xref: /freebsd/sys/dev/ena/ena_datapath.c (revision a3557ef0)
1 /*-
2  * BSD LICENSE
3  *
4  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "ena.h"
34 #include "ena_datapath.h"
35 #ifdef DEV_NETMAP
36 #include "ena_netmap.h"
37 #endif /* DEV_NETMAP */
38 
39 /*********************************************************************
40  *  Static functions prototypes
41  *********************************************************************/
42 
43 static int	ena_tx_cleanup(struct ena_ring *);
44 static int	ena_rx_cleanup(struct ena_ring *);
45 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
46 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
47     struct mbuf *);
48 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
49     struct ena_com_rx_ctx *, uint16_t *);
50 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
51     struct mbuf *);
52 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *, bool);
53 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
54     struct mbuf **mbuf);
55 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
56 static void	ena_start_xmit(struct ena_ring *);
57 
58 /*********************************************************************
59  *  Global functions
60  *********************************************************************/
61 
62 void
63 ena_cleanup(void *arg, int pending)
64 {
65 	struct ena_que	*que = arg;
66 	struct ena_adapter *adapter = que->adapter;
67 	if_t ifp = adapter->ifp;
68 	struct ena_ring *tx_ring;
69 	struct ena_ring *rx_ring;
70 	struct ena_com_io_cq* io_cq;
71 	struct ena_eth_io_intr_reg intr_reg;
72 	int qid, ena_qid;
73 	int txc, rxc, i;
74 
75 	if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
76 		return;
77 
78 	ena_trace(ENA_DBG, "MSI-X TX/RX routine\n");
79 
80 	tx_ring = que->tx_ring;
81 	rx_ring = que->rx_ring;
82 	qid = que->id;
83 	ena_qid = ENA_IO_TXQ_IDX(qid);
84 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
85 
86 	tx_ring->first_interrupt = true;
87 	rx_ring->first_interrupt = true;
88 
89 	for (i = 0; i < CLEAN_BUDGET; ++i) {
90 		rxc = ena_rx_cleanup(rx_ring);
91 		txc = ena_tx_cleanup(tx_ring);
92 
93 		if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
94 			return;
95 
96 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
97 		       break;
98 	}
99 
100 	/* Signal that work is done and unmask interrupt */
101 	ena_com_update_intr_reg(&intr_reg,
102 	    RX_IRQ_INTERVAL,
103 	    TX_IRQ_INTERVAL,
104 	    true);
105 	ena_com_unmask_intr(io_cq, &intr_reg);
106 }
107 
108 void
109 ena_deferred_mq_start(void *arg, int pending)
110 {
111 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
112 	struct ifnet *ifp = tx_ring->adapter->ifp;
113 
114 	while (!drbr_empty(ifp, tx_ring->br) &&
115 	    tx_ring->running &&
116 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
117 		ENA_RING_MTX_LOCK(tx_ring);
118 		ena_start_xmit(tx_ring);
119 		ENA_RING_MTX_UNLOCK(tx_ring);
120 	}
121 }
122 
123 int
124 ena_mq_start(if_t ifp, struct mbuf *m)
125 {
126 	struct ena_adapter *adapter = ifp->if_softc;
127 	struct ena_ring *tx_ring;
128 	int ret, is_drbr_empty;
129 	uint32_t i;
130 
131 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
132 		return (ENODEV);
133 
134 	/* Which queue to use */
135 	/*
136 	 * If everything is setup correctly, it should be the
137 	 * same bucket that the current CPU we're on is.
138 	 * It should improve performance.
139 	 */
140 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
141 		i = m->m_pkthdr.flowid % adapter->num_io_queues;
142 	} else {
143 		i = curcpu % adapter->num_io_queues;
144 	}
145 	tx_ring = &adapter->tx_ring[i];
146 
147 	/* Check if drbr is empty before putting packet */
148 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
149 	ret = drbr_enqueue(ifp, tx_ring->br, m);
150 	if (unlikely(ret != 0)) {
151 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
152 		return (ret);
153 	}
154 
155 	if (is_drbr_empty && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
156 		ena_start_xmit(tx_ring);
157 		ENA_RING_MTX_UNLOCK(tx_ring);
158 	} else {
159 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
160 	}
161 
162 	return (0);
163 }
164 
165 void
166 ena_qflush(if_t ifp)
167 {
168 	struct ena_adapter *adapter = ifp->if_softc;
169 	struct ena_ring *tx_ring = adapter->tx_ring;
170 	int i;
171 
172 	for(i = 0; i < adapter->num_io_queues; ++i, ++tx_ring)
173 		if (!drbr_empty(ifp, tx_ring->br)) {
174 			ENA_RING_MTX_LOCK(tx_ring);
175 			drbr_flush(ifp, tx_ring->br);
176 			ENA_RING_MTX_UNLOCK(tx_ring);
177 		}
178 
179 	if_qflush(ifp);
180 }
181 
182 /*********************************************************************
183  *  Static functions
184  *********************************************************************/
185 
186 static inline int
187 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
188 {
189 	struct ena_adapter *adapter = tx_ring->adapter;
190 	struct ena_tx_buffer *tx_info = NULL;
191 
192 	if (likely(req_id < tx_ring->ring_size)) {
193 		tx_info = &tx_ring->tx_buffer_info[req_id];
194 		if (tx_info->mbuf != NULL)
195 			return (0);
196 		device_printf(adapter->pdev,
197 		    "tx_info doesn't have valid mbuf\n");
198 	}
199 
200 	device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
201 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
202 
203 	/* Trigger device reset */
204 	ena_trigger_reset(adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
205 
206 	return (EFAULT);
207 }
208 
209 /**
210  * ena_tx_cleanup - clear sent packets and corresponding descriptors
211  * @tx_ring: ring for which we want to clean packets
212  *
213  * Once packets are sent, we ask the device in a loop for no longer used
214  * descriptors. We find the related mbuf chain in a map (index in an array)
215  * and free it, then update ring state.
216  * This is performed in "endless" loop, updating ring pointers every
217  * TX_COMMIT. The first check of free descriptor is performed before the actual
218  * loop, then repeated at the loop end.
219  **/
220 static int
221 ena_tx_cleanup(struct ena_ring *tx_ring)
222 {
223 	struct ena_adapter *adapter;
224 	struct ena_com_io_cq* io_cq;
225 	uint16_t next_to_clean;
226 	uint16_t req_id;
227 	uint16_t ena_qid;
228 	unsigned int total_done = 0;
229 	int rc;
230 	int commit = TX_COMMIT;
231 	int budget = TX_BUDGET;
232 	int work_done;
233 	bool above_thresh;
234 
235 	adapter = tx_ring->que->adapter;
236 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
237 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
238 	next_to_clean = tx_ring->next_to_clean;
239 
240 #ifdef DEV_NETMAP
241 	if (netmap_tx_irq(adapter->ifp, tx_ring->qid) != NM_IRQ_PASS)
242 		return (0);
243 #endif /* DEV_NETMAP */
244 
245 	do {
246 		struct ena_tx_buffer *tx_info;
247 		struct mbuf *mbuf;
248 
249 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
250 		if (unlikely(rc != 0))
251 			break;
252 
253 		rc = validate_tx_req_id(tx_ring, req_id);
254 		if (unlikely(rc != 0))
255 			break;
256 
257 		tx_info = &tx_ring->tx_buffer_info[req_id];
258 
259 		mbuf = tx_info->mbuf;
260 
261 		tx_info->mbuf = NULL;
262 		bintime_clear(&tx_info->timestamp);
263 
264 		bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
265 		    BUS_DMASYNC_POSTWRITE);
266 		bus_dmamap_unload(adapter->tx_buf_tag,
267 		    tx_info->dmamap);
268 
269 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed\n",
270 		    tx_ring->qid, mbuf);
271 
272 		m_freem(mbuf);
273 
274 		total_done += tx_info->tx_descs;
275 
276 		tx_ring->free_tx_ids[next_to_clean] = req_id;
277 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
278 		    tx_ring->ring_size);
279 
280 		if (unlikely(--commit == 0)) {
281 			commit = TX_COMMIT;
282 			/* update ring state every TX_COMMIT descriptor */
283 			tx_ring->next_to_clean = next_to_clean;
284 			ena_com_comp_ack(
285 			    &adapter->ena_dev->io_sq_queues[ena_qid],
286 			    total_done);
287 			ena_com_update_dev_comp_head(io_cq);
288 			total_done = 0;
289 		}
290 	} while (likely(--budget));
291 
292 	work_done = TX_BUDGET - budget;
293 
294 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d\n",
295 	tx_ring->qid, work_done);
296 
297 	/* If there is still something to commit update ring state */
298 	if (likely(commit != TX_COMMIT)) {
299 		tx_ring->next_to_clean = next_to_clean;
300 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
301 		    total_done);
302 		ena_com_update_dev_comp_head(io_cq);
303 	}
304 
305 	/*
306 	 * Need to make the rings circular update visible to
307 	 * ena_xmit_mbuf() before checking for tx_ring->running.
308 	 */
309 	mb();
310 
311 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
312 	    ENA_TX_RESUME_THRESH);
313 	if (unlikely(!tx_ring->running && above_thresh)) {
314 		ENA_RING_MTX_LOCK(tx_ring);
315 		above_thresh =
316 		    ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
317 		    ENA_TX_RESUME_THRESH);
318 		if (!tx_ring->running && above_thresh) {
319 			tx_ring->running = true;
320 			counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
321 			taskqueue_enqueue(tx_ring->enqueue_tq,
322 			    &tx_ring->enqueue_task);
323 		}
324 		ENA_RING_MTX_UNLOCK(tx_ring);
325 	}
326 
327 	return (work_done);
328 }
329 
330 static void
331 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
332     struct mbuf *mbuf)
333 {
334 	struct ena_adapter *adapter = rx_ring->adapter;
335 
336 	if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter))) {
337 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
338 
339 		if (ena_rx_ctx->frag &&
340 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
341 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
342 			return;
343 		}
344 
345 		switch (ena_rx_ctx->l3_proto) {
346 		case ENA_ETH_IO_L3_PROTO_IPV4:
347 			switch (ena_rx_ctx->l4_proto) {
348 			case ENA_ETH_IO_L4_PROTO_TCP:
349 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
350 				break;
351 			case ENA_ETH_IO_L4_PROTO_UDP:
352 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
353 				break;
354 			default:
355 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
356 			}
357 			break;
358 		case ENA_ETH_IO_L3_PROTO_IPV6:
359 			switch (ena_rx_ctx->l4_proto) {
360 			case ENA_ETH_IO_L4_PROTO_TCP:
361 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
362 				break;
363 			case ENA_ETH_IO_L4_PROTO_UDP:
364 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
365 				break;
366 			default:
367 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
368 			}
369 			break;
370 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
371 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
372 			break;
373 		default:
374 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
375 		}
376 	} else {
377 		mbuf->m_pkthdr.flowid = rx_ring->qid;
378 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
379 	}
380 }
381 
382 /**
383  * ena_rx_mbuf - assemble mbuf from descriptors
384  * @rx_ring: ring for which we want to clean packets
385  * @ena_bufs: buffer info
386  * @ena_rx_ctx: metadata for this packet(s)
387  * @next_to_clean: ring pointer, will be updated only upon success
388  *
389  **/
390 static struct mbuf*
391 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
392     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
393 {
394 	struct mbuf *mbuf;
395 	struct ena_rx_buffer *rx_info;
396 	struct ena_adapter *adapter;
397 	unsigned int descs = ena_rx_ctx->descs;
398 	int rc;
399 	uint16_t ntc, len, req_id, buf = 0;
400 
401 	ntc = *next_to_clean;
402 	adapter = rx_ring->adapter;
403 
404 	len = ena_bufs[buf].len;
405 	req_id = ena_bufs[buf].req_id;
406 	rc = validate_rx_req_id(rx_ring, req_id);
407 	if (unlikely(rc != 0))
408 		return (NULL);
409 
410 	rx_info = &rx_ring->rx_buffer_info[req_id];
411 	if (unlikely(rx_info->mbuf == NULL)) {
412 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
413 		return (NULL);
414 	}
415 
416 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx\n",
417 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
418 
419 	bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
420 	    BUS_DMASYNC_POSTREAD);
421 	mbuf = rx_info->mbuf;
422 	mbuf->m_flags |= M_PKTHDR;
423 	mbuf->m_pkthdr.len = len;
424 	mbuf->m_len = len;
425 	mbuf->m_pkthdr.rcvif = rx_ring->que->adapter->ifp;
426 
427 	/* Fill mbuf with hash key and it's interpretation for optimization */
428 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
429 
430 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d\n",
431 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
432 
433 	/* DMA address is not needed anymore, unmap it */
434 	bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
435 
436 	rx_info->mbuf = NULL;
437 	rx_ring->free_rx_ids[ntc] = req_id;
438 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
439 
440 	/*
441 	 * While we have more than 1 descriptors for one rcvd packet, append
442 	 * other mbufs to the main one
443 	 */
444 	while (--descs) {
445 		++buf;
446 		len = ena_bufs[buf].len;
447 		req_id = ena_bufs[buf].req_id;
448 		rc = validate_rx_req_id(rx_ring, req_id);
449 		if (unlikely(rc != 0)) {
450 			/*
451 			 * If the req_id is invalid, then the device will be
452 			 * reset. In that case we must free all mbufs that
453 			 * were already gathered.
454 			 */
455 			m_freem(mbuf);
456 			return (NULL);
457 		}
458 		rx_info = &rx_ring->rx_buffer_info[req_id];
459 
460 		if (unlikely(rx_info->mbuf == NULL)) {
461 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
462 			/*
463 			 * If one of the required mbufs was not allocated yet,
464 			 * we can break there.
465 			 * All earlier used descriptors will be reallocated
466 			 * later and not used mbufs can be reused.
467 			 * The next_to_clean pointer will not be updated in case
468 			 * of an error, so caller should advance it manually
469 			 * in error handling routine to keep it up to date
470 			 * with hw ring.
471 			 */
472 			m_freem(mbuf);
473 			return (NULL);
474 		}
475 
476 		bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
477 		    BUS_DMASYNC_POSTREAD);
478 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
479 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
480 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p\n",
481 			    mbuf);
482 		}
483 
484 		ena_trace(ENA_DBG | ENA_RXPTH,
485 		    "rx mbuf updated. len %d\n", mbuf->m_pkthdr.len);
486 
487 		/* Free already appended mbuf, it won't be useful anymore */
488 		bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
489 		m_freem(rx_info->mbuf);
490 		rx_info->mbuf = NULL;
491 
492 		rx_ring->free_rx_ids[ntc] = req_id;
493 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
494 	}
495 
496 	*next_to_clean = ntc;
497 
498 	return (mbuf);
499 }
500 
501 /**
502  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
503  **/
504 static inline void
505 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
506     struct mbuf *mbuf)
507 {
508 
509 	/* if IP and error */
510 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
511 	    ena_rx_ctx->l3_csum_err)) {
512 		/* ipv4 checksum error */
513 		mbuf->m_pkthdr.csum_flags = 0;
514 		counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
515 		ena_trace(ENA_DBG, "RX IPv4 header checksum error\n");
516 		return;
517 	}
518 
519 	/* if TCP/UDP */
520 	if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
521 	    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
522 		if (ena_rx_ctx->l4_csum_err) {
523 			/* TCP/UDP checksum error */
524 			mbuf->m_pkthdr.csum_flags = 0;
525 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
526 			ena_trace(ENA_DBG, "RX L4 checksum error\n");
527 		} else {
528 			mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
529 			mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
530 		}
531 	}
532 }
533 
534 /**
535  * ena_rx_cleanup - handle rx irq
536  * @arg: ring for which irq is being handled
537  **/
538 static int
539 ena_rx_cleanup(struct ena_ring *rx_ring)
540 {
541 	struct ena_adapter *adapter;
542 	struct mbuf *mbuf;
543 	struct ena_com_rx_ctx ena_rx_ctx;
544 	struct ena_com_io_cq* io_cq;
545 	struct ena_com_io_sq* io_sq;
546 	if_t ifp;
547 	uint16_t ena_qid;
548 	uint16_t next_to_clean;
549 	uint32_t refill_required;
550 	uint32_t refill_threshold;
551 	uint32_t do_if_input = 0;
552 	unsigned int qid;
553 	int rc, i;
554 	int budget = RX_BUDGET;
555 #ifdef DEV_NETMAP
556 	int done;
557 #endif /* DEV_NETMAP */
558 
559 	adapter = rx_ring->que->adapter;
560 	ifp = adapter->ifp;
561 	qid = rx_ring->que->id;
562 	ena_qid = ENA_IO_RXQ_IDX(qid);
563 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
564 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
565 	next_to_clean = rx_ring->next_to_clean;
566 
567 #ifdef DEV_NETMAP
568 	if (netmap_rx_irq(adapter->ifp, rx_ring->qid, &done) != NM_IRQ_PASS)
569 		return (0);
570 #endif /* DEV_NETMAP */
571 
572 	ena_trace(ENA_DBG, "rx: qid %d\n", qid);
573 
574 	do {
575 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
576 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
577 		ena_rx_ctx.descs = 0;
578 		bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
579 		    io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_POSTREAD);
580 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
581 
582 		if (unlikely(rc != 0))
583 			goto error;
584 
585 		if (unlikely(ena_rx_ctx.descs == 0))
586 			break;
587 
588 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
589 		    "descs #: %d l3 proto %d l4 proto %d hash: %x\n",
590 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
591 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
592 
593 		/* Receive mbuf from the ring */
594 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
595 		    &ena_rx_ctx, &next_to_clean);
596 		bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
597 		    io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_PREREAD);
598 		/* Exit if we failed to retrieve a buffer */
599 		if (unlikely(mbuf == NULL)) {
600 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
601 				rx_ring->free_rx_ids[next_to_clean] =
602 				    rx_ring->ena_bufs[i].req_id;
603 				next_to_clean =
604 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
605 				    rx_ring->ring_size);
606 
607 			}
608 			break;
609 		}
610 
611 		if (((ifp->if_capenable & IFCAP_RXCSUM) != 0) ||
612 		    ((ifp->if_capenable & IFCAP_RXCSUM_IPV6) != 0)) {
613 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
614 		}
615 
616 		counter_enter();
617 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
618 		    mbuf->m_pkthdr.len);
619 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
620 		    mbuf->m_pkthdr.len);
621 		counter_exit();
622 		/*
623 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
624 		 * should be computed by hardware.
625 		 */
626 		do_if_input = 1;
627 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
628 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
629 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
630 			/*
631 			 * Send to the stack if:
632 			 *  - LRO not enabled, or
633 			 *  - no LRO resources, or
634 			 *  - lro enqueue fails
635 			 */
636 			if ((rx_ring->lro.lro_cnt != 0) &&
637 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
638 					do_if_input = 0;
639 		}
640 		if (do_if_input != 0) {
641 			ena_trace(ENA_DBG | ENA_RXPTH,
642 			    "calling if_input() with mbuf %p\n", mbuf);
643 			(*ifp->if_input)(ifp, mbuf);
644 		}
645 
646 		counter_enter();
647 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
648 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
649 		counter_exit();
650 	} while (--budget);
651 
652 	rx_ring->next_to_clean = next_to_clean;
653 
654 	refill_required = ena_com_free_q_entries(io_sq);
655 	refill_threshold = min_t(int,
656 	    rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
657 	    ENA_RX_REFILL_THRESH_PACKET);
658 
659 	if (refill_required > refill_threshold) {
660 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
661 		ena_refill_rx_bufs(rx_ring, refill_required);
662 	}
663 
664 	tcp_lro_flush_all(&rx_ring->lro);
665 
666 	return (RX_BUDGET - budget);
667 
668 error:
669 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
670 
671 	/* Too many desc from the device. Trigger reset */
672 	ena_trigger_reset(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS);
673 
674 	return (0);
675 }
676 
677 static void
678 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf,
679     bool disable_meta_caching)
680 {
681 	struct ena_com_tx_meta *ena_meta;
682 	struct ether_vlan_header *eh;
683 	struct mbuf *mbuf_next;
684 	u32 mss;
685 	bool offload;
686 	uint16_t etype;
687 	int ehdrlen;
688 	struct ip *ip;
689 	int iphlen;
690 	struct tcphdr *th;
691 	int offset;
692 
693 	offload = false;
694 	ena_meta = &ena_tx_ctx->ena_meta;
695 	mss = mbuf->m_pkthdr.tso_segsz;
696 
697 	if (mss != 0)
698 		offload = true;
699 
700 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0)
701 		offload = true;
702 
703 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
704 		offload = true;
705 
706 	if (!offload) {
707 		if (disable_meta_caching) {
708 			memset(ena_meta, 0, sizeof(*ena_meta));
709 			ena_tx_ctx->meta_valid = 1;
710 		} else {
711 			ena_tx_ctx->meta_valid = 0;
712 		}
713 		return;
714 	}
715 
716 	/* Determine where frame payload starts. */
717 	eh = mtod(mbuf, struct ether_vlan_header *);
718 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
719 		etype = ntohs(eh->evl_proto);
720 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
721 	} else {
722 		etype = ntohs(eh->evl_encap_proto);
723 		ehdrlen = ETHER_HDR_LEN;
724 	}
725 
726 	mbuf_next = m_getptr(mbuf, ehdrlen, &offset);
727 	ip = (struct ip *)(mtodo(mbuf_next, offset));
728 	iphlen = ip->ip_hl << 2;
729 
730 	mbuf_next = m_getptr(mbuf, iphlen + ehdrlen, &offset);
731 	th = (struct tcphdr *)(mtodo(mbuf_next, offset));
732 
733 	if ((mbuf->m_pkthdr.csum_flags & CSUM_IP) != 0) {
734 		ena_tx_ctx->l3_csum_enable = 1;
735 	}
736 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
737 		ena_tx_ctx->tso_enable = 1;
738 		ena_meta->l4_hdr_len = (th->th_off);
739 	}
740 
741 	switch (etype) {
742 	case ETHERTYPE_IP:
743 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
744 		if ((ip->ip_off & htons(IP_DF)) != 0)
745 			ena_tx_ctx->df = 1;
746 		break;
747 	case ETHERTYPE_IPV6:
748 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
749 
750 	default:
751 		break;
752 	}
753 
754 	if (ip->ip_p == IPPROTO_TCP) {
755 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
756 		if ((mbuf->m_pkthdr.csum_flags &
757 		    (CSUM_IP_TCP | CSUM_IP6_TCP)) != 0)
758 			ena_tx_ctx->l4_csum_enable = 1;
759 		else
760 			ena_tx_ctx->l4_csum_enable = 0;
761 	} else if (ip->ip_p == IPPROTO_UDP) {
762 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
763 		if ((mbuf->m_pkthdr.csum_flags &
764 		    (CSUM_IP_UDP | CSUM_IP6_UDP)) != 0)
765 			ena_tx_ctx->l4_csum_enable = 1;
766 		else
767 			ena_tx_ctx->l4_csum_enable = 0;
768 	} else {
769 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
770 		ena_tx_ctx->l4_csum_enable = 0;
771 	}
772 
773 	ena_meta->mss = mss;
774 	ena_meta->l3_hdr_len = iphlen;
775 	ena_meta->l3_hdr_offset = ehdrlen;
776 	ena_tx_ctx->meta_valid = 1;
777 }
778 
779 static int
780 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
781 {
782 	struct ena_adapter *adapter;
783 	struct mbuf *collapsed_mbuf;
784 	int num_frags;
785 
786 	adapter = tx_ring->adapter;
787 	num_frags = ena_mbuf_count(*mbuf);
788 
789 	/* One segment must be reserved for configuration descriptor. */
790 	if (num_frags < adapter->max_tx_sgl_size)
791 		return (0);
792 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
793 
794 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
795 	    adapter->max_tx_sgl_size - 1);
796 	if (unlikely(collapsed_mbuf == NULL)) {
797 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
798 		return (ENOMEM);
799 	}
800 
801 	/* If mbuf was collapsed succesfully, original mbuf is released. */
802 	*mbuf = collapsed_mbuf;
803 
804 	return (0);
805 }
806 
807 static int
808 ena_tx_map_mbuf(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info,
809     struct mbuf *mbuf, void **push_hdr, u16 *header_len)
810 {
811 	struct ena_adapter *adapter = tx_ring->adapter;
812 	struct ena_com_buf *ena_buf;
813 	bus_dma_segment_t segs[ENA_BUS_DMA_SEGS];
814 	size_t iseg = 0;
815 	uint32_t mbuf_head_len;
816 	uint16_t offset;
817 	int rc, nsegs;
818 
819 	mbuf_head_len = mbuf->m_len;
820 	tx_info->mbuf = mbuf;
821 	ena_buf = tx_info->bufs;
822 
823 	/*
824 	 * For easier maintaining of the DMA map, map the whole mbuf even if
825 	 * the LLQ is used. The descriptors will be filled using the segments.
826 	 */
827 	rc = bus_dmamap_load_mbuf_sg(adapter->tx_buf_tag, tx_info->dmamap, mbuf,
828 	    segs, &nsegs, BUS_DMA_NOWAIT);
829 	if (unlikely((rc != 0) || (nsegs == 0))) {
830 		ena_trace(ENA_WARNING,
831 		    "dmamap load failed! err: %d nsegs: %d\n", rc, nsegs);
832 		goto dma_error;
833 	}
834 
835 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
836 		/*
837 		 * When the device is LLQ mode, the driver will copy
838 		 * the header into the device memory space.
839 		 * the ena_com layer assumes the header is in a linear
840 		 * memory space.
841 		 * This assumption might be wrong since part of the header
842 		 * can be in the fragmented buffers.
843 		 * First check if header fits in the mbuf. If not, copy it to
844 		 * separate buffer that will be holding linearized data.
845 		 */
846 		*header_len = min_t(uint32_t, mbuf->m_pkthdr.len, tx_ring->tx_max_header_size);
847 
848 		/* If header is in linear space, just point into mbuf's data. */
849 		if (likely(*header_len <= mbuf_head_len)) {
850 			*push_hdr = mbuf->m_data;
851 		/*
852 		 * Otherwise, copy whole portion of header from multiple mbufs
853 		 * to intermediate buffer.
854 		 */
855 		} else {
856 			m_copydata(mbuf, 0, *header_len, tx_ring->push_buf_intermediate_buf);
857 			*push_hdr = tx_ring->push_buf_intermediate_buf;
858 
859 			counter_u64_add(tx_ring->tx_stats.llq_buffer_copy, 1);
860 		}
861 
862 		ena_trace(ENA_DBG | ENA_TXPTH,
863 		    "mbuf: %p header_buf->vaddr: %p push_len: %d\n",
864 		    mbuf, *push_hdr, *header_len);
865 
866 		/* If packet is fitted in LLQ header, no need for DMA segments. */
867 		if (mbuf->m_pkthdr.len <= tx_ring->tx_max_header_size) {
868 			return (0);
869 		} else {
870 			offset = tx_ring->tx_max_header_size;
871 			/*
872 			 * As Header part is mapped to LLQ header, we can skip it and just
873 			 * map the residuum of the mbuf to DMA Segments.
874 			 */
875 			while (offset > 0) {
876 				if (offset >= segs[iseg].ds_len) {
877 					offset -= segs[iseg].ds_len;
878 				} else {
879 					ena_buf->paddr = segs[iseg].ds_addr + offset;
880 					ena_buf->len = segs[iseg].ds_len - offset;
881 					ena_buf++;
882 					tx_info->num_of_bufs++;
883 					offset = 0;
884 				}
885 				iseg++;
886 			}
887 		}
888 	} else {
889 		*push_hdr = NULL;
890 		/*
891 		* header_len is just a hint for the device. Because FreeBSD is not
892 		* giving us information about packet header length and it is not
893 		* guaranteed that all packet headers will be in the 1st mbuf, setting
894 		* header_len to 0 is making the device ignore this value and resolve
895 		* header on it's own.
896 		*/
897 		*header_len = 0;
898 	}
899 
900 	/* Map rest of the mbuf */
901 	while (iseg < nsegs) {
902 		ena_buf->paddr = segs[iseg].ds_addr;
903 		ena_buf->len = segs[iseg].ds_len;
904 		ena_buf++;
905 		iseg++;
906 		tx_info->num_of_bufs++;
907 	}
908 
909 	return (0);
910 
911 dma_error:
912 	counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
913 	tx_info->mbuf = NULL;
914 	return (rc);
915 }
916 
917 static int
918 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
919 {
920 	struct ena_adapter *adapter;
921 	struct ena_tx_buffer *tx_info;
922 	struct ena_com_tx_ctx ena_tx_ctx;
923 	struct ena_com_dev *ena_dev;
924 	struct ena_com_io_sq* io_sq;
925 	void *push_hdr;
926 	uint16_t next_to_use;
927 	uint16_t req_id;
928 	uint16_t ena_qid;
929 	uint16_t header_len;
930 	int rc;
931 	int nb_hw_desc;
932 
933 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
934 	adapter = tx_ring->que->adapter;
935 	ena_dev = adapter->ena_dev;
936 	io_sq = &ena_dev->io_sq_queues[ena_qid];
937 
938 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
939 	if (unlikely(rc != 0)) {
940 		ena_trace(ENA_WARNING,
941 		    "Failed to collapse mbuf! err: %d\n", rc);
942 		return (rc);
943 	}
944 
945 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes\n", (*mbuf)->m_pkthdr.len);
946 
947 	next_to_use = tx_ring->next_to_use;
948 	req_id = tx_ring->free_tx_ids[next_to_use];
949 	tx_info = &tx_ring->tx_buffer_info[req_id];
950 	tx_info->num_of_bufs = 0;
951 
952 	rc = ena_tx_map_mbuf(tx_ring, tx_info, *mbuf, &push_hdr, &header_len);
953 	if (unlikely(rc != 0)) {
954 		ena_trace(ENA_WARNING, "Failed to map TX mbuf\n");
955 		return (rc);
956 	}
957 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
958 	ena_tx_ctx.ena_bufs = tx_info->bufs;
959 	ena_tx_ctx.push_header = push_hdr;
960 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
961 	ena_tx_ctx.req_id = req_id;
962 	ena_tx_ctx.header_len = header_len;
963 
964 	/* Set flags and meta data */
965 	ena_tx_csum(&ena_tx_ctx, *mbuf, adapter->disable_meta_caching);
966 
967 	if (tx_ring->acum_pkts == DB_THRESHOLD ||
968 	    ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx)) {
969 		ena_trace(ENA_DBG | ENA_TXPTH,
970 		    "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
971 		    tx_ring->que->id);
972 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
973 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
974 		tx_ring->acum_pkts = 0;
975 	}
976 
977 	/* Prepare the packet's descriptors and send them to device */
978 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
979 	if (unlikely(rc != 0)) {
980 		if (likely(rc == ENA_COM_NO_MEM)) {
981 			ena_trace(ENA_DBG | ENA_TXPTH,
982 			    "tx ring[%d] if out of space\n", tx_ring->que->id);
983 		} else {
984 			device_printf(adapter->pdev,
985 			    "failed to prepare tx bufs\n");
986 		}
987 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
988 		goto dma_error;
989 	}
990 
991 	counter_enter();
992 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
993 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
994 	    (*mbuf)->m_pkthdr.len);
995 
996 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
997 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
998 	    (*mbuf)->m_pkthdr.len);
999 	counter_exit();
1000 
1001 	tx_info->tx_descs = nb_hw_desc;
1002 	getbinuptime(&tx_info->timestamp);
1003 	tx_info->print_once = true;
1004 
1005 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
1006 	    tx_ring->ring_size);
1007 
1008 	/* stop the queue when no more space available, the packet can have up
1009 	 * to sgl_size + 2. one for the meta descriptor and one for header
1010 	 * (if the header is larger than tx_max_header_size).
1011 	 */
1012 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1013 	    adapter->max_tx_sgl_size + 2))) {
1014 		ena_trace(ENA_DBG | ENA_TXPTH, "Stop queue %d\n",
1015 		    tx_ring->que->id);
1016 
1017 		tx_ring->running = false;
1018 		counter_u64_add(tx_ring->tx_stats.queue_stop, 1);
1019 
1020 		/* There is a rare condition where this function decides to
1021 		 * stop the queue but meanwhile tx_cleanup() updates
1022 		 * next_to_completion and terminates.
1023 		 * The queue will remain stopped forever.
1024 		 * To solve this issue this function performs mb(), checks
1025 		 * the wakeup condition and wakes up the queue if needed.
1026 		 */
1027 		mb();
1028 
1029 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1030 		    ENA_TX_RESUME_THRESH)) {
1031 			tx_ring->running = true;
1032 			counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
1033 		}
1034 	}
1035 
1036 	bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
1037 	    BUS_DMASYNC_PREWRITE);
1038 
1039 	return (0);
1040 
1041 dma_error:
1042 	tx_info->mbuf = NULL;
1043 	bus_dmamap_unload(adapter->tx_buf_tag, tx_info->dmamap);
1044 
1045 	return (rc);
1046 }
1047 
1048 static void
1049 ena_start_xmit(struct ena_ring *tx_ring)
1050 {
1051 	struct mbuf *mbuf;
1052 	struct ena_adapter *adapter = tx_ring->adapter;
1053 	struct ena_com_io_sq* io_sq;
1054 	int ena_qid;
1055 	int ret = 0;
1056 
1057 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
1058 		return;
1059 
1060 	if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
1061 		return;
1062 
1063 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1064 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1065 
1066 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
1067 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
1068 		    " header csum flags %#jx\n",
1069 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
1070 
1071 		if (unlikely(!tx_ring->running)) {
1072 			drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1073 			break;
1074 		}
1075 
1076 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
1077 			if (ret == ENA_COM_NO_MEM) {
1078 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1079 			} else if (ret == ENA_COM_NO_SPACE) {
1080 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
1081 			} else {
1082 				m_freem(mbuf);
1083 				drbr_advance(adapter->ifp, tx_ring->br);
1084 			}
1085 
1086 			break;
1087 		}
1088 
1089 		drbr_advance(adapter->ifp, tx_ring->br);
1090 
1091 		if (unlikely((if_getdrvflags(adapter->ifp) &
1092 		    IFF_DRV_RUNNING) == 0))
1093 			return;
1094 
1095 		tx_ring->acum_pkts++;
1096 
1097 		BPF_MTAP(adapter->ifp, mbuf);
1098 	}
1099 
1100 	if (likely(tx_ring->acum_pkts != 0)) {
1101 		/* Trigger the dma engine */
1102 		ena_com_write_sq_doorbell(io_sq);
1103 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
1104 		tx_ring->acum_pkts = 0;
1105 	}
1106 
1107 	if (unlikely(!tx_ring->running))
1108 		taskqueue_enqueue(tx_ring->que->cleanup_tq,
1109 		    &tx_ring->que->cleanup_task);
1110 }
1111