xref: /freebsd/sys/dev/glxsb/glxsb.c (revision 1d386b48)
1 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
2 
3 /*
4  * Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org>
5  * Copyright (c) 2003, 2004 Theo de Raadt
6  * Copyright (c) 2003 Jason Wright
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for the security block on the AMD Geode LX processors
23  * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
24  */
25 
26 #include <sys/cdefs.h>
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/bus.h>
30 #include <sys/errno.h>
31 #include <sys/kernel.h>
32 #include <sys/lock.h>
33 #include <sys/malloc.h>
34 #include <sys/mbuf.h>
35 #include <sys/module.h>
36 #include <sys/mutex.h>
37 #include <sys/proc.h>
38 #include <sys/random.h>
39 #include <sys/rman.h>
40 #include <sys/rwlock.h>
41 #include <sys/sysctl.h>
42 #include <sys/taskqueue.h>
43 
44 #include <machine/bus.h>
45 #include <machine/cpufunc.h>
46 #include <machine/resource.h>
47 
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcireg.h>
50 
51 #include <opencrypto/cryptodev.h>
52 #include <opencrypto/xform.h>
53 
54 #include "cryptodev_if.h"
55 #include "glxsb.h"
56 
57 #define PCI_VENDOR_AMD			0x1022	/* AMD */
58 #define PCI_PRODUCT_AMD_GEODE_LX_CRYPTO	0x2082	/* Geode LX Crypto */
59 
60 #define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
61 #define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
62 #define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
63 #define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
64 #define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
65 #define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
66 #define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
67 
68 						/* For GLD_MSR_CTRL: */
69 #define SB_GMC_DIV0		0x0000		/* AES update divisor values */
70 #define SB_GMC_DIV1		0x0001
71 #define SB_GMC_DIV2		0x0002
72 #define SB_GMC_DIV3		0x0003
73 #define SB_GMC_DIV_MASK		0x0003
74 #define SB_GMC_SBI		0x0004		/* AES swap bits */
75 #define SB_GMC_SBY		0x0008		/* AES swap bytes */
76 #define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
77 #define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
78 #define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
79 #define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
80 #define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
81 #define SB_GMC_T_SEL_MASK	0x0300
82 #define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
83 #define SB_GMC_T_TM		0x0800		/* RNG test mode */
84 						/*     (deterministic) */
85 
86 /* Security Block configuration/control registers (offsets from base) */
87 #define SB_CTL_A		0x0000		/* RW - SB Control A */
88 #define SB_CTL_B		0x0004		/* RW - SB Control B */
89 #define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
90 #define SB_SOURCE_A		0x0010		/* RW - Source A */
91 #define SB_DEST_A		0x0014		/* RW - Destination A */
92 #define SB_LENGTH_A		0x0018		/* RW - Length A */
93 #define SB_SOURCE_B		0x0020		/* RW - Source B */
94 #define SB_DEST_B		0x0024		/* RW - Destination B */
95 #define SB_LENGTH_B		0x0028		/* RW - Length B */
96 #define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
97 #define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
98 #define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
99 #define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
100 #define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
101 #define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
102 #define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
103 #define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
104 #define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
105 #define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
106 #define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
107 #define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
108 #define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
109 #define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
110 #define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
111 #define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
112 
113 						/* For SB_CTL_A and _B */
114 #define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
115 #define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
116 #define SB_CTL_DEC		0x0000		/* Decrypt */
117 #define SB_CTL_WK		0x0004		/* Use writable key (we set) */
118 #define SB_CTL_DC		0x0008		/* Destination coherent */
119 #define SB_CTL_SC		0x0010		/* Source coherent */
120 #define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
121 
122 						/* For SB_AES_INT */
123 #define SB_AI_DISABLE_AES_A	0x0001		/* Disable AES A compl int */
124 #define SB_AI_ENABLE_AES_A	0x0000		/* Enable AES A compl int */
125 #define SB_AI_DISABLE_AES_B	0x0002		/* Disable AES B compl int */
126 #define SB_AI_ENABLE_AES_B	0x0000		/* Enable AES B compl int */
127 #define SB_AI_DISABLE_EEPROM	0x0004		/* Disable EEPROM op comp int */
128 #define SB_AI_ENABLE_EEPROM	0x0000		/* Enable EEPROM op compl int */
129 #define SB_AI_AES_A_COMPLETE   0x10000		/* AES A operation complete */
130 #define SB_AI_AES_B_COMPLETE   0x20000		/* AES B operation complete */
131 #define SB_AI_EEPROM_COMPLETE  0x40000		/* EEPROM operation complete */
132 
133 #define SB_AI_CLEAR_INTR \
134 	(SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |\
135 	SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |\
136 	SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE)
137 
138 #define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
139 
140 #define SB_MEM_SIZE		0x0810		/* Size of memory block */
141 
142 #define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
143 						/* must be 16-byte aligned */
144 #define SB_AES_BLOCK_SIZE	0x0010
145 
146 /*
147  * The Geode LX security block AES acceleration doesn't perform scatter-
148  * gather: it just takes source and destination addresses.  Therefore the
149  * plain- and ciphertexts need to be contiguous.  To this end, we allocate
150  * a buffer for both, and accept the overhead of copying in and out.  If
151  * the number of bytes in one operation is bigger than allowed for by the
152  * buffer (buffer is twice the size of the max length, as it has both input
153  * and output) then we have to perform multiple encryptions/decryptions.
154  */
155 
156 #define GLXSB_MAX_AES_LEN	16384
157 
158 MALLOC_DEFINE(M_GLXSB, "glxsb_data", "Glxsb Data");
159 
160 struct glxsb_dma_map {
161 	bus_dmamap_t		dma_map;	/* DMA map */
162 	bus_dma_segment_t	dma_seg;	/* segments */
163 	int			dma_nsegs;	/* #segments */
164 	int			dma_size;	/* size */
165 	caddr_t			dma_vaddr;	/* virtual address */
166 	bus_addr_t		dma_paddr;	/* physical address */
167 };
168 
169 struct glxsb_taskop {
170 	struct glxsb_session	*to_ses;	/* crypto session */
171 	struct cryptop		*to_crp;	/* cryptop to perfom */
172 };
173 
174 struct glxsb_softc {
175 	device_t		sc_dev;		/* device backpointer */
176 	struct resource		*sc_sr;		/* resource */
177 	int			sc_rid;		/* resource rid */
178 	struct callout		sc_rngco;	/* RNG callout */
179 	int			sc_rnghz;	/* RNG callout ticks */
180 	bus_dma_tag_t		sc_dmat;	/* DMA tag */
181 	struct glxsb_dma_map	sc_dma;		/* DMA map */
182 	int32_t			sc_cid;		/* crypto tag */
183 	struct mtx		sc_task_mtx;	/* task mutex */
184 	struct taskqueue	*sc_tq;		/* task queue */
185 	struct task		sc_cryptotask;	/* task */
186 	struct glxsb_taskop	sc_to;		/* task's crypto operation */
187 	int			sc_task_count;	/* tasks count */
188 };
189 
190 static int glxsb_probe(device_t);
191 static int glxsb_attach(device_t);
192 static int glxsb_detach(device_t);
193 
194 static void glxsb_dmamap_cb(void *, bus_dma_segment_t *, int, int);
195 static int  glxsb_dma_alloc(struct glxsb_softc *);
196 static void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
197 static void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
198 static void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
199 
200 static void glxsb_rnd(void *);
201 static int  glxsb_crypto_setup(struct glxsb_softc *);
202 static int  glxsb_crypto_probesession(device_t,
203 	const struct crypto_session_params *);
204 static int  glxsb_crypto_newsession(device_t, crypto_session_t,
205 	const struct crypto_session_params *);
206 static void glxsb_crypto_freesession(device_t, crypto_session_t);
207 static int  glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
208 	uint32_t, const void *, int, const void *);
209 
210 static int  glxsb_crypto_encdec(struct cryptop *, struct glxsb_session *,
211 	struct glxsb_softc *);
212 
213 static void glxsb_crypto_task(void *, int);
214 static int  glxsb_crypto_process(device_t, struct cryptop *, int);
215 
216 static device_method_t glxsb_methods[] = {
217 	/* device interface */
218 	DEVMETHOD(device_probe,		glxsb_probe),
219 	DEVMETHOD(device_attach,	glxsb_attach),
220 	DEVMETHOD(device_detach,	glxsb_detach),
221 
222 	/* crypto device methods */
223 	DEVMETHOD(cryptodev_probesession,	glxsb_crypto_probesession),
224 	DEVMETHOD(cryptodev_newsession,		glxsb_crypto_newsession),
225 	DEVMETHOD(cryptodev_freesession,	glxsb_crypto_freesession),
226 	DEVMETHOD(cryptodev_process,		glxsb_crypto_process),
227 
228 	{0,0}
229 };
230 
231 static driver_t glxsb_driver = {
232 	"glxsb",
233 	glxsb_methods,
234 	sizeof(struct glxsb_softc)
235 };
236 
237 DRIVER_MODULE(glxsb, pci, glxsb_driver, 0, 0);
238 MODULE_VERSION(glxsb, 1);
239 MODULE_DEPEND(glxsb, crypto, 1, 1, 1);
240 
241 static int
242 glxsb_probe(device_t dev)
243 {
244 
245 	if (pci_get_vendor(dev) == PCI_VENDOR_AMD &&
246 	    pci_get_device(dev) == PCI_PRODUCT_AMD_GEODE_LX_CRYPTO) {
247 		device_set_desc(dev,
248 		    "AMD Geode LX Security Block (AES-128-CBC, RNG)");
249 		return (BUS_PROBE_DEFAULT);
250 	}
251 
252 	return (ENXIO);
253 }
254 
255 static int
256 glxsb_attach(device_t dev)
257 {
258 	struct glxsb_softc *sc = device_get_softc(dev);
259 	uint64_t msr;
260 
261 	sc->sc_dev = dev;
262 	msr = rdmsr(SB_GLD_MSR_CAP);
263 
264 	if ((msr & 0xFFFF00) != 0x130400) {
265 		device_printf(dev, "unknown ID 0x%x\n",
266 		    (int)((msr & 0xFFFF00) >> 16));
267 		return (ENXIO);
268 	}
269 
270 	pci_enable_busmaster(dev);
271 
272 	/* Map in the security block configuration/control registers */
273 	sc->sc_rid = PCIR_BAR(0);
274 	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rid,
275 	    RF_ACTIVE);
276 	if (sc->sc_sr == NULL) {
277 		device_printf(dev, "cannot map register space\n");
278 		return (ENXIO);
279 	}
280 
281 	/*
282 	 * Configure the Security Block.
283 	 *
284 	 * We want to enable the noise generator (T_NE), and enable the
285 	 * linear feedback shift register and whitener post-processing
286 	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
287 	 * is disabled.
288 	 */
289 	msr = rdmsr(SB_GLD_MSR_CTRL);
290 	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
291 	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
292 #if 0
293 	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
294 #endif
295 	wrmsr(SB_GLD_MSR_CTRL, msr);
296 
297 	/* Disable interrupts */
298 	bus_write_4(sc->sc_sr, SB_AES_INT, SB_AI_CLEAR_INTR);
299 
300 	/* Allocate a contiguous DMA-able buffer to work in */
301 	if (glxsb_dma_alloc(sc) != 0)
302 		goto fail0;
303 
304 	/* Initialize our task queue */
305 	sc->sc_tq = taskqueue_create("glxsb_taskq", M_NOWAIT | M_ZERO,
306 	    taskqueue_thread_enqueue, &sc->sc_tq);
307 	if (sc->sc_tq == NULL) {
308 		device_printf(dev, "cannot create task queue\n");
309 		goto fail0;
310 	}
311 	if (taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
312 	    device_get_nameunit(dev)) != 0) {
313 		device_printf(dev, "cannot start task queue\n");
314 		goto fail1;
315 	}
316 	TASK_INIT(&sc->sc_cryptotask, 0, glxsb_crypto_task, sc);
317 
318 	/* Initialize crypto */
319 	if (glxsb_crypto_setup(sc) != 0)
320 		goto fail1;
321 
322 	/* Install a periodic collector for the "true" (AMD's word) RNG */
323 	if (hz > 100)
324 		sc->sc_rnghz = hz / 100;
325 	else
326 		sc->sc_rnghz = 1;
327 	callout_init(&sc->sc_rngco, 1);
328 	glxsb_rnd(sc);
329 
330 	return (0);
331 
332 fail1:
333 	taskqueue_free(sc->sc_tq);
334 fail0:
335 	bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr);
336 	return (ENXIO);
337 }
338 
339 static int
340 glxsb_detach(device_t dev)
341 {
342 	struct glxsb_softc *sc = device_get_softc(dev);
343 
344 	crypto_unregister_all(sc->sc_cid);
345 
346 	callout_drain(&sc->sc_rngco);
347 	taskqueue_drain(sc->sc_tq, &sc->sc_cryptotask);
348 	bus_generic_detach(dev);
349 	glxsb_dma_free(sc, &sc->sc_dma);
350 	bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr);
351 	taskqueue_free(sc->sc_tq);
352 	mtx_destroy(&sc->sc_task_mtx);
353 	return (0);
354 }
355 
356 /*
357  *	callback for bus_dmamap_load()
358  */
359 static void
360 glxsb_dmamap_cb(void *arg, bus_dma_segment_t *seg, int nseg, int error)
361 {
362 
363 	bus_addr_t *paddr = (bus_addr_t*) arg;
364 	*paddr = seg[0].ds_addr;
365 }
366 
367 static int
368 glxsb_dma_alloc(struct glxsb_softc *sc)
369 {
370 	struct glxsb_dma_map *dma = &sc->sc_dma;
371 	int rc;
372 
373 	dma->dma_nsegs = 1;
374 	dma->dma_size = GLXSB_MAX_AES_LEN * 2;
375 
376 	/* Setup DMA descriptor area */
377 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
378 				SB_AES_ALIGN, 0,	/* alignments, bounds */
379 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
380 				BUS_SPACE_MAXADDR,	/* highaddr */
381 				NULL, NULL,		/* filter, filterarg */
382 				dma->dma_size,		/* maxsize */
383 				dma->dma_nsegs,		/* nsegments */
384 				dma->dma_size,		/* maxsegsize */
385 				BUS_DMA_ALLOCNOW,	/* flags */
386 				NULL, NULL,		/* lockfunc, lockarg */
387 				&sc->sc_dmat);
388 	if (rc != 0) {
389 		device_printf(sc->sc_dev,
390 		    "cannot allocate DMA tag (%d)\n", rc);
391 		return (rc);
392 	}
393 
394 	rc = bus_dmamem_alloc(sc->sc_dmat, (void **)&dma->dma_vaddr,
395 	    BUS_DMA_NOWAIT, &dma->dma_map);
396 	if (rc != 0) {
397 		device_printf(sc->sc_dev,
398 		    "cannot allocate DMA memory of %d bytes (%d)\n",
399 			dma->dma_size, rc);
400 		goto fail0;
401 	}
402 
403 	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
404 	    dma->dma_size, glxsb_dmamap_cb, &dma->dma_paddr, BUS_DMA_NOWAIT);
405 	if (rc != 0) {
406 		device_printf(sc->sc_dev,
407 		    "cannot load DMA memory for %d bytes (%d)\n",
408 		   dma->dma_size, rc);
409 		goto fail1;
410 	}
411 
412 	return (0);
413 
414 fail1:
415 	bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map);
416 fail0:
417 	bus_dma_tag_destroy(sc->sc_dmat);
418 	return (rc);
419 }
420 
421 static void
422 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
423 {
424 
425 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
426 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
427 }
428 
429 static void
430 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
431 {
432 
433 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
434 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
435 }
436 
437 static void
438 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
439 {
440 
441 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
442 	bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map);
443 	bus_dma_tag_destroy(sc->sc_dmat);
444 }
445 
446 static void
447 glxsb_rnd(void *v)
448 {
449 	struct glxsb_softc *sc = v;
450 	uint32_t status, value;
451 
452 	status = bus_read_4(sc->sc_sr, SB_RANDOM_NUM_STATUS);
453 	if (status & SB_RNS_TRNG_VALID) {
454 		value = bus_read_4(sc->sc_sr, SB_RANDOM_NUM);
455 		/* feed with one uint32 */
456 		/* MarkM: FIX!! Check that this does not swamp the harvester! */
457 		random_harvest_queue(&value, sizeof(value), RANDOM_PURE_GLXSB);
458 	}
459 
460 	callout_reset(&sc->sc_rngco, sc->sc_rnghz, glxsb_rnd, sc);
461 }
462 
463 static int
464 glxsb_crypto_setup(struct glxsb_softc *sc)
465 {
466 
467 	sc->sc_cid = crypto_get_driverid(sc->sc_dev,
468 	    sizeof(struct glxsb_session), CRYPTOCAP_F_HARDWARE);
469 
470 	if (sc->sc_cid < 0) {
471 		device_printf(sc->sc_dev, "cannot get crypto driver id\n");
472 		return (ENOMEM);
473 	}
474 
475 	mtx_init(&sc->sc_task_mtx, "glxsb_crypto_mtx", NULL, MTX_DEF);
476 
477 	return (0);
478 }
479 
480 static int
481 glxsb_crypto_probesession(device_t dev, const struct crypto_session_params *csp)
482 {
483 
484 	if (csp->csp_flags != 0)
485 		return (EINVAL);
486 
487 	/*
488 	 * We only support HMAC algorithms to be able to work with
489 	 * ipsec(4), so if we are asked only for authentication without
490 	 * encryption, don't pretend we can accelerate it.
491 	 */
492 	switch (csp->csp_mode) {
493 	case CSP_MODE_ETA:
494 		switch (csp->csp_auth_alg) {
495 		case CRYPTO_NULL_HMAC:
496 		case CRYPTO_SHA1_HMAC:
497 		case CRYPTO_RIPEMD160_HMAC:
498 		case CRYPTO_SHA2_256_HMAC:
499 		case CRYPTO_SHA2_384_HMAC:
500 		case CRYPTO_SHA2_512_HMAC:
501 			break;
502 		default:
503 			return (EINVAL);
504 		}
505 		/* FALLTHROUGH */
506 	case CSP_MODE_CIPHER:
507 		switch (csp->csp_cipher_alg) {
508 		case CRYPTO_AES_CBC:
509 			if (csp->csp_cipher_klen * 8 != 128)
510 				return (EINVAL);
511 			break;
512 		default:
513 			return (EINVAL);
514 		}
515 	default:
516 		return (EINVAL);
517 	}
518 	return (CRYPTODEV_PROBE_HARDWARE);
519 }
520 
521 static int
522 glxsb_crypto_newsession(device_t dev, crypto_session_t cses,
523     const struct crypto_session_params *csp)
524 {
525 	struct glxsb_softc *sc = device_get_softc(dev);
526 	struct glxsb_session *ses;
527 	int error;
528 
529 	ses = crypto_get_driver_session(cses);
530 
531 	/* Copy the key (Geode LX wants the primary key only) */
532 	if (csp->csp_cipher_key != NULL)
533 		bcopy(csp->csp_cipher_key, ses->ses_key, sizeof(ses->ses_key));
534 
535 	if (csp->csp_auth_alg != 0) {
536 		error = glxsb_hash_setup(ses, csp);
537 		if (error != 0) {
538 			glxsb_crypto_freesession(sc->sc_dev, cses);
539 			return (error);
540 		}
541 	}
542 
543 	return (0);
544 }
545 
546 static void
547 glxsb_crypto_freesession(device_t dev, crypto_session_t cses)
548 {
549 	struct glxsb_session *ses;
550 
551 	ses = crypto_get_driver_session(cses);
552 	glxsb_hash_free(ses);
553 }
554 
555 static int
556 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
557     uint32_t pdst, const void *key, int len, const void *iv)
558 {
559 	uint32_t status;
560 	int i;
561 
562 	if (len & 0xF) {
563 		device_printf(sc->sc_dev,
564 		    "len must be a multiple of 16 (not %d)\n", len);
565 		return (EINVAL);
566 	}
567 
568 	/* Set the source */
569 	bus_write_4(sc->sc_sr, SB_SOURCE_A, psrc);
570 
571 	/* Set the destination address */
572 	bus_write_4(sc->sc_sr, SB_DEST_A, pdst);
573 
574 	/* Set the data length */
575 	bus_write_4(sc->sc_sr, SB_LENGTH_A, len);
576 
577 	/* Set the IV */
578 	if (iv != NULL) {
579 		bus_write_region_4(sc->sc_sr, SB_CBC_IV, iv, 4);
580 		control |= SB_CTL_CBC;
581 	}
582 
583 	/* Set the key */
584 	bus_write_region_4(sc->sc_sr, SB_WKEY, key, 4);
585 
586 	/* Ask the security block to do it */
587 	bus_write_4(sc->sc_sr, SB_CTL_A,
588 	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
589 
590 	/*
591 	 * Now wait until it is done.
592 	 *
593 	 * We do a busy wait.  Obviously the number of iterations of
594 	 * the loop required to perform the AES operation depends upon
595 	 * the number of bytes to process.
596 	 *
597 	 * On a 500 MHz Geode LX we see
598 	 *
599 	 *	length (bytes)	typical max iterations
600 	 *	    16		   12
601 	 *	    64		   22
602 	 *	   256		   59
603 	 *	  1024		  212
604 	 *	  8192		1,537
605 	 *
606 	 * Since we have a maximum size of operation defined in
607 	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
608 	 * to wait.  Allow an order of magnitude longer than it should
609 	 * really take, just in case.
610 	 */
611 
612 	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
613 		status = bus_read_4(sc->sc_sr, SB_CTL_A);
614 		if ((status & SB_CTL_ST) == 0)		/* Done */
615 			return (0);
616 	}
617 
618 	device_printf(sc->sc_dev, "operation failed to complete\n");
619 	return (EIO);
620 }
621 
622 static int
623 glxsb_crypto_encdec(struct cryptop *crp, struct glxsb_session *ses,
624     struct glxsb_softc *sc)
625 {
626 	char *op_src, *op_dst;
627 	const void *key;
628 	uint32_t op_psrc, op_pdst;
629 	uint8_t op_iv[SB_AES_BLOCK_SIZE];
630 	int error;
631 	int len, tlen, xlen;
632 	int offset;
633 	uint32_t control;
634 
635 	if ((crp->crp_payload_length % SB_AES_BLOCK_SIZE) != 0)
636 		return (EINVAL);
637 
638 	/* How much of our buffer will we need to use? */
639 	xlen = crp->crp_payload_length > GLXSB_MAX_AES_LEN ?
640 	    GLXSB_MAX_AES_LEN : crp->crp_payload_length;
641 
642 	/*
643 	 * XXX Check if we can have input == output on Geode LX.
644 	 * XXX In the meantime, use two separate (adjacent) buffers.
645 	 */
646 	op_src = sc->sc_dma.dma_vaddr;
647 	op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
648 
649 	op_psrc = sc->sc_dma.dma_paddr;
650 	op_pdst = sc->sc_dma.dma_paddr + xlen;
651 
652 	if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op))
653 		control = SB_CTL_ENC;
654 	else
655 		control = SB_CTL_DEC;
656 
657 	crypto_read_iv(crp, op_iv);
658 
659 	offset = 0;
660 	tlen = crp->crp_payload_length;
661 
662 	if (crp->crp_cipher_key != NULL)
663 		key = crp->crp_cipher_key;
664 	else
665 		key = ses->ses_key;
666 
667 	/* Process the data in GLXSB_MAX_AES_LEN chunks */
668 	while (tlen > 0) {
669 		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
670 		crypto_copydata(crp, crp->crp_payload_start + offset, len,
671 		    op_src);
672 
673 		glxsb_dma_pre_op(sc, &sc->sc_dma);
674 
675 		error = glxsb_aes(sc, control, op_psrc, op_pdst, key, len,
676 		    op_iv);
677 
678 		glxsb_dma_post_op(sc, &sc->sc_dma);
679 		if (error != 0)
680 			return (error);
681 
682 		crypto_copyback(crp, crp->crp_payload_start + offset, len,
683 		    op_dst);
684 
685 		offset += len;
686 		tlen -= len;
687 
688 		/*
689 		 * Copy out last block for use as next iteration IV.
690 		 */
691 		if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op))
692 			bcopy(op_dst + len - sizeof(op_iv), op_iv,
693 			    sizeof(op_iv));
694 		else
695 			bcopy(op_src + len - sizeof(op_iv), op_iv,
696 			    sizeof(op_iv));
697 	} /* while */
698 
699 	/* All AES processing has now been done. */
700 	bzero(sc->sc_dma.dma_vaddr, xlen * 2);
701 
702 	return (0);
703 }
704 
705 static void
706 glxsb_crypto_task(void *arg, int pending)
707 {
708 	struct glxsb_softc *sc = arg;
709 	const struct crypto_session_params *csp;
710 	struct glxsb_session *ses;
711 	struct cryptop *crp;
712 	int error;
713 
714 	crp = sc->sc_to.to_crp;
715 	ses = sc->sc_to.to_ses;
716 	csp = crypto_get_params(crp->crp_session);
717 
718 	/* Perform data authentication if requested before encryption */
719 	if (csp->csp_mode == CSP_MODE_ETA &&
720 	    !CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
721 		error = glxsb_hash_process(ses, csp, crp);
722 		if (error != 0)
723 			goto out;
724 	}
725 
726 	error = glxsb_crypto_encdec(crp, ses, sc);
727 	if (error != 0)
728 		goto out;
729 
730 	/* Perform data authentication if requested after encryption */
731 	if (csp->csp_mode == CSP_MODE_ETA &&
732 	    CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
733 		error = glxsb_hash_process(ses, csp, crp);
734 		if (error != 0)
735 			goto out;
736 	}
737 out:
738 	mtx_lock(&sc->sc_task_mtx);
739 	sc->sc_task_count--;
740 	mtx_unlock(&sc->sc_task_mtx);
741 
742 	crp->crp_etype = error;
743 	crypto_unblock(sc->sc_cid, CRYPTO_SYMQ);
744 	crypto_done(crp);
745 }
746 
747 static int
748 glxsb_crypto_process(device_t dev, struct cryptop *crp, int hint)
749 {
750 	struct glxsb_softc *sc = device_get_softc(dev);
751 	struct glxsb_session *ses;
752 
753 	ses = crypto_get_driver_session(crp->crp_session);
754 
755 	mtx_lock(&sc->sc_task_mtx);
756 	if (sc->sc_task_count != 0) {
757 		mtx_unlock(&sc->sc_task_mtx);
758 		return (ERESTART);
759 	}
760 	sc->sc_task_count++;
761 
762 	sc->sc_to.to_crp = crp;
763 	sc->sc_to.to_ses = ses;
764 	mtx_unlock(&sc->sc_task_mtx);
765 
766 	taskqueue_enqueue(sc->sc_tq, &sc->sc_cryptotask);
767 	return(0);
768 }
769