xref: /freebsd/sys/dev/e1000/e1000_ich8lan.c (revision 10ff414c)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2020, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 /*$FreeBSD$*/
35 
36 /* 82562G 10/100 Network Connection
37  * 82562G-2 10/100 Network Connection
38  * 82562GT 10/100 Network Connection
39  * 82562GT-2 10/100 Network Connection
40  * 82562V 10/100 Network Connection
41  * 82562V-2 10/100 Network Connection
42  * 82566DC-2 Gigabit Network Connection
43  * 82566DC Gigabit Network Connection
44  * 82566DM-2 Gigabit Network Connection
45  * 82566DM Gigabit Network Connection
46  * 82566MC Gigabit Network Connection
47  * 82566MM Gigabit Network Connection
48  * 82567LM Gigabit Network Connection
49  * 82567LF Gigabit Network Connection
50  * 82567V Gigabit Network Connection
51  * 82567LM-2 Gigabit Network Connection
52  * 82567LF-2 Gigabit Network Connection
53  * 82567V-2 Gigabit Network Connection
54  * 82567LF-3 Gigabit Network Connection
55  * 82567LM-3 Gigabit Network Connection
56  * 82567LM-4 Gigabit Network Connection
57  * 82577LM Gigabit Network Connection
58  * 82577LC Gigabit Network Connection
59  * 82578DM Gigabit Network Connection
60  * 82578DC Gigabit Network Connection
61  * 82579LM Gigabit Network Connection
62  * 82579V Gigabit Network Connection
63  * Ethernet Connection I217-LM
64  * Ethernet Connection I217-V
65  * Ethernet Connection I218-V
66  * Ethernet Connection I218-LM
67  * Ethernet Connection (2) I218-LM
68  * Ethernet Connection (2) I218-V
69  * Ethernet Connection (3) I218-LM
70  * Ethernet Connection (3) I218-V
71  */
72 
73 #include "e1000_api.h"
74 
75 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
76 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
77 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
78 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
80 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
81 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
82 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
83 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
84 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
85 					      u8 *mc_addr_list,
86 					      u32 mc_addr_count);
87 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
89 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
90 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
91 					    bool active);
92 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
93 					    bool active);
94 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
95 				   u16 words, u16 *data);
96 static s32  e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
97 			       u16 *data);
98 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
99 				    u16 words, u16 *data);
100 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
101 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
102 static s32  e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
103 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
104 					    u16 *data);
105 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
106 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
108 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
109 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
110 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
111 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
112 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
113 					   u16 *speed, u16 *duplex);
114 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
115 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
116 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
117 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
118 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
119 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
120 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
121 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
122 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
123 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
124 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
125 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
127 					  u32 offset, u8 *data);
128 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
129 					  u8 size, u16 *data);
130 static s32  e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
131 					    u32 *data);
132 static s32  e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
133 					   u32 offset, u32 *data);
134 static s32  e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
135 					     u32 offset, u32 data);
136 static s32  e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
137 						  u32 offset, u32 dword);
138 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
139 					  u32 offset, u16 *data);
140 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
141 						 u32 offset, u8 byte);
142 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
143 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
144 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
145 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
146 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
147 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
148 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
149 
150 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
151 /* Offset 04h HSFSTS */
152 union ich8_hws_flash_status {
153 	struct ich8_hsfsts {
154 		u16 flcdone:1; /* bit 0 Flash Cycle Done */
155 		u16 flcerr:1; /* bit 1 Flash Cycle Error */
156 		u16 dael:1; /* bit 2 Direct Access error Log */
157 		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
158 		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
159 		u16 reserved1:2; /* bit 13:6 Reserved */
160 		u16 reserved2:6; /* bit 13:6 Reserved */
161 		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
162 		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
163 	} hsf_status;
164 	u16 regval;
165 };
166 
167 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
168 /* Offset 06h FLCTL */
169 union ich8_hws_flash_ctrl {
170 	struct ich8_hsflctl {
171 		u16 flcgo:1;   /* 0 Flash Cycle Go */
172 		u16 flcycle:2;   /* 2:1 Flash Cycle */
173 		u16 reserved:5;   /* 7:3 Reserved  */
174 		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
175 		u16 flockdn:6;   /* 15:10 Reserved */
176 	} hsf_ctrl;
177 	u16 regval;
178 };
179 
180 /* ICH Flash Region Access Permissions */
181 union ich8_hws_flash_regacc {
182 	struct ich8_flracc {
183 		u32 grra:8; /* 0:7 GbE region Read Access */
184 		u32 grwa:8; /* 8:15 GbE region Write Access */
185 		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
186 		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
187 	} hsf_flregacc;
188 	u16 regval;
189 };
190 
191 /**
192  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
193  *  @hw: pointer to the HW structure
194  *
195  *  Test access to the PHY registers by reading the PHY ID registers.  If
196  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
197  *  otherwise assume the read PHY ID is correct if it is valid.
198  *
199  *  Assumes the sw/fw/hw semaphore is already acquired.
200  **/
201 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
202 {
203 	u16 phy_reg = 0;
204 	u32 phy_id = 0;
205 	s32 ret_val = 0;
206 	u16 retry_count;
207 	u32 mac_reg = 0;
208 
209 	for (retry_count = 0; retry_count < 2; retry_count++) {
210 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
211 		if (ret_val || (phy_reg == 0xFFFF))
212 			continue;
213 		phy_id = (u32)(phy_reg << 16);
214 
215 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
216 		if (ret_val || (phy_reg == 0xFFFF)) {
217 			phy_id = 0;
218 			continue;
219 		}
220 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
221 		break;
222 	}
223 
224 	if (hw->phy.id) {
225 		if  (hw->phy.id == phy_id)
226 			goto out;
227 	} else if (phy_id) {
228 		hw->phy.id = phy_id;
229 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
230 		goto out;
231 	}
232 
233 	/* In case the PHY needs to be in mdio slow mode,
234 	 * set slow mode and try to get the PHY id again.
235 	 */
236 	if (hw->mac.type < e1000_pch_lpt) {
237 		hw->phy.ops.release(hw);
238 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
239 		if (!ret_val)
240 			ret_val = e1000_get_phy_id(hw);
241 		hw->phy.ops.acquire(hw);
242 	}
243 
244 	if (ret_val)
245 		return false;
246 out:
247 	if (hw->mac.type >= e1000_pch_lpt) {
248 		/* Only unforce SMBus if ME is not active */
249 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
250 		    E1000_ICH_FWSM_FW_VALID)) {
251 			/* Unforce SMBus mode in PHY */
252 			hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
253 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
254 			hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
255 
256 			/* Unforce SMBus mode in MAC */
257 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
258 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
259 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
260 		}
261 	}
262 
263 	return true;
264 }
265 
266 /**
267  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
268  *  @hw: pointer to the HW structure
269  *
270  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
271  *  used to reset the PHY to a quiescent state when necessary.
272  **/
273 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
274 {
275 	u32 mac_reg;
276 
277 	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
278 
279 	/* Set Phy Config Counter to 50msec */
280 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
281 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
282 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
283 	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
284 
285 	/* Toggle LANPHYPC Value bit */
286 	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
287 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
288 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
289 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
290 	E1000_WRITE_FLUSH(hw);
291 	msec_delay(1);
292 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
293 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
294 	E1000_WRITE_FLUSH(hw);
295 
296 	if (hw->mac.type < e1000_pch_lpt) {
297 		msec_delay(50);
298 	} else {
299 		u16 count = 20;
300 
301 		do {
302 			msec_delay(5);
303 		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
304 			   E1000_CTRL_EXT_LPCD) && count--);
305 
306 		msec_delay(30);
307 	}
308 }
309 
310 /**
311  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
312  *  @hw: pointer to the HW structure
313  *
314  *  Workarounds/flow necessary for PHY initialization during driver load
315  *  and resume paths.
316  **/
317 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
318 {
319 	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
320 	s32 ret_val;
321 
322 	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
323 
324 	/* Gate automatic PHY configuration by hardware on managed and
325 	 * non-managed 82579 and newer adapters.
326 	 */
327 	e1000_gate_hw_phy_config_ich8lan(hw, true);
328 
329 	/* It is not possible to be certain of the current state of ULP
330 	 * so forcibly disable it.
331 	 */
332 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
333 	e1000_disable_ulp_lpt_lp(hw, TRUE);
334 
335 	ret_val = hw->phy.ops.acquire(hw);
336 	if (ret_val) {
337 		DEBUGOUT("Failed to initialize PHY flow\n");
338 		goto out;
339 	}
340 
341 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
342 	 * inaccessible and resetting the PHY is not blocked, toggle the
343 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
344 	 */
345 	switch (hw->mac.type) {
346 	case e1000_pch_lpt:
347 	case e1000_pch_spt:
348 	case e1000_pch_cnp:
349 	case e1000_pch_tgp:
350 	case e1000_pch_adp:
351 	case e1000_pch_mtp:
352 		if (e1000_phy_is_accessible_pchlan(hw))
353 			break;
354 
355 		/* Before toggling LANPHYPC, see if PHY is accessible by
356 		 * forcing MAC to SMBus mode first.
357 		 */
358 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
359 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
360 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
361 
362 		/* Wait 50 milliseconds for MAC to finish any retries
363 		 * that it might be trying to perform from previous
364 		 * attempts to acknowledge any phy read requests.
365 		 */
366 		 msec_delay(50);
367 
368 		/* FALLTHROUGH */
369 	case e1000_pch2lan:
370 		if (e1000_phy_is_accessible_pchlan(hw))
371 			break;
372 
373 		/* FALLTHROUGH */
374 	case e1000_pchlan:
375 		if ((hw->mac.type == e1000_pchlan) &&
376 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
377 			break;
378 
379 		if (hw->phy.ops.check_reset_block(hw)) {
380 			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
381 			ret_val = -E1000_ERR_PHY;
382 			break;
383 		}
384 
385 		/* Toggle LANPHYPC Value bit */
386 		e1000_toggle_lanphypc_pch_lpt(hw);
387 		if (hw->mac.type >= e1000_pch_lpt) {
388 			if (e1000_phy_is_accessible_pchlan(hw))
389 				break;
390 
391 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
392 			 * so ensure that the MAC is also out of SMBus mode
393 			 */
394 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
395 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
396 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
397 
398 			if (e1000_phy_is_accessible_pchlan(hw))
399 				break;
400 
401 			ret_val = -E1000_ERR_PHY;
402 		}
403 		break;
404 	default:
405 		break;
406 	}
407 
408 	hw->phy.ops.release(hw);
409 	if (!ret_val) {
410 
411 		/* Check to see if able to reset PHY.  Print error if not */
412 		if (hw->phy.ops.check_reset_block(hw)) {
413 			ERROR_REPORT("Reset blocked by ME\n");
414 			goto out;
415 		}
416 
417 		/* Reset the PHY before any access to it.  Doing so, ensures
418 		 * that the PHY is in a known good state before we read/write
419 		 * PHY registers.  The generic reset is sufficient here,
420 		 * because we haven't determined the PHY type yet.
421 		 */
422 		ret_val = e1000_phy_hw_reset_generic(hw);
423 		if (ret_val)
424 			goto out;
425 
426 		/* On a successful reset, possibly need to wait for the PHY
427 		 * to quiesce to an accessible state before returning control
428 		 * to the calling function.  If the PHY does not quiesce, then
429 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
430 		 *  the PHY is in.
431 		 */
432 		ret_val = hw->phy.ops.check_reset_block(hw);
433 		if (ret_val)
434 			ERROR_REPORT("ME blocked access to PHY after reset\n");
435 	}
436 
437 out:
438 	/* Ungate automatic PHY configuration on non-managed 82579 */
439 	if ((hw->mac.type == e1000_pch2lan) &&
440 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
441 		msec_delay(10);
442 		e1000_gate_hw_phy_config_ich8lan(hw, false);
443 	}
444 
445 	return ret_val;
446 }
447 
448 /**
449  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
450  *  @hw: pointer to the HW structure
451  *
452  *  Initialize family-specific PHY parameters and function pointers.
453  **/
454 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
455 {
456 	struct e1000_phy_info *phy = &hw->phy;
457 	s32 ret_val;
458 
459 	DEBUGFUNC("e1000_init_phy_params_pchlan");
460 
461 	phy->addr		= 1;
462 	phy->reset_delay_us	= 100;
463 
464 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
465 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
466 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
467 	phy->ops.set_page	= e1000_set_page_igp;
468 	phy->ops.read_reg	= e1000_read_phy_reg_hv;
469 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
470 	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
471 	phy->ops.release	= e1000_release_swflag_ich8lan;
472 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
473 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
474 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
475 	phy->ops.write_reg	= e1000_write_phy_reg_hv;
476 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
477 	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
478 	phy->ops.power_up	= e1000_power_up_phy_copper;
479 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
480 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
481 
482 	phy->id = e1000_phy_unknown;
483 
484 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
485 	if (ret_val)
486 		return ret_val;
487 
488 	if (phy->id == e1000_phy_unknown)
489 		switch (hw->mac.type) {
490 		default:
491 			ret_val = e1000_get_phy_id(hw);
492 			if (ret_val)
493 				return ret_val;
494 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
495 				break;
496 			/* FALLTHROUGH */
497 		case e1000_pch2lan:
498 		case e1000_pch_lpt:
499 		case e1000_pch_spt:
500 		case e1000_pch_cnp:
501 		case e1000_pch_tgp:
502 		case e1000_pch_adp:
503 		case e1000_pch_mtp:
504 			/* In case the PHY needs to be in mdio slow mode,
505 			 * set slow mode and try to get the PHY id again.
506 			 */
507 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
508 			if (ret_val)
509 				return ret_val;
510 			ret_val = e1000_get_phy_id(hw);
511 			if (ret_val)
512 				return ret_val;
513 			break;
514 		}
515 	phy->type = e1000_get_phy_type_from_id(phy->id);
516 
517 	switch (phy->type) {
518 	case e1000_phy_82577:
519 	case e1000_phy_82579:
520 	case e1000_phy_i217:
521 		phy->ops.check_polarity = e1000_check_polarity_82577;
522 		phy->ops.force_speed_duplex =
523 			e1000_phy_force_speed_duplex_82577;
524 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
525 		phy->ops.get_info = e1000_get_phy_info_82577;
526 		phy->ops.commit = e1000_phy_sw_reset_generic;
527 		break;
528 	case e1000_phy_82578:
529 		phy->ops.check_polarity = e1000_check_polarity_m88;
530 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
531 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
532 		phy->ops.get_info = e1000_get_phy_info_m88;
533 		break;
534 	default:
535 		ret_val = -E1000_ERR_PHY;
536 		break;
537 	}
538 
539 	return ret_val;
540 }
541 
542 /**
543  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
544  *  @hw: pointer to the HW structure
545  *
546  *  Initialize family-specific PHY parameters and function pointers.
547  **/
548 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
549 {
550 	struct e1000_phy_info *phy = &hw->phy;
551 	s32 ret_val;
552 	u16 i = 0;
553 
554 	DEBUGFUNC("e1000_init_phy_params_ich8lan");
555 
556 	phy->addr		= 1;
557 	phy->reset_delay_us	= 100;
558 
559 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
560 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
561 	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
562 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
563 	phy->ops.read_reg	= e1000_read_phy_reg_igp;
564 	phy->ops.release	= e1000_release_swflag_ich8lan;
565 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
566 	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
567 	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
568 	phy->ops.write_reg	= e1000_write_phy_reg_igp;
569 	phy->ops.power_up	= e1000_power_up_phy_copper;
570 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
571 
572 	/* We may need to do this twice - once for IGP and if that fails,
573 	 * we'll set BM func pointers and try again
574 	 */
575 	ret_val = e1000_determine_phy_address(hw);
576 	if (ret_val) {
577 		phy->ops.write_reg = e1000_write_phy_reg_bm;
578 		phy->ops.read_reg  = e1000_read_phy_reg_bm;
579 		ret_val = e1000_determine_phy_address(hw);
580 		if (ret_val) {
581 			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
582 			return ret_val;
583 		}
584 	}
585 
586 	phy->id = 0;
587 	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
588 	       (i++ < 100)) {
589 		msec_delay(1);
590 		ret_val = e1000_get_phy_id(hw);
591 		if (ret_val)
592 			return ret_val;
593 	}
594 
595 	/* Verify phy id */
596 	switch (phy->id) {
597 	case IGP03E1000_E_PHY_ID:
598 		phy->type = e1000_phy_igp_3;
599 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
600 		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
601 		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
602 		phy->ops.get_info = e1000_get_phy_info_igp;
603 		phy->ops.check_polarity = e1000_check_polarity_igp;
604 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
605 		break;
606 	case IFE_E_PHY_ID:
607 	case IFE_PLUS_E_PHY_ID:
608 	case IFE_C_E_PHY_ID:
609 		phy->type = e1000_phy_ife;
610 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
611 		phy->ops.get_info = e1000_get_phy_info_ife;
612 		phy->ops.check_polarity = e1000_check_polarity_ife;
613 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
614 		break;
615 	case BME1000_E_PHY_ID:
616 		phy->type = e1000_phy_bm;
617 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
618 		phy->ops.read_reg = e1000_read_phy_reg_bm;
619 		phy->ops.write_reg = e1000_write_phy_reg_bm;
620 		phy->ops.commit = e1000_phy_sw_reset_generic;
621 		phy->ops.get_info = e1000_get_phy_info_m88;
622 		phy->ops.check_polarity = e1000_check_polarity_m88;
623 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
624 		break;
625 	default:
626 		return -E1000_ERR_PHY;
627 		break;
628 	}
629 
630 	return E1000_SUCCESS;
631 }
632 
633 /**
634  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
635  *  @hw: pointer to the HW structure
636  *
637  *  Initialize family-specific NVM parameters and function
638  *  pointers.
639  **/
640 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
641 {
642 	struct e1000_nvm_info *nvm = &hw->nvm;
643 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
644 	u32 gfpreg, sector_base_addr, sector_end_addr;
645 	u16 i;
646 	u32 nvm_size;
647 
648 	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
649 
650 	nvm->type = e1000_nvm_flash_sw;
651 
652 	if (hw->mac.type >= e1000_pch_spt) {
653 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
654 		 * STRAP register. This is because in SPT the GbE Flash region
655 		 * is no longer accessed through the flash registers. Instead,
656 		 * the mechanism has changed, and the Flash region access
657 		 * registers are now implemented in GbE memory space.
658 		 */
659 		nvm->flash_base_addr = 0;
660 		nvm_size =
661 		    (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
662 		    * NVM_SIZE_MULTIPLIER;
663 		nvm->flash_bank_size = nvm_size / 2;
664 		/* Adjust to word count */
665 		nvm->flash_bank_size /= sizeof(u16);
666 		/* Set the base address for flash register access */
667 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
668 	} else {
669 		/* Can't read flash registers if register set isn't mapped. */
670 		if (!hw->flash_address) {
671 			DEBUGOUT("ERROR: Flash registers not mapped\n");
672 			return -E1000_ERR_CONFIG;
673 		}
674 
675 		gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
676 
677 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
678 		 * Add 1 to sector_end_addr since this sector is included in
679 		 * the overall size.
680 		 */
681 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
682 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
683 
684 		/* flash_base_addr is byte-aligned */
685 		nvm->flash_base_addr = sector_base_addr
686 				       << FLASH_SECTOR_ADDR_SHIFT;
687 
688 		/* find total size of the NVM, then cut in half since the total
689 		 * size represents two separate NVM banks.
690 		 */
691 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
692 					<< FLASH_SECTOR_ADDR_SHIFT);
693 		nvm->flash_bank_size /= 2;
694 		/* Adjust to word count */
695 		nvm->flash_bank_size /= sizeof(u16);
696 	}
697 
698 	nvm->word_size = E1000_SHADOW_RAM_WORDS;
699 
700 	/* Clear shadow ram */
701 	for (i = 0; i < nvm->word_size; i++) {
702 		dev_spec->shadow_ram[i].modified = false;
703 		dev_spec->shadow_ram[i].value    = 0xFFFF;
704 	}
705 
706 	/* Function Pointers */
707 	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
708 	nvm->ops.release	= e1000_release_nvm_ich8lan;
709 	if (hw->mac.type >= e1000_pch_spt) {
710 		nvm->ops.read	= e1000_read_nvm_spt;
711 		nvm->ops.update	= e1000_update_nvm_checksum_spt;
712 	} else {
713 		nvm->ops.read	= e1000_read_nvm_ich8lan;
714 		nvm->ops.update	= e1000_update_nvm_checksum_ich8lan;
715 	}
716 	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
717 	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
718 	nvm->ops.write		= e1000_write_nvm_ich8lan;
719 
720 	return E1000_SUCCESS;
721 }
722 
723 /**
724  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
725  *  @hw: pointer to the HW structure
726  *
727  *  Initialize family-specific MAC parameters and function
728  *  pointers.
729  **/
730 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
731 {
732 	struct e1000_mac_info *mac = &hw->mac;
733 
734 	DEBUGFUNC("e1000_init_mac_params_ich8lan");
735 
736 	/* Set media type function pointer */
737 	hw->phy.media_type = e1000_media_type_copper;
738 
739 	/* Set mta register count */
740 	mac->mta_reg_count = 32;
741 	/* Set rar entry count */
742 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
743 	if (mac->type == e1000_ich8lan)
744 		mac->rar_entry_count--;
745 	/* Set if part includes ASF firmware */
746 	mac->asf_firmware_present = true;
747 	/* FWSM register */
748 	mac->has_fwsm = true;
749 	/* ARC subsystem not supported */
750 	mac->arc_subsystem_valid = false;
751 	/* Adaptive IFS supported */
752 	mac->adaptive_ifs = true;
753 
754 	/* Function pointers */
755 
756 	/* bus type/speed/width */
757 	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
758 	/* function id */
759 	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
760 	/* reset */
761 	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
762 	/* hw initialization */
763 	mac->ops.init_hw = e1000_init_hw_ich8lan;
764 	/* link setup */
765 	mac->ops.setup_link = e1000_setup_link_ich8lan;
766 	/* physical interface setup */
767 	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
768 	/* check for link */
769 	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
770 	/* link info */
771 	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
772 	/* multicast address update */
773 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
774 	/* clear hardware counters */
775 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
776 
777 	/* LED and other operations */
778 	switch (mac->type) {
779 	case e1000_ich8lan:
780 	case e1000_ich9lan:
781 	case e1000_ich10lan:
782 		/* check management mode */
783 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
784 		/* ID LED init */
785 		mac->ops.id_led_init = e1000_id_led_init_generic;
786 		/* blink LED */
787 		mac->ops.blink_led = e1000_blink_led_generic;
788 		/* setup LED */
789 		mac->ops.setup_led = e1000_setup_led_generic;
790 		/* cleanup LED */
791 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
792 		/* turn on/off LED */
793 		mac->ops.led_on = e1000_led_on_ich8lan;
794 		mac->ops.led_off = e1000_led_off_ich8lan;
795 		break;
796 	case e1000_pch2lan:
797 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
798 		mac->ops.rar_set = e1000_rar_set_pch2lan;
799 		/* FALLTHROUGH */
800 	case e1000_pch_lpt:
801 	case e1000_pch_spt:
802 	case e1000_pch_cnp:
803 	case e1000_pch_tgp:
804 	case e1000_pch_adp:
805 	case e1000_pch_mtp:
806 		/* multicast address update for pch2 */
807 		mac->ops.update_mc_addr_list =
808 			e1000_update_mc_addr_list_pch2lan;
809 		/* FALLTHROUGH */
810 	case e1000_pchlan:
811 		/* check management mode */
812 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
813 		/* ID LED init */
814 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
815 		/* setup LED */
816 		mac->ops.setup_led = e1000_setup_led_pchlan;
817 		/* cleanup LED */
818 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
819 		/* turn on/off LED */
820 		mac->ops.led_on = e1000_led_on_pchlan;
821 		mac->ops.led_off = e1000_led_off_pchlan;
822 		break;
823 	default:
824 		break;
825 	}
826 
827 	if (mac->type >= e1000_pch_lpt) {
828 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
829 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
830 		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
831 		mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
832 	}
833 
834 	/* Enable PCS Lock-loss workaround for ICH8 */
835 	if (mac->type == e1000_ich8lan)
836 		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
837 
838 	return E1000_SUCCESS;
839 }
840 
841 /**
842  *  __e1000_access_emi_reg_locked - Read/write EMI register
843  *  @hw: pointer to the HW structure
844  *  @address: EMI address to program
845  *  @data: pointer to value to read/write from/to the EMI address
846  *  @read: boolean flag to indicate read or write
847  *
848  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
849  **/
850 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
851 					 u16 *data, bool read)
852 {
853 	s32 ret_val;
854 
855 	DEBUGFUNC("__e1000_access_emi_reg_locked");
856 
857 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
858 	if (ret_val)
859 		return ret_val;
860 
861 	if (read)
862 		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
863 						      data);
864 	else
865 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
866 						       *data);
867 
868 	return ret_val;
869 }
870 
871 /**
872  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
873  *  @hw: pointer to the HW structure
874  *  @addr: EMI address to program
875  *  @data: value to be read from the EMI address
876  *
877  *  Assumes the SW/FW/HW Semaphore is already acquired.
878  **/
879 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
880 {
881 	DEBUGFUNC("e1000_read_emi_reg_locked");
882 
883 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
884 }
885 
886 /**
887  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
888  *  @hw: pointer to the HW structure
889  *  @addr: EMI address to program
890  *  @data: value to be written to the EMI address
891  *
892  *  Assumes the SW/FW/HW Semaphore is already acquired.
893  **/
894 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
895 {
896 	DEBUGFUNC("e1000_read_emi_reg_locked");
897 
898 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
899 }
900 
901 /**
902  *  e1000_set_eee_pchlan - Enable/disable EEE support
903  *  @hw: pointer to the HW structure
904  *
905  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
906  *  the link and the EEE capabilities of the link partner.  The LPI Control
907  *  register bits will remain set only if/when link is up.
908  *
909  *  EEE LPI must not be asserted earlier than one second after link is up.
910  *  On 82579, EEE LPI should not be enabled until such time otherwise there
911  *  can be link issues with some switches.  Other devices can have EEE LPI
912  *  enabled immediately upon link up since they have a timer in hardware which
913  *  prevents LPI from being asserted too early.
914  **/
915 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
916 {
917 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
918 	s32 ret_val;
919 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
920 
921 	DEBUGFUNC("e1000_set_eee_pchlan");
922 
923 	switch (hw->phy.type) {
924 	case e1000_phy_82579:
925 		lpa = I82579_EEE_LP_ABILITY;
926 		pcs_status = I82579_EEE_PCS_STATUS;
927 		adv_addr = I82579_EEE_ADVERTISEMENT;
928 		break;
929 	case e1000_phy_i217:
930 		lpa = I217_EEE_LP_ABILITY;
931 		pcs_status = I217_EEE_PCS_STATUS;
932 		adv_addr = I217_EEE_ADVERTISEMENT;
933 		break;
934 	default:
935 		return E1000_SUCCESS;
936 	}
937 
938 	ret_val = hw->phy.ops.acquire(hw);
939 	if (ret_val)
940 		return ret_val;
941 
942 	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
943 	if (ret_val)
944 		goto release;
945 
946 	/* Clear bits that enable EEE in various speeds */
947 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
948 
949 	/* Enable EEE if not disabled by user */
950 	if (!dev_spec->eee_disable) {
951 		/* Save off link partner's EEE ability */
952 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
953 						    &dev_spec->eee_lp_ability);
954 		if (ret_val)
955 			goto release;
956 
957 		/* Read EEE advertisement */
958 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
959 		if (ret_val)
960 			goto release;
961 
962 		/* Enable EEE only for speeds in which the link partner is
963 		 * EEE capable and for which we advertise EEE.
964 		 */
965 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
966 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
967 
968 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
969 			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
970 			if (data & NWAY_LPAR_100TX_FD_CAPS)
971 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
972 			else
973 				/* EEE is not supported in 100Half, so ignore
974 				 * partner's EEE in 100 ability if full-duplex
975 				 * is not advertised.
976 				 */
977 				dev_spec->eee_lp_ability &=
978 				    ~I82579_EEE_100_SUPPORTED;
979 		}
980 	}
981 
982 	if (hw->phy.type == e1000_phy_82579) {
983 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
984 						    &data);
985 		if (ret_val)
986 			goto release;
987 
988 		data &= ~I82579_LPI_100_PLL_SHUT;
989 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
990 						     data);
991 	}
992 
993 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
994 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
995 	if (ret_val)
996 		goto release;
997 
998 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
999 release:
1000 	hw->phy.ops.release(hw);
1001 
1002 	return ret_val;
1003 }
1004 
1005 /**
1006  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
1007  *  @hw:   pointer to the HW structure
1008  *  @link: link up bool flag
1009  *
1010  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
1011  *  preventing further DMA write requests.  Workaround the issue by disabling
1012  *  the de-assertion of the clock request when in 1Gpbs mode.
1013  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
1014  *  speeds in order to avoid Tx hangs.
1015  **/
1016 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
1017 {
1018 	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1019 	u32 status = E1000_READ_REG(hw, E1000_STATUS);
1020 	s32 ret_val = E1000_SUCCESS;
1021 	u16 reg;
1022 
1023 	if (link && (status & E1000_STATUS_SPEED_1000)) {
1024 		ret_val = hw->phy.ops.acquire(hw);
1025 		if (ret_val)
1026 			return ret_val;
1027 
1028 		ret_val =
1029 		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1030 					       &reg);
1031 		if (ret_val)
1032 			goto release;
1033 
1034 		ret_val =
1035 		    e1000_write_kmrn_reg_locked(hw,
1036 						E1000_KMRNCTRLSTA_K1_CONFIG,
1037 						reg &
1038 						~E1000_KMRNCTRLSTA_K1_ENABLE);
1039 		if (ret_val)
1040 			goto release;
1041 
1042 		usec_delay(10);
1043 
1044 		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1045 				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1046 
1047 		ret_val =
1048 		    e1000_write_kmrn_reg_locked(hw,
1049 						E1000_KMRNCTRLSTA_K1_CONFIG,
1050 						reg);
1051 release:
1052 		hw->phy.ops.release(hw);
1053 	} else {
1054 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1055 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1056 
1057 		if ((hw->phy.revision > 5) || !link ||
1058 		    ((status & E1000_STATUS_SPEED_100) &&
1059 		     (status & E1000_STATUS_FD)))
1060 			goto update_fextnvm6;
1061 
1062 		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1063 		if (ret_val)
1064 			return ret_val;
1065 
1066 		/* Clear link status transmit timeout */
1067 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1068 
1069 		if (status & E1000_STATUS_SPEED_100) {
1070 			/* Set inband Tx timeout to 5x10us for 100Half */
1071 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1072 
1073 			/* Do not extend the K1 entry latency for 100Half */
1074 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1075 		} else {
1076 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1077 			reg |= 50 <<
1078 			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1079 
1080 			/* Extend the K1 entry latency for 10 Mbps */
1081 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1082 		}
1083 
1084 		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1085 		if (ret_val)
1086 			return ret_val;
1087 
1088 update_fextnvm6:
1089 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1090 	}
1091 
1092 	return ret_val;
1093 }
1094 
1095 static u64 e1000_ltr2ns(u16 ltr)
1096 {
1097 	u32 value, scale;
1098 
1099 	/* Determine the latency in nsec based on the LTR value & scale */
1100 	value = ltr & E1000_LTRV_VALUE_MASK;
1101 	scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1102 
1103 	return value * (1ULL << (scale * E1000_LTRV_SCALE_FACTOR));
1104 }
1105 
1106 /**
1107  *  e1000_platform_pm_pch_lpt - Set platform power management values
1108  *  @hw: pointer to the HW structure
1109  *  @link: bool indicating link status
1110  *
1111  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1112  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1113  *  when link is up (which must not exceed the maximum latency supported
1114  *  by the platform), otherwise specify there is no LTR requirement.
1115  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1116  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1117  *  Capability register set, on this device LTR is set by writing the
1118  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1119  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1120  *  message to the PMC.
1121  *
1122  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1123  *  high-water mark.
1124  **/
1125 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1126 {
1127 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1128 		  link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1129 	u16 lat_enc = 0;	/* latency encoded */
1130 	s32 obff_hwm = 0;
1131 
1132 	DEBUGFUNC("e1000_platform_pm_pch_lpt");
1133 
1134 	if (link) {
1135 		u16 speed, duplex, scale = 0;
1136 		u16 max_snoop, max_nosnoop;
1137 		u16 max_ltr_enc;	/* max LTR latency encoded */
1138 		s64 lat_ns;
1139 		s64 value;
1140 		u32 rxa;
1141 
1142 		if (!hw->mac.max_frame_size) {
1143 			DEBUGOUT("max_frame_size not set.\n");
1144 			return -E1000_ERR_CONFIG;
1145 		}
1146 
1147 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1148 		if (!speed) {
1149 			DEBUGOUT("Speed not set.\n");
1150 			return -E1000_ERR_CONFIG;
1151 		}
1152 
1153 		/* Rx Packet Buffer Allocation size (KB) */
1154 		rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1155 
1156 		/* Determine the maximum latency tolerated by the device.
1157 		 *
1158 		 * Per the PCIe spec, the tolerated latencies are encoded as
1159 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1160 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1161 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1162 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1163 		 */
1164 		lat_ns = ((s64)rxa * 1024 -
1165 			  (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1166 		if (lat_ns < 0)
1167 			lat_ns = 0;
1168 		else
1169 			lat_ns /= speed;
1170 		value = lat_ns;
1171 
1172 		while (value > E1000_LTRV_VALUE_MASK) {
1173 			scale++;
1174 			value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1175 		}
1176 		if (scale > E1000_LTRV_SCALE_MAX) {
1177 			DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1178 			return -E1000_ERR_CONFIG;
1179 		}
1180 		lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1181 
1182 		/* Determine the maximum latency tolerated by the platform */
1183 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1184 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1185 		max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1186 
1187 		if (lat_enc > max_ltr_enc) {
1188 			lat_enc = max_ltr_enc;
1189 			lat_ns = e1000_ltr2ns(max_ltr_enc);
1190 		}
1191 
1192 		if (lat_ns) {
1193 			lat_ns *= speed * 1000;
1194 			lat_ns /= 8;
1195 			lat_ns /= 1000000000;
1196 			obff_hwm = (s32)(rxa - lat_ns);
1197 		}
1198 		if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1199 			DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1200 			return -E1000_ERR_CONFIG;
1201 		}
1202 	}
1203 
1204 	/* Set Snoop and No-Snoop latencies the same */
1205 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1206 	E1000_WRITE_REG(hw, E1000_LTRV, reg);
1207 
1208 	/* Set OBFF high water mark */
1209 	reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1210 	reg |= obff_hwm;
1211 	E1000_WRITE_REG(hw, E1000_SVT, reg);
1212 
1213 	/* Enable OBFF */
1214 	reg = E1000_READ_REG(hw, E1000_SVCR);
1215 	reg |= E1000_SVCR_OFF_EN;
1216 	/* Always unblock interrupts to the CPU even when the system is
1217 	 * in OBFF mode. This ensures that small round-robin traffic
1218 	 * (like ping) does not get dropped or experience long latency.
1219 	 */
1220 	reg |= E1000_SVCR_OFF_MASKINT;
1221 	E1000_WRITE_REG(hw, E1000_SVCR, reg);
1222 
1223 	return E1000_SUCCESS;
1224 }
1225 
1226 /**
1227  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1228  *  @hw: pointer to the HW structure
1229  *  @itr: interrupt throttling rate
1230  *
1231  *  Configure OBFF with the updated interrupt rate.
1232  **/
1233 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1234 {
1235 	u32 svcr;
1236 	s32 timer;
1237 
1238 	DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1239 
1240 	/* Convert ITR value into microseconds for OBFF timer */
1241 	timer = itr & E1000_ITR_MASK;
1242 	timer = (timer * E1000_ITR_MULT) / 1000;
1243 
1244 	if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1245 		DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1246 		return -E1000_ERR_CONFIG;
1247 	}
1248 
1249 	svcr = E1000_READ_REG(hw, E1000_SVCR);
1250 	svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1251 	svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1252 	E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1253 
1254 	return E1000_SUCCESS;
1255 }
1256 
1257 /**
1258  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1259  *  @hw: pointer to the HW structure
1260  *  @to_sx: boolean indicating a system power state transition to Sx
1261  *
1262  *  When link is down, configure ULP mode to significantly reduce the power
1263  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1264  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1265  *  system, configure the ULP mode by software.
1266  */
1267 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1268 {
1269 	u32 mac_reg;
1270 	s32 ret_val = E1000_SUCCESS;
1271 	u16 phy_reg;
1272 	u16 oem_reg = 0;
1273 
1274 	if ((hw->mac.type < e1000_pch_lpt) ||
1275 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1276 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1277 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1278 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1279 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1280 		return 0;
1281 
1282 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1283 		/* Request ME configure ULP mode in the PHY */
1284 		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1285 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1286 		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1287 
1288 		goto out;
1289 	}
1290 
1291 	if (!to_sx) {
1292 		int i = 0;
1293 
1294 		/* Poll up to 5 seconds for Cable Disconnected indication */
1295 		while (!(E1000_READ_REG(hw, E1000_FEXT) &
1296 			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1297 			/* Bail if link is re-acquired */
1298 			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1299 				return -E1000_ERR_PHY;
1300 
1301 			if (i++ == 100)
1302 				break;
1303 
1304 			msec_delay(50);
1305 		}
1306 		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1307 			 (E1000_READ_REG(hw, E1000_FEXT) &
1308 			  E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1309 			 i * 50);
1310 		if (!(E1000_READ_REG(hw, E1000_FEXT) &
1311 		    E1000_FEXT_PHY_CABLE_DISCONNECTED))
1312 			return 0;
1313 
1314 	}
1315 
1316 	ret_val = hw->phy.ops.acquire(hw);
1317 	if (ret_val)
1318 		goto out;
1319 
1320 	/* Force SMBus mode in PHY */
1321 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1322 	if (ret_val)
1323 		goto release;
1324 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1325 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1326 
1327 	/* Force SMBus mode in MAC */
1328 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1329 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1330 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1331 
1332 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1333 	 * LPLU and disable Gig speed when entering ULP
1334 	 */
1335 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1336 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1337 						       &oem_reg);
1338 		if (ret_val)
1339 			goto release;
1340 
1341 		phy_reg = oem_reg;
1342 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1343 
1344 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1345 							phy_reg);
1346 
1347 		if (ret_val)
1348 			goto release;
1349 	}
1350 
1351 	/* Set Inband ULP Exit, Reset to SMBus mode and
1352 	 * Disable SMBus Release on PERST# in PHY
1353 	 */
1354 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1355 	if (ret_val)
1356 		goto release;
1357 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1358 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1359 	if (to_sx) {
1360 		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1361 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1362 		else
1363 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1364 
1365 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1366 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1367 	} else {
1368 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1369 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1370 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1371 	}
1372 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1373 
1374 	/* Set Disable SMBus Release on PERST# in MAC */
1375 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1376 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1377 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1378 
1379 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1380 	phy_reg |= I218_ULP_CONFIG1_START;
1381 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1382 
1383 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1384 	    to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1385 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1386 							oem_reg);
1387 		if (ret_val)
1388 			goto release;
1389 	}
1390 
1391 release:
1392 	hw->phy.ops.release(hw);
1393 out:
1394 	if (ret_val)
1395 		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1396 	else
1397 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1398 
1399 	return ret_val;
1400 }
1401 
1402 /**
1403  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1404  *  @hw: pointer to the HW structure
1405  *  @force: boolean indicating whether or not to force disabling ULP
1406  *
1407  *  Un-configure ULP mode when link is up, the system is transitioned from
1408  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1409  *  system, poll for an indication from ME that ULP has been un-configured.
1410  *  If not on an ME enabled system, un-configure the ULP mode by software.
1411  *
1412  *  During nominal operation, this function is called when link is acquired
1413  *  to disable ULP mode (force=false); otherwise, for example when unloading
1414  *  the driver or during Sx->S0 transitions, this is called with force=true
1415  *  to forcibly disable ULP.
1416  */
1417 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1418 {
1419 	s32 ret_val = E1000_SUCCESS;
1420 	u8 ulp_exit_timeout = 30;
1421 	u32 mac_reg;
1422 	u16 phy_reg;
1423 	int i = 0;
1424 
1425 	if ((hw->mac.type < e1000_pch_lpt) ||
1426 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1427 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1428 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1429 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1430 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1431 		return 0;
1432 
1433 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1434 		if (force) {
1435 			/* Request ME un-configure ULP mode in the PHY */
1436 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1437 			mac_reg &= ~E1000_H2ME_ULP;
1438 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1439 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1440 		}
1441 
1442 		if (hw->mac.type == e1000_pch_cnp)
1443 			ulp_exit_timeout = 100;
1444 
1445 		while (E1000_READ_REG(hw, E1000_FWSM) &
1446 		       E1000_FWSM_ULP_CFG_DONE) {
1447 			if (i++ == ulp_exit_timeout) {
1448 				ret_val = -E1000_ERR_PHY;
1449 				goto out;
1450 			}
1451 
1452 			msec_delay(10);
1453 		}
1454 		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1455 
1456 		if (force) {
1457 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1458 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1459 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1460 		} else {
1461 			/* Clear H2ME.ULP after ME ULP configuration */
1462 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1463 			mac_reg &= ~E1000_H2ME_ULP;
1464 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1465 		}
1466 
1467 		goto out;
1468 	}
1469 
1470 	ret_val = hw->phy.ops.acquire(hw);
1471 	if (ret_val)
1472 		goto out;
1473 
1474 	if (force)
1475 		/* Toggle LANPHYPC Value bit */
1476 		e1000_toggle_lanphypc_pch_lpt(hw);
1477 
1478 	/* Unforce SMBus mode in PHY */
1479 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1480 	if (ret_val) {
1481 		/* The MAC might be in PCIe mode, so temporarily force to
1482 		 * SMBus mode in order to access the PHY.
1483 		 */
1484 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1485 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1486 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1487 
1488 		msec_delay(50);
1489 
1490 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1491 						       &phy_reg);
1492 		if (ret_val)
1493 			goto release;
1494 	}
1495 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1496 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1497 
1498 	/* Unforce SMBus mode in MAC */
1499 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1500 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1501 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1502 
1503 	/* When ULP mode was previously entered, K1 was disabled by the
1504 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1505 	 */
1506 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1507 	if (ret_val)
1508 		goto release;
1509 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1510 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1511 
1512 	/* Clear ULP enabled configuration */
1513 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1514 	if (ret_val)
1515 		goto release;
1516 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1517 		     I218_ULP_CONFIG1_STICKY_ULP |
1518 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1519 		     I218_ULP_CONFIG1_WOL_HOST |
1520 		     I218_ULP_CONFIG1_INBAND_EXIT |
1521 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1522 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1523 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1524 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1525 
1526 	/* Commit ULP changes by starting auto ULP configuration */
1527 	phy_reg |= I218_ULP_CONFIG1_START;
1528 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1529 
1530 	/* Clear Disable SMBus Release on PERST# in MAC */
1531 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1532 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1533 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1534 
1535 release:
1536 	hw->phy.ops.release(hw);
1537 	if (force) {
1538 		hw->phy.ops.reset(hw);
1539 		msec_delay(50);
1540 	}
1541 out:
1542 	if (ret_val)
1543 		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1544 	else
1545 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1546 
1547 	return ret_val;
1548 }
1549 
1550 /**
1551  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1552  *  @hw: pointer to the HW structure
1553  *
1554  *  Checks to see of the link status of the hardware has changed.  If a
1555  *  change in link status has been detected, then we read the PHY registers
1556  *  to get the current speed/duplex if link exists.
1557  **/
1558 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1559 {
1560 	struct e1000_mac_info *mac = &hw->mac;
1561 	s32 ret_val, tipg_reg = 0;
1562 	u16 emi_addr, emi_val = 0;
1563 	bool link;
1564 	u16 phy_reg;
1565 
1566 	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1567 
1568 	/* We only want to go out to the PHY registers to see if Auto-Neg
1569 	 * has completed and/or if our link status has changed.  The
1570 	 * get_link_status flag is set upon receiving a Link Status
1571 	 * Change or Rx Sequence Error interrupt.
1572 	 */
1573 	if (!mac->get_link_status)
1574 		return E1000_SUCCESS;
1575 
1576 	/* First we want to see if the MII Status Register reports
1577 	 * link.  If so, then we want to get the current speed/duplex
1578 	 * of the PHY.
1579 	 */
1580 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1581 	if (ret_val)
1582 		return ret_val;
1583 
1584 	if (hw->mac.type == e1000_pchlan) {
1585 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1586 		if (ret_val)
1587 			return ret_val;
1588 	}
1589 
1590 	/* When connected at 10Mbps half-duplex, some parts are excessively
1591 	 * aggressive resulting in many collisions. To avoid this, increase
1592 	 * the IPG and reduce Rx latency in the PHY.
1593 	 */
1594 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1595 		u16 speed, duplex;
1596 
1597 		e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1598 		tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1599 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1600 
1601 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1602 			tipg_reg |= 0xFF;
1603 			/* Reduce Rx latency in analog PHY */
1604 			emi_val = 0;
1605 		} else if (hw->mac.type >= e1000_pch_spt &&
1606 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1607 			tipg_reg |= 0xC;
1608 			emi_val = 1;
1609 		} else {
1610 			/* Roll back the default values */
1611 			tipg_reg |= 0x08;
1612 			emi_val = 1;
1613 		}
1614 
1615 		E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1616 
1617 		ret_val = hw->phy.ops.acquire(hw);
1618 		if (ret_val)
1619 			return ret_val;
1620 
1621 		if (hw->mac.type == e1000_pch2lan)
1622 			emi_addr = I82579_RX_CONFIG;
1623 		else
1624 			emi_addr = I217_RX_CONFIG;
1625 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1626 
1627 
1628 		if (hw->mac.type >= e1000_pch_lpt) {
1629 			hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1630 						    &phy_reg);
1631 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1632 			if (speed == SPEED_100 || speed == SPEED_10)
1633 				phy_reg |= 0x3E8;
1634 			else
1635 				phy_reg |= 0xFA;
1636 			hw->phy.ops.write_reg_locked(hw,
1637 						     I217_PLL_CLOCK_GATE_REG,
1638 						     phy_reg);
1639 
1640 			if (speed == SPEED_1000) {
1641 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1642 							    &phy_reg);
1643 
1644 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1645 
1646 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1647 							     phy_reg);
1648 				}
1649 		 }
1650 		hw->phy.ops.release(hw);
1651 
1652 		if (ret_val)
1653 			return ret_val;
1654 
1655 		if (hw->mac.type >= e1000_pch_spt) {
1656 			u16 data;
1657 			u16 ptr_gap;
1658 
1659 			if (speed == SPEED_1000) {
1660 				ret_val = hw->phy.ops.acquire(hw);
1661 				if (ret_val)
1662 					return ret_val;
1663 
1664 				ret_val = hw->phy.ops.read_reg_locked(hw,
1665 							      PHY_REG(776, 20),
1666 							      &data);
1667 				if (ret_val) {
1668 					hw->phy.ops.release(hw);
1669 					return ret_val;
1670 				}
1671 
1672 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1673 				if (ptr_gap < 0x18) {
1674 					data &= ~(0x3FF << 2);
1675 					data |= (0x18 << 2);
1676 					ret_val =
1677 						hw->phy.ops.write_reg_locked(hw,
1678 							PHY_REG(776, 20), data);
1679 				}
1680 				hw->phy.ops.release(hw);
1681 				if (ret_val)
1682 					return ret_val;
1683 			} else {
1684 				ret_val = hw->phy.ops.acquire(hw);
1685 				if (ret_val)
1686 					return ret_val;
1687 
1688 				ret_val = hw->phy.ops.write_reg_locked(hw,
1689 							     PHY_REG(776, 20),
1690 							     0xC023);
1691 				hw->phy.ops.release(hw);
1692 				if (ret_val)
1693 					return ret_val;
1694 
1695 			}
1696 		}
1697 	}
1698 
1699 	/* I217 Packet Loss issue:
1700 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1701 	 * on power up.
1702 	 * Set the Beacon Duration for I217 to 8 usec
1703 	 */
1704 	if (hw->mac.type >= e1000_pch_lpt) {
1705 		u32 mac_reg;
1706 
1707 		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1708 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1709 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1710 		E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1711 	}
1712 
1713 	/* Work-around I218 hang issue */
1714 	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1715 	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1716 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1717 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1718 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1719 		if (ret_val)
1720 			return ret_val;
1721 	}
1722 	if (hw->mac.type >= e1000_pch_lpt) {
1723 		/* Set platform power management values for
1724 		 * Latency Tolerance Reporting (LTR)
1725 		 * Optimized Buffer Flush/Fill (OBFF)
1726 		 */
1727 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1728 		if (ret_val)
1729 			return ret_val;
1730 	}
1731 	/* Clear link partner's EEE ability */
1732 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1733 
1734 	if (hw->mac.type >= e1000_pch_lpt) {
1735 		u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1736 
1737 		if (hw->mac.type == e1000_pch_spt) {
1738 			/* FEXTNVM6 K1-off workaround - for SPT only */
1739 			u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1740 
1741 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1742 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1743 			else
1744 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1745 		}
1746 
1747 		if (hw->dev_spec.ich8lan.disable_k1_off == true)
1748 			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1749 
1750 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1751 
1752 		/* Configure K0s minimum time */
1753 		e1000_configure_k0s_lpt(hw, K1_ENTRY_LATENCY, K1_MIN_TIME);
1754 	}
1755 
1756 	if (!link)
1757 		return E1000_SUCCESS; /* No link detected */
1758 
1759 	mac->get_link_status = false;
1760 
1761 	switch (hw->mac.type) {
1762 	case e1000_pch2lan:
1763 		ret_val = e1000_k1_workaround_lv(hw);
1764 		if (ret_val)
1765 			return ret_val;
1766 		/* FALLTHROUGH */
1767 	case e1000_pchlan:
1768 		if (hw->phy.type == e1000_phy_82578) {
1769 			ret_val = e1000_link_stall_workaround_hv(hw);
1770 			if (ret_val)
1771 				return ret_val;
1772 		}
1773 
1774 		/* Workaround for PCHx parts in half-duplex:
1775 		 * Set the number of preambles removed from the packet
1776 		 * when it is passed from the PHY to the MAC to prevent
1777 		 * the MAC from misinterpreting the packet type.
1778 		 */
1779 		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1780 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1781 
1782 		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1783 		    E1000_STATUS_FD)
1784 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1785 
1786 		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1787 		break;
1788 	default:
1789 		break;
1790 	}
1791 
1792 	/* Check if there was DownShift, must be checked
1793 	 * immediately after link-up
1794 	 */
1795 	e1000_check_downshift_generic(hw);
1796 
1797 	/* Enable/Disable EEE after link up */
1798 	if (hw->phy.type > e1000_phy_82579) {
1799 		ret_val = e1000_set_eee_pchlan(hw);
1800 		if (ret_val)
1801 			return ret_val;
1802 	}
1803 
1804 	/* If we are forcing speed/duplex, then we simply return since
1805 	 * we have already determined whether we have link or not.
1806 	 */
1807 	if (!mac->autoneg)
1808 		return -E1000_ERR_CONFIG;
1809 
1810 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1811 	 * of MAC speed/duplex configuration.  So we only need to
1812 	 * configure Collision Distance in the MAC.
1813 	 */
1814 	mac->ops.config_collision_dist(hw);
1815 
1816 	/* Configure Flow Control now that Auto-Neg has completed.
1817 	 * First, we need to restore the desired flow control
1818 	 * settings because we may have had to re-autoneg with a
1819 	 * different link partner.
1820 	 */
1821 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1822 	if (ret_val)
1823 		DEBUGOUT("Error configuring flow control\n");
1824 
1825 	return ret_val;
1826 }
1827 
1828 /**
1829  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1830  *  @hw: pointer to the HW structure
1831  *
1832  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1833  **/
1834 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1835 {
1836 	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1837 
1838 	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1839 	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1840 	switch (hw->mac.type) {
1841 	case e1000_ich8lan:
1842 	case e1000_ich9lan:
1843 	case e1000_ich10lan:
1844 		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1845 		break;
1846 	case e1000_pchlan:
1847 	case e1000_pch2lan:
1848 	case e1000_pch_lpt:
1849 	case e1000_pch_spt:
1850 	case e1000_pch_cnp:
1851 	case e1000_pch_tgp:
1852 	case e1000_pch_adp:
1853 	case e1000_pch_mtp:
1854 		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1855 		break;
1856 	default:
1857 		break;
1858 	}
1859 }
1860 
1861 /**
1862  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1863  *  @hw: pointer to the HW structure
1864  *
1865  *  Acquires the mutex for performing NVM operations.
1866  **/
1867 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1868 {
1869 	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1870 
1871 	ASSERT_CTX_LOCK_HELD(hw);
1872 
1873 	return E1000_SUCCESS;
1874 }
1875 
1876 /**
1877  *  e1000_release_nvm_ich8lan - Release NVM mutex
1878  *  @hw: pointer to the HW structure
1879  *
1880  *  Releases the mutex used while performing NVM operations.
1881  **/
1882 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1883 {
1884 	DEBUGFUNC("e1000_release_nvm_ich8lan");
1885 
1886 	ASSERT_CTX_LOCK_HELD(hw);
1887 }
1888 
1889 /**
1890  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1891  *  @hw: pointer to the HW structure
1892  *
1893  *  Acquires the software control flag for performing PHY and select
1894  *  MAC CSR accesses.
1895  **/
1896 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1897 {
1898 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1899 	s32 ret_val = E1000_SUCCESS;
1900 
1901 	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1902 
1903 	ASSERT_CTX_LOCK_HELD(hw);
1904 
1905 	while (timeout) {
1906 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1907 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1908 			break;
1909 
1910 		msec_delay_irq(1);
1911 		timeout--;
1912 	}
1913 
1914 	if (!timeout) {
1915 		DEBUGOUT("SW has already locked the resource.\n");
1916 		ret_val = -E1000_ERR_CONFIG;
1917 		goto out;
1918 	}
1919 
1920 	timeout = SW_FLAG_TIMEOUT;
1921 
1922 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1923 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1924 
1925 	while (timeout) {
1926 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1927 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1928 			break;
1929 
1930 		msec_delay_irq(1);
1931 		timeout--;
1932 	}
1933 
1934 	if (!timeout) {
1935 		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1936 			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1937 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1938 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1939 		ret_val = -E1000_ERR_CONFIG;
1940 		goto out;
1941 	}
1942 
1943 out:
1944 	return ret_val;
1945 }
1946 
1947 /**
1948  *  e1000_release_swflag_ich8lan - Release software control flag
1949  *  @hw: pointer to the HW structure
1950  *
1951  *  Releases the software control flag for performing PHY and select
1952  *  MAC CSR accesses.
1953  **/
1954 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1955 {
1956 	u32 extcnf_ctrl;
1957 
1958 	DEBUGFUNC("e1000_release_swflag_ich8lan");
1959 
1960 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1961 
1962 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1963 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1964 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1965 	} else {
1966 		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1967 	}
1968 }
1969 
1970 /**
1971  *  e1000_check_mng_mode_ich8lan - Checks management mode
1972  *  @hw: pointer to the HW structure
1973  *
1974  *  This checks if the adapter has any manageability enabled.
1975  *  This is a function pointer entry point only called by read/write
1976  *  routines for the PHY and NVM parts.
1977  **/
1978 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1979 {
1980 	u32 fwsm;
1981 
1982 	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1983 
1984 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1985 
1986 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1987 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1988 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1989 }
1990 
1991 /**
1992  *  e1000_check_mng_mode_pchlan - Checks management mode
1993  *  @hw: pointer to the HW structure
1994  *
1995  *  This checks if the adapter has iAMT enabled.
1996  *  This is a function pointer entry point only called by read/write
1997  *  routines for the PHY and NVM parts.
1998  **/
1999 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
2000 {
2001 	u32 fwsm;
2002 
2003 	DEBUGFUNC("e1000_check_mng_mode_pchlan");
2004 
2005 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
2006 
2007 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
2008 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
2009 }
2010 
2011 /**
2012  *  e1000_rar_set_pch2lan - Set receive address register
2013  *  @hw: pointer to the HW structure
2014  *  @addr: pointer to the receive address
2015  *  @index: receive address array register
2016  *
2017  *  Sets the receive address array register at index to the address passed
2018  *  in by addr.  For 82579, RAR[0] is the base address register that is to
2019  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
2020  *  Use SHRA[0-3] in place of those reserved for ME.
2021  **/
2022 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
2023 {
2024 	u32 rar_low, rar_high;
2025 
2026 	DEBUGFUNC("e1000_rar_set_pch2lan");
2027 
2028 	/* HW expects these in little endian so we reverse the byte order
2029 	 * from network order (big endian) to little endian
2030 	 */
2031 	rar_low = ((u32) addr[0] |
2032 		   ((u32) addr[1] << 8) |
2033 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2034 
2035 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2036 
2037 	/* If MAC address zero, no need to set the AV bit */
2038 	if (rar_low || rar_high)
2039 		rar_high |= E1000_RAH_AV;
2040 
2041 	if (index == 0) {
2042 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2043 		E1000_WRITE_FLUSH(hw);
2044 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2045 		E1000_WRITE_FLUSH(hw);
2046 		return E1000_SUCCESS;
2047 	}
2048 
2049 	/* RAR[1-6] are owned by manageability.  Skip those and program the
2050 	 * next address into the SHRA register array.
2051 	 */
2052 	if (index < (u32) (hw->mac.rar_entry_count)) {
2053 		s32 ret_val;
2054 
2055 		ret_val = e1000_acquire_swflag_ich8lan(hw);
2056 		if (ret_val)
2057 			goto out;
2058 
2059 		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
2060 		E1000_WRITE_FLUSH(hw);
2061 		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
2062 		E1000_WRITE_FLUSH(hw);
2063 
2064 		e1000_release_swflag_ich8lan(hw);
2065 
2066 		/* verify the register updates */
2067 		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
2068 		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
2069 			return E1000_SUCCESS;
2070 
2071 		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2072 			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
2073 	}
2074 
2075 out:
2076 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2077 	return -E1000_ERR_CONFIG;
2078 }
2079 
2080 /**
2081  *  e1000_rar_set_pch_lpt - Set receive address registers
2082  *  @hw: pointer to the HW structure
2083  *  @addr: pointer to the receive address
2084  *  @index: receive address array register
2085  *
2086  *  Sets the receive address register array at index to the address passed
2087  *  in by addr. For LPT, RAR[0] is the base address register that is to
2088  *  contain the MAC address. SHRA[0-10] are the shared receive address
2089  *  registers that are shared between the Host and manageability engine (ME).
2090  **/
2091 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2092 {
2093 	u32 rar_low, rar_high;
2094 	u32 wlock_mac;
2095 
2096 	DEBUGFUNC("e1000_rar_set_pch_lpt");
2097 
2098 	/* HW expects these in little endian so we reverse the byte order
2099 	 * from network order (big endian) to little endian
2100 	 */
2101 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2102 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2103 
2104 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2105 
2106 	/* If MAC address zero, no need to set the AV bit */
2107 	if (rar_low || rar_high)
2108 		rar_high |= E1000_RAH_AV;
2109 
2110 	if (index == 0) {
2111 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2112 		E1000_WRITE_FLUSH(hw);
2113 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2114 		E1000_WRITE_FLUSH(hw);
2115 		return E1000_SUCCESS;
2116 	}
2117 
2118 	/* The manageability engine (ME) can lock certain SHRAR registers that
2119 	 * it is using - those registers are unavailable for use.
2120 	 */
2121 	if (index < hw->mac.rar_entry_count) {
2122 		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2123 			    E1000_FWSM_WLOCK_MAC_MASK;
2124 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2125 
2126 		/* Check if all SHRAR registers are locked */
2127 		if (wlock_mac == 1)
2128 			goto out;
2129 
2130 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2131 			s32 ret_val;
2132 
2133 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2134 
2135 			if (ret_val)
2136 				goto out;
2137 
2138 			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2139 					rar_low);
2140 			E1000_WRITE_FLUSH(hw);
2141 			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2142 					rar_high);
2143 			E1000_WRITE_FLUSH(hw);
2144 
2145 			e1000_release_swflag_ich8lan(hw);
2146 
2147 			/* verify the register updates */
2148 			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2149 			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2150 				return E1000_SUCCESS;
2151 		}
2152 	}
2153 
2154 out:
2155 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2156 	return -E1000_ERR_CONFIG;
2157 }
2158 
2159 /**
2160  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2161  *  @hw: pointer to the HW structure
2162  *  @mc_addr_list: array of multicast addresses to program
2163  *  @mc_addr_count: number of multicast addresses to program
2164  *
2165  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2166  *  The caller must have a packed mc_addr_list of multicast addresses.
2167  **/
2168 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2169 					      u8 *mc_addr_list,
2170 					      u32 mc_addr_count)
2171 {
2172 	u16 phy_reg = 0;
2173 	int i;
2174 	s32 ret_val;
2175 
2176 	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2177 
2178 	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2179 
2180 	ret_val = hw->phy.ops.acquire(hw);
2181 	if (ret_val)
2182 		return;
2183 
2184 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2185 	if (ret_val)
2186 		goto release;
2187 
2188 	for (i = 0; i < hw->mac.mta_reg_count; i++) {
2189 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2190 					   (u16)(hw->mac.mta_shadow[i] &
2191 						 0xFFFF));
2192 		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2193 					   (u16)((hw->mac.mta_shadow[i] >> 16) &
2194 						 0xFFFF));
2195 	}
2196 
2197 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2198 
2199 release:
2200 	hw->phy.ops.release(hw);
2201 }
2202 
2203 /**
2204  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2205  *  @hw: pointer to the HW structure
2206  *
2207  *  Checks if firmware is blocking the reset of the PHY.
2208  *  This is a function pointer entry point only called by
2209  *  reset routines.
2210  **/
2211 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2212 {
2213 	u32 fwsm;
2214 	bool blocked = false;
2215 	int i = 0;
2216 
2217 	DEBUGFUNC("e1000_check_reset_block_ich8lan");
2218 
2219 	do {
2220 		fwsm = E1000_READ_REG(hw, E1000_FWSM);
2221 		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2222 			blocked = true;
2223 			msec_delay(10);
2224 			continue;
2225 		}
2226 		blocked = false;
2227 	} while (blocked && (i++ < 30));
2228 	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2229 }
2230 
2231 /**
2232  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2233  *  @hw: pointer to the HW structure
2234  *
2235  *  Assumes semaphore already acquired.
2236  *
2237  **/
2238 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2239 {
2240 	u16 phy_data;
2241 	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2242 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2243 		E1000_STRAP_SMT_FREQ_SHIFT;
2244 	s32 ret_val;
2245 
2246 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2247 
2248 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2249 	if (ret_val)
2250 		return ret_val;
2251 
2252 	phy_data &= ~HV_SMB_ADDR_MASK;
2253 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2254 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2255 
2256 	if (hw->phy.type == e1000_phy_i217) {
2257 		/* Restore SMBus frequency */
2258 		if (freq--) {
2259 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2260 			phy_data |= (freq & (1 << 0)) <<
2261 				HV_SMB_ADDR_FREQ_LOW_SHIFT;
2262 			phy_data |= (freq & (1 << 1)) <<
2263 				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2264 		} else {
2265 			DEBUGOUT("Unsupported SMB frequency in PHY\n");
2266 		}
2267 	}
2268 
2269 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2270 }
2271 
2272 /**
2273  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2274  *  @hw:   pointer to the HW structure
2275  *
2276  *  SW should configure the LCD from the NVM extended configuration region
2277  *  as a workaround for certain parts.
2278  **/
2279 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2280 {
2281 	struct e1000_phy_info *phy = &hw->phy;
2282 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2283 	s32 ret_val = E1000_SUCCESS;
2284 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2285 
2286 	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2287 
2288 	/* Initialize the PHY from the NVM on ICH platforms.  This
2289 	 * is needed due to an issue where the NVM configuration is
2290 	 * not properly autoloaded after power transitions.
2291 	 * Therefore, after each PHY reset, we will load the
2292 	 * configuration data out of the NVM manually.
2293 	 */
2294 	switch (hw->mac.type) {
2295 	case e1000_ich8lan:
2296 		if (phy->type != e1000_phy_igp_3)
2297 			return ret_val;
2298 
2299 		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2300 		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2301 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2302 			break;
2303 		}
2304 		/* FALLTHROUGH */
2305 	case e1000_pchlan:
2306 	case e1000_pch2lan:
2307 	case e1000_pch_lpt:
2308 	case e1000_pch_spt:
2309 	case e1000_pch_cnp:
2310 	case e1000_pch_tgp:
2311 	case e1000_pch_adp:
2312 	case e1000_pch_mtp:
2313 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2314 		break;
2315 	default:
2316 		return ret_val;
2317 	}
2318 
2319 	ret_val = hw->phy.ops.acquire(hw);
2320 	if (ret_val)
2321 		return ret_val;
2322 
2323 	data = E1000_READ_REG(hw, E1000_FEXTNVM);
2324 	if (!(data & sw_cfg_mask))
2325 		goto release;
2326 
2327 	/* Make sure HW does not configure LCD from PHY
2328 	 * extended configuration before SW configuration
2329 	 */
2330 	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2331 	if ((hw->mac.type < e1000_pch2lan) &&
2332 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2333 			goto release;
2334 
2335 	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2336 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2337 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2338 	if (!cnf_size)
2339 		goto release;
2340 
2341 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2342 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2343 
2344 	if (((hw->mac.type == e1000_pchlan) &&
2345 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2346 	    (hw->mac.type > e1000_pchlan)) {
2347 		/* HW configures the SMBus address and LEDs when the
2348 		 * OEM and LCD Write Enable bits are set in the NVM.
2349 		 * When both NVM bits are cleared, SW will configure
2350 		 * them instead.
2351 		 */
2352 		ret_val = e1000_write_smbus_addr(hw);
2353 		if (ret_val)
2354 			goto release;
2355 
2356 		data = E1000_READ_REG(hw, E1000_LEDCTL);
2357 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2358 							(u16)data);
2359 		if (ret_val)
2360 			goto release;
2361 	}
2362 
2363 	/* Configure LCD from extended configuration region. */
2364 
2365 	/* cnf_base_addr is in DWORD */
2366 	word_addr = (u16)(cnf_base_addr << 1);
2367 
2368 	for (i = 0; i < cnf_size; i++) {
2369 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2370 					   &reg_data);
2371 		if (ret_val)
2372 			goto release;
2373 
2374 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2375 					   1, &reg_addr);
2376 		if (ret_val)
2377 			goto release;
2378 
2379 		/* Save off the PHY page for future writes. */
2380 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2381 			phy_page = reg_data;
2382 			continue;
2383 		}
2384 
2385 		reg_addr &= PHY_REG_MASK;
2386 		reg_addr |= phy_page;
2387 
2388 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2389 						    reg_data);
2390 		if (ret_val)
2391 			goto release;
2392 	}
2393 
2394 release:
2395 	hw->phy.ops.release(hw);
2396 	return ret_val;
2397 }
2398 
2399 /**
2400  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2401  *  @hw:   pointer to the HW structure
2402  *  @link: link up bool flag
2403  *
2404  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2405  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2406  *  If link is down, the function will restore the default K1 setting located
2407  *  in the NVM.
2408  **/
2409 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2410 {
2411 	s32 ret_val = E1000_SUCCESS;
2412 	u16 status_reg = 0;
2413 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2414 
2415 	DEBUGFUNC("e1000_k1_gig_workaround_hv");
2416 
2417 	if (hw->mac.type != e1000_pchlan)
2418 		return E1000_SUCCESS;
2419 
2420 	/* Wrap the whole flow with the sw flag */
2421 	ret_val = hw->phy.ops.acquire(hw);
2422 	if (ret_val)
2423 		return ret_val;
2424 
2425 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2426 	if (link) {
2427 		if (hw->phy.type == e1000_phy_82578) {
2428 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2429 							      &status_reg);
2430 			if (ret_val)
2431 				goto release;
2432 
2433 			status_reg &= (BM_CS_STATUS_LINK_UP |
2434 				       BM_CS_STATUS_RESOLVED |
2435 				       BM_CS_STATUS_SPEED_MASK);
2436 
2437 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2438 					   BM_CS_STATUS_RESOLVED |
2439 					   BM_CS_STATUS_SPEED_1000))
2440 				k1_enable = false;
2441 		}
2442 
2443 		if (hw->phy.type == e1000_phy_82577) {
2444 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2445 							      &status_reg);
2446 			if (ret_val)
2447 				goto release;
2448 
2449 			status_reg &= (HV_M_STATUS_LINK_UP |
2450 				       HV_M_STATUS_AUTONEG_COMPLETE |
2451 				       HV_M_STATUS_SPEED_MASK);
2452 
2453 			if (status_reg == (HV_M_STATUS_LINK_UP |
2454 					   HV_M_STATUS_AUTONEG_COMPLETE |
2455 					   HV_M_STATUS_SPEED_1000))
2456 				k1_enable = false;
2457 		}
2458 
2459 		/* Link stall fix for link up */
2460 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2461 						       0x0100);
2462 		if (ret_val)
2463 			goto release;
2464 
2465 	} else {
2466 		/* Link stall fix for link down */
2467 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2468 						       0x4100);
2469 		if (ret_val)
2470 			goto release;
2471 	}
2472 
2473 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2474 
2475 release:
2476 	hw->phy.ops.release(hw);
2477 
2478 	return ret_val;
2479 }
2480 
2481 /**
2482  *  e1000_configure_k1_ich8lan - Configure K1 power state
2483  *  @hw: pointer to the HW structure
2484  *  @k1_enable: K1 state to configure
2485  *
2486  *  Configure the K1 power state based on the provided parameter.
2487  *  Assumes semaphore already acquired.
2488  *
2489  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2490  **/
2491 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2492 {
2493 	s32 ret_val;
2494 	u32 ctrl_reg = 0;
2495 	u32 ctrl_ext = 0;
2496 	u32 reg = 0;
2497 	u16 kmrn_reg = 0;
2498 
2499 	DEBUGFUNC("e1000_configure_k1_ich8lan");
2500 
2501 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2502 					     &kmrn_reg);
2503 	if (ret_val)
2504 		return ret_val;
2505 
2506 	if (k1_enable)
2507 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2508 	else
2509 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2510 
2511 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2512 					      kmrn_reg);
2513 	if (ret_val)
2514 		return ret_val;
2515 
2516 	usec_delay(20);
2517 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2518 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2519 
2520 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2521 	reg |= E1000_CTRL_FRCSPD;
2522 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2523 
2524 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2525 	E1000_WRITE_FLUSH(hw);
2526 	usec_delay(20);
2527 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2528 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2529 	E1000_WRITE_FLUSH(hw);
2530 	usec_delay(20);
2531 
2532 	return E1000_SUCCESS;
2533 }
2534 
2535 /**
2536  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2537  *  @hw:       pointer to the HW structure
2538  *  @d0_state: boolean if entering d0 or d3 device state
2539  *
2540  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2541  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2542  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2543  **/
2544 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2545 {
2546 	s32 ret_val = 0;
2547 	u32 mac_reg;
2548 	u16 oem_reg;
2549 
2550 	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2551 
2552 	if (hw->mac.type < e1000_pchlan)
2553 		return ret_val;
2554 
2555 	ret_val = hw->phy.ops.acquire(hw);
2556 	if (ret_val)
2557 		return ret_val;
2558 
2559 	if (hw->mac.type == e1000_pchlan) {
2560 		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2561 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2562 			goto release;
2563 	}
2564 
2565 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2566 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2567 		goto release;
2568 
2569 	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2570 
2571 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2572 	if (ret_val)
2573 		goto release;
2574 
2575 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2576 
2577 	if (d0_state) {
2578 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2579 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2580 
2581 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2582 			oem_reg |= HV_OEM_BITS_LPLU;
2583 	} else {
2584 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2585 		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2586 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2587 
2588 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2589 		    E1000_PHY_CTRL_NOND0A_LPLU))
2590 			oem_reg |= HV_OEM_BITS_LPLU;
2591 	}
2592 
2593 	/* Set Restart auto-neg to activate the bits */
2594 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2595 	    !hw->phy.ops.check_reset_block(hw))
2596 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2597 
2598 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2599 
2600 release:
2601 	hw->phy.ops.release(hw);
2602 
2603 	return ret_val;
2604 }
2605 
2606 
2607 /**
2608  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2609  *  @hw:   pointer to the HW structure
2610  **/
2611 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2612 {
2613 	s32 ret_val;
2614 	u16 data;
2615 
2616 	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2617 
2618 	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2619 	if (ret_val)
2620 		return ret_val;
2621 
2622 	data |= HV_KMRN_MDIO_SLOW;
2623 
2624 	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2625 
2626 	return ret_val;
2627 }
2628 
2629 /**
2630  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2631  *  done after every PHY reset.
2632  *  @hw: pointer to the HW structure
2633  **/
2634 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2635 {
2636 	s32 ret_val = E1000_SUCCESS;
2637 	u16 phy_data;
2638 
2639 	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2640 
2641 	if (hw->mac.type != e1000_pchlan)
2642 		return E1000_SUCCESS;
2643 
2644 	/* Set MDIO slow mode before any other MDIO access */
2645 	if (hw->phy.type == e1000_phy_82577) {
2646 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2647 		if (ret_val)
2648 			return ret_val;
2649 	}
2650 
2651 	if (((hw->phy.type == e1000_phy_82577) &&
2652 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2653 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2654 		/* Disable generation of early preamble */
2655 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2656 		if (ret_val)
2657 			return ret_val;
2658 
2659 		/* Preamble tuning for SSC */
2660 		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2661 						0xA204);
2662 		if (ret_val)
2663 			return ret_val;
2664 	}
2665 
2666 	if (hw->phy.type == e1000_phy_82578) {
2667 		/* Return registers to default by doing a soft reset then
2668 		 * writing 0x3140 to the control register.
2669 		 */
2670 		if (hw->phy.revision < 2) {
2671 			e1000_phy_sw_reset_generic(hw);
2672 			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2673 							0x3140);
2674 			if (ret_val)
2675 				return ret_val;
2676 		}
2677 	}
2678 
2679 	/* Select page 0 */
2680 	ret_val = hw->phy.ops.acquire(hw);
2681 	if (ret_val)
2682 		return ret_val;
2683 
2684 	hw->phy.addr = 1;
2685 	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2686 	hw->phy.ops.release(hw);
2687 	if (ret_val)
2688 		return ret_val;
2689 
2690 	/* Configure the K1 Si workaround during phy reset assuming there is
2691 	 * link so that it disables K1 if link is in 1Gbps.
2692 	 */
2693 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2694 	if (ret_val)
2695 		return ret_val;
2696 
2697 	/* Workaround for link disconnects on a busy hub in half duplex */
2698 	ret_val = hw->phy.ops.acquire(hw);
2699 	if (ret_val)
2700 		return ret_val;
2701 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2702 	if (ret_val)
2703 		goto release;
2704 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2705 					       phy_data & 0x00FF);
2706 	if (ret_val)
2707 		goto release;
2708 
2709 	/* set MSE higher to enable link to stay up when noise is high */
2710 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2711 release:
2712 	hw->phy.ops.release(hw);
2713 
2714 	return ret_val;
2715 }
2716 
2717 /**
2718  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2719  *  @hw:   pointer to the HW structure
2720  **/
2721 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2722 {
2723 	u32 mac_reg;
2724 	u16 i, phy_reg = 0;
2725 	s32 ret_val;
2726 
2727 	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2728 
2729 	ret_val = hw->phy.ops.acquire(hw);
2730 	if (ret_val)
2731 		return;
2732 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2733 	if (ret_val)
2734 		goto release;
2735 
2736 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2737 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2738 		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2739 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2740 					   (u16)(mac_reg & 0xFFFF));
2741 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2742 					   (u16)((mac_reg >> 16) & 0xFFFF));
2743 
2744 		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2745 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2746 					   (u16)(mac_reg & 0xFFFF));
2747 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2748 					   (u16)((mac_reg & E1000_RAH_AV)
2749 						 >> 16));
2750 	}
2751 
2752 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2753 
2754 release:
2755 	hw->phy.ops.release(hw);
2756 }
2757 
2758 static u32 e1000_calc_rx_da_crc(u8 mac[])
2759 {
2760 	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
2761 	u32 i, j, mask, crc;
2762 
2763 	DEBUGFUNC("e1000_calc_rx_da_crc");
2764 
2765 	crc = 0xffffffff;
2766 	for (i = 0; i < 6; i++) {
2767 		crc = crc ^ mac[i];
2768 		for (j = 8; j > 0; j--) {
2769 			mask = (crc & 1) * (-1);
2770 			crc = (crc >> 1) ^ (poly & mask);
2771 		}
2772 	}
2773 	return ~crc;
2774 }
2775 
2776 /**
2777  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2778  *  with 82579 PHY
2779  *  @hw: pointer to the HW structure
2780  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2781  **/
2782 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2783 {
2784 	s32 ret_val = E1000_SUCCESS;
2785 	u16 phy_reg, data;
2786 	u32 mac_reg;
2787 	u16 i;
2788 
2789 	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2790 
2791 	if (hw->mac.type < e1000_pch2lan)
2792 		return E1000_SUCCESS;
2793 
2794 	/* disable Rx path while enabling/disabling workaround */
2795 	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2796 	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2797 					phy_reg | (1 << 14));
2798 	if (ret_val)
2799 		return ret_val;
2800 
2801 	if (enable) {
2802 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2803 		 * SHRAL/H) and initial CRC values to the MAC
2804 		 */
2805 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2806 			u8 mac_addr[ETHER_ADDR_LEN] = {0};
2807 			u32 addr_high, addr_low;
2808 
2809 			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2810 			if (!(addr_high & E1000_RAH_AV))
2811 				continue;
2812 			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2813 			mac_addr[0] = (addr_low & 0xFF);
2814 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2815 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2816 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2817 			mac_addr[4] = (addr_high & 0xFF);
2818 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2819 
2820 			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2821 					e1000_calc_rx_da_crc(mac_addr));
2822 		}
2823 
2824 		/* Write Rx addresses to the PHY */
2825 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2826 
2827 		/* Enable jumbo frame workaround in the MAC */
2828 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2829 		mac_reg &= ~(1 << 14);
2830 		mac_reg |= (7 << 15);
2831 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2832 
2833 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2834 		mac_reg |= E1000_RCTL_SECRC;
2835 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2836 
2837 		ret_val = e1000_read_kmrn_reg_generic(hw,
2838 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2839 						&data);
2840 		if (ret_val)
2841 			return ret_val;
2842 		ret_val = e1000_write_kmrn_reg_generic(hw,
2843 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2844 						data | (1 << 0));
2845 		if (ret_val)
2846 			return ret_val;
2847 		ret_val = e1000_read_kmrn_reg_generic(hw,
2848 						E1000_KMRNCTRLSTA_HD_CTRL,
2849 						&data);
2850 		if (ret_val)
2851 			return ret_val;
2852 		data &= ~(0xF << 8);
2853 		data |= (0xB << 8);
2854 		ret_val = e1000_write_kmrn_reg_generic(hw,
2855 						E1000_KMRNCTRLSTA_HD_CTRL,
2856 						data);
2857 		if (ret_val)
2858 			return ret_val;
2859 
2860 		/* Enable jumbo frame workaround in the PHY */
2861 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2862 		data &= ~(0x7F << 5);
2863 		data |= (0x37 << 5);
2864 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2865 		if (ret_val)
2866 			return ret_val;
2867 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2868 		data &= ~(1 << 13);
2869 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2870 		if (ret_val)
2871 			return ret_val;
2872 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2873 		data &= ~(0x3FF << 2);
2874 		data |= (E1000_TX_PTR_GAP << 2);
2875 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2876 		if (ret_val)
2877 			return ret_val;
2878 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2879 		if (ret_val)
2880 			return ret_val;
2881 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2882 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2883 						(1 << 10));
2884 		if (ret_val)
2885 			return ret_val;
2886 	} else {
2887 		/* Write MAC register values back to h/w defaults */
2888 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2889 		mac_reg &= ~(0xF << 14);
2890 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2891 
2892 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2893 		mac_reg &= ~E1000_RCTL_SECRC;
2894 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2895 
2896 		ret_val = e1000_read_kmrn_reg_generic(hw,
2897 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2898 						&data);
2899 		if (ret_val)
2900 			return ret_val;
2901 		ret_val = e1000_write_kmrn_reg_generic(hw,
2902 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2903 						data & ~(1 << 0));
2904 		if (ret_val)
2905 			return ret_val;
2906 		ret_val = e1000_read_kmrn_reg_generic(hw,
2907 						E1000_KMRNCTRLSTA_HD_CTRL,
2908 						&data);
2909 		if (ret_val)
2910 			return ret_val;
2911 		data &= ~(0xF << 8);
2912 		data |= (0xB << 8);
2913 		ret_val = e1000_write_kmrn_reg_generic(hw,
2914 						E1000_KMRNCTRLSTA_HD_CTRL,
2915 						data);
2916 		if (ret_val)
2917 			return ret_val;
2918 
2919 		/* Write PHY register values back to h/w defaults */
2920 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2921 		data &= ~(0x7F << 5);
2922 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2923 		if (ret_val)
2924 			return ret_val;
2925 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2926 		data |= (1 << 13);
2927 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2928 		if (ret_val)
2929 			return ret_val;
2930 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2931 		data &= ~(0x3FF << 2);
2932 		data |= (0x8 << 2);
2933 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2934 		if (ret_val)
2935 			return ret_val;
2936 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2937 		if (ret_val)
2938 			return ret_val;
2939 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2940 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2941 						~(1 << 10));
2942 		if (ret_val)
2943 			return ret_val;
2944 	}
2945 
2946 	/* re-enable Rx path after enabling/disabling workaround */
2947 	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2948 				     ~(1 << 14));
2949 }
2950 
2951 /**
2952  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2953  *  done after every PHY reset.
2954  *  @hw: pointer to the HW structure
2955  **/
2956 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2957 {
2958 	s32 ret_val = E1000_SUCCESS;
2959 
2960 	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2961 
2962 	if (hw->mac.type != e1000_pch2lan)
2963 		return E1000_SUCCESS;
2964 
2965 	/* Set MDIO slow mode before any other MDIO access */
2966 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2967 	if (ret_val)
2968 		return ret_val;
2969 
2970 	ret_val = hw->phy.ops.acquire(hw);
2971 	if (ret_val)
2972 		return ret_val;
2973 	/* set MSE higher to enable link to stay up when noise is high */
2974 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2975 	if (ret_val)
2976 		goto release;
2977 	/* drop link after 5 times MSE threshold was reached */
2978 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2979 release:
2980 	hw->phy.ops.release(hw);
2981 
2982 	return ret_val;
2983 }
2984 
2985 /**
2986  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2987  *  @hw:   pointer to the HW structure
2988  *
2989  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2990  *  Disable K1 for 1000 and 100 speeds
2991  **/
2992 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2993 {
2994 	s32 ret_val = E1000_SUCCESS;
2995 	u16 status_reg = 0;
2996 
2997 	DEBUGFUNC("e1000_k1_workaround_lv");
2998 
2999 	if (hw->mac.type != e1000_pch2lan)
3000 		return E1000_SUCCESS;
3001 
3002 	/* Set K1 beacon duration based on 10Mbs speed */
3003 	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
3004 	if (ret_val)
3005 		return ret_val;
3006 
3007 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
3008 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
3009 		if (status_reg &
3010 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
3011 			u16 pm_phy_reg;
3012 
3013 			/* LV 1G/100 Packet drop issue wa  */
3014 			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
3015 						       &pm_phy_reg);
3016 			if (ret_val)
3017 				return ret_val;
3018 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
3019 			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
3020 							pm_phy_reg);
3021 			if (ret_val)
3022 				return ret_val;
3023 		} else {
3024 			u32 mac_reg;
3025 			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
3026 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
3027 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
3028 			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
3029 		}
3030 	}
3031 
3032 	return ret_val;
3033 }
3034 
3035 /**
3036  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
3037  *  @hw:   pointer to the HW structure
3038  *  @gate: boolean set to true to gate, false to ungate
3039  *
3040  *  Gate/ungate the automatic PHY configuration via hardware; perform
3041  *  the configuration via software instead.
3042  **/
3043 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
3044 {
3045 	u32 extcnf_ctrl;
3046 
3047 	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
3048 
3049 	if (hw->mac.type < e1000_pch2lan)
3050 		return;
3051 
3052 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
3053 
3054 	if (gate)
3055 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3056 	else
3057 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3058 
3059 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
3060 }
3061 
3062 /**
3063  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
3064  *  @hw: pointer to the HW structure
3065  *
3066  *  Check the appropriate indication the MAC has finished configuring the
3067  *  PHY after a software reset.
3068  **/
3069 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
3070 {
3071 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
3072 
3073 	DEBUGFUNC("e1000_lan_init_done_ich8lan");
3074 
3075 	/* Wait for basic configuration completes before proceeding */
3076 	do {
3077 		data = E1000_READ_REG(hw, E1000_STATUS);
3078 		data &= E1000_STATUS_LAN_INIT_DONE;
3079 		usec_delay(100);
3080 	} while ((!data) && --loop);
3081 
3082 	/* If basic configuration is incomplete before the above loop
3083 	 * count reaches 0, loading the configuration from NVM will
3084 	 * leave the PHY in a bad state possibly resulting in no link.
3085 	 */
3086 	if (loop == 0)
3087 		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
3088 
3089 	/* Clear the Init Done bit for the next init event */
3090 	data = E1000_READ_REG(hw, E1000_STATUS);
3091 	data &= ~E1000_STATUS_LAN_INIT_DONE;
3092 	E1000_WRITE_REG(hw, E1000_STATUS, data);
3093 }
3094 
3095 /**
3096  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3097  *  @hw: pointer to the HW structure
3098  **/
3099 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3100 {
3101 	s32 ret_val = E1000_SUCCESS;
3102 	u16 reg;
3103 
3104 	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3105 
3106 	if (hw->phy.ops.check_reset_block(hw))
3107 		return E1000_SUCCESS;
3108 
3109 	/* Allow time for h/w to get to quiescent state after reset */
3110 	msec_delay(10);
3111 
3112 	/* Perform any necessary post-reset workarounds */
3113 	switch (hw->mac.type) {
3114 	case e1000_pchlan:
3115 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3116 		if (ret_val)
3117 			return ret_val;
3118 		break;
3119 	case e1000_pch2lan:
3120 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3121 		if (ret_val)
3122 			return ret_val;
3123 		break;
3124 	default:
3125 		break;
3126 	}
3127 
3128 	/* Clear the host wakeup bit after lcd reset */
3129 	if (hw->mac.type >= e1000_pchlan) {
3130 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3131 		reg &= ~BM_WUC_HOST_WU_BIT;
3132 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3133 	}
3134 
3135 	/* Configure the LCD with the extended configuration region in NVM */
3136 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
3137 	if (ret_val)
3138 		return ret_val;
3139 
3140 	/* Configure the LCD with the OEM bits in NVM */
3141 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
3142 
3143 	if (hw->mac.type == e1000_pch2lan) {
3144 		/* Ungate automatic PHY configuration on non-managed 82579 */
3145 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
3146 		    E1000_ICH_FWSM_FW_VALID)) {
3147 			msec_delay(10);
3148 			e1000_gate_hw_phy_config_ich8lan(hw, false);
3149 		}
3150 
3151 		/* Set EEE LPI Update Timer to 200usec */
3152 		ret_val = hw->phy.ops.acquire(hw);
3153 		if (ret_val)
3154 			return ret_val;
3155 		ret_val = e1000_write_emi_reg_locked(hw,
3156 						     I82579_LPI_UPDATE_TIMER,
3157 						     0x1387);
3158 		hw->phy.ops.release(hw);
3159 	}
3160 
3161 	return ret_val;
3162 }
3163 
3164 /**
3165  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3166  *  @hw: pointer to the HW structure
3167  *
3168  *  Resets the PHY
3169  *  This is a function pointer entry point called by drivers
3170  *  or other shared routines.
3171  **/
3172 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3173 {
3174 	s32 ret_val = E1000_SUCCESS;
3175 
3176 	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3177 
3178 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3179 	if ((hw->mac.type == e1000_pch2lan) &&
3180 	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3181 		e1000_gate_hw_phy_config_ich8lan(hw, true);
3182 
3183 	ret_val = e1000_phy_hw_reset_generic(hw);
3184 	if (ret_val)
3185 		return ret_val;
3186 
3187 	return e1000_post_phy_reset_ich8lan(hw);
3188 }
3189 
3190 /**
3191  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3192  *  @hw: pointer to the HW structure
3193  *  @active: true to enable LPLU, false to disable
3194  *
3195  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3196  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3197  *  the phy speed. This function will manually set the LPLU bit and restart
3198  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3199  *  since it configures the same bit.
3200  **/
3201 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3202 {
3203 	s32 ret_val;
3204 	u16 oem_reg;
3205 
3206 	DEBUGFUNC("e1000_set_lplu_state_pchlan");
3207 	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3208 	if (ret_val)
3209 		return ret_val;
3210 
3211 	if (active)
3212 		oem_reg |= HV_OEM_BITS_LPLU;
3213 	else
3214 		oem_reg &= ~HV_OEM_BITS_LPLU;
3215 
3216 	if (!hw->phy.ops.check_reset_block(hw))
3217 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3218 
3219 	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3220 }
3221 
3222 /**
3223  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3224  *  @hw: pointer to the HW structure
3225  *  @active: true to enable LPLU, false to disable
3226  *
3227  *  Sets the LPLU D0 state according to the active flag.  When
3228  *  activating LPLU this function also disables smart speed
3229  *  and vice versa.  LPLU will not be activated unless the
3230  *  device autonegotiation advertisement meets standards of
3231  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3232  *  This is a function pointer entry point only called by
3233  *  PHY setup routines.
3234  **/
3235 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3236 {
3237 	struct e1000_phy_info *phy = &hw->phy;
3238 	u32 phy_ctrl;
3239 	s32 ret_val = E1000_SUCCESS;
3240 	u16 data;
3241 
3242 	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3243 
3244 	if (phy->type == e1000_phy_ife)
3245 		return E1000_SUCCESS;
3246 
3247 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3248 
3249 	if (active) {
3250 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3251 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3252 
3253 		if (phy->type != e1000_phy_igp_3)
3254 			return E1000_SUCCESS;
3255 
3256 		/* Call gig speed drop workaround on LPLU before accessing
3257 		 * any PHY registers
3258 		 */
3259 		if (hw->mac.type == e1000_ich8lan)
3260 			e1000_gig_downshift_workaround_ich8lan(hw);
3261 
3262 		/* When LPLU is enabled, we should disable SmartSpeed */
3263 		ret_val = phy->ops.read_reg(hw,
3264 					    IGP01E1000_PHY_PORT_CONFIG,
3265 					    &data);
3266 		if (ret_val)
3267 			return ret_val;
3268 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3269 		ret_val = phy->ops.write_reg(hw,
3270 					     IGP01E1000_PHY_PORT_CONFIG,
3271 					     data);
3272 		if (ret_val)
3273 			return ret_val;
3274 	} else {
3275 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3276 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3277 
3278 		if (phy->type != e1000_phy_igp_3)
3279 			return E1000_SUCCESS;
3280 
3281 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3282 		 * during Dx states where the power conservation is most
3283 		 * important.  During driver activity we should enable
3284 		 * SmartSpeed, so performance is maintained.
3285 		 */
3286 		if (phy->smart_speed == e1000_smart_speed_on) {
3287 			ret_val = phy->ops.read_reg(hw,
3288 						    IGP01E1000_PHY_PORT_CONFIG,
3289 						    &data);
3290 			if (ret_val)
3291 				return ret_val;
3292 
3293 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3294 			ret_val = phy->ops.write_reg(hw,
3295 						     IGP01E1000_PHY_PORT_CONFIG,
3296 						     data);
3297 			if (ret_val)
3298 				return ret_val;
3299 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3300 			ret_val = phy->ops.read_reg(hw,
3301 						    IGP01E1000_PHY_PORT_CONFIG,
3302 						    &data);
3303 			if (ret_val)
3304 				return ret_val;
3305 
3306 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3307 			ret_val = phy->ops.write_reg(hw,
3308 						     IGP01E1000_PHY_PORT_CONFIG,
3309 						     data);
3310 			if (ret_val)
3311 				return ret_val;
3312 		}
3313 	}
3314 
3315 	return E1000_SUCCESS;
3316 }
3317 
3318 /**
3319  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3320  *  @hw: pointer to the HW structure
3321  *  @active: true to enable LPLU, false to disable
3322  *
3323  *  Sets the LPLU D3 state according to the active flag.  When
3324  *  activating LPLU this function also disables smart speed
3325  *  and vice versa.  LPLU will not be activated unless the
3326  *  device autonegotiation advertisement meets standards of
3327  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3328  *  This is a function pointer entry point only called by
3329  *  PHY setup routines.
3330  **/
3331 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3332 {
3333 	struct e1000_phy_info *phy = &hw->phy;
3334 	u32 phy_ctrl;
3335 	s32 ret_val = E1000_SUCCESS;
3336 	u16 data;
3337 
3338 	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3339 
3340 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3341 
3342 	if (!active) {
3343 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3344 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3345 
3346 		if (phy->type != e1000_phy_igp_3)
3347 			return E1000_SUCCESS;
3348 
3349 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3350 		 * during Dx states where the power conservation is most
3351 		 * important.  During driver activity we should enable
3352 		 * SmartSpeed, so performance is maintained.
3353 		 */
3354 		if (phy->smart_speed == e1000_smart_speed_on) {
3355 			ret_val = phy->ops.read_reg(hw,
3356 						    IGP01E1000_PHY_PORT_CONFIG,
3357 						    &data);
3358 			if (ret_val)
3359 				return ret_val;
3360 
3361 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3362 			ret_val = phy->ops.write_reg(hw,
3363 						     IGP01E1000_PHY_PORT_CONFIG,
3364 						     data);
3365 			if (ret_val)
3366 				return ret_val;
3367 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3368 			ret_val = phy->ops.read_reg(hw,
3369 						    IGP01E1000_PHY_PORT_CONFIG,
3370 						    &data);
3371 			if (ret_val)
3372 				return ret_val;
3373 
3374 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3375 			ret_val = phy->ops.write_reg(hw,
3376 						     IGP01E1000_PHY_PORT_CONFIG,
3377 						     data);
3378 			if (ret_val)
3379 				return ret_val;
3380 		}
3381 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3382 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3383 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3384 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3385 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3386 
3387 		if (phy->type != e1000_phy_igp_3)
3388 			return E1000_SUCCESS;
3389 
3390 		/* Call gig speed drop workaround on LPLU before accessing
3391 		 * any PHY registers
3392 		 */
3393 		if (hw->mac.type == e1000_ich8lan)
3394 			e1000_gig_downshift_workaround_ich8lan(hw);
3395 
3396 		/* When LPLU is enabled, we should disable SmartSpeed */
3397 		ret_val = phy->ops.read_reg(hw,
3398 					    IGP01E1000_PHY_PORT_CONFIG,
3399 					    &data);
3400 		if (ret_val)
3401 			return ret_val;
3402 
3403 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3404 		ret_val = phy->ops.write_reg(hw,
3405 					     IGP01E1000_PHY_PORT_CONFIG,
3406 					     data);
3407 	}
3408 
3409 	return ret_val;
3410 }
3411 
3412 /**
3413  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3414  *  @hw: pointer to the HW structure
3415  *  @bank:  pointer to the variable that returns the active bank
3416  *
3417  *  Reads signature byte from the NVM using the flash access registers.
3418  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3419  **/
3420 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3421 {
3422 	u32 eecd;
3423 	struct e1000_nvm_info *nvm = &hw->nvm;
3424 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3425 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3426 	u32 nvm_dword = 0;
3427 	u8 sig_byte = 0;
3428 	s32 ret_val;
3429 
3430 	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3431 
3432 	switch (hw->mac.type) {
3433 	case e1000_pch_spt:
3434 	case e1000_pch_cnp:
3435 	case e1000_pch_tgp:
3436 	case e1000_pch_adp:
3437 	case e1000_pch_mtp:
3438 		bank1_offset = nvm->flash_bank_size;
3439 		act_offset = E1000_ICH_NVM_SIG_WORD;
3440 
3441 		/* set bank to 0 in case flash read fails */
3442 		*bank = 0;
3443 
3444 		/* Check bank 0 */
3445 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3446 							 &nvm_dword);
3447 		if (ret_val)
3448 			return ret_val;
3449 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3450 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3451 		    E1000_ICH_NVM_SIG_VALUE) {
3452 			*bank = 0;
3453 			return E1000_SUCCESS;
3454 		}
3455 
3456 		/* Check bank 1 */
3457 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3458 							 bank1_offset,
3459 							 &nvm_dword);
3460 		if (ret_val)
3461 			return ret_val;
3462 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3463 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3464 		    E1000_ICH_NVM_SIG_VALUE) {
3465 			*bank = 1;
3466 			return E1000_SUCCESS;
3467 		}
3468 
3469 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3470 		return -E1000_ERR_NVM;
3471 	case e1000_ich8lan:
3472 	case e1000_ich9lan:
3473 		eecd = E1000_READ_REG(hw, E1000_EECD);
3474 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3475 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3476 			if (eecd & E1000_EECD_SEC1VAL)
3477 				*bank = 1;
3478 			else
3479 				*bank = 0;
3480 
3481 			return E1000_SUCCESS;
3482 		}
3483 		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3484 		/* FALLTHROUGH */
3485 	default:
3486 		/* set bank to 0 in case flash read fails */
3487 		*bank = 0;
3488 
3489 		/* Check bank 0 */
3490 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3491 							&sig_byte);
3492 		if (ret_val)
3493 			return ret_val;
3494 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3495 		    E1000_ICH_NVM_SIG_VALUE) {
3496 			*bank = 0;
3497 			return E1000_SUCCESS;
3498 		}
3499 
3500 		/* Check bank 1 */
3501 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3502 							bank1_offset,
3503 							&sig_byte);
3504 		if (ret_val)
3505 			return ret_val;
3506 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3507 		    E1000_ICH_NVM_SIG_VALUE) {
3508 			*bank = 1;
3509 			return E1000_SUCCESS;
3510 		}
3511 
3512 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3513 		return -E1000_ERR_NVM;
3514 	}
3515 }
3516 
3517 /**
3518  *  e1000_read_nvm_spt - NVM access for SPT
3519  *  @hw: pointer to the HW structure
3520  *  @offset: The offset (in bytes) of the word(s) to read.
3521  *  @words: Size of data to read in words.
3522  *  @data: pointer to the word(s) to read at offset.
3523  *
3524  *  Reads a word(s) from the NVM
3525  **/
3526 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3527 			      u16 *data)
3528 {
3529 	struct e1000_nvm_info *nvm = &hw->nvm;
3530 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3531 	u32 act_offset;
3532 	s32 ret_val = E1000_SUCCESS;
3533 	u32 bank = 0;
3534 	u32 dword = 0;
3535 	u16 offset_to_read;
3536 	u16 i;
3537 
3538 	DEBUGFUNC("e1000_read_nvm_spt");
3539 
3540 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3541 	    (words == 0)) {
3542 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3543 		ret_val = -E1000_ERR_NVM;
3544 		goto out;
3545 	}
3546 
3547 	nvm->ops.acquire(hw);
3548 
3549 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3550 	if (ret_val != E1000_SUCCESS) {
3551 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3552 		bank = 0;
3553 	}
3554 
3555 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3556 	act_offset += offset;
3557 
3558 	ret_val = E1000_SUCCESS;
3559 
3560 	for (i = 0; i < words; i += 2) {
3561 		if (words - i == 1) {
3562 			if (dev_spec->shadow_ram[offset + i].modified) {
3563 				data[i] =
3564 				    dev_spec->shadow_ram[offset + i].value;
3565 			} else {
3566 				offset_to_read = act_offset + i -
3567 						 ((act_offset + i) % 2);
3568 				ret_val =
3569 				   e1000_read_flash_dword_ich8lan(hw,
3570 								 offset_to_read,
3571 								 &dword);
3572 				if (ret_val)
3573 					break;
3574 				if ((act_offset + i) % 2 == 0)
3575 					data[i] = (u16)(dword & 0xFFFF);
3576 				else
3577 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3578 			}
3579 		} else {
3580 			offset_to_read = act_offset + i;
3581 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3582 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3583 				ret_val =
3584 				   e1000_read_flash_dword_ich8lan(hw,
3585 								 offset_to_read,
3586 								 &dword);
3587 				if (ret_val)
3588 					break;
3589 			}
3590 			if (dev_spec->shadow_ram[offset + i].modified)
3591 				data[i] =
3592 				    dev_spec->shadow_ram[offset + i].value;
3593 			else
3594 				data[i] = (u16)(dword & 0xFFFF);
3595 			if (dev_spec->shadow_ram[offset + i + 1].modified)
3596 				data[i + 1] =
3597 				   dev_spec->shadow_ram[offset + i + 1].value;
3598 			else
3599 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3600 		}
3601 	}
3602 
3603 	nvm->ops.release(hw);
3604 
3605 out:
3606 	if (ret_val)
3607 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3608 
3609 	return ret_val;
3610 }
3611 
3612 /**
3613  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3614  *  @hw: pointer to the HW structure
3615  *  @offset: The offset (in bytes) of the word(s) to read.
3616  *  @words: Size of data to read in words
3617  *  @data: Pointer to the word(s) to read at offset.
3618  *
3619  *  Reads a word(s) from the NVM using the flash access registers.
3620  **/
3621 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3622 				  u16 *data)
3623 {
3624 	struct e1000_nvm_info *nvm = &hw->nvm;
3625 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3626 	u32 act_offset;
3627 	s32 ret_val = E1000_SUCCESS;
3628 	u32 bank = 0;
3629 	u16 i, word;
3630 
3631 	DEBUGFUNC("e1000_read_nvm_ich8lan");
3632 
3633 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3634 	    (words == 0)) {
3635 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3636 		ret_val = -E1000_ERR_NVM;
3637 		goto out;
3638 	}
3639 
3640 	nvm->ops.acquire(hw);
3641 
3642 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3643 	if (ret_val != E1000_SUCCESS) {
3644 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3645 		bank = 0;
3646 	}
3647 
3648 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3649 	act_offset += offset;
3650 
3651 	ret_val = E1000_SUCCESS;
3652 	for (i = 0; i < words; i++) {
3653 		if (dev_spec->shadow_ram[offset + i].modified) {
3654 			data[i] = dev_spec->shadow_ram[offset + i].value;
3655 		} else {
3656 			ret_val = e1000_read_flash_word_ich8lan(hw,
3657 								act_offset + i,
3658 								&word);
3659 			if (ret_val)
3660 				break;
3661 			data[i] = word;
3662 		}
3663 	}
3664 
3665 	nvm->ops.release(hw);
3666 
3667 out:
3668 	if (ret_val)
3669 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3670 
3671 	return ret_val;
3672 }
3673 
3674 /**
3675  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3676  *  @hw: pointer to the HW structure
3677  *
3678  *  This function does initial flash setup so that a new read/write/erase cycle
3679  *  can be started.
3680  **/
3681 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3682 {
3683 	union ich8_hws_flash_status hsfsts;
3684 	s32 ret_val = -E1000_ERR_NVM;
3685 
3686 	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3687 
3688 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3689 
3690 	/* Check if the flash descriptor is valid */
3691 	if (!hsfsts.hsf_status.fldesvalid) {
3692 		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3693 		return -E1000_ERR_NVM;
3694 	}
3695 
3696 	/* Clear FCERR and DAEL in hw status by writing 1 */
3697 	hsfsts.hsf_status.flcerr = 1;
3698 	hsfsts.hsf_status.dael = 1;
3699 	if (hw->mac.type >= e1000_pch_spt)
3700 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3701 				      hsfsts.regval & 0xFFFF);
3702 	else
3703 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3704 
3705 	/* Either we should have a hardware SPI cycle in progress
3706 	 * bit to check against, in order to start a new cycle or
3707 	 * FDONE bit should be changed in the hardware so that it
3708 	 * is 1 after hardware reset, which can then be used as an
3709 	 * indication whether a cycle is in progress or has been
3710 	 * completed.
3711 	 */
3712 
3713 	if (!hsfsts.hsf_status.flcinprog) {
3714 		/* There is no cycle running at present,
3715 		 * so we can start a cycle.
3716 		 * Begin by setting Flash Cycle Done.
3717 		 */
3718 		hsfsts.hsf_status.flcdone = 1;
3719 		if (hw->mac.type >= e1000_pch_spt)
3720 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3721 					      hsfsts.regval & 0xFFFF);
3722 		else
3723 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3724 						hsfsts.regval);
3725 		ret_val = E1000_SUCCESS;
3726 	} else {
3727 		s32 i;
3728 
3729 		/* Otherwise poll for sometime so the current
3730 		 * cycle has a chance to end before giving up.
3731 		 */
3732 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3733 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3734 							      ICH_FLASH_HSFSTS);
3735 			if (!hsfsts.hsf_status.flcinprog) {
3736 				ret_val = E1000_SUCCESS;
3737 				break;
3738 			}
3739 			usec_delay(1);
3740 		}
3741 		if (ret_val == E1000_SUCCESS) {
3742 			/* Successful in waiting for previous cycle to timeout,
3743 			 * now set the Flash Cycle Done.
3744 			 */
3745 			hsfsts.hsf_status.flcdone = 1;
3746 			if (hw->mac.type >= e1000_pch_spt)
3747 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3748 						      hsfsts.regval & 0xFFFF);
3749 			else
3750 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3751 							hsfsts.regval);
3752 		} else {
3753 			DEBUGOUT("Flash controller busy, cannot get access\n");
3754 		}
3755 	}
3756 
3757 	return ret_val;
3758 }
3759 
3760 /**
3761  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3762  *  @hw: pointer to the HW structure
3763  *  @timeout: maximum time to wait for completion
3764  *
3765  *  This function starts a flash cycle and waits for its completion.
3766  **/
3767 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3768 {
3769 	union ich8_hws_flash_ctrl hsflctl;
3770 	union ich8_hws_flash_status hsfsts;
3771 	u32 i = 0;
3772 
3773 	DEBUGFUNC("e1000_flash_cycle_ich8lan");
3774 
3775 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3776 	if (hw->mac.type >= e1000_pch_spt)
3777 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3778 	else
3779 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3780 	hsflctl.hsf_ctrl.flcgo = 1;
3781 
3782 	if (hw->mac.type >= e1000_pch_spt)
3783 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3784 				      hsflctl.regval << 16);
3785 	else
3786 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3787 
3788 	/* wait till FDONE bit is set to 1 */
3789 	do {
3790 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3791 		if (hsfsts.hsf_status.flcdone)
3792 			break;
3793 		usec_delay(1);
3794 	} while (i++ < timeout);
3795 
3796 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3797 		return E1000_SUCCESS;
3798 
3799 	return -E1000_ERR_NVM;
3800 }
3801 
3802 /**
3803  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3804  *  @hw: pointer to the HW structure
3805  *  @offset: offset to data location
3806  *  @data: pointer to the location for storing the data
3807  *
3808  *  Reads the flash dword at offset into data.  Offset is converted
3809  *  to bytes before read.
3810  **/
3811 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3812 					  u32 *data)
3813 {
3814 	DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3815 
3816 	if (!data)
3817 		return -E1000_ERR_NVM;
3818 
3819 	/* Must convert word offset into bytes. */
3820 	offset <<= 1;
3821 
3822 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3823 }
3824 
3825 /**
3826  *  e1000_read_flash_word_ich8lan - Read word from flash
3827  *  @hw: pointer to the HW structure
3828  *  @offset: offset to data location
3829  *  @data: pointer to the location for storing the data
3830  *
3831  *  Reads the flash word at offset into data.  Offset is converted
3832  *  to bytes before read.
3833  **/
3834 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3835 					 u16 *data)
3836 {
3837 	DEBUGFUNC("e1000_read_flash_word_ich8lan");
3838 
3839 	if (!data)
3840 		return -E1000_ERR_NVM;
3841 
3842 	/* Must convert offset into bytes. */
3843 	offset <<= 1;
3844 
3845 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3846 }
3847 
3848 /**
3849  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3850  *  @hw: pointer to the HW structure
3851  *  @offset: The offset of the byte to read.
3852  *  @data: Pointer to a byte to store the value read.
3853  *
3854  *  Reads a single byte from the NVM using the flash access registers.
3855  **/
3856 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3857 					 u8 *data)
3858 {
3859 	s32 ret_val;
3860 	u16 word = 0;
3861 
3862 	/* In SPT, only 32 bits access is supported,
3863 	 * so this function should not be called.
3864 	 */
3865 	if (hw->mac.type >= e1000_pch_spt)
3866 		return -E1000_ERR_NVM;
3867 	else
3868 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3869 
3870 	if (ret_val)
3871 		return ret_val;
3872 
3873 	*data = (u8)word;
3874 
3875 	return E1000_SUCCESS;
3876 }
3877 
3878 /**
3879  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3880  *  @hw: pointer to the HW structure
3881  *  @offset: The offset (in bytes) of the byte or word to read.
3882  *  @size: Size of data to read, 1=byte 2=word
3883  *  @data: Pointer to the word to store the value read.
3884  *
3885  *  Reads a byte or word from the NVM using the flash access registers.
3886  **/
3887 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3888 					 u8 size, u16 *data)
3889 {
3890 	union ich8_hws_flash_status hsfsts;
3891 	union ich8_hws_flash_ctrl hsflctl;
3892 	u32 flash_linear_addr;
3893 	u32 flash_data = 0;
3894 	s32 ret_val = -E1000_ERR_NVM;
3895 	u8 count = 0;
3896 
3897 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3898 
3899 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3900 		return -E1000_ERR_NVM;
3901 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3902 			     hw->nvm.flash_base_addr);
3903 
3904 	do {
3905 		usec_delay(1);
3906 		/* Steps */
3907 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3908 		if (ret_val != E1000_SUCCESS)
3909 			break;
3910 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3911 
3912 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3913 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3914 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3915 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3916 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3917 
3918 		ret_val = e1000_flash_cycle_ich8lan(hw,
3919 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3920 
3921 		/* Check if FCERR is set to 1, if set to 1, clear it
3922 		 * and try the whole sequence a few more times, else
3923 		 * read in (shift in) the Flash Data0, the order is
3924 		 * least significant byte first msb to lsb
3925 		 */
3926 		if (ret_val == E1000_SUCCESS) {
3927 			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3928 			if (size == 1)
3929 				*data = (u8)(flash_data & 0x000000FF);
3930 			else if (size == 2)
3931 				*data = (u16)(flash_data & 0x0000FFFF);
3932 			break;
3933 		} else {
3934 			/* If we've gotten here, then things are probably
3935 			 * completely hosed, but if the error condition is
3936 			 * detected, it won't hurt to give it another try...
3937 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3938 			 */
3939 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3940 							      ICH_FLASH_HSFSTS);
3941 			if (hsfsts.hsf_status.flcerr) {
3942 				/* Repeat for some time before giving up. */
3943 				continue;
3944 			} else if (!hsfsts.hsf_status.flcdone) {
3945 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3946 				break;
3947 			}
3948 		}
3949 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3950 
3951 	return ret_val;
3952 }
3953 
3954 /**
3955  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3956  *  @hw: pointer to the HW structure
3957  *  @offset: The offset (in bytes) of the dword to read.
3958  *  @data: Pointer to the dword to store the value read.
3959  *
3960  *  Reads a byte or word from the NVM using the flash access registers.
3961  **/
3962 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3963 					   u32 *data)
3964 {
3965 	union ich8_hws_flash_status hsfsts;
3966 	union ich8_hws_flash_ctrl hsflctl;
3967 	u32 flash_linear_addr;
3968 	s32 ret_val = -E1000_ERR_NVM;
3969 	u8 count = 0;
3970 
3971 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3972 
3973 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3974 		    hw->mac.type < e1000_pch_spt)
3975 			return -E1000_ERR_NVM;
3976 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3977 			     hw->nvm.flash_base_addr);
3978 
3979 	do {
3980 		usec_delay(1);
3981 		/* Steps */
3982 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3983 		if (ret_val != E1000_SUCCESS)
3984 			break;
3985 		/* In SPT, This register is in Lan memory space, not flash.
3986 		 * Therefore, only 32 bit access is supported
3987 		 */
3988 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3989 
3990 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3991 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3992 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3993 		/* In SPT, This register is in Lan memory space, not flash.
3994 		 * Therefore, only 32 bit access is supported
3995 		 */
3996 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3997 				      (u32)hsflctl.regval << 16);
3998 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3999 
4000 		ret_val = e1000_flash_cycle_ich8lan(hw,
4001 						ICH_FLASH_READ_COMMAND_TIMEOUT);
4002 
4003 		/* Check if FCERR is set to 1, if set to 1, clear it
4004 		 * and try the whole sequence a few more times, else
4005 		 * read in (shift in) the Flash Data0, the order is
4006 		 * least significant byte first msb to lsb
4007 		 */
4008 		if (ret_val == E1000_SUCCESS) {
4009 			*data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
4010 			break;
4011 		} else {
4012 			/* If we've gotten here, then things are probably
4013 			 * completely hosed, but if the error condition is
4014 			 * detected, it won't hurt to give it another try...
4015 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
4016 			 */
4017 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4018 							      ICH_FLASH_HSFSTS);
4019 			if (hsfsts.hsf_status.flcerr) {
4020 				/* Repeat for some time before giving up. */
4021 				continue;
4022 			} else if (!hsfsts.hsf_status.flcdone) {
4023 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4024 				break;
4025 			}
4026 		}
4027 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4028 
4029 	return ret_val;
4030 }
4031 
4032 /**
4033  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
4034  *  @hw: pointer to the HW structure
4035  *  @offset: The offset (in bytes) of the word(s) to write.
4036  *  @words: Size of data to write in words
4037  *  @data: Pointer to the word(s) to write at offset.
4038  *
4039  *  Writes a byte or word to the NVM using the flash access registers.
4040  **/
4041 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
4042 				   u16 *data)
4043 {
4044 	struct e1000_nvm_info *nvm = &hw->nvm;
4045 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4046 	u16 i;
4047 
4048 	DEBUGFUNC("e1000_write_nvm_ich8lan");
4049 
4050 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
4051 	    (words == 0)) {
4052 		DEBUGOUT("nvm parameter(s) out of bounds\n");
4053 		return -E1000_ERR_NVM;
4054 	}
4055 
4056 	nvm->ops.acquire(hw);
4057 
4058 	for (i = 0; i < words; i++) {
4059 		dev_spec->shadow_ram[offset + i].modified = true;
4060 		dev_spec->shadow_ram[offset + i].value = data[i];
4061 	}
4062 
4063 	nvm->ops.release(hw);
4064 
4065 	return E1000_SUCCESS;
4066 }
4067 
4068 /**
4069  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
4070  *  @hw: pointer to the HW structure
4071  *
4072  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4073  *  which writes the checksum to the shadow ram.  The changes in the shadow
4074  *  ram are then committed to the EEPROM by processing each bank at a time
4075  *  checking for the modified bit and writing only the pending changes.
4076  *  After a successful commit, the shadow ram is cleared and is ready for
4077  *  future writes.
4078  **/
4079 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
4080 {
4081 	struct e1000_nvm_info *nvm = &hw->nvm;
4082 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4083 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4084 	s32 ret_val;
4085 	u32 dword = 0;
4086 
4087 	DEBUGFUNC("e1000_update_nvm_checksum_spt");
4088 
4089 	ret_val = e1000_update_nvm_checksum_generic(hw);
4090 	if (ret_val)
4091 		goto out;
4092 
4093 	if (nvm->type != e1000_nvm_flash_sw)
4094 		goto out;
4095 
4096 	nvm->ops.acquire(hw);
4097 
4098 	/* We're writing to the opposite bank so if we're on bank 1,
4099 	 * write to bank 0 etc.  We also need to erase the segment that
4100 	 * is going to be written
4101 	 */
4102 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4103 	if (ret_val != E1000_SUCCESS) {
4104 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4105 		bank = 0;
4106 	}
4107 
4108 	if (bank == 0) {
4109 		new_bank_offset = nvm->flash_bank_size;
4110 		old_bank_offset = 0;
4111 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4112 		if (ret_val)
4113 			goto release;
4114 	} else {
4115 		old_bank_offset = nvm->flash_bank_size;
4116 		new_bank_offset = 0;
4117 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4118 		if (ret_val)
4119 			goto release;
4120 	}
4121 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4122 		/* Determine whether to write the value stored
4123 		 * in the other NVM bank or a modified value stored
4124 		 * in the shadow RAM
4125 		 */
4126 		ret_val = e1000_read_flash_dword_ich8lan(hw,
4127 							 i + old_bank_offset,
4128 							 &dword);
4129 
4130 		if (dev_spec->shadow_ram[i].modified) {
4131 			dword &= 0xffff0000;
4132 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4133 		}
4134 		if (dev_spec->shadow_ram[i + 1].modified) {
4135 			dword &= 0x0000ffff;
4136 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4137 				  << 16);
4138 		}
4139 		if (ret_val)
4140 			break;
4141 
4142 		/* If the word is 0x13, then make sure the signature bits
4143 		 * (15:14) are 11b until the commit has completed.
4144 		 * This will allow us to write 10b which indicates the
4145 		 * signature is valid.  We want to do this after the write
4146 		 * has completed so that we don't mark the segment valid
4147 		 * while the write is still in progress
4148 		 */
4149 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
4150 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
4151 
4152 		/* Convert offset to bytes. */
4153 		act_offset = (i + new_bank_offset) << 1;
4154 
4155 		usec_delay(100);
4156 
4157 		/* Write the data to the new bank. Offset in words*/
4158 		act_offset = i + new_bank_offset;
4159 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4160 								dword);
4161 		if (ret_val)
4162 			break;
4163 	 }
4164 
4165 	/* Don't bother writing the segment valid bits if sector
4166 	 * programming failed.
4167 	 */
4168 	if (ret_val) {
4169 		DEBUGOUT("Flash commit failed.\n");
4170 		goto release;
4171 	}
4172 
4173 	/* Finally validate the new segment by setting bit 15:14
4174 	 * to 10b in word 0x13 , this can be done without an
4175 	 * erase as well since these bits are 11 to start with
4176 	 * and we need to change bit 14 to 0b
4177 	 */
4178 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4179 
4180 	/*offset in words but we read dword*/
4181 	--act_offset;
4182 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4183 
4184 	if (ret_val)
4185 		goto release;
4186 
4187 	dword &= 0xBFFFFFFF;
4188 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4189 
4190 	if (ret_val)
4191 		goto release;
4192 
4193 	/* offset in words but we read dword*/
4194 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4195 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4196 
4197 	if (ret_val)
4198 		goto release;
4199 
4200 	dword &= 0x00FFFFFF;
4201 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4202 
4203 	if (ret_val)
4204 		goto release;
4205 
4206 	/* Great!  Everything worked, we can now clear the cached entries. */
4207 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4208 		dev_spec->shadow_ram[i].modified = false;
4209 		dev_spec->shadow_ram[i].value = 0xFFFF;
4210 	}
4211 
4212 release:
4213 	nvm->ops.release(hw);
4214 
4215 	/* Reload the EEPROM, or else modifications will not appear
4216 	 * until after the next adapter reset.
4217 	 */
4218 	if (!ret_val) {
4219 		nvm->ops.reload(hw);
4220 		msec_delay(10);
4221 	}
4222 
4223 out:
4224 	if (ret_val)
4225 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4226 
4227 	return ret_val;
4228 }
4229 
4230 /**
4231  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4232  *  @hw: pointer to the HW structure
4233  *
4234  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4235  *  which writes the checksum to the shadow ram.  The changes in the shadow
4236  *  ram are then committed to the EEPROM by processing each bank at a time
4237  *  checking for the modified bit and writing only the pending changes.
4238  *  After a successful commit, the shadow ram is cleared and is ready for
4239  *  future writes.
4240  **/
4241 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4242 {
4243 	struct e1000_nvm_info *nvm = &hw->nvm;
4244 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4245 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4246 	s32 ret_val;
4247 	u16 data = 0;
4248 
4249 	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4250 
4251 	ret_val = e1000_update_nvm_checksum_generic(hw);
4252 	if (ret_val)
4253 		goto out;
4254 
4255 	if (nvm->type != e1000_nvm_flash_sw)
4256 		goto out;
4257 
4258 	nvm->ops.acquire(hw);
4259 
4260 	/* We're writing to the opposite bank so if we're on bank 1,
4261 	 * write to bank 0 etc.  We also need to erase the segment that
4262 	 * is going to be written
4263 	 */
4264 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4265 	if (ret_val != E1000_SUCCESS) {
4266 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4267 		bank = 0;
4268 	}
4269 
4270 	if (bank == 0) {
4271 		new_bank_offset = nvm->flash_bank_size;
4272 		old_bank_offset = 0;
4273 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4274 		if (ret_val)
4275 			goto release;
4276 	} else {
4277 		old_bank_offset = nvm->flash_bank_size;
4278 		new_bank_offset = 0;
4279 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4280 		if (ret_val)
4281 			goto release;
4282 	}
4283 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4284 		if (dev_spec->shadow_ram[i].modified) {
4285 			data = dev_spec->shadow_ram[i].value;
4286 		} else {
4287 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4288 								old_bank_offset,
4289 								&data);
4290 			if (ret_val)
4291 				break;
4292 		}
4293 		/* If the word is 0x13, then make sure the signature bits
4294 		 * (15:14) are 11b until the commit has completed.
4295 		 * This will allow us to write 10b which indicates the
4296 		 * signature is valid.  We want to do this after the write
4297 		 * has completed so that we don't mark the segment valid
4298 		 * while the write is still in progress
4299 		 */
4300 		if (i == E1000_ICH_NVM_SIG_WORD)
4301 			data |= E1000_ICH_NVM_SIG_MASK;
4302 
4303 		/* Convert offset to bytes. */
4304 		act_offset = (i + new_bank_offset) << 1;
4305 
4306 		usec_delay(100);
4307 
4308 		/* Write the bytes to the new bank. */
4309 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4310 							       act_offset,
4311 							       (u8)data);
4312 		if (ret_val)
4313 			break;
4314 
4315 		usec_delay(100);
4316 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4317 							  act_offset + 1,
4318 							  (u8)(data >> 8));
4319 		if (ret_val)
4320 			break;
4321 	 }
4322 
4323 	/* Don't bother writing the segment valid bits if sector
4324 	 * programming failed.
4325 	 */
4326 	if (ret_val) {
4327 		DEBUGOUT("Flash commit failed.\n");
4328 		goto release;
4329 	}
4330 
4331 	/* Finally validate the new segment by setting bit 15:14
4332 	 * to 10b in word 0x13 , this can be done without an
4333 	 * erase as well since these bits are 11 to start with
4334 	 * and we need to change bit 14 to 0b
4335 	 */
4336 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4337 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4338 	if (ret_val)
4339 		goto release;
4340 
4341 	data &= 0xBFFF;
4342 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4343 						       (u8)(data >> 8));
4344 	if (ret_val)
4345 		goto release;
4346 
4347 	/* And invalidate the previously valid segment by setting
4348 	 * its signature word (0x13) high_byte to 0b. This can be
4349 	 * done without an erase because flash erase sets all bits
4350 	 * to 1's. We can write 1's to 0's without an erase
4351 	 */
4352 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4353 
4354 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4355 
4356 	if (ret_val)
4357 		goto release;
4358 
4359 	/* Great!  Everything worked, we can now clear the cached entries. */
4360 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4361 		dev_spec->shadow_ram[i].modified = false;
4362 		dev_spec->shadow_ram[i].value = 0xFFFF;
4363 	}
4364 
4365 release:
4366 	nvm->ops.release(hw);
4367 
4368 	/* Reload the EEPROM, or else modifications will not appear
4369 	 * until after the next adapter reset.
4370 	 */
4371 	if (!ret_val) {
4372 		nvm->ops.reload(hw);
4373 		msec_delay(10);
4374 	}
4375 
4376 out:
4377 	if (ret_val)
4378 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4379 
4380 	return ret_val;
4381 }
4382 
4383 /**
4384  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4385  *  @hw: pointer to the HW structure
4386  *
4387  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4388  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4389  *  calculated, in which case we need to calculate the checksum and set bit 6.
4390  **/
4391 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4392 {
4393 	s32 ret_val;
4394 	u16 data;
4395 	u16 word;
4396 	u16 valid_csum_mask;
4397 
4398 	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4399 
4400 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4401 	 * the checksum needs to be fixed.  This bit is an indication that
4402 	 * the NVM was prepared by OEM software and did not calculate
4403 	 * the checksum...a likely scenario.
4404 	 */
4405 	switch (hw->mac.type) {
4406 	case e1000_pch_lpt:
4407 	case e1000_pch_spt:
4408 	case e1000_pch_cnp:
4409 	case e1000_pch_tgp:
4410 	case e1000_pch_adp:
4411 	case e1000_pch_mtp:
4412 		word = NVM_COMPAT;
4413 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4414 		break;
4415 	default:
4416 		word = NVM_FUTURE_INIT_WORD1;
4417 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4418 		break;
4419 	}
4420 
4421 	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4422 	if (ret_val)
4423 		return ret_val;
4424 
4425 	if (!(data & valid_csum_mask)) {
4426 		data |= valid_csum_mask;
4427 		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4428 		if (ret_val)
4429 			return ret_val;
4430 		ret_val = hw->nvm.ops.update(hw);
4431 		if (ret_val)
4432 			return ret_val;
4433 	}
4434 
4435 	return e1000_validate_nvm_checksum_generic(hw);
4436 }
4437 
4438 /**
4439  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4440  *  @hw: pointer to the HW structure
4441  *  @offset: The offset (in bytes) of the byte/word to read.
4442  *  @size: Size of data to read, 1=byte 2=word
4443  *  @data: The byte(s) to write to the NVM.
4444  *
4445  *  Writes one/two bytes to the NVM using the flash access registers.
4446  **/
4447 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4448 					  u8 size, u16 data)
4449 {
4450 	union ich8_hws_flash_status hsfsts;
4451 	union ich8_hws_flash_ctrl hsflctl;
4452 	u32 flash_linear_addr;
4453 	u32 flash_data = 0;
4454 	s32 ret_val;
4455 	u8 count = 0;
4456 
4457 	DEBUGFUNC("e1000_write_ich8_data");
4458 
4459 	if (hw->mac.type >= e1000_pch_spt) {
4460 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4461 			return -E1000_ERR_NVM;
4462 	} else {
4463 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4464 			return -E1000_ERR_NVM;
4465 	}
4466 
4467 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4468 			     hw->nvm.flash_base_addr);
4469 
4470 	do {
4471 		usec_delay(1);
4472 		/* Steps */
4473 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4474 		if (ret_val != E1000_SUCCESS)
4475 			break;
4476 		/* In SPT, This register is in Lan memory space, not
4477 		 * flash.  Therefore, only 32 bit access is supported
4478 		 */
4479 		if (hw->mac.type >= e1000_pch_spt)
4480 			hsflctl.regval =
4481 			    E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
4482 		else
4483 			hsflctl.regval =
4484 			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4485 
4486 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4487 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4488 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4489 		/* In SPT, This register is in Lan memory space,
4490 		 * not flash.  Therefore, only 32 bit access is
4491 		 * supported
4492 		 */
4493 		if (hw->mac.type >= e1000_pch_spt)
4494 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4495 					      hsflctl.regval << 16);
4496 		else
4497 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4498 						hsflctl.regval);
4499 
4500 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4501 
4502 		if (size == 1)
4503 			flash_data = (u32)data & 0x00FF;
4504 		else
4505 			flash_data = (u32)data;
4506 
4507 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4508 
4509 		/* check if FCERR is set to 1 , if set to 1, clear it
4510 		 * and try the whole sequence a few more times else done
4511 		 */
4512 		ret_val =
4513 		    e1000_flash_cycle_ich8lan(hw,
4514 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4515 		if (ret_val == E1000_SUCCESS)
4516 			break;
4517 
4518 		/* If we're here, then things are most likely
4519 		 * completely hosed, but if the error condition
4520 		 * is detected, it won't hurt to give it another
4521 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4522 		 */
4523 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4524 		if (hsfsts.hsf_status.flcerr)
4525 			/* Repeat for some time before giving up. */
4526 			continue;
4527 		if (!hsfsts.hsf_status.flcdone) {
4528 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4529 			break;
4530 		}
4531 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4532 
4533 	return ret_val;
4534 }
4535 
4536 /**
4537 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4538 *  @hw: pointer to the HW structure
4539 *  @offset: The offset (in bytes) of the dwords to read.
4540 *  @data: The 4 bytes to write to the NVM.
4541 *
4542 *  Writes one/two/four bytes to the NVM using the flash access registers.
4543 **/
4544 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4545 					    u32 data)
4546 {
4547 	union ich8_hws_flash_status hsfsts;
4548 	union ich8_hws_flash_ctrl hsflctl;
4549 	u32 flash_linear_addr;
4550 	s32 ret_val;
4551 	u8 count = 0;
4552 
4553 	DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4554 
4555 	if (hw->mac.type >= e1000_pch_spt) {
4556 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4557 			return -E1000_ERR_NVM;
4558 	}
4559 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4560 			     hw->nvm.flash_base_addr);
4561 	do {
4562 		usec_delay(1);
4563 		/* Steps */
4564 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4565 		if (ret_val != E1000_SUCCESS)
4566 			break;
4567 
4568 		/* In SPT, This register is in Lan memory space, not
4569 		 * flash.  Therefore, only 32 bit access is supported
4570 		 */
4571 		if (hw->mac.type >= e1000_pch_spt)
4572 			hsflctl.regval = E1000_READ_FLASH_REG(hw,
4573 							      ICH_FLASH_HSFSTS)
4574 					 >> 16;
4575 		else
4576 			hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4577 							      ICH_FLASH_HSFCTL);
4578 
4579 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4580 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4581 
4582 		/* In SPT, This register is in Lan memory space,
4583 		 * not flash.  Therefore, only 32 bit access is
4584 		 * supported
4585 		 */
4586 		if (hw->mac.type >= e1000_pch_spt)
4587 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4588 					      hsflctl.regval << 16);
4589 		else
4590 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4591 						hsflctl.regval);
4592 
4593 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4594 
4595 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4596 
4597 		/* check if FCERR is set to 1 , if set to 1, clear it
4598 		 * and try the whole sequence a few more times else done
4599 		 */
4600 		ret_val = e1000_flash_cycle_ich8lan(hw,
4601 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4602 
4603 		if (ret_val == E1000_SUCCESS)
4604 			break;
4605 
4606 		/* If we're here, then things are most likely
4607 		 * completely hosed, but if the error condition
4608 		 * is detected, it won't hurt to give it another
4609 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4610 		 */
4611 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4612 
4613 		if (hsfsts.hsf_status.flcerr)
4614 			/* Repeat for some time before giving up. */
4615 			continue;
4616 		if (!hsfsts.hsf_status.flcdone) {
4617 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4618 			break;
4619 		}
4620 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4621 
4622 	return ret_val;
4623 }
4624 
4625 /**
4626  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4627  *  @hw: pointer to the HW structure
4628  *  @offset: The index of the byte to read.
4629  *  @data: The byte to write to the NVM.
4630  *
4631  *  Writes a single byte to the NVM using the flash access registers.
4632  **/
4633 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4634 					  u8 data)
4635 {
4636 	u16 word = (u16)data;
4637 
4638 	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4639 
4640 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4641 }
4642 
4643 /**
4644 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4645 *  @hw: pointer to the HW structure
4646 *  @offset: The offset of the word to write.
4647 *  @dword: The dword to write to the NVM.
4648 *
4649 *  Writes a single dword to the NVM using the flash access registers.
4650 *  Goes through a retry algorithm before giving up.
4651 **/
4652 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4653 						 u32 offset, u32 dword)
4654 {
4655 	s32 ret_val;
4656 	u16 program_retries;
4657 
4658 	DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4659 
4660 	/* Must convert word offset into bytes. */
4661 	offset <<= 1;
4662 
4663 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4664 
4665 	if (!ret_val)
4666 		return ret_val;
4667 	for (program_retries = 0; program_retries < 100; program_retries++) {
4668 		DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4669 		usec_delay(100);
4670 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4671 		if (ret_val == E1000_SUCCESS)
4672 			break;
4673 	}
4674 	if (program_retries == 100)
4675 		return -E1000_ERR_NVM;
4676 
4677 	return E1000_SUCCESS;
4678 }
4679 
4680 /**
4681  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4682  *  @hw: pointer to the HW structure
4683  *  @offset: The offset of the byte to write.
4684  *  @byte: The byte to write to the NVM.
4685  *
4686  *  Writes a single byte to the NVM using the flash access registers.
4687  *  Goes through a retry algorithm before giving up.
4688  **/
4689 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4690 						u32 offset, u8 byte)
4691 {
4692 	s32 ret_val;
4693 	u16 program_retries;
4694 
4695 	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4696 
4697 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4698 	if (!ret_val)
4699 		return ret_val;
4700 
4701 	for (program_retries = 0; program_retries < 100; program_retries++) {
4702 		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4703 		usec_delay(100);
4704 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4705 		if (ret_val == E1000_SUCCESS)
4706 			break;
4707 	}
4708 	if (program_retries == 100)
4709 		return -E1000_ERR_NVM;
4710 
4711 	return E1000_SUCCESS;
4712 }
4713 
4714 /**
4715  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4716  *  @hw: pointer to the HW structure
4717  *  @bank: 0 for first bank, 1 for second bank, etc.
4718  *
4719  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4720  *  bank N is 4096 * N + flash_reg_addr.
4721  **/
4722 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4723 {
4724 	struct e1000_nvm_info *nvm = &hw->nvm;
4725 	union ich8_hws_flash_status hsfsts;
4726 	union ich8_hws_flash_ctrl hsflctl;
4727 	u32 flash_linear_addr;
4728 	/* bank size is in 16bit words - adjust to bytes */
4729 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4730 	s32 ret_val;
4731 	s32 count = 0;
4732 	s32 j, iteration, sector_size;
4733 
4734 	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4735 
4736 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4737 
4738 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4739 	 * register
4740 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4741 	 *     consecutive sectors.  The start index for the nth Hw sector
4742 	 *     can be calculated as = bank * 4096 + n * 256
4743 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4744 	 *     The start index for the nth Hw sector can be calculated
4745 	 *     as = bank * 4096
4746 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4747 	 *     (ich9 only, otherwise error condition)
4748 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4749 	 */
4750 	switch (hsfsts.hsf_status.berasesz) {
4751 	case 0:
4752 		/* Hw sector size 256 */
4753 		sector_size = ICH_FLASH_SEG_SIZE_256;
4754 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4755 		break;
4756 	case 1:
4757 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4758 		iteration = 1;
4759 		break;
4760 	case 2:
4761 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4762 		iteration = 1;
4763 		break;
4764 	case 3:
4765 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4766 		iteration = 1;
4767 		break;
4768 	default:
4769 		return -E1000_ERR_NVM;
4770 	}
4771 
4772 	/* Start with the base address, then add the sector offset. */
4773 	flash_linear_addr = hw->nvm.flash_base_addr;
4774 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4775 
4776 	for (j = 0; j < iteration; j++) {
4777 		do {
4778 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4779 
4780 			/* Steps */
4781 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4782 			if (ret_val)
4783 				return ret_val;
4784 
4785 			/* Write a value 11 (block Erase) in Flash
4786 			 * Cycle field in hw flash control
4787 			 */
4788 			if (hw->mac.type >= e1000_pch_spt)
4789 				hsflctl.regval =
4790 				    E1000_READ_FLASH_REG(hw,
4791 							 ICH_FLASH_HSFSTS)>>16;
4792 			else
4793 				hsflctl.regval =
4794 				    E1000_READ_FLASH_REG16(hw,
4795 							   ICH_FLASH_HSFCTL);
4796 
4797 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4798 			if (hw->mac.type >= e1000_pch_spt)
4799 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4800 						      hsflctl.regval << 16);
4801 			else
4802 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4803 							hsflctl.regval);
4804 
4805 			/* Write the last 24 bits of an index within the
4806 			 * block into Flash Linear address field in Flash
4807 			 * Address.
4808 			 */
4809 			flash_linear_addr += (j * sector_size);
4810 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4811 					      flash_linear_addr);
4812 
4813 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4814 			if (ret_val == E1000_SUCCESS)
4815 				break;
4816 
4817 			/* Check if FCERR is set to 1.  If 1,
4818 			 * clear it and try the whole sequence
4819 			 * a few more times else Done
4820 			 */
4821 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4822 						      ICH_FLASH_HSFSTS);
4823 			if (hsfsts.hsf_status.flcerr)
4824 				/* repeat for some time before giving up */
4825 				continue;
4826 			else if (!hsfsts.hsf_status.flcdone)
4827 				return ret_val;
4828 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4829 	}
4830 
4831 	return E1000_SUCCESS;
4832 }
4833 
4834 /**
4835  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4836  *  @hw: pointer to the HW structure
4837  *  @data: Pointer to the LED settings
4838  *
4839  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4840  *  settings is all 0's or F's, set the LED default to a valid LED default
4841  *  setting.
4842  **/
4843 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4844 {
4845 	s32 ret_val;
4846 
4847 	DEBUGFUNC("e1000_valid_led_default_ich8lan");
4848 
4849 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4850 	if (ret_val) {
4851 		DEBUGOUT("NVM Read Error\n");
4852 		return ret_val;
4853 	}
4854 
4855 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4856 		*data = ID_LED_DEFAULT_ICH8LAN;
4857 
4858 	return E1000_SUCCESS;
4859 }
4860 
4861 /**
4862  *  e1000_id_led_init_pchlan - store LED configurations
4863  *  @hw: pointer to the HW structure
4864  *
4865  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4866  *  the PHY LED configuration register.
4867  *
4868  *  PCH also does not have an "always on" or "always off" mode which
4869  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4870  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4871  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4872  *  link based on logic in e1000_led_[on|off]_pchlan().
4873  **/
4874 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4875 {
4876 	struct e1000_mac_info *mac = &hw->mac;
4877 	s32 ret_val;
4878 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4879 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4880 	u16 data, i, temp, shift;
4881 
4882 	DEBUGFUNC("e1000_id_led_init_pchlan");
4883 
4884 	/* Get default ID LED modes */
4885 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4886 	if (ret_val)
4887 		return ret_val;
4888 
4889 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4890 	mac->ledctl_mode1 = mac->ledctl_default;
4891 	mac->ledctl_mode2 = mac->ledctl_default;
4892 
4893 	for (i = 0; i < 4; i++) {
4894 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4895 		shift = (i * 5);
4896 		switch (temp) {
4897 		case ID_LED_ON1_DEF2:
4898 		case ID_LED_ON1_ON2:
4899 		case ID_LED_ON1_OFF2:
4900 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4901 			mac->ledctl_mode1 |= (ledctl_on << shift);
4902 			break;
4903 		case ID_LED_OFF1_DEF2:
4904 		case ID_LED_OFF1_ON2:
4905 		case ID_LED_OFF1_OFF2:
4906 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4907 			mac->ledctl_mode1 |= (ledctl_off << shift);
4908 			break;
4909 		default:
4910 			/* Do nothing */
4911 			break;
4912 		}
4913 		switch (temp) {
4914 		case ID_LED_DEF1_ON2:
4915 		case ID_LED_ON1_ON2:
4916 		case ID_LED_OFF1_ON2:
4917 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4918 			mac->ledctl_mode2 |= (ledctl_on << shift);
4919 			break;
4920 		case ID_LED_DEF1_OFF2:
4921 		case ID_LED_ON1_OFF2:
4922 		case ID_LED_OFF1_OFF2:
4923 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4924 			mac->ledctl_mode2 |= (ledctl_off << shift);
4925 			break;
4926 		default:
4927 			/* Do nothing */
4928 			break;
4929 		}
4930 	}
4931 
4932 	return E1000_SUCCESS;
4933 }
4934 
4935 /**
4936  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4937  *  @hw: pointer to the HW structure
4938  *
4939  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4940  *  register, so the bus width is hard coded.
4941  **/
4942 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4943 {
4944 	struct e1000_bus_info *bus = &hw->bus;
4945 	s32 ret_val;
4946 
4947 	DEBUGFUNC("e1000_get_bus_info_ich8lan");
4948 
4949 	ret_val = e1000_get_bus_info_pcie_generic(hw);
4950 
4951 	/* ICH devices are "PCI Express"-ish.  They have
4952 	 * a configuration space, but do not contain
4953 	 * PCI Express Capability registers, so bus width
4954 	 * must be hardcoded.
4955 	 */
4956 	if (bus->width == e1000_bus_width_unknown)
4957 		bus->width = e1000_bus_width_pcie_x1;
4958 
4959 	return ret_val;
4960 }
4961 
4962 /**
4963  *  e1000_reset_hw_ich8lan - Reset the hardware
4964  *  @hw: pointer to the HW structure
4965  *
4966  *  Does a full reset of the hardware which includes a reset of the PHY and
4967  *  MAC.
4968  **/
4969 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4970 {
4971 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4972 	u16 kum_cfg;
4973 	u32 ctrl, reg;
4974 	s32 ret_val;
4975 	u16 pci_cfg;
4976 
4977 	DEBUGFUNC("e1000_reset_hw_ich8lan");
4978 
4979 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4980 	 * on the last TLP read/write transaction when MAC is reset.
4981 	 */
4982 	ret_val = e1000_disable_pcie_master_generic(hw);
4983 	if (ret_val)
4984 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
4985 
4986 	DEBUGOUT("Masking off all interrupts\n");
4987 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4988 
4989 	/* Disable the Transmit and Receive units.  Then delay to allow
4990 	 * any pending transactions to complete before we hit the MAC
4991 	 * with the global reset.
4992 	 */
4993 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
4994 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4995 	E1000_WRITE_FLUSH(hw);
4996 
4997 	msec_delay(10);
4998 
4999 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
5000 	if (hw->mac.type == e1000_ich8lan) {
5001 		/* Set Tx and Rx buffer allocation to 8k apiece. */
5002 		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
5003 		/* Set Packet Buffer Size to 16k. */
5004 		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
5005 	}
5006 
5007 	if (hw->mac.type == e1000_pchlan) {
5008 		/* Save the NVM K1 bit setting*/
5009 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
5010 		if (ret_val)
5011 			return ret_val;
5012 
5013 		if (kum_cfg & E1000_NVM_K1_ENABLE)
5014 			dev_spec->nvm_k1_enabled = true;
5015 		else
5016 			dev_spec->nvm_k1_enabled = false;
5017 	}
5018 
5019 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5020 
5021 	if (!hw->phy.ops.check_reset_block(hw)) {
5022 		/* Full-chip reset requires MAC and PHY reset at the same
5023 		 * time to make sure the interface between MAC and the
5024 		 * external PHY is reset.
5025 		 */
5026 		ctrl |= E1000_CTRL_PHY_RST;
5027 
5028 		/* Gate automatic PHY configuration by hardware on
5029 		 * non-managed 82579
5030 		 */
5031 		if ((hw->mac.type == e1000_pch2lan) &&
5032 		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
5033 			e1000_gate_hw_phy_config_ich8lan(hw, true);
5034 	}
5035 	ret_val = e1000_acquire_swflag_ich8lan(hw);
5036 
5037 	/* Read from EXTCNF_CTRL in e1000_acquire_swflag_ich8lan function
5038 	 * may occur during global reset and cause system hang.
5039 	 * Configuration space access creates the needed delay.
5040 	 * Write to E1000_STRAP RO register E1000_PCI_VENDOR_ID_REGISTER value
5041 	 * insures configuration space read is done before global reset.
5042 	 */
5043 	e1000_read_pci_cfg(hw, E1000_PCI_VENDOR_ID_REGISTER, &pci_cfg);
5044 	E1000_WRITE_REG(hw, E1000_STRAP, pci_cfg);
5045 	DEBUGOUT("Issuing a global reset to ich8lan\n");
5046 	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
5047 	/* cannot issue a flush here because it hangs the hardware */
5048 	msec_delay(20);
5049 
5050 	/* Configuration space access improve HW level time sync mechanism.
5051 	 * Write to E1000_STRAP RO register E1000_PCI_VENDOR_ID_REGISTER
5052 	 * value to insure configuration space read is done
5053 	 * before any access to mac register.
5054 	 */
5055 	e1000_read_pci_cfg(hw, E1000_PCI_VENDOR_ID_REGISTER, &pci_cfg);
5056 	E1000_WRITE_REG(hw, E1000_STRAP, pci_cfg);
5057 
5058 	/* Set Phy Config Counter to 50msec */
5059 	if (hw->mac.type == e1000_pch2lan) {
5060 		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
5061 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
5062 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
5063 		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
5064 	}
5065 
5066 
5067 	if (ctrl & E1000_CTRL_PHY_RST) {
5068 		ret_val = hw->phy.ops.get_cfg_done(hw);
5069 		if (ret_val)
5070 			return ret_val;
5071 
5072 		ret_val = e1000_post_phy_reset_ich8lan(hw);
5073 		if (ret_val)
5074 			return ret_val;
5075 	}
5076 
5077 	/* For PCH, this write will make sure that any noise
5078 	 * will be detected as a CRC error and be dropped rather than show up
5079 	 * as a bad packet to the DMA engine.
5080 	 */
5081 	if (hw->mac.type == e1000_pchlan)
5082 		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
5083 
5084 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
5085 	E1000_READ_REG(hw, E1000_ICR);
5086 
5087 	reg = E1000_READ_REG(hw, E1000_KABGTXD);
5088 	reg |= E1000_KABGTXD_BGSQLBIAS;
5089 	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
5090 
5091 	return E1000_SUCCESS;
5092 }
5093 
5094 /**
5095  *  e1000_init_hw_ich8lan - Initialize the hardware
5096  *  @hw: pointer to the HW structure
5097  *
5098  *  Prepares the hardware for transmit and receive by doing the following:
5099  *   - initialize hardware bits
5100  *   - initialize LED identification
5101  *   - setup receive address registers
5102  *   - setup flow control
5103  *   - setup transmit descriptors
5104  *   - clear statistics
5105  **/
5106 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5107 {
5108 	struct e1000_mac_info *mac = &hw->mac;
5109 	u32 ctrl_ext, txdctl, snoop;
5110 	s32 ret_val;
5111 	u16 i;
5112 
5113 	DEBUGFUNC("e1000_init_hw_ich8lan");
5114 
5115 	e1000_initialize_hw_bits_ich8lan(hw);
5116 
5117 	/* Initialize identification LED */
5118 	ret_val = mac->ops.id_led_init(hw);
5119 	/* An error is not fatal and we should not stop init due to this */
5120 	if (ret_val)
5121 		DEBUGOUT("Error initializing identification LED\n");
5122 
5123 	/* Setup the receive address. */
5124 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5125 
5126 	/* Zero out the Multicast HASH table */
5127 	DEBUGOUT("Zeroing the MTA\n");
5128 	for (i = 0; i < mac->mta_reg_count; i++)
5129 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5130 
5131 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
5132 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
5133 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
5134 	 */
5135 	if (hw->phy.type == e1000_phy_82578) {
5136 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5137 		i &= ~BM_WUC_HOST_WU_BIT;
5138 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5139 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
5140 		if (ret_val)
5141 			return ret_val;
5142 	}
5143 
5144 	/* Setup link and flow control */
5145 	ret_val = mac->ops.setup_link(hw);
5146 
5147 	/* Set the transmit descriptor write-back policy for both queues */
5148 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5149 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5150 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5151 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5152 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5153 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5154 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5155 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5156 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5157 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5158 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5159 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5160 
5161 	/* ICH8 has opposite polarity of no_snoop bits.
5162 	 * By default, we should use snoop behavior.
5163 	 */
5164 	if (mac->type == e1000_ich8lan)
5165 		snoop = PCIE_ICH8_SNOOP_ALL;
5166 	else
5167 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5168 	e1000_set_pcie_no_snoop_generic(hw, snoop);
5169 
5170 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5171 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5172 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5173 
5174 	/* Clear all of the statistics registers (clear on read).  It is
5175 	 * important that we do this after we have tried to establish link
5176 	 * because the symbol error count will increment wildly if there
5177 	 * is no link.
5178 	 */
5179 	e1000_clear_hw_cntrs_ich8lan(hw);
5180 
5181 	return ret_val;
5182 }
5183 
5184 /**
5185  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5186  *  @hw: pointer to the HW structure
5187  *
5188  *  Sets/Clears required hardware bits necessary for correctly setting up the
5189  *  hardware for transmit and receive.
5190  **/
5191 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5192 {
5193 	u32 reg;
5194 
5195 	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5196 
5197 	/* Extended Device Control */
5198 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5199 	reg |= (1 << 22);
5200 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
5201 	if (hw->mac.type >= e1000_pchlan)
5202 		reg |= E1000_CTRL_EXT_PHYPDEN;
5203 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5204 
5205 	/* Transmit Descriptor Control 0 */
5206 	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5207 	reg |= (1 << 22);
5208 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5209 
5210 	/* Transmit Descriptor Control 1 */
5211 	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5212 	reg |= (1 << 22);
5213 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5214 
5215 	/* Transmit Arbitration Control 0 */
5216 	reg = E1000_READ_REG(hw, E1000_TARC(0));
5217 	if (hw->mac.type == e1000_ich8lan)
5218 		reg |= (1 << 28) | (1 << 29);
5219 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5220 	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5221 
5222 	/* Transmit Arbitration Control 1 */
5223 	reg = E1000_READ_REG(hw, E1000_TARC(1));
5224 	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5225 		reg &= ~(1 << 28);
5226 	else
5227 		reg |= (1 << 28);
5228 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
5229 	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5230 
5231 	/* Device Status */
5232 	if (hw->mac.type == e1000_ich8lan) {
5233 		reg = E1000_READ_REG(hw, E1000_STATUS);
5234 		reg &= ~(1U << 31);
5235 		E1000_WRITE_REG(hw, E1000_STATUS, reg);
5236 	}
5237 
5238 	/* work-around descriptor data corruption issue during nfs v2 udp
5239 	 * traffic, just disable the nfs filtering capability
5240 	 */
5241 	reg = E1000_READ_REG(hw, E1000_RFCTL);
5242 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5243 
5244 	/* Disable IPv6 extension header parsing because some malformed
5245 	 * IPv6 headers can hang the Rx.
5246 	 */
5247 	if (hw->mac.type == e1000_ich8lan)
5248 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5249 	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5250 
5251 	/* Enable ECC on Lynxpoint */
5252 	if (hw->mac.type >= e1000_pch_lpt) {
5253 		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5254 		reg |= E1000_PBECCSTS_ECC_ENABLE;
5255 		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5256 
5257 		reg = E1000_READ_REG(hw, E1000_CTRL);
5258 		reg |= E1000_CTRL_MEHE;
5259 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
5260 	}
5261 
5262 	return;
5263 }
5264 
5265 /**
5266  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5267  *  @hw: pointer to the HW structure
5268  *
5269  *  Determines which flow control settings to use, then configures flow
5270  *  control.  Calls the appropriate media-specific link configuration
5271  *  function.  Assuming the adapter has a valid link partner, a valid link
5272  *  should be established.  Assumes the hardware has previously been reset
5273  *  and the transmitter and receiver are not enabled.
5274  **/
5275 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5276 {
5277 	s32 ret_val;
5278 
5279 	DEBUGFUNC("e1000_setup_link_ich8lan");
5280 
5281 	/* ICH parts do not have a word in the NVM to determine
5282 	 * the default flow control setting, so we explicitly
5283 	 * set it to full.
5284 	 */
5285 	if (hw->fc.requested_mode == e1000_fc_default)
5286 		hw->fc.requested_mode = e1000_fc_full;
5287 
5288 	/* Save off the requested flow control mode for use later.  Depending
5289 	 * on the link partner's capabilities, we may or may not use this mode.
5290 	 */
5291 	hw->fc.current_mode = hw->fc.requested_mode;
5292 
5293 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5294 		hw->fc.current_mode);
5295 
5296 	if (!hw->phy.ops.check_reset_block(hw)) {
5297 		/* Continue to configure the copper link. */
5298 		ret_val = hw->mac.ops.setup_physical_interface(hw);
5299 		if (ret_val)
5300 			return ret_val;
5301 	}
5302 
5303 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5304 	if ((hw->phy.type == e1000_phy_82578) ||
5305 	    (hw->phy.type == e1000_phy_82579) ||
5306 	    (hw->phy.type == e1000_phy_i217) ||
5307 	    (hw->phy.type == e1000_phy_82577)) {
5308 		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5309 
5310 		ret_val = hw->phy.ops.write_reg(hw,
5311 					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
5312 					     hw->fc.pause_time);
5313 		if (ret_val)
5314 			return ret_val;
5315 	}
5316 
5317 	return e1000_set_fc_watermarks_generic(hw);
5318 }
5319 
5320 /**
5321  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5322  *  @hw: pointer to the HW structure
5323  *
5324  *  Configures the kumeran interface to the PHY to wait the appropriate time
5325  *  when polling the PHY, then call the generic setup_copper_link to finish
5326  *  configuring the copper link.
5327  **/
5328 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5329 {
5330 	u32 ctrl;
5331 	s32 ret_val;
5332 	u16 reg_data;
5333 
5334 	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5335 
5336 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5337 	ctrl |= E1000_CTRL_SLU;
5338 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5339 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5340 
5341 	/* Set the mac to wait the maximum time between each iteration
5342 	 * and increase the max iterations when polling the phy;
5343 	 * this fixes erroneous timeouts at 10Mbps.
5344 	 */
5345 	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5346 					       0xFFFF);
5347 	if (ret_val)
5348 		return ret_val;
5349 	ret_val = e1000_read_kmrn_reg_generic(hw,
5350 					      E1000_KMRNCTRLSTA_INBAND_PARAM,
5351 					      &reg_data);
5352 	if (ret_val)
5353 		return ret_val;
5354 	reg_data |= 0x3F;
5355 	ret_val = e1000_write_kmrn_reg_generic(hw,
5356 					       E1000_KMRNCTRLSTA_INBAND_PARAM,
5357 					       reg_data);
5358 	if (ret_val)
5359 		return ret_val;
5360 
5361 	switch (hw->phy.type) {
5362 	case e1000_phy_igp_3:
5363 		ret_val = e1000_copper_link_setup_igp(hw);
5364 		if (ret_val)
5365 			return ret_val;
5366 		break;
5367 	case e1000_phy_bm:
5368 	case e1000_phy_82578:
5369 		ret_val = e1000_copper_link_setup_m88(hw);
5370 		if (ret_val)
5371 			return ret_val;
5372 		break;
5373 	case e1000_phy_82577:
5374 	case e1000_phy_82579:
5375 		ret_val = e1000_copper_link_setup_82577(hw);
5376 		if (ret_val)
5377 			return ret_val;
5378 		break;
5379 	case e1000_phy_ife:
5380 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5381 					       &reg_data);
5382 		if (ret_val)
5383 			return ret_val;
5384 
5385 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5386 
5387 		switch (hw->phy.mdix) {
5388 		case 1:
5389 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5390 			break;
5391 		case 2:
5392 			reg_data |= IFE_PMC_FORCE_MDIX;
5393 			break;
5394 		case 0:
5395 		default:
5396 			reg_data |= IFE_PMC_AUTO_MDIX;
5397 			break;
5398 		}
5399 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5400 						reg_data);
5401 		if (ret_val)
5402 			return ret_val;
5403 		break;
5404 	default:
5405 		break;
5406 	}
5407 
5408 	return e1000_setup_copper_link_generic(hw);
5409 }
5410 
5411 /**
5412  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5413  *  @hw: pointer to the HW structure
5414  *
5415  *  Calls the PHY specific link setup function and then calls the
5416  *  generic setup_copper_link to finish configuring the link for
5417  *  Lynxpoint PCH devices
5418  **/
5419 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5420 {
5421 	u32 ctrl;
5422 	s32 ret_val;
5423 
5424 	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5425 
5426 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5427 	ctrl |= E1000_CTRL_SLU;
5428 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5429 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5430 
5431 	ret_val = e1000_copper_link_setup_82577(hw);
5432 	if (ret_val)
5433 		return ret_val;
5434 
5435 	return e1000_setup_copper_link_generic(hw);
5436 }
5437 
5438 /**
5439  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5440  *  @hw: pointer to the HW structure
5441  *  @speed: pointer to store current link speed
5442  *  @duplex: pointer to store the current link duplex
5443  *
5444  *  Calls the generic get_speed_and_duplex to retrieve the current link
5445  *  information and then calls the Kumeran lock loss workaround for links at
5446  *  gigabit speeds.
5447  **/
5448 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5449 					  u16 *duplex)
5450 {
5451 	s32 ret_val;
5452 
5453 	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5454 
5455 	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5456 	if (ret_val)
5457 		return ret_val;
5458 
5459 	if ((hw->mac.type == e1000_ich8lan) &&
5460 	    (hw->phy.type == e1000_phy_igp_3) &&
5461 	    (*speed == SPEED_1000)) {
5462 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5463 	}
5464 
5465 	return ret_val;
5466 }
5467 
5468 /**
5469  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5470  *  @hw: pointer to the HW structure
5471  *
5472  *  Work-around for 82566 Kumeran PCS lock loss:
5473  *  On link status change (i.e. PCI reset, speed change) and link is up and
5474  *  speed is gigabit-
5475  *    0) if workaround is optionally disabled do nothing
5476  *    1) wait 1ms for Kumeran link to come up
5477  *    2) check Kumeran Diagnostic register PCS lock loss bit
5478  *    3) if not set the link is locked (all is good), otherwise...
5479  *    4) reset the PHY
5480  *    5) repeat up to 10 times
5481  *  Note: this is only called for IGP3 copper when speed is 1gb.
5482  **/
5483 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5484 {
5485 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5486 	u32 phy_ctrl;
5487 	s32 ret_val;
5488 	u16 i, data;
5489 	bool link;
5490 
5491 	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5492 
5493 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5494 		return E1000_SUCCESS;
5495 
5496 	/* Make sure link is up before proceeding.  If not just return.
5497 	 * Attempting this while link is negotiating fouled up link
5498 	 * stability
5499 	 */
5500 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5501 	if (!link)
5502 		return E1000_SUCCESS;
5503 
5504 	for (i = 0; i < 10; i++) {
5505 		/* read once to clear */
5506 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5507 		if (ret_val)
5508 			return ret_val;
5509 		/* and again to get new status */
5510 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5511 		if (ret_val)
5512 			return ret_val;
5513 
5514 		/* check for PCS lock */
5515 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5516 			return E1000_SUCCESS;
5517 
5518 		/* Issue PHY reset */
5519 		hw->phy.ops.reset(hw);
5520 		msec_delay_irq(5);
5521 	}
5522 	/* Disable GigE link negotiation */
5523 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5524 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5525 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5526 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5527 
5528 	/* Call gig speed drop workaround on Gig disable before accessing
5529 	 * any PHY registers
5530 	 */
5531 	e1000_gig_downshift_workaround_ich8lan(hw);
5532 
5533 	/* unable to acquire PCS lock */
5534 	return -E1000_ERR_PHY;
5535 }
5536 
5537 /**
5538  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5539  *  @hw: pointer to the HW structure
5540  *  @state: boolean value used to set the current Kumeran workaround state
5541  *
5542  *  If ICH8, set the current Kumeran workaround state (enabled - true
5543  *  /disabled - false).
5544  **/
5545 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5546 						 bool state)
5547 {
5548 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5549 
5550 	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5551 
5552 	if (hw->mac.type != e1000_ich8lan) {
5553 		DEBUGOUT("Workaround applies to ICH8 only.\n");
5554 		return;
5555 	}
5556 
5557 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5558 
5559 	return;
5560 }
5561 
5562 /**
5563  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5564  *  @hw: pointer to the HW structure
5565  *
5566  *  Workaround for 82566 power-down on D3 entry:
5567  *    1) disable gigabit link
5568  *    2) write VR power-down enable
5569  *    3) read it back
5570  *  Continue if successful, else issue LCD reset and repeat
5571  **/
5572 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5573 {
5574 	u32 reg;
5575 	u16 data;
5576 	u8  retry = 0;
5577 
5578 	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5579 
5580 	if (hw->phy.type != e1000_phy_igp_3)
5581 		return;
5582 
5583 	/* Try the workaround twice (if needed) */
5584 	do {
5585 		/* Disable link */
5586 		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5587 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5588 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5589 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5590 
5591 		/* Call gig speed drop workaround on Gig disable before
5592 		 * accessing any PHY registers
5593 		 */
5594 		if (hw->mac.type == e1000_ich8lan)
5595 			e1000_gig_downshift_workaround_ich8lan(hw);
5596 
5597 		/* Write VR power-down enable */
5598 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5599 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5600 		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5601 				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5602 
5603 		/* Read it back and test */
5604 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5605 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5606 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5607 			break;
5608 
5609 		/* Issue PHY reset and repeat at most one more time */
5610 		reg = E1000_READ_REG(hw, E1000_CTRL);
5611 		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5612 		retry++;
5613 	} while (retry);
5614 }
5615 
5616 /**
5617  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5618  *  @hw: pointer to the HW structure
5619  *
5620  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5621  *  LPLU, Gig disable, MDIC PHY reset):
5622  *    1) Set Kumeran Near-end loopback
5623  *    2) Clear Kumeran Near-end loopback
5624  *  Should only be called for ICH8[m] devices with any 1G Phy.
5625  **/
5626 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5627 {
5628 	s32 ret_val;
5629 	u16 reg_data = 0;
5630 
5631 	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5632 
5633 	if ((hw->mac.type != e1000_ich8lan) ||
5634 	    (hw->phy.type == e1000_phy_ife))
5635 		return;
5636 
5637 	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5638 					      &reg_data);
5639 	if (ret_val)
5640 		return;
5641 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5642 	ret_val = e1000_write_kmrn_reg_generic(hw,
5643 					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
5644 					       reg_data);
5645 	if (ret_val)
5646 		return;
5647 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5648 	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5649 				     reg_data);
5650 }
5651 
5652 /**
5653  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5654  *  @hw: pointer to the HW structure
5655  *
5656  *  During S0 to Sx transition, it is possible the link remains at gig
5657  *  instead of negotiating to a lower speed.  Before going to Sx, set
5658  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5659  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5660  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5661  *  needs to be written.
5662  *  Parts that support (and are linked to a partner which support) EEE in
5663  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5664  *  than 10Mbps w/o EEE.
5665  **/
5666 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5667 {
5668 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5669 	u32 phy_ctrl;
5670 	s32 ret_val;
5671 
5672 	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5673 
5674 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5675 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5676 
5677 	if (hw->phy.type == e1000_phy_i217) {
5678 		u16 phy_reg, device_id = hw->device_id;
5679 
5680 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5681 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5682 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5683 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5684 		    (hw->mac.type >= e1000_pch_spt)) {
5685 			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5686 
5687 			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5688 					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5689 		}
5690 
5691 		ret_val = hw->phy.ops.acquire(hw);
5692 		if (ret_val)
5693 			goto out;
5694 
5695 		if (!dev_spec->eee_disable) {
5696 			u16 eee_advert;
5697 
5698 			ret_val =
5699 			    e1000_read_emi_reg_locked(hw,
5700 						      I217_EEE_ADVERTISEMENT,
5701 						      &eee_advert);
5702 			if (ret_val)
5703 				goto release;
5704 
5705 			/* Disable LPLU if both link partners support 100BaseT
5706 			 * EEE and 100Full is advertised on both ends of the
5707 			 * link, and enable Auto Enable LPI since there will
5708 			 * be no driver to enable LPI while in Sx.
5709 			 */
5710 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5711 			    (dev_spec->eee_lp_ability &
5712 			     I82579_EEE_100_SUPPORTED) &&
5713 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5714 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5715 					      E1000_PHY_CTRL_NOND0A_LPLU);
5716 
5717 				/* Set Auto Enable LPI after link up */
5718 				hw->phy.ops.read_reg_locked(hw,
5719 							    I217_LPI_GPIO_CTRL,
5720 							    &phy_reg);
5721 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5722 				hw->phy.ops.write_reg_locked(hw,
5723 							     I217_LPI_GPIO_CTRL,
5724 							     phy_reg);
5725 			}
5726 		}
5727 
5728 		/* For i217 Intel Rapid Start Technology support,
5729 		 * when the system is going into Sx and no manageability engine
5730 		 * is present, the driver must configure proxy to reset only on
5731 		 * power good.  LPI (Low Power Idle) state must also reset only
5732 		 * on power good, as well as the MTA (Multicast table array).
5733 		 * The SMBus release must also be disabled on LCD reset.
5734 		 */
5735 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5736 		      E1000_ICH_FWSM_FW_VALID)) {
5737 			/* Enable proxy to reset only on power good. */
5738 			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5739 						    &phy_reg);
5740 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5741 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5742 						     phy_reg);
5743 
5744 			/* Set bit enable LPI (EEE) to reset only on
5745 			 * power good.
5746 			*/
5747 			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5748 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5749 			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5750 
5751 			/* Disable the SMB release on LCD reset. */
5752 			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5753 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5754 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5755 		}
5756 
5757 		/* Enable MTA to reset for Intel Rapid Start Technology
5758 		 * Support
5759 		 */
5760 		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5761 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5762 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5763 
5764 release:
5765 		hw->phy.ops.release(hw);
5766 	}
5767 out:
5768 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5769 
5770 	if (hw->mac.type == e1000_ich8lan)
5771 		e1000_gig_downshift_workaround_ich8lan(hw);
5772 
5773 	if (hw->mac.type >= e1000_pchlan) {
5774 		e1000_oem_bits_config_ich8lan(hw, false);
5775 
5776 		/* Reset PHY to activate OEM bits on 82577/8 */
5777 		if (hw->mac.type == e1000_pchlan)
5778 			e1000_phy_hw_reset_generic(hw);
5779 
5780 		ret_val = hw->phy.ops.acquire(hw);
5781 		if (ret_val)
5782 			return;
5783 		e1000_write_smbus_addr(hw);
5784 		hw->phy.ops.release(hw);
5785 	}
5786 
5787 	return;
5788 }
5789 
5790 /**
5791  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5792  *  @hw: pointer to the HW structure
5793  *
5794  *  During Sx to S0 transitions on non-managed devices or managed devices
5795  *  on which PHY resets are not blocked, if the PHY registers cannot be
5796  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5797  *  the PHY.
5798  *  On i217, setup Intel Rapid Start Technology.
5799  **/
5800 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5801 {
5802 	s32 ret_val;
5803 
5804 	DEBUGFUNC("e1000_resume_workarounds_pchlan");
5805 	if (hw->mac.type < e1000_pch2lan)
5806 		return E1000_SUCCESS;
5807 
5808 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5809 	if (ret_val) {
5810 		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5811 		return ret_val;
5812 	}
5813 
5814 	/* For i217 Intel Rapid Start Technology support when the system
5815 	 * is transitioning from Sx and no manageability engine is present
5816 	 * configure SMBus to restore on reset, disable proxy, and enable
5817 	 * the reset on MTA (Multicast table array).
5818 	 */
5819 	if (hw->phy.type == e1000_phy_i217) {
5820 		u16 phy_reg;
5821 
5822 		ret_val = hw->phy.ops.acquire(hw);
5823 		if (ret_val) {
5824 			DEBUGOUT("Failed to setup iRST\n");
5825 			return ret_val;
5826 		}
5827 
5828 		/* Clear Auto Enable LPI after link up */
5829 		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5830 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5831 		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5832 
5833 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5834 		    E1000_ICH_FWSM_FW_VALID)) {
5835 			/* Restore clear on SMB if no manageability engine
5836 			 * is present
5837 			 */
5838 			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5839 							      &phy_reg);
5840 			if (ret_val)
5841 				goto release;
5842 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5843 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5844 
5845 			/* Disable Proxy */
5846 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5847 		}
5848 		/* Enable reset on MTA */
5849 		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5850 						      &phy_reg);
5851 		if (ret_val)
5852 			goto release;
5853 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5854 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5855 release:
5856 		if (ret_val)
5857 			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5858 		hw->phy.ops.release(hw);
5859 		return ret_val;
5860 	}
5861 	return E1000_SUCCESS;
5862 }
5863 
5864 /**
5865  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5866  *  @hw: pointer to the HW structure
5867  *
5868  *  Return the LED back to the default configuration.
5869  **/
5870 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5871 {
5872 	DEBUGFUNC("e1000_cleanup_led_ich8lan");
5873 
5874 	if (hw->phy.type == e1000_phy_ife)
5875 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5876 					     0);
5877 
5878 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5879 	return E1000_SUCCESS;
5880 }
5881 
5882 /**
5883  *  e1000_led_on_ich8lan - Turn LEDs on
5884  *  @hw: pointer to the HW structure
5885  *
5886  *  Turn on the LEDs.
5887  **/
5888 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5889 {
5890 	DEBUGFUNC("e1000_led_on_ich8lan");
5891 
5892 	if (hw->phy.type == e1000_phy_ife)
5893 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5894 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5895 
5896 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5897 	return E1000_SUCCESS;
5898 }
5899 
5900 /**
5901  *  e1000_led_off_ich8lan - Turn LEDs off
5902  *  @hw: pointer to the HW structure
5903  *
5904  *  Turn off the LEDs.
5905  **/
5906 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5907 {
5908 	DEBUGFUNC("e1000_led_off_ich8lan");
5909 
5910 	if (hw->phy.type == e1000_phy_ife)
5911 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5912 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5913 
5914 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5915 	return E1000_SUCCESS;
5916 }
5917 
5918 /**
5919  *  e1000_setup_led_pchlan - Configures SW controllable LED
5920  *  @hw: pointer to the HW structure
5921  *
5922  *  This prepares the SW controllable LED for use.
5923  **/
5924 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5925 {
5926 	DEBUGFUNC("e1000_setup_led_pchlan");
5927 
5928 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5929 				     (u16)hw->mac.ledctl_mode1);
5930 }
5931 
5932 /**
5933  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5934  *  @hw: pointer to the HW structure
5935  *
5936  *  Return the LED back to the default configuration.
5937  **/
5938 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5939 {
5940 	DEBUGFUNC("e1000_cleanup_led_pchlan");
5941 
5942 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5943 				     (u16)hw->mac.ledctl_default);
5944 }
5945 
5946 /**
5947  *  e1000_led_on_pchlan - Turn LEDs on
5948  *  @hw: pointer to the HW structure
5949  *
5950  *  Turn on the LEDs.
5951  **/
5952 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5953 {
5954 	u16 data = (u16)hw->mac.ledctl_mode2;
5955 	u32 i, led;
5956 
5957 	DEBUGFUNC("e1000_led_on_pchlan");
5958 
5959 	/* If no link, then turn LED on by setting the invert bit
5960 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5961 	 */
5962 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5963 		for (i = 0; i < 3; i++) {
5964 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5965 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5966 			    E1000_LEDCTL_MODE_LINK_UP)
5967 				continue;
5968 			if (led & E1000_PHY_LED0_IVRT)
5969 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5970 			else
5971 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5972 		}
5973 	}
5974 
5975 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5976 }
5977 
5978 /**
5979  *  e1000_led_off_pchlan - Turn LEDs off
5980  *  @hw: pointer to the HW structure
5981  *
5982  *  Turn off the LEDs.
5983  **/
5984 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5985 {
5986 	u16 data = (u16)hw->mac.ledctl_mode1;
5987 	u32 i, led;
5988 
5989 	DEBUGFUNC("e1000_led_off_pchlan");
5990 
5991 	/* If no link, then turn LED off by clearing the invert bit
5992 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5993 	 */
5994 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5995 		for (i = 0; i < 3; i++) {
5996 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5997 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5998 			    E1000_LEDCTL_MODE_LINK_UP)
5999 				continue;
6000 			if (led & E1000_PHY_LED0_IVRT)
6001 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
6002 			else
6003 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
6004 		}
6005 	}
6006 
6007 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
6008 }
6009 
6010 /**
6011  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
6012  *  @hw: pointer to the HW structure
6013  *
6014  *  Read appropriate register for the config done bit for completion status
6015  *  and configure the PHY through s/w for EEPROM-less parts.
6016  *
6017  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
6018  *  config done bit, so only an error is logged and continues.  If we were
6019  *  to return with error, EEPROM-less silicon would not be able to be reset
6020  *  or change link.
6021  **/
6022 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
6023 {
6024 	s32 ret_val = E1000_SUCCESS;
6025 	u32 bank = 0;
6026 	u32 status;
6027 
6028 	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
6029 
6030 	e1000_get_cfg_done_generic(hw);
6031 
6032 	/* Wait for indication from h/w that it has completed basic config */
6033 	if (hw->mac.type >= e1000_ich10lan) {
6034 		e1000_lan_init_done_ich8lan(hw);
6035 	} else {
6036 		ret_val = e1000_get_auto_rd_done_generic(hw);
6037 		if (ret_val) {
6038 			/* When auto config read does not complete, do not
6039 			 * return with an error. This can happen in situations
6040 			 * where there is no eeprom and prevents getting link.
6041 			 */
6042 			DEBUGOUT("Auto Read Done did not complete\n");
6043 			ret_val = E1000_SUCCESS;
6044 		}
6045 	}
6046 
6047 	/* Clear PHY Reset Asserted bit */
6048 	status = E1000_READ_REG(hw, E1000_STATUS);
6049 	if (status & E1000_STATUS_PHYRA)
6050 		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
6051 	else
6052 		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
6053 
6054 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
6055 	if (hw->mac.type <= e1000_ich9lan) {
6056 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
6057 		    (hw->phy.type == e1000_phy_igp_3)) {
6058 			e1000_phy_init_script_igp3(hw);
6059 		}
6060 	} else {
6061 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
6062 			/* Maybe we should do a basic PHY config */
6063 			DEBUGOUT("EEPROM not present\n");
6064 			ret_val = -E1000_ERR_CONFIG;
6065 		}
6066 	}
6067 
6068 	return ret_val;
6069 }
6070 
6071 /**
6072  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
6073  * @hw: pointer to the HW structure
6074  *
6075  * In the case of a PHY power down to save power, or to turn off link during a
6076  * driver unload, or wake on lan is not enabled, remove the link.
6077  **/
6078 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
6079 {
6080 	/* If the management interface is not enabled, then power down */
6081 	if (!(hw->mac.ops.check_mng_mode(hw) ||
6082 	      hw->phy.ops.check_reset_block(hw)))
6083 		e1000_power_down_phy_copper(hw);
6084 
6085 	return;
6086 }
6087 
6088 /**
6089  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
6090  *  @hw: pointer to the HW structure
6091  *
6092  *  Clears hardware counters specific to the silicon family and calls
6093  *  clear_hw_cntrs_generic to clear all general purpose counters.
6094  **/
6095 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6096 {
6097 	u16 phy_data;
6098 	s32 ret_val;
6099 
6100 	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6101 
6102 	e1000_clear_hw_cntrs_base_generic(hw);
6103 
6104 	E1000_READ_REG(hw, E1000_ALGNERRC);
6105 	E1000_READ_REG(hw, E1000_RXERRC);
6106 	E1000_READ_REG(hw, E1000_TNCRS);
6107 	E1000_READ_REG(hw, E1000_CEXTERR);
6108 	E1000_READ_REG(hw, E1000_TSCTC);
6109 	E1000_READ_REG(hw, E1000_TSCTFC);
6110 
6111 	E1000_READ_REG(hw, E1000_MGTPRC);
6112 	E1000_READ_REG(hw, E1000_MGTPDC);
6113 	E1000_READ_REG(hw, E1000_MGTPTC);
6114 
6115 	E1000_READ_REG(hw, E1000_IAC);
6116 	E1000_READ_REG(hw, E1000_ICRXOC);
6117 
6118 	/* Clear PHY statistics registers */
6119 	if ((hw->phy.type == e1000_phy_82578) ||
6120 	    (hw->phy.type == e1000_phy_82579) ||
6121 	    (hw->phy.type == e1000_phy_i217) ||
6122 	    (hw->phy.type == e1000_phy_82577)) {
6123 		ret_val = hw->phy.ops.acquire(hw);
6124 		if (ret_val)
6125 			return;
6126 		ret_val = hw->phy.ops.set_page(hw,
6127 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
6128 		if (ret_val)
6129 			goto release;
6130 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6131 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6132 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6133 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6134 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6135 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6136 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6137 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6138 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6139 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6140 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6141 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6142 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6143 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6144 release:
6145 		hw->phy.ops.release(hw);
6146 	}
6147 }
6148 
6149 /**
6150  *  e1000_configure_k0s_lpt - Configure K0s power state
6151  *  @hw: pointer to the HW structure
6152  *  @entry_latency: Tx idle period for entering K0s - valid values are 0 to 3.
6153  *	0 corresponds to 128ns, each value over 0 doubles the duration.
6154  *  @min_time: Minimum Tx idle period allowed  - valid values are 0 to 4.
6155  *	0 corresponds to 128ns, each value over 0 doubles the duration.
6156  *
6157  *  Configure the K1 power state based on the provided parameter.
6158  *  Assumes semaphore already acquired.
6159  *
6160  *  Success returns 0, Failure returns:
6161  *	-E1000_ERR_PHY (-2) in case of access error
6162  *	-E1000_ERR_PARAM (-4) in case of parameters error
6163  **/
6164 s32 e1000_configure_k0s_lpt(struct e1000_hw *hw, u8 entry_latency, u8 min_time)
6165 {
6166 	s32 ret_val;
6167 	u16 kmrn_reg = 0;
6168 
6169 	DEBUGFUNC("e1000_configure_k0s_lpt");
6170 
6171 	if (entry_latency > 3 || min_time > 4)
6172 		return -E1000_ERR_PARAM;
6173 
6174 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL,
6175 					     &kmrn_reg);
6176 	if (ret_val)
6177 		return ret_val;
6178 
6179 	/* for now don't touch the latency */
6180 	kmrn_reg &= ~(E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_MASK);
6181 	kmrn_reg |= ((min_time << E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_SHIFT));
6182 
6183 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL,
6184 					      kmrn_reg);
6185 	if (ret_val)
6186 		return ret_val;
6187 
6188 	return E1000_SUCCESS;
6189 }
6190