xref: /freebsd/sys/dev/e1000/e1000_vf.c (revision aa0a1e58)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2010, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 
36 #include "e1000_api.h"
37 
38 
39 static s32       e1000_init_phy_params_vf(struct e1000_hw *hw);
40 static s32       e1000_init_nvm_params_vf(struct e1000_hw *hw);
41 static void      e1000_release_vf(struct e1000_hw *hw);
42 static s32       e1000_acquire_vf(struct e1000_hw *hw);
43 static s32       e1000_setup_link_vf(struct e1000_hw *hw);
44 static s32       e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
45 static s32       e1000_init_mac_params_vf(struct e1000_hw *hw);
46 static s32       e1000_check_for_link_vf(struct e1000_hw *hw);
47 static s32       e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
48                                               u16 *duplex);
49 static s32       e1000_init_hw_vf(struct e1000_hw *hw);
50 static s32       e1000_reset_hw_vf(struct e1000_hw *hw);
51 static void      e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
52 static void      e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
53 static s32       e1000_read_mac_addr_vf(struct e1000_hw *);
54 
55 /**
56  *  e1000_init_phy_params_vf - Inits PHY params
57  *  @hw: pointer to the HW structure
58  *
59  *  Doesn't do much - there's no PHY available to the VF.
60  **/
61 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
62 {
63 	DEBUGFUNC("e1000_init_phy_params_vf");
64 	hw->phy.type = e1000_phy_vf;
65 	hw->phy.ops.acquire = e1000_acquire_vf;
66 	hw->phy.ops.release = e1000_release_vf;
67 
68 	return E1000_SUCCESS;
69 }
70 
71 /**
72  *  e1000_init_nvm_params_vf - Inits NVM params
73  *  @hw: pointer to the HW structure
74  *
75  *  Doesn't do much - there's no NVM available to the VF.
76  **/
77 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
78 {
79 	DEBUGFUNC("e1000_init_nvm_params_vf");
80 	hw->nvm.type = e1000_nvm_none;
81 	hw->nvm.ops.acquire = e1000_acquire_vf;
82 	hw->nvm.ops.release = e1000_release_vf;
83 
84 	return E1000_SUCCESS;
85 }
86 
87 /**
88  *  e1000_init_mac_params_vf - Inits MAC params
89  *  @hw: pointer to the HW structure
90  **/
91 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
92 {
93 	struct e1000_mac_info *mac = &hw->mac;
94 
95 	DEBUGFUNC("e1000_init_mac_params_vf");
96 
97 	/* Set media type */
98 	/*
99 	 * Virtual functions don't care what they're media type is as they
100 	 * have no direct access to the PHY, or the media.  That is handled
101 	 * by the physical function driver.
102 	 */
103 	hw->phy.media_type = e1000_media_type_unknown;
104 
105 	/* No ASF features for the VF driver */
106 	mac->asf_firmware_present = FALSE;
107 	/* ARC subsystem not supported */
108 	mac->arc_subsystem_valid = FALSE;
109 	/* Disable adaptive IFS mode so the generic funcs don't do anything */
110 	mac->adaptive_ifs = FALSE;
111 	/* VF's have no MTA Registers - PF feature only */
112 	mac->mta_reg_count = 128;
113 	/* VF's have no access to RAR entries  */
114 	mac->rar_entry_count = 1;
115 
116 	/* Function pointers */
117 	/* link setup */
118 	mac->ops.setup_link = e1000_setup_link_vf;
119 	/* bus type/speed/width */
120 	mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
121 	/* reset */
122 	mac->ops.reset_hw = e1000_reset_hw_vf;
123 	/* hw initialization */
124 	mac->ops.init_hw = e1000_init_hw_vf;
125 	/* check for link */
126 	mac->ops.check_for_link = e1000_check_for_link_vf;
127 	/* link info */
128 	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
129 	/* multicast address update */
130 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
131 	/* set mac address */
132 	mac->ops.rar_set = e1000_rar_set_vf;
133 	/* read mac address */
134 	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
135 
136 
137 	return E1000_SUCCESS;
138 }
139 
140 /**
141  *  e1000_init_function_pointers_vf - Inits function pointers
142  *  @hw: pointer to the HW structure
143  **/
144 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
145 {
146 	DEBUGFUNC("e1000_init_function_pointers_vf");
147 
148 	hw->mac.ops.init_params = e1000_init_mac_params_vf;
149 	hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
150 	hw->phy.ops.init_params = e1000_init_phy_params_vf;
151 	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
152 }
153 
154 /**
155  *  e1000_acquire_vf - Acquire rights to access PHY or NVM.
156  *  @hw: pointer to the HW structure
157  *
158  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
159  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
160  *  even want any SW to attempt to use them.
161  **/
162 static s32 e1000_acquire_vf(struct e1000_hw *hw)
163 {
164 	return -E1000_ERR_PHY;
165 }
166 
167 /**
168  *  e1000_release_vf - Release PHY or NVM
169  *  @hw: pointer to the HW structure
170  *
171  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
172  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
173  *  even want any SW to attempt to use them.
174  **/
175 static void e1000_release_vf(struct e1000_hw *hw)
176 {
177 	return;
178 }
179 
180 /**
181  *  e1000_setup_link_vf - Sets up link.
182  *  @hw: pointer to the HW structure
183  *
184  *  Virtual functions cannot change link.
185  **/
186 static s32 e1000_setup_link_vf(struct e1000_hw *hw)
187 {
188 	DEBUGFUNC("e1000_setup_link_vf");
189 
190 	return E1000_SUCCESS;
191 }
192 
193 /**
194  *  e1000_get_bus_info_pcie_vf - Gets the bus info.
195  *  @hw: pointer to the HW structure
196  *
197  *  Virtual functions are not really on their own bus.
198  **/
199 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
200 {
201 	struct e1000_bus_info *bus = &hw->bus;
202 
203 	DEBUGFUNC("e1000_get_bus_info_pcie_vf");
204 
205 	/* Do not set type PCI-E because we don't want disable master to run */
206 	bus->type = e1000_bus_type_reserved;
207 	bus->speed = e1000_bus_speed_2500;
208 
209 	return 0;
210 }
211 
212 /**
213  *  e1000_get_link_up_info_vf - Gets link info.
214  *  @hw: pointer to the HW structure
215  *  @speed: pointer to 16 bit value to store link speed.
216  *  @duplex: pointer to 16 bit value to store duplex.
217  *
218  *  Since we cannot read the PHY and get accurate link info, we must rely upon
219  *  the status register's data which is often stale and inaccurate.
220  **/
221 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
222                                      u16 *duplex)
223 {
224 	s32 status;
225 
226 	DEBUGFUNC("e1000_get_link_up_info_vf");
227 
228 	status = E1000_READ_REG(hw, E1000_STATUS);
229 	if (status & E1000_STATUS_SPEED_1000) {
230 		*speed = SPEED_1000;
231 		DEBUGOUT("1000 Mbs, ");
232 	} else if (status & E1000_STATUS_SPEED_100) {
233 		*speed = SPEED_100;
234 		DEBUGOUT("100 Mbs, ");
235 	} else {
236 		*speed = SPEED_10;
237 		DEBUGOUT("10 Mbs, ");
238 	}
239 
240 	if (status & E1000_STATUS_FD) {
241 		*duplex = FULL_DUPLEX;
242 		DEBUGOUT("Full Duplex\n");
243 	} else {
244 		*duplex = HALF_DUPLEX;
245 		DEBUGOUT("Half Duplex\n");
246 	}
247 
248 	return E1000_SUCCESS;
249 }
250 
251 /**
252  *  e1000_reset_hw_vf - Resets the HW
253  *  @hw: pointer to the HW structure
254  *
255  *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
256  *  This is all the reset we can perform on a VF.
257  **/
258 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
259 {
260 	struct e1000_mbx_info *mbx = &hw->mbx;
261 	u32 timeout = E1000_VF_INIT_TIMEOUT;
262 	s32 ret_val = -E1000_ERR_MAC_INIT;
263 	u32 ctrl, msgbuf[3];
264 	u8 *addr = (u8 *)(&msgbuf[1]);
265 
266 	DEBUGFUNC("e1000_reset_hw_vf");
267 
268 	DEBUGOUT("Issuing a function level reset to MAC\n");
269 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
270 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
271 
272 	/* we cannot reset while the RSTI / RSTD bits are asserted */
273 	while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
274 		timeout--;
275 		usec_delay(5);
276 	}
277 
278 	if (timeout) {
279 		/* mailbox timeout can now become active */
280 		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
281 
282 		msgbuf[0] = E1000_VF_RESET;
283 		mbx->ops.write_posted(hw, msgbuf, 1, 0);
284 
285 		msec_delay(10);
286 
287 		/* set our "perm_addr" based on info provided by PF */
288 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
289 		if (!ret_val) {
290 			if (msgbuf[0] == (E1000_VF_RESET |
291 						E1000_VT_MSGTYPE_ACK))
292 				memcpy(hw->mac.perm_addr, addr, 6);
293 			else
294 				ret_val = -E1000_ERR_MAC_INIT;
295 		}
296 	}
297 
298 	return ret_val;
299 }
300 
301 /**
302  *  e1000_init_hw_vf - Inits the HW
303  *  @hw: pointer to the HW structure
304  *
305  *  Not much to do here except clear the PF Reset indication if there is one.
306  **/
307 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
308 {
309 	DEBUGFUNC("e1000_init_hw_vf");
310 
311 	/* attempt to set and restore our mac address */
312 	e1000_rar_set_vf(hw, hw->mac.addr, 0);
313 
314 	return E1000_SUCCESS;
315 }
316 
317 /**
318  *  e1000_rar_set_vf - set device MAC address
319  *  @hw: pointer to the HW structure
320  *  @addr: pointer to the receive address
321  *  @index receive address array register
322  **/
323 static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index)
324 {
325 	struct e1000_mbx_info *mbx = &hw->mbx;
326 	u32 msgbuf[3];
327 	u8 *msg_addr = (u8 *)(&msgbuf[1]);
328 	s32 ret_val;
329 
330 	memset(msgbuf, 0, 12);
331 	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
332 	memcpy(msg_addr, addr, 6);
333 	ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
334 
335 	if (!ret_val)
336 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
337 
338 	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
339 
340 	/* if nacked the address was rejected, use "perm_addr" */
341 	if (!ret_val &&
342 	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
343 		e1000_read_mac_addr_vf(hw);
344 }
345 
346 /**
347  *  e1000_hash_mc_addr_vf - Generate a multicast hash value
348  *  @hw: pointer to the HW structure
349  *  @mc_addr: pointer to a multicast address
350  *
351  *  Generates a multicast address hash value which is used to determine
352  *  the multicast filter table array address and new table value.
353  **/
354 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
355 {
356 	u32 hash_value, hash_mask;
357 	u8 bit_shift = 0;
358 
359 	DEBUGFUNC("e1000_hash_mc_addr_generic");
360 
361 	/* Register count multiplied by bits per register */
362 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
363 
364 	/*
365 	 * The bit_shift is the number of left-shifts
366 	 * where 0xFF would still fall within the hash mask.
367 	 */
368 	while (hash_mask >> bit_shift != 0xFF)
369 		bit_shift++;
370 
371 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
372 	                          (((u16) mc_addr[5]) << bit_shift)));
373 
374 	return hash_value;
375 }
376 
377 /**
378  *  e1000_update_mc_addr_list_vf - Update Multicast addresses
379  *  @hw: pointer to the HW structure
380  *  @mc_addr_list: array of multicast addresses to program
381  *  @mc_addr_count: number of multicast addresses to program
382  *
383  *  Updates the Multicast Table Array.
384  *  The caller must have a packed mc_addr_list of multicast addresses.
385  **/
386 void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
387                                   u8 *mc_addr_list, u32 mc_addr_count)
388 {
389 	struct e1000_mbx_info *mbx = &hw->mbx;
390 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
391 	u16 *hash_list = (u16 *)&msgbuf[1];
392 	u32 hash_value;
393 	u32 i;
394 
395 	DEBUGFUNC("e1000_update_mc_addr_list_vf");
396 
397 	/* Each entry in the list uses 1 16 bit word.  We have 30
398 	 * 16 bit words available in our HW msg buffer (minus 1 for the
399 	 * msg type).  That's 30 hash values if we pack 'em right.  If
400 	 * there are more than 30 MC addresses to add then punt the
401 	 * extras for now and then add code to handle more than 30 later.
402 	 * It would be unusual for a server to request that many multi-cast
403 	 * addresses except for in large enterprise network environments.
404 	 */
405 
406 	DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
407 
408 	if (mc_addr_count > 30) {
409 		msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
410 		mc_addr_count = 30;
411 	}
412 
413 	msgbuf[0] = E1000_VF_SET_MULTICAST;
414 	msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
415 
416 	for (i = 0; i < mc_addr_count; i++) {
417 		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
418 		DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
419 		hash_list[i] = hash_value & 0x0FFF;
420 		mc_addr_list += ETH_ADDR_LEN;
421 	}
422 
423 	mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE, 0);
424 }
425 
426 /**
427  *  e1000_vfta_set_vf - Set/Unset vlan filter table address
428  *  @hw: pointer to the HW structure
429  *  @vid: determines the vfta register and bit to set/unset
430  *  @set: if TRUE then set bit, else clear bit
431  **/
432 void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
433 {
434 	struct e1000_mbx_info *mbx = &hw->mbx;
435 	u32 msgbuf[2];
436 
437 	msgbuf[0] = E1000_VF_SET_VLAN;
438 	msgbuf[1] = vid;
439 	/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
440 	if (set)
441 		msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
442 
443 	mbx->ops.write_posted(hw, msgbuf, 2, 0);
444 }
445 
446 /** e1000_rlpml_set_vf - Set the maximum receive packet length
447  *  @hw: pointer to the HW structure
448  *  @max_size: value to assign to max frame size
449  **/
450 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
451 {
452 	struct e1000_mbx_info *mbx = &hw->mbx;
453 	u32 msgbuf[2];
454 
455 	msgbuf[0] = E1000_VF_SET_LPE;
456 	msgbuf[1] = max_size;
457 
458 	mbx->ops.write_posted(hw, msgbuf, 2, 0);
459 }
460 
461 /**
462  *  e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
463  *  @hw: pointer to the HW structure
464  *  @uni: boolean indicating unicast promisc status
465  *  @multi: boolean indicating multicast promisc status
466  **/
467 s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
468 {
469 	struct e1000_mbx_info *mbx = &hw->mbx;
470 	u32 msgbuf = E1000_VF_SET_PROMISC;
471 	s32 ret_val;
472 
473 	switch (type) {
474 	case e1000_promisc_multicast:
475 		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
476 		break;
477 	case e1000_promisc_enabled:
478 		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
479 	case e1000_promisc_unicast:
480 		msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
481 	case e1000_promisc_disabled:
482 		break;
483 	default:
484 		return -E1000_ERR_MAC_INIT;
485 	}
486 
487 	 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
488 
489 	if (!ret_val)
490 		ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
491 
492 	if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
493 		ret_val = -E1000_ERR_MAC_INIT;
494 
495 	return ret_val;
496 }
497 
498 /**
499  *  e1000_read_mac_addr_vf - Read device MAC address
500  *  @hw: pointer to the HW structure
501  **/
502 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
503 {
504 	int i;
505 
506 	for (i = 0; i < ETH_ADDR_LEN; i++)
507 		hw->mac.addr[i] = hw->mac.perm_addr[i];
508 
509 	return E1000_SUCCESS;
510 }
511 
512 /**
513  *  e1000_check_for_link_vf - Check for link for a virtual interface
514  *  @hw: pointer to the HW structure
515  *
516  *  Checks to see if the underlying PF is still talking to the VF and
517  *  if it is then it reports the link state to the hardware, otherwise
518  *  it reports link down and returns an error.
519  **/
520 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
521 {
522 	struct e1000_mbx_info *mbx = &hw->mbx;
523 	struct e1000_mac_info *mac = &hw->mac;
524 	s32 ret_val = E1000_SUCCESS;
525 	u32 in_msg = 0;
526 
527 	DEBUGFUNC("e1000_check_for_link_vf");
528 
529 	/*
530 	 * We only want to run this if there has been a rst asserted.
531 	 * in this case that could mean a link change, device reset,
532 	 * or a virtual function reset
533 	 */
534 
535 	/* If we were hit with a reset or timeout drop the link */
536 	if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
537 		mac->get_link_status = TRUE;
538 
539 	if (!mac->get_link_status)
540 		goto out;
541 
542 	/* if link status is down no point in checking to see if pf is up */
543 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
544 		goto out;
545 
546 	/* if the read failed it could just be a mailbox collision, best wait
547 	 * until we are called again and don't report an error */
548 	if (mbx->ops.read(hw, &in_msg, 1, 0))
549 		goto out;
550 
551 	/* if incoming message isn't clear to send we are waiting on response */
552 	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
553 		/* message is not CTS and is NACK we have lost CTS status */
554 		if (in_msg & E1000_VT_MSGTYPE_NACK)
555 			ret_val = -E1000_ERR_MAC_INIT;
556 		goto out;
557 	}
558 
559 	/* at this point we know the PF is talking to us, check and see if
560 	 * we are still accepting timeout or if we had a timeout failure.
561 	 * if we failed then we will need to reinit */
562 	if (!mbx->timeout) {
563 		ret_val = -E1000_ERR_MAC_INIT;
564 		goto out;
565 	}
566 
567 	/* if we passed all the tests above then the link is up and we no
568 	 * longer need to check for link */
569 	mac->get_link_status = FALSE;
570 
571 out:
572 	return ret_val;
573 }
574 
575