xref: /freebsd/sys/dev/efidev/efirt.c (revision 42249ef2)
1 /*-
2  * Copyright (c) 2004 Marcel Moolenaar
3  * Copyright (c) 2001 Doug Rabson
4  * Copyright (c) 2016, 2018 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * Portions of this software were developed by Konstantin Belousov
8  * under sponsorship from the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/efi.h>
37 #include <sys/eventhandler.h>
38 #include <sys/kernel.h>
39 #include <sys/linker.h>
40 #include <sys/lock.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/clock.h>
44 #include <sys/proc.h>
45 #include <sys/reboot.h>
46 #include <sys/rwlock.h>
47 #include <sys/sched.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 #include <sys/vmmeter.h>
51 
52 #include <machine/fpu.h>
53 #include <machine/efi.h>
54 #include <machine/metadata.h>
55 #include <machine/vmparam.h>
56 
57 #include <vm/vm.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_map.h>
60 
61 static struct efi_systbl *efi_systbl;
62 static eventhandler_tag efi_shutdown_tag;
63 /*
64  * The following pointers point to tables in the EFI runtime service data pages.
65  * Care should be taken to make sure that we've properly entered the EFI runtime
66  * environment (efi_enter()) before dereferencing them.
67  */
68 static struct efi_cfgtbl *efi_cfgtbl;
69 static struct efi_rt *efi_runtime;
70 
71 static int efi_status2err[25] = {
72 	0,		/* EFI_SUCCESS */
73 	ENOEXEC,	/* EFI_LOAD_ERROR */
74 	EINVAL,		/* EFI_INVALID_PARAMETER */
75 	ENOSYS,		/* EFI_UNSUPPORTED */
76 	EMSGSIZE, 	/* EFI_BAD_BUFFER_SIZE */
77 	EOVERFLOW,	/* EFI_BUFFER_TOO_SMALL */
78 	EBUSY,		/* EFI_NOT_READY */
79 	EIO,		/* EFI_DEVICE_ERROR */
80 	EROFS,		/* EFI_WRITE_PROTECTED */
81 	EAGAIN,		/* EFI_OUT_OF_RESOURCES */
82 	EIO,		/* EFI_VOLUME_CORRUPTED */
83 	ENOSPC,		/* EFI_VOLUME_FULL */
84 	ENXIO,		/* EFI_NO_MEDIA */
85 	ESTALE,		/* EFI_MEDIA_CHANGED */
86 	ENOENT,		/* EFI_NOT_FOUND */
87 	EACCES,		/* EFI_ACCESS_DENIED */
88 	ETIMEDOUT,	/* EFI_NO_RESPONSE */
89 	EADDRNOTAVAIL,	/* EFI_NO_MAPPING */
90 	ETIMEDOUT,	/* EFI_TIMEOUT */
91 	EDOOFUS,	/* EFI_NOT_STARTED */
92 	EALREADY,	/* EFI_ALREADY_STARTED */
93 	ECANCELED,	/* EFI_ABORTED */
94 	EPROTO,		/* EFI_ICMP_ERROR */
95 	EPROTO,		/* EFI_TFTP_ERROR */
96 	EPROTO		/* EFI_PROTOCOL_ERROR */
97 };
98 
99 static int efi_enter(void);
100 static void efi_leave(void);
101 
102 static int
103 efi_status_to_errno(efi_status status)
104 {
105 	u_long code;
106 
107 	code = status & 0x3ffffffffffffffful;
108 	return (code < nitems(efi_status2err) ? efi_status2err[code] : EDOOFUS);
109 }
110 
111 static struct mtx efi_lock;
112 static SYSCTL_NODE(_hw, OID_AUTO, efi, CTLFLAG_RWTUN, NULL, "EFI");
113 static bool efi_poweroff = true;
114 SYSCTL_BOOL(_hw_efi, OID_AUTO, poweroff, CTLFLAG_RWTUN, &efi_poweroff, 0,
115     "If true, use EFI runtime services to power off in preference to ACPI");
116 
117 static bool
118 efi_is_in_map(struct efi_md *map, int ndesc, int descsz, vm_offset_t addr)
119 {
120 	struct efi_md *p;
121 	int i;
122 
123 	for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p,
124 	    descsz)) {
125 		if ((p->md_attr & EFI_MD_ATTR_RT) == 0)
126 			continue;
127 
128 		if (addr >= (uintptr_t)p->md_virt &&
129 		    addr < (uintptr_t)p->md_virt + p->md_pages * PAGE_SIZE)
130 			return (true);
131 	}
132 
133 	return (false);
134 }
135 
136 static void
137 efi_shutdown_final(void *dummy __unused, int howto)
138 {
139 
140 	/*
141 	 * On some systems, ACPI S5 is missing or does not function properly.
142 	 * When present, shutdown via EFI Runtime Services instead, unless
143 	 * disabled.
144 	 */
145 	if ((howto & RB_POWEROFF) != 0 && efi_poweroff)
146 		(void)efi_reset_system(EFI_RESET_SHUTDOWN);
147 }
148 
149 static int
150 efi_init(void)
151 {
152 	struct efi_map_header *efihdr;
153 	struct efi_md *map;
154 	struct efi_rt *rtdm;
155 	caddr_t kmdp;
156 	size_t efisz;
157 	int ndesc, rt_disabled;
158 
159 	rt_disabled = 0;
160 	TUNABLE_INT_FETCH("efi.rt.disabled", &rt_disabled);
161 	if (rt_disabled == 1)
162 		return (0);
163 	mtx_init(&efi_lock, "efi", NULL, MTX_DEF);
164 
165 	if (efi_systbl_phys == 0) {
166 		if (bootverbose)
167 			printf("EFI systbl not available\n");
168 		return (0);
169 	}
170 
171 	efi_systbl = (struct efi_systbl *)efi_phys_to_kva(efi_systbl_phys);
172 	if (efi_systbl == NULL || efi_systbl->st_hdr.th_sig != EFI_SYSTBL_SIG) {
173 		efi_systbl = NULL;
174 		if (bootverbose)
175 			printf("EFI systbl signature invalid\n");
176 		return (0);
177 	}
178 	efi_cfgtbl = (efi_systbl->st_cfgtbl == 0) ? NULL :
179 	    (struct efi_cfgtbl *)efi_systbl->st_cfgtbl;
180 	if (efi_cfgtbl == NULL) {
181 		if (bootverbose)
182 			printf("EFI config table is not present\n");
183 	}
184 
185 	kmdp = preload_search_by_type("elf kernel");
186 	if (kmdp == NULL)
187 		kmdp = preload_search_by_type("elf64 kernel");
188 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
189 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
190 	if (efihdr == NULL) {
191 		if (bootverbose)
192 			printf("EFI map is not present\n");
193 		return (0);
194 	}
195 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
196 	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
197 	if (efihdr->descriptor_size == 0)
198 		return (ENOMEM);
199 
200 	ndesc = efihdr->memory_size / efihdr->descriptor_size;
201 	if (!efi_create_1t1_map(map, ndesc, efihdr->descriptor_size)) {
202 		if (bootverbose)
203 			printf("EFI cannot create runtime map\n");
204 		return (ENOMEM);
205 	}
206 
207 	efi_runtime = (efi_systbl->st_rt == 0) ? NULL :
208 	    (struct efi_rt *)efi_systbl->st_rt;
209 	if (efi_runtime == NULL) {
210 		if (bootverbose)
211 			printf("EFI runtime services table is not present\n");
212 		efi_destroy_1t1_map();
213 		return (ENXIO);
214 	}
215 
216 #if defined(__aarch64__) || defined(__amd64__)
217 	/*
218 	 * Some UEFI implementations have multiple implementations of the
219 	 * RS->GetTime function. They switch from one we can only use early
220 	 * in the boot process to one valid as a RunTime service only when we
221 	 * call RS->SetVirtualAddressMap. As this is not always the case, e.g.
222 	 * with an old loader.efi, check if the RS->GetTime function is within
223 	 * the EFI map, and fail to attach if not.
224 	 */
225 	rtdm = (struct efi_rt *)efi_phys_to_kva((uintptr_t)efi_runtime);
226 	if (rtdm == NULL || !efi_is_in_map(map, ndesc, efihdr->descriptor_size,
227 	    (vm_offset_t)rtdm->rt_gettime)) {
228 		if (bootverbose)
229 			printf(
230 			 "EFI runtime services table has an invalid pointer\n");
231 		efi_runtime = NULL;
232 		efi_destroy_1t1_map();
233 		return (ENXIO);
234 	}
235 #endif
236 
237 	/*
238 	 * We use SHUTDOWN_PRI_LAST - 1 to trigger after IPMI, but before ACPI.
239 	 */
240 	efi_shutdown_tag = EVENTHANDLER_REGISTER(shutdown_final,
241 	    efi_shutdown_final, NULL, SHUTDOWN_PRI_LAST - 1);
242 
243 	return (0);
244 }
245 
246 static void
247 efi_uninit(void)
248 {
249 
250 	/* Most likely disabled by tunable */
251 	if (efi_runtime == NULL)
252 		return;
253 	if (efi_shutdown_tag != NULL)
254 		EVENTHANDLER_DEREGISTER(shutdown_final, efi_shutdown_tag);
255 	efi_destroy_1t1_map();
256 
257 	efi_systbl = NULL;
258 	efi_cfgtbl = NULL;
259 	efi_runtime = NULL;
260 
261 	mtx_destroy(&efi_lock);
262 }
263 
264 int
265 efi_rt_ok(void)
266 {
267 
268 	if (efi_runtime == NULL)
269 		return (ENXIO);
270 	return (0);
271 }
272 
273 static int
274 efi_enter(void)
275 {
276 	struct thread *td;
277 	pmap_t curpmap;
278 	int error;
279 
280 	if (efi_runtime == NULL)
281 		return (ENXIO);
282 	td = curthread;
283 	curpmap = &td->td_proc->p_vmspace->vm_pmap;
284 	PMAP_LOCK(curpmap);
285 	mtx_lock(&efi_lock);
286 	fpu_kern_enter(td, NULL, FPU_KERN_NOCTX);
287 	error = efi_arch_enter();
288 	if (error != 0) {
289 		fpu_kern_leave(td, NULL);
290 		mtx_unlock(&efi_lock);
291 		PMAP_UNLOCK(curpmap);
292 	}
293 	return (error);
294 }
295 
296 static void
297 efi_leave(void)
298 {
299 	struct thread *td;
300 	pmap_t curpmap;
301 
302 	efi_arch_leave();
303 
304 	curpmap = &curproc->p_vmspace->vm_pmap;
305 	td = curthread;
306 	fpu_kern_leave(td, NULL);
307 	mtx_unlock(&efi_lock);
308 	PMAP_UNLOCK(curpmap);
309 }
310 
311 int
312 efi_get_table(struct uuid *uuid, void **ptr)
313 {
314 	struct efi_cfgtbl *ct;
315 	u_long count;
316 
317 	if (efi_cfgtbl == NULL || efi_systbl == NULL)
318 		return (ENXIO);
319 	count = efi_systbl->st_entries;
320 	ct = efi_cfgtbl;
321 	while (count--) {
322 		if (!bcmp(&ct->ct_uuid, uuid, sizeof(*uuid))) {
323 			*ptr = (void *)efi_phys_to_kva(ct->ct_data);
324 			return (0);
325 		}
326 		ct++;
327 	}
328 	return (ENOENT);
329 }
330 
331 static int efi_rt_handle_faults = EFI_RT_HANDLE_FAULTS_DEFAULT;
332 SYSCTL_INT(_machdep, OID_AUTO, efi_rt_handle_faults, CTLFLAG_RWTUN,
333     &efi_rt_handle_faults, 0,
334     "Call EFI RT methods with fault handler wrapper around");
335 
336 static int
337 efi_rt_arch_call_nofault(struct efirt_callinfo *ec)
338 {
339 
340 	switch (ec->ec_argcnt) {
341 	case 0:
342 		ec->ec_efi_status = ((register_t (*)(void))ec->ec_fptr)();
343 		break;
344 	case 1:
345 		ec->ec_efi_status = ((register_t (*)(register_t))ec->ec_fptr)
346 		    (ec->ec_arg1);
347 		break;
348 	case 2:
349 		ec->ec_efi_status = ((register_t (*)(register_t, register_t))
350 		    ec->ec_fptr)(ec->ec_arg1, ec->ec_arg2);
351 		break;
352 	case 3:
353 		ec->ec_efi_status = ((register_t (*)(register_t, register_t,
354 		    register_t))ec->ec_fptr)(ec->ec_arg1, ec->ec_arg2,
355 		    ec->ec_arg3);
356 		break;
357 	case 4:
358 		ec->ec_efi_status = ((register_t (*)(register_t, register_t,
359 		    register_t, register_t))ec->ec_fptr)(ec->ec_arg1,
360 		    ec->ec_arg2, ec->ec_arg3, ec->ec_arg4);
361 		break;
362 	case 5:
363 		ec->ec_efi_status = ((register_t (*)(register_t, register_t,
364 		    register_t, register_t, register_t))ec->ec_fptr)(
365 		    ec->ec_arg1, ec->ec_arg2, ec->ec_arg3, ec->ec_arg4,
366 		    ec->ec_arg5);
367 		break;
368 	default:
369 		panic("efi_rt_arch_call: %d args", (int)ec->ec_argcnt);
370 	}
371 
372 	return (0);
373 }
374 
375 static int
376 efi_call(struct efirt_callinfo *ecp)
377 {
378 	int error;
379 
380 	error = efi_enter();
381 	if (error != 0)
382 		return (error);
383 	error = efi_rt_handle_faults ? efi_rt_arch_call(ecp) :
384 	    efi_rt_arch_call_nofault(ecp);
385 	efi_leave();
386 	if (error == 0)
387 		error = efi_status_to_errno(ecp->ec_efi_status);
388 	else if (bootverbose)
389 		printf("EFI %s call faulted, error %d\n", ecp->ec_name, error);
390 	return (error);
391 }
392 
393 #define	EFI_RT_METHOD_PA(method)				\
394     ((uintptr_t)((struct efi_rt *)efi_phys_to_kva((uintptr_t)	\
395     efi_runtime))->method)
396 
397 static int
398 efi_get_time_locked(struct efi_tm *tm, struct efi_tmcap *tmcap)
399 {
400 	struct efirt_callinfo ec;
401 
402 	EFI_TIME_OWNED();
403 	if (efi_runtime == NULL)
404 		return (ENXIO);
405 	bzero(&ec, sizeof(ec));
406 	ec.ec_name = "rt_gettime";
407 	ec.ec_argcnt = 2;
408 	ec.ec_arg1 = (uintptr_t)tm;
409 	ec.ec_arg2 = (uintptr_t)tmcap;
410 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_gettime);
411 	return (efi_call(&ec));
412 }
413 
414 int
415 efi_get_time(struct efi_tm *tm)
416 {
417 	struct efi_tmcap dummy;
418 	int error;
419 
420 	if (efi_runtime == NULL)
421 		return (ENXIO);
422 	EFI_TIME_LOCK();
423 	/*
424 	 * UEFI spec states that the Capabilities argument to GetTime is
425 	 * optional, but some UEFI implementations choke when passed a NULL
426 	 * pointer. Pass a dummy efi_tmcap, even though we won't use it,
427 	 * to workaround such implementations.
428 	 */
429 	error = efi_get_time_locked(tm, &dummy);
430 	EFI_TIME_UNLOCK();
431 	return (error);
432 }
433 
434 int
435 efi_get_time_capabilities(struct efi_tmcap *tmcap)
436 {
437 	struct efi_tm dummy;
438 	int error;
439 
440 	if (efi_runtime == NULL)
441 		return (ENXIO);
442 	EFI_TIME_LOCK();
443 	error = efi_get_time_locked(&dummy, tmcap);
444 	EFI_TIME_UNLOCK();
445 	return (error);
446 }
447 
448 int
449 efi_reset_system(enum efi_reset type)
450 {
451 	struct efirt_callinfo ec;
452 
453 	switch (type) {
454 	case EFI_RESET_COLD:
455 	case EFI_RESET_WARM:
456 	case EFI_RESET_SHUTDOWN:
457 		break;
458 	default:
459 		return (EINVAL);
460 	}
461 	if (efi_runtime == NULL)
462 		return (ENXIO);
463 	bzero(&ec, sizeof(ec));
464 	ec.ec_name = "rt_reset";
465 	ec.ec_argcnt = 4;
466 	ec.ec_arg1 = (uintptr_t)type;
467 	ec.ec_arg2 = (uintptr_t)0;
468 	ec.ec_arg3 = (uintptr_t)0;
469 	ec.ec_arg4 = (uintptr_t)NULL;
470 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_reset);
471 	return (efi_call(&ec));
472 }
473 
474 static int
475 efi_set_time_locked(struct efi_tm *tm)
476 {
477 	struct efirt_callinfo ec;
478 
479 	EFI_TIME_OWNED();
480 	if (efi_runtime == NULL)
481 		return (ENXIO);
482 	bzero(&ec, sizeof(ec));
483 	ec.ec_name = "rt_settime";
484 	ec.ec_argcnt = 1;
485 	ec.ec_arg1 = (uintptr_t)tm;
486 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_settime);
487 	return (efi_call(&ec));
488 }
489 
490 int
491 efi_set_time(struct efi_tm *tm)
492 {
493 	int error;
494 
495 	if (efi_runtime == NULL)
496 		return (ENXIO);
497 	EFI_TIME_LOCK();
498 	error = efi_set_time_locked(tm);
499 	EFI_TIME_UNLOCK();
500 	return (error);
501 }
502 
503 int
504 efi_var_get(efi_char *name, struct uuid *vendor, uint32_t *attrib,
505     size_t *datasize, void *data)
506 {
507 	struct efirt_callinfo ec;
508 
509 	if (efi_runtime == NULL)
510 		return (ENXIO);
511 	bzero(&ec, sizeof(ec));
512 	ec.ec_argcnt = 5;
513 	ec.ec_name = "rt_getvar";
514 	ec.ec_arg1 = (uintptr_t)name;
515 	ec.ec_arg2 = (uintptr_t)vendor;
516 	ec.ec_arg3 = (uintptr_t)attrib;
517 	ec.ec_arg4 = (uintptr_t)datasize;
518 	ec.ec_arg5 = (uintptr_t)data;
519 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_getvar);
520 	return (efi_call(&ec));
521 }
522 
523 int
524 efi_var_nextname(size_t *namesize, efi_char *name, struct uuid *vendor)
525 {
526 	struct efirt_callinfo ec;
527 
528 	if (efi_runtime == NULL)
529 		return (ENXIO);
530 	bzero(&ec, sizeof(ec));
531 	ec.ec_argcnt = 3;
532 	ec.ec_name = "rt_scanvar";
533 	ec.ec_arg1 = (uintptr_t)namesize;
534 	ec.ec_arg2 = (uintptr_t)name;
535 	ec.ec_arg3 = (uintptr_t)vendor;
536 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_scanvar);
537 	return (efi_call(&ec));
538 }
539 
540 int
541 efi_var_set(efi_char *name, struct uuid *vendor, uint32_t attrib,
542     size_t datasize, void *data)
543 {
544 	struct efirt_callinfo ec;
545 
546 	if (efi_runtime == NULL)
547 		return (ENXIO);
548 	bzero(&ec, sizeof(ec));
549 	ec.ec_argcnt = 5;
550 	ec.ec_name = "rt_setvar";
551 	ec.ec_arg1 = (uintptr_t)name;
552 	ec.ec_arg2 = (uintptr_t)vendor;
553 	ec.ec_arg3 = (uintptr_t)attrib;
554 	ec.ec_arg4 = (uintptr_t)datasize;
555 	ec.ec_arg5 = (uintptr_t)data;
556 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_setvar);
557 	return (efi_call(&ec));
558 }
559 
560 static int
561 efirt_modevents(module_t m, int event, void *arg __unused)
562 {
563 
564 	switch (event) {
565 	case MOD_LOAD:
566 		return (efi_init());
567 
568 	case MOD_UNLOAD:
569 		efi_uninit();
570 		return (0);
571 
572 	case MOD_SHUTDOWN:
573 		return (0);
574 
575 	default:
576 		return (EOPNOTSUPP);
577 	}
578 }
579 
580 static moduledata_t efirt_moddata = {
581 	.name = "efirt",
582 	.evhand = efirt_modevents,
583 	.priv = NULL,
584 };
585 /* After fpuinitstate, before efidev */
586 DECLARE_MODULE(efirt, efirt_moddata, SI_SUB_DRIVERS, SI_ORDER_SECOND);
587 MODULE_VERSION(efirt, 1);
588