6)
561 		mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
562 	else
563 		mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr);
564 
565 	for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++)
566 		continue;
567 
568 	return (i);
569 }
570 
571 /*
572  * Determine the receive window size for a socket.
573  */
574 u_long
575 select_rcv_wnd(struct socket *so)
576 {
577 	unsigned long wnd;
578 
579 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
580 
581 	wnd = sbspace(&so->so_rcv);
582 	if (wnd < MIN_RCV_WND)
583 		wnd = MIN_RCV_WND;
584 
585 	return min(wnd, MAX_RCV_WND);
586 }
587 
588 int
589 select_rcv_wscale(void)
590 {
591 	int wscale = 0;
592 	unsigned long space = sb_max;
593 
594 	if (space > MAX_RCV_WND)
595 		space = MAX_RCV_WND;
596 
597 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space)
598 		wscale++;
599 
600 	return (wscale);
601 }
602 
603 /*
604  * socket so could be a listening socket too.
605  */
606 uint64_t
607 calc_opt0(struct socket *so, struct vi_info *vi, struct l2t_entry *e,
608     int mtu_idx, int rscale, int rx_credits, int ulp_mode,
609     struct offload_settings *s)
610 {
611 	int keepalive;
612 	uint64_t opt0;
613 
614 	MPASS(so != NULL);
615 	MPASS(vi != NULL);
616 	KASSERT(rx_credits <= M_RCV_BUFSIZ,
617 	    ("%s: rcv_bufsiz too high", __func__));
618 
619 	opt0 = F_TCAM_BYPASS | V_WND_SCALE(rscale) | V_MSS_IDX(mtu_idx) |
620 	    V_ULP_MODE(ulp_mode) | V_RCV_BUFSIZ(rx_credits) |
621 	    V_L2T_IDX(e->idx) | V_SMAC_SEL(vi->smt_idx) |
622 	    V_TX_CHAN(vi->pi->tx_chan);
623 
624 	keepalive = tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE;
625 	opt0 |= V_KEEP_ALIVE(keepalive != 0);
626 
627 	if (s->nagle < 0) {
628 		struct inpcb *inp = sotoinpcb(so);
629 		struct tcpcb *tp = intotcpcb(inp);
630 
631 		opt0 |= V_NAGLE((tp->t_flags & TF_NODELAY) == 0);
632 	} else
633 		opt0 |= V_NAGLE(s->nagle != 0);
634 
635 	return htobe64(opt0);
636 }
637 
638 uint64_t
639 select_ntuple(struct vi_info *vi, struct l2t_entry *e)
640 {
641 	struct adapter *sc = vi->pi->adapter;
642 	struct tp_params *tp = &sc->params.tp;
643 	uint16_t viid = vi->viid;
644 	uint64_t ntuple = 0;
645 
646 	/*
647 	 * Initialize each of the fields which we care about which are present
648 	 * in the Compressed Filter Tuple.
649 	 */
650 	if (tp->vlan_shift >= 0 && e->vlan != CPL_L2T_VLAN_NONE)
651 		ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift;
652 
653 	if (tp->port_shift >= 0)
654 		ntuple |= (uint64_t)e->lport << tp->port_shift;
655 
656 	if (tp->protocol_shift >= 0)
657 		ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift;
658 
659 	if (tp->vnic_shift >= 0 && tp->ingress_config & F_VNIC) {
660 		uint32_t vf = G_FW_VIID_VIN(viid);
661 		uint32_t pf = G_FW_VIID_PFN(viid);
662 		uint32_t vld = G_FW_VIID_VIVLD(viid);
663 
664 		ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vf) | V_FT_VNID_ID_PF(pf) |
665 		    V_FT_VNID_ID_VLD(vld)) << tp->vnic_shift;
666 	}
667 
668 	if (is_t4(sc))
669 		return (htobe32((uint32_t)ntuple));
670 	else
671 		return (htobe64(V_FILTER_TUPLE(ntuple)));
672 }
673 
674 static int
675 is_tls_sock(struct socket *so, struct adapter *sc)
676 {
677 	struct inpcb *inp = sotoinpcb(so);
678 	int i, rc;
679 
680 	/* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */
681 	rc = 0;
682 	ADAPTER_LOCK(sc);
683 	for (i = 0; i < sc->tt.num_tls_rx_ports; i++) {
684 		if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) ||
685 		    inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) {
686 			rc = 1;
687 			break;
688 		}
689 	}
690 	ADAPTER_UNLOCK(sc);
691 	return (rc);
692 }
693 
694 int
695 select_ulp_mode(struct socket *so, struct adapter *sc,
696     struct offload_settings *s)
697 {
698 
699 	if (can_tls_offload(sc) &&
700 	    (s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc))))
701 		return (ULP_MODE_TLS);
702 	else if (s->ddp > 0 ||
703 	    (s->ddp < 0 && sc->tt.ddp && (so->so_options & SO_NO_DDP) == 0))
704 		return (ULP_MODE_TCPDDP);
705 	else
706 		return (ULP_MODE_NONE);
707 }
708 
709 void
710 set_ulp_mode(struct toepcb *toep, int ulp_mode)
711 {
712 
713 	CTR4(KTR_CXGBE, "%s: toep %p (tid %d) ulp_mode %d",
714 	    __func__, toep, toep->tid, ulp_mode);
715 	toep->ulp_mode = ulp_mode;
716 	tls_init_toep(toep);
717 	if (toep->ulp_mode == ULP_MODE_TCPDDP)
718 		ddp_init_toep(toep);
719 }
720 
721 int
722 negative_advice(int status)
723 {
724 
725 	return (status == CPL_ERR_RTX_NEG_ADVICE ||
726 	    status == CPL_ERR_PERSIST_NEG_ADVICE ||
727 	    status == CPL_ERR_KEEPALV_NEG_ADVICE);
728 }
729 
730 static int
731 alloc_tid_tab(struct tid_info *t, int flags)
732 {
733 
734 	MPASS(t->ntids > 0);
735 	MPASS(t->tid_tab == NULL);
736 
737 	t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE,
738 	    M_ZERO | flags);
739 	if (t->tid_tab == NULL)
740 		return (ENOMEM);
741 	atomic_store_rel_int(&t->tids_in_use, 0);
742 
743 	return (0);
744 }
745 
746 static void
747 free_tid_tab(struct tid_info *t)
748 {
749 
750 	KASSERT(t->tids_in_use == 0,
751 	    ("%s: %d tids still in use.", __func__, t->tids_in_use));
752 
753 	free(t->tid_tab, M_CXGBE);
754 	t->tid_tab = NULL;
755 }
756 
757 static int
758 alloc_stid_tab(struct tid_info *t, int flags)
759 {
760 
761 	MPASS(t->nstids > 0);
762 	MPASS(t->stid_tab == NULL);
763 
764 	t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE,
765 	    M_ZERO | flags);
766 	if (t->stid_tab == NULL)
767 		return (ENOMEM);
768 	mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF);
769 	t->stids_in_use = 0;
770 	TAILQ_INIT(&t->stids);
771 	t->nstids_free_head = t->nstids;
772 
773 	return (0);
774 }
775 
776 static void
777 free_stid_tab(struct tid_info *t)
778 {
779 
780 	KASSERT(t->stids_in_use == 0,
781 	    ("%s: %d tids still in use.", __func__, t->stids_in_use));
782 
783 	if (mtx_initialized(&t->stid_lock))
784 		mtx_destroy(&t->stid_lock);
785 	free(t->stid_tab, M_CXGBE);
786 	t->stid_tab = NULL;
787 }
788 
789 static void
790 free_tid_tabs(struct tid_info *t)
791 {
792 
793 	free_tid_tab(t);
794 	free_atid_tab(t);
795 	free_stid_tab(t);
796 }
797 
798 static int
799 alloc_tid_tabs(struct tid_info *t)
800 {
801 	int rc;
802 
803 	rc = alloc_tid_tab(t, M_NOWAIT);
804 	if (rc != 0)
805 		goto failed;
806 
807 	rc = alloc_atid_tab(t, M_NOWAIT);
808 	if (rc != 0)
809 		goto failed;
810 
811 	rc = alloc_stid_tab(t, M_NOWAIT);
812 	if (rc != 0)
813 		goto failed;
814 
815 	return (0);
816 failed:
817 	free_tid_tabs(t);
818 	return (rc);
819 }
820 
821 static int
822 add_lip(struct adapter *sc, struct in6_addr *lip)
823 {
824         struct fw_clip_cmd c;
825 
826 	ASSERT_SYNCHRONIZED_OP(sc);
827 	/* mtx_assert(&td->clip_table_lock, MA_OWNED); */
828 
829         memset(&c, 0, sizeof(c));
830 	c.op_to_write = htonl(V_FW_CMD_OP(FW_CLIP_CMD) | F_FW_CMD_REQUEST |
831 	    F_FW_CMD_WRITE);
832         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
833         c.ip_hi = *(uint64_t *)&lip->s6_addr[0];
834         c.ip_lo = *(uint64_t *)&lip->s6_addr[8];
835 
836 	return (-t4_wr_mbox_ns(sc, sc->mbox, &c, sizeof(c), &c));
837 }
838 
839 static int
840 delete_lip(struct adapter *sc, struct in6_addr *lip)
841 {
842 	struct fw_clip_cmd c;
843 
844 	ASSERT_SYNCHRONIZED_OP(sc);
845 	/* mtx_assert(&td->clip_table_lock, MA_OWNED); */
846 
847 	memset(&c, 0, sizeof(c));
848 	c.op_to_write = htonl(V_FW_CMD_OP(FW_CLIP_CMD) | F_FW_CMD_REQUEST |
849 	    F_FW_CMD_READ);
850         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
851         c.ip_hi = *(uint64_t *)&lip->s6_addr[0];
852         c.ip_lo = *(uint64_t *)&lip->s6_addr[8];
853 
854 	return (-t4_wr_mbox_ns(sc, sc->mbox, &c, sizeof(c), &c));
855 }
856 
857 static struct clip_entry *
858 search_lip(struct tom_data *td, struct in6_addr *lip)
859 {
860 	struct clip_entry *ce;
861 
862 	mtx_assert(&td->clip_table_lock, MA_OWNED);
863 
864 	TAILQ_FOREACH(ce, &td->clip_table, link) {
865 		if (IN6_ARE_ADDR_EQUAL(&ce->lip, lip))
866 			return (ce);
867 	}
868 
869 	return (NULL);
870 }
871 
872 struct clip_entry *
873 hold_lip(struct tom_data *td, struct in6_addr *lip, struct clip_entry *ce)
874 {
875 
876 	mtx_lock(&td->clip_table_lock);
877 	if (ce == NULL)
878 		ce = search_lip(td, lip);
879 	if (ce != NULL)
880 		ce->refcount++;
881 	mtx_unlock(&td->clip_table_lock);
882 
883 	return (ce);
884 }
885 
886 void
887 release_lip(struct tom_data *td, struct clip_entry *ce)
888 {
889 
890 	mtx_lock(&td->clip_table_lock);
891 	KASSERT(search_lip(td, &ce->lip) == ce,
892 	    ("%s: CLIP entry %p p not in CLIP table.", __func__, ce));
893 	KASSERT(ce->refcount > 0,
894 	    ("%s: CLIP entry %p has refcount 0", __func__, ce));
895 	--ce->refcount;
896 	mtx_unlock(&td->clip_table_lock);
897 }
898 
899 static void
900 init_clip_table(struct adapter *sc, struct tom_data *td)
901 {
902 
903 	ASSERT_SYNCHRONIZED_OP(sc);
904 
905 	mtx_init(&td->clip_table_lock, "CLIP table lock", NULL, MTX_DEF);
906 	TAILQ_INIT(&td->clip_table);
907 	td->clip_gen = -1;
908 
909 	update_clip_table(sc, td);
910 }
911 
912 static void
913 update_clip(struct adapter *sc, void *arg __unused)
914 {
915 
916 	if (begin_synchronized_op(sc, NULL, HOLD_LOCK, "t4tomuc"))
917 		return;
918 
919 	if (uld_active(sc, ULD_TOM))
920 		update_clip_table(sc, sc->tom_softc);
921 
922 	end_synchronized_op(sc, LOCK_HELD);
923 }
924 
925 static void
926 t4_clip_task(void *arg, int count)
927 {
928 
929 	t4_iterate(update_clip, NULL);
930 }
931 
932 static void
933 update_clip_table(struct adapter *sc, struct tom_data *td)
934 {
935 	struct rm_priotracker in6_ifa_tracker;
936 	struct in6_ifaddr *ia;
937 	struct in6_addr *lip, tlip;
938 	struct clip_head stale;
939 	struct clip_entry *ce, *ce_temp;
940 	struct vi_info *vi;
941 	int rc, gen, i, j;
942 	uintptr_t last_vnet;
943 
944 	ASSERT_SYNCHRONIZED_OP(sc);
945 
946 	IN6_IFADDR_RLOCK(&in6_ifa_tracker);
947 	mtx_lock(&td->clip_table_lock);
948 
949 	gen = atomic_load_acq_int(&in6_ifaddr_gen);
950 	if (gen == td->clip_gen)
951 		goto done;
952 
953 	TAILQ_INIT(&stale);
954 	TAILQ_CONCAT(&stale, &td->clip_table, link);
955 
956 	/*
957 	 * last_vnet optimizes the common cases where all if_vnet = NULL (no
958 	 * VIMAGE) or all if_vnet = vnet0.
959 	 */
960 	last_vnet = (uintptr_t)(-1);
961 	for_each_port(sc, i)
962 	for_each_vi(sc->port[i], j, vi) {
963 		if (last_vnet == (uintptr_t)vi->ifp->if_vnet)
964 			continue;
965 
966 		/* XXX: races with if_vmove */
967 		CURVNET_SET(vi->ifp->if_vnet);
968 		CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
969 			lip = &ia->ia_addr.sin6_addr;
970 
971 			KASSERT(!IN6_IS_ADDR_MULTICAST(lip),
972 			    ("%s: mcast address in in6_ifaddr list", __func__));
973 
974 			if (IN6_IS_ADDR_LOOPBACK(lip))
975 				continue;
976 			if (IN6_IS_SCOPE_EMBED(lip)) {
977 				/* Remove the embedded scope */
978 				tlip = *lip;
979 				lip = &tlip;
980 				in6_clearscope(lip);
981 			}
982 			/*
983 			 * XXX: how to weed out the link local address for the
984 			 * loopback interface?  It's fe80::1 usually (always?).
985 			 */
986 
987 			/*
988 			 * If it's in the main list then we already know it's
989 			 * not stale.
990 			 */
991 			TAILQ_FOREACH(ce, &td->clip_table, link) {
992 				if (IN6_ARE_ADDR_EQUAL(&ce->lip, lip))
993 					goto next;
994 			}
995 
996 			/*
997 			 * If it's in the stale list we should move it to the
998 			 * main list.
999 			 */
1000 			TAILQ_FOREACH(ce, &stale, link) {
1001 				if (IN6_ARE_ADDR_EQUAL(&ce->lip, lip)) {
1002 					TAILQ_REMOVE(&stale, ce, link);
1003 					TAILQ_INSERT_TAIL(&td->clip_table, ce,
1004 					    link);
1005 					goto next;
1006 				}
1007 			}
1008 
1009 			/* A new IP6 address; add it to the CLIP table */
1010 			ce = malloc(sizeof(*ce), M_CXGBE, M_NOWAIT);
1011 			memcpy(&ce->lip, lip, sizeof(ce->lip));
1012 			ce->refcount = 0;
1013 			rc = add_lip(sc, lip);
1014 			if (rc == 0)
1015 				TAILQ_INSERT_TAIL(&td->clip_table, ce, link);
1016 			else {
1017 				char ip[INET6_ADDRSTRLEN];
1018 
1019 				inet_ntop(AF_INET6, &ce->lip, &ip[0],
1020 				    sizeof(ip));
1021 				log(LOG_ERR, "%s: could not add %s (%d)\n",
1022 				    __func__, ip, rc);
1023 				free(ce, M_CXGBE);
1024 			}
1025 next:
1026 			continue;
1027 		}
1028 		CURVNET_RESTORE();
1029 		last_vnet = (uintptr_t)vi->ifp->if_vnet;
1030 	}
1031 
1032 	/*
1033 	 * Remove stale addresses (those no longer in V_in6_ifaddrhead) that are
1034 	 * no longer referenced by the driver.
1035 	 */
1036 	TAILQ_FOREACH_SAFE(ce, &stale, link, ce_temp) {
1037 		if (ce->refcount == 0) {
1038 			rc = delete_lip(sc, &ce->lip);
1039 			if (rc == 0) {
1040 				TAILQ_REMOVE(&stale, ce, link);
1041 				free(ce, M_CXGBE);
1042 			} else {
1043 				char ip[INET6_ADDRSTRLEN];
1044 
1045 				inet_ntop(AF_INET6, &ce->lip, &ip[0],
1046 				    sizeof(ip));
1047 				log(LOG_ERR, "%s: could not delete %s (%d)\n",
1048 				    __func__, ip, rc);
1049 			}
1050 		}
1051 	}
1052 	/* The ones that are still referenced need to stay in the CLIP table */
1053 	TAILQ_CONCAT(&td->clip_table, &stale, link);
1054 
1055 	td->clip_gen = gen;
1056 done:
1057 	mtx_unlock(&td->clip_table_lock);
1058 	IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
1059 }
1060 
1061 static void
1062 destroy_clip_table(struct adapter *sc, struct tom_data *td)
1063 {
1064 	struct clip_entry *ce, *ce_temp;
1065 
1066 	if (mtx_initialized(&td->clip_table_lock)) {
1067 		mtx_lock(&td->clip_table_lock);
1068 		TAILQ_FOREACH_SAFE(ce, &td->clip_table, link, ce_temp) {
1069 			KASSERT(ce->refcount == 0,
1070 			    ("%s: CLIP entry %p still in use (%d)", __func__,
1071 			    ce, ce->refcount));
1072 			TAILQ_REMOVE(&td->clip_table, ce, link);
1073 			delete_lip(sc, &ce->lip);
1074 			free(ce, M_CXGBE);
1075 		}
1076 		mtx_unlock(&td->clip_table_lock);
1077 		mtx_destroy(&td->clip_table_lock);
1078 	}
1079 }
1080 
1081 static void
1082 free_tom_data(struct adapter *sc, struct tom_data *td)
1083 {
1084 
1085 	ASSERT_SYNCHRONIZED_OP(sc);
1086 
1087 	KASSERT(TAILQ_EMPTY(&td->toep_list),
1088 	    ("%s: TOE PCB list is not empty.", __func__));
1089 	KASSERT(td->lctx_count == 0,
1090 	    ("%s: lctx hash table is not empty.", __func__));
1091 
1092 	tls_free_kmap(td);
1093 	t4_free_ppod_region(&td->pr);
1094 	destroy_clip_table(sc, td);
1095 
1096 	if (td->listen_mask != 0)
1097 		hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask);
1098 
1099 	if (mtx_initialized(&td->unsent_wr_lock))
1100 		mtx_destroy(&td->unsent_wr_lock);
1101 	if (mtx_initialized(&td->lctx_hash_lock))
1102 		mtx_destroy(&td->lctx_hash_lock);
1103 	if (mtx_initialized(&td->toep_list_lock))
1104 		mtx_destroy(&td->toep_list_lock);
1105 
1106 	free_tid_tabs(&sc->tids);
1107 	free(td, M_CXGBE);
1108 }
1109 
1110 static char *
1111 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen,
1112     int *buflen)
1113 {
1114 	char *pkt;
1115 	struct tcphdr *th;
1116 	int ipv6, len;
1117 	const int maxlen =
1118 	    max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) +
1119 	    max(sizeof(struct ip), sizeof(struct ip6_hdr)) +
1120 	    sizeof(struct tcphdr);
1121 
1122 	MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN);
1123 
1124 	pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT);
1125 	if (pkt == NULL)
1126 		return (NULL);
1127 
1128 	ipv6 = inp->inp_vflag & INP_IPV6;
1129 	len = 0;
1130 
1131 	if (vtag == 0xffff) {
1132 		struct ether_header *eh = (void *)pkt;
1133 
1134 		if (ipv6)
1135 			eh->ether_type = htons(ETHERTYPE_IPV6);
1136 		else
1137 			eh->ether_type = htons(ETHERTYPE_IP);
1138 
1139 		len += sizeof(*eh);
1140 	} else {
1141 		struct ether_vlan_header *evh = (void *)pkt;
1142 
1143 		evh->evl_encap_proto = htons(ETHERTYPE_VLAN);
1144 		evh->evl_tag = htons(vtag);
1145 		if (ipv6)
1146 			evh->evl_proto = htons(ETHERTYPE_IPV6);
1147 		else
1148 			evh->evl_proto = htons(ETHERTYPE_IP);
1149 
1150 		len += sizeof(*evh);
1151 	}
1152 
1153 	if (ipv6) {
1154 		struct ip6_hdr *ip6 = (void *)&pkt[len];
1155 
1156 		ip6->ip6_vfc = IPV6_VERSION;
1157 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
1158 		ip6->ip6_nxt = IPPROTO_TCP;
1159 		if (open_type == OPEN_TYPE_ACTIVE) {
1160 			ip6->ip6_src = inp->in6p_laddr;
1161 			ip6->ip6_dst = inp->in6p_faddr;
1162 		} else if (open_type == OPEN_TYPE_LISTEN) {
1163 			ip6->ip6_src = inp->in6p_laddr;
1164 			ip6->ip6_dst = ip6->ip6_src;
1165 		}
1166 
1167 		len += sizeof(*ip6);
1168 	} else {
1169 		struct ip *ip = (void *)&pkt[len];
1170 
1171 		ip->ip_v = IPVERSION;
1172 		ip->ip_hl = sizeof(*ip) >> 2;
1173 		ip->ip_tos = inp->inp_ip_tos;
1174 		ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr));
1175 		ip->ip_ttl = inp->inp_ip_ttl;
1176 		ip->ip_p = IPPROTO_TCP;
1177 		if (open_type == OPEN_TYPE_ACTIVE) {
1178 			ip->ip_src = inp->inp_laddr;
1179 			ip->ip_dst = inp->inp_faddr;
1180 		} else if (open_type == OPEN_TYPE_LISTEN) {
1181 			ip->ip_src = inp->inp_laddr;
1182 			ip->ip_dst = ip->ip_src;
1183 		}
1184 
1185 		len += sizeof(*ip);
1186 	}
1187 
1188 	th = (void *)&pkt[len];
1189 	if (open_type == OPEN_TYPE_ACTIVE) {
1190 		th->th_sport = inp->inp_lport;	/* network byte order already */
1191 		th->th_dport = inp->inp_fport;	/* ditto */
1192 	} else if (open_type == OPEN_TYPE_LISTEN) {
1193 		th->th_sport = inp->inp_lport;	/* network byte order already */
1194 		th->th_dport = th->th_sport;
1195 	}
1196 	len += sizeof(th);
1197 
1198 	*pktlen = *buflen = len;
1199 	return (pkt);
1200 }
1201 
1202 const struct offload_settings *
1203 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m,
1204     uint16_t vtag, struct inpcb *inp)
1205 {
1206 	const struct t4_offload_policy *op;
1207 	char *pkt;
1208 	struct offload_rule *r;
1209 	int i, matched, pktlen, buflen;
1210 	static const struct offload_settings allow_offloading_settings = {
1211 		.offload = 1,
1212 		.rx_coalesce = -1,
1213 		.cong_algo = -1,
1214 		.sched_class = -1,
1215 		.tstamp = -1,
1216 		.sack = -1,
1217 		.nagle = -1,
1218 		.ecn = -1,
1219 		.ddp = -1,
1220 		.tls = -1,
1221 		.txq = -1,
1222 		.rxq = -1,
1223 		.mss = -1,
1224 	};
1225 	static const struct offload_settings disallow_offloading_settings = {
1226 		.offload = 0,
1227 		/* rest is irrelevant when offload is off. */
1228 	};
1229 
1230 	rw_assert(&sc->policy_lock, RA_LOCKED);
1231 
1232 	/*
1233 	 * If there's no Connection Offloading Policy attached to the device
1234 	 * then we need to return a default static policy.  If
1235 	 * "cop_managed_offloading" is true, then we need to disallow
1236 	 * offloading until a COP is attached to the device.  Otherwise we
1237 	 * allow offloading ...
1238 	 */
1239 	op = sc->policy;
1240 	if (op == NULL) {
1241 		if (sc->tt.cop_managed_offloading)
1242 			return (&disallow_offloading_settings);
1243 		else
1244 			return (&allow_offloading_settings);
1245 	}
1246 
1247 	switch (open_type) {
1248 	case OPEN_TYPE_ACTIVE:
1249 	case OPEN_TYPE_LISTEN:
1250 		pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen);
1251 		break;
1252 	case OPEN_TYPE_PASSIVE:
1253 		MPASS(m != NULL);
1254 		pkt = mtod(m, char *);
1255 		MPASS(*pkt == CPL_PASS_ACCEPT_REQ);
1256 		pkt += sizeof(struct cpl_pass_accept_req);
1257 		pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req);
1258 		buflen = m->m_len - sizeof(struct cpl_pass_accept_req);
1259 		break;
1260 	default:
1261 		MPASS(0);
1262 		return (&disallow_offloading_settings);
1263 	}
1264 
1265 	if (pkt == NULL || pktlen == 0 || buflen == 0)
1266 		return (&disallow_offloading_settings);
1267 
1268 	r = &op->rule[0];
1269 	for (i = 0; i < op->nrules; i++, r++) {
1270 		if (r->open_type != open_type &&
1271 		    r->open_type != OPEN_TYPE_DONTCARE) {
1272 			continue;
1273 		}
1274 		matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen);
1275 		if (matched)
1276 			break;
1277 	}
1278 
1279 	if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN)
1280 		free(pkt, M_CXGBE);
1281 
1282 	return (matched ? &r->settings : &disallow_offloading_settings);
1283 }
1284 
1285 static void
1286 reclaim_wr_resources(void *arg, int count)
1287 {
1288 	struct tom_data *td = arg;
1289 	STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list);
1290 	struct cpl_act_open_req *cpl;
1291 	u_int opcode, atid;
1292 	struct wrqe *wr;
1293 	struct adapter *sc;
1294 
1295 	mtx_lock(&td->unsent_wr_lock);
1296 	STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe);
1297 	mtx_unlock(&td->unsent_wr_lock);
1298 
1299 	while ((wr = STAILQ_FIRST(&twr_list)) != NULL) {
1300 		STAILQ_REMOVE_HEAD(&twr_list, link);
1301 
1302 		cpl = wrtod(wr);
1303 		opcode = GET_OPCODE(cpl);
1304 
1305 		switch (opcode) {
1306 		case CPL_ACT_OPEN_REQ:
1307 		case CPL_ACT_OPEN_REQ6:
1308 			atid = G_TID_TID(be32toh(OPCODE_TID(cpl)));
1309 			sc = td_adapter(td);
1310 
1311 			CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid);
1312 			act_open_failure_cleanup(sc, atid, EHOSTUNREACH);
1313 			free(wr, M_CXGBE);
1314 			break;
1315 		default:
1316 			log(LOG_ERR, "%s: leaked work request %p, wr_len %d, "
1317 			    "opcode %x\n", __func__, wr, wr->wr_len, opcode);
1318 			/* WR not freed here; go look at it with a debugger.  */
1319 		}
1320 	}
1321 }
1322 
1323 /*
1324  * Ground control to Major TOM
1325  * Commencing countdown, engines on
1326  */
1327 static int
1328 t4_tom_activate(struct adapter *sc)
1329 {
1330 	struct tom_data *td;
1331 	struct toedev *tod;
1332 	struct vi_info *vi;
1333 	int i, rc, v;
1334 
1335 	ASSERT_SYNCHRONIZED_OP(sc);
1336 
1337 	/* per-adapter softc for TOM */
1338 	td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT);
1339 	if (td == NULL)
1340 		return (ENOMEM);
1341 
1342 	/* List of TOE PCBs and associated lock */
1343 	mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF);
1344 	TAILQ_INIT(&td->toep_list);
1345 
1346 	/* Listen context */
1347 	mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF);
1348 	td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE,
1349 	    &td->listen_mask, HASH_NOWAIT);
1350 
1351 	/* List of WRs for which L2 resolution failed */
1352 	mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF);
1353 	STAILQ_INIT(&td->unsent_wr_list);
1354 	TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td);
1355 
1356 	/* TID tables */
1357 	rc = alloc_tid_tabs(&sc->tids);
1358 	if (rc != 0)
1359 		goto done;
1360 
1361 	rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp,
1362 	    t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods");
1363 	if (rc != 0)
1364 		goto done;
1365 	t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK,
1366 	    V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask);
1367 
1368 	/* CLIP table for IPv6 offload */
1369 	init_clip_table(sc, td);
1370 
1371 	if (sc->vres.key.size != 0) {
1372 		rc = tls_init_kmap(sc, td);
1373 		if (rc != 0)
1374 			goto done;
1375 	}
1376 
1377 	/* toedev ops */
1378 	tod = &td->tod;
1379 	init_toedev(tod);
1380 	tod->tod_softc = sc;
1381 	tod->tod_connect = t4_connect;
1382 	tod->tod_listen_start = t4_listen_start;
1383 	tod->tod_listen_stop = t4_listen_stop;
1384 	tod->tod_rcvd = t4_rcvd;
1385 	tod->tod_output = t4_tod_output;
1386 	tod->tod_send_rst = t4_send_rst;
1387 	tod->tod_send_fin = t4_send_fin;
1388 	tod->tod_pcb_detach = t4_pcb_detach;
1389 	tod->tod_l2_update = t4_l2_update;
1390 	tod->tod_syncache_added = t4_syncache_added;
1391 	tod->tod_syncache_removed = t4_syncache_removed;
1392 	tod->tod_syncache_respond = t4_syncache_respond;
1393 	tod->tod_offload_socket = t4_offload_socket;
1394 	tod->tod_ctloutput = t4_ctloutput;
1395 	tod->tod_tcp_info = t4_tcp_info;
1396 
1397 	for_each_port(sc, i) {
1398 		for_each_vi(sc->port[i], v, vi) {
1399 			TOEDEV(vi->ifp) = &td->tod;
1400 		}
1401 	}
1402 
1403 	sc->tom_softc = td;
1404 	register_toedev(sc->tom_softc);
1405 
1406 done:
1407 	if (rc != 0)
1408 		free_tom_data(sc, td);
1409 	return (rc);
1410 }
1411 
1412 static int
1413 t4_tom_deactivate(struct adapter *sc)
1414 {
1415 	int rc = 0;
1416 	struct tom_data *td = sc->tom_softc;
1417 
1418 	ASSERT_SYNCHRONIZED_OP(sc);
1419 
1420 	if (td == NULL)
1421 		return (0);	/* XXX. KASSERT? */
1422 
1423 	if (sc->offload_map != 0)
1424 		return (EBUSY);	/* at least one port has IFCAP_TOE enabled */
1425 
1426 	if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI))
1427 		return (EBUSY);	/* both iWARP and iSCSI rely on the TOE. */
1428 
1429 	mtx_lock(&td->toep_list_lock);
1430 	if (!TAILQ_EMPTY(&td->toep_list))
1431 		rc = EBUSY;
1432 	mtx_unlock(&td->toep_list_lock);
1433 
1434 	mtx_lock(&td->lctx_hash_lock);
1435 	if (td->lctx_count > 0)
1436 		rc = EBUSY;
1437 	mtx_unlock(&td->lctx_hash_lock);
1438 
1439 	taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources);
1440 	mtx_lock(&td->unsent_wr_lock);
1441 	if (!STAILQ_EMPTY(&td->unsent_wr_list))
1442 		rc = EBUSY;
1443 	mtx_unlock(&td->unsent_wr_lock);
1444 
1445 	if (rc == 0) {
1446 		unregister_toedev(sc->tom_softc);
1447 		free_tom_data(sc, td);
1448 		sc->tom_softc = NULL;
1449 	}
1450 
1451 	return (rc);
1452 }
1453 
1454 static void
1455 t4_tom_ifaddr_event(void *arg __unused, struct ifnet *ifp)
1456 {
1457 
1458 	atomic_add_rel_int(&in6_ifaddr_gen, 1);
1459 	taskqueue_enqueue_timeout(taskqueue_thread, &clip_task, -hz / 4);
1460 }
1461 
1462 static int
1463 t4_aio_queue_tom(struct socket *so, struct kaiocb *job)
1464 {
1465 	struct tcpcb *tp = so_sototcpcb(so);
1466 	struct toepcb *toep = tp->t_toe;
1467 	int error;
1468 
1469 	if (toep->ulp_mode == ULP_MODE_TCPDDP) {
1470 		error = t4_aio_queue_ddp(so, job);
1471 		if (error != EOPNOTSUPP)
1472 			return (error);
1473 	}
1474 
1475 	return (t4_aio_queue_aiotx(so, job));
1476 }
1477 
1478 static int
1479 t4_ctloutput_tom(struct socket *so, struct sockopt *sopt)
1480 {
1481 
1482 	if (sopt->sopt_level != IPPROTO_TCP)
1483 		return (tcp_ctloutput(so, sopt));
1484 
1485 	switch (sopt->sopt_name) {
1486 	case TCP_TLSOM_SET_TLS_CONTEXT:
1487 	case TCP_TLSOM_GET_TLS_TOM:
1488 	case TCP_TLSOM_CLR_TLS_TOM:
1489 	case TCP_TLSOM_CLR_QUIES:
1490 		return (t4_ctloutput_tls(so, sopt));
1491 	default:
1492 		return (tcp_ctloutput(so, sopt));
1493 	}
1494 }
1495 
1496 static int
1497 t4_tom_mod_load(void)
1498 {
1499 	struct protosw *tcp_protosw, *tcp6_protosw;
1500 
1501 	/* CPL handlers */
1502 	t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2,
1503 	    CPL_COOKIE_TOM);
1504 	t4_init_connect_cpl_handlers();
1505 	t4_init_listen_cpl_handlers();
1506 	t4_init_cpl_io_handlers();
1507 
1508 	t4_ddp_mod_load();
1509 	t4_tls_mod_load();
1510 
1511 	tcp_protosw = pffindproto(PF_INET, IPPROTO_TCP, SOCK_STREAM);
1512 	if (tcp_protosw == NULL)
1513 		return (ENOPROTOOPT);
1514 	bcopy(tcp_protosw, &toe_protosw, sizeof(toe_protosw));
1515 	bcopy(tcp_protosw->pr_usrreqs, &toe_usrreqs, sizeof(toe_usrreqs));
1516 	toe_usrreqs.pru_aio_queue = t4_aio_queue_tom;
1517 	toe_protosw.pr_ctloutput = t4_ctloutput_tom;
1518 	toe_protosw.pr_usrreqs = &toe_usrreqs;
1519 
1520 	tcp6_protosw = pffindproto(PF_INET6, IPPROTO_TCP, SOCK_STREAM);
1521 	if (tcp6_protosw == NULL)
1522 		return (ENOPROTOOPT);
1523 	bcopy(tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw));
1524 	bcopy(tcp6_protosw->pr_usrreqs, &toe6_usrreqs, sizeof(toe6_usrreqs));
1525 	toe6_usrreqs.pru_aio_queue = t4_aio_queue_tom;
1526 	toe6_protosw.pr_ctloutput = t4_ctloutput_tom;
1527 	toe6_protosw.pr_usrreqs = &toe6_usrreqs;
1528 
1529 	TIMEOUT_TASK_INIT(taskqueue_thread, &clip_task, 0, t4_clip_task, NULL);
1530 	ifaddr_evhandler = EVENTHANDLER_REGISTER(ifaddr_event,
1531 	    t4_tom_ifaddr_event, NULL, EVENTHANDLER_PRI_ANY);
1532 
1533 	return (t4_register_uld(&tom_uld_info));
1534 }
1535 
1536 static void
1537 tom_uninit(struct adapter *sc, void *arg __unused)
1538 {
1539 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun"))
1540 		return;
1541 
1542 	/* Try to free resources (works only if no port has IFCAP_TOE) */
1543 	if (uld_active(sc, ULD_TOM))
1544 		t4_deactivate_uld(sc, ULD_TOM);
1545 
1546 	end_synchronized_op(sc, 0);
1547 }
1548 
1549 static int
1550 t4_tom_mod_unload(void)
1551 {
1552 	t4_iterate(tom_uninit, NULL);
1553 
1554 	if (t4_unregister_uld(&tom_uld_info) == EBUSY)
1555 		return (EBUSY);
1556 
1557 	if (ifaddr_evhandler) {
1558 		EVENTHANDLER_DEREGISTER(ifaddr_event, ifaddr_evhandler);
1559 		taskqueue_cancel_timeout(taskqueue_thread, &clip_task, NULL);
1560 	}
1561 
1562 	t4_tls_mod_unload();
1563 	t4_ddp_mod_unload();
1564 
1565 	t4_uninit_connect_cpl_handlers();
1566 	t4_uninit_listen_cpl_handlers();
1567 	t4_uninit_cpl_io_handlers();
1568 	t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM);
1569 
1570 	return (0);
1571 }
1572 #endif	/* TCP_OFFLOAD */
1573 
1574 static int
1575 t4_tom_modevent(module_t mod, int cmd, void *arg)
1576 {
1577 	int rc = 0;
1578 
1579 #ifdef TCP_OFFLOAD
1580 	switch (cmd) {
1581 	case MOD_LOAD:
1582 		rc = t4_tom_mod_load();
1583 		break;
1584 
1585 	case MOD_UNLOAD:
1586 		rc = t4_tom_mod_unload();
1587 		break;
1588 
1589 	default:
1590 		rc = EINVAL;
1591 	}
1592 #else
1593 	printf("t4_tom: compiled without TCP_OFFLOAD support.\n");
1594 	rc = EOPNOTSUPP;
1595 #endif
1596 	return (rc);
1597 }
1598 
1599 static moduledata_t t4_tom_moddata= {
1600 	"t4_tom",
1601 	t4_tom_modevent,
1602 	0
1603 };
1604 
1605 MODULE_VERSION(t4_tom, 1);
1606 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1);
1607 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1);
1608 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY);
1609