xref: /freebsd/sys/dev/ice/ice_common.c (revision 61e21613)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2023, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "ice_common.h"
33 #include "ice_sched.h"
34 #include "ice_adminq_cmd.h"
35 
36 #include "ice_flow.h"
37 #include "ice_switch.h"
38 
39 #define ICE_PF_RESET_WAIT_COUNT	500
40 
41 static const char * const ice_link_mode_str_low[] = {
42 	ice_arr_elem_idx(0, "100BASE_TX"),
43 	ice_arr_elem_idx(1, "100M_SGMII"),
44 	ice_arr_elem_idx(2, "1000BASE_T"),
45 	ice_arr_elem_idx(3, "1000BASE_SX"),
46 	ice_arr_elem_idx(4, "1000BASE_LX"),
47 	ice_arr_elem_idx(5, "1000BASE_KX"),
48 	ice_arr_elem_idx(6, "1G_SGMII"),
49 	ice_arr_elem_idx(7, "2500BASE_T"),
50 	ice_arr_elem_idx(8, "2500BASE_X"),
51 	ice_arr_elem_idx(9, "2500BASE_KX"),
52 	ice_arr_elem_idx(10, "5GBASE_T"),
53 	ice_arr_elem_idx(11, "5GBASE_KR"),
54 	ice_arr_elem_idx(12, "10GBASE_T"),
55 	ice_arr_elem_idx(13, "10G_SFI_DA"),
56 	ice_arr_elem_idx(14, "10GBASE_SR"),
57 	ice_arr_elem_idx(15, "10GBASE_LR"),
58 	ice_arr_elem_idx(16, "10GBASE_KR_CR1"),
59 	ice_arr_elem_idx(17, "10G_SFI_AOC_ACC"),
60 	ice_arr_elem_idx(18, "10G_SFI_C2C"),
61 	ice_arr_elem_idx(19, "25GBASE_T"),
62 	ice_arr_elem_idx(20, "25GBASE_CR"),
63 	ice_arr_elem_idx(21, "25GBASE_CR_S"),
64 	ice_arr_elem_idx(22, "25GBASE_CR1"),
65 	ice_arr_elem_idx(23, "25GBASE_SR"),
66 	ice_arr_elem_idx(24, "25GBASE_LR"),
67 	ice_arr_elem_idx(25, "25GBASE_KR"),
68 	ice_arr_elem_idx(26, "25GBASE_KR_S"),
69 	ice_arr_elem_idx(27, "25GBASE_KR1"),
70 	ice_arr_elem_idx(28, "25G_AUI_AOC_ACC"),
71 	ice_arr_elem_idx(29, "25G_AUI_C2C"),
72 	ice_arr_elem_idx(30, "40GBASE_CR4"),
73 	ice_arr_elem_idx(31, "40GBASE_SR4"),
74 	ice_arr_elem_idx(32, "40GBASE_LR4"),
75 	ice_arr_elem_idx(33, "40GBASE_KR4"),
76 	ice_arr_elem_idx(34, "40G_XLAUI_AOC_ACC"),
77 	ice_arr_elem_idx(35, "40G_XLAUI"),
78 	ice_arr_elem_idx(36, "50GBASE_CR2"),
79 	ice_arr_elem_idx(37, "50GBASE_SR2"),
80 	ice_arr_elem_idx(38, "50GBASE_LR2"),
81 	ice_arr_elem_idx(39, "50GBASE_KR2"),
82 	ice_arr_elem_idx(40, "50G_LAUI2_AOC_ACC"),
83 	ice_arr_elem_idx(41, "50G_LAUI2"),
84 	ice_arr_elem_idx(42, "50G_AUI2_AOC_ACC"),
85 	ice_arr_elem_idx(43, "50G_AUI2"),
86 	ice_arr_elem_idx(44, "50GBASE_CP"),
87 	ice_arr_elem_idx(45, "50GBASE_SR"),
88 	ice_arr_elem_idx(46, "50GBASE_FR"),
89 	ice_arr_elem_idx(47, "50GBASE_LR"),
90 	ice_arr_elem_idx(48, "50GBASE_KR_PAM4"),
91 	ice_arr_elem_idx(49, "50G_AUI1_AOC_ACC"),
92 	ice_arr_elem_idx(50, "50G_AUI1"),
93 	ice_arr_elem_idx(51, "100GBASE_CR4"),
94 	ice_arr_elem_idx(52, "100GBASE_SR4"),
95 	ice_arr_elem_idx(53, "100GBASE_LR4"),
96 	ice_arr_elem_idx(54, "100GBASE_KR4"),
97 	ice_arr_elem_idx(55, "100G_CAUI4_AOC_ACC"),
98 	ice_arr_elem_idx(56, "100G_CAUI4"),
99 	ice_arr_elem_idx(57, "100G_AUI4_AOC_ACC"),
100 	ice_arr_elem_idx(58, "100G_AUI4"),
101 	ice_arr_elem_idx(59, "100GBASE_CR_PAM4"),
102 	ice_arr_elem_idx(60, "100GBASE_KR_PAM4"),
103 	ice_arr_elem_idx(61, "100GBASE_CP2"),
104 	ice_arr_elem_idx(62, "100GBASE_SR2"),
105 	ice_arr_elem_idx(63, "100GBASE_DR"),
106 };
107 
108 static const char * const ice_link_mode_str_high[] = {
109 	ice_arr_elem_idx(0, "100GBASE_KR2_PAM4"),
110 	ice_arr_elem_idx(1, "100G_CAUI2_AOC_ACC"),
111 	ice_arr_elem_idx(2, "100G_CAUI2"),
112 	ice_arr_elem_idx(3, "100G_AUI2_AOC_ACC"),
113 	ice_arr_elem_idx(4, "100G_AUI2"),
114 };
115 
116 /**
117  * ice_dump_phy_type - helper function to dump phy_type
118  * @hw: pointer to the HW structure
119  * @low: 64 bit value for phy_type_low
120  * @high: 64 bit value for phy_type_high
121  * @prefix: prefix string to differentiate multiple dumps
122  */
123 static void
124 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
125 {
126 	u32 i;
127 
128 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix,
129 		  (unsigned long long)low);
130 
131 	for (i = 0; i < ARRAY_SIZE(ice_link_mode_str_low); i++) {
132 		if (low & BIT_ULL(i))
133 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
134 				  prefix, i, ice_link_mode_str_low[i]);
135 	}
136 
137 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix,
138 		  (unsigned long long)high);
139 
140 	for (i = 0; i < ARRAY_SIZE(ice_link_mode_str_high); i++) {
141 		if (high & BIT_ULL(i))
142 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
143 				  prefix, i, ice_link_mode_str_high[i]);
144 	}
145 }
146 
147 /**
148  * ice_set_mac_type - Sets MAC type
149  * @hw: pointer to the HW structure
150  *
151  * This function sets the MAC type of the adapter based on the
152  * vendor ID and device ID stored in the HW structure.
153  */
154 enum ice_status ice_set_mac_type(struct ice_hw *hw)
155 {
156 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
157 
158 	if (hw->vendor_id != ICE_INTEL_VENDOR_ID)
159 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
160 
161 	switch (hw->device_id) {
162 	case ICE_DEV_ID_E810C_BACKPLANE:
163 	case ICE_DEV_ID_E810C_QSFP:
164 	case ICE_DEV_ID_E810C_SFP:
165 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
166 	case ICE_DEV_ID_E810_XXV_QSFP:
167 	case ICE_DEV_ID_E810_XXV_SFP:
168 		hw->mac_type = ICE_MAC_E810;
169 		break;
170 	case ICE_DEV_ID_E822C_10G_BASE_T:
171 	case ICE_DEV_ID_E822C_BACKPLANE:
172 	case ICE_DEV_ID_E822C_QSFP:
173 	case ICE_DEV_ID_E822C_SFP:
174 	case ICE_DEV_ID_E822C_SGMII:
175 	case ICE_DEV_ID_E822L_10G_BASE_T:
176 	case ICE_DEV_ID_E822L_BACKPLANE:
177 	case ICE_DEV_ID_E822L_SFP:
178 	case ICE_DEV_ID_E822L_SGMII:
179 	case ICE_DEV_ID_E823L_10G_BASE_T:
180 	case ICE_DEV_ID_E823L_1GBE:
181 	case ICE_DEV_ID_E823L_BACKPLANE:
182 	case ICE_DEV_ID_E823L_QSFP:
183 	case ICE_DEV_ID_E823L_SFP:
184 	case ICE_DEV_ID_E823C_10G_BASE_T:
185 	case ICE_DEV_ID_E823C_BACKPLANE:
186 	case ICE_DEV_ID_E823C_QSFP:
187 	case ICE_DEV_ID_E823C_SFP:
188 	case ICE_DEV_ID_E823C_SGMII:
189 		hw->mac_type = ICE_MAC_GENERIC;
190 		break;
191 	default:
192 		hw->mac_type = ICE_MAC_UNKNOWN;
193 		break;
194 	}
195 
196 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
197 	return ICE_SUCCESS;
198 }
199 
200 /**
201  * ice_is_e810
202  * @hw: pointer to the hardware structure
203  *
204  * returns true if the device is E810 based, false if not.
205  */
206 bool ice_is_e810(struct ice_hw *hw)
207 {
208 	return hw->mac_type == ICE_MAC_E810;
209 }
210 
211 /**
212  * ice_is_e810t
213  * @hw: pointer to the hardware structure
214  *
215  * returns true if the device is E810T based, false if not.
216  */
217 bool ice_is_e810t(struct ice_hw *hw)
218 {
219 	switch (hw->device_id) {
220 	case ICE_DEV_ID_E810C_SFP:
221 		switch (hw->subsystem_device_id) {
222 		case ICE_SUBDEV_ID_E810T:
223 		case ICE_SUBDEV_ID_E810T2:
224 		case ICE_SUBDEV_ID_E810T3:
225 		case ICE_SUBDEV_ID_E810T4:
226 		case ICE_SUBDEV_ID_E810T5:
227 		case ICE_SUBDEV_ID_E810T7:
228 			return true;
229 		}
230 		break;
231 	case ICE_DEV_ID_E810C_QSFP:
232 		switch (hw->subsystem_device_id) {
233 		case ICE_SUBDEV_ID_E810T2:
234 		case ICE_SUBDEV_ID_E810T5:
235 		case ICE_SUBDEV_ID_E810T6:
236 			return true;
237 		}
238 		break;
239 	default:
240 		break;
241 	}
242 
243 	return false;
244 }
245 
246 /**
247  * ice_is_e823
248  * @hw: pointer to the hardware structure
249  *
250  * returns true if the device is E823-L or E823-C based, false if not.
251  */
252 bool ice_is_e823(struct ice_hw *hw)
253 {
254 	switch (hw->device_id) {
255 	case ICE_DEV_ID_E823L_BACKPLANE:
256 	case ICE_DEV_ID_E823L_SFP:
257 	case ICE_DEV_ID_E823L_10G_BASE_T:
258 	case ICE_DEV_ID_E823L_1GBE:
259 	case ICE_DEV_ID_E823L_QSFP:
260 	case ICE_DEV_ID_E823C_BACKPLANE:
261 	case ICE_DEV_ID_E823C_QSFP:
262 	case ICE_DEV_ID_E823C_SFP:
263 	case ICE_DEV_ID_E823C_10G_BASE_T:
264 	case ICE_DEV_ID_E823C_SGMII:
265 		return true;
266 	default:
267 		return false;
268 	}
269 }
270 
271 /**
272  * ice_clear_pf_cfg - Clear PF configuration
273  * @hw: pointer to the hardware structure
274  *
275  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
276  * configuration, flow director filters, etc.).
277  */
278 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
279 {
280 	struct ice_aq_desc desc;
281 
282 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
283 
284 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
285 }
286 
287 /**
288  * ice_aq_manage_mac_read - manage MAC address read command
289  * @hw: pointer to the HW struct
290  * @buf: a virtual buffer to hold the manage MAC read response
291  * @buf_size: Size of the virtual buffer
292  * @cd: pointer to command details structure or NULL
293  *
294  * This function is used to return per PF station MAC address (0x0107).
295  * NOTE: Upon successful completion of this command, MAC address information
296  * is returned in user specified buffer. Please interpret user specified
297  * buffer as "manage_mac_read" response.
298  * Response such as various MAC addresses are stored in HW struct (port.mac)
299  * ice_discover_dev_caps is expected to be called before this function is
300  * called.
301  */
302 enum ice_status
303 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
304 		       struct ice_sq_cd *cd)
305 {
306 	struct ice_aqc_manage_mac_read_resp *resp;
307 	struct ice_aqc_manage_mac_read *cmd;
308 	struct ice_aq_desc desc;
309 	enum ice_status status;
310 	u16 flags;
311 	u8 i;
312 
313 	cmd = &desc.params.mac_read;
314 
315 	if (buf_size < sizeof(*resp))
316 		return ICE_ERR_BUF_TOO_SHORT;
317 
318 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
319 
320 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
321 	if (status)
322 		return status;
323 
324 	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
325 	flags = LE16_TO_CPU(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
326 
327 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
328 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
329 		return ICE_ERR_CFG;
330 	}
331 
332 	/* A single port can report up to two (LAN and WoL) addresses */
333 	for (i = 0; i < cmd->num_addr; i++)
334 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
335 			ice_memcpy(hw->port_info->mac.lan_addr,
336 				   resp[i].mac_addr, ETH_ALEN,
337 				   ICE_NONDMA_TO_NONDMA);
338 			ice_memcpy(hw->port_info->mac.perm_addr,
339 				   resp[i].mac_addr,
340 				   ETH_ALEN, ICE_NONDMA_TO_NONDMA);
341 			break;
342 		}
343 	return ICE_SUCCESS;
344 }
345 
346 /**
347  * ice_phy_maps_to_media
348  * @phy_type_low: PHY type low bits
349  * @phy_type_high: PHY type high bits
350  * @media_mask_low: media type PHY type low bitmask
351  * @media_mask_high: media type PHY type high bitmask
352  *
353  * Return true if PHY type [low|high] bits are only of media type PHY types
354  * [low|high] bitmask.
355  */
356 static bool
357 ice_phy_maps_to_media(u64 phy_type_low, u64 phy_type_high,
358 		      u64 media_mask_low, u64 media_mask_high)
359 {
360 	/* check if a PHY type exist for media type */
361 	if (!(phy_type_low & media_mask_low ||
362 	      phy_type_high & media_mask_high))
363 		return false;
364 
365 	/* check that PHY types are only of media type */
366 	if (!(phy_type_low & ~media_mask_low) &&
367 	    !(phy_type_high & ~media_mask_high))
368 		return true;
369 
370 	return false;
371 }
372 
373 /**
374  * ice_set_media_type - Sets media type
375  * @pi: port information structure
376  *
377  * Set ice_port_info PHY media type based on PHY type. This should be called
378  * from Get PHY caps with media.
379  */
380 static void ice_set_media_type(struct ice_port_info *pi)
381 {
382 	enum ice_media_type *media_type;
383 	u64 phy_type_high, phy_type_low;
384 
385 	phy_type_high = pi->phy.phy_type_high;
386 	phy_type_low = pi->phy.phy_type_low;
387 	media_type = &pi->phy.media_type;
388 
389 	/* if no media, then media type is NONE */
390 	if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
391 		*media_type = ICE_MEDIA_NONE;
392 	/* else if PHY types are only BASE-T, then media type is BASET */
393 	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
394 				       ICE_MEDIA_BASET_PHY_TYPE_LOW_M, 0))
395 		*media_type = ICE_MEDIA_BASET;
396 	/* else if any PHY type is BACKPLANE, then media type is BACKPLANE */
397 	else if (phy_type_low & ICE_MEDIA_BP_PHY_TYPE_LOW_M ||
398 		 phy_type_high & ICE_MEDIA_BP_PHY_TYPE_HIGH_M)
399 		*media_type = ICE_MEDIA_BACKPLANE;
400 	/* else if PHY types are only optical, or optical and C2M, then media
401 	 * type is FIBER
402 	 */
403 	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
404 				       ICE_MEDIA_OPT_PHY_TYPE_LOW_M, 0) ||
405 		 (phy_type_low & ICE_MEDIA_OPT_PHY_TYPE_LOW_M &&
406 		  phy_type_low & ICE_MEDIA_C2M_PHY_TYPE_LOW_M))
407 		*media_type = ICE_MEDIA_FIBER;
408 	/* else if PHY types are only DA, or DA and C2C, then media type DA */
409 	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
410 				       ICE_MEDIA_DAC_PHY_TYPE_LOW_M, 0) ||
411 		 (phy_type_low & ICE_MEDIA_DAC_PHY_TYPE_LOW_M &&
412 		 (phy_type_low & ICE_MEDIA_C2C_PHY_TYPE_LOW_M ||
413 		  phy_type_high & ICE_MEDIA_C2C_PHY_TYPE_HIGH_M)))
414 		*media_type = ICE_MEDIA_DA;
415 	/* else if PHY types are only C2M or only C2C, then media is AUI */
416 	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
417 				       ICE_MEDIA_C2M_PHY_TYPE_LOW_M,
418 				       ICE_MEDIA_C2M_PHY_TYPE_HIGH_M) ||
419 		 ice_phy_maps_to_media(phy_type_low, phy_type_high,
420 				       ICE_MEDIA_C2C_PHY_TYPE_LOW_M,
421 				       ICE_MEDIA_C2C_PHY_TYPE_HIGH_M))
422 		*media_type = ICE_MEDIA_AUI;
423 
424 	else
425 		*media_type = ICE_MEDIA_UNKNOWN;
426 }
427 
428 /**
429  * ice_aq_get_phy_caps - returns PHY capabilities
430  * @pi: port information structure
431  * @qual_mods: report qualified modules
432  * @report_mode: report mode capabilities
433  * @pcaps: structure for PHY capabilities to be filled
434  * @cd: pointer to command details structure or NULL
435  *
436  * Returns the various PHY capabilities supported on the Port (0x0600)
437  */
438 enum ice_status
439 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
440 		    struct ice_aqc_get_phy_caps_data *pcaps,
441 		    struct ice_sq_cd *cd)
442 {
443 	struct ice_aqc_get_phy_caps *cmd;
444 	u16 pcaps_size = sizeof(*pcaps);
445 	struct ice_aq_desc desc;
446 	enum ice_status status;
447 	const char *prefix;
448 	struct ice_hw *hw;
449 
450 	cmd = &desc.params.get_phy;
451 
452 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
453 		return ICE_ERR_PARAM;
454 	hw = pi->hw;
455 
456 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
457 	    !ice_fw_supports_report_dflt_cfg(hw))
458 		return ICE_ERR_PARAM;
459 
460 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
461 
462 	if (qual_mods)
463 		cmd->param0 |= CPU_TO_LE16(ICE_AQC_GET_PHY_RQM);
464 
465 	cmd->param0 |= CPU_TO_LE16(report_mode);
466 
467 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
468 
469 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
470 
471 	switch (report_mode) {
472 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
473 		prefix = "phy_caps_media";
474 		break;
475 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
476 		prefix = "phy_caps_no_media";
477 		break;
478 	case ICE_AQC_REPORT_ACTIVE_CFG:
479 		prefix = "phy_caps_active";
480 		break;
481 	case ICE_AQC_REPORT_DFLT_CFG:
482 		prefix = "phy_caps_default";
483 		break;
484 	default:
485 		prefix = "phy_caps_invalid";
486 	}
487 
488 	ice_dump_phy_type(hw, LE64_TO_CPU(pcaps->phy_type_low),
489 			  LE64_TO_CPU(pcaps->phy_type_high), prefix);
490 
491 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
492 		  prefix, report_mode);
493 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
494 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
495 		  pcaps->low_power_ctrl_an);
496 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
497 		  pcaps->eee_cap);
498 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
499 		  pcaps->eeer_value);
500 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
501 		  pcaps->link_fec_options);
502 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
503 		  prefix, pcaps->module_compliance_enforcement);
504 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
505 		  prefix, pcaps->extended_compliance_code);
506 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
507 		  pcaps->module_type[0]);
508 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
509 		  pcaps->module_type[1]);
510 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
511 		  pcaps->module_type[2]);
512 
513 	if (status == ICE_SUCCESS && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
514 		pi->phy.phy_type_low = LE64_TO_CPU(pcaps->phy_type_low);
515 		pi->phy.phy_type_high = LE64_TO_CPU(pcaps->phy_type_high);
516 		ice_memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
517 			   sizeof(pi->phy.link_info.module_type),
518 			   ICE_NONDMA_TO_NONDMA);
519 		ice_set_media_type(pi);
520 		ice_debug(hw, ICE_DBG_LINK, "%s: media_type = 0x%x\n", prefix,
521 			  pi->phy.media_type);
522 	}
523 
524 	return status;
525 }
526 
527 /**
528  * ice_aq_get_netlist_node
529  * @hw: pointer to the hw struct
530  * @cmd: get_link_topo AQ structure
531  * @node_part_number: output node part number if node found
532  * @node_handle: output node handle parameter if node found
533  */
534 enum ice_status
535 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
536 			u8 *node_part_number, u16 *node_handle)
537 {
538 	struct ice_aq_desc desc;
539 
540 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
541 	desc.params.get_link_topo = *cmd;
542 
543 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
544 		return ICE_ERR_NOT_SUPPORTED;
545 
546 	if (node_handle)
547 		*node_handle =
548 			LE16_TO_CPU(desc.params.get_link_topo.addr.handle);
549 	if (node_part_number)
550 		*node_part_number = desc.params.get_link_topo.node_part_num;
551 
552 	return ICE_SUCCESS;
553 }
554 
555 #define MAX_NETLIST_SIZE 10
556 /**
557  * ice_find_netlist_node
558  * @hw: pointer to the hw struct
559  * @node_type_ctx: type of netlist node to look for
560  * @node_part_number: node part number to look for
561  * @node_handle: output parameter if node found - optional
562  *
563  * Find and return the node handle for a given node type and part number in the
564  * netlist. When found ICE_SUCCESS is returned, ICE_ERR_DOES_NOT_EXIST
565  * otherwise. If node_handle provided, it would be set to found node handle.
566  */
567 enum ice_status
568 ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx, u8 node_part_number,
569 		      u16 *node_handle)
570 {
571 	struct ice_aqc_get_link_topo cmd;
572 	u8 rec_node_part_number;
573 	u16 rec_node_handle;
574 	u8 idx;
575 
576 	for (idx = 0; idx < MAX_NETLIST_SIZE; idx++) {
577 		enum ice_status status;
578 
579 		memset(&cmd, 0, sizeof(cmd));
580 
581 		cmd.addr.topo_params.node_type_ctx =
582 			(node_type_ctx << ICE_AQC_LINK_TOPO_NODE_TYPE_S);
583 		cmd.addr.topo_params.index = idx;
584 
585 		status = ice_aq_get_netlist_node(hw, &cmd,
586 						 &rec_node_part_number,
587 						 &rec_node_handle);
588 		if (status)
589 			return status;
590 
591 		if (rec_node_part_number == node_part_number) {
592 			if (node_handle)
593 				*node_handle = rec_node_handle;
594 			return ICE_SUCCESS;
595 		}
596 	}
597 
598 	return ICE_ERR_DOES_NOT_EXIST;
599 }
600 
601 #define ice_get_link_status_datalen(hw)	ICE_GET_LINK_STATUS_DATALEN_V1
602 
603 /**
604  * ice_aq_get_link_info
605  * @pi: port information structure
606  * @ena_lse: enable/disable LinkStatusEvent reporting
607  * @link: pointer to link status structure - optional
608  * @cd: pointer to command details structure or NULL
609  *
610  * Get Link Status (0x607). Returns the link status of the adapter.
611  */
612 enum ice_status
613 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
614 		     struct ice_link_status *link, struct ice_sq_cd *cd)
615 {
616 	struct ice_aqc_get_link_status_data link_data = { 0 };
617 	struct ice_aqc_get_link_status *resp;
618 	struct ice_link_status *li_old, *li;
619 	struct ice_fc_info *hw_fc_info;
620 	bool tx_pause, rx_pause;
621 	struct ice_aq_desc desc;
622 	enum ice_status status;
623 	struct ice_hw *hw;
624 	u16 cmd_flags;
625 
626 	if (!pi)
627 		return ICE_ERR_PARAM;
628 	hw = pi->hw;
629 
630 	li_old = &pi->phy.link_info_old;
631 	li = &pi->phy.link_info;
632 	hw_fc_info = &pi->fc;
633 
634 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
635 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
636 	resp = &desc.params.get_link_status;
637 	resp->cmd_flags = CPU_TO_LE16(cmd_flags);
638 	resp->lport_num = pi->lport;
639 
640 	status = ice_aq_send_cmd(hw, &desc, &link_data,
641 				 ice_get_link_status_datalen(hw), cd);
642 	if (status != ICE_SUCCESS)
643 		return status;
644 
645 	/* save off old link status information */
646 	*li_old = *li;
647 
648 	/* update current link status information */
649 	li->link_speed = LE16_TO_CPU(link_data.link_speed);
650 	li->phy_type_low = LE64_TO_CPU(link_data.phy_type_low);
651 	li->phy_type_high = LE64_TO_CPU(link_data.phy_type_high);
652 	li->link_info = link_data.link_info;
653 	li->link_cfg_err = link_data.link_cfg_err;
654 	li->an_info = link_data.an_info;
655 	li->ext_info = link_data.ext_info;
656 	li->max_frame_size = LE16_TO_CPU(link_data.max_frame_size);
657 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
658 	li->topo_media_conflict = link_data.topo_media_conflict;
659 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
660 				      ICE_AQ_CFG_PACING_TYPE_M);
661 
662 	/* update fc info */
663 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
664 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
665 	if (tx_pause && rx_pause)
666 		hw_fc_info->current_mode = ICE_FC_FULL;
667 	else if (tx_pause)
668 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
669 	else if (rx_pause)
670 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
671 	else
672 		hw_fc_info->current_mode = ICE_FC_NONE;
673 
674 	li->lse_ena = !!(resp->cmd_flags & CPU_TO_LE16(ICE_AQ_LSE_IS_ENABLED));
675 
676 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
677 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
678 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
679 		  (unsigned long long)li->phy_type_low);
680 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
681 		  (unsigned long long)li->phy_type_high);
682 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
683 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
684 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
685 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
686 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
687 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
688 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
689 		  li->max_frame_size);
690 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
691 
692 	/* save link status information */
693 	if (link)
694 		*link = *li;
695 
696 	/* flag cleared so calling functions don't call AQ again */
697 	pi->phy.get_link_info = false;
698 
699 	return ICE_SUCCESS;
700 }
701 
702 /**
703  * ice_fill_tx_timer_and_fc_thresh
704  * @hw: pointer to the HW struct
705  * @cmd: pointer to MAC cfg structure
706  *
707  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
708  * descriptor
709  */
710 static void
711 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
712 				struct ice_aqc_set_mac_cfg *cmd)
713 {
714 	u16 fc_thres_val, tx_timer_val;
715 	u32 val;
716 
717 	/* We read back the transmit timer and fc threshold value of
718 	 * LFC. Thus, we will use index =
719 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
720 	 *
721 	 * Also, because we are operating on transmit timer and fc
722 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
723 	 */
724 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
725 
726 	/* Retrieve the transmit timer */
727 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
728 	tx_timer_val = val &
729 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
730 	cmd->tx_tmr_value = CPU_TO_LE16(tx_timer_val);
731 
732 	/* Retrieve the fc threshold */
733 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
734 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
735 
736 	cmd->fc_refresh_threshold = CPU_TO_LE16(fc_thres_val);
737 }
738 
739 /**
740  * ice_aq_set_mac_cfg
741  * @hw: pointer to the HW struct
742  * @max_frame_size: Maximum Frame Size to be supported
743  * @auto_drop: Tell HW to drop packets if TC queue is blocked
744  * @cd: pointer to command details structure or NULL
745  *
746  * Set MAC configuration (0x0603)
747  */
748 enum ice_status
749 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, bool auto_drop,
750 		   struct ice_sq_cd *cd)
751 {
752 	struct ice_aqc_set_mac_cfg *cmd;
753 	struct ice_aq_desc desc;
754 
755 	cmd = &desc.params.set_mac_cfg;
756 
757 	if (max_frame_size == 0)
758 		return ICE_ERR_PARAM;
759 
760 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
761 
762 	cmd->max_frame_size = CPU_TO_LE16(max_frame_size);
763 
764 	if (ice_is_fw_auto_drop_supported(hw) && auto_drop)
765 		cmd->drop_opts |= ICE_AQ_SET_MAC_AUTO_DROP_BLOCKING_PKTS;
766 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
767 
768 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
769 }
770 
771 /**
772  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
773  * @hw: pointer to the HW struct
774  */
775 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
776 {
777 	struct ice_switch_info *sw;
778 	enum ice_status status;
779 
780 	hw->switch_info = (struct ice_switch_info *)
781 			  ice_malloc(hw, sizeof(*hw->switch_info));
782 
783 	sw = hw->switch_info;
784 
785 	if (!sw)
786 		return ICE_ERR_NO_MEMORY;
787 
788 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
789 	sw->prof_res_bm_init = 0;
790 
791 	status = ice_init_def_sw_recp(hw, &hw->switch_info->recp_list);
792 	if (status) {
793 		ice_free(hw, hw->switch_info);
794 		return status;
795 	}
796 	return ICE_SUCCESS;
797 }
798 
799 /**
800  * ice_cleanup_fltr_mgmt_single - clears single filter mngt struct
801  * @hw: pointer to the HW struct
802  * @sw: pointer to switch info struct for which function clears filters
803  */
804 static void
805 ice_cleanup_fltr_mgmt_single(struct ice_hw *hw, struct ice_switch_info *sw)
806 {
807 	struct ice_vsi_list_map_info *v_pos_map;
808 	struct ice_vsi_list_map_info *v_tmp_map;
809 	struct ice_sw_recipe *recps;
810 	u8 i;
811 
812 	if (!sw)
813 		return;
814 
815 	LIST_FOR_EACH_ENTRY_SAFE(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
816 				 ice_vsi_list_map_info, list_entry) {
817 		LIST_DEL(&v_pos_map->list_entry);
818 		ice_free(hw, v_pos_map);
819 	}
820 	recps = sw->recp_list;
821 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
822 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
823 
824 		recps[i].root_rid = i;
825 		LIST_FOR_EACH_ENTRY_SAFE(rg_entry, tmprg_entry,
826 					 &recps[i].rg_list, ice_recp_grp_entry,
827 					 l_entry) {
828 			LIST_DEL(&rg_entry->l_entry);
829 			ice_free(hw, rg_entry);
830 		}
831 
832 		if (recps[i].adv_rule) {
833 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
834 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
835 
836 			ice_destroy_lock(&recps[i].filt_rule_lock);
837 			LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
838 						 &recps[i].filt_rules,
839 						 ice_adv_fltr_mgmt_list_entry,
840 						 list_entry) {
841 				LIST_DEL(&lst_itr->list_entry);
842 				ice_free(hw, lst_itr->lkups);
843 				ice_free(hw, lst_itr);
844 			}
845 		} else {
846 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
847 
848 			ice_destroy_lock(&recps[i].filt_rule_lock);
849 			LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
850 						 &recps[i].filt_rules,
851 						 ice_fltr_mgmt_list_entry,
852 						 list_entry) {
853 				LIST_DEL(&lst_itr->list_entry);
854 				ice_free(hw, lst_itr);
855 			}
856 		}
857 		if (recps[i].root_buf)
858 			ice_free(hw, recps[i].root_buf);
859 	}
860 	ice_rm_sw_replay_rule_info(hw, sw);
861 	ice_free(hw, sw->recp_list);
862 	ice_free(hw, sw);
863 }
864 
865 /**
866  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
867  * @hw: pointer to the HW struct
868  */
869 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
870 {
871 	ice_cleanup_fltr_mgmt_single(hw, hw->switch_info);
872 }
873 
874 /**
875  * ice_get_itr_intrl_gran
876  * @hw: pointer to the HW struct
877  *
878  * Determines the ITR/INTRL granularities based on the maximum aggregate
879  * bandwidth according to the device's configuration during power-on.
880  */
881 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
882 {
883 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
884 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
885 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
886 
887 	switch (max_agg_bw) {
888 	case ICE_MAX_AGG_BW_200G:
889 	case ICE_MAX_AGG_BW_100G:
890 	case ICE_MAX_AGG_BW_50G:
891 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
892 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
893 		break;
894 	case ICE_MAX_AGG_BW_25G:
895 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
896 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
897 		break;
898 	}
899 }
900 
901 /**
902  * ice_print_rollback_msg - print FW rollback message
903  * @hw: pointer to the hardware structure
904  */
905 void ice_print_rollback_msg(struct ice_hw *hw)
906 {
907 	char nvm_str[ICE_NVM_VER_LEN] = { 0 };
908 	struct ice_orom_info *orom;
909 	struct ice_nvm_info *nvm;
910 
911 	orom = &hw->flash.orom;
912 	nvm = &hw->flash.nvm;
913 
914 	SNPRINTF(nvm_str, sizeof(nvm_str), "%x.%02x 0x%x %d.%d.%d",
915 		 nvm->major, nvm->minor, nvm->eetrack, orom->major,
916 		 orom->build, orom->patch);
917 	ice_warn(hw,
918 		 "Firmware rollback mode detected. Current version is NVM: %s, FW: %d.%d. Device may exhibit limited functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware rollback mode\n",
919 		 nvm_str, hw->fw_maj_ver, hw->fw_min_ver);
920 }
921 
922 /**
923  * ice_set_umac_shared
924  * @hw: pointer to the hw struct
925  *
926  * Set boolean flag to allow unicast MAC sharing
927  */
928 void ice_set_umac_shared(struct ice_hw *hw)
929 {
930 	hw->umac_shared = true;
931 }
932 
933 /**
934  * ice_init_hw - main hardware initialization routine
935  * @hw: pointer to the hardware structure
936  */
937 enum ice_status ice_init_hw(struct ice_hw *hw)
938 {
939 	struct ice_aqc_get_phy_caps_data *pcaps;
940 	enum ice_status status;
941 	u16 mac_buf_len;
942 	void *mac_buf;
943 
944 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
945 
946 	/* Set MAC type based on DeviceID */
947 	status = ice_set_mac_type(hw);
948 	if (status)
949 		return status;
950 
951 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
952 			 PF_FUNC_RID_FUNCTION_NUMBER_M) >>
953 		PF_FUNC_RID_FUNCTION_NUMBER_S;
954 
955 	status = ice_reset(hw, ICE_RESET_PFR);
956 	if (status)
957 		return status;
958 	ice_get_itr_intrl_gran(hw);
959 
960 	status = ice_create_all_ctrlq(hw);
961 	if (status)
962 		goto err_unroll_cqinit;
963 
964 	ice_fwlog_set_support_ena(hw);
965 	status = ice_fwlog_set(hw, &hw->fwlog_cfg);
966 	if (status) {
967 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging, status %d.\n",
968 			  status);
969 	} else {
970 		if (hw->fwlog_cfg.options & ICE_FWLOG_OPTION_REGISTER_ON_INIT) {
971 			status = ice_fwlog_register(hw);
972 			if (status)
973 				ice_debug(hw, ICE_DBG_INIT, "Failed to register for FW logging events, status %d.\n",
974 					  status);
975 		} else {
976 			status = ice_fwlog_unregister(hw);
977 			if (status)
978 				ice_debug(hw, ICE_DBG_INIT, "Failed to unregister for FW logging events, status %d.\n",
979 					  status);
980 		}
981 	}
982 
983 	status = ice_init_nvm(hw);
984 	if (status)
985 		goto err_unroll_cqinit;
986 
987 	if (ice_get_fw_mode(hw) == ICE_FW_MODE_ROLLBACK)
988 		ice_print_rollback_msg(hw);
989 
990 	status = ice_clear_pf_cfg(hw);
991 	if (status)
992 		goto err_unroll_cqinit;
993 
994 	ice_clear_pxe_mode(hw);
995 
996 	status = ice_get_caps(hw);
997 	if (status)
998 		goto err_unroll_cqinit;
999 
1000 	if (!hw->port_info)
1001 		hw->port_info = (struct ice_port_info *)
1002 			ice_malloc(hw, sizeof(*hw->port_info));
1003 	if (!hw->port_info) {
1004 		status = ICE_ERR_NO_MEMORY;
1005 		goto err_unroll_cqinit;
1006 	}
1007 
1008 	/* set the back pointer to HW */
1009 	hw->port_info->hw = hw;
1010 
1011 	/* Initialize port_info struct with switch configuration data */
1012 	status = ice_get_initial_sw_cfg(hw);
1013 	if (status)
1014 		goto err_unroll_alloc;
1015 
1016 	hw->evb_veb = true;
1017 	/* Query the allocated resources for Tx scheduler */
1018 	status = ice_sched_query_res_alloc(hw);
1019 	if (status) {
1020 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1021 		goto err_unroll_alloc;
1022 	}
1023 	ice_sched_get_psm_clk_freq(hw);
1024 
1025 	/* Initialize port_info struct with scheduler data */
1026 	status = ice_sched_init_port(hw->port_info);
1027 	if (status)
1028 		goto err_unroll_sched;
1029 	pcaps = (struct ice_aqc_get_phy_caps_data *)
1030 		ice_malloc(hw, sizeof(*pcaps));
1031 	if (!pcaps) {
1032 		status = ICE_ERR_NO_MEMORY;
1033 		goto err_unroll_sched;
1034 	}
1035 
1036 	/* Initialize port_info struct with PHY capabilities */
1037 	status = ice_aq_get_phy_caps(hw->port_info, false,
1038 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, NULL);
1039 	ice_free(hw, pcaps);
1040 	if (status)
1041 		ice_warn(hw, "Get PHY capabilities failed status = %d, continuing anyway\n",
1042 			 status);
1043 
1044 	/* Initialize port_info struct with link information */
1045 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1046 	if (status)
1047 		goto err_unroll_sched;
1048 	/* need a valid SW entry point to build a Tx tree */
1049 	if (!hw->sw_entry_point_layer) {
1050 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1051 		status = ICE_ERR_CFG;
1052 		goto err_unroll_sched;
1053 	}
1054 	INIT_LIST_HEAD(&hw->agg_list);
1055 	/* Initialize max burst size */
1056 	if (!hw->max_burst_size)
1057 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1058 	status = ice_init_fltr_mgmt_struct(hw);
1059 	if (status)
1060 		goto err_unroll_sched;
1061 
1062 	/* Get MAC information */
1063 
1064 	/* A single port can report up to two (LAN and WoL) addresses */
1065 	mac_buf = ice_calloc(hw, 2,
1066 			     sizeof(struct ice_aqc_manage_mac_read_resp));
1067 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1068 
1069 	if (!mac_buf) {
1070 		status = ICE_ERR_NO_MEMORY;
1071 		goto err_unroll_fltr_mgmt_struct;
1072 	}
1073 
1074 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1075 	ice_free(hw, mac_buf);
1076 
1077 	if (status)
1078 		goto err_unroll_fltr_mgmt_struct;
1079 
1080 	/* enable jumbo frame support at MAC level */
1081 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, false,
1082 				    NULL);
1083 	if (status)
1084 		goto err_unroll_fltr_mgmt_struct;
1085 
1086 	status = ice_init_hw_tbls(hw);
1087 	if (status)
1088 		goto err_unroll_fltr_mgmt_struct;
1089 	ice_init_lock(&hw->tnl_lock);
1090 
1091 	return ICE_SUCCESS;
1092 
1093 err_unroll_fltr_mgmt_struct:
1094 	ice_cleanup_fltr_mgmt_struct(hw);
1095 err_unroll_sched:
1096 	ice_sched_cleanup_all(hw);
1097 err_unroll_alloc:
1098 	ice_free(hw, hw->port_info);
1099 	hw->port_info = NULL;
1100 err_unroll_cqinit:
1101 	ice_destroy_all_ctrlq(hw);
1102 	return status;
1103 }
1104 
1105 /**
1106  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1107  * @hw: pointer to the hardware structure
1108  *
1109  * This should be called only during nominal operation, not as a result of
1110  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1111  * applicable initializations if it fails for any reason.
1112  */
1113 void ice_deinit_hw(struct ice_hw *hw)
1114 {
1115 	ice_cleanup_fltr_mgmt_struct(hw);
1116 
1117 	ice_sched_cleanup_all(hw);
1118 	ice_sched_clear_agg(hw);
1119 	ice_free_seg(hw);
1120 	ice_free_hw_tbls(hw);
1121 	ice_destroy_lock(&hw->tnl_lock);
1122 
1123 	if (hw->port_info) {
1124 		ice_free(hw, hw->port_info);
1125 		hw->port_info = NULL;
1126 	}
1127 
1128 	ice_destroy_all_ctrlq(hw);
1129 
1130 	/* Clear VSI contexts if not already cleared */
1131 	ice_clear_all_vsi_ctx(hw);
1132 }
1133 
1134 /**
1135  * ice_check_reset - Check to see if a global reset is complete
1136  * @hw: pointer to the hardware structure
1137  */
1138 enum ice_status ice_check_reset(struct ice_hw *hw)
1139 {
1140 	u32 cnt, reg = 0, grst_timeout, uld_mask, reset_wait_cnt;
1141 
1142 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1143 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1144 	 * Add 1sec for outstanding AQ commands that can take a long time.
1145 	 */
1146 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1147 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1148 
1149 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1150 		ice_msec_delay(100, true);
1151 		reg = rd32(hw, GLGEN_RSTAT);
1152 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1153 			break;
1154 	}
1155 
1156 	if (cnt == grst_timeout) {
1157 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1158 		return ICE_ERR_RESET_FAILED;
1159 	}
1160 
1161 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1162 				 GLNVM_ULD_PCIER_DONE_1_M |\
1163 				 GLNVM_ULD_CORER_DONE_M |\
1164 				 GLNVM_ULD_GLOBR_DONE_M |\
1165 				 GLNVM_ULD_POR_DONE_M |\
1166 				 GLNVM_ULD_POR_DONE_1_M |\
1167 				 GLNVM_ULD_PCIER_DONE_2_M)
1168 
1169 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.iwarp ?
1170 					  GLNVM_ULD_PE_DONE_M : 0);
1171 
1172 	reset_wait_cnt = ICE_PF_RESET_WAIT_COUNT;
1173 
1174 	/* Device is Active; check Global Reset processes are done */
1175 	for (cnt = 0; cnt < reset_wait_cnt; cnt++) {
1176 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1177 		if (reg == uld_mask) {
1178 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1179 			break;
1180 		}
1181 		ice_msec_delay(10, true);
1182 	}
1183 
1184 	if (cnt == reset_wait_cnt) {
1185 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1186 			  reg);
1187 		return ICE_ERR_RESET_FAILED;
1188 	}
1189 
1190 	return ICE_SUCCESS;
1191 }
1192 
1193 /**
1194  * ice_pf_reset - Reset the PF
1195  * @hw: pointer to the hardware structure
1196  *
1197  * If a global reset has been triggered, this function checks
1198  * for its completion and then issues the PF reset
1199  */
1200 static enum ice_status ice_pf_reset(struct ice_hw *hw)
1201 {
1202 	u32 cnt, reg, reset_wait_cnt, cfg_lock_timeout;
1203 
1204 	/* If at function entry a global reset was already in progress, i.e.
1205 	 * state is not 'device active' or any of the reset done bits are not
1206 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1207 	 * global reset is done.
1208 	 */
1209 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1210 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1211 		/* poll on global reset currently in progress until done */
1212 		if (ice_check_reset(hw))
1213 			return ICE_ERR_RESET_FAILED;
1214 
1215 		return ICE_SUCCESS;
1216 	}
1217 
1218 	/* Reset the PF */
1219 	reg = rd32(hw, PFGEN_CTRL);
1220 
1221 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1222 
1223 	/* Wait for the PFR to complete. The wait time is the global config lock
1224 	 * timeout plus the PFR timeout which will account for a possible reset
1225 	 * that is occurring during a download package operation.
1226 	 */
1227 	reset_wait_cnt = ICE_PF_RESET_WAIT_COUNT;
1228 	cfg_lock_timeout = ICE_GLOBAL_CFG_LOCK_TIMEOUT;
1229 
1230 	for (cnt = 0; cnt < cfg_lock_timeout + reset_wait_cnt; cnt++) {
1231 		reg = rd32(hw, PFGEN_CTRL);
1232 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1233 			break;
1234 
1235 		ice_msec_delay(1, true);
1236 	}
1237 
1238 	if (cnt == cfg_lock_timeout + reset_wait_cnt) {
1239 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1240 		return ICE_ERR_RESET_FAILED;
1241 	}
1242 
1243 	return ICE_SUCCESS;
1244 }
1245 
1246 /**
1247  * ice_reset - Perform different types of reset
1248  * @hw: pointer to the hardware structure
1249  * @req: reset request
1250  *
1251  * This function triggers a reset as specified by the req parameter.
1252  *
1253  * Note:
1254  * If anything other than a PF reset is triggered, PXE mode is restored.
1255  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1256  * interface has been restored in the rebuild flow.
1257  */
1258 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1259 {
1260 	u32 val = 0;
1261 
1262 	switch (req) {
1263 	case ICE_RESET_PFR:
1264 		return ice_pf_reset(hw);
1265 	case ICE_RESET_CORER:
1266 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1267 		val = GLGEN_RTRIG_CORER_M;
1268 		break;
1269 	case ICE_RESET_GLOBR:
1270 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1271 		val = GLGEN_RTRIG_GLOBR_M;
1272 		break;
1273 	default:
1274 		return ICE_ERR_PARAM;
1275 	}
1276 
1277 	val |= rd32(hw, GLGEN_RTRIG);
1278 	wr32(hw, GLGEN_RTRIG, val);
1279 	ice_flush(hw);
1280 
1281 	/* wait for the FW to be ready */
1282 	return ice_check_reset(hw);
1283 }
1284 
1285 /**
1286  * ice_copy_rxq_ctx_to_hw
1287  * @hw: pointer to the hardware structure
1288  * @ice_rxq_ctx: pointer to the rxq context
1289  * @rxq_index: the index of the Rx queue
1290  *
1291  * Copies rxq context from dense structure to HW register space
1292  */
1293 static enum ice_status
1294 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1295 {
1296 	u8 i;
1297 
1298 	if (!ice_rxq_ctx)
1299 		return ICE_ERR_BAD_PTR;
1300 
1301 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1302 		return ICE_ERR_PARAM;
1303 
1304 	/* Copy each dword separately to HW */
1305 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1306 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1307 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1308 
1309 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1310 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1311 	}
1312 
1313 	return ICE_SUCCESS;
1314 }
1315 
1316 /**
1317  * ice_copy_rxq_ctx_from_hw - Copy rxq context register from HW
1318  * @hw: pointer to the hardware structure
1319  * @ice_rxq_ctx: pointer to the rxq context
1320  * @rxq_index: the index of the Rx queue
1321  *
1322  * Copies rxq context from HW register space to dense structure
1323  */
1324 static enum ice_status
1325 ice_copy_rxq_ctx_from_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1326 {
1327 	u8 i;
1328 
1329 	if (!ice_rxq_ctx)
1330 		return ICE_ERR_BAD_PTR;
1331 
1332 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1333 		return ICE_ERR_PARAM;
1334 
1335 	/* Copy each dword separately from HW */
1336 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1337 		u32 *ctx = (u32 *)(ice_rxq_ctx + (i * sizeof(u32)));
1338 
1339 		*ctx = rd32(hw, QRX_CONTEXT(i, rxq_index));
1340 
1341 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, *ctx);
1342 	}
1343 
1344 	return ICE_SUCCESS;
1345 }
1346 
1347 /* LAN Rx Queue Context */
1348 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1349 	/* Field		Width	LSB */
1350 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1351 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1352 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1353 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1354 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1355 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1356 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1357 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1358 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1359 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1360 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1361 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1362 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1363 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1364 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1365 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1366 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1367 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1368 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1369 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1370 	{ 0 }
1371 };
1372 
1373 /**
1374  * ice_write_rxq_ctx
1375  * @hw: pointer to the hardware structure
1376  * @rlan_ctx: pointer to the rxq context
1377  * @rxq_index: the index of the Rx queue
1378  *
1379  * Converts rxq context from sparse to dense structure and then writes
1380  * it to HW register space and enables the hardware to prefetch descriptors
1381  * instead of only fetching them on demand
1382  */
1383 enum ice_status
1384 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1385 		  u32 rxq_index)
1386 {
1387 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1388 
1389 	if (!rlan_ctx)
1390 		return ICE_ERR_BAD_PTR;
1391 
1392 	rlan_ctx->prefena = 1;
1393 
1394 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1395 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1396 }
1397 
1398 /**
1399  * ice_read_rxq_ctx - Read rxq context from HW
1400  * @hw: pointer to the hardware structure
1401  * @rlan_ctx: pointer to the rxq context
1402  * @rxq_index: the index of the Rx queue
1403  *
1404  * Read rxq context from HW register space and then converts it from dense
1405  * structure to sparse
1406  */
1407 enum ice_status
1408 ice_read_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1409 		 u32 rxq_index)
1410 {
1411 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1412 	enum ice_status status;
1413 
1414 	if (!rlan_ctx)
1415 		return ICE_ERR_BAD_PTR;
1416 
1417 	status = ice_copy_rxq_ctx_from_hw(hw, ctx_buf, rxq_index);
1418 	if (status)
1419 		return status;
1420 
1421 	return ice_get_ctx(ctx_buf, (u8 *)rlan_ctx, ice_rlan_ctx_info);
1422 }
1423 
1424 /**
1425  * ice_clear_rxq_ctx
1426  * @hw: pointer to the hardware structure
1427  * @rxq_index: the index of the Rx queue to clear
1428  *
1429  * Clears rxq context in HW register space
1430  */
1431 enum ice_status ice_clear_rxq_ctx(struct ice_hw *hw, u32 rxq_index)
1432 {
1433 	u8 i;
1434 
1435 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1436 		return ICE_ERR_PARAM;
1437 
1438 	/* Clear each dword register separately */
1439 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++)
1440 		wr32(hw, QRX_CONTEXT(i, rxq_index), 0);
1441 
1442 	return ICE_SUCCESS;
1443 }
1444 
1445 /* LAN Tx Queue Context used for set Tx config by ice_aqc_opc_add_txqs,
1446  * Bit[0-175] is valid
1447  */
1448 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1449 				    /* Field			Width	LSB */
1450 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1451 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1452 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1453 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1454 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1455 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1456 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1457 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1458 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1459 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1460 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1461 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1462 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1463 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1464 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1465 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1466 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1467 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1468 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1469 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1470 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1471 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1472 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1473 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1474 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1475 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1476 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1477 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1478 	{ 0 }
1479 };
1480 
1481 /**
1482  * ice_copy_tx_cmpltnq_ctx_to_hw
1483  * @hw: pointer to the hardware structure
1484  * @ice_tx_cmpltnq_ctx: pointer to the Tx completion queue context
1485  * @tx_cmpltnq_index: the index of the completion queue
1486  *
1487  * Copies Tx completion queue context from dense structure to HW register space
1488  */
1489 static enum ice_status
1490 ice_copy_tx_cmpltnq_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_cmpltnq_ctx,
1491 			      u32 tx_cmpltnq_index)
1492 {
1493 	u8 i;
1494 
1495 	if (!ice_tx_cmpltnq_ctx)
1496 		return ICE_ERR_BAD_PTR;
1497 
1498 	if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1499 		return ICE_ERR_PARAM;
1500 
1501 	/* Copy each dword separately to HW */
1502 	for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++) {
1503 		wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index),
1504 		     *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1505 
1506 		ice_debug(hw, ICE_DBG_QCTX, "cmpltnqdata[%d]: %08X\n", i,
1507 			  *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1508 	}
1509 
1510 	return ICE_SUCCESS;
1511 }
1512 
1513 /* LAN Tx Completion Queue Context */
1514 static const struct ice_ctx_ele ice_tx_cmpltnq_ctx_info[] = {
1515 				       /* Field			Width   LSB */
1516 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, base,			57,	0),
1517 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, q_len,		18,	64),
1518 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, generation,		1,	96),
1519 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, wrt_ptr,		22,	97),
1520 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, pf_num,		3,	128),
1521 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_num,		10,	131),
1522 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_type,		2,	141),
1523 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, tph_desc_wr,		1,	160),
1524 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cpuid,		8,	161),
1525 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cmpltn_cache,		512,	192),
1526 	{ 0 }
1527 };
1528 
1529 /**
1530  * ice_write_tx_cmpltnq_ctx
1531  * @hw: pointer to the hardware structure
1532  * @tx_cmpltnq_ctx: pointer to the completion queue context
1533  * @tx_cmpltnq_index: the index of the completion queue
1534  *
1535  * Converts completion queue context from sparse to dense structure and then
1536  * writes it to HW register space
1537  */
1538 enum ice_status
1539 ice_write_tx_cmpltnq_ctx(struct ice_hw *hw,
1540 			 struct ice_tx_cmpltnq_ctx *tx_cmpltnq_ctx,
1541 			 u32 tx_cmpltnq_index)
1542 {
1543 	u8 ctx_buf[ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1544 
1545 	ice_set_ctx(hw, (u8 *)tx_cmpltnq_ctx, ctx_buf, ice_tx_cmpltnq_ctx_info);
1546 	return ice_copy_tx_cmpltnq_ctx_to_hw(hw, ctx_buf, tx_cmpltnq_index);
1547 }
1548 
1549 /**
1550  * ice_clear_tx_cmpltnq_ctx
1551  * @hw: pointer to the hardware structure
1552  * @tx_cmpltnq_index: the index of the completion queue to clear
1553  *
1554  * Clears Tx completion queue context in HW register space
1555  */
1556 enum ice_status
1557 ice_clear_tx_cmpltnq_ctx(struct ice_hw *hw, u32 tx_cmpltnq_index)
1558 {
1559 	u8 i;
1560 
1561 	if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1562 		return ICE_ERR_PARAM;
1563 
1564 	/* Clear each dword register separately */
1565 	for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++)
1566 		wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index), 0);
1567 
1568 	return ICE_SUCCESS;
1569 }
1570 
1571 /**
1572  * ice_copy_tx_drbell_q_ctx_to_hw
1573  * @hw: pointer to the hardware structure
1574  * @ice_tx_drbell_q_ctx: pointer to the doorbell queue context
1575  * @tx_drbell_q_index: the index of the doorbell queue
1576  *
1577  * Copies doorbell queue context from dense structure to HW register space
1578  */
1579 static enum ice_status
1580 ice_copy_tx_drbell_q_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_drbell_q_ctx,
1581 			       u32 tx_drbell_q_index)
1582 {
1583 	u8 i;
1584 
1585 	if (!ice_tx_drbell_q_ctx)
1586 		return ICE_ERR_BAD_PTR;
1587 
1588 	if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1589 		return ICE_ERR_PARAM;
1590 
1591 	/* Copy each dword separately to HW */
1592 	for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++) {
1593 		wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index),
1594 		     *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1595 
1596 		ice_debug(hw, ICE_DBG_QCTX, "tx_drbell_qdata[%d]: %08X\n", i,
1597 			  *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1598 	}
1599 
1600 	return ICE_SUCCESS;
1601 }
1602 
1603 /* LAN Tx Doorbell Queue Context info */
1604 static const struct ice_ctx_ele ice_tx_drbell_q_ctx_info[] = {
1605 					/* Field		Width   LSB */
1606 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, base,		57,	0),
1607 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, ring_len,		13,	64),
1608 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, pf_num,		3,	80),
1609 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, vf_num,		8,	84),
1610 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, vmvf_type,		2,	94),
1611 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, cpuid,		8,	96),
1612 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_rd,		1,	104),
1613 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_wr,		1,	108),
1614 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, db_q_en,		1,	112),
1615 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_head,		13,	128),
1616 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_tail,		13,	144),
1617 	{ 0 }
1618 };
1619 
1620 /**
1621  * ice_write_tx_drbell_q_ctx
1622  * @hw: pointer to the hardware structure
1623  * @tx_drbell_q_ctx: pointer to the doorbell queue context
1624  * @tx_drbell_q_index: the index of the doorbell queue
1625  *
1626  * Converts doorbell queue context from sparse to dense structure and then
1627  * writes it to HW register space
1628  */
1629 enum ice_status
1630 ice_write_tx_drbell_q_ctx(struct ice_hw *hw,
1631 			  struct ice_tx_drbell_q_ctx *tx_drbell_q_ctx,
1632 			  u32 tx_drbell_q_index)
1633 {
1634 	u8 ctx_buf[ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1635 
1636 	ice_set_ctx(hw, (u8 *)tx_drbell_q_ctx, ctx_buf,
1637 		    ice_tx_drbell_q_ctx_info);
1638 	return ice_copy_tx_drbell_q_ctx_to_hw(hw, ctx_buf, tx_drbell_q_index);
1639 }
1640 
1641 /**
1642  * ice_clear_tx_drbell_q_ctx
1643  * @hw: pointer to the hardware structure
1644  * @tx_drbell_q_index: the index of the doorbell queue to clear
1645  *
1646  * Clears doorbell queue context in HW register space
1647  */
1648 enum ice_status
1649 ice_clear_tx_drbell_q_ctx(struct ice_hw *hw, u32 tx_drbell_q_index)
1650 {
1651 	u8 i;
1652 
1653 	if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1654 		return ICE_ERR_PARAM;
1655 
1656 	/* Clear each dword register separately */
1657 	for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++)
1658 		wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index), 0);
1659 
1660 	return ICE_SUCCESS;
1661 }
1662 
1663 /* FW Admin Queue command wrappers */
1664 
1665 /**
1666  * ice_should_retry_sq_send_cmd
1667  * @opcode: AQ opcode
1668  *
1669  * Decide if we should retry the send command routine for the ATQ, depending
1670  * on the opcode.
1671  */
1672 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1673 {
1674 	switch (opcode) {
1675 	case ice_aqc_opc_dnl_get_status:
1676 	case ice_aqc_opc_dnl_run:
1677 	case ice_aqc_opc_dnl_call:
1678 	case ice_aqc_opc_dnl_read_sto:
1679 	case ice_aqc_opc_dnl_write_sto:
1680 	case ice_aqc_opc_dnl_set_breakpoints:
1681 	case ice_aqc_opc_dnl_read_log:
1682 	case ice_aqc_opc_get_link_topo:
1683 	case ice_aqc_opc_done_alt_write:
1684 	case ice_aqc_opc_lldp_stop:
1685 	case ice_aqc_opc_lldp_start:
1686 	case ice_aqc_opc_lldp_filter_ctrl:
1687 		return true;
1688 	}
1689 
1690 	return false;
1691 }
1692 
1693 /**
1694  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1695  * @hw: pointer to the HW struct
1696  * @cq: pointer to the specific Control queue
1697  * @desc: prefilled descriptor describing the command
1698  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1699  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1700  * @cd: pointer to command details structure
1701  *
1702  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1703  * Queue if the EBUSY AQ error is returned.
1704  */
1705 static enum ice_status
1706 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1707 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1708 		      struct ice_sq_cd *cd)
1709 {
1710 	struct ice_aq_desc desc_cpy;
1711 	enum ice_status status;
1712 	bool is_cmd_for_retry;
1713 	u8 *buf_cpy = NULL;
1714 	u8 idx = 0;
1715 	u16 opcode;
1716 
1717 	opcode = LE16_TO_CPU(desc->opcode);
1718 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1719 	ice_memset(&desc_cpy, 0, sizeof(desc_cpy), ICE_NONDMA_MEM);
1720 
1721 	if (is_cmd_for_retry) {
1722 		if (buf) {
1723 			buf_cpy = (u8 *)ice_malloc(hw, buf_size);
1724 			if (!buf_cpy)
1725 				return ICE_ERR_NO_MEMORY;
1726 		}
1727 
1728 		ice_memcpy(&desc_cpy, desc, sizeof(desc_cpy),
1729 			   ICE_NONDMA_TO_NONDMA);
1730 	}
1731 
1732 	do {
1733 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1734 
1735 		if (!is_cmd_for_retry || status == ICE_SUCCESS ||
1736 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1737 			break;
1738 
1739 		if (buf_cpy)
1740 			ice_memcpy(buf, buf_cpy, buf_size,
1741 				   ICE_NONDMA_TO_NONDMA);
1742 
1743 		ice_memcpy(desc, &desc_cpy, sizeof(desc_cpy),
1744 			   ICE_NONDMA_TO_NONDMA);
1745 
1746 		ice_msec_delay(ICE_SQ_SEND_DELAY_TIME_MS, false);
1747 
1748 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1749 
1750 	if (buf_cpy)
1751 		ice_free(hw, buf_cpy);
1752 
1753 	return status;
1754 }
1755 
1756 /**
1757  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1758  * @hw: pointer to the HW struct
1759  * @desc: descriptor describing the command
1760  * @buf: buffer to use for indirect commands (NULL for direct commands)
1761  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1762  * @cd: pointer to command details structure
1763  *
1764  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1765  */
1766 enum ice_status
1767 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1768 		u16 buf_size, struct ice_sq_cd *cd)
1769 {
1770 	return ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1771 }
1772 
1773 /**
1774  * ice_aq_get_fw_ver
1775  * @hw: pointer to the HW struct
1776  * @cd: pointer to command details structure or NULL
1777  *
1778  * Get the firmware version (0x0001) from the admin queue commands
1779  */
1780 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1781 {
1782 	struct ice_aqc_get_ver *resp;
1783 	struct ice_aq_desc desc;
1784 	enum ice_status status;
1785 
1786 	resp = &desc.params.get_ver;
1787 
1788 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1789 
1790 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1791 
1792 	if (!status) {
1793 		hw->fw_branch = resp->fw_branch;
1794 		hw->fw_maj_ver = resp->fw_major;
1795 		hw->fw_min_ver = resp->fw_minor;
1796 		hw->fw_patch = resp->fw_patch;
1797 		hw->fw_build = LE32_TO_CPU(resp->fw_build);
1798 		hw->api_branch = resp->api_branch;
1799 		hw->api_maj_ver = resp->api_major;
1800 		hw->api_min_ver = resp->api_minor;
1801 		hw->api_patch = resp->api_patch;
1802 	}
1803 
1804 	return status;
1805 }
1806 
1807 /**
1808  * ice_aq_send_driver_ver
1809  * @hw: pointer to the HW struct
1810  * @dv: driver's major, minor version
1811  * @cd: pointer to command details structure or NULL
1812  *
1813  * Send the driver version (0x0002) to the firmware
1814  */
1815 enum ice_status
1816 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1817 		       struct ice_sq_cd *cd)
1818 {
1819 	struct ice_aqc_driver_ver *cmd;
1820 	struct ice_aq_desc desc;
1821 	u16 len;
1822 
1823 	cmd = &desc.params.driver_ver;
1824 
1825 	if (!dv)
1826 		return ICE_ERR_PARAM;
1827 
1828 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1829 
1830 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1831 	cmd->major_ver = dv->major_ver;
1832 	cmd->minor_ver = dv->minor_ver;
1833 	cmd->build_ver = dv->build_ver;
1834 	cmd->subbuild_ver = dv->subbuild_ver;
1835 
1836 	len = 0;
1837 	while (len < sizeof(dv->driver_string) &&
1838 	       IS_ASCII(dv->driver_string[len]) && dv->driver_string[len])
1839 		len++;
1840 
1841 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1842 }
1843 
1844 /**
1845  * ice_aq_q_shutdown
1846  * @hw: pointer to the HW struct
1847  * @unloading: is the driver unloading itself
1848  *
1849  * Tell the Firmware that we're shutting down the AdminQ and whether
1850  * or not the driver is unloading as well (0x0003).
1851  */
1852 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1853 {
1854 	struct ice_aqc_q_shutdown *cmd;
1855 	struct ice_aq_desc desc;
1856 
1857 	cmd = &desc.params.q_shutdown;
1858 
1859 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1860 
1861 	if (unloading)
1862 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1863 
1864 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1865 }
1866 
1867 /**
1868  * ice_aq_req_res
1869  * @hw: pointer to the HW struct
1870  * @res: resource ID
1871  * @access: access type
1872  * @sdp_number: resource number
1873  * @timeout: the maximum time in ms that the driver may hold the resource
1874  * @cd: pointer to command details structure or NULL
1875  *
1876  * Requests common resource using the admin queue commands (0x0008).
1877  * When attempting to acquire the Global Config Lock, the driver can
1878  * learn of three states:
1879  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1880  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1881  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1882  *                          successfully downloaded the package; the driver does
1883  *                          not have to download the package and can continue
1884  *                          loading
1885  *
1886  * Note that if the caller is in an acquire lock, perform action, release lock
1887  * phase of operation, it is possible that the FW may detect a timeout and issue
1888  * a CORER. In this case, the driver will receive a CORER interrupt and will
1889  * have to determine its cause. The calling thread that is handling this flow
1890  * will likely get an error propagated back to it indicating the Download
1891  * Package, Update Package or the Release Resource AQ commands timed out.
1892  */
1893 static enum ice_status
1894 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1895 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1896 	       struct ice_sq_cd *cd)
1897 {
1898 	struct ice_aqc_req_res *cmd_resp;
1899 	struct ice_aq_desc desc;
1900 	enum ice_status status;
1901 
1902 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1903 
1904 	cmd_resp = &desc.params.res_owner;
1905 
1906 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1907 
1908 	cmd_resp->res_id = CPU_TO_LE16(res);
1909 	cmd_resp->access_type = CPU_TO_LE16(access);
1910 	cmd_resp->res_number = CPU_TO_LE32(sdp_number);
1911 	cmd_resp->timeout = CPU_TO_LE32(*timeout);
1912 	*timeout = 0;
1913 
1914 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1915 
1916 	/* The completion specifies the maximum time in ms that the driver
1917 	 * may hold the resource in the Timeout field.
1918 	 */
1919 
1920 	/* Global config lock response utilizes an additional status field.
1921 	 *
1922 	 * If the Global config lock resource is held by some other driver, the
1923 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1924 	 * and the timeout field indicates the maximum time the current owner
1925 	 * of the resource has to free it.
1926 	 */
1927 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1928 		if (LE16_TO_CPU(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1929 			*timeout = LE32_TO_CPU(cmd_resp->timeout);
1930 			return ICE_SUCCESS;
1931 		} else if (LE16_TO_CPU(cmd_resp->status) ==
1932 			   ICE_AQ_RES_GLBL_IN_PROG) {
1933 			*timeout = LE32_TO_CPU(cmd_resp->timeout);
1934 			return ICE_ERR_AQ_ERROR;
1935 		} else if (LE16_TO_CPU(cmd_resp->status) ==
1936 			   ICE_AQ_RES_GLBL_DONE) {
1937 			return ICE_ERR_AQ_NO_WORK;
1938 		}
1939 
1940 		/* invalid FW response, force a timeout immediately */
1941 		*timeout = 0;
1942 		return ICE_ERR_AQ_ERROR;
1943 	}
1944 
1945 	/* If the resource is held by some other driver, the command completes
1946 	 * with a busy return value and the timeout field indicates the maximum
1947 	 * time the current owner of the resource has to free it.
1948 	 */
1949 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1950 		*timeout = LE32_TO_CPU(cmd_resp->timeout);
1951 
1952 	return status;
1953 }
1954 
1955 /**
1956  * ice_aq_release_res
1957  * @hw: pointer to the HW struct
1958  * @res: resource ID
1959  * @sdp_number: resource number
1960  * @cd: pointer to command details structure or NULL
1961  *
1962  * release common resource using the admin queue commands (0x0009)
1963  */
1964 static enum ice_status
1965 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1966 		   struct ice_sq_cd *cd)
1967 {
1968 	struct ice_aqc_req_res *cmd;
1969 	struct ice_aq_desc desc;
1970 
1971 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1972 
1973 	cmd = &desc.params.res_owner;
1974 
1975 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1976 
1977 	cmd->res_id = CPU_TO_LE16(res);
1978 	cmd->res_number = CPU_TO_LE32(sdp_number);
1979 
1980 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1981 }
1982 
1983 /**
1984  * ice_acquire_res
1985  * @hw: pointer to the HW structure
1986  * @res: resource ID
1987  * @access: access type (read or write)
1988  * @timeout: timeout in milliseconds
1989  *
1990  * This function will attempt to acquire the ownership of a resource.
1991  */
1992 enum ice_status
1993 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1994 		enum ice_aq_res_access_type access, u32 timeout)
1995 {
1996 #define ICE_RES_POLLING_DELAY_MS	10
1997 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1998 	u32 time_left = timeout;
1999 	enum ice_status status;
2000 
2001 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2002 
2003 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2004 
2005 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
2006 	 * previously acquired the resource and performed any necessary updates;
2007 	 * in this case the caller does not obtain the resource and has no
2008 	 * further work to do.
2009 	 */
2010 	if (status == ICE_ERR_AQ_NO_WORK)
2011 		goto ice_acquire_res_exit;
2012 
2013 	if (status)
2014 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
2015 
2016 	/* If necessary, poll until the current lock owner timeouts */
2017 	timeout = time_left;
2018 	while (status && timeout && time_left) {
2019 		ice_msec_delay(delay, true);
2020 		timeout = (timeout > delay) ? timeout - delay : 0;
2021 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2022 
2023 		if (status == ICE_ERR_AQ_NO_WORK)
2024 			/* lock free, but no work to do */
2025 			break;
2026 
2027 		if (!status)
2028 			/* lock acquired */
2029 			break;
2030 	}
2031 	if (status && status != ICE_ERR_AQ_NO_WORK)
2032 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
2033 
2034 ice_acquire_res_exit:
2035 	if (status == ICE_ERR_AQ_NO_WORK) {
2036 		if (access == ICE_RES_WRITE)
2037 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
2038 		else
2039 			ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
2040 	}
2041 	return status;
2042 }
2043 
2044 /**
2045  * ice_release_res
2046  * @hw: pointer to the HW structure
2047  * @res: resource ID
2048  *
2049  * This function will release a resource using the proper Admin Command.
2050  */
2051 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2052 {
2053 	enum ice_status status;
2054 	u32 total_delay = 0;
2055 
2056 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2057 
2058 	status = ice_aq_release_res(hw, res, 0, NULL);
2059 
2060 	/* there are some rare cases when trying to release the resource
2061 	 * results in an admin queue timeout, so handle them correctly
2062 	 */
2063 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
2064 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
2065 		ice_msec_delay(1, true);
2066 		status = ice_aq_release_res(hw, res, 0, NULL);
2067 		total_delay++;
2068 	}
2069 }
2070 
2071 /**
2072  * ice_aq_alloc_free_res - command to allocate/free resources
2073  * @hw: pointer to the HW struct
2074  * @num_entries: number of resource entries in buffer
2075  * @buf: Indirect buffer to hold data parameters and response
2076  * @buf_size: size of buffer for indirect commands
2077  * @opc: pass in the command opcode
2078  * @cd: pointer to command details structure or NULL
2079  *
2080  * Helper function to allocate/free resources using the admin queue commands
2081  */
2082 enum ice_status
2083 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
2084 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2085 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2086 {
2087 	struct ice_aqc_alloc_free_res_cmd *cmd;
2088 	struct ice_aq_desc desc;
2089 
2090 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2091 
2092 	cmd = &desc.params.sw_res_ctrl;
2093 
2094 	if (!buf)
2095 		return ICE_ERR_PARAM;
2096 
2097 	if (buf_size < FLEX_ARRAY_SIZE(buf, elem, num_entries))
2098 		return ICE_ERR_PARAM;
2099 
2100 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2101 
2102 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
2103 
2104 	cmd->num_entries = CPU_TO_LE16(num_entries);
2105 
2106 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2107 }
2108 
2109 /**
2110  * ice_alloc_hw_res - allocate resource
2111  * @hw: pointer to the HW struct
2112  * @type: type of resource
2113  * @num: number of resources to allocate
2114  * @btm: allocate from bottom
2115  * @res: pointer to array that will receive the resources
2116  */
2117 enum ice_status
2118 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2119 {
2120 	struct ice_aqc_alloc_free_res_elem *buf;
2121 	enum ice_status status;
2122 	u16 buf_len;
2123 
2124 	buf_len = ice_struct_size(buf, elem, num);
2125 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
2126 	if (!buf)
2127 		return ICE_ERR_NO_MEMORY;
2128 
2129 	/* Prepare buffer to allocate resource. */
2130 	buf->num_elems = CPU_TO_LE16(num);
2131 	buf->res_type = CPU_TO_LE16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2132 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2133 	if (btm)
2134 		buf->res_type |= CPU_TO_LE16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2135 
2136 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
2137 				       ice_aqc_opc_alloc_res, NULL);
2138 	if (status)
2139 		goto ice_alloc_res_exit;
2140 
2141 	ice_memcpy(res, buf->elem, sizeof(*buf->elem) * num,
2142 		   ICE_NONDMA_TO_NONDMA);
2143 
2144 ice_alloc_res_exit:
2145 	ice_free(hw, buf);
2146 	return status;
2147 }
2148 
2149 /**
2150  * ice_free_hw_res - free allocated HW resource
2151  * @hw: pointer to the HW struct
2152  * @type: type of resource to free
2153  * @num: number of resources
2154  * @res: pointer to array that contains the resources to free
2155  */
2156 enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2157 {
2158 	struct ice_aqc_alloc_free_res_elem *buf;
2159 	enum ice_status status;
2160 	u16 buf_len;
2161 
2162 	buf_len = ice_struct_size(buf, elem, num);
2163 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
2164 	if (!buf)
2165 		return ICE_ERR_NO_MEMORY;
2166 
2167 	/* Prepare buffer to free resource. */
2168 	buf->num_elems = CPU_TO_LE16(num);
2169 	buf->res_type = CPU_TO_LE16(type);
2170 	ice_memcpy(buf->elem, res, sizeof(*buf->elem) * num,
2171 		   ICE_NONDMA_TO_NONDMA);
2172 
2173 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
2174 				       ice_aqc_opc_free_res, NULL);
2175 	if (status)
2176 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2177 
2178 	ice_free(hw, buf);
2179 	return status;
2180 }
2181 
2182 /**
2183  * ice_get_num_per_func - determine number of resources per PF
2184  * @hw: pointer to the HW structure
2185  * @max: value to be evenly split between each PF
2186  *
2187  * Determine the number of valid functions by going through the bitmap returned
2188  * from parsing capabilities and use this to calculate the number of resources
2189  * per PF based on the max value passed in.
2190  */
2191 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2192 {
2193 	u8 funcs;
2194 
2195 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2196 	funcs = ice_hweight8(hw->dev_caps.common_cap.valid_functions &
2197 			     ICE_CAPS_VALID_FUNCS_M);
2198 
2199 	if (!funcs)
2200 		return 0;
2201 
2202 	return max / funcs;
2203 }
2204 
2205 /**
2206  * ice_print_led_caps - print LED capabilities
2207  * @hw: pointer to the ice_hw instance
2208  * @caps: pointer to common caps instance
2209  * @prefix: string to prefix when printing
2210  * @dbg: set to indicate debug print
2211  */
2212 static void
2213 ice_print_led_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2214 		   char const *prefix, bool dbg)
2215 {
2216 	u8 i;
2217 
2218 	if (dbg)
2219 		ice_debug(hw, ICE_DBG_INIT, "%s: led_pin_num = %d\n", prefix,
2220 			  caps->led_pin_num);
2221 	else
2222 		ice_info(hw, "%s: led_pin_num = %d\n", prefix,
2223 			 caps->led_pin_num);
2224 
2225 	for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_LED; i++) {
2226 		if (!caps->led[i])
2227 			continue;
2228 
2229 		if (dbg)
2230 			ice_debug(hw, ICE_DBG_INIT, "%s: led[%d] = %d\n",
2231 				  prefix, i, caps->led[i]);
2232 		else
2233 			ice_info(hw, "%s: led[%d] = %d\n", prefix, i,
2234 				 caps->led[i]);
2235 	}
2236 }
2237 
2238 /**
2239  * ice_print_sdp_caps - print SDP capabilities
2240  * @hw: pointer to the ice_hw instance
2241  * @caps: pointer to common caps instance
2242  * @prefix: string to prefix when printing
2243  * @dbg: set to indicate debug print
2244  */
2245 static void
2246 ice_print_sdp_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2247 		   char const *prefix, bool dbg)
2248 {
2249 	u8 i;
2250 
2251 	if (dbg)
2252 		ice_debug(hw, ICE_DBG_INIT, "%s: sdp_pin_num = %d\n", prefix,
2253 			  caps->sdp_pin_num);
2254 	else
2255 		ice_info(hw, "%s: sdp_pin_num = %d\n", prefix,
2256 			 caps->sdp_pin_num);
2257 
2258 	for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_SDP; i++) {
2259 		if (!caps->sdp[i])
2260 			continue;
2261 
2262 		if (dbg)
2263 			ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%d] = %d\n",
2264 				  prefix, i, caps->sdp[i]);
2265 		else
2266 			ice_info(hw, "%s: sdp[%d] = %d\n", prefix,
2267 				 i, caps->sdp[i]);
2268 	}
2269 }
2270 
2271 /**
2272  * ice_parse_common_caps - parse common device/function capabilities
2273  * @hw: pointer to the HW struct
2274  * @caps: pointer to common capabilities structure
2275  * @elem: the capability element to parse
2276  * @prefix: message prefix for tracing capabilities
2277  *
2278  * Given a capability element, extract relevant details into the common
2279  * capability structure.
2280  *
2281  * Returns: true if the capability matches one of the common capability ids,
2282  * false otherwise.
2283  */
2284 static bool
2285 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2286 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2287 {
2288 	u32 logical_id = LE32_TO_CPU(elem->logical_id);
2289 	u32 phys_id = LE32_TO_CPU(elem->phys_id);
2290 	u32 number = LE32_TO_CPU(elem->number);
2291 	u16 cap = LE16_TO_CPU(elem->cap);
2292 	bool found = true;
2293 
2294 	switch (cap) {
2295 	case ICE_AQC_CAPS_SWITCHING_MODE:
2296 		caps->switching_mode = number;
2297 		ice_debug(hw, ICE_DBG_INIT, "%s: switching_mode = %d\n", prefix,
2298 			  caps->switching_mode);
2299 		break;
2300 	case ICE_AQC_CAPS_MANAGEABILITY_MODE:
2301 		caps->mgmt_mode = number;
2302 		caps->mgmt_protocols_mctp = logical_id;
2303 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_mode = %d\n", prefix,
2304 			  caps->mgmt_mode);
2305 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_protocols_mctp = %d\n", prefix,
2306 			  caps->mgmt_protocols_mctp);
2307 		break;
2308 	case ICE_AQC_CAPS_OS2BMC:
2309 		caps->os2bmc = number;
2310 		ice_debug(hw, ICE_DBG_INIT, "%s: os2bmc = %d\n", prefix, caps->os2bmc);
2311 		break;
2312 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2313 		caps->valid_functions = number;
2314 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2315 			  caps->valid_functions);
2316 		break;
2317 	case ICE_AQC_CAPS_SRIOV:
2318 		caps->sr_iov_1_1 = (number == 1);
2319 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2320 			  caps->sr_iov_1_1);
2321 		break;
2322 	case ICE_AQC_CAPS_802_1QBG:
2323 		caps->evb_802_1_qbg = (number == 1);
2324 		ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbg = %d\n", prefix, number);
2325 		break;
2326 	case ICE_AQC_CAPS_802_1BR:
2327 		caps->evb_802_1_qbh = (number == 1);
2328 		ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbh = %d\n", prefix, number);
2329 		break;
2330 	case ICE_AQC_CAPS_DCB:
2331 		caps->dcb = (number == 1);
2332 		caps->active_tc_bitmap = logical_id;
2333 		caps->maxtc = phys_id;
2334 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2335 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2336 			  caps->active_tc_bitmap);
2337 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2338 		break;
2339 	case ICE_AQC_CAPS_ISCSI:
2340 		caps->iscsi = (number == 1);
2341 		ice_debug(hw, ICE_DBG_INIT, "%s: iscsi = %d\n", prefix, caps->iscsi);
2342 		break;
2343 	case ICE_AQC_CAPS_RSS:
2344 		caps->rss_table_size = number;
2345 		caps->rss_table_entry_width = logical_id;
2346 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2347 			  caps->rss_table_size);
2348 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2349 			  caps->rss_table_entry_width);
2350 		break;
2351 	case ICE_AQC_CAPS_RXQS:
2352 		caps->num_rxq = number;
2353 		caps->rxq_first_id = phys_id;
2354 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2355 			  caps->num_rxq);
2356 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2357 			  caps->rxq_first_id);
2358 		break;
2359 	case ICE_AQC_CAPS_TXQS:
2360 		caps->num_txq = number;
2361 		caps->txq_first_id = phys_id;
2362 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2363 			  caps->num_txq);
2364 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2365 			  caps->txq_first_id);
2366 		break;
2367 	case ICE_AQC_CAPS_MSIX:
2368 		caps->num_msix_vectors = number;
2369 		caps->msix_vector_first_id = phys_id;
2370 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2371 			  caps->num_msix_vectors);
2372 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2373 			  caps->msix_vector_first_id);
2374 		break;
2375 	case ICE_AQC_CAPS_NVM_MGMT:
2376 		caps->sec_rev_disabled =
2377 			(number & ICE_NVM_MGMT_SEC_REV_DISABLED) ?
2378 			true : false;
2379 		ice_debug(hw, ICE_DBG_INIT, "%s: sec_rev_disabled = %d\n", prefix,
2380 			  caps->sec_rev_disabled);
2381 		caps->update_disabled =
2382 			(number & ICE_NVM_MGMT_UPDATE_DISABLED) ?
2383 			true : false;
2384 		ice_debug(hw, ICE_DBG_INIT, "%s: update_disabled = %d\n", prefix,
2385 			  caps->update_disabled);
2386 		caps->nvm_unified_update =
2387 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2388 			true : false;
2389 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2390 			  caps->nvm_unified_update);
2391 		caps->netlist_auth =
2392 			(number & ICE_NVM_MGMT_NETLIST_AUTH_SUPPORT) ?
2393 			true : false;
2394 		ice_debug(hw, ICE_DBG_INIT, "%s: netlist_auth = %d\n", prefix,
2395 			  caps->netlist_auth);
2396 		break;
2397 	case ICE_AQC_CAPS_CEM:
2398 		caps->mgmt_cem = (number == 1);
2399 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_cem = %d\n", prefix,
2400 			  caps->mgmt_cem);
2401 		break;
2402 	case ICE_AQC_CAPS_IWARP:
2403 		caps->iwarp = (number == 1);
2404 		ice_debug(hw, ICE_DBG_INIT, "%s: iwarp = %d\n", prefix, caps->iwarp);
2405 		break;
2406 	case ICE_AQC_CAPS_ROCEV2_LAG:
2407 		caps->roce_lag = (number == 1);
2408 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %d\n",
2409 			  prefix, caps->roce_lag);
2410 		break;
2411 	case ICE_AQC_CAPS_LED:
2412 		if (phys_id < ICE_MAX_SUPPORTED_GPIO_LED) {
2413 			caps->led[phys_id] = true;
2414 			caps->led_pin_num++;
2415 			ice_debug(hw, ICE_DBG_INIT, "%s: led[%d] = 1\n", prefix, phys_id);
2416 		}
2417 		break;
2418 	case ICE_AQC_CAPS_SDP:
2419 		if (phys_id < ICE_MAX_SUPPORTED_GPIO_SDP) {
2420 			caps->sdp[phys_id] = true;
2421 			caps->sdp_pin_num++;
2422 			ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%d] = 1\n", prefix, phys_id);
2423 		}
2424 		break;
2425 	case ICE_AQC_CAPS_WR_CSR_PROT:
2426 		caps->wr_csr_prot = number;
2427 		caps->wr_csr_prot |= (u64)logical_id << 32;
2428 		ice_debug(hw, ICE_DBG_INIT, "%s: wr_csr_prot = 0x%llX\n", prefix,
2429 			  (unsigned long long)caps->wr_csr_prot);
2430 		break;
2431 	case ICE_AQC_CAPS_WOL_PROXY:
2432 		caps->num_wol_proxy_fltr = number;
2433 		caps->wol_proxy_vsi_seid = logical_id;
2434 		caps->apm_wol_support = !!(phys_id & ICE_WOL_SUPPORT_M);
2435 		caps->acpi_prog_mthd = !!(phys_id &
2436 					  ICE_ACPI_PROG_MTHD_M);
2437 		caps->proxy_support = !!(phys_id & ICE_PROXY_SUPPORT_M);
2438 		ice_debug(hw, ICE_DBG_INIT, "%s: num_wol_proxy_fltr = %d\n", prefix,
2439 			  caps->num_wol_proxy_fltr);
2440 		ice_debug(hw, ICE_DBG_INIT, "%s: wol_proxy_vsi_seid = %d\n", prefix,
2441 			  caps->wol_proxy_vsi_seid);
2442 		ice_debug(hw, ICE_DBG_INIT, "%s: apm_wol_support = %d\n",
2443 			  prefix, caps->apm_wol_support);
2444 		break;
2445 	case ICE_AQC_CAPS_MAX_MTU:
2446 		caps->max_mtu = number;
2447 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2448 			  prefix, caps->max_mtu);
2449 		break;
2450 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2451 		caps->pcie_reset_avoidance = (number > 0);
2452 		ice_debug(hw, ICE_DBG_INIT,
2453 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2454 			  caps->pcie_reset_avoidance);
2455 		break;
2456 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2457 		caps->reset_restrict_support = (number == 1);
2458 		ice_debug(hw, ICE_DBG_INIT,
2459 			  "%s: reset_restrict_support = %d\n", prefix,
2460 			  caps->reset_restrict_support);
2461 		break;
2462 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG0:
2463 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG1:
2464 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG2:
2465 	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG3:
2466 	{
2467 		u8 index = (u8)(cap - ICE_AQC_CAPS_EXT_TOPO_DEV_IMG0);
2468 
2469 		caps->ext_topo_dev_img_ver_high[index] = number;
2470 		caps->ext_topo_dev_img_ver_low[index] = logical_id;
2471 		caps->ext_topo_dev_img_part_num[index] =
2472 			(phys_id & ICE_EXT_TOPO_DEV_IMG_PART_NUM_M) >>
2473 			ICE_EXT_TOPO_DEV_IMG_PART_NUM_S;
2474 		caps->ext_topo_dev_img_load_en[index] =
2475 			(phys_id & ICE_EXT_TOPO_DEV_IMG_LOAD_EN) != 0;
2476 		caps->ext_topo_dev_img_prog_en[index] =
2477 			(phys_id & ICE_EXT_TOPO_DEV_IMG_PROG_EN) != 0;
2478 		caps->ext_topo_dev_img_ver_schema[index] =
2479 			(phys_id & ICE_EXT_TOPO_DEV_IMG_VER_SCHEMA) != 0;
2480 		ice_debug(hw, ICE_DBG_INIT,
2481 			  "%s: ext_topo_dev_img_ver_high[%d] = %d\n",
2482 			  prefix, index,
2483 			  caps->ext_topo_dev_img_ver_high[index]);
2484 		ice_debug(hw, ICE_DBG_INIT,
2485 			  "%s: ext_topo_dev_img_ver_low[%d] = %d\n",
2486 			  prefix, index,
2487 			  caps->ext_topo_dev_img_ver_low[index]);
2488 		ice_debug(hw, ICE_DBG_INIT,
2489 			  "%s: ext_topo_dev_img_part_num[%d] = %d\n",
2490 			  prefix, index,
2491 			  caps->ext_topo_dev_img_part_num[index]);
2492 		ice_debug(hw, ICE_DBG_INIT,
2493 			  "%s: ext_topo_dev_img_load_en[%d] = %d\n",
2494 			  prefix, index,
2495 			  caps->ext_topo_dev_img_load_en[index]);
2496 		ice_debug(hw, ICE_DBG_INIT,
2497 			  "%s: ext_topo_dev_img_prog_en[%d] = %d\n",
2498 			  prefix, index,
2499 			  caps->ext_topo_dev_img_prog_en[index]);
2500 		ice_debug(hw, ICE_DBG_INIT,
2501 			  "%s: ext_topo_dev_img_ver_schema[%d] = %d\n",
2502 			  prefix, index,
2503 			  caps->ext_topo_dev_img_ver_schema[index]);
2504 		break;
2505 	}
2506 	case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2507 		caps->tx_sched_topo_comp_mode_en = (number == 1);
2508 		break;
2509 	case ICE_AQC_CAPS_DYN_FLATTENING:
2510 		caps->dyn_flattening_en = (number == 1);
2511 		ice_debug(hw, ICE_DBG_INIT, "%s: dyn_flattening_en = %d\n",
2512 			  prefix, caps->dyn_flattening_en);
2513 		break;
2514 	case ICE_AQC_CAPS_OROM_RECOVERY_UPDATE:
2515 		caps->orom_recovery_update = (number == 1);
2516 		ice_debug(hw, ICE_DBG_INIT, "%s: orom_recovery_update = %d\n",
2517 			  prefix, caps->orom_recovery_update);
2518 		break;
2519 	default:
2520 		/* Not one of the recognized common capabilities */
2521 		found = false;
2522 	}
2523 
2524 	return found;
2525 }
2526 
2527 /**
2528  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2529  * @hw: pointer to the HW structure
2530  * @caps: pointer to capabilities structure to fix
2531  *
2532  * Re-calculate the capabilities that are dependent on the number of physical
2533  * ports; i.e. some features are not supported or function differently on
2534  * devices with more than 4 ports.
2535  */
2536 static void
2537 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2538 {
2539 	/* This assumes device capabilities are always scanned before function
2540 	 * capabilities during the initialization flow.
2541 	 */
2542 	if (hw->dev_caps.num_funcs > 4) {
2543 		/* Max 4 TCs per port */
2544 		caps->maxtc = 4;
2545 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2546 			  caps->maxtc);
2547 		if (caps->iwarp) {
2548 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2549 			caps->iwarp = 0;
2550 		}
2551 
2552 		/* print message only when processing device capabilities
2553 		 * during initialization.
2554 		 */
2555 		if (caps == &hw->dev_caps.common_cap)
2556 			ice_info(hw, "RDMA functionality is not available with the current device configuration.\n");
2557 	}
2558 }
2559 
2560 /**
2561  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2562  * @hw: pointer to the HW struct
2563  * @func_p: pointer to function capabilities structure
2564  * @cap: pointer to the capability element to parse
2565  *
2566  * Extract function capabilities for ICE_AQC_CAPS_VF.
2567  */
2568 static void
2569 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2570 		       struct ice_aqc_list_caps_elem *cap)
2571 {
2572 	u32 number = LE32_TO_CPU(cap->number);
2573 	u32 logical_id = LE32_TO_CPU(cap->logical_id);
2574 
2575 	func_p->num_allocd_vfs = number;
2576 	func_p->vf_base_id = logical_id;
2577 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2578 		  func_p->num_allocd_vfs);
2579 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2580 		  func_p->vf_base_id);
2581 }
2582 
2583 /**
2584  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2585  * @hw: pointer to the HW struct
2586  * @func_p: pointer to function capabilities structure
2587  * @cap: pointer to the capability element to parse
2588  *
2589  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2590  */
2591 static void
2592 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2593 			struct ice_aqc_list_caps_elem *cap)
2594 {
2595 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2596 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2597 		  LE32_TO_CPU(cap->number));
2598 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2599 		  func_p->guar_num_vsi);
2600 }
2601 
2602 /**
2603  * ice_parse_func_caps - Parse function capabilities
2604  * @hw: pointer to the HW struct
2605  * @func_p: pointer to function capabilities structure
2606  * @buf: buffer containing the function capability records
2607  * @cap_count: the number of capabilities
2608  *
2609  * Helper function to parse function (0x000A) capabilities list. For
2610  * capabilities shared between device and function, this relies on
2611  * ice_parse_common_caps.
2612  *
2613  * Loop through the list of provided capabilities and extract the relevant
2614  * data into the function capabilities structured.
2615  */
2616 static void
2617 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2618 		    void *buf, u32 cap_count)
2619 {
2620 	struct ice_aqc_list_caps_elem *cap_resp;
2621 	u32 i;
2622 
2623 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2624 
2625 	ice_memset(func_p, 0, sizeof(*func_p), ICE_NONDMA_MEM);
2626 
2627 	for (i = 0; i < cap_count; i++) {
2628 		u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2629 		bool found;
2630 
2631 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2632 					      &cap_resp[i], "func caps");
2633 
2634 		switch (cap) {
2635 		case ICE_AQC_CAPS_VF:
2636 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2637 			break;
2638 		case ICE_AQC_CAPS_VSI:
2639 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2640 			break;
2641 		default:
2642 			/* Don't list common capabilities as unknown */
2643 			if (!found)
2644 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2645 					  i, cap);
2646 			break;
2647 		}
2648 	}
2649 
2650 	ice_print_led_caps(hw, &func_p->common_cap, "func caps", true);
2651 	ice_print_sdp_caps(hw, &func_p->common_cap, "func caps", true);
2652 
2653 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2654 }
2655 
2656 /**
2657  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2658  * @hw: pointer to the HW struct
2659  * @dev_p: pointer to device capabilities structure
2660  * @cap: capability element to parse
2661  *
2662  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2663  */
2664 static void
2665 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2666 			      struct ice_aqc_list_caps_elem *cap)
2667 {
2668 	u32 number = LE32_TO_CPU(cap->number);
2669 
2670 	dev_p->num_funcs = ice_hweight32(number);
2671 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2672 		  dev_p->num_funcs);
2673 
2674 }
2675 
2676 /**
2677  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2678  * @hw: pointer to the HW struct
2679  * @dev_p: pointer to device capabilities structure
2680  * @cap: capability element to parse
2681  *
2682  * Parse ICE_AQC_CAPS_VF for device capabilities.
2683  */
2684 static void
2685 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2686 		      struct ice_aqc_list_caps_elem *cap)
2687 {
2688 	u32 number = LE32_TO_CPU(cap->number);
2689 
2690 	dev_p->num_vfs_exposed = number;
2691 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2692 		  dev_p->num_vfs_exposed);
2693 }
2694 
2695 /**
2696  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2697  * @hw: pointer to the HW struct
2698  * @dev_p: pointer to device capabilities structure
2699  * @cap: capability element to parse
2700  *
2701  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2702  */
2703 static void
2704 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2705 		       struct ice_aqc_list_caps_elem *cap)
2706 {
2707 	u32 number = LE32_TO_CPU(cap->number);
2708 
2709 	dev_p->num_vsi_allocd_to_host = number;
2710 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2711 		  dev_p->num_vsi_allocd_to_host);
2712 }
2713 
2714 /**
2715  * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2716  * @hw: pointer to the HW struct
2717  * @dev_p: pointer to device capabilities structure
2718  * @cap: capability element to parse
2719  *
2720  * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2721  */
2722 static void
2723 ice_parse_nac_topo_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2724 			    struct ice_aqc_list_caps_elem *cap)
2725 {
2726 	dev_p->nac_topo.mode = LE32_TO_CPU(cap->number);
2727 	dev_p->nac_topo.id = LE32_TO_CPU(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2728 
2729 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2730 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2731 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2732 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2733 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2734 		  dev_p->nac_topo.id);
2735 }
2736 
2737 /**
2738  * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2739  * @hw: pointer to the HW struct
2740  * @dev_p: pointer to device capabilities structure
2741  * @cap: capability element to parse
2742  *
2743  * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2744  * enabled sensors.
2745  */
2746 static void
2747 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2748 			     struct ice_aqc_list_caps_elem *cap)
2749 {
2750 	dev_p->supported_sensors = LE32_TO_CPU(cap->number);
2751 
2752 	ice_debug(hw, ICE_DBG_INIT,
2753 		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2754 		  dev_p->supported_sensors);
2755 }
2756 
2757 /**
2758  * ice_parse_dev_caps - Parse device capabilities
2759  * @hw: pointer to the HW struct
2760  * @dev_p: pointer to device capabilities structure
2761  * @buf: buffer containing the device capability records
2762  * @cap_count: the number of capabilities
2763  *
2764  * Helper device to parse device (0x000B) capabilities list. For
2765  * capabilities shared between device and function, this relies on
2766  * ice_parse_common_caps.
2767  *
2768  * Loop through the list of provided capabilities and extract the relevant
2769  * data into the device capabilities structured.
2770  */
2771 static void
2772 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2773 		   void *buf, u32 cap_count)
2774 {
2775 	struct ice_aqc_list_caps_elem *cap_resp;
2776 	u32 i;
2777 
2778 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2779 
2780 	ice_memset(dev_p, 0, sizeof(*dev_p), ICE_NONDMA_MEM);
2781 
2782 	for (i = 0; i < cap_count; i++) {
2783 		u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2784 		bool found;
2785 
2786 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2787 					      &cap_resp[i], "dev caps");
2788 
2789 		switch (cap) {
2790 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2791 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2792 			break;
2793 		case ICE_AQC_CAPS_VF:
2794 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2795 			break;
2796 		case ICE_AQC_CAPS_VSI:
2797 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2798 			break;
2799 		case ICE_AQC_CAPS_NAC_TOPOLOGY:
2800 			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
2801 			break;
2802 		case ICE_AQC_CAPS_SENSOR_READING:
2803 			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2804 			break;
2805 		default:
2806 			/* Don't list common capabilities as unknown */
2807 			if (!found)
2808 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2809 					  i, cap);
2810 			break;
2811 		}
2812 	}
2813 
2814 	ice_print_led_caps(hw, &dev_p->common_cap, "dev caps", true);
2815 	ice_print_sdp_caps(hw, &dev_p->common_cap, "dev caps", true);
2816 
2817 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2818 }
2819 
2820 /**
2821  * ice_aq_list_caps - query function/device capabilities
2822  * @hw: pointer to the HW struct
2823  * @buf: a buffer to hold the capabilities
2824  * @buf_size: size of the buffer
2825  * @cap_count: if not NULL, set to the number of capabilities reported
2826  * @opc: capabilities type to discover, device or function
2827  * @cd: pointer to command details structure or NULL
2828  *
2829  * Get the function (0x000A) or device (0x000B) capabilities description from
2830  * firmware and store it in the buffer.
2831  *
2832  * If the cap_count pointer is not NULL, then it is set to the number of
2833  * capabilities firmware will report. Note that if the buffer size is too
2834  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2835  * cap_count will still be updated in this case. It is recommended that the
2836  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2837  * firmware could return) to avoid this.
2838  */
2839 static enum ice_status
2840 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2841 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2842 {
2843 	struct ice_aqc_list_caps *cmd;
2844 	struct ice_aq_desc desc;
2845 	enum ice_status status;
2846 
2847 	cmd = &desc.params.get_cap;
2848 
2849 	if (opc != ice_aqc_opc_list_func_caps &&
2850 	    opc != ice_aqc_opc_list_dev_caps)
2851 		return ICE_ERR_PARAM;
2852 
2853 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2854 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2855 
2856 	if (cap_count)
2857 		*cap_count = LE32_TO_CPU(cmd->count);
2858 
2859 	return status;
2860 }
2861 
2862 /**
2863  * ice_discover_dev_caps - Read and extract device capabilities
2864  * @hw: pointer to the hardware structure
2865  * @dev_caps: pointer to device capabilities structure
2866  *
2867  * Read the device capabilities and extract them into the dev_caps structure
2868  * for later use.
2869  */
2870 static enum ice_status
2871 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2872 {
2873 	enum ice_status status;
2874 	u32 cap_count = 0;
2875 	void *cbuf;
2876 
2877 	cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
2878 	if (!cbuf)
2879 		return ICE_ERR_NO_MEMORY;
2880 
2881 	/* Although the driver doesn't know the number of capabilities the
2882 	 * device will return, we can simply send a 4KB buffer, the maximum
2883 	 * possible size that firmware can return.
2884 	 */
2885 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2886 
2887 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2888 				  ice_aqc_opc_list_dev_caps, NULL);
2889 	if (!status)
2890 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2891 	ice_free(hw, cbuf);
2892 
2893 	return status;
2894 }
2895 
2896 /**
2897  * ice_discover_func_caps - Read and extract function capabilities
2898  * @hw: pointer to the hardware structure
2899  * @func_caps: pointer to function capabilities structure
2900  *
2901  * Read the function capabilities and extract them into the func_caps structure
2902  * for later use.
2903  */
2904 static enum ice_status
2905 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2906 {
2907 	enum ice_status status;
2908 	u32 cap_count = 0;
2909 	void *cbuf;
2910 
2911 	cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
2912 	if (!cbuf)
2913 		return ICE_ERR_NO_MEMORY;
2914 
2915 	/* Although the driver doesn't know the number of capabilities the
2916 	 * device will return, we can simply send a 4KB buffer, the maximum
2917 	 * possible size that firmware can return.
2918 	 */
2919 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2920 
2921 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2922 				  ice_aqc_opc_list_func_caps, NULL);
2923 	if (!status)
2924 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2925 	ice_free(hw, cbuf);
2926 
2927 	return status;
2928 }
2929 
2930 /**
2931  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2932  * @hw: pointer to the hardware structure
2933  */
2934 void ice_set_safe_mode_caps(struct ice_hw *hw)
2935 {
2936 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2937 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2938 	struct ice_hw_common_caps cached_caps;
2939 	u32 num_funcs;
2940 
2941 	/* cache some func_caps values that should be restored after memset */
2942 	cached_caps = func_caps->common_cap;
2943 
2944 	/* unset func capabilities */
2945 	memset(func_caps, 0, sizeof(*func_caps));
2946 
2947 #define ICE_RESTORE_FUNC_CAP(name) \
2948 	func_caps->common_cap.name = cached_caps.name
2949 
2950 	/* restore cached values */
2951 	ICE_RESTORE_FUNC_CAP(valid_functions);
2952 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2953 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2954 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2955 	ICE_RESTORE_FUNC_CAP(max_mtu);
2956 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2957 
2958 	/* one Tx and one Rx queue in safe mode */
2959 	func_caps->common_cap.num_rxq = 1;
2960 	func_caps->common_cap.num_txq = 1;
2961 
2962 	/* two MSIX vectors, one for traffic and one for misc causes */
2963 	func_caps->common_cap.num_msix_vectors = 2;
2964 	func_caps->guar_num_vsi = 1;
2965 
2966 	/* cache some dev_caps values that should be restored after memset */
2967 	cached_caps = dev_caps->common_cap;
2968 	num_funcs = dev_caps->num_funcs;
2969 
2970 	/* unset dev capabilities */
2971 	memset(dev_caps, 0, sizeof(*dev_caps));
2972 
2973 #define ICE_RESTORE_DEV_CAP(name) \
2974 	dev_caps->common_cap.name = cached_caps.name
2975 
2976 	/* restore cached values */
2977 	ICE_RESTORE_DEV_CAP(valid_functions);
2978 	ICE_RESTORE_DEV_CAP(txq_first_id);
2979 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2980 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2981 	ICE_RESTORE_DEV_CAP(max_mtu);
2982 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2983 	dev_caps->num_funcs = num_funcs;
2984 
2985 	/* one Tx and one Rx queue per function in safe mode */
2986 	dev_caps->common_cap.num_rxq = num_funcs;
2987 	dev_caps->common_cap.num_txq = num_funcs;
2988 
2989 	/* two MSIX vectors per function */
2990 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2991 }
2992 
2993 /**
2994  * ice_get_caps - get info about the HW
2995  * @hw: pointer to the hardware structure
2996  */
2997 enum ice_status ice_get_caps(struct ice_hw *hw)
2998 {
2999 	enum ice_status status;
3000 
3001 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
3002 	if (status)
3003 		return status;
3004 
3005 	return ice_discover_func_caps(hw, &hw->func_caps);
3006 }
3007 
3008 /**
3009  * ice_aq_manage_mac_write - manage MAC address write command
3010  * @hw: pointer to the HW struct
3011  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3012  * @flags: flags to control write behavior
3013  * @cd: pointer to command details structure or NULL
3014  *
3015  * This function is used to write MAC address to the NVM (0x0108).
3016  */
3017 enum ice_status
3018 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3019 			struct ice_sq_cd *cd)
3020 {
3021 	struct ice_aqc_manage_mac_write *cmd;
3022 	struct ice_aq_desc desc;
3023 
3024 	cmd = &desc.params.mac_write;
3025 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3026 
3027 	cmd->flags = flags;
3028 	ice_memcpy(cmd->mac_addr, mac_addr, ETH_ALEN, ICE_NONDMA_TO_NONDMA);
3029 
3030 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3031 }
3032 
3033 /**
3034  * ice_aq_clear_pxe_mode
3035  * @hw: pointer to the HW struct
3036  *
3037  * Tell the firmware that the driver is taking over from PXE (0x0110).
3038  */
3039 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
3040 {
3041 	struct ice_aq_desc desc;
3042 
3043 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3044 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3045 
3046 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3047 }
3048 
3049 /**
3050  * ice_clear_pxe_mode - clear pxe operations mode
3051  * @hw: pointer to the HW struct
3052  *
3053  * Make sure all PXE mode settings are cleared, including things
3054  * like descriptor fetch/write-back mode.
3055  */
3056 void ice_clear_pxe_mode(struct ice_hw *hw)
3057 {
3058 	if (ice_check_sq_alive(hw, &hw->adminq))
3059 		ice_aq_clear_pxe_mode(hw);
3060 }
3061 
3062 /**
3063  * ice_aq_set_port_params - set physical port parameters.
3064  * @pi: pointer to the port info struct
3065  * @bad_frame_vsi: defines the VSI to which bad frames are forwarded
3066  * @save_bad_pac: if set packets with errors are forwarded to the bad frames VSI
3067  * @pad_short_pac: if set transmit packets smaller than 60 bytes are padded
3068  * @double_vlan: if set double VLAN is enabled
3069  * @cd: pointer to command details structure or NULL
3070  *
3071  * Set Physical port parameters (0x0203)
3072  */
3073 enum ice_status
3074 ice_aq_set_port_params(struct ice_port_info *pi, u16 bad_frame_vsi,
3075 		       bool save_bad_pac, bool pad_short_pac, bool double_vlan,
3076 		       struct ice_sq_cd *cd)
3077 {
3078 	struct ice_aqc_set_port_params *cmd;
3079 	struct ice_hw *hw = pi->hw;
3080 	struct ice_aq_desc desc;
3081 	u16 cmd_flags = 0;
3082 
3083 	cmd = &desc.params.set_port_params;
3084 
3085 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3086 	cmd->bad_frame_vsi = CPU_TO_LE16(bad_frame_vsi);
3087 	if (save_bad_pac)
3088 		cmd_flags |= ICE_AQC_SET_P_PARAMS_SAVE_BAD_PACKETS;
3089 	if (pad_short_pac)
3090 		cmd_flags |= ICE_AQC_SET_P_PARAMS_PAD_SHORT_PACKETS;
3091 	if (double_vlan)
3092 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3093 	cmd->cmd_flags = CPU_TO_LE16(cmd_flags);
3094 
3095 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3096 }
3097 
3098 /**
3099  * ice_is_100m_speed_supported
3100  * @hw: pointer to the HW struct
3101  *
3102  * returns true if 100M speeds are supported by the device,
3103  * false otherwise.
3104  */
3105 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3106 {
3107 	switch (hw->device_id) {
3108 	case ICE_DEV_ID_E822C_SGMII:
3109 	case ICE_DEV_ID_E822L_SGMII:
3110 	case ICE_DEV_ID_E823L_1GBE:
3111 	case ICE_DEV_ID_E823C_SGMII:
3112 		return true;
3113 	default:
3114 		return false;
3115 	}
3116 }
3117 
3118 /**
3119  * ice_get_link_speed_based_on_phy_type - returns link speed
3120  * @phy_type_low: lower part of phy_type
3121  * @phy_type_high: higher part of phy_type
3122  *
3123  * This helper function will convert an entry in PHY type structure
3124  * [phy_type_low, phy_type_high] to its corresponding link speed.
3125  * Note: In the structure of [phy_type_low, phy_type_high], there should
3126  * be one bit set, as this function will convert one PHY type to its
3127  * speed.
3128  * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3129  * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3130  */
3131 static u16
3132 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3133 {
3134 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3135 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3136 
3137 	switch (phy_type_low) {
3138 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3139 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3140 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3141 		break;
3142 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3143 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3144 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3145 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3146 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3147 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3148 		break;
3149 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3150 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3151 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3152 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3153 		break;
3154 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3155 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3156 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3157 		break;
3158 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3159 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3160 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3161 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3162 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3163 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3164 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3165 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3166 		break;
3167 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3168 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3169 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3170 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3171 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3172 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3173 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3174 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3175 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3176 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3177 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3178 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3179 		break;
3180 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3181 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3182 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3183 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3184 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3185 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3186 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3187 		break;
3188 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3189 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3190 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3191 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3192 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3193 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3194 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3195 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3196 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3197 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3198 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3199 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3200 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3201 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3202 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3203 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3204 		break;
3205 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3206 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3207 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3208 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3209 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3210 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3211 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3212 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3213 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3214 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3215 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3216 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3217 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3218 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3219 		break;
3220 	default:
3221 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3222 		break;
3223 	}
3224 
3225 	switch (phy_type_high) {
3226 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3227 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3228 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3229 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3230 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3231 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3232 		break;
3233 	default:
3234 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3235 		break;
3236 	}
3237 
3238 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3239 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3240 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3241 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3242 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3243 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3244 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3245 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3246 		return speed_phy_type_low;
3247 	else
3248 		return speed_phy_type_high;
3249 }
3250 
3251 /**
3252  * ice_update_phy_type
3253  * @phy_type_low: pointer to the lower part of phy_type
3254  * @phy_type_high: pointer to the higher part of phy_type
3255  * @link_speeds_bitmap: targeted link speeds bitmap
3256  *
3257  * Note: For the link_speeds_bitmap structure, you can check it at
3258  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3259  * link_speeds_bitmap include multiple speeds.
3260  *
3261  * Each entry in this [phy_type_low, phy_type_high] structure will
3262  * present a certain link speed. This helper function will turn on bits
3263  * in [phy_type_low, phy_type_high] structure based on the value of
3264  * link_speeds_bitmap input parameter.
3265  */
3266 void
3267 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3268 		    u16 link_speeds_bitmap)
3269 {
3270 	u64 pt_high;
3271 	u64 pt_low;
3272 	int index;
3273 	u16 speed;
3274 
3275 	/* We first check with low part of phy_type */
3276 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3277 		pt_low = BIT_ULL(index);
3278 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3279 
3280 		if (link_speeds_bitmap & speed)
3281 			*phy_type_low |= BIT_ULL(index);
3282 	}
3283 
3284 	/* We then check with high part of phy_type */
3285 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3286 		pt_high = BIT_ULL(index);
3287 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3288 
3289 		if (link_speeds_bitmap & speed)
3290 			*phy_type_high |= BIT_ULL(index);
3291 	}
3292 }
3293 
3294 /**
3295  * ice_aq_set_phy_cfg
3296  * @hw: pointer to the HW struct
3297  * @pi: port info structure of the interested logical port
3298  * @cfg: structure with PHY configuration data to be set
3299  * @cd: pointer to command details structure or NULL
3300  *
3301  * Set the various PHY configuration parameters supported on the Port.
3302  * One or more of the Set PHY config parameters may be ignored in an MFP
3303  * mode as the PF may not have the privilege to set some of the PHY Config
3304  * parameters. This status will be indicated by the command response (0x0601).
3305  */
3306 enum ice_status
3307 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3308 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3309 {
3310 	struct ice_aq_desc desc;
3311 	enum ice_status status;
3312 
3313 	if (!cfg)
3314 		return ICE_ERR_PARAM;
3315 
3316 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3317 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3318 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3319 			  cfg->caps);
3320 
3321 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3322 	}
3323 
3324 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3325 	desc.params.set_phy.lport_num = pi->lport;
3326 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3327 
3328 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3329 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3330 		  (unsigned long long)LE64_TO_CPU(cfg->phy_type_low));
3331 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3332 		  (unsigned long long)LE64_TO_CPU(cfg->phy_type_high));
3333 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3334 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3335 		  cfg->low_power_ctrl_an);
3336 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3337 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3338 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3339 		  cfg->link_fec_opt);
3340 
3341 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3342 
3343 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3344 		status = ICE_SUCCESS;
3345 
3346 	if (!status)
3347 		pi->phy.curr_user_phy_cfg = *cfg;
3348 
3349 	return status;
3350 }
3351 
3352 /**
3353  * ice_update_link_info - update status of the HW network link
3354  * @pi: port info structure of the interested logical port
3355  */
3356 enum ice_status ice_update_link_info(struct ice_port_info *pi)
3357 {
3358 	struct ice_link_status *li;
3359 	enum ice_status status;
3360 
3361 	if (!pi)
3362 		return ICE_ERR_PARAM;
3363 
3364 	li = &pi->phy.link_info;
3365 
3366 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3367 	if (status)
3368 		return status;
3369 
3370 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3371 		struct ice_aqc_get_phy_caps_data *pcaps;
3372 		struct ice_hw *hw;
3373 
3374 		hw = pi->hw;
3375 		pcaps = (struct ice_aqc_get_phy_caps_data *)
3376 			ice_malloc(hw, sizeof(*pcaps));
3377 		if (!pcaps)
3378 			return ICE_ERR_NO_MEMORY;
3379 
3380 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3381 					     pcaps, NULL);
3382 
3383 		if (status == ICE_SUCCESS)
3384 			ice_memcpy(li->module_type, &pcaps->module_type,
3385 				   sizeof(li->module_type),
3386 				   ICE_NONDMA_TO_NONDMA);
3387 
3388 		ice_free(hw, pcaps);
3389 	}
3390 
3391 	return status;
3392 }
3393 
3394 /**
3395  * ice_cache_phy_user_req
3396  * @pi: port information structure
3397  * @cache_data: PHY logging data
3398  * @cache_mode: PHY logging mode
3399  *
3400  * Log the user request on (FC, FEC, SPEED) for later user.
3401  */
3402 static void
3403 ice_cache_phy_user_req(struct ice_port_info *pi,
3404 		       struct ice_phy_cache_mode_data cache_data,
3405 		       enum ice_phy_cache_mode cache_mode)
3406 {
3407 	if (!pi)
3408 		return;
3409 
3410 	switch (cache_mode) {
3411 	case ICE_FC_MODE:
3412 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3413 		break;
3414 	case ICE_SPEED_MODE:
3415 		pi->phy.curr_user_speed_req =
3416 			cache_data.data.curr_user_speed_req;
3417 		break;
3418 	case ICE_FEC_MODE:
3419 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3420 		break;
3421 	default:
3422 		break;
3423 	}
3424 }
3425 
3426 /**
3427  * ice_caps_to_fc_mode
3428  * @caps: PHY capabilities
3429  *
3430  * Convert PHY FC capabilities to ice FC mode
3431  */
3432 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3433 {
3434 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3435 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3436 		return ICE_FC_FULL;
3437 
3438 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3439 		return ICE_FC_TX_PAUSE;
3440 
3441 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3442 		return ICE_FC_RX_PAUSE;
3443 
3444 	return ICE_FC_NONE;
3445 }
3446 
3447 /**
3448  * ice_caps_to_fec_mode
3449  * @caps: PHY capabilities
3450  * @fec_options: Link FEC options
3451  *
3452  * Convert PHY FEC capabilities to ice FEC mode
3453  */
3454 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3455 {
3456 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC) {
3457 		if (fec_options & ICE_AQC_PHY_FEC_DIS)
3458 			return ICE_FEC_DIS_AUTO;
3459 		else
3460 			return ICE_FEC_AUTO;
3461 	}
3462 
3463 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3464 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3465 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3466 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3467 		return ICE_FEC_BASER;
3468 
3469 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3470 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3471 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3472 		return ICE_FEC_RS;
3473 
3474 	return ICE_FEC_NONE;
3475 }
3476 
3477 /**
3478  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3479  * @pi: port information structure
3480  * @cfg: PHY configuration data to set FC mode
3481  * @req_mode: FC mode to configure
3482  */
3483 static enum ice_status
3484 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3485 	       enum ice_fc_mode req_mode)
3486 {
3487 	struct ice_phy_cache_mode_data cache_data;
3488 	u8 pause_mask = 0x0;
3489 
3490 	if (!pi || !cfg)
3491 		return ICE_ERR_BAD_PTR;
3492 	switch (req_mode) {
3493 	case ICE_FC_AUTO:
3494 	{
3495 		struct ice_aqc_get_phy_caps_data *pcaps;
3496 		enum ice_status status;
3497 
3498 		pcaps = (struct ice_aqc_get_phy_caps_data *)
3499 			ice_malloc(pi->hw, sizeof(*pcaps));
3500 		if (!pcaps)
3501 			return ICE_ERR_NO_MEMORY;
3502 		/* Query the value of FC that both the NIC and attached media
3503 		 * can do.
3504 		 */
3505 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3506 					     pcaps, NULL);
3507 		if (status) {
3508 			ice_free(pi->hw, pcaps);
3509 			return status;
3510 		}
3511 
3512 		pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3513 		pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3514 
3515 		ice_free(pi->hw, pcaps);
3516 		break;
3517 	}
3518 	case ICE_FC_FULL:
3519 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3520 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3521 		break;
3522 	case ICE_FC_RX_PAUSE:
3523 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3524 		break;
3525 	case ICE_FC_TX_PAUSE:
3526 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3527 		break;
3528 	default:
3529 		break;
3530 	}
3531 
3532 	/* clear the old pause settings */
3533 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3534 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3535 
3536 	/* set the new capabilities */
3537 	cfg->caps |= pause_mask;
3538 
3539 	/* Cache user FC request */
3540 	cache_data.data.curr_user_fc_req = req_mode;
3541 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3542 
3543 	return ICE_SUCCESS;
3544 }
3545 
3546 /**
3547  * ice_set_fc
3548  * @pi: port information structure
3549  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3550  * @ena_auto_link_update: enable automatic link update
3551  *
3552  * Set the requested flow control mode.
3553  */
3554 enum ice_status
3555 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3556 {
3557 	struct ice_aqc_set_phy_cfg_data  cfg = { 0 };
3558 	struct ice_aqc_get_phy_caps_data *pcaps;
3559 	enum ice_status status;
3560 	struct ice_hw *hw;
3561 
3562 	if (!pi || !aq_failures)
3563 		return ICE_ERR_BAD_PTR;
3564 
3565 	*aq_failures = 0;
3566 	hw = pi->hw;
3567 
3568 	pcaps = (struct ice_aqc_get_phy_caps_data *)
3569 		ice_malloc(hw, sizeof(*pcaps));
3570 	if (!pcaps)
3571 		return ICE_ERR_NO_MEMORY;
3572 
3573 	/* Get the current PHY config */
3574 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3575 				     pcaps, NULL);
3576 
3577 	if (status) {
3578 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3579 		goto out;
3580 	}
3581 
3582 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3583 
3584 	/* Configure the set PHY data */
3585 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3586 	if (status) {
3587 		if (status != ICE_ERR_BAD_PTR)
3588 			*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3589 
3590 		goto out;
3591 	}
3592 
3593 	/* If the capabilities have changed, then set the new config */
3594 	if (cfg.caps != pcaps->caps) {
3595 		int retry_count, retry_max = 10;
3596 
3597 		/* Auto restart link so settings take effect */
3598 		if (ena_auto_link_update)
3599 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3600 
3601 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3602 		if (status) {
3603 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3604 			goto out;
3605 		}
3606 
3607 		/* Update the link info
3608 		 * It sometimes takes a really long time for link to
3609 		 * come back from the atomic reset. Thus, we wait a
3610 		 * little bit.
3611 		 */
3612 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3613 			status = ice_update_link_info(pi);
3614 
3615 			if (status == ICE_SUCCESS)
3616 				break;
3617 
3618 			ice_msec_delay(100, true);
3619 		}
3620 
3621 		if (status)
3622 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3623 	}
3624 
3625 out:
3626 	ice_free(hw, pcaps);
3627 	return status;
3628 }
3629 
3630 /**
3631  * ice_phy_caps_equals_cfg
3632  * @phy_caps: PHY capabilities
3633  * @phy_cfg: PHY configuration
3634  *
3635  * Helper function to determine if PHY capabilities matches PHY
3636  * configuration
3637  */
3638 bool
3639 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3640 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3641 {
3642 	u8 caps_mask, cfg_mask;
3643 
3644 	if (!phy_caps || !phy_cfg)
3645 		return false;
3646 
3647 	/* These bits are not common between capabilities and configuration.
3648 	 * Do not use them to determine equality.
3649 	 */
3650 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3651 					      ICE_AQC_PHY_EN_MOD_QUAL);
3652 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3653 
3654 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3655 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3656 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3657 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3658 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3659 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3660 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3661 		return false;
3662 
3663 	return true;
3664 }
3665 
3666 /**
3667  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3668  * @pi: port information structure
3669  * @caps: PHY ability structure to copy data from
3670  * @cfg: PHY configuration structure to copy data to
3671  *
3672  * Helper function to copy AQC PHY get ability data to PHY set configuration
3673  * data structure
3674  */
3675 void
3676 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3677 			 struct ice_aqc_get_phy_caps_data *caps,
3678 			 struct ice_aqc_set_phy_cfg_data *cfg)
3679 {
3680 	if (!pi || !caps || !cfg)
3681 		return;
3682 
3683 	ice_memset(cfg, 0, sizeof(*cfg), ICE_NONDMA_MEM);
3684 	cfg->phy_type_low = caps->phy_type_low;
3685 	cfg->phy_type_high = caps->phy_type_high;
3686 	cfg->caps = caps->caps;
3687 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3688 	cfg->eee_cap = caps->eee_cap;
3689 	cfg->eeer_value = caps->eeer_value;
3690 	cfg->link_fec_opt = caps->link_fec_options;
3691 	cfg->module_compliance_enforcement =
3692 		caps->module_compliance_enforcement;
3693 }
3694 
3695 /**
3696  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3697  * @pi: port information structure
3698  * @cfg: PHY configuration data to set FEC mode
3699  * @fec: FEC mode to configure
3700  */
3701 enum ice_status
3702 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3703 		enum ice_fec_mode fec)
3704 {
3705 	struct ice_aqc_get_phy_caps_data *pcaps;
3706 	enum ice_status status = ICE_SUCCESS;
3707 	struct ice_hw *hw;
3708 
3709 	if (!pi || !cfg)
3710 		return ICE_ERR_BAD_PTR;
3711 
3712 	hw = pi->hw;
3713 
3714 	pcaps = (struct ice_aqc_get_phy_caps_data *)
3715 		ice_malloc(hw, sizeof(*pcaps));
3716 	if (!pcaps)
3717 		return ICE_ERR_NO_MEMORY;
3718 
3719 	status = ice_aq_get_phy_caps(pi, false,
3720 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3721 				      ICE_AQC_REPORT_DFLT_CFG :
3722 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3723 
3724 	if (status)
3725 		goto out;
3726 
3727 	cfg->caps |= (pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC);
3728 	cfg->link_fec_opt = pcaps->link_fec_options;
3729 
3730 	switch (fec) {
3731 	case ICE_FEC_BASER:
3732 		/* Clear RS bits, and AND BASE-R ability
3733 		 * bits and OR request bits.
3734 		 */
3735 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3736 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3737 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3738 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3739 		break;
3740 	case ICE_FEC_RS:
3741 		/* Clear BASE-R bits, and AND RS ability
3742 		 * bits and OR request bits.
3743 		 */
3744 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3745 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3746 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3747 		break;
3748 	case ICE_FEC_NONE:
3749 		/* Clear all FEC option bits. */
3750 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3751 		break;
3752 	case ICE_FEC_DIS_AUTO:
3753 		/* Set No FEC and auto FEC */
3754 		if (!ice_fw_supports_fec_dis_auto(hw)) {
3755 			status = ICE_ERR_NOT_SUPPORTED;
3756 			goto out;
3757 		}
3758 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_DIS;
3759 		/* fall-through */
3760 	case ICE_FEC_AUTO:
3761 		/* AND auto FEC bit, and all caps bits. */
3762 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3763 		cfg->link_fec_opt |= pcaps->link_fec_options;
3764 		break;
3765 	default:
3766 		status = ICE_ERR_PARAM;
3767 		break;
3768 	}
3769 
3770 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw) &&
3771 	    !ice_fw_supports_report_dflt_cfg(pi->hw)) {
3772 		struct ice_link_default_override_tlv tlv;
3773 
3774 		if (ice_get_link_default_override(&tlv, pi))
3775 			goto out;
3776 
3777 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3778 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3779 			cfg->link_fec_opt = tlv.fec_options;
3780 	}
3781 
3782 out:
3783 	ice_free(hw, pcaps);
3784 
3785 	return status;
3786 }
3787 
3788 /**
3789  * ice_get_link_status - get status of the HW network link
3790  * @pi: port information structure
3791  * @link_up: pointer to bool (true/false = linkup/linkdown)
3792  *
3793  * Variable link_up is true if link is up, false if link is down.
3794  * The variable link_up is invalid if status is non zero. As a
3795  * result of this call, link status reporting becomes enabled
3796  */
3797 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3798 {
3799 	struct ice_phy_info *phy_info;
3800 	enum ice_status status = ICE_SUCCESS;
3801 
3802 	if (!pi || !link_up)
3803 		return ICE_ERR_PARAM;
3804 
3805 	phy_info = &pi->phy;
3806 
3807 	if (phy_info->get_link_info) {
3808 		status = ice_update_link_info(pi);
3809 
3810 		if (status)
3811 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3812 				  status);
3813 	}
3814 
3815 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3816 
3817 	return status;
3818 }
3819 
3820 /**
3821  * ice_aq_set_link_restart_an
3822  * @pi: pointer to the port information structure
3823  * @ena_link: if true: enable link, if false: disable link
3824  * @cd: pointer to command details structure or NULL
3825  *
3826  * Sets up the link and restarts the Auto-Negotiation over the link.
3827  */
3828 enum ice_status
3829 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3830 			   struct ice_sq_cd *cd)
3831 {
3832 	enum ice_status status = ICE_ERR_AQ_ERROR;
3833 	struct ice_aqc_restart_an *cmd;
3834 	struct ice_aq_desc desc;
3835 
3836 	cmd = &desc.params.restart_an;
3837 
3838 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3839 
3840 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3841 	cmd->lport_num = pi->lport;
3842 	if (ena_link)
3843 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3844 	else
3845 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3846 
3847 	status = ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3848 	if (status)
3849 		return status;
3850 
3851 	if (ena_link)
3852 		pi->phy.curr_user_phy_cfg.caps |= ICE_AQC_PHY_EN_LINK;
3853 	else
3854 		pi->phy.curr_user_phy_cfg.caps &= ~ICE_AQC_PHY_EN_LINK;
3855 
3856 	return ICE_SUCCESS;
3857 }
3858 
3859 /**
3860  * ice_aq_set_event_mask
3861  * @hw: pointer to the HW struct
3862  * @port_num: port number of the physical function
3863  * @mask: event mask to be set
3864  * @cd: pointer to command details structure or NULL
3865  *
3866  * Set event mask (0x0613)
3867  */
3868 enum ice_status
3869 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3870 		      struct ice_sq_cd *cd)
3871 {
3872 	struct ice_aqc_set_event_mask *cmd;
3873 	struct ice_aq_desc desc;
3874 
3875 	cmd = &desc.params.set_event_mask;
3876 
3877 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3878 
3879 	cmd->lport_num = port_num;
3880 
3881 	cmd->event_mask = CPU_TO_LE16(mask);
3882 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3883 }
3884 
3885 /**
3886  * ice_aq_set_mac_loopback
3887  * @hw: pointer to the HW struct
3888  * @ena_lpbk: Enable or Disable loopback
3889  * @cd: pointer to command details structure or NULL
3890  *
3891  * Enable/disable loopback on a given port
3892  */
3893 enum ice_status
3894 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3895 {
3896 	struct ice_aqc_set_mac_lb *cmd;
3897 	struct ice_aq_desc desc;
3898 
3899 	cmd = &desc.params.set_mac_lb;
3900 
3901 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3902 	if (ena_lpbk)
3903 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3904 
3905 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3906 }
3907 
3908 /**
3909  * ice_aq_set_port_id_led
3910  * @pi: pointer to the port information
3911  * @is_orig_mode: is this LED set to original mode (by the net-list)
3912  * @cd: pointer to command details structure or NULL
3913  *
3914  * Set LED value for the given port (0x06e9)
3915  */
3916 enum ice_status
3917 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3918 		       struct ice_sq_cd *cd)
3919 {
3920 	struct ice_aqc_set_port_id_led *cmd;
3921 	struct ice_hw *hw = pi->hw;
3922 	struct ice_aq_desc desc;
3923 
3924 	cmd = &desc.params.set_port_id_led;
3925 
3926 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3927 
3928 	if (is_orig_mode)
3929 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3930 	else
3931 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3932 
3933 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3934 }
3935 
3936 /**
3937  * ice_aq_sff_eeprom
3938  * @hw: pointer to the HW struct
3939  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3940  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3941  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3942  * @page: QSFP page
3943  * @set_page: set or ignore the page
3944  * @data: pointer to data buffer to be read/written to the I2C device.
3945  * @length: 1-16 for read, 1 for write.
3946  * @write: 0 read, 1 for write.
3947  * @cd: pointer to command details structure or NULL
3948  *
3949  * Read/Write SFF EEPROM (0x06EE)
3950  */
3951 enum ice_status
3952 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3953 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3954 		  bool write, struct ice_sq_cd *cd)
3955 {
3956 	struct ice_aqc_sff_eeprom *cmd;
3957 	struct ice_aq_desc desc;
3958 	enum ice_status status;
3959 
3960 	if (!data || (mem_addr & 0xff00))
3961 		return ICE_ERR_PARAM;
3962 
3963 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3964 	cmd = &desc.params.read_write_sff_param;
3965 	desc.flags = CPU_TO_LE16(ICE_AQ_FLAG_RD);
3966 	cmd->lport_num = (u8)(lport & 0xff);
3967 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3968 	cmd->i2c_bus_addr = CPU_TO_LE16(((bus_addr >> 1) &
3969 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3970 					((set_page <<
3971 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3972 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3973 	cmd->i2c_mem_addr = CPU_TO_LE16(mem_addr & 0xff);
3974 	cmd->eeprom_page = CPU_TO_LE16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3975 	if (write)
3976 		cmd->i2c_bus_addr |= CPU_TO_LE16(ICE_AQC_SFF_IS_WRITE);
3977 
3978 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3979 	return status;
3980 }
3981 
3982 /**
3983  * ice_aq_prog_topo_dev_nvm
3984  * @hw: pointer to the hardware structure
3985  * @topo_params: pointer to structure storing topology parameters for a device
3986  * @cd: pointer to command details structure or NULL
3987  *
3988  * Program Topology Device NVM (0x06F2)
3989  *
3990  */
3991 enum ice_status
3992 ice_aq_prog_topo_dev_nvm(struct ice_hw *hw,
3993 			 struct ice_aqc_link_topo_params *topo_params,
3994 			 struct ice_sq_cd *cd)
3995 {
3996 	struct ice_aqc_prog_topo_dev_nvm *cmd;
3997 	struct ice_aq_desc desc;
3998 
3999 	cmd = &desc.params.prog_topo_dev_nvm;
4000 
4001 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_prog_topo_dev_nvm);
4002 
4003 	ice_memcpy(&cmd->topo_params, topo_params, sizeof(*topo_params),
4004 		   ICE_NONDMA_TO_NONDMA);
4005 
4006 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4007 }
4008 
4009 /**
4010  * ice_aq_read_topo_dev_nvm
4011  * @hw: pointer to the hardware structure
4012  * @topo_params: pointer to structure storing topology parameters for a device
4013  * @start_address: byte offset in the topology device NVM
4014  * @data: pointer to data buffer
4015  * @data_size: number of bytes to be read from the topology device NVM
4016  * @cd: pointer to command details structure or NULL
4017  * Read Topology Device NVM (0x06F3)
4018  *
4019  */
4020 enum ice_status
4021 ice_aq_read_topo_dev_nvm(struct ice_hw *hw,
4022 			 struct ice_aqc_link_topo_params *topo_params,
4023 			 u32 start_address, u8 *data, u8 data_size,
4024 			 struct ice_sq_cd *cd)
4025 {
4026 	struct ice_aqc_read_topo_dev_nvm *cmd;
4027 	struct ice_aq_desc desc;
4028 	enum ice_status status;
4029 
4030 	if (!data || data_size == 0 ||
4031 	    data_size > ICE_AQC_READ_TOPO_DEV_NVM_DATA_READ_SIZE)
4032 		return ICE_ERR_PARAM;
4033 
4034 	cmd = &desc.params.read_topo_dev_nvm;
4035 
4036 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_topo_dev_nvm);
4037 
4038 	desc.datalen = CPU_TO_LE16(data_size);
4039 	ice_memcpy(&cmd->topo_params, topo_params, sizeof(*topo_params),
4040 		   ICE_NONDMA_TO_NONDMA);
4041 	cmd->start_address = CPU_TO_LE32(start_address);
4042 
4043 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4044 	if (status)
4045 		return status;
4046 
4047 	ice_memcpy(data, cmd->data_read, data_size, ICE_NONDMA_TO_NONDMA);
4048 
4049 	return ICE_SUCCESS;
4050 }
4051 
4052 static u16 ice_lut_type_to_size(u16 lut_type)
4053 {
4054 	switch (lut_type) {
4055 	case ICE_LUT_VSI:
4056 		return ICE_LUT_VSI_SIZE;
4057 	case ICE_LUT_GLOBAL:
4058 		return ICE_LUT_GLOBAL_SIZE;
4059 	case ICE_LUT_PF:
4060 		return ICE_LUT_PF_SIZE;
4061 	default:
4062 		return 0;
4063 	}
4064 }
4065 
4066 static u16 ice_lut_size_to_flag(u16 lut_size)
4067 {
4068 	u16 f = 0;
4069 
4070 	switch (lut_size) {
4071 	case ICE_LUT_GLOBAL_SIZE:
4072 		f = ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG;
4073 		break;
4074 	case ICE_LUT_PF_SIZE:
4075 		f = ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG;
4076 		break;
4077 	default:
4078 		break;
4079 	}
4080 	return f << ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S;
4081 }
4082 
4083 int ice_lut_size_to_type(int lut_size)
4084 {
4085 	switch (lut_size) {
4086 	case ICE_LUT_VSI_SIZE:
4087 		return ICE_LUT_VSI;
4088 	case ICE_LUT_GLOBAL_SIZE:
4089 		return ICE_LUT_GLOBAL;
4090 	case ICE_LUT_PF_SIZE:
4091 		return ICE_LUT_PF;
4092 	default:
4093 		return -1;
4094 	}
4095 }
4096 
4097 /**
4098  * __ice_aq_get_set_rss_lut
4099  * @hw: pointer to the hardware structure
4100  * @params: RSS LUT parameters
4101  * @set: set true to set the table, false to get the table
4102  *
4103  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4104  */
4105 static enum ice_status
4106 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
4107 {
4108 	u16 flags, vsi_id, lut_type, lut_size, glob_lut_idx = 0, vsi_handle;
4109 	struct ice_aqc_get_set_rss_lut *cmd_resp;
4110 	struct ice_aq_desc desc;
4111 	enum ice_status status;
4112 	u8 *lut;
4113 
4114 	if (!params)
4115 		return ICE_ERR_PARAM;
4116 
4117 	vsi_handle = params->vsi_handle;
4118 	lut = params->lut;
4119 	lut_type = params->lut_type;
4120 	lut_size = ice_lut_type_to_size(lut_type);
4121 	cmd_resp = &desc.params.get_set_rss_lut;
4122 	if (lut_type == ICE_LUT_GLOBAL)
4123 		glob_lut_idx = params->global_lut_id;
4124 
4125 	if (!lut || !lut_size || !ice_is_vsi_valid(hw, vsi_handle))
4126 		return ICE_ERR_PARAM;
4127 
4128 	if (lut_size > params->lut_size)
4129 		return ICE_ERR_INVAL_SIZE;
4130 
4131 	if (set && lut_size != params->lut_size)
4132 		return ICE_ERR_PARAM;
4133 
4134 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4135 
4136 	if (set) {
4137 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
4138 		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4139 	} else {
4140 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
4141 	}
4142 
4143 	cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
4144 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
4145 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
4146 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
4147 
4148 	flags = ice_lut_size_to_flag(lut_size) |
4149 		 ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
4150 		  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M) |
4151 		 ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
4152 		  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
4153 
4154 	cmd_resp->flags = CPU_TO_LE16(flags);
4155 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4156 	params->lut_size = LE16_TO_CPU(desc.datalen);
4157 	return status;
4158 }
4159 
4160 /**
4161  * ice_aq_get_rss_lut
4162  * @hw: pointer to the hardware structure
4163  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4164  *
4165  * get the RSS lookup table, PF or VSI type
4166  */
4167 enum ice_status
4168 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4169 {
4170 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4171 }
4172 
4173 /**
4174  * ice_aq_set_rss_lut
4175  * @hw: pointer to the hardware structure
4176  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4177  *
4178  * set the RSS lookup table, PF or VSI type
4179  */
4180 enum ice_status
4181 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4182 {
4183 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4184 }
4185 
4186 /**
4187  * __ice_aq_get_set_rss_key
4188  * @hw: pointer to the HW struct
4189  * @vsi_id: VSI FW index
4190  * @key: pointer to key info struct
4191  * @set: set true to set the key, false to get the key
4192  *
4193  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4194  */
4195 static enum
4196 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4197 				    struct ice_aqc_get_set_rss_keys *key,
4198 				    bool set)
4199 {
4200 	struct ice_aqc_get_set_rss_key *cmd_resp;
4201 	u16 key_size = sizeof(*key);
4202 	struct ice_aq_desc desc;
4203 
4204 	cmd_resp = &desc.params.get_set_rss_key;
4205 
4206 	if (set) {
4207 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4208 		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4209 	} else {
4210 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4211 	}
4212 
4213 	cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
4214 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
4215 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
4216 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
4217 
4218 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4219 }
4220 
4221 /**
4222  * ice_aq_get_rss_key
4223  * @hw: pointer to the HW struct
4224  * @vsi_handle: software VSI handle
4225  * @key: pointer to key info struct
4226  *
4227  * get the RSS key per VSI
4228  */
4229 enum ice_status
4230 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4231 		   struct ice_aqc_get_set_rss_keys *key)
4232 {
4233 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4234 		return ICE_ERR_PARAM;
4235 
4236 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4237 					key, false);
4238 }
4239 
4240 /**
4241  * ice_aq_set_rss_key
4242  * @hw: pointer to the HW struct
4243  * @vsi_handle: software VSI handle
4244  * @keys: pointer to key info struct
4245  *
4246  * set the RSS key per VSI
4247  */
4248 enum ice_status
4249 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4250 		   struct ice_aqc_get_set_rss_keys *keys)
4251 {
4252 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4253 		return ICE_ERR_PARAM;
4254 
4255 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4256 					keys, true);
4257 }
4258 
4259 /**
4260  * ice_aq_add_lan_txq
4261  * @hw: pointer to the hardware structure
4262  * @num_qgrps: Number of added queue groups
4263  * @qg_list: list of queue groups to be added
4264  * @buf_size: size of buffer for indirect command
4265  * @cd: pointer to command details structure or NULL
4266  *
4267  * Add Tx LAN queue (0x0C30)
4268  *
4269  * NOTE:
4270  * Prior to calling add Tx LAN queue:
4271  * Initialize the following as part of the Tx queue context:
4272  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4273  * Cache profile and Packet shaper profile.
4274  *
4275  * After add Tx LAN queue AQ command is completed:
4276  * Interrupts should be associated with specific queues,
4277  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4278  * flow.
4279  */
4280 enum ice_status
4281 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4282 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4283 		   struct ice_sq_cd *cd)
4284 {
4285 	struct ice_aqc_add_tx_qgrp *list;
4286 	struct ice_aqc_add_txqs *cmd;
4287 	struct ice_aq_desc desc;
4288 	u16 i, sum_size = 0;
4289 
4290 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
4291 
4292 	cmd = &desc.params.add_txqs;
4293 
4294 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4295 
4296 	if (!qg_list)
4297 		return ICE_ERR_PARAM;
4298 
4299 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4300 		return ICE_ERR_PARAM;
4301 
4302 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4303 		sum_size += ice_struct_size(list, txqs, list->num_txqs);
4304 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4305 						      list->num_txqs);
4306 	}
4307 
4308 	if (buf_size != sum_size)
4309 		return ICE_ERR_PARAM;
4310 
4311 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4312 
4313 	cmd->num_qgrps = num_qgrps;
4314 
4315 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4316 }
4317 
4318 /**
4319  * ice_aq_dis_lan_txq
4320  * @hw: pointer to the hardware structure
4321  * @num_qgrps: number of groups in the list
4322  * @qg_list: the list of groups to disable
4323  * @buf_size: the total size of the qg_list buffer in bytes
4324  * @rst_src: if called due to reset, specifies the reset source
4325  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4326  * @cd: pointer to command details structure or NULL
4327  *
4328  * Disable LAN Tx queue (0x0C31)
4329  */
4330 static enum ice_status
4331 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4332 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4333 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4334 		   struct ice_sq_cd *cd)
4335 {
4336 	struct ice_aqc_dis_txq_item *item;
4337 	struct ice_aqc_dis_txqs *cmd;
4338 	struct ice_aq_desc desc;
4339 	enum ice_status status;
4340 	u16 i, sz = 0;
4341 
4342 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
4343 	cmd = &desc.params.dis_txqs;
4344 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4345 
4346 	/* qg_list can be NULL only in VM/VF reset flow */
4347 	if (!qg_list && !rst_src)
4348 		return ICE_ERR_PARAM;
4349 
4350 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4351 		return ICE_ERR_PARAM;
4352 
4353 	cmd->num_entries = num_qgrps;
4354 
4355 	cmd->vmvf_and_timeout = CPU_TO_LE16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
4356 					    ICE_AQC_Q_DIS_TIMEOUT_M);
4357 
4358 	switch (rst_src) {
4359 	case ICE_VM_RESET:
4360 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4361 		cmd->vmvf_and_timeout |=
4362 			CPU_TO_LE16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
4363 		break;
4364 	case ICE_VF_RESET:
4365 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4366 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4367 		cmd->vmvf_and_timeout |=
4368 			CPU_TO_LE16((vmvf_num + hw->func_caps.vf_base_id) &
4369 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
4370 		break;
4371 	case ICE_NO_RESET:
4372 	default:
4373 		break;
4374 	}
4375 
4376 	/* flush pipe on time out */
4377 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4378 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4379 	if (!qg_list)
4380 		goto do_aq;
4381 
4382 	/* set RD bit to indicate that command buffer is provided by the driver
4383 	 * and it needs to be read by the firmware
4384 	 */
4385 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4386 
4387 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4388 		u16 item_size = ice_struct_size(item, q_id, item->num_qs);
4389 
4390 		/* If the num of queues is even, add 2 bytes of padding */
4391 		if ((item->num_qs % 2) == 0)
4392 			item_size += 2;
4393 
4394 		sz += item_size;
4395 
4396 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4397 	}
4398 
4399 	if (buf_size != sz)
4400 		return ICE_ERR_PARAM;
4401 
4402 do_aq:
4403 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4404 	if (status) {
4405 		if (!qg_list)
4406 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4407 				  vmvf_num, hw->adminq.sq_last_status);
4408 		else
4409 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4410 				  LE16_TO_CPU(qg_list[0].q_id[0]),
4411 				  hw->adminq.sq_last_status);
4412 	}
4413 	return status;
4414 }
4415 
4416 /**
4417  * ice_aq_move_recfg_lan_txq
4418  * @hw: pointer to the hardware structure
4419  * @num_qs: number of queues to move/reconfigure
4420  * @is_move: true if this operation involves node movement
4421  * @is_tc_change: true if this operation involves a TC change
4422  * @subseq_call: true if this operation is a subsequent call
4423  * @flush_pipe: on timeout, true to flush pipe, false to return EAGAIN
4424  * @timeout: timeout in units of 100 usec (valid values 0-50)
4425  * @blocked_cgds: out param, bitmap of CGDs that timed out if returning EAGAIN
4426  * @buf: struct containing src/dest TEID and per-queue info
4427  * @buf_size: size of buffer for indirect command
4428  * @txqs_moved: out param, number of queues successfully moved
4429  * @cd: pointer to command details structure or NULL
4430  *
4431  * Move / Reconfigure Tx LAN queues (0x0C32)
4432  */
4433 enum ice_status
4434 ice_aq_move_recfg_lan_txq(struct ice_hw *hw, u8 num_qs, bool is_move,
4435 			  bool is_tc_change, bool subseq_call, bool flush_pipe,
4436 			  u8 timeout, u32 *blocked_cgds,
4437 			  struct ice_aqc_move_txqs_data *buf, u16 buf_size,
4438 			  u8 *txqs_moved, struct ice_sq_cd *cd)
4439 {
4440 	struct ice_aqc_move_txqs *cmd;
4441 	struct ice_aq_desc desc;
4442 	enum ice_status status;
4443 
4444 	cmd = &desc.params.move_txqs;
4445 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_move_recfg_txqs);
4446 
4447 #define ICE_LAN_TXQ_MOVE_TIMEOUT_MAX 50
4448 	if (timeout > ICE_LAN_TXQ_MOVE_TIMEOUT_MAX)
4449 		return ICE_ERR_PARAM;
4450 
4451 	if (is_tc_change && !flush_pipe && !blocked_cgds)
4452 		return ICE_ERR_PARAM;
4453 
4454 	if (!is_move && !is_tc_change)
4455 		return ICE_ERR_PARAM;
4456 
4457 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4458 
4459 	if (is_move)
4460 		cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_MOVE;
4461 
4462 	if (is_tc_change)
4463 		cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_TC_CHANGE;
4464 
4465 	if (subseq_call)
4466 		cmd->cmd_type |= ICE_AQC_Q_CMD_SUBSEQ_CALL;
4467 
4468 	if (flush_pipe)
4469 		cmd->cmd_type |= ICE_AQC_Q_CMD_FLUSH_PIPE;
4470 
4471 	cmd->num_qs = num_qs;
4472 	cmd->timeout = ((timeout << ICE_AQC_Q_CMD_TIMEOUT_S) &
4473 			ICE_AQC_Q_CMD_TIMEOUT_M);
4474 
4475 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4476 
4477 	if (!status && txqs_moved)
4478 		*txqs_moved = cmd->num_qs;
4479 
4480 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EAGAIN &&
4481 	    is_tc_change && !flush_pipe)
4482 		*blocked_cgds = LE32_TO_CPU(cmd->blocked_cgds);
4483 
4484 	return status;
4485 }
4486 
4487 /**
4488  * ice_aq_add_rdma_qsets
4489  * @hw: pointer to the hardware structure
4490  * @num_qset_grps: Number of RDMA Qset groups
4491  * @qset_list: list of qset groups to be added
4492  * @buf_size: size of buffer for indirect command
4493  * @cd: pointer to command details structure or NULL
4494  *
4495  * Add Tx RDMA Qsets (0x0C33)
4496  */
4497 enum ice_status
4498 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4499 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4500 		      u16 buf_size, struct ice_sq_cd *cd)
4501 {
4502 	struct ice_aqc_add_rdma_qset_data *list;
4503 	struct ice_aqc_add_rdma_qset *cmd;
4504 	struct ice_aq_desc desc;
4505 	u16 i, sum_size = 0;
4506 
4507 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
4508 
4509 	cmd = &desc.params.add_rdma_qset;
4510 
4511 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4512 
4513 	if (!qset_list)
4514 		return ICE_ERR_PARAM;
4515 
4516 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4517 		return ICE_ERR_PARAM;
4518 
4519 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4520 		u16 num_qsets = LE16_TO_CPU(list->num_qsets);
4521 
4522 		sum_size += ice_struct_size(list, rdma_qsets, num_qsets);
4523 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4524 							     num_qsets);
4525 	}
4526 
4527 	if (buf_size != sum_size)
4528 		return ICE_ERR_PARAM;
4529 
4530 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4531 
4532 	cmd->num_qset_grps = num_qset_grps;
4533 
4534 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4535 }
4536 
4537 /* End of FW Admin Queue command wrappers */
4538 
4539 /**
4540  * ice_write_byte - write a byte to a packed context structure
4541  * @src_ctx:  the context structure to read from
4542  * @dest_ctx: the context to be written to
4543  * @ce_info:  a description of the struct to be filled
4544  */
4545 static void
4546 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4547 {
4548 	u8 src_byte, dest_byte, mask;
4549 	u8 *from, *dest;
4550 	u16 shift_width;
4551 
4552 	/* copy from the next struct field */
4553 	from = src_ctx + ce_info->offset;
4554 
4555 	/* prepare the bits and mask */
4556 	shift_width = ce_info->lsb % 8;
4557 	mask = (u8)(BIT(ce_info->width) - 1);
4558 
4559 	src_byte = *from;
4560 	src_byte &= mask;
4561 
4562 	/* shift to correct alignment */
4563 	mask <<= shift_width;
4564 	src_byte <<= shift_width;
4565 
4566 	/* get the current bits from the target bit string */
4567 	dest = dest_ctx + (ce_info->lsb / 8);
4568 
4569 	ice_memcpy(&dest_byte, dest, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
4570 
4571 	dest_byte &= ~mask;	/* get the bits not changing */
4572 	dest_byte |= src_byte;	/* add in the new bits */
4573 
4574 	/* put it all back */
4575 	ice_memcpy(dest, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
4576 }
4577 
4578 /**
4579  * ice_write_word - write a word to a packed context structure
4580  * @src_ctx:  the context structure to read from
4581  * @dest_ctx: the context to be written to
4582  * @ce_info:  a description of the struct to be filled
4583  */
4584 static void
4585 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4586 {
4587 	u16 src_word, mask;
4588 	__le16 dest_word;
4589 	u8 *from, *dest;
4590 	u16 shift_width;
4591 
4592 	/* copy from the next struct field */
4593 	from = src_ctx + ce_info->offset;
4594 
4595 	/* prepare the bits and mask */
4596 	shift_width = ce_info->lsb % 8;
4597 	mask = BIT(ce_info->width) - 1;
4598 
4599 	/* don't swizzle the bits until after the mask because the mask bits
4600 	 * will be in a different bit position on big endian machines
4601 	 */
4602 	src_word = *(u16 *)from;
4603 	src_word &= mask;
4604 
4605 	/* shift to correct alignment */
4606 	mask <<= shift_width;
4607 	src_word <<= shift_width;
4608 
4609 	/* get the current bits from the target bit string */
4610 	dest = dest_ctx + (ce_info->lsb / 8);
4611 
4612 	ice_memcpy(&dest_word, dest, sizeof(dest_word), ICE_DMA_TO_NONDMA);
4613 
4614 	dest_word &= ~(CPU_TO_LE16(mask));	/* get the bits not changing */
4615 	dest_word |= CPU_TO_LE16(src_word);	/* add in the new bits */
4616 
4617 	/* put it all back */
4618 	ice_memcpy(dest, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
4619 }
4620 
4621 /**
4622  * ice_write_dword - write a dword to a packed context structure
4623  * @src_ctx:  the context structure to read from
4624  * @dest_ctx: the context to be written to
4625  * @ce_info:  a description of the struct to be filled
4626  */
4627 static void
4628 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4629 {
4630 	u32 src_dword, mask;
4631 	__le32 dest_dword;
4632 	u8 *from, *dest;
4633 	u16 shift_width;
4634 
4635 	/* copy from the next struct field */
4636 	from = src_ctx + ce_info->offset;
4637 
4638 	/* prepare the bits and mask */
4639 	shift_width = ce_info->lsb % 8;
4640 
4641 	/* if the field width is exactly 32 on an x86 machine, then the shift
4642 	 * operation will not work because the SHL instructions count is masked
4643 	 * to 5 bits so the shift will do nothing
4644 	 */
4645 	if (ce_info->width < 32)
4646 		mask = BIT(ce_info->width) - 1;
4647 	else
4648 		mask = (u32)~0;
4649 
4650 	/* don't swizzle the bits until after the mask because the mask bits
4651 	 * will be in a different bit position on big endian machines
4652 	 */
4653 	src_dword = *(u32 *)from;
4654 	src_dword &= mask;
4655 
4656 	/* shift to correct alignment */
4657 	mask <<= shift_width;
4658 	src_dword <<= shift_width;
4659 
4660 	/* get the current bits from the target bit string */
4661 	dest = dest_ctx + (ce_info->lsb / 8);
4662 
4663 	ice_memcpy(&dest_dword, dest, sizeof(dest_dword), ICE_DMA_TO_NONDMA);
4664 
4665 	dest_dword &= ~(CPU_TO_LE32(mask));	/* get the bits not changing */
4666 	dest_dword |= CPU_TO_LE32(src_dword);	/* add in the new bits */
4667 
4668 	/* put it all back */
4669 	ice_memcpy(dest, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
4670 }
4671 
4672 /**
4673  * ice_write_qword - write a qword to a packed context structure
4674  * @src_ctx:  the context structure to read from
4675  * @dest_ctx: the context to be written to
4676  * @ce_info:  a description of the struct to be filled
4677  */
4678 static void
4679 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4680 {
4681 	u64 src_qword, mask;
4682 	__le64 dest_qword;
4683 	u8 *from, *dest;
4684 	u16 shift_width;
4685 
4686 	/* copy from the next struct field */
4687 	from = src_ctx + ce_info->offset;
4688 
4689 	/* prepare the bits and mask */
4690 	shift_width = ce_info->lsb % 8;
4691 
4692 	/* if the field width is exactly 64 on an x86 machine, then the shift
4693 	 * operation will not work because the SHL instructions count is masked
4694 	 * to 6 bits so the shift will do nothing
4695 	 */
4696 	if (ce_info->width < 64)
4697 		mask = BIT_ULL(ce_info->width) - 1;
4698 	else
4699 		mask = (u64)~0;
4700 
4701 	/* don't swizzle the bits until after the mask because the mask bits
4702 	 * will be in a different bit position on big endian machines
4703 	 */
4704 	src_qword = *(u64 *)from;
4705 	src_qword &= mask;
4706 
4707 	/* shift to correct alignment */
4708 	mask <<= shift_width;
4709 	src_qword <<= shift_width;
4710 
4711 	/* get the current bits from the target bit string */
4712 	dest = dest_ctx + (ce_info->lsb / 8);
4713 
4714 	ice_memcpy(&dest_qword, dest, sizeof(dest_qword), ICE_DMA_TO_NONDMA);
4715 
4716 	dest_qword &= ~(CPU_TO_LE64(mask));	/* get the bits not changing */
4717 	dest_qword |= CPU_TO_LE64(src_qword);	/* add in the new bits */
4718 
4719 	/* put it all back */
4720 	ice_memcpy(dest, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
4721 }
4722 
4723 /**
4724  * ice_set_ctx - set context bits in packed structure
4725  * @hw: pointer to the hardware structure
4726  * @src_ctx:  pointer to a generic non-packed context structure
4727  * @dest_ctx: pointer to memory for the packed structure
4728  * @ce_info:  a description of the structure to be transformed
4729  */
4730 enum ice_status
4731 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4732 	    const struct ice_ctx_ele *ce_info)
4733 {
4734 	int f;
4735 
4736 	for (f = 0; ce_info[f].width; f++) {
4737 		/* We have to deal with each element of the FW response
4738 		 * using the correct size so that we are correct regardless
4739 		 * of the endianness of the machine.
4740 		 */
4741 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4742 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4743 				  f, ce_info[f].width, ce_info[f].size_of);
4744 			continue;
4745 		}
4746 		switch (ce_info[f].size_of) {
4747 		case sizeof(u8):
4748 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4749 			break;
4750 		case sizeof(u16):
4751 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4752 			break;
4753 		case sizeof(u32):
4754 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4755 			break;
4756 		case sizeof(u64):
4757 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4758 			break;
4759 		default:
4760 			return ICE_ERR_INVAL_SIZE;
4761 		}
4762 	}
4763 
4764 	return ICE_SUCCESS;
4765 }
4766 
4767 /**
4768  * ice_aq_get_internal_data
4769  * @hw: pointer to the hardware structure
4770  * @cluster_id: specific cluster to dump
4771  * @table_id: table ID within cluster
4772  * @start: index of line in the block to read
4773  * @buf: dump buffer
4774  * @buf_size: dump buffer size
4775  * @ret_buf_size: return buffer size (returned by FW)
4776  * @ret_next_table: next block to read (returned by FW)
4777  * @ret_next_index: next index to read (returned by FW)
4778  * @cd: pointer to command details structure
4779  *
4780  * Get internal FW/HW data (0xFF08) for debug purposes.
4781  */
4782 enum ice_status
4783 ice_aq_get_internal_data(struct ice_hw *hw, u8 cluster_id, u16 table_id,
4784 			 u32 start, void *buf, u16 buf_size, u16 *ret_buf_size,
4785 			 u16 *ret_next_table, u32 *ret_next_index,
4786 			 struct ice_sq_cd *cd)
4787 {
4788 	struct ice_aqc_debug_dump_internals *cmd;
4789 	struct ice_aq_desc desc;
4790 	enum ice_status status;
4791 
4792 	cmd = &desc.params.debug_dump;
4793 
4794 	if (buf_size == 0 || !buf)
4795 		return ICE_ERR_PARAM;
4796 
4797 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_debug_dump_internals);
4798 
4799 	cmd->cluster_id = cluster_id;
4800 	cmd->table_id = CPU_TO_LE16(table_id);
4801 	cmd->idx = CPU_TO_LE32(start);
4802 
4803 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4804 
4805 	if (!status) {
4806 		if (ret_buf_size)
4807 			*ret_buf_size = LE16_TO_CPU(desc.datalen);
4808 		if (ret_next_table)
4809 			*ret_next_table = LE16_TO_CPU(cmd->table_id);
4810 		if (ret_next_index)
4811 			*ret_next_index = LE32_TO_CPU(cmd->idx);
4812 	}
4813 
4814 	return status;
4815 }
4816 
4817 /**
4818  * ice_read_byte - read context byte into struct
4819  * @src_ctx:  the context structure to read from
4820  * @dest_ctx: the context to be written to
4821  * @ce_info:  a description of the struct to be filled
4822  */
4823 static void
4824 ice_read_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4825 {
4826 	u8 dest_byte, mask;
4827 	u8 *src, *target;
4828 	u16 shift_width;
4829 
4830 	/* prepare the bits and mask */
4831 	shift_width = ce_info->lsb % 8;
4832 	mask = (u8)(BIT(ce_info->width) - 1);
4833 
4834 	/* shift to correct alignment */
4835 	mask <<= shift_width;
4836 
4837 	/* get the current bits from the src bit string */
4838 	src = src_ctx + (ce_info->lsb / 8);
4839 
4840 	ice_memcpy(&dest_byte, src, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
4841 
4842 	dest_byte &= mask;
4843 
4844 	dest_byte >>= shift_width;
4845 
4846 	/* get the address from the struct field */
4847 	target = dest_ctx + ce_info->offset;
4848 
4849 	/* put it back in the struct */
4850 	ice_memcpy(target, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
4851 }
4852 
4853 /**
4854  * ice_read_word - read context word into struct
4855  * @src_ctx:  the context structure to read from
4856  * @dest_ctx: the context to be written to
4857  * @ce_info:  a description of the struct to be filled
4858  */
4859 static void
4860 ice_read_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4861 {
4862 	u16 dest_word, mask;
4863 	u8 *src, *target;
4864 	__le16 src_word;
4865 	u16 shift_width;
4866 
4867 	/* prepare the bits and mask */
4868 	shift_width = ce_info->lsb % 8;
4869 	mask = BIT(ce_info->width) - 1;
4870 
4871 	/* shift to correct alignment */
4872 	mask <<= shift_width;
4873 
4874 	/* get the current bits from the src bit string */
4875 	src = src_ctx + (ce_info->lsb / 8);
4876 
4877 	ice_memcpy(&src_word, src, sizeof(src_word), ICE_DMA_TO_NONDMA);
4878 
4879 	/* the data in the memory is stored as little endian so mask it
4880 	 * correctly
4881 	 */
4882 	src_word &= CPU_TO_LE16(mask);
4883 
4884 	/* get the data back into host order before shifting */
4885 	dest_word = LE16_TO_CPU(src_word);
4886 
4887 	dest_word >>= shift_width;
4888 
4889 	/* get the address from the struct field */
4890 	target = dest_ctx + ce_info->offset;
4891 
4892 	/* put it back in the struct */
4893 	ice_memcpy(target, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
4894 }
4895 
4896 /**
4897  * ice_read_dword - read context dword into struct
4898  * @src_ctx:  the context structure to read from
4899  * @dest_ctx: the context to be written to
4900  * @ce_info:  a description of the struct to be filled
4901  */
4902 static void
4903 ice_read_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4904 {
4905 	u32 dest_dword, mask;
4906 	__le32 src_dword;
4907 	u8 *src, *target;
4908 	u16 shift_width;
4909 
4910 	/* prepare the bits and mask */
4911 	shift_width = ce_info->lsb % 8;
4912 
4913 	/* if the field width is exactly 32 on an x86 machine, then the shift
4914 	 * operation will not work because the SHL instructions count is masked
4915 	 * to 5 bits so the shift will do nothing
4916 	 */
4917 	if (ce_info->width < 32)
4918 		mask = BIT(ce_info->width) - 1;
4919 	else
4920 		mask = (u32)~0;
4921 
4922 	/* shift to correct alignment */
4923 	mask <<= shift_width;
4924 
4925 	/* get the current bits from the src bit string */
4926 	src = src_ctx + (ce_info->lsb / 8);
4927 
4928 	ice_memcpy(&src_dword, src, sizeof(src_dword), ICE_DMA_TO_NONDMA);
4929 
4930 	/* the data in the memory is stored as little endian so mask it
4931 	 * correctly
4932 	 */
4933 	src_dword &= CPU_TO_LE32(mask);
4934 
4935 	/* get the data back into host order before shifting */
4936 	dest_dword = LE32_TO_CPU(src_dword);
4937 
4938 	dest_dword >>= shift_width;
4939 
4940 	/* get the address from the struct field */
4941 	target = dest_ctx + ce_info->offset;
4942 
4943 	/* put it back in the struct */
4944 	ice_memcpy(target, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
4945 }
4946 
4947 /**
4948  * ice_read_qword - read context qword into struct
4949  * @src_ctx:  the context structure to read from
4950  * @dest_ctx: the context to be written to
4951  * @ce_info:  a description of the struct to be filled
4952  */
4953 static void
4954 ice_read_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4955 {
4956 	u64 dest_qword, mask;
4957 	__le64 src_qword;
4958 	u8 *src, *target;
4959 	u16 shift_width;
4960 
4961 	/* prepare the bits and mask */
4962 	shift_width = ce_info->lsb % 8;
4963 
4964 	/* if the field width is exactly 64 on an x86 machine, then the shift
4965 	 * operation will not work because the SHL instructions count is masked
4966 	 * to 6 bits so the shift will do nothing
4967 	 */
4968 	if (ce_info->width < 64)
4969 		mask = BIT_ULL(ce_info->width) - 1;
4970 	else
4971 		mask = (u64)~0;
4972 
4973 	/* shift to correct alignment */
4974 	mask <<= shift_width;
4975 
4976 	/* get the current bits from the src bit string */
4977 	src = src_ctx + (ce_info->lsb / 8);
4978 
4979 	ice_memcpy(&src_qword, src, sizeof(src_qword), ICE_DMA_TO_NONDMA);
4980 
4981 	/* the data in the memory is stored as little endian so mask it
4982 	 * correctly
4983 	 */
4984 	src_qword &= CPU_TO_LE64(mask);
4985 
4986 	/* get the data back into host order before shifting */
4987 	dest_qword = LE64_TO_CPU(src_qword);
4988 
4989 	dest_qword >>= shift_width;
4990 
4991 	/* get the address from the struct field */
4992 	target = dest_ctx + ce_info->offset;
4993 
4994 	/* put it back in the struct */
4995 	ice_memcpy(target, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
4996 }
4997 
4998 /**
4999  * ice_get_ctx - extract context bits from a packed structure
5000  * @src_ctx:  pointer to a generic packed context structure
5001  * @dest_ctx: pointer to a generic non-packed context structure
5002  * @ce_info:  a description of the structure to be read from
5003  */
5004 enum ice_status
5005 ice_get_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
5006 {
5007 	int f;
5008 
5009 	for (f = 0; ce_info[f].width; f++) {
5010 		switch (ce_info[f].size_of) {
5011 		case 1:
5012 			ice_read_byte(src_ctx, dest_ctx, &ce_info[f]);
5013 			break;
5014 		case 2:
5015 			ice_read_word(src_ctx, dest_ctx, &ce_info[f]);
5016 			break;
5017 		case 4:
5018 			ice_read_dword(src_ctx, dest_ctx, &ce_info[f]);
5019 			break;
5020 		case 8:
5021 			ice_read_qword(src_ctx, dest_ctx, &ce_info[f]);
5022 			break;
5023 		default:
5024 			/* nothing to do, just keep going */
5025 			break;
5026 		}
5027 	}
5028 
5029 	return ICE_SUCCESS;
5030 }
5031 
5032 /**
5033  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
5034  * @hw: pointer to the HW struct
5035  * @vsi_handle: software VSI handle
5036  * @tc: TC number
5037  * @q_handle: software queue handle
5038  */
5039 struct ice_q_ctx *
5040 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
5041 {
5042 	struct ice_vsi_ctx *vsi;
5043 	struct ice_q_ctx *q_ctx;
5044 
5045 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
5046 	if (!vsi)
5047 		return NULL;
5048 	if (q_handle >= vsi->num_lan_q_entries[tc])
5049 		return NULL;
5050 	if (!vsi->lan_q_ctx[tc])
5051 		return NULL;
5052 	q_ctx = vsi->lan_q_ctx[tc];
5053 	return &q_ctx[q_handle];
5054 }
5055 
5056 /**
5057  * ice_ena_vsi_txq
5058  * @pi: port information structure
5059  * @vsi_handle: software VSI handle
5060  * @tc: TC number
5061  * @q_handle: software queue handle
5062  * @num_qgrps: Number of added queue groups
5063  * @buf: list of queue groups to be added
5064  * @buf_size: size of buffer for indirect command
5065  * @cd: pointer to command details structure or NULL
5066  *
5067  * This function adds one LAN queue
5068  */
5069 enum ice_status
5070 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
5071 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
5072 		struct ice_sq_cd *cd)
5073 {
5074 	struct ice_aqc_txsched_elem_data node = { 0 };
5075 	struct ice_sched_node *parent;
5076 	struct ice_q_ctx *q_ctx;
5077 	enum ice_status status;
5078 	struct ice_hw *hw;
5079 
5080 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5081 		return ICE_ERR_CFG;
5082 
5083 	if (num_qgrps > 1 || buf->num_txqs > 1)
5084 		return ICE_ERR_MAX_LIMIT;
5085 
5086 	hw = pi->hw;
5087 
5088 	if (!ice_is_vsi_valid(hw, vsi_handle))
5089 		return ICE_ERR_PARAM;
5090 
5091 	ice_acquire_lock(&pi->sched_lock);
5092 
5093 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
5094 	if (!q_ctx) {
5095 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
5096 			  q_handle);
5097 		status = ICE_ERR_PARAM;
5098 		goto ena_txq_exit;
5099 	}
5100 
5101 	/* find a parent node */
5102 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5103 					    ICE_SCHED_NODE_OWNER_LAN);
5104 	if (!parent) {
5105 		status = ICE_ERR_PARAM;
5106 		goto ena_txq_exit;
5107 	}
5108 
5109 	buf->parent_teid = parent->info.node_teid;
5110 	node.parent_teid = parent->info.node_teid;
5111 	/* Mark that the values in the "generic" section as valid. The default
5112 	 * value in the "generic" section is zero. This means that :
5113 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
5114 	 * - 0 priority among siblings, indicated by Bit 1-3.
5115 	 * - WFQ, indicated by Bit 4.
5116 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
5117 	 * Bit 5-6.
5118 	 * - Bit 7 is reserved.
5119 	 * Without setting the generic section as valid in valid_sections, the
5120 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
5121 	 */
5122 	buf->txqs[0].info.valid_sections =
5123 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5124 		ICE_AQC_ELEM_VALID_EIR;
5125 	buf->txqs[0].info.generic = 0;
5126 	buf->txqs[0].info.cir_bw.bw_profile_idx =
5127 		CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5128 	buf->txqs[0].info.cir_bw.bw_alloc =
5129 		CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5130 	buf->txqs[0].info.eir_bw.bw_profile_idx =
5131 		CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5132 	buf->txqs[0].info.eir_bw.bw_alloc =
5133 		CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5134 
5135 	/* add the LAN queue */
5136 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
5137 	if (status != ICE_SUCCESS) {
5138 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
5139 			  LE16_TO_CPU(buf->txqs[0].txq_id),
5140 			  hw->adminq.sq_last_status);
5141 		goto ena_txq_exit;
5142 	}
5143 
5144 	node.node_teid = buf->txqs[0].q_teid;
5145 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5146 	q_ctx->q_handle = q_handle;
5147 	q_ctx->q_teid = LE32_TO_CPU(node.node_teid);
5148 
5149 	/* add a leaf node into scheduler tree queue layer */
5150 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
5151 	if (!status)
5152 		status = ice_sched_replay_q_bw(pi, q_ctx);
5153 
5154 ena_txq_exit:
5155 	ice_release_lock(&pi->sched_lock);
5156 	return status;
5157 }
5158 
5159 /**
5160  * ice_dis_vsi_txq
5161  * @pi: port information structure
5162  * @vsi_handle: software VSI handle
5163  * @tc: TC number
5164  * @num_queues: number of queues
5165  * @q_handles: pointer to software queue handle array
5166  * @q_ids: pointer to the q_id array
5167  * @q_teids: pointer to queue node teids
5168  * @rst_src: if called due to reset, specifies the reset source
5169  * @vmvf_num: the relative VM or VF number that is undergoing the reset
5170  * @cd: pointer to command details structure or NULL
5171  *
5172  * This function removes queues and their corresponding nodes in SW DB
5173  */
5174 enum ice_status
5175 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
5176 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
5177 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
5178 		struct ice_sq_cd *cd)
5179 {
5180 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
5181 	struct ice_aqc_dis_txq_item *qg_list;
5182 	struct ice_q_ctx *q_ctx;
5183 	struct ice_hw *hw;
5184 	u16 i, buf_size;
5185 
5186 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5187 		return ICE_ERR_CFG;
5188 
5189 	hw = pi->hw;
5190 
5191 	if (!num_queues) {
5192 		/* if queue is disabled already yet the disable queue command
5193 		 * has to be sent to complete the VF reset, then call
5194 		 * ice_aq_dis_lan_txq without any queue information
5195 		 */
5196 		if (rst_src)
5197 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
5198 						  vmvf_num, NULL);
5199 		return ICE_ERR_CFG;
5200 	}
5201 
5202 	buf_size = ice_struct_size(qg_list, q_id, 1);
5203 	qg_list = (struct ice_aqc_dis_txq_item *)ice_malloc(hw, buf_size);
5204 	if (!qg_list)
5205 		return ICE_ERR_NO_MEMORY;
5206 
5207 	ice_acquire_lock(&pi->sched_lock);
5208 
5209 	for (i = 0; i < num_queues; i++) {
5210 		struct ice_sched_node *node;
5211 
5212 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
5213 		if (!node)
5214 			continue;
5215 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
5216 		if (!q_ctx) {
5217 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
5218 				  q_handles[i]);
5219 			continue;
5220 		}
5221 		if (q_ctx->q_handle != q_handles[i]) {
5222 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
5223 				  q_ctx->q_handle, q_handles[i]);
5224 			continue;
5225 		}
5226 		qg_list->parent_teid = node->info.parent_teid;
5227 		qg_list->num_qs = 1;
5228 		qg_list->q_id[0] = CPU_TO_LE16(q_ids[i]);
5229 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
5230 					    vmvf_num, cd);
5231 
5232 		if (status != ICE_SUCCESS)
5233 			break;
5234 		ice_free_sched_node(pi, node);
5235 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
5236 	}
5237 	ice_release_lock(&pi->sched_lock);
5238 	ice_free(hw, qg_list);
5239 	return status;
5240 }
5241 
5242 /**
5243  * ice_cfg_vsi_qs - configure the new/existing VSI queues
5244  * @pi: port information structure
5245  * @vsi_handle: software VSI handle
5246  * @tc_bitmap: TC bitmap
5247  * @maxqs: max queues array per TC
5248  * @owner: LAN or RDMA
5249  *
5250  * This function adds/updates the VSI queues per TC.
5251  */
5252 static enum ice_status
5253 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5254 	       u16 *maxqs, u8 owner)
5255 {
5256 	enum ice_status status = ICE_SUCCESS;
5257 	u8 i;
5258 
5259 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5260 		return ICE_ERR_CFG;
5261 
5262 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5263 		return ICE_ERR_PARAM;
5264 
5265 	ice_acquire_lock(&pi->sched_lock);
5266 
5267 	ice_for_each_traffic_class(i) {
5268 		/* configuration is possible only if TC node is present */
5269 		if (!ice_sched_get_tc_node(pi, i))
5270 			continue;
5271 
5272 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5273 					   ice_is_tc_ena(tc_bitmap, i));
5274 		if (status)
5275 			break;
5276 	}
5277 
5278 	ice_release_lock(&pi->sched_lock);
5279 	return status;
5280 }
5281 
5282 /**
5283  * ice_cfg_vsi_lan - configure VSI LAN queues
5284  * @pi: port information structure
5285  * @vsi_handle: software VSI handle
5286  * @tc_bitmap: TC bitmap
5287  * @max_lanqs: max LAN queues array per TC
5288  *
5289  * This function adds/updates the VSI LAN queues per TC.
5290  */
5291 enum ice_status
5292 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5293 		u16 *max_lanqs)
5294 {
5295 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5296 			      ICE_SCHED_NODE_OWNER_LAN);
5297 }
5298 
5299 /**
5300  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5301  * @pi: port information structure
5302  * @vsi_handle: software VSI handle
5303  * @tc_bitmap: TC bitmap
5304  * @max_rdmaqs: max RDMA queues array per TC
5305  *
5306  * This function adds/updates the VSI RDMA queues per TC.
5307  */
5308 enum ice_status
5309 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5310 		 u16 *max_rdmaqs)
5311 {
5312 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5313 			      ICE_SCHED_NODE_OWNER_RDMA);
5314 }
5315 
5316 /**
5317  * ice_ena_vsi_rdma_qset
5318  * @pi: port information structure
5319  * @vsi_handle: software VSI handle
5320  * @tc: TC number
5321  * @rdma_qset: pointer to RDMA qset
5322  * @num_qsets: number of RDMA qsets
5323  * @qset_teid: pointer to qset node teids
5324  *
5325  * This function adds RDMA qset
5326  */
5327 enum ice_status
5328 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5329 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5330 {
5331 	struct ice_aqc_txsched_elem_data node = { 0 };
5332 	struct ice_aqc_add_rdma_qset_data *buf;
5333 	struct ice_sched_node *parent;
5334 	enum ice_status status;
5335 	struct ice_hw *hw;
5336 	u16 i, buf_size;
5337 
5338 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5339 		return ICE_ERR_CFG;
5340 	hw = pi->hw;
5341 
5342 	if (!ice_is_vsi_valid(hw, vsi_handle))
5343 		return ICE_ERR_PARAM;
5344 
5345 	buf_size = ice_struct_size(buf, rdma_qsets, num_qsets);
5346 	buf = (struct ice_aqc_add_rdma_qset_data *)ice_malloc(hw, buf_size);
5347 	if (!buf)
5348 		return ICE_ERR_NO_MEMORY;
5349 	ice_acquire_lock(&pi->sched_lock);
5350 
5351 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5352 					    ICE_SCHED_NODE_OWNER_RDMA);
5353 	if (!parent) {
5354 		status = ICE_ERR_PARAM;
5355 		goto rdma_error_exit;
5356 	}
5357 	buf->parent_teid = parent->info.node_teid;
5358 	node.parent_teid = parent->info.node_teid;
5359 
5360 	buf->num_qsets = CPU_TO_LE16(num_qsets);
5361 	for (i = 0; i < num_qsets; i++) {
5362 		buf->rdma_qsets[i].tx_qset_id = CPU_TO_LE16(rdma_qset[i]);
5363 		buf->rdma_qsets[i].info.valid_sections =
5364 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5365 			ICE_AQC_ELEM_VALID_EIR;
5366 		buf->rdma_qsets[i].info.generic = 0;
5367 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5368 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5369 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5370 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5371 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5372 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5373 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5374 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5375 	}
5376 	status = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5377 	if (status != ICE_SUCCESS) {
5378 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5379 		goto rdma_error_exit;
5380 	}
5381 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5382 	for (i = 0; i < num_qsets; i++) {
5383 		node.node_teid = buf->rdma_qsets[i].qset_teid;
5384 		status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5385 					    &node, NULL);
5386 		if (status)
5387 			break;
5388 		qset_teid[i] = LE32_TO_CPU(node.node_teid);
5389 	}
5390 rdma_error_exit:
5391 	ice_release_lock(&pi->sched_lock);
5392 	ice_free(hw, buf);
5393 	return status;
5394 }
5395 
5396 /**
5397  * ice_dis_vsi_rdma_qset - free RDMA resources
5398  * @pi: port_info struct
5399  * @count: number of RDMA qsets to free
5400  * @qset_teid: TEID of qset node
5401  * @q_id: list of queue IDs being disabled
5402  */
5403 enum ice_status
5404 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5405 		      u16 *q_id)
5406 {
5407 	struct ice_aqc_dis_txq_item *qg_list;
5408 	enum ice_status status = ICE_SUCCESS;
5409 	struct ice_hw *hw;
5410 	u16 qg_size;
5411 	int i;
5412 
5413 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5414 		return ICE_ERR_CFG;
5415 
5416 	hw = pi->hw;
5417 
5418 	qg_size = ice_struct_size(qg_list, q_id, 1);
5419 	qg_list = (struct ice_aqc_dis_txq_item *)ice_malloc(hw, qg_size);
5420 	if (!qg_list)
5421 		return ICE_ERR_NO_MEMORY;
5422 
5423 	ice_acquire_lock(&pi->sched_lock);
5424 
5425 	for (i = 0; i < count; i++) {
5426 		struct ice_sched_node *node;
5427 
5428 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5429 		if (!node)
5430 			continue;
5431 
5432 		qg_list->parent_teid = node->info.parent_teid;
5433 		qg_list->num_qs = 1;
5434 		qg_list->q_id[0] =
5435 			CPU_TO_LE16(q_id[i] |
5436 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5437 
5438 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5439 					    ICE_NO_RESET, 0, NULL);
5440 		if (status)
5441 			break;
5442 
5443 		ice_free_sched_node(pi, node);
5444 	}
5445 
5446 	ice_release_lock(&pi->sched_lock);
5447 	ice_free(hw, qg_list);
5448 	return status;
5449 }
5450 
5451 /**
5452  * ice_aq_get_sensor_reading
5453  * @hw: pointer to the HW struct
5454  * @sensor: sensor type
5455  * @format: requested response format
5456  * @data: pointer to data to be read from the sensor
5457  * @cd: pointer to command details structure or NULL
5458  *
5459  * Get sensor reading (0x0632)
5460  */
5461 enum ice_status
5462 ice_aq_get_sensor_reading(struct ice_hw *hw, u8 sensor, u8 format,
5463 			  struct ice_aqc_get_sensor_reading_resp *data,
5464 			  struct ice_sq_cd *cd)
5465 {
5466 	struct ice_aqc_get_sensor_reading *cmd;
5467 	struct ice_aq_desc desc;
5468 	enum ice_status status;
5469 
5470 	if (!data)
5471 		return ICE_ERR_PARAM;
5472 
5473 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5474 	cmd = &desc.params.get_sensor_reading;
5475 	cmd->sensor = sensor;
5476 	cmd->format = format;
5477 
5478 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5479 
5480 	if (!status)
5481 		ice_memcpy(data, &desc.params.get_sensor_reading_resp,
5482 			   sizeof(*data), ICE_NONDMA_TO_NONDMA);
5483 
5484 	return status;
5485 }
5486 
5487 /**
5488  * ice_is_main_vsi - checks whether the VSI is main VSI
5489  * @hw: pointer to the HW struct
5490  * @vsi_handle: VSI handle
5491  *
5492  * Checks whether the VSI is the main VSI (the first PF VSI created on
5493  * given PF).
5494  */
5495 static bool ice_is_main_vsi(struct ice_hw *hw, u16 vsi_handle)
5496 {
5497 	return vsi_handle == ICE_MAIN_VSI_HANDLE && hw->vsi_ctx[vsi_handle];
5498 }
5499 
5500 /**
5501  * ice_replay_pre_init - replay pre initialization
5502  * @hw: pointer to the HW struct
5503  * @sw: pointer to switch info struct for which function initializes filters
5504  *
5505  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5506  */
5507 enum ice_status
5508 ice_replay_pre_init(struct ice_hw *hw, struct ice_switch_info *sw)
5509 {
5510 	enum ice_status status;
5511 	u8 i;
5512 
5513 	/* Delete old entries from replay filter list head if there is any */
5514 	ice_rm_sw_replay_rule_info(hw, sw);
5515 	/* In start of replay, move entries into replay_rules list, it
5516 	 * will allow adding rules entries back to filt_rules list,
5517 	 * which is operational list.
5518 	 */
5519 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5520 		LIST_REPLACE_INIT(&sw->recp_list[i].filt_rules,
5521 				  &sw->recp_list[i].filt_replay_rules);
5522 	ice_sched_replay_agg_vsi_preinit(hw);
5523 
5524 	status = ice_sched_replay_root_node_bw(hw->port_info);
5525 	if (status)
5526 		return status;
5527 
5528 	return ice_sched_replay_tc_node_bw(hw->port_info);
5529 }
5530 
5531 /**
5532  * ice_replay_vsi - replay VSI configuration
5533  * @hw: pointer to the HW struct
5534  * @vsi_handle: driver VSI handle
5535  *
5536  * Restore all VSI configuration after reset. It is required to call this
5537  * function with main VSI first.
5538  */
5539 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5540 {
5541 	struct ice_switch_info *sw = hw->switch_info;
5542 	struct ice_port_info *pi = hw->port_info;
5543 	enum ice_status status;
5544 
5545 	if (!ice_is_vsi_valid(hw, vsi_handle))
5546 		return ICE_ERR_PARAM;
5547 
5548 	/* Replay pre-initialization if there is any */
5549 	if (ice_is_main_vsi(hw, vsi_handle)) {
5550 		status = ice_replay_pre_init(hw, sw);
5551 		if (status)
5552 			return status;
5553 	}
5554 	/* Replay per VSI all RSS configurations */
5555 	status = ice_replay_rss_cfg(hw, vsi_handle);
5556 	if (status)
5557 		return status;
5558 	/* Replay per VSI all filters */
5559 	status = ice_replay_vsi_all_fltr(hw, pi, vsi_handle);
5560 	if (!status)
5561 		status = ice_replay_vsi_agg(hw, vsi_handle);
5562 	return status;
5563 }
5564 
5565 /**
5566  * ice_replay_post - post replay configuration cleanup
5567  * @hw: pointer to the HW struct
5568  *
5569  * Post replay cleanup.
5570  */
5571 void ice_replay_post(struct ice_hw *hw)
5572 {
5573 	/* Delete old entries from replay filter list head */
5574 	ice_rm_all_sw_replay_rule_info(hw);
5575 	ice_sched_replay_agg(hw);
5576 }
5577 
5578 /**
5579  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5580  * @hw: ptr to the hardware info
5581  * @reg: offset of 64 bit HW register to read from
5582  * @prev_stat_loaded: bool to specify if previous stats are loaded
5583  * @prev_stat: ptr to previous loaded stat value
5584  * @cur_stat: ptr to current stat value
5585  */
5586 void
5587 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5588 		  u64 *prev_stat, u64 *cur_stat)
5589 {
5590 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5591 
5592 	/* device stats are not reset at PFR, they likely will not be zeroed
5593 	 * when the driver starts. Thus, save the value from the first read
5594 	 * without adding to the statistic value so that we report stats which
5595 	 * count up from zero.
5596 	 */
5597 	if (!prev_stat_loaded) {
5598 		*prev_stat = new_data;
5599 		return;
5600 	}
5601 
5602 	/* Calculate the difference between the new and old values, and then
5603 	 * add it to the software stat value.
5604 	 */
5605 	if (new_data >= *prev_stat)
5606 		*cur_stat += new_data - *prev_stat;
5607 	else
5608 		/* to manage the potential roll-over */
5609 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5610 
5611 	/* Update the previously stored value to prepare for next read */
5612 	*prev_stat = new_data;
5613 }
5614 
5615 /**
5616  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5617  * @hw: ptr to the hardware info
5618  * @reg: offset of HW register to read from
5619  * @prev_stat_loaded: bool to specify if previous stats are loaded
5620  * @prev_stat: ptr to previous loaded stat value
5621  * @cur_stat: ptr to current stat value
5622  */
5623 void
5624 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5625 		  u64 *prev_stat, u64 *cur_stat)
5626 {
5627 	u32 new_data;
5628 
5629 	new_data = rd32(hw, reg);
5630 
5631 	/* device stats are not reset at PFR, they likely will not be zeroed
5632 	 * when the driver starts. Thus, save the value from the first read
5633 	 * without adding to the statistic value so that we report stats which
5634 	 * count up from zero.
5635 	 */
5636 	if (!prev_stat_loaded) {
5637 		*prev_stat = new_data;
5638 		return;
5639 	}
5640 
5641 	/* Calculate the difference between the new and old values, and then
5642 	 * add it to the software stat value.
5643 	 */
5644 	if (new_data >= *prev_stat)
5645 		*cur_stat += new_data - *prev_stat;
5646 	else
5647 		/* to manage the potential roll-over */
5648 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5649 
5650 	/* Update the previously stored value to prepare for next read */
5651 	*prev_stat = new_data;
5652 }
5653 
5654 /**
5655  * ice_stat_update_repc - read GLV_REPC stats from chip and update stat values
5656  * @hw: ptr to the hardware info
5657  * @vsi_handle: VSI handle
5658  * @prev_stat_loaded: bool to specify if the previous stat values are loaded
5659  * @cur_stats: ptr to current stats structure
5660  *
5661  * The GLV_REPC statistic register actually tracks two 16bit statistics, and
5662  * thus cannot be read using the normal ice_stat_update32 function.
5663  *
5664  * Read the GLV_REPC register associated with the given VSI, and update the
5665  * rx_no_desc and rx_error values in the ice_eth_stats structure.
5666  *
5667  * Because the statistics in GLV_REPC stick at 0xFFFF, the register must be
5668  * cleared each time it's read.
5669  *
5670  * Note that the GLV_RDPC register also counts the causes that would trigger
5671  * GLV_REPC. However, it does not give the finer grained detail about why the
5672  * packets are being dropped. The GLV_REPC values can be used to distinguish
5673  * whether Rx packets are dropped due to errors or due to no available
5674  * descriptors.
5675  */
5676 void
5677 ice_stat_update_repc(struct ice_hw *hw, u16 vsi_handle, bool prev_stat_loaded,
5678 		     struct ice_eth_stats *cur_stats)
5679 {
5680 	u16 vsi_num, no_desc, error_cnt;
5681 	u32 repc;
5682 
5683 	if (!ice_is_vsi_valid(hw, vsi_handle))
5684 		return;
5685 
5686 	vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
5687 
5688 	/* If we haven't loaded stats yet, just clear the current value */
5689 	if (!prev_stat_loaded) {
5690 		wr32(hw, GLV_REPC(vsi_num), 0);
5691 		return;
5692 	}
5693 
5694 	repc = rd32(hw, GLV_REPC(vsi_num));
5695 	no_desc = (repc & GLV_REPC_NO_DESC_CNT_M) >> GLV_REPC_NO_DESC_CNT_S;
5696 	error_cnt = (repc & GLV_REPC_ERROR_CNT_M) >> GLV_REPC_ERROR_CNT_S;
5697 
5698 	/* Clear the count by writing to the stats register */
5699 	wr32(hw, GLV_REPC(vsi_num), 0);
5700 
5701 	cur_stats->rx_no_desc += no_desc;
5702 	cur_stats->rx_errors += error_cnt;
5703 }
5704 
5705 /**
5706  * ice_aq_alternate_write
5707  * @hw: pointer to the hardware structure
5708  * @reg_addr0: address of first dword to be written
5709  * @reg_val0: value to be written under 'reg_addr0'
5710  * @reg_addr1: address of second dword to be written
5711  * @reg_val1: value to be written under 'reg_addr1'
5712  *
5713  * Write one or two dwords to alternate structure. Fields are indicated
5714  * by 'reg_addr0' and 'reg_addr1' register numbers.
5715  */
5716 enum ice_status
5717 ice_aq_alternate_write(struct ice_hw *hw, u32 reg_addr0, u32 reg_val0,
5718 		       u32 reg_addr1, u32 reg_val1)
5719 {
5720 	struct ice_aqc_read_write_alt_direct *cmd;
5721 	struct ice_aq_desc desc;
5722 	enum ice_status status;
5723 
5724 	cmd = &desc.params.read_write_alt_direct;
5725 
5726 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_alt_direct);
5727 	cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
5728 	cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
5729 	cmd->dword0_value = CPU_TO_LE32(reg_val0);
5730 	cmd->dword1_value = CPU_TO_LE32(reg_val1);
5731 
5732 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5733 
5734 	return status;
5735 }
5736 
5737 /**
5738  * ice_aq_alternate_read
5739  * @hw: pointer to the hardware structure
5740  * @reg_addr0: address of first dword to be read
5741  * @reg_val0: pointer for data read from 'reg_addr0'
5742  * @reg_addr1: address of second dword to be read
5743  * @reg_val1: pointer for data read from 'reg_addr1'
5744  *
5745  * Read one or two dwords from alternate structure. Fields are indicated
5746  * by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer
5747  * is not passed then only register at 'reg_addr0' is read.
5748  */
5749 enum ice_status
5750 ice_aq_alternate_read(struct ice_hw *hw, u32 reg_addr0, u32 *reg_val0,
5751 		      u32 reg_addr1, u32 *reg_val1)
5752 {
5753 	struct ice_aqc_read_write_alt_direct *cmd;
5754 	struct ice_aq_desc desc;
5755 	enum ice_status status;
5756 
5757 	cmd = &desc.params.read_write_alt_direct;
5758 
5759 	if (!reg_val0)
5760 		return ICE_ERR_PARAM;
5761 
5762 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_alt_direct);
5763 	cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
5764 	cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
5765 
5766 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5767 
5768 	if (status == ICE_SUCCESS) {
5769 		*reg_val0 = LE32_TO_CPU(cmd->dword0_value);
5770 
5771 		if (reg_val1)
5772 			*reg_val1 = LE32_TO_CPU(cmd->dword1_value);
5773 	}
5774 
5775 	return status;
5776 }
5777 
5778 /**
5779  *  ice_aq_alternate_write_done
5780  *  @hw: pointer to the HW structure.
5781  *  @bios_mode: indicates whether the command is executed by UEFI or legacy BIOS
5782  *  @reset_needed: indicates the SW should trigger GLOBAL reset
5783  *
5784  *  Indicates to the FW that alternate structures have been changed.
5785  */
5786 enum ice_status
5787 ice_aq_alternate_write_done(struct ice_hw *hw, u8 bios_mode, bool *reset_needed)
5788 {
5789 	struct ice_aqc_done_alt_write *cmd;
5790 	struct ice_aq_desc desc;
5791 	enum ice_status status;
5792 
5793 	cmd = &desc.params.done_alt_write;
5794 
5795 	if (!reset_needed)
5796 		return ICE_ERR_PARAM;
5797 
5798 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_done_alt_write);
5799 	cmd->flags = bios_mode;
5800 
5801 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5802 	if (!status)
5803 		*reset_needed = (LE16_TO_CPU(cmd->flags) &
5804 				 ICE_AQC_RESP_RESET_NEEDED) != 0;
5805 
5806 	return status;
5807 }
5808 
5809 /**
5810  *  ice_aq_alternate_clear
5811  *  @hw: pointer to the HW structure.
5812  *
5813  *  Clear the alternate structures of the port from which the function
5814  *  is called.
5815  */
5816 enum ice_status ice_aq_alternate_clear(struct ice_hw *hw)
5817 {
5818 	struct ice_aq_desc desc;
5819 	enum ice_status status;
5820 
5821 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_port_alt_write);
5822 
5823 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5824 
5825 	return status;
5826 }
5827 
5828 /**
5829  * ice_sched_query_elem - query element information from HW
5830  * @hw: pointer to the HW struct
5831  * @node_teid: node TEID to be queried
5832  * @buf: buffer to element information
5833  *
5834  * This function queries HW element information
5835  */
5836 enum ice_status
5837 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5838 		     struct ice_aqc_txsched_elem_data *buf)
5839 {
5840 	u16 buf_size, num_elem_ret = 0;
5841 	enum ice_status status;
5842 
5843 	buf_size = sizeof(*buf);
5844 	ice_memset(buf, 0, buf_size, ICE_NONDMA_MEM);
5845 	buf->node_teid = CPU_TO_LE32(node_teid);
5846 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5847 					  NULL);
5848 	if (status != ICE_SUCCESS || num_elem_ret != 1)
5849 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5850 	return status;
5851 }
5852 
5853 /**
5854  * ice_get_fw_mode - returns FW mode
5855  * @hw: pointer to the HW struct
5856  */
5857 enum ice_fw_modes ice_get_fw_mode(struct ice_hw *hw)
5858 {
5859 #define ICE_FW_MODE_DBG_M BIT(0)
5860 #define ICE_FW_MODE_REC_M BIT(1)
5861 #define ICE_FW_MODE_ROLLBACK_M BIT(2)
5862 	u32 fw_mode;
5863 
5864 	/* check the current FW mode */
5865 	fw_mode = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_MODES_M;
5866 	if (fw_mode & ICE_FW_MODE_DBG_M)
5867 		return ICE_FW_MODE_DBG;
5868 	else if (fw_mode & ICE_FW_MODE_REC_M)
5869 		return ICE_FW_MODE_REC;
5870 	else if (fw_mode & ICE_FW_MODE_ROLLBACK_M)
5871 		return ICE_FW_MODE_ROLLBACK;
5872 	else
5873 		return ICE_FW_MODE_NORMAL;
5874 }
5875 
5876 /**
5877  * ice_get_cur_lldp_persist_status
5878  * @hw: pointer to the HW struct
5879  * @lldp_status: return value of LLDP persistent status
5880  *
5881  * Get the current status of LLDP persistent
5882  */
5883 enum ice_status
5884 ice_get_cur_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
5885 {
5886 	struct ice_port_info *pi = hw->port_info;
5887 	enum ice_status ret;
5888 	__le32 raw_data;
5889 	u32 data, mask;
5890 
5891 	if (!lldp_status)
5892 		return ICE_ERR_BAD_PTR;
5893 
5894 	ret = ice_acquire_nvm(hw, ICE_RES_READ);
5895 	if (ret)
5896 		return ret;
5897 
5898 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LLDP_PRESERVED_MOD_ID,
5899 			      ICE_AQC_NVM_CUR_LLDP_PERSIST_RD_OFFSET,
5900 			      ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data,
5901 			      false, true, NULL);
5902 	if (!ret) {
5903 		data = LE32_TO_CPU(raw_data);
5904 		mask = ICE_AQC_NVM_LLDP_STATUS_M <<
5905 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5906 		data = data & mask;
5907 		*lldp_status = data >>
5908 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5909 	}
5910 
5911 	ice_release_nvm(hw);
5912 
5913 	return ret;
5914 }
5915 
5916 /**
5917  * ice_get_dflt_lldp_persist_status
5918  * @hw: pointer to the HW struct
5919  * @lldp_status: return value of LLDP persistent status
5920  *
5921  * Get the default status of LLDP persistent
5922  */
5923 enum ice_status
5924 ice_get_dflt_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
5925 {
5926 	struct ice_port_info *pi = hw->port_info;
5927 	u32 data, mask, loc_data, loc_data_tmp;
5928 	enum ice_status ret;
5929 	__le16 loc_raw_data;
5930 	__le32 raw_data;
5931 
5932 	if (!lldp_status)
5933 		return ICE_ERR_BAD_PTR;
5934 
5935 	ret = ice_acquire_nvm(hw, ICE_RES_READ);
5936 	if (ret)
5937 		return ret;
5938 
5939 	/* Read the offset of EMP_SR_PTR */
5940 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
5941 			      ICE_AQC_NVM_EMP_SR_PTR_OFFSET,
5942 			      ICE_AQC_NVM_EMP_SR_PTR_RD_LEN,
5943 			      &loc_raw_data, false, true, NULL);
5944 	if (ret)
5945 		goto exit;
5946 
5947 	loc_data = LE16_TO_CPU(loc_raw_data);
5948 	if (loc_data & ICE_AQC_NVM_EMP_SR_PTR_TYPE_M) {
5949 		loc_data &= ICE_AQC_NVM_EMP_SR_PTR_M;
5950 		loc_data *= ICE_AQC_NVM_SECTOR_UNIT;
5951 	} else {
5952 		loc_data *= ICE_AQC_NVM_WORD_UNIT;
5953 	}
5954 
5955 	/* Read the offset of LLDP configuration pointer */
5956 	loc_data += ICE_AQC_NVM_LLDP_CFG_PTR_OFFSET;
5957 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
5958 			      ICE_AQC_NVM_LLDP_CFG_PTR_RD_LEN, &loc_raw_data,
5959 			      false, true, NULL);
5960 	if (ret)
5961 		goto exit;
5962 
5963 	loc_data_tmp = LE16_TO_CPU(loc_raw_data);
5964 	loc_data_tmp *= ICE_AQC_NVM_WORD_UNIT;
5965 	loc_data += loc_data_tmp;
5966 
5967 	/* We need to skip LLDP configuration section length (2 bytes) */
5968 	loc_data += ICE_AQC_NVM_LLDP_CFG_HEADER_LEN;
5969 
5970 	/* Read the LLDP Default Configure */
5971 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
5972 			      ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data, false,
5973 			      true, NULL);
5974 	if (!ret) {
5975 		data = LE32_TO_CPU(raw_data);
5976 		mask = ICE_AQC_NVM_LLDP_STATUS_M <<
5977 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5978 		data = data & mask;
5979 		*lldp_status = data >>
5980 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5981 	}
5982 
5983 exit:
5984 	ice_release_nvm(hw);
5985 
5986 	return ret;
5987 }
5988 
5989 /**
5990  * ice_aq_read_i2c
5991  * @hw: pointer to the hw struct
5992  * @topo_addr: topology address for a device to communicate with
5993  * @bus_addr: 7-bit I2C bus address
5994  * @addr: I2C memory address (I2C offset) with up to 16 bits
5995  * @params: I2C parameters: bit [7] - Repeated start, bits [6:5] data offset size,
5996  *			    bit [4] - I2C address type, bits [3:0] - data size to read (0-16 bytes)
5997  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5998  * @cd: pointer to command details structure or NULL
5999  *
6000  * Read I2C (0x06E2)
6001  */
6002 enum ice_status
6003 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
6004 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
6005 		struct ice_sq_cd *cd)
6006 {
6007 	struct ice_aq_desc desc = { 0 };
6008 	struct ice_aqc_i2c *cmd;
6009 	enum ice_status status;
6010 	u8 data_size;
6011 
6012 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
6013 	cmd = &desc.params.read_write_i2c;
6014 
6015 	if (!data)
6016 		return ICE_ERR_PARAM;
6017 
6018 	data_size = (params & ICE_AQC_I2C_DATA_SIZE_M) >> ICE_AQC_I2C_DATA_SIZE_S;
6019 
6020 	cmd->i2c_bus_addr = CPU_TO_LE16(bus_addr);
6021 	cmd->topo_addr = topo_addr;
6022 	cmd->i2c_params = params;
6023 	cmd->i2c_addr = addr;
6024 
6025 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6026 	if (!status) {
6027 		struct ice_aqc_read_i2c_resp *resp;
6028 		u8 i;
6029 
6030 		resp = &desc.params.read_i2c_resp;
6031 		for (i = 0; i < data_size; i++) {
6032 			*data = resp->i2c_data[i];
6033 			data++;
6034 		}
6035 	}
6036 
6037 	return status;
6038 }
6039 
6040 /**
6041  * ice_aq_write_i2c
6042  * @hw: pointer to the hw struct
6043  * @topo_addr: topology address for a device to communicate with
6044  * @bus_addr: 7-bit I2C bus address
6045  * @addr: I2C memory address (I2C offset) with up to 16 bits
6046  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
6047  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
6048  * @cd: pointer to command details structure or NULL
6049  *
6050  * Write I2C (0x06E3)
6051  */
6052 enum ice_status
6053 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
6054 		 u16 bus_addr, __le16 addr, u8 params, u8 *data,
6055 		 struct ice_sq_cd *cd)
6056 {
6057 	struct ice_aq_desc desc = { 0 };
6058 	struct ice_aqc_i2c *cmd;
6059 	u8 i, data_size;
6060 
6061 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
6062 	cmd = &desc.params.read_write_i2c;
6063 
6064 	data_size = (params & ICE_AQC_I2C_DATA_SIZE_M) >> ICE_AQC_I2C_DATA_SIZE_S;
6065 
6066 	/* data_size limited to 4 */
6067 	if (data_size > 4)
6068 		return ICE_ERR_PARAM;
6069 
6070 	cmd->i2c_bus_addr = CPU_TO_LE16(bus_addr);
6071 	cmd->topo_addr = topo_addr;
6072 	cmd->i2c_params = params;
6073 	cmd->i2c_addr = addr;
6074 
6075 	for (i = 0; i < data_size; i++) {
6076 		cmd->i2c_data[i] = *data;
6077 		data++;
6078 	}
6079 
6080 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6081 }
6082 
6083 /**
6084  * ice_aq_set_gpio
6085  * @hw: pointer to the hw struct
6086  * @gpio_ctrl_handle: GPIO controller node handle
6087  * @pin_idx: IO Number of the GPIO that needs to be set
6088  * @value: SW provide IO value to set in the LSB
6089  * @cd: pointer to command details structure or NULL
6090  *
6091  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
6092  */
6093 enum ice_status
6094 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
6095 		struct ice_sq_cd *cd)
6096 {
6097 	struct ice_aqc_gpio *cmd;
6098 	struct ice_aq_desc desc;
6099 
6100 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
6101 	cmd = &desc.params.read_write_gpio;
6102 	cmd->gpio_ctrl_handle = CPU_TO_LE16(gpio_ctrl_handle);
6103 	cmd->gpio_num = pin_idx;
6104 	cmd->gpio_val = value ? 1 : 0;
6105 
6106 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6107 }
6108 
6109 /**
6110  * ice_aq_get_gpio
6111  * @hw: pointer to the hw struct
6112  * @gpio_ctrl_handle: GPIO controller node handle
6113  * @pin_idx: IO Number of the GPIO that needs to be set
6114  * @value: IO value read
6115  * @cd: pointer to command details structure or NULL
6116  *
6117  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
6118  * the topology
6119  */
6120 enum ice_status
6121 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
6122 		bool *value, struct ice_sq_cd *cd)
6123 {
6124 	struct ice_aqc_gpio *cmd;
6125 	struct ice_aq_desc desc;
6126 	enum ice_status status;
6127 
6128 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
6129 	cmd = &desc.params.read_write_gpio;
6130 	cmd->gpio_ctrl_handle = CPU_TO_LE16(gpio_ctrl_handle);
6131 	cmd->gpio_num = pin_idx;
6132 
6133 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6134 	if (status)
6135 		return status;
6136 
6137 	*value = !!cmd->gpio_val;
6138 	return ICE_SUCCESS;
6139 }
6140 
6141 /**
6142  * ice_is_fw_api_min_ver
6143  * @hw: pointer to the hardware structure
6144  * @maj: major version
6145  * @min: minor version
6146  * @patch: patch version
6147  *
6148  * Checks if the firmware is minimum version
6149  */
6150 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
6151 {
6152 	if (hw->api_maj_ver == maj) {
6153 		if (hw->api_min_ver > min)
6154 			return true;
6155 		if (hw->api_min_ver == min && hw->api_patch >= patch)
6156 			return true;
6157 	} else if (hw->api_maj_ver > maj) {
6158 		return true;
6159 	}
6160 
6161 	return false;
6162 }
6163 
6164 /**
6165  * ice_is_fw_min_ver
6166  * @hw: pointer to the hardware structure
6167  * @branch: branch version
6168  * @maj: major version
6169  * @min: minor version
6170  * @patch: patch version
6171  *
6172  * Checks if the firmware is minimum version
6173  */
6174 static bool ice_is_fw_min_ver(struct ice_hw *hw, u8 branch, u8 maj, u8 min,
6175 			      u8 patch)
6176 {
6177 	if (hw->fw_branch == branch) {
6178 		if (hw->fw_maj_ver > maj)
6179 			return true;
6180 		if (hw->fw_maj_ver == maj) {
6181 			if (hw->fw_min_ver > min)
6182 				return true;
6183 			if (hw->fw_min_ver == min && hw->fw_patch >= patch)
6184 				return true;
6185 		}
6186 	} else if (hw->fw_branch > branch) {
6187 		return true;
6188 	}
6189 
6190 	return false;
6191 }
6192 
6193 /**
6194  * ice_fw_supports_link_override
6195  * @hw: pointer to the hardware structure
6196  *
6197  * Checks if the firmware supports link override
6198  */
6199 bool ice_fw_supports_link_override(struct ice_hw *hw)
6200 {
6201 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
6202 				     ICE_FW_API_LINK_OVERRIDE_MIN,
6203 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
6204 }
6205 
6206 /**
6207  * ice_get_link_default_override
6208  * @ldo: pointer to the link default override struct
6209  * @pi: pointer to the port info struct
6210  *
6211  * Gets the link default override for a port
6212  */
6213 enum ice_status
6214 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
6215 			      struct ice_port_info *pi)
6216 {
6217 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
6218 	struct ice_hw *hw = pi->hw;
6219 	enum ice_status status;
6220 
6221 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
6222 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
6223 	if (status) {
6224 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
6225 		return status;
6226 	}
6227 
6228 	/* Each port has its own config; calculate for our port */
6229 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
6230 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
6231 
6232 	/* link options first */
6233 	status = ice_read_sr_word(hw, tlv_start, &buf);
6234 	if (status) {
6235 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6236 		return status;
6237 	}
6238 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
6239 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
6240 		ICE_LINK_OVERRIDE_PHY_CFG_S;
6241 
6242 	/* link PHY config */
6243 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
6244 	status = ice_read_sr_word(hw, offset, &buf);
6245 	if (status) {
6246 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
6247 		return status;
6248 	}
6249 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
6250 
6251 	/* PHY types low */
6252 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
6253 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6254 		status = ice_read_sr_word(hw, (offset + i), &buf);
6255 		if (status) {
6256 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6257 			return status;
6258 		}
6259 		/* shift 16 bits at a time to fill 64 bits */
6260 		ldo->phy_type_low |= ((u64)buf << (i * 16));
6261 	}
6262 
6263 	/* PHY types high */
6264 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
6265 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
6266 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6267 		status = ice_read_sr_word(hw, (offset + i), &buf);
6268 		if (status) {
6269 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6270 			return status;
6271 		}
6272 		/* shift 16 bits at a time to fill 64 bits */
6273 		ldo->phy_type_high |= ((u64)buf << (i * 16));
6274 	}
6275 
6276 	return status;
6277 }
6278 
6279 /**
6280  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
6281  * @caps: get PHY capability data
6282  */
6283 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
6284 {
6285 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
6286 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
6287 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
6288 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
6289 		return true;
6290 
6291 	return false;
6292 }
6293 
6294 /**
6295  * ice_is_fw_health_report_supported
6296  * @hw: pointer to the hardware structure
6297  *
6298  * Return true if firmware supports health status reports,
6299  * false otherwise
6300  */
6301 bool ice_is_fw_health_report_supported(struct ice_hw *hw)
6302 {
6303 	if (hw->api_maj_ver > ICE_FW_API_HEALTH_REPORT_MAJ)
6304 		return true;
6305 
6306 	if (hw->api_maj_ver == ICE_FW_API_HEALTH_REPORT_MAJ) {
6307 		if (hw->api_min_ver > ICE_FW_API_HEALTH_REPORT_MIN)
6308 			return true;
6309 		if (hw->api_min_ver == ICE_FW_API_HEALTH_REPORT_MIN &&
6310 		    hw->api_patch >= ICE_FW_API_HEALTH_REPORT_PATCH)
6311 			return true;
6312 	}
6313 
6314 	return false;
6315 }
6316 
6317 /**
6318  * ice_aq_set_health_status_config - Configure FW health events
6319  * @hw: pointer to the HW struct
6320  * @event_source: type of diagnostic events to enable
6321  * @cd: pointer to command details structure or NULL
6322  *
6323  * Configure the health status event types that the firmware will send to this
6324  * PF. The supported event types are: PF-specific, all PFs, and global
6325  */
6326 enum ice_status
6327 ice_aq_set_health_status_config(struct ice_hw *hw, u8 event_source,
6328 				struct ice_sq_cd *cd)
6329 {
6330 	struct ice_aqc_set_health_status_config *cmd;
6331 	struct ice_aq_desc desc;
6332 
6333 	cmd = &desc.params.set_health_status_config;
6334 
6335 	ice_fill_dflt_direct_cmd_desc(&desc,
6336 				      ice_aqc_opc_set_health_status_config);
6337 
6338 	cmd->event_source = event_source;
6339 
6340 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6341 }
6342 
6343 /**
6344  * ice_aq_get_port_options
6345  * @hw: pointer to the hw struct
6346  * @options: buffer for the resultant port options
6347  * @option_count: input - size of the buffer in port options structures,
6348  *                output - number of returned port options
6349  * @lport: logical port to call the command with (optional)
6350  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
6351  *               when PF owns more than 1 port it must be true
6352  * @active_option_idx: index of active port option in returned buffer
6353  * @active_option_valid: active option in returned buffer is valid
6354  * @pending_option_idx: index of pending port option in returned buffer
6355  * @pending_option_valid: pending option in returned buffer is valid
6356  *
6357  * Calls Get Port Options AQC (0x06ea) and verifies result.
6358  */
6359 enum ice_status
6360 ice_aq_get_port_options(struct ice_hw *hw,
6361 			struct ice_aqc_get_port_options_elem *options,
6362 			u8 *option_count, u8 lport, bool lport_valid,
6363 			u8 *active_option_idx, bool *active_option_valid,
6364 			u8 *pending_option_idx, bool *pending_option_valid)
6365 {
6366 	struct ice_aqc_get_port_options *cmd;
6367 	struct ice_aq_desc desc;
6368 	enum ice_status status;
6369 	u8 i;
6370 
6371 	/* options buffer shall be able to hold max returned options */
6372 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
6373 		return ICE_ERR_PARAM;
6374 
6375 	cmd = &desc.params.get_port_options;
6376 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
6377 
6378 	cmd->lport_num = lport;
6379 	cmd->lport_num_valid = lport_valid;
6380 
6381 	status = ice_aq_send_cmd(hw, &desc, options,
6382 				 *option_count * sizeof(*options), NULL);
6383 	if (status != ICE_SUCCESS)
6384 		return status;
6385 
6386 	/* verify direct FW response & set output parameters */
6387 	*option_count = cmd->port_options_count & ICE_AQC_PORT_OPT_COUNT_M;
6388 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
6389 	*active_option_valid = cmd->port_options & ICE_AQC_PORT_OPT_VALID;
6390 	if (*active_option_valid) {
6391 		*active_option_idx = cmd->port_options &
6392 				     ICE_AQC_PORT_OPT_ACTIVE_M;
6393 		if (*active_option_idx > (*option_count - 1))
6394 			return ICE_ERR_OUT_OF_RANGE;
6395 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
6396 			  *active_option_idx);
6397 	}
6398 
6399 	*pending_option_valid = cmd->pending_port_option_status &
6400 				ICE_AQC_PENDING_PORT_OPT_VALID;
6401 	if (*pending_option_valid) {
6402 		*pending_option_idx = cmd->pending_port_option_status &
6403 				      ICE_AQC_PENDING_PORT_OPT_IDX_M;
6404 		if (*pending_option_idx > (*option_count - 1))
6405 			return ICE_ERR_OUT_OF_RANGE;
6406 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
6407 			  *pending_option_idx);
6408 	}
6409 
6410 	/* mask output options fields */
6411 	for (i = 0; i < *option_count; i++) {
6412 		options[i].pmd &= ICE_AQC_PORT_OPT_PMD_COUNT_M;
6413 		options[i].max_lane_speed &= ICE_AQC_PORT_OPT_MAX_LANE_M;
6414 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
6415 			  options[i].pmd, options[i].max_lane_speed);
6416 	}
6417 
6418 	return ICE_SUCCESS;
6419 }
6420 
6421 /**
6422  * ice_aq_set_port_option
6423  * @hw: pointer to the hw struct
6424  * @lport: logical port to call the command with
6425  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
6426  *               when PF owns more than 1 port it must be true
6427  * @new_option: new port option to be written
6428  *
6429  * Calls Set Port Options AQC (0x06eb).
6430  */
6431 enum ice_status
6432 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
6433 		       u8 new_option)
6434 {
6435 	struct ice_aqc_set_port_option *cmd;
6436 	struct ice_aq_desc desc;
6437 
6438 	if (new_option >= ICE_AQC_PORT_OPT_COUNT_M)
6439 		return ICE_ERR_PARAM;
6440 
6441 	cmd = &desc.params.set_port_option;
6442 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
6443 
6444 	cmd->lport_num = lport;
6445 
6446 	cmd->lport_num_valid = lport_valid;
6447 	cmd->selected_port_option = new_option;
6448 
6449 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6450 }
6451 
6452 /**
6453  * ice_aq_set_lldp_mib - Set the LLDP MIB
6454  * @hw: pointer to the HW struct
6455  * @mib_type: Local, Remote or both Local and Remote MIBs
6456  * @buf: pointer to the caller-supplied buffer to store the MIB block
6457  * @buf_size: size of the buffer (in bytes)
6458  * @cd: pointer to command details structure or NULL
6459  *
6460  * Set the LLDP MIB. (0x0A08)
6461  */
6462 enum ice_status
6463 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6464 		    struct ice_sq_cd *cd)
6465 {
6466 	struct ice_aqc_lldp_set_local_mib *cmd;
6467 	struct ice_aq_desc desc;
6468 
6469 	cmd = &desc.params.lldp_set_mib;
6470 
6471 	if (buf_size == 0 || !buf)
6472 		return ICE_ERR_PARAM;
6473 
6474 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6475 
6476 	desc.flags |= CPU_TO_LE16((u16)ICE_AQ_FLAG_RD);
6477 	desc.datalen = CPU_TO_LE16(buf_size);
6478 
6479 	cmd->type = mib_type;
6480 	cmd->length = CPU_TO_LE16(buf_size);
6481 
6482 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6483 }
6484 
6485 /**
6486  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6487  * @hw: pointer to HW struct
6488  */
6489 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6490 {
6491 	if (hw->mac_type != ICE_MAC_E810 && hw->mac_type != ICE_MAC_GENERIC)
6492 		return false;
6493 
6494 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6495 				     ICE_FW_API_LLDP_FLTR_MIN,
6496 				     ICE_FW_API_LLDP_FLTR_PATCH);
6497 }
6498 
6499 /**
6500  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6501  * @hw: pointer to HW struct
6502  * @vsi_num: absolute HW index for VSI
6503  * @add: boolean for if adding or removing a filter
6504  */
6505 enum ice_status
6506 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
6507 {
6508 	struct ice_aqc_lldp_filter_ctrl *cmd;
6509 	struct ice_aq_desc desc;
6510 
6511 	cmd = &desc.params.lldp_filter_ctrl;
6512 
6513 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6514 
6515 	if (add)
6516 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6517 	else
6518 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6519 
6520 	cmd->vsi_num = CPU_TO_LE16(vsi_num);
6521 
6522 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6523 }
6524 
6525 /**
6526  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6527  * @hw: pointer to HW struct
6528  */
6529 enum ice_status ice_lldp_execute_pending_mib(struct ice_hw *hw)
6530 {
6531 	struct ice_aq_desc desc;
6532 
6533 	ice_fill_dflt_direct_cmd_desc(&desc, ice_execute_pending_lldp_mib);
6534 
6535 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6536 }
6537 
6538 /**
6539  * ice_fw_supports_report_dflt_cfg
6540  * @hw: pointer to the hardware structure
6541  *
6542  * Checks if the firmware supports report default configuration
6543  */
6544 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6545 {
6546 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6547 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6548 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6549 }
6550 
6551 /* each of the indexes into the following array match the speed of a return
6552  * value from the list of AQ returned speeds like the range:
6553  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6554  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) The array is defined as 15
6555  * elements long because the link_speed returned by the firmware is a 16 bit
6556  * value, but is indexed by [fls(speed) - 1]
6557  */
6558 static const u32 ice_aq_to_link_speed[] = {
6559 	ICE_LINK_SPEED_10MBPS,	/* BIT(0) */
6560 	ICE_LINK_SPEED_100MBPS,
6561 	ICE_LINK_SPEED_1000MBPS,
6562 	ICE_LINK_SPEED_2500MBPS,
6563 	ICE_LINK_SPEED_5000MBPS,
6564 	ICE_LINK_SPEED_10000MBPS,
6565 	ICE_LINK_SPEED_20000MBPS,
6566 	ICE_LINK_SPEED_25000MBPS,
6567 	ICE_LINK_SPEED_40000MBPS,
6568 	ICE_LINK_SPEED_50000MBPS,
6569 	ICE_LINK_SPEED_100000MBPS,	/* BIT(10) */
6570 };
6571 
6572 /**
6573  * ice_get_link_speed - get integer speed from table
6574  * @index: array index from fls(aq speed) - 1
6575  *
6576  * Returns: u32 value containing integer speed
6577  */
6578 u32 ice_get_link_speed(u16 index)
6579 {
6580 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6581 		return ICE_LINK_SPEED_UNKNOWN;
6582 
6583 	return ice_aq_to_link_speed[index];
6584 }
6585 
6586 /**
6587  * ice_fw_supports_fec_dis_auto
6588  * @hw: pointer to the hardware structure
6589  *
6590  * Checks if the firmware supports FEC disable in Auto FEC mode
6591  */
6592 bool ice_fw_supports_fec_dis_auto(struct ice_hw *hw)
6593 {
6594 	return ice_is_fw_min_ver(hw, ICE_FW_FEC_DIS_AUTO_BRANCH,
6595 				 ICE_FW_FEC_DIS_AUTO_MAJ,
6596 				 ICE_FW_FEC_DIS_AUTO_MIN,
6597 				 ICE_FW_FEC_DIS_AUTO_PATCH);
6598 }
6599 
6600 /**
6601  * ice_is_fw_auto_drop_supported
6602  * @hw: pointer to the hardware structure
6603  *
6604  * Checks if the firmware supports auto drop feature
6605  */
6606 bool ice_is_fw_auto_drop_supported(struct ice_hw *hw)
6607 {
6608 	if (hw->api_maj_ver >= ICE_FW_API_AUTO_DROP_MAJ &&
6609 	    hw->api_min_ver >= ICE_FW_API_AUTO_DROP_MIN)
6610 		return true;
6611 	return false;
6612 }
6613 
6614