xref: /freebsd/sys/dev/e1000/e1000_api.c (revision 39beb93c)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2008, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_set_mac_type - Sets MAC type
117  *  @hw: pointer to the HW structure
118  *
119  *  This function sets the mac type of the adapter based on the
120  *  device ID stored in the hw structure.
121  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
122  *  e1000_setup_init_funcs()).
123  **/
124 s32 e1000_set_mac_type(struct e1000_hw *hw)
125 {
126 	struct e1000_mac_info *mac = &hw->mac;
127 	s32 ret_val = E1000_SUCCESS;
128 
129 	DEBUGFUNC("e1000_set_mac_type");
130 
131 	switch (hw->device_id) {
132 	case E1000_DEV_ID_82542:
133 		mac->type = e1000_82542;
134 		break;
135 	case E1000_DEV_ID_82543GC_FIBER:
136 	case E1000_DEV_ID_82543GC_COPPER:
137 		mac->type = e1000_82543;
138 		break;
139 	case E1000_DEV_ID_82544EI_COPPER:
140 	case E1000_DEV_ID_82544EI_FIBER:
141 	case E1000_DEV_ID_82544GC_COPPER:
142 	case E1000_DEV_ID_82544GC_LOM:
143 		mac->type = e1000_82544;
144 		break;
145 	case E1000_DEV_ID_82540EM:
146 	case E1000_DEV_ID_82540EM_LOM:
147 	case E1000_DEV_ID_82540EP:
148 	case E1000_DEV_ID_82540EP_LOM:
149 	case E1000_DEV_ID_82540EP_LP:
150 		mac->type = e1000_82540;
151 		break;
152 	case E1000_DEV_ID_82545EM_COPPER:
153 	case E1000_DEV_ID_82545EM_FIBER:
154 		mac->type = e1000_82545;
155 		break;
156 	case E1000_DEV_ID_82545GM_COPPER:
157 	case E1000_DEV_ID_82545GM_FIBER:
158 	case E1000_DEV_ID_82545GM_SERDES:
159 		mac->type = e1000_82545_rev_3;
160 		break;
161 	case E1000_DEV_ID_82546EB_COPPER:
162 	case E1000_DEV_ID_82546EB_FIBER:
163 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
164 		mac->type = e1000_82546;
165 		break;
166 	case E1000_DEV_ID_82546GB_COPPER:
167 	case E1000_DEV_ID_82546GB_FIBER:
168 	case E1000_DEV_ID_82546GB_SERDES:
169 	case E1000_DEV_ID_82546GB_PCIE:
170 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
171 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
172 		mac->type = e1000_82546_rev_3;
173 		break;
174 	case E1000_DEV_ID_82541EI:
175 	case E1000_DEV_ID_82541EI_MOBILE:
176 	case E1000_DEV_ID_82541ER_LOM:
177 		mac->type = e1000_82541;
178 		break;
179 	case E1000_DEV_ID_82541ER:
180 	case E1000_DEV_ID_82541GI:
181 	case E1000_DEV_ID_82541GI_LF:
182 	case E1000_DEV_ID_82541GI_MOBILE:
183 		mac->type = e1000_82541_rev_2;
184 		break;
185 	case E1000_DEV_ID_82547EI:
186 	case E1000_DEV_ID_82547EI_MOBILE:
187 		mac->type = e1000_82547;
188 		break;
189 	case E1000_DEV_ID_82547GI:
190 		mac->type = e1000_82547_rev_2;
191 		break;
192 	case E1000_DEV_ID_82571EB_COPPER:
193 	case E1000_DEV_ID_82571EB_FIBER:
194 	case E1000_DEV_ID_82571EB_SERDES:
195 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
196 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
197 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
198 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
199 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
200 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
201 		mac->type = e1000_82571;
202 		break;
203 	case E1000_DEV_ID_82572EI:
204 	case E1000_DEV_ID_82572EI_COPPER:
205 	case E1000_DEV_ID_82572EI_FIBER:
206 	case E1000_DEV_ID_82572EI_SERDES:
207 		mac->type = e1000_82572;
208 		break;
209 	case E1000_DEV_ID_82573E:
210 	case E1000_DEV_ID_82573E_IAMT:
211 	case E1000_DEV_ID_82573L:
212 		mac->type = e1000_82573;
213 		break;
214 	case E1000_DEV_ID_82574L:
215 		mac->type = e1000_82574;
216 		break;
217 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
218 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
219 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
220 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
221 		mac->type = e1000_80003es2lan;
222 		break;
223 	case E1000_DEV_ID_ICH8_IFE:
224 	case E1000_DEV_ID_ICH8_IFE_GT:
225 	case E1000_DEV_ID_ICH8_IFE_G:
226 	case E1000_DEV_ID_ICH8_IGP_M:
227 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
228 	case E1000_DEV_ID_ICH8_IGP_AMT:
229 	case E1000_DEV_ID_ICH8_IGP_C:
230 		mac->type = e1000_ich8lan;
231 		break;
232 	case E1000_DEV_ID_ICH9_IFE:
233 	case E1000_DEV_ID_ICH9_IFE_GT:
234 	case E1000_DEV_ID_ICH9_IFE_G:
235 	case E1000_DEV_ID_ICH9_IGP_M:
236 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
237 	case E1000_DEV_ID_ICH9_IGP_M_V:
238 	case E1000_DEV_ID_ICH9_IGP_AMT:
239 	case E1000_DEV_ID_ICH9_BM:
240 	case E1000_DEV_ID_ICH9_IGP_C:
241 	case E1000_DEV_ID_ICH10_R_BM_LM:
242 	case E1000_DEV_ID_ICH10_R_BM_LF:
243 	case E1000_DEV_ID_ICH10_R_BM_V:
244 		mac->type = e1000_ich9lan;
245 		break;
246 	case E1000_DEV_ID_ICH10_D_BM_LM:
247 	case E1000_DEV_ID_ICH10_D_BM_LF:
248 		mac->type = e1000_ich10lan;
249 		break;
250 	case E1000_DEV_ID_82575EB_COPPER:
251 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
252 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
253 		mac->type = e1000_82575;
254 		break;
255 	case E1000_DEV_ID_82576:
256 	case E1000_DEV_ID_82576_FIBER:
257 	case E1000_DEV_ID_82576_SERDES:
258 	case E1000_DEV_ID_82576_QUAD_COPPER:
259 		mac->type = e1000_82576;
260 		break;
261 	default:
262 		/* Should never have loaded on this device */
263 		ret_val = -E1000_ERR_MAC_INIT;
264 		break;
265 	}
266 
267 	return ret_val;
268 }
269 
270 /**
271  *  e1000_setup_init_funcs - Initializes function pointers
272  *  @hw: pointer to the HW structure
273  *  @init_device: TRUE will initialize the rest of the function pointers
274  *                 getting the device ready for use.  FALSE will only set
275  *                 MAC type and the function pointers for the other init
276  *                 functions.  Passing FALSE will not generate any hardware
277  *                 reads or writes.
278  *
279  *  This function must be called by a driver in order to use the rest
280  *  of the 'shared' code files. Called by drivers only.
281  **/
282 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
283 {
284 	s32 ret_val;
285 
286 	/* Can't do much good without knowing the MAC type. */
287 	ret_val = e1000_set_mac_type(hw);
288 	if (ret_val) {
289 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
290 		goto out;
291 	}
292 
293 	if (!hw->hw_addr) {
294 		DEBUGOUT("ERROR: Registers not mapped\n");
295 		ret_val = -E1000_ERR_CONFIG;
296 		goto out;
297 	}
298 
299 	/*
300 	 * Init function pointers to generic implementations. We do this first
301 	 * allowing a driver module to override it afterward.
302 	 */
303 	e1000_init_mac_ops_generic(hw);
304 	e1000_init_phy_ops_generic(hw);
305 	e1000_init_nvm_ops_generic(hw);
306 
307 	/*
308 	 * Set up the init function pointers. These are functions within the
309 	 * adapter family file that sets up function pointers for the rest of
310 	 * the functions in that family.
311 	 */
312 	switch (hw->mac.type) {
313 	case e1000_82542:
314 		e1000_init_function_pointers_82542(hw);
315 		break;
316 	case e1000_82543:
317 	case e1000_82544:
318 		e1000_init_function_pointers_82543(hw);
319 		break;
320 	case e1000_82540:
321 	case e1000_82545:
322 	case e1000_82545_rev_3:
323 	case e1000_82546:
324 	case e1000_82546_rev_3:
325 		e1000_init_function_pointers_82540(hw);
326 		break;
327 	case e1000_82541:
328 	case e1000_82541_rev_2:
329 	case e1000_82547:
330 	case e1000_82547_rev_2:
331 		e1000_init_function_pointers_82541(hw);
332 		break;
333 	case e1000_82571:
334 	case e1000_82572:
335 	case e1000_82573:
336 	case e1000_82574:
337 		e1000_init_function_pointers_82571(hw);
338 		break;
339 	case e1000_80003es2lan:
340 		e1000_init_function_pointers_80003es2lan(hw);
341 		break;
342 	case e1000_ich8lan:
343 	case e1000_ich9lan:
344 	case e1000_ich10lan:
345 		e1000_init_function_pointers_ich8lan(hw);
346 		break;
347 	case e1000_82575:
348 	case e1000_82576:
349 		e1000_init_function_pointers_82575(hw);
350 		break;
351 	default:
352 		DEBUGOUT("Hardware not supported\n");
353 		ret_val = -E1000_ERR_CONFIG;
354 		break;
355 	}
356 
357 	/*
358 	 * Initialize the rest of the function pointers. These require some
359 	 * register reads/writes in some cases.
360 	 */
361 	if (!(ret_val) && init_device) {
362 		ret_val = e1000_init_mac_params(hw);
363 		if (ret_val)
364 			goto out;
365 
366 		ret_val = e1000_init_nvm_params(hw);
367 		if (ret_val)
368 			goto out;
369 
370 		ret_val = e1000_init_phy_params(hw);
371 		if (ret_val)
372 			goto out;
373 
374 	}
375 
376 out:
377 	return ret_val;
378 }
379 
380 /**
381  *  e1000_get_bus_info - Obtain bus information for adapter
382  *  @hw: pointer to the HW structure
383  *
384  *  This will obtain information about the HW bus for which the
385  *  adapter is attached and stores it in the hw structure. This is a
386  *  function pointer entry point called by drivers.
387  **/
388 s32 e1000_get_bus_info(struct e1000_hw *hw)
389 {
390 	if (hw->mac.ops.get_bus_info)
391 		return hw->mac.ops.get_bus_info(hw);
392 
393 	return E1000_SUCCESS;
394 }
395 
396 /**
397  *  e1000_clear_vfta - Clear VLAN filter table
398  *  @hw: pointer to the HW structure
399  *
400  *  This clears the VLAN filter table on the adapter. This is a function
401  *  pointer entry point called by drivers.
402  **/
403 void e1000_clear_vfta(struct e1000_hw *hw)
404 {
405 	if (hw->mac.ops.clear_vfta)
406 		hw->mac.ops.clear_vfta(hw);
407 }
408 
409 /**
410  *  e1000_write_vfta - Write value to VLAN filter table
411  *  @hw: pointer to the HW structure
412  *  @offset: the 32-bit offset in which to write the value to.
413  *  @value: the 32-bit value to write at location offset.
414  *
415  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
416  *  table. This is a function pointer entry point called by drivers.
417  **/
418 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
419 {
420 	if (hw->mac.ops.write_vfta)
421 		hw->mac.ops.write_vfta(hw, offset, value);
422 }
423 
424 /**
425  *  e1000_update_mc_addr_list - Update Multicast addresses
426  *  @hw: pointer to the HW structure
427  *  @mc_addr_list: array of multicast addresses to program
428  *  @mc_addr_count: number of multicast addresses to program
429  *  @rar_used_count: the first RAR register free to program
430  *  @rar_count: total number of supported Receive Address Registers
431  *
432  *  Updates the Receive Address Registers and Multicast Table Array.
433  *  The caller must have a packed mc_addr_list of multicast addresses.
434  *  The parameter rar_count will usually be hw->mac.rar_entry_count
435  *  unless there are workarounds that change this.  Currently no func pointer
436  *  exists and all implementations are handled in the generic version of this
437  *  function.
438  **/
439 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
440                                u32 mc_addr_count, u32 rar_used_count,
441                                u32 rar_count)
442 {
443 	if (hw->mac.ops.update_mc_addr_list)
444 		hw->mac.ops.update_mc_addr_list(hw,
445 		                                mc_addr_list,
446 		                                mc_addr_count,
447 		                                rar_used_count,
448 		                                rar_count);
449 }
450 
451 /**
452  *  e1000_force_mac_fc - Force MAC flow control
453  *  @hw: pointer to the HW structure
454  *
455  *  Force the MAC's flow control settings. Currently no func pointer exists
456  *  and all implementations are handled in the generic version of this
457  *  function.
458  **/
459 s32 e1000_force_mac_fc(struct e1000_hw *hw)
460 {
461 	return e1000_force_mac_fc_generic(hw);
462 }
463 
464 /**
465  *  e1000_check_for_link - Check/Store link connection
466  *  @hw: pointer to the HW structure
467  *
468  *  This checks the link condition of the adapter and stores the
469  *  results in the hw->mac structure. This is a function pointer entry
470  *  point called by drivers.
471  **/
472 s32 e1000_check_for_link(struct e1000_hw *hw)
473 {
474 	if (hw->mac.ops.check_for_link)
475 		return hw->mac.ops.check_for_link(hw);
476 
477 	return -E1000_ERR_CONFIG;
478 }
479 
480 /**
481  *  e1000_check_mng_mode - Check management mode
482  *  @hw: pointer to the HW structure
483  *
484  *  This checks if the adapter has manageability enabled.
485  *  This is a function pointer entry point called by drivers.
486  **/
487 bool e1000_check_mng_mode(struct e1000_hw *hw)
488 {
489 	if (hw->mac.ops.check_mng_mode)
490 		return hw->mac.ops.check_mng_mode(hw);
491 
492 	return FALSE;
493 }
494 
495 /**
496  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
497  *  @hw: pointer to the HW structure
498  *  @buffer: pointer to the host interface
499  *  @length: size of the buffer
500  *
501  *  Writes the DHCP information to the host interface.
502  **/
503 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
504 {
505 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
506 }
507 
508 /**
509  *  e1000_reset_hw - Reset hardware
510  *  @hw: pointer to the HW structure
511  *
512  *  This resets the hardware into a known state. This is a function pointer
513  *  entry point called by drivers.
514  **/
515 s32 e1000_reset_hw(struct e1000_hw *hw)
516 {
517 	if (hw->mac.ops.reset_hw)
518 		return hw->mac.ops.reset_hw(hw);
519 
520 	return -E1000_ERR_CONFIG;
521 }
522 
523 /**
524  *  e1000_init_hw - Initialize hardware
525  *  @hw: pointer to the HW structure
526  *
527  *  This inits the hardware readying it for operation. This is a function
528  *  pointer entry point called by drivers.
529  **/
530 s32 e1000_init_hw(struct e1000_hw *hw)
531 {
532 	if (hw->mac.ops.init_hw)
533 		return hw->mac.ops.init_hw(hw);
534 
535 	return -E1000_ERR_CONFIG;
536 }
537 
538 /**
539  *  e1000_setup_link - Configures link and flow control
540  *  @hw: pointer to the HW structure
541  *
542  *  This configures link and flow control settings for the adapter. This
543  *  is a function pointer entry point called by drivers. While modules can
544  *  also call this, they probably call their own version of this function.
545  **/
546 s32 e1000_setup_link(struct e1000_hw *hw)
547 {
548 	if (hw->mac.ops.setup_link)
549 		return hw->mac.ops.setup_link(hw);
550 
551 	return -E1000_ERR_CONFIG;
552 }
553 
554 /**
555  *  e1000_get_speed_and_duplex - Returns current speed and duplex
556  *  @hw: pointer to the HW structure
557  *  @speed: pointer to a 16-bit value to store the speed
558  *  @duplex: pointer to a 16-bit value to store the duplex.
559  *
560  *  This returns the speed and duplex of the adapter in the two 'out'
561  *  variables passed in. This is a function pointer entry point called
562  *  by drivers.
563  **/
564 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
565 {
566 	if (hw->mac.ops.get_link_up_info)
567 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
568 
569 	return -E1000_ERR_CONFIG;
570 }
571 
572 /**
573  *  e1000_setup_led - Configures SW controllable LED
574  *  @hw: pointer to the HW structure
575  *
576  *  This prepares the SW controllable LED for use and saves the current state
577  *  of the LED so it can be later restored. This is a function pointer entry
578  *  point called by drivers.
579  **/
580 s32 e1000_setup_led(struct e1000_hw *hw)
581 {
582 	if (hw->mac.ops.setup_led)
583 		return hw->mac.ops.setup_led(hw);
584 
585 	return E1000_SUCCESS;
586 }
587 
588 /**
589  *  e1000_cleanup_led - Restores SW controllable LED
590  *  @hw: pointer to the HW structure
591  *
592  *  This restores the SW controllable LED to the value saved off by
593  *  e1000_setup_led. This is a function pointer entry point called by drivers.
594  **/
595 s32 e1000_cleanup_led(struct e1000_hw *hw)
596 {
597 	if (hw->mac.ops.cleanup_led)
598 		return hw->mac.ops.cleanup_led(hw);
599 
600 	return E1000_SUCCESS;
601 }
602 
603 /**
604  *  e1000_blink_led - Blink SW controllable LED
605  *  @hw: pointer to the HW structure
606  *
607  *  This starts the adapter LED blinking. Request the LED to be setup first
608  *  and cleaned up after. This is a function pointer entry point called by
609  *  drivers.
610  **/
611 s32 e1000_blink_led(struct e1000_hw *hw)
612 {
613 	if (hw->mac.ops.blink_led)
614 		return hw->mac.ops.blink_led(hw);
615 
616 	return E1000_SUCCESS;
617 }
618 
619 /**
620  *  e1000_led_on - Turn on SW controllable LED
621  *  @hw: pointer to the HW structure
622  *
623  *  Turns the SW defined LED on. This is a function pointer entry point
624  *  called by drivers.
625  **/
626 s32 e1000_led_on(struct e1000_hw *hw)
627 {
628 	if (hw->mac.ops.led_on)
629 		return hw->mac.ops.led_on(hw);
630 
631 	return E1000_SUCCESS;
632 }
633 
634 /**
635  *  e1000_led_off - Turn off SW controllable LED
636  *  @hw: pointer to the HW structure
637  *
638  *  Turns the SW defined LED off. This is a function pointer entry point
639  *  called by drivers.
640  **/
641 s32 e1000_led_off(struct e1000_hw *hw)
642 {
643 	if (hw->mac.ops.led_off)
644 		return hw->mac.ops.led_off(hw);
645 
646 	return E1000_SUCCESS;
647 }
648 
649 /**
650  *  e1000_reset_adaptive - Reset adaptive IFS
651  *  @hw: pointer to the HW structure
652  *
653  *  Resets the adaptive IFS. Currently no func pointer exists and all
654  *  implementations are handled in the generic version of this function.
655  **/
656 void e1000_reset_adaptive(struct e1000_hw *hw)
657 {
658 	e1000_reset_adaptive_generic(hw);
659 }
660 
661 /**
662  *  e1000_update_adaptive - Update adaptive IFS
663  *  @hw: pointer to the HW structure
664  *
665  *  Updates adapter IFS. Currently no func pointer exists and all
666  *  implementations are handled in the generic version of this function.
667  **/
668 void e1000_update_adaptive(struct e1000_hw *hw)
669 {
670 	e1000_update_adaptive_generic(hw);
671 }
672 
673 /**
674  *  e1000_disable_pcie_master - Disable PCI-Express master access
675  *  @hw: pointer to the HW structure
676  *
677  *  Disables PCI-Express master access and verifies there are no pending
678  *  requests. Currently no func pointer exists and all implementations are
679  *  handled in the generic version of this function.
680  **/
681 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
682 {
683 	return e1000_disable_pcie_master_generic(hw);
684 }
685 
686 /**
687  *  e1000_config_collision_dist - Configure collision distance
688  *  @hw: pointer to the HW structure
689  *
690  *  Configures the collision distance to the default value and is used
691  *  during link setup.
692  **/
693 void e1000_config_collision_dist(struct e1000_hw *hw)
694 {
695 	if (hw->mac.ops.config_collision_dist)
696 		hw->mac.ops.config_collision_dist(hw);
697 }
698 
699 /**
700  *  e1000_rar_set - Sets a receive address register
701  *  @hw: pointer to the HW structure
702  *  @addr: address to set the RAR to
703  *  @index: the RAR to set
704  *
705  *  Sets a Receive Address Register (RAR) to the specified address.
706  **/
707 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
708 {
709 	if (hw->mac.ops.rar_set)
710 		hw->mac.ops.rar_set(hw, addr, index);
711 }
712 
713 /**
714  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
715  *  @hw: pointer to the HW structure
716  *
717  *  Ensures that the MDI/MDIX SW state is valid.
718  **/
719 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
720 {
721 	if (hw->mac.ops.validate_mdi_setting)
722 		return hw->mac.ops.validate_mdi_setting(hw);
723 
724 	return E1000_SUCCESS;
725 }
726 
727 /**
728  *  e1000_mta_set - Sets multicast table bit
729  *  @hw: pointer to the HW structure
730  *  @hash_value: Multicast hash value.
731  *
732  *  This sets the bit in the multicast table corresponding to the
733  *  hash value.  This is a function pointer entry point called by drivers.
734  **/
735 void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
736 {
737 	if (hw->mac.ops.mta_set)
738 		hw->mac.ops.mta_set(hw, hash_value);
739 }
740 
741 /**
742  *  e1000_hash_mc_addr - Determines address location in multicast table
743  *  @hw: pointer to the HW structure
744  *  @mc_addr: Multicast address to hash.
745  *
746  *  This hashes an address to determine its location in the multicast
747  *  table. Currently no func pointer exists and all implementations
748  *  are handled in the generic version of this function.
749  **/
750 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
751 {
752 	return e1000_hash_mc_addr_generic(hw, mc_addr);
753 }
754 
755 /**
756  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
757  *  @hw: pointer to the HW structure
758  *
759  *  Enables packet filtering on transmit packets if manageability is enabled
760  *  and host interface is enabled.
761  *  Currently no func pointer exists and all implementations are handled in the
762  *  generic version of this function.
763  **/
764 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
765 {
766 	return e1000_enable_tx_pkt_filtering_generic(hw);
767 }
768 
769 /**
770  *  e1000_mng_host_if_write - Writes to the manageability host interface
771  *  @hw: pointer to the HW structure
772  *  @buffer: pointer to the host interface buffer
773  *  @length: size of the buffer
774  *  @offset: location in the buffer to write to
775  *  @sum: sum of the data (not checksum)
776  *
777  *  This function writes the buffer content at the offset given on the host if.
778  *  It also does alignment considerations to do the writes in most efficient
779  *  way.  Also fills up the sum of the buffer in *buffer parameter.
780  **/
781 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
782                             u16 offset, u8 *sum)
783 {
784 	if (hw->mac.ops.mng_host_if_write)
785 		return hw->mac.ops.mng_host_if_write(hw, buffer, length,
786 		                                     offset, sum);
787 
788 	return E1000_NOT_IMPLEMENTED;
789 }
790 
791 /**
792  *  e1000_mng_write_cmd_header - Writes manageability command header
793  *  @hw: pointer to the HW structure
794  *  @hdr: pointer to the host interface command header
795  *
796  *  Writes the command header after does the checksum calculation.
797  **/
798 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
799                                struct e1000_host_mng_command_header *hdr)
800 {
801 	if (hw->mac.ops.mng_write_cmd_header)
802 		return hw->mac.ops.mng_write_cmd_header(hw, hdr);
803 
804 	return E1000_NOT_IMPLEMENTED;
805 }
806 
807 /**
808  *  e1000_mng_enable_host_if - Checks host interface is enabled
809  *  @hw: pointer to the HW structure
810  *
811  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
812  *
813  *  This function checks whether the HOST IF is enabled for command operation
814  *  and also checks whether the previous command is completed.  It busy waits
815  *  in case of previous command is not completed.
816  **/
817 s32 e1000_mng_enable_host_if(struct e1000_hw * hw)
818 {
819 	if (hw->mac.ops.mng_enable_host_if)
820 		return hw->mac.ops.mng_enable_host_if(hw);
821 
822 	return E1000_NOT_IMPLEMENTED;
823 }
824 
825 /**
826  *  e1000_wait_autoneg - Waits for autonegotiation completion
827  *  @hw: pointer to the HW structure
828  *
829  *  Waits for autoneg to complete. Currently no func pointer exists and all
830  *  implementations are handled in the generic version of this function.
831  **/
832 s32 e1000_wait_autoneg(struct e1000_hw *hw)
833 {
834 	if (hw->mac.ops.wait_autoneg)
835 		return hw->mac.ops.wait_autoneg(hw);
836 
837 	return E1000_SUCCESS;
838 }
839 
840 /**
841  *  e1000_check_reset_block - Verifies PHY can be reset
842  *  @hw: pointer to the HW structure
843  *
844  *  Checks if the PHY is in a state that can be reset or if manageability
845  *  has it tied up. This is a function pointer entry point called by drivers.
846  **/
847 s32 e1000_check_reset_block(struct e1000_hw *hw)
848 {
849 	if (hw->phy.ops.check_reset_block)
850 		return hw->phy.ops.check_reset_block(hw);
851 
852 	return E1000_SUCCESS;
853 }
854 
855 /**
856  *  e1000_read_phy_reg - Reads PHY register
857  *  @hw: pointer to the HW structure
858  *  @offset: the register to read
859  *  @data: the buffer to store the 16-bit read.
860  *
861  *  Reads the PHY register and returns the value in data.
862  *  This is a function pointer entry point called by drivers.
863  **/
864 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
865 {
866 	if (hw->phy.ops.read_reg)
867 		return hw->phy.ops.read_reg(hw, offset, data);
868 
869 	return E1000_SUCCESS;
870 }
871 
872 /**
873  *  e1000_write_phy_reg - Writes PHY register
874  *  @hw: pointer to the HW structure
875  *  @offset: the register to write
876  *  @data: the value to write.
877  *
878  *  Writes the PHY register at offset with the value in data.
879  *  This is a function pointer entry point called by drivers.
880  **/
881 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
882 {
883 	if (hw->phy.ops.write_reg)
884 		return hw->phy.ops.write_reg(hw, offset, data);
885 
886 	return E1000_SUCCESS;
887 }
888 
889 /**
890  *  e1000_release_phy - Generic release PHY
891  *  @hw: pointer to the HW structure
892  *
893  *  Return if silicon family does not require a semaphore when accessing the
894  *  PHY.
895  **/
896 void e1000_release_phy(struct e1000_hw *hw)
897 {
898 	if (hw->phy.ops.release)
899 		hw->phy.ops.release(hw);
900 }
901 
902 /**
903  *  e1000_acquire_phy - Generic acquire PHY
904  *  @hw: pointer to the HW structure
905  *
906  *  Return success if silicon family does not require a semaphore when
907  *  accessing the PHY.
908  **/
909 s32 e1000_acquire_phy(struct e1000_hw *hw)
910 {
911 	if (hw->phy.ops.acquire)
912 		return hw->phy.ops.acquire(hw);
913 
914 	return E1000_SUCCESS;
915 }
916 
917 /**
918  *  e1000_cfg_on_link_up - Configure PHY upon link up
919  *  @hw: pointer to the HW structure
920  **/
921 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
922 {
923 	if (hw->phy.ops.cfg_on_link_up)
924 		return hw->phy.ops.cfg_on_link_up(hw);
925 
926 	return E1000_SUCCESS;
927 }
928 
929 /**
930  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
931  *  @hw: pointer to the HW structure
932  *  @offset: the register to read
933  *  @data: the location to store the 16-bit value read.
934  *
935  *  Reads a register out of the Kumeran interface. Currently no func pointer
936  *  exists and all implementations are handled in the generic version of
937  *  this function.
938  **/
939 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
940 {
941 	return e1000_read_kmrn_reg_generic(hw, offset, data);
942 }
943 
944 /**
945  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
946  *  @hw: pointer to the HW structure
947  *  @offset: the register to write
948  *  @data: the value to write.
949  *
950  *  Writes a register to the Kumeran interface. Currently no func pointer
951  *  exists and all implementations are handled in the generic version of
952  *  this function.
953  **/
954 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
955 {
956 	return e1000_write_kmrn_reg_generic(hw, offset, data);
957 }
958 
959 /**
960  *  e1000_get_cable_length - Retrieves cable length estimation
961  *  @hw: pointer to the HW structure
962  *
963  *  This function estimates the cable length and stores them in
964  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
965  *  entry point called by drivers.
966  **/
967 s32 e1000_get_cable_length(struct e1000_hw *hw)
968 {
969 	if (hw->phy.ops.get_cable_length)
970 		return hw->phy.ops.get_cable_length(hw);
971 
972 	return E1000_SUCCESS;
973 }
974 
975 /**
976  *  e1000_get_phy_info - Retrieves PHY information from registers
977  *  @hw: pointer to the HW structure
978  *
979  *  This function gets some information from various PHY registers and
980  *  populates hw->phy values with it. This is a function pointer entry
981  *  point called by drivers.
982  **/
983 s32 e1000_get_phy_info(struct e1000_hw *hw)
984 {
985 	if (hw->phy.ops.get_info)
986 		return hw->phy.ops.get_info(hw);
987 
988 	return E1000_SUCCESS;
989 }
990 
991 /**
992  *  e1000_phy_hw_reset - Hard PHY reset
993  *  @hw: pointer to the HW structure
994  *
995  *  Performs a hard PHY reset. This is a function pointer entry point called
996  *  by drivers.
997  **/
998 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
999 {
1000 	if (hw->phy.ops.reset)
1001 		return hw->phy.ops.reset(hw);
1002 
1003 	return E1000_SUCCESS;
1004 }
1005 
1006 /**
1007  *  e1000_phy_commit - Soft PHY reset
1008  *  @hw: pointer to the HW structure
1009  *
1010  *  Performs a soft PHY reset on those that apply. This is a function pointer
1011  *  entry point called by drivers.
1012  **/
1013 s32 e1000_phy_commit(struct e1000_hw *hw)
1014 {
1015 	if (hw->phy.ops.commit)
1016 		return hw->phy.ops.commit(hw);
1017 
1018 	return E1000_SUCCESS;
1019 }
1020 
1021 /**
1022  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1023  *  @hw: pointer to the HW structure
1024  *  @active: boolean used to enable/disable lplu
1025  *
1026  *  Success returns 0, Failure returns 1
1027  *
1028  *  The low power link up (lplu) state is set to the power management level D0
1029  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1030  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1031  *  is used during Dx states where the power conservation is most important.
1032  *  During driver activity, SmartSpeed should be enabled so performance is
1033  *  maintained.  This is a function pointer entry point called by drivers.
1034  **/
1035 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1036 {
1037 	if (hw->phy.ops.set_d0_lplu_state)
1038 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1039 
1040 	return E1000_SUCCESS;
1041 }
1042 
1043 /**
1044  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1045  *  @hw: pointer to the HW structure
1046  *  @active: boolean used to enable/disable lplu
1047  *
1048  *  Success returns 0, Failure returns 1
1049  *
1050  *  The low power link up (lplu) state is set to the power management level D3
1051  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1052  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1053  *  is used during Dx states where the power conservation is most important.
1054  *  During driver activity, SmartSpeed should be enabled so performance is
1055  *  maintained.  This is a function pointer entry point called by drivers.
1056  **/
1057 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1058 {
1059 	if (hw->phy.ops.set_d3_lplu_state)
1060 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1061 
1062 	return E1000_SUCCESS;
1063 }
1064 
1065 /**
1066  *  e1000_read_mac_addr - Reads MAC address
1067  *  @hw: pointer to the HW structure
1068  *
1069  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1070  *  Currently no func pointer exists and all implementations are handled in the
1071  *  generic version of this function.
1072  **/
1073 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1074 {
1075 	if (hw->mac.ops.read_mac_addr)
1076 		return hw->mac.ops.read_mac_addr(hw);
1077 
1078 	return e1000_read_mac_addr_generic(hw);
1079 }
1080 
1081 /**
1082  *  e1000_read_pba_num - Read device part number
1083  *  @hw: pointer to the HW structure
1084  *  @pba_num: pointer to device part number
1085  *
1086  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1087  *  the value in pba_num.
1088  *  Currently no func pointer exists and all implementations are handled in the
1089  *  generic version of this function.
1090  **/
1091 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1092 {
1093 	return e1000_read_pba_num_generic(hw, pba_num);
1094 }
1095 
1096 /**
1097  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1098  *  @hw: pointer to the HW structure
1099  *
1100  *  Validates the NVM checksum is correct. This is a function pointer entry
1101  *  point called by drivers.
1102  **/
1103 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1104 {
1105 	if (hw->nvm.ops.validate)
1106 		return hw->nvm.ops.validate(hw);
1107 
1108 	return -E1000_ERR_CONFIG;
1109 }
1110 
1111 /**
1112  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1113  *  @hw: pointer to the HW structure
1114  *
1115  *  Updates the NVM checksum. Currently no func pointer exists and all
1116  *  implementations are handled in the generic version of this function.
1117  **/
1118 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1119 {
1120 	if (hw->nvm.ops.update)
1121 		return hw->nvm.ops.update(hw);
1122 
1123 	return -E1000_ERR_CONFIG;
1124 }
1125 
1126 /**
1127  *  e1000_reload_nvm - Reloads EEPROM
1128  *  @hw: pointer to the HW structure
1129  *
1130  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1131  *  extended control register.
1132  **/
1133 void e1000_reload_nvm(struct e1000_hw *hw)
1134 {
1135 	if (hw->nvm.ops.reload)
1136 		hw->nvm.ops.reload(hw);
1137 }
1138 
1139 /**
1140  *  e1000_read_nvm - Reads NVM (EEPROM)
1141  *  @hw: pointer to the HW structure
1142  *  @offset: the word offset to read
1143  *  @words: number of 16-bit words to read
1144  *  @data: pointer to the properly sized buffer for the data.
1145  *
1146  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1147  *  pointer entry point called by drivers.
1148  **/
1149 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1150 {
1151 	if (hw->nvm.ops.read)
1152 		return hw->nvm.ops.read(hw, offset, words, data);
1153 
1154 	return -E1000_ERR_CONFIG;
1155 }
1156 
1157 /**
1158  *  e1000_write_nvm - Writes to NVM (EEPROM)
1159  *  @hw: pointer to the HW structure
1160  *  @offset: the word offset to read
1161  *  @words: number of 16-bit words to write
1162  *  @data: pointer to the properly sized buffer for the data.
1163  *
1164  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1165  *  pointer entry point called by drivers.
1166  **/
1167 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1168 {
1169 	if (hw->nvm.ops.write)
1170 		return hw->nvm.ops.write(hw, offset, words, data);
1171 
1172 	return E1000_SUCCESS;
1173 }
1174 
1175 /**
1176  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1177  *  @hw: pointer to the HW structure
1178  *  @reg: 32bit register offset
1179  *  @offset: the register to write
1180  *  @data: the value to write.
1181  *
1182  *  Writes the PHY register at offset with the value in data.
1183  *  This is a function pointer entry point called by drivers.
1184  **/
1185 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1186                               u8 data)
1187 {
1188 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1189 }
1190 
1191 /**
1192  * e1000_power_up_phy - Restores link in case of PHY power down
1193  * @hw: pointer to the HW structure
1194  *
1195  * The phy may be powered down to save power, to turn off link when the
1196  * driver is unloaded, or wake on lan is not enabled (among others).
1197  **/
1198 void e1000_power_up_phy(struct e1000_hw *hw)
1199 {
1200 	if (hw->phy.ops.power_up)
1201 		hw->phy.ops.power_up(hw);
1202 
1203 	e1000_setup_link(hw);
1204 }
1205 
1206 /**
1207  * e1000_power_down_phy - Power down PHY
1208  * @hw: pointer to the HW structure
1209  *
1210  * The phy may be powered down to save power, to turn off link when the
1211  * driver is unloaded, or wake on lan is not enabled (among others).
1212  **/
1213 void e1000_power_down_phy(struct e1000_hw *hw)
1214 {
1215 	if (hw->phy.ops.power_down)
1216 		hw->phy.ops.power_down(hw);
1217 }
1218 
1219 /**
1220  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1221  *  @hw: pointer to the HW structure
1222  *
1223  *  Shutdown the optics and PCS on driver unload.
1224  **/
1225 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1226 {
1227 	if (hw->mac.ops.shutdown_serdes)
1228 		hw->mac.ops.shutdown_serdes(hw);
1229 }
1230 
1231