xref: /freebsd/sys/dev/dc/if_dc.c (revision 3157ba21)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN983 (www.admtek.com.tw)
47  * ADMtek CardBus AN985 (www.admtek.com.tw)
48  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek CardBus AN985
49  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
50  * Accton EN1217 (www.accton.com)
51  * Xircom X3201 (www.xircom.com)
52  * Abocom FE2500
53  * Conexant LANfinity (www.conexant.com)
54  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
55  *
56  * Datasheets for the 21143 are available at developer.intel.com.
57  * Datasheets for the clone parts can be found at their respective sites.
58  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
59  * The PNIC II is essentially a Macronix 98715A chip; the only difference
60  * worth noting is that its multicast hash table is only 128 bits wide
61  * instead of 512.
62  *
63  * Written by Bill Paul <wpaul@ee.columbia.edu>
64  * Electrical Engineering Department
65  * Columbia University, New York City
66  */
67 /*
68  * The Intel 21143 is the successor to the DEC 21140. It is basically
69  * the same as the 21140 but with a few new features. The 21143 supports
70  * three kinds of media attachments:
71  *
72  * o MII port, for 10Mbps and 100Mbps support and NWAY
73  *   autonegotiation provided by an external PHY.
74  * o SYM port, for symbol mode 100Mbps support.
75  * o 10baseT port.
76  * o AUI/BNC port.
77  *
78  * The 100Mbps SYM port and 10baseT port can be used together in
79  * combination with the internal NWAY support to create a 10/100
80  * autosensing configuration.
81  *
82  * Note that not all tulip workalikes are handled in this driver: we only
83  * deal with those which are relatively well behaved. The Winbond is
84  * handled separately due to its different register offsets and the
85  * special handling needed for its various bugs. The PNIC is handled
86  * here, but I'm not thrilled about it.
87  *
88  * All of the workalike chips use some form of MII transceiver support
89  * with the exception of the Macronix chips, which also have a SYM port.
90  * The ASIX AX88140A is also documented to have a SYM port, but all
91  * the cards I've seen use an MII transceiver, probably because the
92  * AX88140A doesn't support internal NWAY.
93  */
94 
95 #ifdef HAVE_KERNEL_OPTION_HEADERS
96 #include "opt_device_polling.h"
97 #endif
98 
99 #include <sys/param.h>
100 #include <sys/endian.h>
101 #include <sys/systm.h>
102 #include <sys/sockio.h>
103 #include <sys/mbuf.h>
104 #include <sys/malloc.h>
105 #include <sys/kernel.h>
106 #include <sys/module.h>
107 #include <sys/socket.h>
108 
109 #include <net/if.h>
110 #include <net/if_arp.h>
111 #include <net/ethernet.h>
112 #include <net/if_dl.h>
113 #include <net/if_media.h>
114 #include <net/if_types.h>
115 #include <net/if_vlan_var.h>
116 
117 #include <net/bpf.h>
118 
119 #include <machine/bus.h>
120 #include <machine/resource.h>
121 #include <sys/bus.h>
122 #include <sys/rman.h>
123 
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 
130 #define DC_USEIOSPACE
131 
132 #include <dev/dc/if_dcreg.h>
133 
134 #ifdef __sparc64__
135 #include <dev/ofw/openfirm.h>
136 #include <machine/ofw_machdep.h>
137 #endif
138 
139 MODULE_DEPEND(dc, pci, 1, 1, 1);
140 MODULE_DEPEND(dc, ether, 1, 1, 1);
141 MODULE_DEPEND(dc, miibus, 1, 1, 1);
142 
143 /*
144  * "device miibus" is required in kernel config.  See GENERIC if you get
145  * errors here.
146  */
147 #include "miibus_if.h"
148 
149 /*
150  * Various supported device vendors/types and their names.
151  */
152 static const struct dc_type dc_devs[] = {
153 	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
154 		"Intel 21143 10/100BaseTX" },
155 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
156 		"Davicom DM9009 10/100BaseTX" },
157 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
158 		"Davicom DM9100 10/100BaseTX" },
159 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
160 		"Davicom DM9102A 10/100BaseTX" },
161 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
162 		"Davicom DM9102 10/100BaseTX" },
163 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
164 		"ADMtek AL981 10/100BaseTX" },
165 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983), 0,
166 		"ADMtek AN983 10/100BaseTX" },
167 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
168 		"ADMtek AN985 CardBus 10/100BaseTX or clone" },
169 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
170 		"ADMtek ADM9511 10/100BaseTX" },
171 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
172 		"ADMtek ADM9513 10/100BaseTX" },
173 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
174 		"ASIX AX88141 10/100BaseTX" },
175 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
176 		"ASIX AX88140A 10/100BaseTX" },
177 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
178 		"Macronix 98713A 10/100BaseTX" },
179 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
180 		"Macronix 98713 10/100BaseTX" },
181 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
182 		"Compex RL100-TX 10/100BaseTX" },
183 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
184 		"Compex RL100-TX 10/100BaseTX" },
185 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
186 		"Macronix 98725 10/100BaseTX" },
187 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
188 		"Macronix 98715AEC-C 10/100BaseTX" },
189 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
190 		"Macronix 98715/98715A 10/100BaseTX" },
191 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
192 		"Macronix 98727/98732 10/100BaseTX" },
193 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
194 		"LC82C115 PNIC II 10/100BaseTX" },
195 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
196 		"82c169 PNIC 10/100BaseTX" },
197 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
198 		"82c168 PNIC 10/100BaseTX" },
199 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
200 		"Accton EN1217 10/100BaseTX" },
201 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
202 		"Accton EN2242 MiniPCI 10/100BaseTX" },
203 	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
204 		"Xircom X3201 10/100BaseTX" },
205 	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
206 		"Neteasy DRP-32TXD Cardbus 10/100" },
207 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
208 		"Abocom FE2500 10/100BaseTX" },
209 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
210 		"Abocom FE2500MX 10/100BaseTX" },
211 	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
212 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
213 	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
214 		"Hawking CB102 CardBus 10/100" },
215 	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
216 		"PlaneX FNW-3602-T CardBus 10/100" },
217 	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
218 		"3Com OfficeConnect 10/100B" },
219 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
220 		"Microsoft MN-120 CardBus 10/100" },
221 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
222 		"Microsoft MN-130 10/100" },
223 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
224 		"Linksys PCMPC200 CardBus 10/100" },
225 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
226 		"Linksys PCMPC200 CardBus 10/100" },
227 	{ 0, 0, NULL }
228 };
229 
230 static int dc_probe(device_t);
231 static int dc_attach(device_t);
232 static int dc_detach(device_t);
233 static int dc_suspend(device_t);
234 static int dc_resume(device_t);
235 static const struct dc_type *dc_devtype(device_t);
236 static int dc_newbuf(struct dc_softc *, int, int);
237 static int dc_encap(struct dc_softc *, struct mbuf **);
238 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
239 static int dc_rx_resync(struct dc_softc *);
240 static int dc_rxeof(struct dc_softc *);
241 static void dc_txeof(struct dc_softc *);
242 static void dc_tick(void *);
243 static void dc_tx_underrun(struct dc_softc *);
244 static void dc_intr(void *);
245 static void dc_start(struct ifnet *);
246 static void dc_start_locked(struct ifnet *);
247 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
248 static void dc_init(void *);
249 static void dc_init_locked(struct dc_softc *);
250 static void dc_stop(struct dc_softc *);
251 static void dc_watchdog(void *);
252 static int dc_shutdown(device_t);
253 static int dc_ifmedia_upd(struct ifnet *);
254 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
255 
256 static void dc_delay(struct dc_softc *);
257 static void dc_eeprom_idle(struct dc_softc *);
258 static void dc_eeprom_putbyte(struct dc_softc *, int);
259 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
260 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
261 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
262 static void dc_eeprom_width(struct dc_softc *);
263 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
264 
265 static void dc_mii_writebit(struct dc_softc *, int);
266 static int dc_mii_readbit(struct dc_softc *);
267 static void dc_mii_sync(struct dc_softc *);
268 static void dc_mii_send(struct dc_softc *, u_int32_t, int);
269 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
270 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
271 static int dc_miibus_readreg(device_t, int, int);
272 static int dc_miibus_writereg(device_t, int, int, int);
273 static void dc_miibus_statchg(device_t);
274 static void dc_miibus_mediainit(device_t);
275 
276 static void dc_setcfg(struct dc_softc *, int);
277 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
278 static uint32_t dc_mchash_be(const uint8_t *);
279 static void dc_setfilt_21143(struct dc_softc *);
280 static void dc_setfilt_asix(struct dc_softc *);
281 static void dc_setfilt_admtek(struct dc_softc *);
282 static void dc_setfilt_xircom(struct dc_softc *);
283 
284 static void dc_setfilt(struct dc_softc *);
285 
286 static void dc_reset(struct dc_softc *);
287 static int dc_list_rx_init(struct dc_softc *);
288 static int dc_list_tx_init(struct dc_softc *);
289 
290 static void dc_read_srom(struct dc_softc *, int);
291 static void dc_parse_21143_srom(struct dc_softc *);
292 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
293 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
294 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
295 static void dc_apply_fixup(struct dc_softc *, int);
296 
297 #ifdef DC_USEIOSPACE
298 #define DC_RES			SYS_RES_IOPORT
299 #define DC_RID			DC_PCI_CFBIO
300 #else
301 #define DC_RES			SYS_RES_MEMORY
302 #define DC_RID			DC_PCI_CFBMA
303 #endif
304 
305 static device_method_t dc_methods[] = {
306 	/* Device interface */
307 	DEVMETHOD(device_probe,		dc_probe),
308 	DEVMETHOD(device_attach,	dc_attach),
309 	DEVMETHOD(device_detach,	dc_detach),
310 	DEVMETHOD(device_suspend,	dc_suspend),
311 	DEVMETHOD(device_resume,	dc_resume),
312 	DEVMETHOD(device_shutdown,	dc_shutdown),
313 
314 	/* bus interface */
315 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
316 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
317 
318 	/* MII interface */
319 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
320 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
321 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
322 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
323 
324 	{ 0, 0 }
325 };
326 
327 static driver_t dc_driver = {
328 	"dc",
329 	dc_methods,
330 	sizeof(struct dc_softc)
331 };
332 
333 static devclass_t dc_devclass;
334 
335 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
336 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
337 
338 #define DC_SETBIT(sc, reg, x)				\
339 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
340 
341 #define DC_CLRBIT(sc, reg, x)				\
342 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
343 
344 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
345 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
346 
347 static void
348 dc_delay(struct dc_softc *sc)
349 {
350 	int idx;
351 
352 	for (idx = (300 / 33) + 1; idx > 0; idx--)
353 		CSR_READ_4(sc, DC_BUSCTL);
354 }
355 
356 static void
357 dc_eeprom_width(struct dc_softc *sc)
358 {
359 	int i;
360 
361 	/* Force EEPROM to idle state. */
362 	dc_eeprom_idle(sc);
363 
364 	/* Enter EEPROM access mode. */
365 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
366 	dc_delay(sc);
367 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
368 	dc_delay(sc);
369 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
370 	dc_delay(sc);
371 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
372 	dc_delay(sc);
373 
374 	for (i = 3; i--;) {
375 		if (6 & (1 << i))
376 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
377 		else
378 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
379 		dc_delay(sc);
380 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
381 		dc_delay(sc);
382 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
383 		dc_delay(sc);
384 	}
385 
386 	for (i = 1; i <= 12; i++) {
387 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
388 		dc_delay(sc);
389 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
390 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
391 			dc_delay(sc);
392 			break;
393 		}
394 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
395 		dc_delay(sc);
396 	}
397 
398 	/* Turn off EEPROM access mode. */
399 	dc_eeprom_idle(sc);
400 
401 	if (i < 4 || i > 12)
402 		sc->dc_romwidth = 6;
403 	else
404 		sc->dc_romwidth = i;
405 
406 	/* Enter EEPROM access mode. */
407 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
408 	dc_delay(sc);
409 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
410 	dc_delay(sc);
411 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
412 	dc_delay(sc);
413 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
414 	dc_delay(sc);
415 
416 	/* Turn off EEPROM access mode. */
417 	dc_eeprom_idle(sc);
418 }
419 
420 static void
421 dc_eeprom_idle(struct dc_softc *sc)
422 {
423 	int i;
424 
425 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
426 	dc_delay(sc);
427 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
428 	dc_delay(sc);
429 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
430 	dc_delay(sc);
431 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
432 	dc_delay(sc);
433 
434 	for (i = 0; i < 25; i++) {
435 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
436 		dc_delay(sc);
437 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
438 		dc_delay(sc);
439 	}
440 
441 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
442 	dc_delay(sc);
443 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
444 	dc_delay(sc);
445 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
446 }
447 
448 /*
449  * Send a read command and address to the EEPROM, check for ACK.
450  */
451 static void
452 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
453 {
454 	int d, i;
455 
456 	d = DC_EECMD_READ >> 6;
457 	for (i = 3; i--; ) {
458 		if (d & (1 << i))
459 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
460 		else
461 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
462 		dc_delay(sc);
463 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
464 		dc_delay(sc);
465 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
466 		dc_delay(sc);
467 	}
468 
469 	/*
470 	 * Feed in each bit and strobe the clock.
471 	 */
472 	for (i = sc->dc_romwidth; i--;) {
473 		if (addr & (1 << i)) {
474 			SIO_SET(DC_SIO_EE_DATAIN);
475 		} else {
476 			SIO_CLR(DC_SIO_EE_DATAIN);
477 		}
478 		dc_delay(sc);
479 		SIO_SET(DC_SIO_EE_CLK);
480 		dc_delay(sc);
481 		SIO_CLR(DC_SIO_EE_CLK);
482 		dc_delay(sc);
483 	}
484 }
485 
486 /*
487  * Read a word of data stored in the EEPROM at address 'addr.'
488  * The PNIC 82c168/82c169 has its own non-standard way to read
489  * the EEPROM.
490  */
491 static void
492 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
493 {
494 	int i;
495 	u_int32_t r;
496 
497 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
498 
499 	for (i = 0; i < DC_TIMEOUT; i++) {
500 		DELAY(1);
501 		r = CSR_READ_4(sc, DC_SIO);
502 		if (!(r & DC_PN_SIOCTL_BUSY)) {
503 			*dest = (u_int16_t)(r & 0xFFFF);
504 			return;
505 		}
506 	}
507 }
508 
509 /*
510  * Read a word of data stored in the EEPROM at address 'addr.'
511  * The Xircom X3201 has its own non-standard way to read
512  * the EEPROM, too.
513  */
514 static void
515 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
516 {
517 
518 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
519 
520 	addr *= 2;
521 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
522 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
523 	addr += 1;
524 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
525 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
526 
527 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
528 }
529 
530 /*
531  * Read a word of data stored in the EEPROM at address 'addr.'
532  */
533 static void
534 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
535 {
536 	int i;
537 	u_int16_t word = 0;
538 
539 	/* Force EEPROM to idle state. */
540 	dc_eeprom_idle(sc);
541 
542 	/* Enter EEPROM access mode. */
543 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
544 	dc_delay(sc);
545 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
546 	dc_delay(sc);
547 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
548 	dc_delay(sc);
549 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
550 	dc_delay(sc);
551 
552 	/*
553 	 * Send address of word we want to read.
554 	 */
555 	dc_eeprom_putbyte(sc, addr);
556 
557 	/*
558 	 * Start reading bits from EEPROM.
559 	 */
560 	for (i = 0x8000; i; i >>= 1) {
561 		SIO_SET(DC_SIO_EE_CLK);
562 		dc_delay(sc);
563 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
564 			word |= i;
565 		dc_delay(sc);
566 		SIO_CLR(DC_SIO_EE_CLK);
567 		dc_delay(sc);
568 	}
569 
570 	/* Turn off EEPROM access mode. */
571 	dc_eeprom_idle(sc);
572 
573 	*dest = word;
574 }
575 
576 /*
577  * Read a sequence of words from the EEPROM.
578  */
579 static void
580 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
581 {
582 	int i;
583 	u_int16_t word = 0, *ptr;
584 
585 	for (i = 0; i < cnt; i++) {
586 		if (DC_IS_PNIC(sc))
587 			dc_eeprom_getword_pnic(sc, off + i, &word);
588 		else if (DC_IS_XIRCOM(sc))
589 			dc_eeprom_getword_xircom(sc, off + i, &word);
590 		else
591 			dc_eeprom_getword(sc, off + i, &word);
592 		ptr = (u_int16_t *)(dest + (i * 2));
593 		if (be)
594 			*ptr = be16toh(word);
595 		else
596 			*ptr = le16toh(word);
597 	}
598 }
599 
600 /*
601  * The following two routines are taken from the Macronix 98713
602  * Application Notes pp.19-21.
603  */
604 /*
605  * Write a bit to the MII bus.
606  */
607 static void
608 dc_mii_writebit(struct dc_softc *sc, int bit)
609 {
610 	uint32_t reg;
611 
612 	reg = DC_SIO_ROMCTL_WRITE | (bit != 0 ? DC_SIO_MII_DATAOUT : 0);
613 	CSR_WRITE_4(sc, DC_SIO, reg);
614 	CSR_BARRIER_4(sc, DC_SIO,
615 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
616 	DELAY(1);
617 
618 	CSR_WRITE_4(sc, DC_SIO, reg | DC_SIO_MII_CLK);
619 	CSR_BARRIER_4(sc, DC_SIO,
620 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
621 	DELAY(1);
622 	CSR_WRITE_4(sc, DC_SIO, reg);
623 	CSR_BARRIER_4(sc, DC_SIO,
624 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
625 	DELAY(1);
626 }
627 
628 /*
629  * Read a bit from the MII bus.
630  */
631 static int
632 dc_mii_readbit(struct dc_softc *sc)
633 {
634 	uint32_t reg;
635 
636 	reg = DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR;
637 	CSR_WRITE_4(sc, DC_SIO, reg);
638 	CSR_BARRIER_4(sc, DC_SIO,
639 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
640 	DELAY(1);
641 	(void)CSR_READ_4(sc, DC_SIO);
642 	CSR_WRITE_4(sc, DC_SIO, reg | DC_SIO_MII_CLK);
643 	CSR_BARRIER_4(sc, DC_SIO,
644 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
645 	DELAY(1);
646 	CSR_WRITE_4(sc, DC_SIO, reg);
647 	CSR_BARRIER_4(sc, DC_SIO,
648 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
649 	DELAY(1);
650 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
651 		return (1);
652 
653 	return (0);
654 }
655 
656 /*
657  * Sync the PHYs by setting data bit and strobing the clock 32 times.
658  */
659 static void
660 dc_mii_sync(struct dc_softc *sc)
661 {
662 	int i;
663 
664 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
665 	CSR_BARRIER_4(sc, DC_SIO,
666 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
667 	DELAY(1);
668 
669 	for (i = 0; i < 32; i++)
670 		dc_mii_writebit(sc, 1);
671 }
672 
673 /*
674  * Clock a series of bits through the MII.
675  */
676 static void
677 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
678 {
679 	int i;
680 
681 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
682 		dc_mii_writebit(sc, bits & i);
683 }
684 
685 /*
686  * Read an PHY register through the MII.
687  */
688 static int
689 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
690 {
691 	int i;
692 
693 	/*
694 	 * Set up frame for RX.
695 	 */
696 	frame->mii_stdelim = DC_MII_STARTDELIM;
697 	frame->mii_opcode = DC_MII_READOP;
698 
699 	/*
700 	 * Sync the PHYs.
701 	 */
702 	dc_mii_sync(sc);
703 
704 	/*
705 	 * Send command/address info.
706 	 */
707 	dc_mii_send(sc, frame->mii_stdelim, 2);
708 	dc_mii_send(sc, frame->mii_opcode, 2);
709 	dc_mii_send(sc, frame->mii_phyaddr, 5);
710 	dc_mii_send(sc, frame->mii_regaddr, 5);
711 
712 	/*
713 	 * Now try reading data bits.  If the turnaround failed, we still
714 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
715 	 */
716 	frame->mii_turnaround = dc_mii_readbit(sc);
717 	if (frame->mii_turnaround != 0) {
718 		for (i = 0; i < 16; i++)
719 			dc_mii_readbit(sc);
720 		goto fail;
721 	}
722 	for (i = 0x8000; i; i >>= 1) {
723 		if (dc_mii_readbit(sc))
724 			frame->mii_data |= i;
725 	}
726 
727 fail:
728 
729 	/* Clock the idle bits. */
730 	dc_mii_writebit(sc, 0);
731 	dc_mii_writebit(sc, 0);
732 
733 	if (frame->mii_turnaround != 0)
734 		return (1);
735 	return (0);
736 }
737 
738 /*
739  * Write to a PHY register through the MII.
740  */
741 static int
742 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
743 {
744 
745 	/*
746 	 * Set up frame for TX.
747 	 */
748 	frame->mii_stdelim = DC_MII_STARTDELIM;
749 	frame->mii_opcode = DC_MII_WRITEOP;
750 	frame->mii_turnaround = DC_MII_TURNAROUND;
751 
752 	/*
753 	 * Sync the PHYs.
754 	 */
755 	dc_mii_sync(sc);
756 
757 	dc_mii_send(sc, frame->mii_stdelim, 2);
758 	dc_mii_send(sc, frame->mii_opcode, 2);
759 	dc_mii_send(sc, frame->mii_phyaddr, 5);
760 	dc_mii_send(sc, frame->mii_regaddr, 5);
761 	dc_mii_send(sc, frame->mii_turnaround, 2);
762 	dc_mii_send(sc, frame->mii_data, 16);
763 
764 	/* Clock the idle bits. */
765 	dc_mii_writebit(sc, 0);
766 	dc_mii_writebit(sc, 0);
767 
768 	return (0);
769 }
770 
771 static int
772 dc_miibus_readreg(device_t dev, int phy, int reg)
773 {
774 	struct dc_mii_frame frame;
775 	struct dc_softc	 *sc;
776 	int i, rval, phy_reg = 0;
777 
778 	sc = device_get_softc(dev);
779 	bzero(&frame, sizeof(frame));
780 
781 	/*
782 	 * Note: both the AL981 and AN983 have internal PHYs,
783 	 * however the AL981 provides direct access to the PHY
784 	 * registers while the AN983 uses a serial MII interface.
785 	 * The AN983's MII interface is also buggy in that you
786 	 * can read from any MII address (0 to 31), but only address 1
787 	 * behaves normally. To deal with both cases, we pretend
788 	 * that the PHY is at MII address 1.
789 	 */
790 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
791 		return (0);
792 
793 	/*
794 	 * Note: the ukphy probes of the RS7112 report a PHY at
795 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
796 	 * so we only respond to correct one.
797 	 */
798 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
799 		return (0);
800 
801 	if (sc->dc_pmode != DC_PMODE_MII) {
802 		if (phy == (MII_NPHY - 1)) {
803 			switch (reg) {
804 			case MII_BMSR:
805 			/*
806 			 * Fake something to make the probe
807 			 * code think there's a PHY here.
808 			 */
809 				return (BMSR_MEDIAMASK);
810 				break;
811 			case MII_PHYIDR1:
812 				if (DC_IS_PNIC(sc))
813 					return (DC_VENDORID_LO);
814 				return (DC_VENDORID_DEC);
815 				break;
816 			case MII_PHYIDR2:
817 				if (DC_IS_PNIC(sc))
818 					return (DC_DEVICEID_82C168);
819 				return (DC_DEVICEID_21143);
820 				break;
821 			default:
822 				return (0);
823 				break;
824 			}
825 		} else
826 			return (0);
827 	}
828 
829 	if (DC_IS_PNIC(sc)) {
830 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
831 		    (phy << 23) | (reg << 18));
832 		for (i = 0; i < DC_TIMEOUT; i++) {
833 			DELAY(1);
834 			rval = CSR_READ_4(sc, DC_PN_MII);
835 			if (!(rval & DC_PN_MII_BUSY)) {
836 				rval &= 0xFFFF;
837 				return (rval == 0xFFFF ? 0 : rval);
838 			}
839 		}
840 		return (0);
841 	}
842 
843 	if (DC_IS_COMET(sc)) {
844 		switch (reg) {
845 		case MII_BMCR:
846 			phy_reg = DC_AL_BMCR;
847 			break;
848 		case MII_BMSR:
849 			phy_reg = DC_AL_BMSR;
850 			break;
851 		case MII_PHYIDR1:
852 			phy_reg = DC_AL_VENID;
853 			break;
854 		case MII_PHYIDR2:
855 			phy_reg = DC_AL_DEVID;
856 			break;
857 		case MII_ANAR:
858 			phy_reg = DC_AL_ANAR;
859 			break;
860 		case MII_ANLPAR:
861 			phy_reg = DC_AL_LPAR;
862 			break;
863 		case MII_ANER:
864 			phy_reg = DC_AL_ANER;
865 			break;
866 		default:
867 			device_printf(dev, "phy_read: bad phy register %x\n",
868 			    reg);
869 			return (0);
870 			break;
871 		}
872 
873 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
874 
875 		if (rval == 0xFFFF)
876 			return (0);
877 		return (rval);
878 	}
879 
880 	frame.mii_phyaddr = phy;
881 	frame.mii_regaddr = reg;
882 	if (sc->dc_type == DC_TYPE_98713) {
883 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
884 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
885 	}
886 	dc_mii_readreg(sc, &frame);
887 	if (sc->dc_type == DC_TYPE_98713)
888 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
889 
890 	return (frame.mii_data);
891 }
892 
893 static int
894 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
895 {
896 	struct dc_softc *sc;
897 	struct dc_mii_frame frame;
898 	int i, phy_reg = 0;
899 
900 	sc = device_get_softc(dev);
901 	bzero(&frame, sizeof(frame));
902 
903 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
904 		return (0);
905 
906 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
907 		return (0);
908 
909 	if (DC_IS_PNIC(sc)) {
910 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
911 		    (phy << 23) | (reg << 10) | data);
912 		for (i = 0; i < DC_TIMEOUT; i++) {
913 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
914 				break;
915 		}
916 		return (0);
917 	}
918 
919 	if (DC_IS_COMET(sc)) {
920 		switch (reg) {
921 		case MII_BMCR:
922 			phy_reg = DC_AL_BMCR;
923 			break;
924 		case MII_BMSR:
925 			phy_reg = DC_AL_BMSR;
926 			break;
927 		case MII_PHYIDR1:
928 			phy_reg = DC_AL_VENID;
929 			break;
930 		case MII_PHYIDR2:
931 			phy_reg = DC_AL_DEVID;
932 			break;
933 		case MII_ANAR:
934 			phy_reg = DC_AL_ANAR;
935 			break;
936 		case MII_ANLPAR:
937 			phy_reg = DC_AL_LPAR;
938 			break;
939 		case MII_ANER:
940 			phy_reg = DC_AL_ANER;
941 			break;
942 		default:
943 			device_printf(dev, "phy_write: bad phy register %x\n",
944 			    reg);
945 			return (0);
946 			break;
947 		}
948 
949 		CSR_WRITE_4(sc, phy_reg, data);
950 		return (0);
951 	}
952 
953 	frame.mii_phyaddr = phy;
954 	frame.mii_regaddr = reg;
955 	frame.mii_data = data;
956 
957 	if (sc->dc_type == DC_TYPE_98713) {
958 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
959 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
960 	}
961 	dc_mii_writereg(sc, &frame);
962 	if (sc->dc_type == DC_TYPE_98713)
963 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
964 
965 	return (0);
966 }
967 
968 static void
969 dc_miibus_statchg(device_t dev)
970 {
971 	struct dc_softc *sc;
972 	struct mii_data *mii;
973 	struct ifmedia *ifm;
974 
975 	sc = device_get_softc(dev);
976 	if (DC_IS_ADMTEK(sc))
977 		return;
978 
979 	mii = device_get_softc(sc->dc_miibus);
980 	ifm = &mii->mii_media;
981 	if (DC_IS_DAVICOM(sc) &&
982 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
983 		dc_setcfg(sc, ifm->ifm_media);
984 		sc->dc_if_media = ifm->ifm_media;
985 	} else {
986 		dc_setcfg(sc, mii->mii_media_active);
987 		sc->dc_if_media = mii->mii_media_active;
988 	}
989 }
990 
991 /*
992  * Special support for DM9102A cards with HomePNA PHYs. Note:
993  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
994  * to be impossible to talk to the management interface of the DM9801
995  * PHY (its MDIO pin is not connected to anything). Consequently,
996  * the driver has to just 'know' about the additional mode and deal
997  * with it itself. *sigh*
998  */
999 static void
1000 dc_miibus_mediainit(device_t dev)
1001 {
1002 	struct dc_softc *sc;
1003 	struct mii_data *mii;
1004 	struct ifmedia *ifm;
1005 	int rev;
1006 
1007 	rev = pci_get_revid(dev);
1008 
1009 	sc = device_get_softc(dev);
1010 	mii = device_get_softc(sc->dc_miibus);
1011 	ifm = &mii->mii_media;
1012 
1013 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1014 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1015 }
1016 
1017 #define DC_BITS_512	9
1018 #define DC_BITS_128	7
1019 #define DC_BITS_64	6
1020 
1021 static uint32_t
1022 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1023 {
1024 	uint32_t crc;
1025 
1026 	/* Compute CRC for the address value. */
1027 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1028 
1029 	/*
1030 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1031 	 * chips is only 128 bits wide.
1032 	 */
1033 	if (sc->dc_flags & DC_128BIT_HASH)
1034 		return (crc & ((1 << DC_BITS_128) - 1));
1035 
1036 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1037 	if (sc->dc_flags & DC_64BIT_HASH)
1038 		return (crc & ((1 << DC_BITS_64) - 1));
1039 
1040 	/* Xircom's hash filtering table is different (read: weird) */
1041 	/* Xircom uses the LEAST significant bits */
1042 	if (DC_IS_XIRCOM(sc)) {
1043 		if ((crc & 0x180) == 0x180)
1044 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1045 		else
1046 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1047 			    (12 << 4));
1048 	}
1049 
1050 	return (crc & ((1 << DC_BITS_512) - 1));
1051 }
1052 
1053 /*
1054  * Calculate CRC of a multicast group address, return the lower 6 bits.
1055  */
1056 static uint32_t
1057 dc_mchash_be(const uint8_t *addr)
1058 {
1059 	uint32_t crc;
1060 
1061 	/* Compute CRC for the address value. */
1062 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1063 
1064 	/* Return the filter bit position. */
1065 	return ((crc >> 26) & 0x0000003F);
1066 }
1067 
1068 /*
1069  * 21143-style RX filter setup routine. Filter programming is done by
1070  * downloading a special setup frame into the TX engine. 21143, Macronix,
1071  * PNIC, PNIC II and Davicom chips are programmed this way.
1072  *
1073  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1074  * address (our node address) and a 512-bit hash filter for multicast
1075  * frames. We also sneak the broadcast address into the hash filter since
1076  * we need that too.
1077  */
1078 static void
1079 dc_setfilt_21143(struct dc_softc *sc)
1080 {
1081 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1082 	struct dc_desc *sframe;
1083 	u_int32_t h, *sp;
1084 	struct ifmultiaddr *ifma;
1085 	struct ifnet *ifp;
1086 	int i;
1087 
1088 	ifp = sc->dc_ifp;
1089 
1090 	i = sc->dc_cdata.dc_tx_prod;
1091 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1092 	sc->dc_cdata.dc_tx_cnt++;
1093 	sframe = &sc->dc_ldata->dc_tx_list[i];
1094 	sp = sc->dc_cdata.dc_sbuf;
1095 	bzero(sp, DC_SFRAME_LEN);
1096 
1097 	sframe->dc_data = htole32(sc->dc_saddr);
1098 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1099 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1100 
1101 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1102 
1103 	/* If we want promiscuous mode, set the allframes bit. */
1104 	if (ifp->if_flags & IFF_PROMISC)
1105 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1106 	else
1107 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1108 
1109 	if (ifp->if_flags & IFF_ALLMULTI)
1110 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1111 	else
1112 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1113 
1114 	if_maddr_rlock(ifp);
1115 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1116 		if (ifma->ifma_addr->sa_family != AF_LINK)
1117 			continue;
1118 		h = dc_mchash_le(sc,
1119 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1120 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1121 	}
1122 	if_maddr_runlock(ifp);
1123 
1124 	if (ifp->if_flags & IFF_BROADCAST) {
1125 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1126 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1127 	}
1128 
1129 	/* Set our MAC address. */
1130 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1131 	sp[39] = DC_SP_MAC(eaddr[0]);
1132 	sp[40] = DC_SP_MAC(eaddr[1]);
1133 	sp[41] = DC_SP_MAC(eaddr[2]);
1134 
1135 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1136 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1137 
1138 	/*
1139 	 * The PNIC takes an exceedingly long time to process its
1140 	 * setup frame; wait 10ms after posting the setup frame
1141 	 * before proceeding, just so it has time to swallow its
1142 	 * medicine.
1143 	 */
1144 	DELAY(10000);
1145 
1146 	sc->dc_wdog_timer = 5;
1147 }
1148 
1149 static void
1150 dc_setfilt_admtek(struct dc_softc *sc)
1151 {
1152 	uint8_t eaddr[ETHER_ADDR_LEN];
1153 	struct ifnet *ifp;
1154 	struct ifmultiaddr *ifma;
1155 	int h = 0;
1156 	u_int32_t hashes[2] = { 0, 0 };
1157 
1158 	ifp = sc->dc_ifp;
1159 
1160 	/* Init our MAC address. */
1161 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1162 	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
1163 	    eaddr[1] << 8 | eaddr[0]);
1164 	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
1165 
1166 	/* If we want promiscuous mode, set the allframes bit. */
1167 	if (ifp->if_flags & IFF_PROMISC)
1168 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1169 	else
1170 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1171 
1172 	if (ifp->if_flags & IFF_ALLMULTI)
1173 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1174 	else
1175 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1176 
1177 	/* First, zot all the existing hash bits. */
1178 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1179 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1180 
1181 	/*
1182 	 * If we're already in promisc or allmulti mode, we
1183 	 * don't have to bother programming the multicast filter.
1184 	 */
1185 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1186 		return;
1187 
1188 	/* Now program new ones. */
1189 	if_maddr_rlock(ifp);
1190 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1191 		if (ifma->ifma_addr->sa_family != AF_LINK)
1192 			continue;
1193 		if (DC_IS_CENTAUR(sc))
1194 			h = dc_mchash_le(sc,
1195 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1196 		else
1197 			h = dc_mchash_be(
1198 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1199 		if (h < 32)
1200 			hashes[0] |= (1 << h);
1201 		else
1202 			hashes[1] |= (1 << (h - 32));
1203 	}
1204 	if_maddr_runlock(ifp);
1205 
1206 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1207 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1208 }
1209 
1210 static void
1211 dc_setfilt_asix(struct dc_softc *sc)
1212 {
1213 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1214 	struct ifnet *ifp;
1215 	struct ifmultiaddr *ifma;
1216 	int h = 0;
1217 	u_int32_t hashes[2] = { 0, 0 };
1218 
1219 	ifp = sc->dc_ifp;
1220 
1221 	/* Init our MAC address. */
1222 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1223 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1224 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1225 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1226 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1227 
1228 	/* If we want promiscuous mode, set the allframes bit. */
1229 	if (ifp->if_flags & IFF_PROMISC)
1230 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1231 	else
1232 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1233 
1234 	if (ifp->if_flags & IFF_ALLMULTI)
1235 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1236 	else
1237 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1238 
1239 	/*
1240 	 * The ASIX chip has a special bit to enable reception
1241 	 * of broadcast frames.
1242 	 */
1243 	if (ifp->if_flags & IFF_BROADCAST)
1244 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1245 	else
1246 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1247 
1248 	/* first, zot all the existing hash bits */
1249 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1250 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1251 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1252 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1253 
1254 	/*
1255 	 * If we're already in promisc or allmulti mode, we
1256 	 * don't have to bother programming the multicast filter.
1257 	 */
1258 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1259 		return;
1260 
1261 	/* now program new ones */
1262 	if_maddr_rlock(ifp);
1263 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1264 		if (ifma->ifma_addr->sa_family != AF_LINK)
1265 			continue;
1266 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1267 		if (h < 32)
1268 			hashes[0] |= (1 << h);
1269 		else
1270 			hashes[1] |= (1 << (h - 32));
1271 	}
1272 	if_maddr_runlock(ifp);
1273 
1274 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1275 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1276 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1277 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1278 }
1279 
1280 static void
1281 dc_setfilt_xircom(struct dc_softc *sc)
1282 {
1283 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1284 	struct ifnet *ifp;
1285 	struct ifmultiaddr *ifma;
1286 	struct dc_desc *sframe;
1287 	u_int32_t h, *sp;
1288 	int i;
1289 
1290 	ifp = sc->dc_ifp;
1291 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1292 
1293 	i = sc->dc_cdata.dc_tx_prod;
1294 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1295 	sc->dc_cdata.dc_tx_cnt++;
1296 	sframe = &sc->dc_ldata->dc_tx_list[i];
1297 	sp = sc->dc_cdata.dc_sbuf;
1298 	bzero(sp, DC_SFRAME_LEN);
1299 
1300 	sframe->dc_data = htole32(sc->dc_saddr);
1301 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1302 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1303 
1304 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1305 
1306 	/* If we want promiscuous mode, set the allframes bit. */
1307 	if (ifp->if_flags & IFF_PROMISC)
1308 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1309 	else
1310 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1311 
1312 	if (ifp->if_flags & IFF_ALLMULTI)
1313 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1314 	else
1315 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1316 
1317 	if_maddr_rlock(ifp);
1318 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1319 		if (ifma->ifma_addr->sa_family != AF_LINK)
1320 			continue;
1321 		h = dc_mchash_le(sc,
1322 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1323 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1324 	}
1325 	if_maddr_runlock(ifp);
1326 
1327 	if (ifp->if_flags & IFF_BROADCAST) {
1328 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1329 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1330 	}
1331 
1332 	/* Set our MAC address. */
1333 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1334 	sp[0] = DC_SP_MAC(eaddr[0]);
1335 	sp[1] = DC_SP_MAC(eaddr[1]);
1336 	sp[2] = DC_SP_MAC(eaddr[2]);
1337 
1338 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1339 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1340 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1341 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1342 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1343 
1344 	/*
1345 	 * Wait some time...
1346 	 */
1347 	DELAY(1000);
1348 
1349 	sc->dc_wdog_timer = 5;
1350 }
1351 
1352 static void
1353 dc_setfilt(struct dc_softc *sc)
1354 {
1355 
1356 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1357 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1358 		dc_setfilt_21143(sc);
1359 
1360 	if (DC_IS_ASIX(sc))
1361 		dc_setfilt_asix(sc);
1362 
1363 	if (DC_IS_ADMTEK(sc))
1364 		dc_setfilt_admtek(sc);
1365 
1366 	if (DC_IS_XIRCOM(sc))
1367 		dc_setfilt_xircom(sc);
1368 }
1369 
1370 /*
1371  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1372  * the netconfig register, we first have to put the transmit and/or
1373  * receive logic in the idle state.
1374  */
1375 static void
1376 dc_setcfg(struct dc_softc *sc, int media)
1377 {
1378 	int i, restart = 0, watchdogreg;
1379 	u_int32_t isr;
1380 
1381 	if (IFM_SUBTYPE(media) == IFM_NONE)
1382 		return;
1383 
1384 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1385 		restart = 1;
1386 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1387 
1388 		for (i = 0; i < DC_TIMEOUT; i++) {
1389 			isr = CSR_READ_4(sc, DC_ISR);
1390 			if (isr & DC_ISR_TX_IDLE &&
1391 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1392 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1393 				break;
1394 			DELAY(10);
1395 		}
1396 
1397 		if (i == DC_TIMEOUT) {
1398 			if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1399 				device_printf(sc->dc_dev,
1400 				    "%s: failed to force tx to idle state\n",
1401 				    __func__);
1402 			if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1403 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1404 			    !DC_HAS_BROKEN_RXSTATE(sc))
1405 				device_printf(sc->dc_dev,
1406 				    "%s: failed to force rx to idle state\n",
1407 				    __func__);
1408 		}
1409 	}
1410 
1411 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1412 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1413 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1414 		if (sc->dc_pmode == DC_PMODE_MII) {
1415 			if (DC_IS_INTEL(sc)) {
1416 			/* There's a write enable bit here that reads as 1. */
1417 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1418 				watchdogreg &= ~DC_WDOG_CTLWREN;
1419 				watchdogreg |= DC_WDOG_JABBERDIS;
1420 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1421 			} else {
1422 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1423 			}
1424 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1425 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1426 			if (sc->dc_type == DC_TYPE_98713)
1427 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1428 				    DC_NETCFG_SCRAMBLER));
1429 			if (!DC_IS_DAVICOM(sc))
1430 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1431 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1432 			if (DC_IS_INTEL(sc))
1433 				dc_apply_fixup(sc, IFM_AUTO);
1434 		} else {
1435 			if (DC_IS_PNIC(sc)) {
1436 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1437 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1438 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1439 			}
1440 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1441 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1442 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1443 			if (DC_IS_INTEL(sc))
1444 				dc_apply_fixup(sc,
1445 				    (media & IFM_GMASK) == IFM_FDX ?
1446 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1447 		}
1448 	}
1449 
1450 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1451 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1452 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1453 		if (sc->dc_pmode == DC_PMODE_MII) {
1454 			/* There's a write enable bit here that reads as 1. */
1455 			if (DC_IS_INTEL(sc)) {
1456 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1457 				watchdogreg &= ~DC_WDOG_CTLWREN;
1458 				watchdogreg |= DC_WDOG_JABBERDIS;
1459 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1460 			} else {
1461 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1462 			}
1463 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1464 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1465 			if (sc->dc_type == DC_TYPE_98713)
1466 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1467 			if (!DC_IS_DAVICOM(sc))
1468 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1469 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1470 			if (DC_IS_INTEL(sc))
1471 				dc_apply_fixup(sc, IFM_AUTO);
1472 		} else {
1473 			if (DC_IS_PNIC(sc)) {
1474 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1475 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1476 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1477 			}
1478 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1479 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1480 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1481 			if (DC_IS_INTEL(sc)) {
1482 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1483 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1484 				if ((media & IFM_GMASK) == IFM_FDX)
1485 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1486 				else
1487 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1488 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1489 				DC_CLRBIT(sc, DC_10BTCTRL,
1490 				    DC_TCTL_AUTONEGENBL);
1491 				dc_apply_fixup(sc,
1492 				    (media & IFM_GMASK) == IFM_FDX ?
1493 				    IFM_10_T | IFM_FDX : IFM_10_T);
1494 				DELAY(20000);
1495 			}
1496 		}
1497 	}
1498 
1499 	/*
1500 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1501 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1502 	 * on the external MII port.
1503 	 */
1504 	if (DC_IS_DAVICOM(sc)) {
1505 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1506 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1507 			sc->dc_link = 1;
1508 		} else {
1509 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1510 		}
1511 	}
1512 
1513 	if ((media & IFM_GMASK) == IFM_FDX) {
1514 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1515 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1516 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1517 	} else {
1518 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1519 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1520 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1521 	}
1522 
1523 	if (restart)
1524 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1525 }
1526 
1527 static void
1528 dc_reset(struct dc_softc *sc)
1529 {
1530 	int i;
1531 
1532 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1533 
1534 	for (i = 0; i < DC_TIMEOUT; i++) {
1535 		DELAY(10);
1536 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1537 			break;
1538 	}
1539 
1540 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1541 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1542 		DELAY(10000);
1543 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1544 		i = 0;
1545 	}
1546 
1547 	if (i == DC_TIMEOUT)
1548 		device_printf(sc->dc_dev, "reset never completed!\n");
1549 
1550 	/* Wait a little while for the chip to get its brains in order. */
1551 	DELAY(1000);
1552 
1553 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1554 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1555 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1556 
1557 	/*
1558 	 * Bring the SIA out of reset. In some cases, it looks
1559 	 * like failing to unreset the SIA soon enough gets it
1560 	 * into a state where it will never come out of reset
1561 	 * until we reset the whole chip again.
1562 	 */
1563 	if (DC_IS_INTEL(sc)) {
1564 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1565 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1566 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1567 	}
1568 }
1569 
1570 static const struct dc_type *
1571 dc_devtype(device_t dev)
1572 {
1573 	const struct dc_type *t;
1574 	u_int32_t devid;
1575 	u_int8_t rev;
1576 
1577 	t = dc_devs;
1578 	devid = pci_get_devid(dev);
1579 	rev = pci_get_revid(dev);
1580 
1581 	while (t->dc_name != NULL) {
1582 		if (devid == t->dc_devid && rev >= t->dc_minrev)
1583 			return (t);
1584 		t++;
1585 	}
1586 
1587 	return (NULL);
1588 }
1589 
1590 /*
1591  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1592  * IDs against our list and return a device name if we find a match.
1593  * We do a little bit of extra work to identify the exact type of
1594  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1595  * but different revision IDs. The same is true for 98715/98715A
1596  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1597  * cases, the exact chip revision affects driver behavior.
1598  */
1599 static int
1600 dc_probe(device_t dev)
1601 {
1602 	const struct dc_type *t;
1603 
1604 	t = dc_devtype(dev);
1605 
1606 	if (t != NULL) {
1607 		device_set_desc(dev, t->dc_name);
1608 		return (BUS_PROBE_DEFAULT);
1609 	}
1610 
1611 	return (ENXIO);
1612 }
1613 
1614 static void
1615 dc_apply_fixup(struct dc_softc *sc, int media)
1616 {
1617 	struct dc_mediainfo *m;
1618 	u_int8_t *p;
1619 	int i;
1620 	u_int32_t reg;
1621 
1622 	m = sc->dc_mi;
1623 
1624 	while (m != NULL) {
1625 		if (m->dc_media == media)
1626 			break;
1627 		m = m->dc_next;
1628 	}
1629 
1630 	if (m == NULL)
1631 		return;
1632 
1633 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1634 		reg = (p[0] | (p[1] << 8)) << 16;
1635 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1636 	}
1637 
1638 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1639 		reg = (p[0] | (p[1] << 8)) << 16;
1640 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1641 	}
1642 }
1643 
1644 static void
1645 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1646 {
1647 	struct dc_mediainfo *m;
1648 
1649 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1650 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1651 	case DC_SIA_CODE_10BT:
1652 		m->dc_media = IFM_10_T;
1653 		break;
1654 	case DC_SIA_CODE_10BT_FDX:
1655 		m->dc_media = IFM_10_T | IFM_FDX;
1656 		break;
1657 	case DC_SIA_CODE_10B2:
1658 		m->dc_media = IFM_10_2;
1659 		break;
1660 	case DC_SIA_CODE_10B5:
1661 		m->dc_media = IFM_10_5;
1662 		break;
1663 	default:
1664 		break;
1665 	}
1666 
1667 	/*
1668 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1669 	 * Things apparently already work for cards that do
1670 	 * supply Media Specific Data.
1671 	 */
1672 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1673 		m->dc_gp_len = 2;
1674 		m->dc_gp_ptr =
1675 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1676 	} else {
1677 		m->dc_gp_len = 2;
1678 		m->dc_gp_ptr =
1679 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1680 	}
1681 
1682 	m->dc_next = sc->dc_mi;
1683 	sc->dc_mi = m;
1684 
1685 	sc->dc_pmode = DC_PMODE_SIA;
1686 }
1687 
1688 static void
1689 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1690 {
1691 	struct dc_mediainfo *m;
1692 
1693 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1694 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1695 		m->dc_media = IFM_100_TX;
1696 
1697 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1698 		m->dc_media = IFM_100_TX | IFM_FDX;
1699 
1700 	m->dc_gp_len = 2;
1701 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1702 
1703 	m->dc_next = sc->dc_mi;
1704 	sc->dc_mi = m;
1705 
1706 	sc->dc_pmode = DC_PMODE_SYM;
1707 }
1708 
1709 static void
1710 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1711 {
1712 	struct dc_mediainfo *m;
1713 	u_int8_t *p;
1714 
1715 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1716 	/* We abuse IFM_AUTO to represent MII. */
1717 	m->dc_media = IFM_AUTO;
1718 	m->dc_gp_len = l->dc_gpr_len;
1719 
1720 	p = (u_int8_t *)l;
1721 	p += sizeof(struct dc_eblock_mii);
1722 	m->dc_gp_ptr = p;
1723 	p += 2 * l->dc_gpr_len;
1724 	m->dc_reset_len = *p;
1725 	p++;
1726 	m->dc_reset_ptr = p;
1727 
1728 	m->dc_next = sc->dc_mi;
1729 	sc->dc_mi = m;
1730 }
1731 
1732 static void
1733 dc_read_srom(struct dc_softc *sc, int bits)
1734 {
1735 	int size;
1736 
1737 	size = 2 << bits;
1738 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1739 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1740 }
1741 
1742 static void
1743 dc_parse_21143_srom(struct dc_softc *sc)
1744 {
1745 	struct dc_leaf_hdr *lhdr;
1746 	struct dc_eblock_hdr *hdr;
1747 	int have_mii, i, loff;
1748 	char *ptr;
1749 
1750 	have_mii = 0;
1751 	loff = sc->dc_srom[27];
1752 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1753 
1754 	ptr = (char *)lhdr;
1755 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1756 	/*
1757 	 * Look if we got a MII media block.
1758 	 */
1759 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1760 		hdr = (struct dc_eblock_hdr *)ptr;
1761 		if (hdr->dc_type == DC_EBLOCK_MII)
1762 		    have_mii++;
1763 
1764 		ptr += (hdr->dc_len & 0x7F);
1765 		ptr++;
1766 	}
1767 
1768 	/*
1769 	 * Do the same thing again. Only use SIA and SYM media
1770 	 * blocks if no MII media block is available.
1771 	 */
1772 	ptr = (char *)lhdr;
1773 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1774 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1775 		hdr = (struct dc_eblock_hdr *)ptr;
1776 		switch (hdr->dc_type) {
1777 		case DC_EBLOCK_MII:
1778 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1779 			break;
1780 		case DC_EBLOCK_SIA:
1781 			if (! have_mii)
1782 				dc_decode_leaf_sia(sc,
1783 				    (struct dc_eblock_sia *)hdr);
1784 			break;
1785 		case DC_EBLOCK_SYM:
1786 			if (! have_mii)
1787 				dc_decode_leaf_sym(sc,
1788 				    (struct dc_eblock_sym *)hdr);
1789 			break;
1790 		default:
1791 			/* Don't care. Yet. */
1792 			break;
1793 		}
1794 		ptr += (hdr->dc_len & 0x7F);
1795 		ptr++;
1796 	}
1797 }
1798 
1799 static void
1800 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1801 {
1802 	u_int32_t *paddr;
1803 
1804 	KASSERT(nseg == 1,
1805 	    ("%s: wrong number of segments (%d)", __func__, nseg));
1806 	paddr = arg;
1807 	*paddr = segs->ds_addr;
1808 }
1809 
1810 /*
1811  * Attach the interface. Allocate softc structures, do ifmedia
1812  * setup and ethernet/BPF attach.
1813  */
1814 static int
1815 dc_attach(device_t dev)
1816 {
1817 	int tmp = 0;
1818 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1819 	u_int32_t command;
1820 	struct dc_softc *sc;
1821 	struct ifnet *ifp;
1822 	u_int32_t reg, revision;
1823 	int error = 0, rid, mac_offset;
1824 	int i;
1825 	u_int8_t *mac;
1826 
1827 	sc = device_get_softc(dev);
1828 	sc->dc_dev = dev;
1829 
1830 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1831 	    MTX_DEF);
1832 
1833 	/*
1834 	 * Map control/status registers.
1835 	 */
1836 	pci_enable_busmaster(dev);
1837 
1838 	rid = DC_RID;
1839 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1840 
1841 	if (sc->dc_res == NULL) {
1842 		device_printf(dev, "couldn't map ports/memory\n");
1843 		error = ENXIO;
1844 		goto fail;
1845 	}
1846 
1847 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1848 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1849 
1850 	/* Allocate interrupt. */
1851 	rid = 0;
1852 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1853 	    RF_SHAREABLE | RF_ACTIVE);
1854 
1855 	if (sc->dc_irq == NULL) {
1856 		device_printf(dev, "couldn't map interrupt\n");
1857 		error = ENXIO;
1858 		goto fail;
1859 	}
1860 
1861 	/* Need this info to decide on a chip type. */
1862 	sc->dc_info = dc_devtype(dev);
1863 	revision = pci_get_revid(dev);
1864 
1865 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1866 	if (sc->dc_info->dc_devid !=
1867 	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
1868 	    sc->dc_info->dc_devid !=
1869 	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
1870 		dc_eeprom_width(sc);
1871 
1872 	switch (sc->dc_info->dc_devid) {
1873 	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
1874 		sc->dc_type = DC_TYPE_21143;
1875 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1876 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1877 		/* Save EEPROM contents so we can parse them later. */
1878 		dc_read_srom(sc, sc->dc_romwidth);
1879 		break;
1880 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
1881 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
1882 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
1883 		sc->dc_type = DC_TYPE_DM9102;
1884 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1885 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1886 		sc->dc_flags |= DC_TX_ALIGN;
1887 		sc->dc_pmode = DC_PMODE_MII;
1888 
1889 		/* Increase the latency timer value. */
1890 		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
1891 		break;
1892 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
1893 		sc->dc_type = DC_TYPE_AL981;
1894 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1895 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1896 		sc->dc_pmode = DC_PMODE_MII;
1897 		dc_read_srom(sc, sc->dc_romwidth);
1898 		break;
1899 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983):
1900 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
1901 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
1902 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
1903 	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
1904 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
1905 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
1906 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
1907 	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
1908 	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
1909 	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
1910 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
1911 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
1912 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
1913 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
1914 		sc->dc_type = DC_TYPE_AN983;
1915 		sc->dc_flags |= DC_64BIT_HASH;
1916 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1917 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1918 		sc->dc_pmode = DC_PMODE_MII;
1919 		/* Don't read SROM for - auto-loaded on reset */
1920 		break;
1921 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
1922 	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
1923 		if (revision < DC_REVISION_98713A) {
1924 			sc->dc_type = DC_TYPE_98713;
1925 		}
1926 		if (revision >= DC_REVISION_98713A) {
1927 			sc->dc_type = DC_TYPE_98713A;
1928 			sc->dc_flags |= DC_21143_NWAY;
1929 		}
1930 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1931 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1932 		break;
1933 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
1934 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
1935 		/*
1936 		 * Macronix MX98715AEC-C/D/E parts have only a
1937 		 * 128-bit hash table. We need to deal with these
1938 		 * in the same manner as the PNIC II so that we
1939 		 * get the right number of bits out of the
1940 		 * CRC routine.
1941 		 */
1942 		if (revision >= DC_REVISION_98715AEC_C &&
1943 		    revision < DC_REVISION_98725)
1944 			sc->dc_flags |= DC_128BIT_HASH;
1945 		sc->dc_type = DC_TYPE_987x5;
1946 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1947 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1948 		break;
1949 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
1950 		sc->dc_type = DC_TYPE_987x5;
1951 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1952 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1953 		break;
1954 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
1955 		sc->dc_type = DC_TYPE_PNICII;
1956 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1957 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1958 		break;
1959 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
1960 		sc->dc_type = DC_TYPE_PNIC;
1961 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1962 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1963 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1964 		if (revision < DC_REVISION_82C169)
1965 			sc->dc_pmode = DC_PMODE_SYM;
1966 		break;
1967 	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
1968 		sc->dc_type = DC_TYPE_ASIX;
1969 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1970 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1971 		sc->dc_pmode = DC_PMODE_MII;
1972 		break;
1973 	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
1974 		sc->dc_type = DC_TYPE_XIRCOM;
1975 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1976 				DC_TX_ALIGN;
1977 		/*
1978 		 * We don't actually need to coalesce, but we're doing
1979 		 * it to obtain a double word aligned buffer.
1980 		 * The DC_TX_COALESCE flag is required.
1981 		 */
1982 		sc->dc_pmode = DC_PMODE_MII;
1983 		break;
1984 	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
1985 		sc->dc_type = DC_TYPE_CONEXANT;
1986 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1987 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1988 		sc->dc_pmode = DC_PMODE_MII;
1989 		dc_read_srom(sc, sc->dc_romwidth);
1990 		break;
1991 	default:
1992 		device_printf(dev, "unknown device: %x\n",
1993 		    sc->dc_info->dc_devid);
1994 		break;
1995 	}
1996 
1997 	/* Save the cache line size. */
1998 	if (DC_IS_DAVICOM(sc))
1999 		sc->dc_cachesize = 0;
2000 	else
2001 		sc->dc_cachesize = pci_get_cachelnsz(dev);
2002 
2003 	/* Reset the adapter. */
2004 	dc_reset(sc);
2005 
2006 	/* Take 21143 out of snooze mode */
2007 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2008 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2009 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2010 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2011 	}
2012 
2013 	/*
2014 	 * Try to learn something about the supported media.
2015 	 * We know that ASIX and ADMtek and Davicom devices
2016 	 * will *always* be using MII media, so that's a no-brainer.
2017 	 * The tricky ones are the Macronix/PNIC II and the
2018 	 * Intel 21143.
2019 	 */
2020 	if (DC_IS_INTEL(sc))
2021 		dc_parse_21143_srom(sc);
2022 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2023 		if (sc->dc_type == DC_TYPE_98713)
2024 			sc->dc_pmode = DC_PMODE_MII;
2025 		else
2026 			sc->dc_pmode = DC_PMODE_SYM;
2027 	} else if (!sc->dc_pmode)
2028 		sc->dc_pmode = DC_PMODE_MII;
2029 
2030 	/*
2031 	 * Get station address from the EEPROM.
2032 	 */
2033 	switch(sc->dc_type) {
2034 	case DC_TYPE_98713:
2035 	case DC_TYPE_98713A:
2036 	case DC_TYPE_987x5:
2037 	case DC_TYPE_PNICII:
2038 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2039 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2040 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2041 		break;
2042 	case DC_TYPE_PNIC:
2043 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2044 		break;
2045 	case DC_TYPE_DM9102:
2046 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2047 #ifdef __sparc64__
2048 		/*
2049 		 * If this is an onboard dc(4) the station address read from
2050 		 * the EEPROM is all zero and we have to get it from the FCode.
2051 		 */
2052 		if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
2053 			OF_getetheraddr(dev, (caddr_t)&eaddr);
2054 #endif
2055 		break;
2056 	case DC_TYPE_21143:
2057 	case DC_TYPE_ASIX:
2058 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2059 		break;
2060 	case DC_TYPE_AL981:
2061 	case DC_TYPE_AN983:
2062 		reg = CSR_READ_4(sc, DC_AL_PAR0);
2063 		mac = (uint8_t *)&eaddr[0];
2064 		mac[0] = (reg >> 0) & 0xff;
2065 		mac[1] = (reg >> 8) & 0xff;
2066 		mac[2] = (reg >> 16) & 0xff;
2067 		mac[3] = (reg >> 24) & 0xff;
2068 		reg = CSR_READ_4(sc, DC_AL_PAR1);
2069 		mac[4] = (reg >> 0) & 0xff;
2070 		mac[5] = (reg >> 8) & 0xff;
2071 		break;
2072 	case DC_TYPE_CONEXANT:
2073 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2074 		    ETHER_ADDR_LEN);
2075 		break;
2076 	case DC_TYPE_XIRCOM:
2077 		/* The MAC comes from the CIS. */
2078 		mac = pci_get_ether(dev);
2079 		if (!mac) {
2080 			device_printf(dev, "No station address in CIS!\n");
2081 			error = ENXIO;
2082 			goto fail;
2083 		}
2084 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2085 		break;
2086 	default:
2087 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2088 		break;
2089 	}
2090 
2091 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2092 	error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
2093 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2094 	    sizeof(struct dc_list_data), 1, sizeof(struct dc_list_data),
2095 	    0, NULL, NULL, &sc->dc_ltag);
2096 	if (error) {
2097 		device_printf(dev, "failed to allocate busdma tag\n");
2098 		error = ENXIO;
2099 		goto fail;
2100 	}
2101 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2102 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2103 	if (error) {
2104 		device_printf(dev, "failed to allocate DMA safe memory\n");
2105 		error = ENXIO;
2106 		goto fail;
2107 	}
2108 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2109 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2110 	    BUS_DMA_NOWAIT);
2111 	if (error) {
2112 		device_printf(dev, "cannot get address of the descriptors\n");
2113 		error = ENXIO;
2114 		goto fail;
2115 	}
2116 
2117 	/*
2118 	 * Allocate a busdma tag and DMA safe memory for the multicast
2119 	 * setup frame.
2120 	 */
2121 	error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
2122 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2123 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
2124 	    0, NULL, NULL, &sc->dc_stag);
2125 	if (error) {
2126 		device_printf(dev, "failed to allocate busdma tag\n");
2127 		error = ENXIO;
2128 		goto fail;
2129 	}
2130 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2131 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2132 	if (error) {
2133 		device_printf(dev, "failed to allocate DMA safe memory\n");
2134 		error = ENXIO;
2135 		goto fail;
2136 	}
2137 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2138 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2139 	if (error) {
2140 		device_printf(dev, "cannot get address of the descriptors\n");
2141 		error = ENXIO;
2142 		goto fail;
2143 	}
2144 
2145 	/* Allocate a busdma tag for mbufs. */
2146 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
2147 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2148 	    MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
2149 	    0, NULL, NULL, &sc->dc_mtag);
2150 	if (error) {
2151 		device_printf(dev, "failed to allocate busdma tag\n");
2152 		error = ENXIO;
2153 		goto fail;
2154 	}
2155 
2156 	/* Create the TX/RX busdma maps. */
2157 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2158 		error = bus_dmamap_create(sc->dc_mtag, 0,
2159 		    &sc->dc_cdata.dc_tx_map[i]);
2160 		if (error) {
2161 			device_printf(dev, "failed to init TX ring\n");
2162 			error = ENXIO;
2163 			goto fail;
2164 		}
2165 	}
2166 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2167 		error = bus_dmamap_create(sc->dc_mtag, 0,
2168 		    &sc->dc_cdata.dc_rx_map[i]);
2169 		if (error) {
2170 			device_printf(dev, "failed to init RX ring\n");
2171 			error = ENXIO;
2172 			goto fail;
2173 		}
2174 	}
2175 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2176 	if (error) {
2177 		device_printf(dev, "failed to init RX ring\n");
2178 		error = ENXIO;
2179 		goto fail;
2180 	}
2181 
2182 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2183 	if (ifp == NULL) {
2184 		device_printf(dev, "can not if_alloc()\n");
2185 		error = ENOSPC;
2186 		goto fail;
2187 	}
2188 	ifp->if_softc = sc;
2189 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2190 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2191 	ifp->if_ioctl = dc_ioctl;
2192 	ifp->if_start = dc_start;
2193 	ifp->if_init = dc_init;
2194 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2195 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2196 	IFQ_SET_READY(&ifp->if_snd);
2197 
2198 	/*
2199 	 * Do MII setup. If this is a 21143, check for a PHY on the
2200 	 * MII bus after applying any necessary fixups to twiddle the
2201 	 * GPIO bits. If we don't end up finding a PHY, restore the
2202 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2203 	 * driver instead.
2204 	 */
2205 	if (DC_IS_INTEL(sc)) {
2206 		dc_apply_fixup(sc, IFM_AUTO);
2207 		tmp = sc->dc_pmode;
2208 		sc->dc_pmode = DC_PMODE_MII;
2209 	}
2210 
2211 	/*
2212 	 * Setup General Purpose port mode and data so the tulip can talk
2213 	 * to the MII.  This needs to be done before mii_phy_probe so that
2214 	 * we can actually see them.
2215 	 */
2216 	if (DC_IS_XIRCOM(sc)) {
2217 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2218 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2219 		DELAY(10);
2220 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2221 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2222 		DELAY(10);
2223 	}
2224 
2225 	error = mii_phy_probe(dev, &sc->dc_miibus,
2226 	    dc_ifmedia_upd, dc_ifmedia_sts);
2227 
2228 	if (error && DC_IS_INTEL(sc)) {
2229 		sc->dc_pmode = tmp;
2230 		if (sc->dc_pmode != DC_PMODE_SIA)
2231 			sc->dc_pmode = DC_PMODE_SYM;
2232 		sc->dc_flags |= DC_21143_NWAY;
2233 		mii_phy_probe(dev, &sc->dc_miibus,
2234 		    dc_ifmedia_upd, dc_ifmedia_sts);
2235 		/*
2236 		 * For non-MII cards, we need to have the 21143
2237 		 * drive the LEDs. Except there are some systems
2238 		 * like the NEC VersaPro NoteBook PC which have no
2239 		 * LEDs, and twiddling these bits has adverse effects
2240 		 * on them. (I.e. you suddenly can't get a link.)
2241 		 */
2242 		if (!(pci_get_subvendor(dev) == 0x1033 &&
2243 		    pci_get_subdevice(dev) == 0x8028))
2244 			sc->dc_flags |= DC_TULIP_LEDS;
2245 		error = 0;
2246 	}
2247 
2248 	if (error) {
2249 		device_printf(dev, "MII without any PHY!\n");
2250 		goto fail;
2251 	}
2252 
2253 	if (DC_IS_ADMTEK(sc)) {
2254 		/*
2255 		 * Set automatic TX underrun recovery for the ADMtek chips
2256 		 */
2257 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2258 	}
2259 
2260 	/*
2261 	 * Tell the upper layer(s) we support long frames.
2262 	 */
2263 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2264 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2265 	ifp->if_capenable = ifp->if_capabilities;
2266 #ifdef DEVICE_POLLING
2267 	ifp->if_capabilities |= IFCAP_POLLING;
2268 #endif
2269 
2270 	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2271 	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2272 
2273 	/*
2274 	 * Call MI attach routine.
2275 	 */
2276 	ether_ifattach(ifp, (caddr_t)eaddr);
2277 
2278 	/* Hook interrupt last to avoid having to lock softc */
2279 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2280 	    NULL, dc_intr, sc, &sc->dc_intrhand);
2281 
2282 	if (error) {
2283 		device_printf(dev, "couldn't set up irq\n");
2284 		ether_ifdetach(ifp);
2285 		goto fail;
2286 	}
2287 
2288 fail:
2289 	if (error)
2290 		dc_detach(dev);
2291 	return (error);
2292 }
2293 
2294 /*
2295  * Shutdown hardware and free up resources. This can be called any
2296  * time after the mutex has been initialized. It is called in both
2297  * the error case in attach and the normal detach case so it needs
2298  * to be careful about only freeing resources that have actually been
2299  * allocated.
2300  */
2301 static int
2302 dc_detach(device_t dev)
2303 {
2304 	struct dc_softc *sc;
2305 	struct ifnet *ifp;
2306 	struct dc_mediainfo *m;
2307 	int i;
2308 
2309 	sc = device_get_softc(dev);
2310 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2311 
2312 	ifp = sc->dc_ifp;
2313 
2314 #ifdef DEVICE_POLLING
2315 	if (ifp->if_capenable & IFCAP_POLLING)
2316 		ether_poll_deregister(ifp);
2317 #endif
2318 
2319 	/* These should only be active if attach succeeded */
2320 	if (device_is_attached(dev)) {
2321 		DC_LOCK(sc);
2322 		dc_stop(sc);
2323 		DC_UNLOCK(sc);
2324 		callout_drain(&sc->dc_stat_ch);
2325 		callout_drain(&sc->dc_wdog_ch);
2326 		ether_ifdetach(ifp);
2327 	}
2328 	if (sc->dc_miibus)
2329 		device_delete_child(dev, sc->dc_miibus);
2330 	bus_generic_detach(dev);
2331 
2332 	if (sc->dc_intrhand)
2333 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2334 	if (sc->dc_irq)
2335 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2336 	if (sc->dc_res)
2337 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2338 
2339 	if (ifp)
2340 		if_free(ifp);
2341 
2342 	if (sc->dc_cdata.dc_sbuf != NULL)
2343 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2344 	if (sc->dc_ldata != NULL)
2345 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2346 	if (sc->dc_mtag) {
2347 		for (i = 0; i < DC_TX_LIST_CNT; i++)
2348 			if (sc->dc_cdata.dc_tx_map[i] != NULL)
2349 				bus_dmamap_destroy(sc->dc_mtag,
2350 				    sc->dc_cdata.dc_tx_map[i]);
2351 		for (i = 0; i < DC_RX_LIST_CNT; i++)
2352 			if (sc->dc_cdata.dc_rx_map[i] != NULL)
2353 				bus_dmamap_destroy(sc->dc_mtag,
2354 				    sc->dc_cdata.dc_rx_map[i]);
2355 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2356 	}
2357 	if (sc->dc_stag)
2358 		bus_dma_tag_destroy(sc->dc_stag);
2359 	if (sc->dc_mtag)
2360 		bus_dma_tag_destroy(sc->dc_mtag);
2361 	if (sc->dc_ltag)
2362 		bus_dma_tag_destroy(sc->dc_ltag);
2363 
2364 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2365 
2366 	while (sc->dc_mi != NULL) {
2367 		m = sc->dc_mi->dc_next;
2368 		free(sc->dc_mi, M_DEVBUF);
2369 		sc->dc_mi = m;
2370 	}
2371 	free(sc->dc_srom, M_DEVBUF);
2372 
2373 	mtx_destroy(&sc->dc_mtx);
2374 
2375 	return (0);
2376 }
2377 
2378 /*
2379  * Initialize the transmit descriptors.
2380  */
2381 static int
2382 dc_list_tx_init(struct dc_softc *sc)
2383 {
2384 	struct dc_chain_data *cd;
2385 	struct dc_list_data *ld;
2386 	int i, nexti;
2387 
2388 	cd = &sc->dc_cdata;
2389 	ld = sc->dc_ldata;
2390 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2391 		if (i == DC_TX_LIST_CNT - 1)
2392 			nexti = 0;
2393 		else
2394 			nexti = i + 1;
2395 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2396 		cd->dc_tx_chain[i] = NULL;
2397 		ld->dc_tx_list[i].dc_data = 0;
2398 		ld->dc_tx_list[i].dc_ctl = 0;
2399 	}
2400 
2401 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2402 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2403 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2404 	return (0);
2405 }
2406 
2407 
2408 /*
2409  * Initialize the RX descriptors and allocate mbufs for them. Note that
2410  * we arrange the descriptors in a closed ring, so that the last descriptor
2411  * points back to the first.
2412  */
2413 static int
2414 dc_list_rx_init(struct dc_softc *sc)
2415 {
2416 	struct dc_chain_data *cd;
2417 	struct dc_list_data *ld;
2418 	int i, nexti;
2419 
2420 	cd = &sc->dc_cdata;
2421 	ld = sc->dc_ldata;
2422 
2423 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2424 		if (dc_newbuf(sc, i, 1) != 0)
2425 			return (ENOBUFS);
2426 		if (i == DC_RX_LIST_CNT - 1)
2427 			nexti = 0;
2428 		else
2429 			nexti = i + 1;
2430 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2431 	}
2432 
2433 	cd->dc_rx_prod = 0;
2434 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2435 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2436 	return (0);
2437 }
2438 
2439 /*
2440  * Initialize an RX descriptor and attach an MBUF cluster.
2441  */
2442 static int
2443 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2444 {
2445 	struct mbuf *m_new;
2446 	bus_dmamap_t tmp;
2447 	bus_dma_segment_t segs[1];
2448 	int error, nseg;
2449 
2450 	if (alloc) {
2451 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2452 		if (m_new == NULL)
2453 			return (ENOBUFS);
2454 	} else {
2455 		m_new = sc->dc_cdata.dc_rx_chain[i];
2456 		m_new->m_data = m_new->m_ext.ext_buf;
2457 	}
2458 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2459 	m_adj(m_new, sizeof(u_int64_t));
2460 
2461 	/*
2462 	 * If this is a PNIC chip, zero the buffer. This is part
2463 	 * of the workaround for the receive bug in the 82c168 and
2464 	 * 82c169 chips.
2465 	 */
2466 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2467 		bzero(mtod(m_new, char *), m_new->m_len);
2468 
2469 	/* No need to remap the mbuf if we're reusing it. */
2470 	if (alloc) {
2471 		error = bus_dmamap_load_mbuf_sg(sc->dc_mtag, sc->dc_sparemap,
2472 		    m_new, segs, &nseg, 0);
2473 		if (error) {
2474 			m_freem(m_new);
2475 			return (error);
2476 		}
2477 		KASSERT(nseg == 1,
2478 		    ("%s: wrong number of segments (%d)", __func__, nseg));
2479 		sc->dc_ldata->dc_rx_list[i].dc_data = htole32(segs->ds_addr);
2480 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2481 		tmp = sc->dc_cdata.dc_rx_map[i];
2482 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2483 		sc->dc_sparemap = tmp;
2484 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2485 	}
2486 
2487 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2488 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2489 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2490 	    BUS_DMASYNC_PREREAD);
2491 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2492 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2493 	return (0);
2494 }
2495 
2496 /*
2497  * Grrrrr.
2498  * The PNIC chip has a terrible bug in it that manifests itself during
2499  * periods of heavy activity. The exact mode of failure if difficult to
2500  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2501  * will happen on slow machines. The bug is that sometimes instead of
2502  * uploading one complete frame during reception, it uploads what looks
2503  * like the entire contents of its FIFO memory. The frame we want is at
2504  * the end of the whole mess, but we never know exactly how much data has
2505  * been uploaded, so salvaging the frame is hard.
2506  *
2507  * There is only one way to do it reliably, and it's disgusting.
2508  * Here's what we know:
2509  *
2510  * - We know there will always be somewhere between one and three extra
2511  *   descriptors uploaded.
2512  *
2513  * - We know the desired received frame will always be at the end of the
2514  *   total data upload.
2515  *
2516  * - We know the size of the desired received frame because it will be
2517  *   provided in the length field of the status word in the last descriptor.
2518  *
2519  * Here's what we do:
2520  *
2521  * - When we allocate buffers for the receive ring, we bzero() them.
2522  *   This means that we know that the buffer contents should be all
2523  *   zeros, except for data uploaded by the chip.
2524  *
2525  * - We also force the PNIC chip to upload frames that include the
2526  *   ethernet CRC at the end.
2527  *
2528  * - We gather all of the bogus frame data into a single buffer.
2529  *
2530  * - We then position a pointer at the end of this buffer and scan
2531  *   backwards until we encounter the first non-zero byte of data.
2532  *   This is the end of the received frame. We know we will encounter
2533  *   some data at the end of the frame because the CRC will always be
2534  *   there, so even if the sender transmits a packet of all zeros,
2535  *   we won't be fooled.
2536  *
2537  * - We know the size of the actual received frame, so we subtract
2538  *   that value from the current pointer location. This brings us
2539  *   to the start of the actual received packet.
2540  *
2541  * - We copy this into an mbuf and pass it on, along with the actual
2542  *   frame length.
2543  *
2544  * The performance hit is tremendous, but it beats dropping frames all
2545  * the time.
2546  */
2547 
2548 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2549 static void
2550 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2551 {
2552 	struct dc_desc *cur_rx;
2553 	struct dc_desc *c = NULL;
2554 	struct mbuf *m = NULL;
2555 	unsigned char *ptr;
2556 	int i, total_len;
2557 	u_int32_t rxstat = 0;
2558 
2559 	i = sc->dc_pnic_rx_bug_save;
2560 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2561 	ptr = sc->dc_pnic_rx_buf;
2562 	bzero(ptr, DC_RXLEN * 5);
2563 
2564 	/* Copy all the bytes from the bogus buffers. */
2565 	while (1) {
2566 		c = &sc->dc_ldata->dc_rx_list[i];
2567 		rxstat = le32toh(c->dc_status);
2568 		m = sc->dc_cdata.dc_rx_chain[i];
2569 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2570 		ptr += DC_RXLEN;
2571 		/* If this is the last buffer, break out. */
2572 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2573 			break;
2574 		dc_newbuf(sc, i, 0);
2575 		DC_INC(i, DC_RX_LIST_CNT);
2576 	}
2577 
2578 	/* Find the length of the actual receive frame. */
2579 	total_len = DC_RXBYTES(rxstat);
2580 
2581 	/* Scan backwards until we hit a non-zero byte. */
2582 	while (*ptr == 0x00)
2583 		ptr--;
2584 
2585 	/* Round off. */
2586 	if ((uintptr_t)(ptr) & 0x3)
2587 		ptr -= 1;
2588 
2589 	/* Now find the start of the frame. */
2590 	ptr -= total_len;
2591 	if (ptr < sc->dc_pnic_rx_buf)
2592 		ptr = sc->dc_pnic_rx_buf;
2593 
2594 	/*
2595 	 * Now copy the salvaged frame to the last mbuf and fake up
2596 	 * the status word to make it look like a successful
2597 	 * frame reception.
2598 	 */
2599 	dc_newbuf(sc, i, 0);
2600 	bcopy(ptr, mtod(m, char *), total_len);
2601 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2602 }
2603 
2604 /*
2605  * This routine searches the RX ring for dirty descriptors in the
2606  * event that the rxeof routine falls out of sync with the chip's
2607  * current descriptor pointer. This may happen sometimes as a result
2608  * of a "no RX buffer available" condition that happens when the chip
2609  * consumes all of the RX buffers before the driver has a chance to
2610  * process the RX ring. This routine may need to be called more than
2611  * once to bring the driver back in sync with the chip, however we
2612  * should still be getting RX DONE interrupts to drive the search
2613  * for new packets in the RX ring, so we should catch up eventually.
2614  */
2615 static int
2616 dc_rx_resync(struct dc_softc *sc)
2617 {
2618 	struct dc_desc *cur_rx;
2619 	int i, pos;
2620 
2621 	pos = sc->dc_cdata.dc_rx_prod;
2622 
2623 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2624 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2625 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2626 			break;
2627 		DC_INC(pos, DC_RX_LIST_CNT);
2628 	}
2629 
2630 	/* If the ring really is empty, then just return. */
2631 	if (i == DC_RX_LIST_CNT)
2632 		return (0);
2633 
2634 	/* We've fallen behing the chip: catch it. */
2635 	sc->dc_cdata.dc_rx_prod = pos;
2636 
2637 	return (EAGAIN);
2638 }
2639 
2640 /*
2641  * A frame has been uploaded: pass the resulting mbuf chain up to
2642  * the higher level protocols.
2643  */
2644 static int
2645 dc_rxeof(struct dc_softc *sc)
2646 {
2647 	struct mbuf *m, *m0;
2648 	struct ifnet *ifp;
2649 	struct dc_desc *cur_rx;
2650 	int i, total_len, rx_npkts;
2651 	u_int32_t rxstat;
2652 
2653 	DC_LOCK_ASSERT(sc);
2654 
2655 	ifp = sc->dc_ifp;
2656 	i = sc->dc_cdata.dc_rx_prod;
2657 	total_len = 0;
2658 	rx_npkts = 0;
2659 
2660 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2661 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2662 	    DC_RXSTAT_OWN)) {
2663 #ifdef DEVICE_POLLING
2664 		if (ifp->if_capenable & IFCAP_POLLING) {
2665 			if (sc->rxcycles <= 0)
2666 				break;
2667 			sc->rxcycles--;
2668 		}
2669 #endif
2670 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2671 		rxstat = le32toh(cur_rx->dc_status);
2672 		m = sc->dc_cdata.dc_rx_chain[i];
2673 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2674 		    BUS_DMASYNC_POSTREAD);
2675 		total_len = DC_RXBYTES(rxstat);
2676 
2677 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2678 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2679 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2680 					sc->dc_pnic_rx_bug_save = i;
2681 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2682 					DC_INC(i, DC_RX_LIST_CNT);
2683 					continue;
2684 				}
2685 				dc_pnic_rx_bug_war(sc, i);
2686 				rxstat = le32toh(cur_rx->dc_status);
2687 				total_len = DC_RXBYTES(rxstat);
2688 			}
2689 		}
2690 
2691 		/*
2692 		 * If an error occurs, update stats, clear the
2693 		 * status word and leave the mbuf cluster in place:
2694 		 * it should simply get re-used next time this descriptor
2695 		 * comes up in the ring.  However, don't report long
2696 		 * frames as errors since they could be vlans.
2697 		 */
2698 		if ((rxstat & DC_RXSTAT_RXERR)) {
2699 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2700 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2701 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2702 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2703 				ifp->if_ierrors++;
2704 				if (rxstat & DC_RXSTAT_COLLSEEN)
2705 					ifp->if_collisions++;
2706 				dc_newbuf(sc, i, 0);
2707 				if (rxstat & DC_RXSTAT_CRCERR) {
2708 					DC_INC(i, DC_RX_LIST_CNT);
2709 					continue;
2710 				} else {
2711 					dc_init_locked(sc);
2712 					return (rx_npkts);
2713 				}
2714 			}
2715 		}
2716 
2717 		/* No errors; receive the packet. */
2718 		total_len -= ETHER_CRC_LEN;
2719 #ifdef __NO_STRICT_ALIGNMENT
2720 		/*
2721 		 * On architectures without alignment problems we try to
2722 		 * allocate a new buffer for the receive ring, and pass up
2723 		 * the one where the packet is already, saving the expensive
2724 		 * copy done in m_devget().
2725 		 * If we are on an architecture with alignment problems, or
2726 		 * if the allocation fails, then use m_devget and leave the
2727 		 * existing buffer in the receive ring.
2728 		 */
2729 		if (dc_newbuf(sc, i, 1) == 0) {
2730 			m->m_pkthdr.rcvif = ifp;
2731 			m->m_pkthdr.len = m->m_len = total_len;
2732 			DC_INC(i, DC_RX_LIST_CNT);
2733 		} else
2734 #endif
2735 		{
2736 			m0 = m_devget(mtod(m, char *), total_len,
2737 				ETHER_ALIGN, ifp, NULL);
2738 			dc_newbuf(sc, i, 0);
2739 			DC_INC(i, DC_RX_LIST_CNT);
2740 			if (m0 == NULL) {
2741 				ifp->if_ierrors++;
2742 				continue;
2743 			}
2744 			m = m0;
2745 		}
2746 
2747 		ifp->if_ipackets++;
2748 		DC_UNLOCK(sc);
2749 		(*ifp->if_input)(ifp, m);
2750 		DC_LOCK(sc);
2751 		rx_npkts++;
2752 	}
2753 
2754 	sc->dc_cdata.dc_rx_prod = i;
2755 	return (rx_npkts);
2756 }
2757 
2758 /*
2759  * A frame was downloaded to the chip. It's safe for us to clean up
2760  * the list buffers.
2761  */
2762 static void
2763 dc_txeof(struct dc_softc *sc)
2764 {
2765 	struct dc_desc *cur_tx = NULL;
2766 	struct ifnet *ifp;
2767 	int idx;
2768 	u_int32_t ctl, txstat;
2769 
2770 	ifp = sc->dc_ifp;
2771 
2772 	/*
2773 	 * Go through our tx list and free mbufs for those
2774 	 * frames that have been transmitted.
2775 	 */
2776 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2777 	idx = sc->dc_cdata.dc_tx_cons;
2778 	while (idx != sc->dc_cdata.dc_tx_prod) {
2779 
2780 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2781 		txstat = le32toh(cur_tx->dc_status);
2782 		ctl = le32toh(cur_tx->dc_ctl);
2783 
2784 		if (txstat & DC_TXSTAT_OWN)
2785 			break;
2786 
2787 		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2788 			if (ctl & DC_TXCTL_SETUP) {
2789 				/*
2790 				 * Yes, the PNIC is so brain damaged
2791 				 * that it will sometimes generate a TX
2792 				 * underrun error while DMAing the RX
2793 				 * filter setup frame. If we detect this,
2794 				 * we have to send the setup frame again,
2795 				 * or else the filter won't be programmed
2796 				 * correctly.
2797 				 */
2798 				if (DC_IS_PNIC(sc)) {
2799 					if (txstat & DC_TXSTAT_ERRSUM)
2800 						dc_setfilt(sc);
2801 				}
2802 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2803 			}
2804 			sc->dc_cdata.dc_tx_cnt--;
2805 			DC_INC(idx, DC_TX_LIST_CNT);
2806 			continue;
2807 		}
2808 
2809 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2810 			/*
2811 			 * XXX: Why does my Xircom taunt me so?
2812 			 * For some reason it likes setting the CARRLOST flag
2813 			 * even when the carrier is there. wtf?!?
2814 			 * Who knows, but Conexant chips have the
2815 			 * same problem. Maybe they took lessons
2816 			 * from Xircom.
2817 			 */
2818 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2819 			    sc->dc_pmode == DC_PMODE_MII &&
2820 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2821 			    DC_TXSTAT_NOCARRIER)))
2822 				txstat &= ~DC_TXSTAT_ERRSUM;
2823 		} else {
2824 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2825 			    sc->dc_pmode == DC_PMODE_MII &&
2826 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2827 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2828 				txstat &= ~DC_TXSTAT_ERRSUM;
2829 		}
2830 
2831 		if (txstat & DC_TXSTAT_ERRSUM) {
2832 			ifp->if_oerrors++;
2833 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2834 				ifp->if_collisions++;
2835 			if (txstat & DC_TXSTAT_LATECOLL)
2836 				ifp->if_collisions++;
2837 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2838 				dc_init_locked(sc);
2839 				return;
2840 			}
2841 		}
2842 
2843 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2844 
2845 		ifp->if_opackets++;
2846 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2847 			bus_dmamap_sync(sc->dc_mtag,
2848 			    sc->dc_cdata.dc_tx_map[idx],
2849 			    BUS_DMASYNC_POSTWRITE);
2850 			bus_dmamap_unload(sc->dc_mtag,
2851 			    sc->dc_cdata.dc_tx_map[idx]);
2852 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2853 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2854 		}
2855 
2856 		sc->dc_cdata.dc_tx_cnt--;
2857 		DC_INC(idx, DC_TX_LIST_CNT);
2858 	}
2859 	sc->dc_cdata.dc_tx_cons = idx;
2860 
2861 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_RSVD)
2862 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2863 
2864 	if (sc->dc_cdata.dc_tx_cnt == 0)
2865 		sc->dc_wdog_timer = 0;
2866 }
2867 
2868 static void
2869 dc_tick(void *xsc)
2870 {
2871 	struct dc_softc *sc;
2872 	struct mii_data *mii;
2873 	struct ifnet *ifp;
2874 	u_int32_t r;
2875 
2876 	sc = xsc;
2877 	DC_LOCK_ASSERT(sc);
2878 	ifp = sc->dc_ifp;
2879 	mii = device_get_softc(sc->dc_miibus);
2880 
2881 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2882 		if (sc->dc_flags & DC_21143_NWAY) {
2883 			r = CSR_READ_4(sc, DC_10BTSTAT);
2884 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2885 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2886 				sc->dc_link = 0;
2887 				mii_mediachg(mii);
2888 			}
2889 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2890 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2891 				sc->dc_link = 0;
2892 				mii_mediachg(mii);
2893 			}
2894 			if (sc->dc_link == 0)
2895 				mii_tick(mii);
2896 		} else {
2897 			/*
2898 			 * For NICs which never report DC_RXSTATE_WAIT, we
2899 			 * have to bite the bullet...
2900 			 */
2901 			if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
2902 			    DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
2903 			    sc->dc_cdata.dc_tx_cnt == 0) {
2904 				mii_tick(mii);
2905 				if (!(mii->mii_media_status & IFM_ACTIVE))
2906 					sc->dc_link = 0;
2907 			}
2908 		}
2909 	} else
2910 		mii_tick(mii);
2911 
2912 	/*
2913 	 * When the init routine completes, we expect to be able to send
2914 	 * packets right away, and in fact the network code will send a
2915 	 * gratuitous ARP the moment the init routine marks the interface
2916 	 * as running. However, even though the MAC may have been initialized,
2917 	 * there may be a delay of a few seconds before the PHY completes
2918 	 * autonegotiation and the link is brought up. Any transmissions
2919 	 * made during that delay will be lost. Dealing with this is tricky:
2920 	 * we can't just pause in the init routine while waiting for the
2921 	 * PHY to come ready since that would bring the whole system to
2922 	 * a screeching halt for several seconds.
2923 	 *
2924 	 * What we do here is prevent the TX start routine from sending
2925 	 * any packets until a link has been established. After the
2926 	 * interface has been initialized, the tick routine will poll
2927 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2928 	 * that time, packets will stay in the send queue, and once the
2929 	 * link comes up, they will be flushed out to the wire.
2930 	 */
2931 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2932 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2933 		sc->dc_link++;
2934 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2935 			dc_start_locked(ifp);
2936 	}
2937 
2938 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2939 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2940 	else
2941 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2942 }
2943 
2944 /*
2945  * A transmit underrun has occurred.  Back off the transmit threshold,
2946  * or switch to store and forward mode if we have to.
2947  */
2948 static void
2949 dc_tx_underrun(struct dc_softc *sc)
2950 {
2951 	u_int32_t isr;
2952 	int i;
2953 
2954 	if (DC_IS_DAVICOM(sc))
2955 		dc_init_locked(sc);
2956 
2957 	if (DC_IS_INTEL(sc)) {
2958 		/*
2959 		 * The real 21143 requires that the transmitter be idle
2960 		 * in order to change the transmit threshold or store
2961 		 * and forward state.
2962 		 */
2963 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2964 
2965 		for (i = 0; i < DC_TIMEOUT; i++) {
2966 			isr = CSR_READ_4(sc, DC_ISR);
2967 			if (isr & DC_ISR_TX_IDLE)
2968 				break;
2969 			DELAY(10);
2970 		}
2971 		if (i == DC_TIMEOUT) {
2972 			device_printf(sc->dc_dev,
2973 			    "%s: failed to force tx to idle state\n",
2974 			    __func__);
2975 			dc_init_locked(sc);
2976 		}
2977 	}
2978 
2979 	device_printf(sc->dc_dev, "TX underrun -- ");
2980 	sc->dc_txthresh += DC_TXTHRESH_INC;
2981 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2982 		printf("using store and forward mode\n");
2983 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2984 	} else {
2985 		printf("increasing TX threshold\n");
2986 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2987 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2988 	}
2989 
2990 	if (DC_IS_INTEL(sc))
2991 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2992 }
2993 
2994 #ifdef DEVICE_POLLING
2995 static poll_handler_t dc_poll;
2996 
2997 static int
2998 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2999 {
3000 	struct dc_softc *sc = ifp->if_softc;
3001 	int rx_npkts = 0;
3002 
3003 	DC_LOCK(sc);
3004 
3005 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3006 		DC_UNLOCK(sc);
3007 		return (rx_npkts);
3008 	}
3009 
3010 	sc->rxcycles = count;
3011 	rx_npkts = dc_rxeof(sc);
3012 	dc_txeof(sc);
3013 	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3014 	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3015 		dc_start_locked(ifp);
3016 
3017 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3018 		u_int32_t	status;
3019 
3020 		status = CSR_READ_4(sc, DC_ISR);
3021 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3022 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3023 			DC_ISR_BUS_ERR);
3024 		if (!status) {
3025 			DC_UNLOCK(sc);
3026 			return (rx_npkts);
3027 		}
3028 		/* ack what we have */
3029 		CSR_WRITE_4(sc, DC_ISR, status);
3030 
3031 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3032 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3033 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3034 
3035 			if (dc_rx_resync(sc))
3036 				dc_rxeof(sc);
3037 		}
3038 		/* restart transmit unit if necessary */
3039 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3040 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3041 
3042 		if (status & DC_ISR_TX_UNDERRUN)
3043 			dc_tx_underrun(sc);
3044 
3045 		if (status & DC_ISR_BUS_ERR) {
3046 			if_printf(ifp, "%s: bus error\n", __func__);
3047 			dc_reset(sc);
3048 			dc_init_locked(sc);
3049 		}
3050 	}
3051 	DC_UNLOCK(sc);
3052 	return (rx_npkts);
3053 }
3054 #endif /* DEVICE_POLLING */
3055 
3056 static void
3057 dc_intr(void *arg)
3058 {
3059 	struct dc_softc *sc;
3060 	struct ifnet *ifp;
3061 	u_int32_t status;
3062 
3063 	sc = arg;
3064 
3065 	if (sc->suspended)
3066 		return;
3067 
3068 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3069 		return;
3070 
3071 	DC_LOCK(sc);
3072 	ifp = sc->dc_ifp;
3073 #ifdef DEVICE_POLLING
3074 	if (ifp->if_capenable & IFCAP_POLLING) {
3075 		DC_UNLOCK(sc);
3076 		return;
3077 	}
3078 #endif
3079 
3080 	/* Suppress unwanted interrupts */
3081 	if (!(ifp->if_flags & IFF_UP)) {
3082 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3083 			dc_stop(sc);
3084 		DC_UNLOCK(sc);
3085 		return;
3086 	}
3087 
3088 	/* Disable interrupts. */
3089 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3090 
3091 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
3092 	    status != 0xFFFFFFFF &&
3093 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3094 
3095 		CSR_WRITE_4(sc, DC_ISR, status);
3096 
3097 		if (status & DC_ISR_RX_OK) {
3098 			int		curpkts;
3099 			curpkts = ifp->if_ipackets;
3100 			dc_rxeof(sc);
3101 			if (curpkts == ifp->if_ipackets) {
3102 				while (dc_rx_resync(sc))
3103 					dc_rxeof(sc);
3104 			}
3105 		}
3106 
3107 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3108 			dc_txeof(sc);
3109 
3110 		if (status & DC_ISR_TX_IDLE) {
3111 			dc_txeof(sc);
3112 			if (sc->dc_cdata.dc_tx_cnt) {
3113 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3114 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3115 			}
3116 		}
3117 
3118 		if (status & DC_ISR_TX_UNDERRUN)
3119 			dc_tx_underrun(sc);
3120 
3121 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3122 		    || (status & DC_ISR_RX_NOBUF)) {
3123 			int		curpkts;
3124 			curpkts = ifp->if_ipackets;
3125 			dc_rxeof(sc);
3126 			if (curpkts == ifp->if_ipackets) {
3127 				while (dc_rx_resync(sc))
3128 					dc_rxeof(sc);
3129 			}
3130 		}
3131 
3132 		if (status & DC_ISR_BUS_ERR) {
3133 			dc_reset(sc);
3134 			dc_init_locked(sc);
3135 		}
3136 	}
3137 
3138 	/* Re-enable interrupts. */
3139 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3140 
3141 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3142 		dc_start_locked(ifp);
3143 
3144 	DC_UNLOCK(sc);
3145 }
3146 
3147 /*
3148  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3149  * pointers to the fragment pointers.
3150  */
3151 static int
3152 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3153 {
3154 	bus_dma_segment_t segs[DC_MAXFRAGS];
3155 	struct dc_desc *f;
3156 	struct mbuf *m;
3157 	int cur, defragged, error, first, frag, i, idx, nseg;
3158 
3159 	/*
3160 	 * If there's no way we can send any packets, return now.
3161 	 */
3162 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_RSVD)
3163 		return (ENOBUFS);
3164 
3165 	m = NULL;
3166 	defragged = 0;
3167 	if (sc->dc_flags & DC_TX_COALESCE &&
3168 	    ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
3169 		m = m_defrag(*m_head, M_DONTWAIT);
3170 		defragged = 1;
3171 	} else {
3172 		/*
3173 		 * Count the number of frags in this chain to see if we
3174 		 * need to m_collapse.  Since the descriptor list is shared
3175 		 * by all packets, we'll m_collapse long chains so that they
3176 		 * do not use up the entire list, even if they would fit.
3177 		 */
3178 		i = 0;
3179 		for (m = *m_head; m != NULL; m = m->m_next)
3180 			i++;
3181 		if (i > DC_TX_LIST_CNT / 4 ||
3182 		    DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
3183 		    DC_TX_LIST_RSVD) {
3184 			m = m_collapse(*m_head, M_DONTWAIT, DC_MAXFRAGS);
3185 			defragged = 1;
3186 		}
3187 	}
3188 	if (defragged != 0) {
3189 		if (m == NULL) {
3190 			m_freem(*m_head);
3191 			*m_head = NULL;
3192 			return (ENOBUFS);
3193 		}
3194 		*m_head = m;
3195 	}
3196 
3197 	idx = sc->dc_cdata.dc_tx_prod;
3198 	error = bus_dmamap_load_mbuf_sg(sc->dc_mtag,
3199 	    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3200 	if (error == EFBIG) {
3201 		if (defragged != 0 || (m = m_collapse(*m_head, M_DONTWAIT,
3202 		    DC_MAXFRAGS)) == NULL) {
3203 			m_freem(*m_head);
3204 			*m_head = NULL;
3205 			return (defragged != 0 ? error : ENOBUFS);
3206 		}
3207 		*m_head = m;
3208 		error = bus_dmamap_load_mbuf_sg(sc->dc_mtag,
3209 		    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3210 		if (error != 0) {
3211 			m_freem(*m_head);
3212 			*m_head = NULL;
3213 			return (error);
3214 		}
3215 	} else if (error != 0)
3216 		return (error);
3217 	KASSERT(nseg <= DC_MAXFRAGS,
3218 	    ("%s: wrong number of segments (%d)", __func__, nseg));
3219 	if (nseg == 0) {
3220 		m_freem(*m_head);
3221 		*m_head = NULL;
3222 		return (EIO);
3223 	}
3224 
3225 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3226 	for (i = 0; i < nseg; i++) {
3227 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3228 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3229 		    (first != sc->dc_cdata.dc_tx_first)) {
3230 			bus_dmamap_unload(sc->dc_mtag,
3231 			    sc->dc_cdata.dc_tx_map[first]);
3232 			m_freem(*m_head);
3233 			*m_head = NULL;
3234 			return (ENOBUFS);
3235 		}
3236 
3237 		f = &sc->dc_ldata->dc_tx_list[frag];
3238 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3239 		if (i == 0) {
3240 			f->dc_status = 0;
3241 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3242 		} else
3243 			f->dc_status = htole32(DC_TXSTAT_OWN);
3244 		f->dc_data = htole32(segs[i].ds_addr);
3245 		cur = frag;
3246 		DC_INC(frag, DC_TX_LIST_CNT);
3247 	}
3248 
3249 	sc->dc_cdata.dc_tx_prod = frag;
3250 	sc->dc_cdata.dc_tx_cnt += nseg;
3251 	sc->dc_cdata.dc_tx_chain[cur] = *m_head;
3252 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3253 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3254 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3255 		    htole32(DC_TXCTL_FINT);
3256 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3257 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3258 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3259 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3260 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3261 
3262 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3263 	    BUS_DMASYNC_PREWRITE);
3264 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3265 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3266 	return (0);
3267 }
3268 
3269 static void
3270 dc_start(struct ifnet *ifp)
3271 {
3272 	struct dc_softc *sc;
3273 
3274 	sc = ifp->if_softc;
3275 	DC_LOCK(sc);
3276 	dc_start_locked(ifp);
3277 	DC_UNLOCK(sc);
3278 }
3279 
3280 /*
3281  * Main transmit routine
3282  * To avoid having to do mbuf copies, we put pointers to the mbuf data
3283  * regions directly in the transmit lists.  We also save a copy of the
3284  * pointers since the transmit list fragment pointers are physical
3285  * addresses.
3286  */
3287 static void
3288 dc_start_locked(struct ifnet *ifp)
3289 {
3290 	struct dc_softc *sc;
3291 	struct mbuf *m_head = NULL;
3292 	unsigned int queued = 0;
3293 	int idx;
3294 
3295 	sc = ifp->if_softc;
3296 
3297 	DC_LOCK_ASSERT(sc);
3298 
3299 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10)
3300 		return;
3301 
3302 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
3303 		return;
3304 
3305 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3306 
3307 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3308 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3309 		if (m_head == NULL)
3310 			break;
3311 
3312 		if (dc_encap(sc, &m_head)) {
3313 			if (m_head == NULL)
3314 				break;
3315 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3316 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3317 			break;
3318 		}
3319 		idx = sc->dc_cdata.dc_tx_prod;
3320 
3321 		queued++;
3322 		/*
3323 		 * If there's a BPF listener, bounce a copy of this frame
3324 		 * to him.
3325 		 */
3326 		BPF_MTAP(ifp, m_head);
3327 
3328 		if (sc->dc_flags & DC_TX_ONE) {
3329 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3330 			break;
3331 		}
3332 	}
3333 
3334 	if (queued > 0) {
3335 		/* Transmit */
3336 		if (!(sc->dc_flags & DC_TX_POLL))
3337 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3338 
3339 		/*
3340 		 * Set a timeout in case the chip goes out to lunch.
3341 		 */
3342 		sc->dc_wdog_timer = 5;
3343 	}
3344 }
3345 
3346 static void
3347 dc_init(void *xsc)
3348 {
3349 	struct dc_softc *sc = xsc;
3350 
3351 	DC_LOCK(sc);
3352 	dc_init_locked(sc);
3353 	DC_UNLOCK(sc);
3354 }
3355 
3356 static void
3357 dc_init_locked(struct dc_softc *sc)
3358 {
3359 	struct ifnet *ifp = sc->dc_ifp;
3360 	struct mii_data *mii;
3361 
3362 	DC_LOCK_ASSERT(sc);
3363 
3364 	mii = device_get_softc(sc->dc_miibus);
3365 
3366 	/*
3367 	 * Cancel pending I/O and free all RX/TX buffers.
3368 	 */
3369 	dc_stop(sc);
3370 	dc_reset(sc);
3371 
3372 	/*
3373 	 * Set cache alignment and burst length.
3374 	 */
3375 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3376 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3377 	else
3378 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3379 	/*
3380 	 * Evenly share the bus between receive and transmit process.
3381 	 */
3382 	if (DC_IS_INTEL(sc))
3383 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3384 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3385 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3386 	} else {
3387 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3388 	}
3389 	if (sc->dc_flags & DC_TX_POLL)
3390 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3391 	switch(sc->dc_cachesize) {
3392 	case 32:
3393 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3394 		break;
3395 	case 16:
3396 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3397 		break;
3398 	case 8:
3399 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3400 		break;
3401 	case 0:
3402 	default:
3403 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3404 		break;
3405 	}
3406 
3407 	if (sc->dc_flags & DC_TX_STORENFWD)
3408 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3409 	else {
3410 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3411 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3412 		} else {
3413 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3414 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3415 		}
3416 	}
3417 
3418 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3419 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3420 
3421 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3422 		/*
3423 		 * The app notes for the 98713 and 98715A say that
3424 		 * in order to have the chips operate properly, a magic
3425 		 * number must be written to CSR16. Macronix does not
3426 		 * document the meaning of these bits so there's no way
3427 		 * to know exactly what they do. The 98713 has a magic
3428 		 * number all its own; the rest all use a different one.
3429 		 */
3430 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3431 		if (sc->dc_type == DC_TYPE_98713)
3432 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3433 		else
3434 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3435 	}
3436 
3437 	if (DC_IS_XIRCOM(sc)) {
3438 		/*
3439 		 * setup General Purpose Port mode and data so the tulip
3440 		 * can talk to the MII.
3441 		 */
3442 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3443 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3444 		DELAY(10);
3445 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3446 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3447 		DELAY(10);
3448 	}
3449 
3450 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3451 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3452 
3453 	/* Init circular RX list. */
3454 	if (dc_list_rx_init(sc) == ENOBUFS) {
3455 		device_printf(sc->dc_dev,
3456 		    "initialization failed: no memory for rx buffers\n");
3457 		dc_stop(sc);
3458 		return;
3459 	}
3460 
3461 	/*
3462 	 * Init TX descriptors.
3463 	 */
3464 	dc_list_tx_init(sc);
3465 
3466 	/*
3467 	 * Load the address of the RX list.
3468 	 */
3469 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3470 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3471 
3472 	/*
3473 	 * Enable interrupts.
3474 	 */
3475 #ifdef DEVICE_POLLING
3476 	/*
3477 	 * ... but only if we are not polling, and make sure they are off in
3478 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3479 	 * after a reset.
3480 	 */
3481 	if (ifp->if_capenable & IFCAP_POLLING)
3482 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3483 	else
3484 #endif
3485 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3486 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3487 
3488 	/* Enable transmitter. */
3489 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3490 
3491 	/*
3492 	 * If this is an Intel 21143 and we're not using the
3493 	 * MII port, program the LED control pins so we get
3494 	 * link and activity indications.
3495 	 */
3496 	if (sc->dc_flags & DC_TULIP_LEDS) {
3497 		CSR_WRITE_4(sc, DC_WATCHDOG,
3498 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3499 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3500 	}
3501 
3502 	/*
3503 	 * Load the RX/multicast filter. We do this sort of late
3504 	 * because the filter programming scheme on the 21143 and
3505 	 * some clones requires DMAing a setup frame via the TX
3506 	 * engine, and we need the transmitter enabled for that.
3507 	 */
3508 	dc_setfilt(sc);
3509 
3510 	/* Enable receiver. */
3511 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3512 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3513 
3514 	mii_mediachg(mii);
3515 	dc_setcfg(sc, sc->dc_if_media);
3516 
3517 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3518 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3519 
3520 	/* Don't start the ticker if this is a homePNA link. */
3521 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3522 		sc->dc_link = 1;
3523 	else {
3524 		if (sc->dc_flags & DC_21143_NWAY)
3525 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3526 		else
3527 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3528 	}
3529 
3530 	sc->dc_wdog_timer = 0;
3531 	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3532 }
3533 
3534 /*
3535  * Set media options.
3536  */
3537 static int
3538 dc_ifmedia_upd(struct ifnet *ifp)
3539 {
3540 	struct dc_softc *sc;
3541 	struct mii_data *mii;
3542 	struct ifmedia *ifm;
3543 
3544 	sc = ifp->if_softc;
3545 	mii = device_get_softc(sc->dc_miibus);
3546 	DC_LOCK(sc);
3547 	mii_mediachg(mii);
3548 	ifm = &mii->mii_media;
3549 
3550 	if (DC_IS_DAVICOM(sc) &&
3551 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3552 		dc_setcfg(sc, ifm->ifm_media);
3553 	else
3554 		sc->dc_link = 0;
3555 	DC_UNLOCK(sc);
3556 
3557 	return (0);
3558 }
3559 
3560 /*
3561  * Report current media status.
3562  */
3563 static void
3564 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3565 {
3566 	struct dc_softc *sc;
3567 	struct mii_data *mii;
3568 	struct ifmedia *ifm;
3569 
3570 	sc = ifp->if_softc;
3571 	mii = device_get_softc(sc->dc_miibus);
3572 	DC_LOCK(sc);
3573 	mii_pollstat(mii);
3574 	ifm = &mii->mii_media;
3575 	if (DC_IS_DAVICOM(sc)) {
3576 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3577 			ifmr->ifm_active = ifm->ifm_media;
3578 			ifmr->ifm_status = 0;
3579 			DC_UNLOCK(sc);
3580 			return;
3581 		}
3582 	}
3583 	ifmr->ifm_active = mii->mii_media_active;
3584 	ifmr->ifm_status = mii->mii_media_status;
3585 	DC_UNLOCK(sc);
3586 }
3587 
3588 static int
3589 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3590 {
3591 	struct dc_softc *sc = ifp->if_softc;
3592 	struct ifreq *ifr = (struct ifreq *)data;
3593 	struct mii_data *mii;
3594 	int error = 0;
3595 
3596 	switch (command) {
3597 	case SIOCSIFFLAGS:
3598 		DC_LOCK(sc);
3599 		if (ifp->if_flags & IFF_UP) {
3600 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3601 				(IFF_PROMISC | IFF_ALLMULTI);
3602 
3603 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3604 				if (need_setfilt)
3605 					dc_setfilt(sc);
3606 			} else {
3607 				sc->dc_txthresh = 0;
3608 				dc_init_locked(sc);
3609 			}
3610 		} else {
3611 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3612 				dc_stop(sc);
3613 		}
3614 		sc->dc_if_flags = ifp->if_flags;
3615 		DC_UNLOCK(sc);
3616 		error = 0;
3617 		break;
3618 	case SIOCADDMULTI:
3619 	case SIOCDELMULTI:
3620 		DC_LOCK(sc);
3621 		dc_setfilt(sc);
3622 		DC_UNLOCK(sc);
3623 		error = 0;
3624 		break;
3625 	case SIOCGIFMEDIA:
3626 	case SIOCSIFMEDIA:
3627 		mii = device_get_softc(sc->dc_miibus);
3628 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3629 		break;
3630 	case SIOCSIFCAP:
3631 #ifdef DEVICE_POLLING
3632 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3633 		    !(ifp->if_capenable & IFCAP_POLLING)) {
3634 			error = ether_poll_register(dc_poll, ifp);
3635 			if (error)
3636 				return(error);
3637 			DC_LOCK(sc);
3638 			/* Disable interrupts */
3639 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3640 			ifp->if_capenable |= IFCAP_POLLING;
3641 			DC_UNLOCK(sc);
3642 			return (error);
3643 		}
3644 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3645 		    ifp->if_capenable & IFCAP_POLLING) {
3646 			error = ether_poll_deregister(ifp);
3647 			/* Enable interrupts. */
3648 			DC_LOCK(sc);
3649 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3650 			ifp->if_capenable &= ~IFCAP_POLLING;
3651 			DC_UNLOCK(sc);
3652 			return (error);
3653 		}
3654 #endif /* DEVICE_POLLING */
3655 		break;
3656 	default:
3657 		error = ether_ioctl(ifp, command, data);
3658 		break;
3659 	}
3660 
3661 	return (error);
3662 }
3663 
3664 static void
3665 dc_watchdog(void *xsc)
3666 {
3667 	struct dc_softc *sc = xsc;
3668 	struct ifnet *ifp;
3669 
3670 	DC_LOCK_ASSERT(sc);
3671 
3672 	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3673 		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3674 		return;
3675 	}
3676 
3677 	ifp = sc->dc_ifp;
3678 	ifp->if_oerrors++;
3679 	device_printf(sc->dc_dev, "watchdog timeout\n");
3680 
3681 	dc_stop(sc);
3682 	dc_reset(sc);
3683 	dc_init_locked(sc);
3684 
3685 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3686 		dc_start_locked(ifp);
3687 }
3688 
3689 /*
3690  * Stop the adapter and free any mbufs allocated to the
3691  * RX and TX lists.
3692  */
3693 static void
3694 dc_stop(struct dc_softc *sc)
3695 {
3696 	struct ifnet *ifp;
3697 	struct dc_list_data *ld;
3698 	struct dc_chain_data *cd;
3699 	int i;
3700 	u_int32_t ctl;
3701 
3702 	DC_LOCK_ASSERT(sc);
3703 
3704 	ifp = sc->dc_ifp;
3705 	ld = sc->dc_ldata;
3706 	cd = &sc->dc_cdata;
3707 
3708 	callout_stop(&sc->dc_stat_ch);
3709 	callout_stop(&sc->dc_wdog_ch);
3710 	sc->dc_wdog_timer = 0;
3711 
3712 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3713 
3714 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3715 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3716 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3717 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3718 	sc->dc_link = 0;
3719 
3720 	/*
3721 	 * Free data in the RX lists.
3722 	 */
3723 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3724 		if (cd->dc_rx_chain[i] != NULL) {
3725 			m_freem(cd->dc_rx_chain[i]);
3726 			cd->dc_rx_chain[i] = NULL;
3727 		}
3728 	}
3729 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3730 
3731 	/*
3732 	 * Free the TX list buffers.
3733 	 */
3734 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3735 		if (cd->dc_tx_chain[i] != NULL) {
3736 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3737 			if ((ctl & DC_TXCTL_SETUP) ||
3738 			    !(ctl & DC_TXCTL_LASTFRAG)) {
3739 				cd->dc_tx_chain[i] = NULL;
3740 				continue;
3741 			}
3742 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3743 			m_freem(cd->dc_tx_chain[i]);
3744 			cd->dc_tx_chain[i] = NULL;
3745 		}
3746 	}
3747 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3748 }
3749 
3750 /*
3751  * Device suspend routine.  Stop the interface and save some PCI
3752  * settings in case the BIOS doesn't restore them properly on
3753  * resume.
3754  */
3755 static int
3756 dc_suspend(device_t dev)
3757 {
3758 	struct dc_softc *sc;
3759 
3760 	sc = device_get_softc(dev);
3761 	DC_LOCK(sc);
3762 	dc_stop(sc);
3763 	sc->suspended = 1;
3764 	DC_UNLOCK(sc);
3765 
3766 	return (0);
3767 }
3768 
3769 /*
3770  * Device resume routine.  Restore some PCI settings in case the BIOS
3771  * doesn't, re-enable busmastering, and restart the interface if
3772  * appropriate.
3773  */
3774 static int
3775 dc_resume(device_t dev)
3776 {
3777 	struct dc_softc *sc;
3778 	struct ifnet *ifp;
3779 
3780 	sc = device_get_softc(dev);
3781 	ifp = sc->dc_ifp;
3782 
3783 	/* reinitialize interface if necessary */
3784 	DC_LOCK(sc);
3785 	if (ifp->if_flags & IFF_UP)
3786 		dc_init_locked(sc);
3787 
3788 	sc->suspended = 0;
3789 	DC_UNLOCK(sc);
3790 
3791 	return (0);
3792 }
3793 
3794 /*
3795  * Stop all chip I/O so that the kernel's probe routines don't
3796  * get confused by errant DMAs when rebooting.
3797  */
3798 static int
3799 dc_shutdown(device_t dev)
3800 {
3801 	struct dc_softc *sc;
3802 
3803 	sc = device_get_softc(dev);
3804 
3805 	DC_LOCK(sc);
3806 	dc_stop(sc);
3807 	DC_UNLOCK(sc);
3808 
3809 	return (0);
3810 }
3811