xref: /freebsd/sys/dev/ice/ice_sched.c (revision 4b9d6057)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2023, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "ice_sched.h"
33 
34 /**
35  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
36  * @pi: port information structure
37  * @info: Scheduler element information from firmware
38  *
39  * This function inserts the root node of the scheduling tree topology
40  * to the SW DB.
41  */
42 static enum ice_status
43 ice_sched_add_root_node(struct ice_port_info *pi,
44 			struct ice_aqc_txsched_elem_data *info)
45 {
46 	struct ice_sched_node *root;
47 	struct ice_hw *hw;
48 
49 	if (!pi)
50 		return ICE_ERR_PARAM;
51 
52 	hw = pi->hw;
53 
54 	root = (struct ice_sched_node *)ice_malloc(hw, sizeof(*root));
55 	if (!root)
56 		return ICE_ERR_NO_MEMORY;
57 
58 	/* coverity[suspicious_sizeof] */
59 	root->children = (struct ice_sched_node **)
60 		ice_calloc(hw, hw->max_children[0], sizeof(*root));
61 	if (!root->children) {
62 		ice_free(hw, root);
63 		return ICE_ERR_NO_MEMORY;
64 	}
65 
66 	ice_memcpy(&root->info, info, sizeof(*info), ICE_DMA_TO_NONDMA);
67 	pi->root = root;
68 	return ICE_SUCCESS;
69 }
70 
71 /**
72  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
73  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
74  * @teid: node TEID to search
75  *
76  * This function searches for a node matching the TEID in the scheduling tree
77  * from the SW DB. The search is recursive and is restricted by the number of
78  * layers it has searched through; stopping at the max supported layer.
79  *
80  * This function needs to be called when holding the port_info->sched_lock
81  */
82 struct ice_sched_node *
83 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
84 {
85 	u16 i;
86 
87 	/* The TEID is same as that of the start_node */
88 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
89 		return start_node;
90 
91 	/* The node has no children or is at the max layer */
92 	if (!start_node->num_children ||
93 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
94 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
95 		return NULL;
96 
97 	/* Check if TEID matches to any of the children nodes */
98 	for (i = 0; i < start_node->num_children; i++)
99 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
100 			return start_node->children[i];
101 
102 	/* Search within each child's sub-tree */
103 	for (i = 0; i < start_node->num_children; i++) {
104 		struct ice_sched_node *tmp;
105 
106 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
107 						  teid);
108 		if (tmp)
109 			return tmp;
110 	}
111 
112 	return NULL;
113 }
114 
115 /**
116  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
117  * @hw: pointer to the HW struct
118  * @cmd_opc: cmd opcode
119  * @elems_req: number of elements to request
120  * @buf: pointer to buffer
121  * @buf_size: buffer size in bytes
122  * @elems_resp: returns total number of elements response
123  * @cd: pointer to command details structure or NULL
124  *
125  * This function sends a scheduling elements cmd (cmd_opc)
126  */
127 static enum ice_status
128 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
129 			    u16 elems_req, void *buf, u16 buf_size,
130 			    u16 *elems_resp, struct ice_sq_cd *cd)
131 {
132 	struct ice_aqc_sched_elem_cmd *cmd;
133 	struct ice_aq_desc desc;
134 	enum ice_status status;
135 
136 	cmd = &desc.params.sched_elem_cmd;
137 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
138 	cmd->num_elem_req = CPU_TO_LE16(elems_req);
139 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
140 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
141 	if (!status && elems_resp)
142 		*elems_resp = LE16_TO_CPU(cmd->num_elem_resp);
143 
144 	return status;
145 }
146 
147 /**
148  * ice_aq_query_sched_elems - query scheduler elements
149  * @hw: pointer to the HW struct
150  * @elems_req: number of elements to query
151  * @buf: pointer to buffer
152  * @buf_size: buffer size in bytes
153  * @elems_ret: returns total number of elements returned
154  * @cd: pointer to command details structure or NULL
155  *
156  * Query scheduling elements (0x0404)
157  */
158 enum ice_status
159 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
160 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
161 			 u16 *elems_ret, struct ice_sq_cd *cd)
162 {
163 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
164 					   elems_req, (void *)buf, buf_size,
165 					   elems_ret, cd);
166 }
167 
168 /**
169  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
170  * @pi: port information structure
171  * @layer: Scheduler layer of the node
172  * @info: Scheduler element information from firmware
173  * @prealloc_node: preallocated ice_sched_node struct for SW DB
174  *
175  * This function inserts a scheduler node to the SW DB.
176  */
177 enum ice_status
178 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
179 		   struct ice_aqc_txsched_elem_data *info,
180 		   struct ice_sched_node *prealloc_node)
181 {
182 	struct ice_aqc_txsched_elem_data elem;
183 	struct ice_sched_node *parent;
184 	struct ice_sched_node *node;
185 	enum ice_status status;
186 	struct ice_hw *hw;
187 
188 	if (!pi)
189 		return ICE_ERR_PARAM;
190 
191 	hw = pi->hw;
192 
193 	/* A valid parent node should be there */
194 	parent = ice_sched_find_node_by_teid(pi->root,
195 					     LE32_TO_CPU(info->parent_teid));
196 	if (!parent) {
197 		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
198 			  LE32_TO_CPU(info->parent_teid));
199 		return ICE_ERR_PARAM;
200 	}
201 
202 	/* query the current node information from FW before adding it
203 	 * to the SW DB
204 	 */
205 	status = ice_sched_query_elem(hw, LE32_TO_CPU(info->node_teid), &elem);
206 	if (status)
207 		return status;
208 
209 	if (prealloc_node)
210 		node = prealloc_node;
211 	else
212 		node = (struct ice_sched_node *)ice_malloc(hw, sizeof(*node));
213 	if (!node)
214 		return ICE_ERR_NO_MEMORY;
215 	if (hw->max_children[layer]) {
216 		/* coverity[suspicious_sizeof] */
217 		node->children = (struct ice_sched_node **)
218 			ice_calloc(hw, hw->max_children[layer], sizeof(*node));
219 		if (!node->children) {
220 			ice_free(hw, node);
221 			return ICE_ERR_NO_MEMORY;
222 		}
223 	}
224 
225 	node->in_use = true;
226 	node->parent = parent;
227 	node->tx_sched_layer = layer;
228 	parent->children[parent->num_children++] = node;
229 	node->info = elem;
230 	return ICE_SUCCESS;
231 }
232 
233 /**
234  * ice_aq_delete_sched_elems - delete scheduler elements
235  * @hw: pointer to the HW struct
236  * @grps_req: number of groups to delete
237  * @buf: pointer to buffer
238  * @buf_size: buffer size in bytes
239  * @grps_del: returns total number of elements deleted
240  * @cd: pointer to command details structure or NULL
241  *
242  * Delete scheduling elements (0x040F)
243  */
244 static enum ice_status
245 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
246 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
247 			  u16 *grps_del, struct ice_sq_cd *cd)
248 {
249 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
250 					   grps_req, (void *)buf, buf_size,
251 					   grps_del, cd);
252 }
253 
254 /**
255  * ice_sched_remove_elems - remove nodes from HW
256  * @hw: pointer to the HW struct
257  * @parent: pointer to the parent node
258  * @num_nodes: number of nodes
259  * @node_teids: array of node teids to be deleted
260  *
261  * This function remove nodes from HW
262  */
263 static enum ice_status
264 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
265 		       u16 num_nodes, u32 *node_teids)
266 {
267 	struct ice_aqc_delete_elem *buf;
268 	u16 i, num_groups_removed = 0;
269 	enum ice_status status;
270 	u16 buf_size;
271 
272 	buf_size = ice_struct_size(buf, teid, num_nodes);
273 	buf = (struct ice_aqc_delete_elem *)ice_malloc(hw, buf_size);
274 	if (!buf)
275 		return ICE_ERR_NO_MEMORY;
276 
277 	buf->hdr.parent_teid = parent->info.node_teid;
278 	buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
279 	for (i = 0; i < num_nodes; i++)
280 		buf->teid[i] = CPU_TO_LE32(node_teids[i]);
281 
282 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
283 					   &num_groups_removed, NULL);
284 	if (status != ICE_SUCCESS || num_groups_removed != 1)
285 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
286 			  hw->adminq.sq_last_status);
287 
288 	ice_free(hw, buf);
289 	return status;
290 }
291 
292 /**
293  * ice_sched_get_first_node - get the first node of the given layer
294  * @pi: port information structure
295  * @parent: pointer the base node of the subtree
296  * @layer: layer number
297  *
298  * This function retrieves the first node of the given layer from the subtree
299  */
300 static struct ice_sched_node *
301 ice_sched_get_first_node(struct ice_port_info *pi,
302 			 struct ice_sched_node *parent, u8 layer)
303 {
304 	return pi->sib_head[parent->tc_num][layer];
305 }
306 
307 /**
308  * ice_sched_get_tc_node - get pointer to TC node
309  * @pi: port information structure
310  * @tc: TC number
311  *
312  * This function returns the TC node pointer
313  */
314 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
315 {
316 	u8 i;
317 
318 	if (!pi || !pi->root)
319 		return NULL;
320 	for (i = 0; i < pi->root->num_children; i++)
321 		if (pi->root->children[i]->tc_num == tc)
322 			return pi->root->children[i];
323 	return NULL;
324 }
325 
326 /**
327  * ice_free_sched_node - Free a Tx scheduler node from SW DB
328  * @pi: port information structure
329  * @node: pointer to the ice_sched_node struct
330  *
331  * This function frees up a node from SW DB as well as from HW
332  *
333  * This function needs to be called with the port_info->sched_lock held
334  */
335 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
336 {
337 	struct ice_sched_node *parent;
338 	struct ice_hw *hw = pi->hw;
339 	u8 i, j;
340 
341 	/* Free the children before freeing up the parent node
342 	 * The parent array is updated below and that shifts the nodes
343 	 * in the array. So always pick the first child if num children > 0
344 	 */
345 	while (node->num_children)
346 		ice_free_sched_node(pi, node->children[0]);
347 
348 	/* Leaf, TC and root nodes can't be deleted by SW */
349 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
350 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
351 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
352 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
353 		u32 teid = LE32_TO_CPU(node->info.node_teid);
354 
355 		ice_sched_remove_elems(hw, node->parent, 1, &teid);
356 	}
357 	parent = node->parent;
358 	/* root has no parent */
359 	if (parent) {
360 		struct ice_sched_node *p;
361 
362 		/* update the parent */
363 		for (i = 0; i < parent->num_children; i++)
364 			if (parent->children[i] == node) {
365 				for (j = i + 1; j < parent->num_children; j++)
366 					parent->children[j - 1] =
367 						parent->children[j];
368 				parent->num_children--;
369 				break;
370 			}
371 
372 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
373 		while (p) {
374 			if (p->sibling == node) {
375 				p->sibling = node->sibling;
376 				break;
377 			}
378 			p = p->sibling;
379 		}
380 
381 		/* update the sibling head if head is getting removed */
382 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
383 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
384 				node->sibling;
385 	}
386 
387 	/* leaf nodes have no children */
388 	if (node->children)
389 		ice_free(hw, node->children);
390 	ice_free(hw, node);
391 }
392 
393 /**
394  * ice_aq_get_dflt_topo - gets default scheduler topology
395  * @hw: pointer to the HW struct
396  * @lport: logical port number
397  * @buf: pointer to buffer
398  * @buf_size: buffer size in bytes
399  * @num_branches: returns total number of queue to port branches
400  * @cd: pointer to command details structure or NULL
401  *
402  * Get default scheduler topology (0x400)
403  */
404 static enum ice_status
405 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
406 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
407 		     u8 *num_branches, struct ice_sq_cd *cd)
408 {
409 	struct ice_aqc_get_topo *cmd;
410 	struct ice_aq_desc desc;
411 	enum ice_status status;
412 
413 	cmd = &desc.params.get_topo;
414 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
415 	cmd->port_num = lport;
416 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
417 	if (!status && num_branches)
418 		*num_branches = cmd->num_branches;
419 
420 	return status;
421 }
422 
423 /**
424  * ice_aq_add_sched_elems - adds scheduling element
425  * @hw: pointer to the HW struct
426  * @grps_req: the number of groups that are requested to be added
427  * @buf: pointer to buffer
428  * @buf_size: buffer size in bytes
429  * @grps_added: returns total number of groups added
430  * @cd: pointer to command details structure or NULL
431  *
432  * Add scheduling elements (0x0401)
433  */
434 static enum ice_status
435 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
436 		       struct ice_aqc_add_elem *buf, u16 buf_size,
437 		       u16 *grps_added, struct ice_sq_cd *cd)
438 {
439 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
440 					   grps_req, (void *)buf, buf_size,
441 					   grps_added, cd);
442 }
443 
444 /**
445  * ice_aq_cfg_sched_elems - configures scheduler elements
446  * @hw: pointer to the HW struct
447  * @elems_req: number of elements to configure
448  * @buf: pointer to buffer
449  * @buf_size: buffer size in bytes
450  * @elems_cfgd: returns total number of elements configured
451  * @cd: pointer to command details structure or NULL
452  *
453  * Configure scheduling elements (0x0403)
454  */
455 static enum ice_status
456 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
457 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
458 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
459 {
460 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
461 					   elems_req, (void *)buf, buf_size,
462 					   elems_cfgd, cd);
463 }
464 
465 /**
466  * ice_aq_move_sched_elems - move scheduler elements
467  * @hw: pointer to the HW struct
468  * @grps_req: number of groups to move
469  * @buf: pointer to buffer
470  * @buf_size: buffer size in bytes
471  * @grps_movd: returns total number of groups moved
472  * @cd: pointer to command details structure or NULL
473  *
474  * Move scheduling elements (0x0408)
475  */
476 enum ice_status
477 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
478 			struct ice_aqc_move_elem *buf, u16 buf_size,
479 			u16 *grps_movd, struct ice_sq_cd *cd)
480 {
481 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
482 					   grps_req, (void *)buf, buf_size,
483 					   grps_movd, cd);
484 }
485 
486 /**
487  * ice_aq_suspend_sched_elems - suspend scheduler elements
488  * @hw: pointer to the HW struct
489  * @elems_req: number of elements to suspend
490  * @buf: pointer to buffer
491  * @buf_size: buffer size in bytes
492  * @elems_ret: returns total number of elements suspended
493  * @cd: pointer to command details structure or NULL
494  *
495  * Suspend scheduling elements (0x0409)
496  */
497 static enum ice_status
498 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
499 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
500 {
501 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
502 					   elems_req, (void *)buf, buf_size,
503 					   elems_ret, cd);
504 }
505 
506 /**
507  * ice_aq_resume_sched_elems - resume scheduler elements
508  * @hw: pointer to the HW struct
509  * @elems_req: number of elements to resume
510  * @buf: pointer to buffer
511  * @buf_size: buffer size in bytes
512  * @elems_ret: returns total number of elements resumed
513  * @cd: pointer to command details structure or NULL
514  *
515  * resume scheduling elements (0x040A)
516  */
517 static enum ice_status
518 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
519 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
520 {
521 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
522 					   elems_req, (void *)buf, buf_size,
523 					   elems_ret, cd);
524 }
525 
526 /**
527  * ice_aq_query_sched_res - query scheduler resource
528  * @hw: pointer to the HW struct
529  * @buf_size: buffer size in bytes
530  * @buf: pointer to buffer
531  * @cd: pointer to command details structure or NULL
532  *
533  * Query scheduler resource allocation (0x0412)
534  */
535 static enum ice_status
536 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
537 		       struct ice_aqc_query_txsched_res_resp *buf,
538 		       struct ice_sq_cd *cd)
539 {
540 	struct ice_aq_desc desc;
541 
542 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
543 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
544 }
545 
546 /**
547  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
548  * @hw: pointer to the HW struct
549  * @num_nodes: number of nodes
550  * @node_teids: array of node teids to be suspended or resumed
551  * @suspend: true means suspend / false means resume
552  *
553  * This function suspends or resumes HW nodes
554  */
555 static enum ice_status
556 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
557 			       bool suspend)
558 {
559 	u16 i, buf_size, num_elem_ret = 0;
560 	enum ice_status status;
561 	__le32 *buf;
562 
563 	buf_size = sizeof(*buf) * num_nodes;
564 	buf = (__le32 *)ice_malloc(hw, buf_size);
565 	if (!buf)
566 		return ICE_ERR_NO_MEMORY;
567 
568 	for (i = 0; i < num_nodes; i++)
569 		buf[i] = CPU_TO_LE32(node_teids[i]);
570 
571 	if (suspend)
572 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
573 						    buf_size, &num_elem_ret,
574 						    NULL);
575 	else
576 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
577 						   buf_size, &num_elem_ret,
578 						   NULL);
579 	if (status != ICE_SUCCESS || num_elem_ret != num_nodes)
580 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
581 
582 	ice_free(hw, buf);
583 	return status;
584 }
585 
586 /**
587  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
588  * @hw: pointer to the HW struct
589  * @vsi_handle: VSI handle
590  * @tc: TC number
591  * @new_numqs: number of queues
592  */
593 static enum ice_status
594 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
595 {
596 	struct ice_vsi_ctx *vsi_ctx;
597 	struct ice_q_ctx *q_ctx;
598 
599 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
600 	if (!vsi_ctx)
601 		return ICE_ERR_PARAM;
602 	/* allocate LAN queue contexts */
603 	if (!vsi_ctx->lan_q_ctx[tc]) {
604 		vsi_ctx->lan_q_ctx[tc] = (struct ice_q_ctx *)
605 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
606 		if (!vsi_ctx->lan_q_ctx[tc])
607 			return ICE_ERR_NO_MEMORY;
608 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
609 		return ICE_SUCCESS;
610 	}
611 	/* num queues are increased, update the queue contexts */
612 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
613 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
614 
615 		q_ctx = (struct ice_q_ctx *)
616 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
617 		if (!q_ctx)
618 			return ICE_ERR_NO_MEMORY;
619 		ice_memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
620 			   prev_num * sizeof(*q_ctx), ICE_DMA_TO_NONDMA);
621 		ice_free(hw, vsi_ctx->lan_q_ctx[tc]);
622 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
623 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
624 	}
625 	return ICE_SUCCESS;
626 }
627 
628 /**
629  * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
630  * @hw: pointer to the HW struct
631  * @vsi_handle: VSI handle
632  * @tc: TC number
633  * @new_numqs: number of queues
634  */
635 static enum ice_status
636 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
637 {
638 	struct ice_vsi_ctx *vsi_ctx;
639 	struct ice_q_ctx *q_ctx;
640 
641 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
642 	if (!vsi_ctx)
643 		return ICE_ERR_PARAM;
644 	/* allocate RDMA queue contexts */
645 	if (!vsi_ctx->rdma_q_ctx[tc]) {
646 		vsi_ctx->rdma_q_ctx[tc] = (struct ice_q_ctx *)
647 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
648 		if (!vsi_ctx->rdma_q_ctx[tc])
649 			return ICE_ERR_NO_MEMORY;
650 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
651 		return ICE_SUCCESS;
652 	}
653 	/* num queues are increased, update the queue contexts */
654 	if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
655 		u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
656 
657 		q_ctx = (struct ice_q_ctx *)
658 			ice_calloc(hw, new_numqs, sizeof(*q_ctx));
659 		if (!q_ctx)
660 			return ICE_ERR_NO_MEMORY;
661 		ice_memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
662 			   prev_num * sizeof(*q_ctx), ICE_DMA_TO_NONDMA);
663 		ice_free(hw, vsi_ctx->rdma_q_ctx[tc]);
664 		vsi_ctx->rdma_q_ctx[tc] = q_ctx;
665 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
666 	}
667 	return ICE_SUCCESS;
668 }
669 
670 /**
671  * ice_aq_rl_profile - performs a rate limiting task
672  * @hw: pointer to the HW struct
673  * @opcode: opcode for add, query, or remove profile(s)
674  * @num_profiles: the number of profiles
675  * @buf: pointer to buffer
676  * @buf_size: buffer size in bytes
677  * @num_processed: number of processed add or remove profile(s) to return
678  * @cd: pointer to command details structure
679  *
680  * RL profile function to add, query, or remove profile(s)
681  */
682 static enum ice_status
683 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
684 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
685 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
686 {
687 	struct ice_aqc_rl_profile *cmd;
688 	struct ice_aq_desc desc;
689 	enum ice_status status;
690 
691 	cmd = &desc.params.rl_profile;
692 
693 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
694 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
695 	cmd->num_profiles = CPU_TO_LE16(num_profiles);
696 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
697 	if (!status && num_processed)
698 		*num_processed = LE16_TO_CPU(cmd->num_processed);
699 	return status;
700 }
701 
702 /**
703  * ice_aq_add_rl_profile - adds rate limiting profile(s)
704  * @hw: pointer to the HW struct
705  * @num_profiles: the number of profile(s) to be add
706  * @buf: pointer to buffer
707  * @buf_size: buffer size in bytes
708  * @num_profiles_added: total number of profiles added to return
709  * @cd: pointer to command details structure
710  *
711  * Add RL profile (0x0410)
712  */
713 static enum ice_status
714 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
715 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
716 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
717 {
718 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
719 				 buf, buf_size, num_profiles_added, cd);
720 }
721 
722 /**
723  * ice_aq_query_rl_profile - query rate limiting profile(s)
724  * @hw: pointer to the HW struct
725  * @num_profiles: the number of profile(s) to query
726  * @buf: pointer to buffer
727  * @buf_size: buffer size in bytes
728  * @cd: pointer to command details structure
729  *
730  * Query RL profile (0x0411)
731  */
732 enum ice_status
733 ice_aq_query_rl_profile(struct ice_hw *hw, u16 num_profiles,
734 			struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
735 			struct ice_sq_cd *cd)
736 {
737 	return ice_aq_rl_profile(hw, ice_aqc_opc_query_rl_profiles,
738 				 num_profiles, buf, buf_size, NULL, cd);
739 }
740 
741 /**
742  * ice_aq_remove_rl_profile - removes RL profile(s)
743  * @hw: pointer to the HW struct
744  * @num_profiles: the number of profile(s) to remove
745  * @buf: pointer to buffer
746  * @buf_size: buffer size in bytes
747  * @num_profiles_removed: total number of profiles removed to return
748  * @cd: pointer to command details structure or NULL
749  *
750  * Remove RL profile (0x0415)
751  */
752 static enum ice_status
753 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
754 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
755 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
756 {
757 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
758 				 num_profiles, buf, buf_size,
759 				 num_profiles_removed, cd);
760 }
761 
762 /**
763  * ice_sched_del_rl_profile - remove RL profile
764  * @hw: pointer to the HW struct
765  * @rl_info: rate limit profile information
766  *
767  * If the profile ID is not referenced anymore, it removes profile ID with
768  * its associated parameters from HW DB,and locally. The caller needs to
769  * hold scheduler lock.
770  */
771 static enum ice_status
772 ice_sched_del_rl_profile(struct ice_hw *hw,
773 			 struct ice_aqc_rl_profile_info *rl_info)
774 {
775 	struct ice_aqc_rl_profile_elem *buf;
776 	u16 num_profiles_removed;
777 	enum ice_status status;
778 	u16 num_profiles = 1;
779 
780 	if (rl_info->prof_id_ref != 0)
781 		return ICE_ERR_IN_USE;
782 
783 	/* Safe to remove profile ID */
784 	buf = &rl_info->profile;
785 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
786 					  &num_profiles_removed, NULL);
787 	if (status || num_profiles_removed != num_profiles)
788 		return ICE_ERR_CFG;
789 
790 	/* Delete stale entry now */
791 	LIST_DEL(&rl_info->list_entry);
792 	ice_free(hw, rl_info);
793 	return status;
794 }
795 
796 /**
797  * ice_sched_clear_rl_prof - clears RL prof entries
798  * @pi: port information structure
799  *
800  * This function removes all RL profile from HW as well as from SW DB.
801  */
802 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
803 {
804 	u16 ln;
805 	struct ice_hw *hw = pi->hw;
806 
807 	for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
808 		struct ice_aqc_rl_profile_info *rl_prof_elem;
809 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
810 
811 		LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
812 					 &hw->rl_prof_list[ln],
813 					 ice_aqc_rl_profile_info, list_entry) {
814 			enum ice_status status;
815 
816 			rl_prof_elem->prof_id_ref = 0;
817 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
818 			if (status) {
819 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
820 				/* On error, free mem required */
821 				LIST_DEL(&rl_prof_elem->list_entry);
822 				ice_free(hw, rl_prof_elem);
823 			}
824 		}
825 	}
826 }
827 
828 /**
829  * ice_sched_clear_agg - clears the aggregator related information
830  * @hw: pointer to the hardware structure
831  *
832  * This function removes aggregator list and free up aggregator related memory
833  * previously allocated.
834  */
835 void ice_sched_clear_agg(struct ice_hw *hw)
836 {
837 	struct ice_sched_agg_info *agg_info;
838 	struct ice_sched_agg_info *atmp;
839 
840 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &hw->agg_list,
841 				 ice_sched_agg_info,
842 				 list_entry) {
843 		struct ice_sched_agg_vsi_info *agg_vsi_info;
844 		struct ice_sched_agg_vsi_info *vtmp;
845 
846 		LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
847 					 &agg_info->agg_vsi_list,
848 					 ice_sched_agg_vsi_info, list_entry) {
849 			LIST_DEL(&agg_vsi_info->list_entry);
850 			ice_free(hw, agg_vsi_info);
851 		}
852 		LIST_DEL(&agg_info->list_entry);
853 		ice_free(hw, agg_info);
854 	}
855 }
856 
857 /**
858  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
859  * @pi: port information structure
860  *
861  * This function removes all the nodes from HW as well as from SW DB.
862  */
863 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
864 {
865 	if (!pi)
866 		return;
867 	/* remove RL profiles related lists */
868 	ice_sched_clear_rl_prof(pi);
869 	if (pi->root) {
870 		ice_free_sched_node(pi, pi->root);
871 		pi->root = NULL;
872 	}
873 }
874 
875 /**
876  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
877  * @pi: port information structure
878  *
879  * Cleanup scheduling elements from SW DB
880  */
881 void ice_sched_clear_port(struct ice_port_info *pi)
882 {
883 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
884 		return;
885 
886 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
887 	ice_acquire_lock(&pi->sched_lock);
888 	ice_sched_clear_tx_topo(pi);
889 	ice_release_lock(&pi->sched_lock);
890 	ice_destroy_lock(&pi->sched_lock);
891 }
892 
893 /**
894  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
895  * @hw: pointer to the HW struct
896  *
897  * Cleanup scheduling elements from SW DB for all the ports
898  */
899 void ice_sched_cleanup_all(struct ice_hw *hw)
900 {
901 	if (!hw)
902 		return;
903 
904 	if (hw->layer_info) {
905 		ice_free(hw, hw->layer_info);
906 		hw->layer_info = NULL;
907 	}
908 
909 	ice_sched_clear_port(hw->port_info);
910 
911 	hw->num_tx_sched_layers = 0;
912 	hw->num_tx_sched_phys_layers = 0;
913 	hw->flattened_layers = 0;
914 	hw->max_cgds = 0;
915 }
916 
917 /**
918  * ice_aq_cfg_node_attr - configure nodes' per-cone flattening attributes
919  * @hw: pointer to the HW struct
920  * @num_nodes: the number of nodes whose attributes to configure
921  * @buf: pointer to buffer
922  * @buf_size: buffer size in bytes
923  * @cd: pointer to command details structure or NULL
924  *
925  * Configure Node Attributes (0x0417)
926  */
927 enum ice_status
928 ice_aq_cfg_node_attr(struct ice_hw *hw, u16 num_nodes,
929 		     struct ice_aqc_node_attr_elem *buf, u16 buf_size,
930 		     struct ice_sq_cd *cd)
931 {
932 	struct ice_aqc_node_attr *cmd;
933 	struct ice_aq_desc desc;
934 
935 	cmd = &desc.params.node_attr;
936 	ice_fill_dflt_direct_cmd_desc(&desc,
937 				      ice_aqc_opc_cfg_node_attr);
938 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
939 
940 	cmd->num_entries = CPU_TO_LE16(num_nodes);
941 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
942 }
943 
944 /**
945  * ice_aq_cfg_l2_node_cgd - configures L2 node to CGD mapping
946  * @hw: pointer to the HW struct
947  * @num_l2_nodes: the number of L2 nodes whose CGDs to configure
948  * @buf: pointer to buffer
949  * @buf_size: buffer size in bytes
950  * @cd: pointer to command details structure or NULL
951  *
952  * Configure L2 Node CGD (0x0414)
953  */
954 enum ice_status
955 ice_aq_cfg_l2_node_cgd(struct ice_hw *hw, u16 num_l2_nodes,
956 		       struct ice_aqc_cfg_l2_node_cgd_elem *buf,
957 		       u16 buf_size, struct ice_sq_cd *cd)
958 {
959 	struct ice_aqc_cfg_l2_node_cgd *cmd;
960 	struct ice_aq_desc desc;
961 
962 	cmd = &desc.params.cfg_l2_node_cgd;
963 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_l2_node_cgd);
964 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
965 
966 	cmd->num_l2_nodes = CPU_TO_LE16(num_l2_nodes);
967 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
968 }
969 
970 /**
971  * ice_sched_add_elems - add nodes to HW and SW DB
972  * @pi: port information structure
973  * @tc_node: pointer to the branch node
974  * @parent: pointer to the parent node
975  * @layer: layer number to add nodes
976  * @num_nodes: number of nodes
977  * @num_nodes_added: pointer to num nodes added
978  * @first_node_teid: if new nodes are added then return the TEID of first node
979  * @prealloc_nodes: preallocated nodes struct for software DB
980  *
981  * This function add nodes to HW as well as to SW DB for a given layer
982  */
983 enum ice_status
984 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
985 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
986 		    u16 *num_nodes_added, u32 *first_node_teid,
987 		    struct ice_sched_node **prealloc_nodes)
988 {
989 	struct ice_sched_node *prev, *new_node;
990 	struct ice_aqc_add_elem *buf;
991 	u16 i, num_groups_added = 0;
992 	enum ice_status status = ICE_SUCCESS;
993 	struct ice_hw *hw = pi->hw;
994 	u16 buf_size;
995 	u32 teid;
996 
997 	buf_size = ice_struct_size(buf, generic, num_nodes);
998 	buf = (struct ice_aqc_add_elem *)ice_malloc(hw, buf_size);
999 	if (!buf)
1000 		return ICE_ERR_NO_MEMORY;
1001 
1002 	buf->hdr.parent_teid = parent->info.node_teid;
1003 	buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
1004 	for (i = 0; i < num_nodes; i++) {
1005 		buf->generic[i].parent_teid = parent->info.node_teid;
1006 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
1007 		buf->generic[i].data.valid_sections =
1008 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
1009 			ICE_AQC_ELEM_VALID_EIR;
1010 		buf->generic[i].data.generic = 0;
1011 		buf->generic[i].data.cir_bw.bw_profile_idx =
1012 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
1013 		buf->generic[i].data.cir_bw.bw_alloc =
1014 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
1015 		buf->generic[i].data.eir_bw.bw_profile_idx =
1016 			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
1017 		buf->generic[i].data.eir_bw.bw_alloc =
1018 			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
1019 	}
1020 
1021 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
1022 					&num_groups_added, NULL);
1023 	if (status != ICE_SUCCESS || num_groups_added != 1) {
1024 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
1025 			  hw->adminq.sq_last_status);
1026 		ice_free(hw, buf);
1027 		return ICE_ERR_CFG;
1028 	}
1029 
1030 	*num_nodes_added = num_nodes;
1031 	/* add nodes to the SW DB */
1032 	for (i = 0; i < num_nodes; i++) {
1033 		if (prealloc_nodes)
1034 			status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]);
1035 		else
1036 			status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL);
1037 
1038 		if (status != ICE_SUCCESS) {
1039 			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
1040 				  status);
1041 			break;
1042 		}
1043 
1044 		teid = LE32_TO_CPU(buf->generic[i].node_teid);
1045 		new_node = ice_sched_find_node_by_teid(parent, teid);
1046 		if (!new_node) {
1047 			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
1048 			break;
1049 		}
1050 
1051 		new_node->sibling = NULL;
1052 		new_node->tc_num = tc_node->tc_num;
1053 
1054 		/* add it to previous node sibling pointer */
1055 		/* Note: siblings are not linked across branches */
1056 		prev = ice_sched_get_first_node(pi, tc_node, layer);
1057 		if (prev && prev != new_node) {
1058 			while (prev->sibling)
1059 				prev = prev->sibling;
1060 			prev->sibling = new_node;
1061 		}
1062 
1063 		/* initialize the sibling head */
1064 		if (!pi->sib_head[tc_node->tc_num][layer])
1065 			pi->sib_head[tc_node->tc_num][layer] = new_node;
1066 
1067 		if (i == 0)
1068 			*first_node_teid = teid;
1069 	}
1070 
1071 	ice_free(hw, buf);
1072 	return status;
1073 }
1074 
1075 /**
1076  * ice_sched_add_nodes_to_hw_layer - Add nodes to hw layer
1077  * @pi: port information structure
1078  * @tc_node: pointer to TC node
1079  * @parent: pointer to parent node
1080  * @layer: layer number to add nodes
1081  * @num_nodes: number of nodes to be added
1082  * @first_node_teid: pointer to the first node TEID
1083  * @num_nodes_added: pointer to number of nodes added
1084  *
1085  * Add nodes into specific hw layer.
1086  */
1087 static enum ice_status
1088 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1089 				struct ice_sched_node *tc_node,
1090 				struct ice_sched_node *parent, u8 layer,
1091 				u16 num_nodes, u32 *first_node_teid,
1092 				u16 *num_nodes_added)
1093 {
1094 	u16 max_child_nodes;
1095 
1096 	*num_nodes_added = 0;
1097 
1098 	if (!num_nodes)
1099 		return ICE_SUCCESS;
1100 
1101 	if (!parent || layer < pi->hw->sw_entry_point_layer)
1102 		return ICE_ERR_PARAM;
1103 
1104 	/* max children per node per layer */
1105 	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1106 
1107 	/* current number of children + required nodes exceed max children */
1108 	if ((parent->num_children + num_nodes) > max_child_nodes) {
1109 		/* Fail if the parent is a TC node */
1110 		if (parent == tc_node)
1111 			return ICE_ERR_CFG;
1112 		return ICE_ERR_MAX_LIMIT;
1113 	}
1114 
1115 	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1116 				   num_nodes_added, first_node_teid, NULL);
1117 }
1118 
1119 /**
1120  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1121  * @pi: port information structure
1122  * @tc_node: pointer to TC node
1123  * @parent: pointer to parent node
1124  * @layer: layer number to add nodes
1125  * @num_nodes: number of nodes to be added
1126  * @first_node_teid: pointer to the first node TEID
1127  * @num_nodes_added: pointer to number of nodes added
1128  *
1129  * This function add nodes to a given layer.
1130  */
1131 static enum ice_status
1132 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1133 			     struct ice_sched_node *tc_node,
1134 			     struct ice_sched_node *parent, u8 layer,
1135 			     u16 num_nodes, u32 *first_node_teid,
1136 			     u16 *num_nodes_added)
1137 {
1138 	u32 *first_teid_ptr = first_node_teid;
1139 	u16 new_num_nodes = num_nodes;
1140 	enum ice_status status = ICE_SUCCESS;
1141 	u32 temp;
1142 
1143 	*num_nodes_added = 0;
1144 	while (*num_nodes_added < num_nodes) {
1145 		u16 max_child_nodes, num_added = 0;
1146 
1147 		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1148 							 layer,	new_num_nodes,
1149 							 first_teid_ptr,
1150 							 &num_added);
1151 		if (status == ICE_SUCCESS)
1152 			*num_nodes_added += num_added;
1153 		/* added more nodes than requested ? */
1154 		if (*num_nodes_added > num_nodes) {
1155 			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1156 				  *num_nodes_added);
1157 			status = ICE_ERR_CFG;
1158 			break;
1159 		}
1160 		/* break if all the nodes are added successfully */
1161 		if (status == ICE_SUCCESS && (*num_nodes_added == num_nodes))
1162 			break;
1163 		/* break if the error is not max limit */
1164 		if (status != ICE_SUCCESS && status != ICE_ERR_MAX_LIMIT)
1165 			break;
1166 		/* Exceeded the max children */
1167 		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1168 		/* utilize all the spaces if the parent is not full */
1169 		if (parent->num_children < max_child_nodes) {
1170 			new_num_nodes = max_child_nodes - parent->num_children;
1171 		} else {
1172 			/* This parent is full, try the next sibling */
1173 			parent = parent->sibling;
1174 			/* Don't modify the first node TEID memory if the
1175 			 * first node was added already in the above call.
1176 			 * Instead send some temp memory for all other
1177 			 * recursive calls.
1178 			 */
1179 			if (num_added)
1180 				first_teid_ptr = &temp;
1181 
1182 			new_num_nodes = num_nodes - *num_nodes_added;
1183 		}
1184 	}
1185 	return status;
1186 }
1187 
1188 /**
1189  * ice_sched_get_qgrp_layer - get the current queue group layer number
1190  * @hw: pointer to the HW struct
1191  *
1192  * This function returns the current queue group layer number
1193  */
1194 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1195 {
1196 	/* It's always total layers - 1, the array is 0 relative so -2 */
1197 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1198 }
1199 
1200 /**
1201  * ice_sched_get_vsi_layer - get the current VSI layer number
1202  * @hw: pointer to the HW struct
1203  *
1204  * This function returns the current VSI layer number
1205  */
1206 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1207 {
1208 	/* Num Layers       VSI layer
1209 	 *     9               6
1210 	 *     7               4
1211 	 *     5 or less       sw_entry_point_layer
1212 	 */
1213 	/* calculate the VSI layer based on number of layers. */
1214 	if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS)
1215 		return hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1216 	else if (hw->num_tx_sched_layers == ICE_SCHED_5_LAYERS)
1217 		/* qgroup and VSI layers are same */
1218 		return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1219 	return hw->sw_entry_point_layer;
1220 }
1221 
1222 /**
1223  * ice_sched_get_agg_layer - get the current aggregator layer number
1224  * @hw: pointer to the HW struct
1225  *
1226  * This function returns the current aggregator layer number
1227  */
1228 static u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1229 {
1230 	/* Num Layers       aggregator layer
1231 	 *     9               4
1232 	 *     7 or less       sw_entry_point_layer
1233 	 */
1234 	/* calculate the aggregator layer based on number of layers. */
1235 	if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS)
1236 		return hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1237 	return hw->sw_entry_point_layer;
1238 }
1239 
1240 /**
1241  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1242  * @pi: port information structure
1243  *
1244  * This function removes the leaf node that was created by the FW
1245  * during initialization
1246  */
1247 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1248 {
1249 	struct ice_sched_node *node;
1250 
1251 	node = pi->root;
1252 	while (node) {
1253 		if (!node->num_children)
1254 			break;
1255 		node = node->children[0];
1256 	}
1257 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1258 		u32 teid = LE32_TO_CPU(node->info.node_teid);
1259 		enum ice_status status;
1260 
1261 		/* remove the default leaf node */
1262 		status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1263 		if (!status)
1264 			ice_free_sched_node(pi, node);
1265 	}
1266 }
1267 
1268 /**
1269  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1270  * @pi: port information structure
1271  *
1272  * This function frees all the nodes except root and TC that were created by
1273  * the FW during initialization
1274  */
1275 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1276 {
1277 	struct ice_sched_node *node;
1278 
1279 	ice_rm_dflt_leaf_node(pi);
1280 
1281 	/* remove the default nodes except TC and root nodes */
1282 	node = pi->root;
1283 	while (node) {
1284 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1285 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1286 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1287 			ice_free_sched_node(pi, node);
1288 			break;
1289 		}
1290 
1291 		if (!node->num_children)
1292 			break;
1293 		node = node->children[0];
1294 	}
1295 }
1296 
1297 /**
1298  * ice_sched_init_port - Initialize scheduler by querying information from FW
1299  * @pi: port info structure for the tree to cleanup
1300  *
1301  * This function is the initial call to find the total number of Tx scheduler
1302  * resources, default topology created by firmware and storing the information
1303  * in SW DB.
1304  */
1305 enum ice_status ice_sched_init_port(struct ice_port_info *pi)
1306 {
1307 	struct ice_aqc_get_topo_elem *buf;
1308 	enum ice_status status;
1309 	struct ice_hw *hw;
1310 	u8 num_branches;
1311 	u16 num_elems;
1312 	u8 i, j;
1313 
1314 	if (!pi)
1315 		return ICE_ERR_PARAM;
1316 	hw = pi->hw;
1317 
1318 	/* Query the Default Topology from FW */
1319 	buf = (struct ice_aqc_get_topo_elem *)ice_malloc(hw,
1320 							 ICE_AQ_MAX_BUF_LEN);
1321 	if (!buf)
1322 		return ICE_ERR_NO_MEMORY;
1323 
1324 	/* Query default scheduling tree topology */
1325 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1326 				      &num_branches, NULL);
1327 	if (status)
1328 		goto err_init_port;
1329 
1330 	/* num_branches should be between 1-8 */
1331 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1332 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1333 			  num_branches);
1334 		status = ICE_ERR_PARAM;
1335 		goto err_init_port;
1336 	}
1337 
1338 	/* get the number of elements on the default/first branch */
1339 	num_elems = LE16_TO_CPU(buf[0].hdr.num_elems);
1340 
1341 	/* num_elems should always be between 1-9 */
1342 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1343 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1344 			  num_elems);
1345 		status = ICE_ERR_PARAM;
1346 		goto err_init_port;
1347 	}
1348 
1349 	/* If the last node is a leaf node then the index of the queue group
1350 	 * layer is two less than the number of elements.
1351 	 */
1352 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1353 	    ICE_AQC_ELEM_TYPE_LEAF)
1354 		pi->last_node_teid =
1355 			LE32_TO_CPU(buf[0].generic[num_elems - 2].node_teid);
1356 	else
1357 		pi->last_node_teid =
1358 			LE32_TO_CPU(buf[0].generic[num_elems - 1].node_teid);
1359 
1360 	/* Insert the Tx Sched root node */
1361 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1362 	if (status)
1363 		goto err_init_port;
1364 
1365 	/* Parse the default tree and cache the information */
1366 	for (i = 0; i < num_branches; i++) {
1367 		num_elems = LE16_TO_CPU(buf[i].hdr.num_elems);
1368 
1369 		/* Skip root element as already inserted */
1370 		for (j = 1; j < num_elems; j++) {
1371 			/* update the sw entry point */
1372 			if (buf[0].generic[j].data.elem_type ==
1373 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1374 				hw->sw_entry_point_layer = j;
1375 
1376 			status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL);
1377 			if (status)
1378 				goto err_init_port;
1379 		}
1380 	}
1381 
1382 	/* Remove the default nodes. */
1383 	if (pi->root)
1384 		ice_sched_rm_dflt_nodes(pi);
1385 
1386 	/* initialize the port for handling the scheduler tree */
1387 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1388 	ice_init_lock(&pi->sched_lock);
1389 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1390 		INIT_LIST_HEAD(&hw->rl_prof_list[i]);
1391 
1392 err_init_port:
1393 	if (status && pi->root) {
1394 		ice_free_sched_node(pi, pi->root);
1395 		pi->root = NULL;
1396 	}
1397 
1398 	ice_free(hw, buf);
1399 	return status;
1400 }
1401 
1402 /**
1403  * ice_sched_get_node - Get the struct ice_sched_node for given TEID
1404  * @pi: port information structure
1405  * @teid: Scheduler node TEID
1406  *
1407  * This function retrieves the ice_sched_node struct for given TEID from
1408  * the SW DB and returns it to the caller.
1409  */
1410 struct ice_sched_node *ice_sched_get_node(struct ice_port_info *pi, u32 teid)
1411 {
1412 	struct ice_sched_node *node;
1413 
1414 	if (!pi)
1415 		return NULL;
1416 
1417 	/* Find the node starting from root */
1418 	ice_acquire_lock(&pi->sched_lock);
1419 	node = ice_sched_find_node_by_teid(pi->root, teid);
1420 	ice_release_lock(&pi->sched_lock);
1421 
1422 	if (!node)
1423 		ice_debug(pi->hw, ICE_DBG_SCHED, "Node not found for teid=0x%x\n", teid);
1424 
1425 	return node;
1426 }
1427 
1428 /**
1429  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1430  * @hw: pointer to the HW struct
1431  *
1432  * query FW for allocated scheduler resources and store in HW struct
1433  */
1434 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
1435 {
1436 	struct ice_aqc_query_txsched_res_resp *buf;
1437 	enum ice_status status = ICE_SUCCESS;
1438 	__le16 max_sibl;
1439 	u8 i;
1440 
1441 	if (hw->layer_info)
1442 		return status;
1443 
1444 	buf = (struct ice_aqc_query_txsched_res_resp *)
1445 		ice_malloc(hw, sizeof(*buf));
1446 	if (!buf)
1447 		return ICE_ERR_NO_MEMORY;
1448 
1449 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1450 	if (status)
1451 		goto sched_query_out;
1452 
1453 	hw->num_tx_sched_layers =
1454 		(u8)LE16_TO_CPU(buf->sched_props.logical_levels);
1455 	hw->num_tx_sched_phys_layers =
1456 		(u8)LE16_TO_CPU(buf->sched_props.phys_levels);
1457 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1458 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1459 
1460 	/* max sibling group size of current layer refers to the max children
1461 	 * of the below layer node.
1462 	 * layer 1 node max children will be layer 2 max sibling group size
1463 	 * layer 2 node max children will be layer 3 max sibling group size
1464 	 * and so on. This array will be populated from root (index 0) to
1465 	 * qgroup layer 7. Leaf node has no children.
1466 	 */
1467 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1468 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1469 		hw->max_children[i] = LE16_TO_CPU(max_sibl);
1470 	}
1471 
1472 	hw->layer_info = (struct ice_aqc_layer_props *)
1473 			 ice_memdup(hw, buf->layer_props,
1474 				    (hw->num_tx_sched_layers *
1475 				     sizeof(*hw->layer_info)),
1476 				    ICE_NONDMA_TO_NONDMA);
1477 	if (!hw->layer_info) {
1478 		status = ICE_ERR_NO_MEMORY;
1479 		goto sched_query_out;
1480 	}
1481 
1482 sched_query_out:
1483 	ice_free(hw, buf);
1484 	return status;
1485 }
1486 
1487 /**
1488  * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1489  * @hw: pointer to the HW struct
1490  *
1491  * Determine the PSM clock frequency and store in HW struct
1492  */
1493 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1494 {
1495 	u32 val, clk_src;
1496 
1497 	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1498 	clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1499 		GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1500 
1501 	switch (clk_src) {
1502 	case PSM_CLK_SRC_367_MHZ:
1503 		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1504 		break;
1505 	case PSM_CLK_SRC_416_MHZ:
1506 		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1507 		break;
1508 	case PSM_CLK_SRC_446_MHZ:
1509 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1510 		break;
1511 	case PSM_CLK_SRC_390_MHZ:
1512 		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1513 		break;
1514 
1515 	/* default condition is not required as clk_src is restricted
1516 	 * to a 2-bit value from GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M mask.
1517 	 * The above switch statements cover the possible values of
1518 	 * this variable.
1519 	 */
1520 	}
1521 }
1522 
1523 /**
1524  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1525  * @hw: pointer to the HW struct
1526  * @base: pointer to the base node
1527  * @node: pointer to the node to search
1528  *
1529  * This function checks whether a given node is part of the base node
1530  * subtree or not
1531  */
1532 bool
1533 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1534 			       struct ice_sched_node *node)
1535 {
1536 	u8 i;
1537 
1538 	for (i = 0; i < base->num_children; i++) {
1539 		struct ice_sched_node *child = base->children[i];
1540 
1541 		if (node == child)
1542 			return true;
1543 
1544 		if (child->tx_sched_layer > node->tx_sched_layer)
1545 			return false;
1546 
1547 		/* this recursion is intentional, and wouldn't
1548 		 * go more than 8 calls
1549 		 */
1550 		if (ice_sched_find_node_in_subtree(hw, child, node))
1551 			return true;
1552 	}
1553 	return false;
1554 }
1555 
1556 /**
1557  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1558  * @pi: port information structure
1559  * @vsi_node: software VSI handle
1560  * @qgrp_node: first queue group node identified for scanning
1561  * @owner: LAN or RDMA
1562  *
1563  * This function retrieves a free LAN or RDMA queue group node by scanning
1564  * qgrp_node and its siblings for the queue group with the fewest number
1565  * of queues currently assigned.
1566  */
1567 static struct ice_sched_node *
1568 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1569 			struct ice_sched_node *vsi_node,
1570 			struct ice_sched_node *qgrp_node, u8 owner)
1571 {
1572 	struct ice_sched_node *min_qgrp;
1573 	u8 min_children;
1574 
1575 	if (!qgrp_node)
1576 		return qgrp_node;
1577 	min_children = qgrp_node->num_children;
1578 	if (!min_children)
1579 		return qgrp_node;
1580 	min_qgrp = qgrp_node;
1581 	/* scan all queue groups until find a node which has less than the
1582 	 * minimum number of children. This way all queue group nodes get
1583 	 * equal number of shares and active. The bandwidth will be equally
1584 	 * distributed across all queues.
1585 	 */
1586 	while (qgrp_node) {
1587 		/* make sure the qgroup node is part of the VSI subtree */
1588 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1589 			if (qgrp_node->num_children < min_children &&
1590 			    qgrp_node->owner == owner) {
1591 				/* replace the new min queue group node */
1592 				min_qgrp = qgrp_node;
1593 				min_children = min_qgrp->num_children;
1594 				/* break if it has no children, */
1595 				if (!min_children)
1596 					break;
1597 			}
1598 		qgrp_node = qgrp_node->sibling;
1599 	}
1600 	return min_qgrp;
1601 }
1602 
1603 /**
1604  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1605  * @pi: port information structure
1606  * @vsi_handle: software VSI handle
1607  * @tc: branch number
1608  * @owner: LAN or RDMA
1609  *
1610  * This function retrieves a free LAN or RDMA queue group node
1611  */
1612 struct ice_sched_node *
1613 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1614 			   u8 owner)
1615 {
1616 	struct ice_sched_node *vsi_node, *qgrp_node;
1617 	struct ice_vsi_ctx *vsi_ctx;
1618 	u8 qgrp_layer, vsi_layer;
1619 	u16 max_children;
1620 
1621 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1622 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1623 	max_children = pi->hw->max_children[qgrp_layer];
1624 
1625 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1626 	if (!vsi_ctx)
1627 		return NULL;
1628 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1629 	/* validate invalid VSI ID */
1630 	if (!vsi_node)
1631 		return NULL;
1632 
1633 	/* If the queue group and vsi layer are same then queues
1634 	 * are all attached directly to VSI
1635 	 */
1636 	if (qgrp_layer == vsi_layer)
1637 		return vsi_node;
1638 
1639 	/* get the first queue group node from VSI sub-tree */
1640 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1641 	while (qgrp_node) {
1642 		/* make sure the qgroup node is part of the VSI subtree */
1643 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1644 			if (qgrp_node->num_children < max_children &&
1645 			    qgrp_node->owner == owner)
1646 				break;
1647 		qgrp_node = qgrp_node->sibling;
1648 	}
1649 
1650 	/* Select the best queue group */
1651 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1652 }
1653 
1654 /**
1655  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1656  * @pi: pointer to the port information structure
1657  * @tc_node: pointer to the TC node
1658  * @vsi_handle: software VSI handle
1659  *
1660  * This function retrieves a VSI node for a given VSI ID from a given
1661  * TC branch
1662  */
1663 struct ice_sched_node *
1664 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1665 		       u16 vsi_handle)
1666 {
1667 	struct ice_sched_node *node;
1668 	u8 vsi_layer;
1669 
1670 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1671 	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1672 
1673 	/* Check whether it already exists */
1674 	while (node) {
1675 		if (node->vsi_handle == vsi_handle)
1676 			return node;
1677 		node = node->sibling;
1678 	}
1679 
1680 	return node;
1681 }
1682 
1683 /**
1684  * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1685  * @pi: pointer to the port information structure
1686  * @tc_node: pointer to the TC node
1687  * @agg_id: aggregator ID
1688  *
1689  * This function retrieves an aggregator node for a given aggregator ID from
1690  * a given TC branch
1691  */
1692 static struct ice_sched_node *
1693 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1694 		       u32 agg_id)
1695 {
1696 	struct ice_sched_node *node;
1697 	struct ice_hw *hw = pi->hw;
1698 	u8 agg_layer;
1699 
1700 	if (!hw)
1701 		return NULL;
1702 	agg_layer = ice_sched_get_agg_layer(hw);
1703 	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1704 
1705 	/* Check whether it already exists */
1706 	while (node) {
1707 		if (node->agg_id == agg_id)
1708 			return node;
1709 		node = node->sibling;
1710 	}
1711 
1712 	return node;
1713 }
1714 
1715 /**
1716  * ice_sched_check_node - Compare node parameters between SW DB and HW DB
1717  * @hw: pointer to the HW struct
1718  * @node: pointer to the ice_sched_node struct
1719  *
1720  * This function queries and compares the HW element with SW DB node parameters
1721  */
1722 static bool ice_sched_check_node(struct ice_hw *hw, struct ice_sched_node *node)
1723 {
1724 	struct ice_aqc_txsched_elem_data buf;
1725 	enum ice_status status;
1726 	u32 node_teid;
1727 
1728 	node_teid = LE32_TO_CPU(node->info.node_teid);
1729 	status = ice_sched_query_elem(hw, node_teid, &buf);
1730 	if (status != ICE_SUCCESS)
1731 		return false;
1732 
1733 	if (memcmp(&buf, &node->info, sizeof(buf))) {
1734 		ice_debug(hw, ICE_DBG_SCHED, "Node mismatch for teid=0x%x\n",
1735 			  node_teid);
1736 		return false;
1737 	}
1738 
1739 	return true;
1740 }
1741 
1742 /**
1743  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1744  * @hw: pointer to the HW struct
1745  * @num_qs: number of queues
1746  * @num_nodes: num nodes array
1747  *
1748  * This function calculates the number of VSI child nodes based on the
1749  * number of queues.
1750  */
1751 static void
1752 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1753 {
1754 	u16 num = num_qs;
1755 	u8 i, qgl, vsil;
1756 
1757 	qgl = ice_sched_get_qgrp_layer(hw);
1758 	vsil = ice_sched_get_vsi_layer(hw);
1759 
1760 	/* calculate num nodes from queue group to VSI layer */
1761 	for (i = qgl; i > vsil; i--) {
1762 		/* round to the next integer if there is a remainder */
1763 		num = DIVIDE_AND_ROUND_UP(num, hw->max_children[i]);
1764 
1765 		/* need at least one node */
1766 		num_nodes[i] = num ? num : 1;
1767 	}
1768 }
1769 
1770 /**
1771  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1772  * @pi: port information structure
1773  * @vsi_handle: software VSI handle
1774  * @tc_node: pointer to the TC node
1775  * @num_nodes: pointer to the num nodes that needs to be added per layer
1776  * @owner: node owner (LAN or RDMA)
1777  *
1778  * This function adds the VSI child nodes to tree. It gets called for
1779  * LAN and RDMA separately.
1780  */
1781 static enum ice_status
1782 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1783 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1784 			      u8 owner)
1785 {
1786 	struct ice_sched_node *parent, *node;
1787 	struct ice_hw *hw = pi->hw;
1788 	u32 first_node_teid;
1789 	u16 num_added = 0;
1790 	u8 i, qgl, vsil;
1791 
1792 	qgl = ice_sched_get_qgrp_layer(hw);
1793 	vsil = ice_sched_get_vsi_layer(hw);
1794 	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1795 	for (i = vsil + 1; i <= qgl; i++) {
1796 		enum ice_status status;
1797 
1798 		if (!parent)
1799 			return ICE_ERR_CFG;
1800 
1801 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1802 						      num_nodes[i],
1803 						      &first_node_teid,
1804 						      &num_added);
1805 		if (status != ICE_SUCCESS || num_nodes[i] != num_added)
1806 			return ICE_ERR_CFG;
1807 
1808 		/* The newly added node can be a new parent for the next
1809 		 * layer nodes
1810 		 */
1811 		if (num_added) {
1812 			parent = ice_sched_find_node_by_teid(tc_node,
1813 							     first_node_teid);
1814 			node = parent;
1815 			while (node) {
1816 				node->owner = owner;
1817 				node = node->sibling;
1818 			}
1819 		} else {
1820 			parent = parent->children[0];
1821 		}
1822 	}
1823 
1824 	return ICE_SUCCESS;
1825 }
1826 
1827 /**
1828  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1829  * @pi: pointer to the port info structure
1830  * @tc_node: pointer to TC node
1831  * @num_nodes: pointer to num nodes array
1832  *
1833  * This function calculates the number of supported nodes needed to add this
1834  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1835  * layers
1836  */
1837 static void
1838 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1839 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1840 {
1841 	struct ice_sched_node *node;
1842 	u8 vsil;
1843 	int i;
1844 
1845 	vsil = ice_sched_get_vsi_layer(pi->hw);
1846 	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1847 		/* Add intermediate nodes if TC has no children and
1848 		 * need at least one node for VSI
1849 		 */
1850 		if (!tc_node->num_children || i == vsil) {
1851 			num_nodes[i]++;
1852 		} else {
1853 			/* If intermediate nodes are reached max children
1854 			 * then add a new one.
1855 			 */
1856 			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1857 			/* scan all the siblings */
1858 			while (node) {
1859 				if (node->num_children <
1860 				    pi->hw->max_children[i])
1861 					break;
1862 				node = node->sibling;
1863 			}
1864 
1865 			/* tree has one intermediate node to add this new VSI.
1866 			 * So no need to calculate supported nodes for below
1867 			 * layers.
1868 			 */
1869 			if (node)
1870 				break;
1871 			/* all the nodes are full, allocate a new one */
1872 			num_nodes[i]++;
1873 		}
1874 }
1875 
1876 /**
1877  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1878  * @pi: port information structure
1879  * @vsi_handle: software VSI handle
1880  * @tc_node: pointer to TC node
1881  * @num_nodes: pointer to num nodes array
1882  *
1883  * This function adds the VSI supported nodes into Tx tree including the
1884  * VSI, its parent and intermediate nodes in below layers
1885  */
1886 static enum ice_status
1887 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1888 				struct ice_sched_node *tc_node, u16 *num_nodes)
1889 {
1890 	struct ice_sched_node *parent = tc_node;
1891 	u32 first_node_teid;
1892 	u16 num_added = 0;
1893 	u8 i, vsil;
1894 
1895 	if (!pi)
1896 		return ICE_ERR_PARAM;
1897 
1898 	vsil = ice_sched_get_vsi_layer(pi->hw);
1899 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1900 		enum ice_status status;
1901 
1902 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1903 						      i, num_nodes[i],
1904 						      &first_node_teid,
1905 						      &num_added);
1906 		if (status != ICE_SUCCESS || num_nodes[i] != num_added)
1907 			return ICE_ERR_CFG;
1908 
1909 		/* The newly added node can be a new parent for the next
1910 		 * layer nodes
1911 		 */
1912 		if (num_added)
1913 			parent = ice_sched_find_node_by_teid(tc_node,
1914 							     first_node_teid);
1915 		else
1916 			parent = parent->children[0];
1917 
1918 		if (!parent)
1919 			return ICE_ERR_CFG;
1920 
1921 		if (i == vsil)
1922 			parent->vsi_handle = vsi_handle;
1923 	}
1924 
1925 	return ICE_SUCCESS;
1926 }
1927 
1928 /**
1929  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1930  * @pi: port information structure
1931  * @vsi_handle: software VSI handle
1932  * @tc: TC number
1933  *
1934  * This function adds a new VSI into scheduler tree
1935  */
1936 static enum ice_status
1937 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1938 {
1939 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1940 	struct ice_sched_node *tc_node;
1941 
1942 	tc_node = ice_sched_get_tc_node(pi, tc);
1943 	if (!tc_node)
1944 		return ICE_ERR_PARAM;
1945 
1946 	/* calculate number of supported nodes needed for this VSI */
1947 	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1948 
1949 	/* add VSI supported nodes to TC subtree */
1950 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1951 					       num_nodes);
1952 }
1953 
1954 /**
1955  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1956  * @pi: port information structure
1957  * @vsi_handle: software VSI handle
1958  * @tc: TC number
1959  * @new_numqs: new number of max queues
1960  * @owner: owner of this subtree
1961  *
1962  * This function updates the VSI child nodes based on the number of queues
1963  */
1964 static enum ice_status
1965 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1966 				 u8 tc, u16 new_numqs, u8 owner)
1967 {
1968 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1969 	struct ice_sched_node *vsi_node;
1970 	struct ice_sched_node *tc_node;
1971 	struct ice_vsi_ctx *vsi_ctx;
1972 	enum ice_status status = ICE_SUCCESS;
1973 	struct ice_hw *hw = pi->hw;
1974 	u16 prev_numqs;
1975 
1976 	tc_node = ice_sched_get_tc_node(pi, tc);
1977 	if (!tc_node)
1978 		return ICE_ERR_CFG;
1979 
1980 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1981 	if (!vsi_node)
1982 		return ICE_ERR_CFG;
1983 
1984 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1985 	if (!vsi_ctx)
1986 		return ICE_ERR_PARAM;
1987 
1988 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1989 		prev_numqs = vsi_ctx->sched.max_lanq[tc];
1990 	else
1991 		prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1992 	/* num queues are not changed or less than the previous number */
1993 	if (new_numqs <= prev_numqs)
1994 		return status;
1995 	if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1996 		status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1997 		if (status)
1998 			return status;
1999 	} else {
2000 		status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
2001 		if (status)
2002 			return status;
2003 	}
2004 
2005 	if (new_numqs)
2006 		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
2007 	/* Keep the max number of queue configuration all the time. Update the
2008 	 * tree only if number of queues > previous number of queues. This may
2009 	 * leave some extra nodes in the tree if number of queues < previous
2010 	 * number but that wouldn't harm anything. Removing those extra nodes
2011 	 * may complicate the code if those nodes are part of SRL or
2012 	 * individually rate limited.
2013 	 */
2014 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
2015 					       new_num_nodes, owner);
2016 	if (status)
2017 		return status;
2018 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
2019 		vsi_ctx->sched.max_lanq[tc] = new_numqs;
2020 	else
2021 		vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
2022 
2023 	return ICE_SUCCESS;
2024 }
2025 
2026 /**
2027  * ice_sched_cfg_vsi - configure the new/existing VSI
2028  * @pi: port information structure
2029  * @vsi_handle: software VSI handle
2030  * @tc: TC number
2031  * @maxqs: max number of queues
2032  * @owner: LAN or RDMA
2033  * @enable: TC enabled or disabled
2034  *
2035  * This function adds/updates VSI nodes based on the number of queues. If TC is
2036  * enabled and VSI is in suspended state then resume the VSI back. If TC is
2037  * disabled then suspend the VSI if it is not already.
2038  */
2039 enum ice_status
2040 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
2041 		  u8 owner, bool enable)
2042 {
2043 	struct ice_sched_node *vsi_node, *tc_node;
2044 	struct ice_vsi_ctx *vsi_ctx;
2045 	enum ice_status status = ICE_SUCCESS;
2046 	struct ice_hw *hw = pi->hw;
2047 
2048 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
2049 	tc_node = ice_sched_get_tc_node(pi, tc);
2050 	if (!tc_node)
2051 		return ICE_ERR_PARAM;
2052 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
2053 	if (!vsi_ctx)
2054 		return ICE_ERR_PARAM;
2055 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2056 
2057 	/* suspend the VSI if TC is not enabled */
2058 	if (!enable) {
2059 		if (vsi_node && vsi_node->in_use) {
2060 			u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
2061 
2062 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
2063 								true);
2064 			if (!status)
2065 				vsi_node->in_use = false;
2066 		}
2067 		return status;
2068 	}
2069 
2070 	/* TC is enabled, if it is a new VSI then add it to the tree */
2071 	if (!vsi_node) {
2072 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
2073 		if (status)
2074 			return status;
2075 
2076 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2077 		if (!vsi_node)
2078 			return ICE_ERR_CFG;
2079 
2080 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
2081 		vsi_node->in_use = true;
2082 		/* invalidate the max queues whenever VSI gets added first time
2083 		 * into the scheduler tree (boot or after reset). We need to
2084 		 * recreate the child nodes all the time in these cases.
2085 		 */
2086 		vsi_ctx->sched.max_lanq[tc] = 0;
2087 		vsi_ctx->sched.max_rdmaq[tc] = 0;
2088 	}
2089 
2090 	/* update the VSI child nodes */
2091 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
2092 						  owner);
2093 	if (status)
2094 		return status;
2095 
2096 	/* TC is enabled, resume the VSI if it is in the suspend state */
2097 	if (!vsi_node->in_use) {
2098 		u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
2099 
2100 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
2101 		if (!status)
2102 			vsi_node->in_use = true;
2103 	}
2104 
2105 	return status;
2106 }
2107 
2108 /**
2109  * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
2110  * @pi: port information structure
2111  * @vsi_handle: software VSI handle
2112  *
2113  * This function removes single aggregator VSI info entry from
2114  * aggregator list.
2115  */
2116 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
2117 {
2118 	struct ice_sched_agg_info *agg_info;
2119 	struct ice_sched_agg_info *atmp;
2120 
2121 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &pi->hw->agg_list,
2122 				 ice_sched_agg_info,
2123 				 list_entry) {
2124 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2125 		struct ice_sched_agg_vsi_info *vtmp;
2126 
2127 		LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
2128 					 &agg_info->agg_vsi_list,
2129 					 ice_sched_agg_vsi_info, list_entry)
2130 			if (agg_vsi_info->vsi_handle == vsi_handle) {
2131 				LIST_DEL(&agg_vsi_info->list_entry);
2132 				ice_free(pi->hw, agg_vsi_info);
2133 				return;
2134 			}
2135 	}
2136 }
2137 
2138 /**
2139  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2140  * @node: pointer to the sub-tree node
2141  *
2142  * This function checks for a leaf node presence in a given sub-tree node.
2143  */
2144 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2145 {
2146 	u8 i;
2147 
2148 	for (i = 0; i < node->num_children; i++)
2149 		if (ice_sched_is_leaf_node_present(node->children[i]))
2150 			return true;
2151 	/* check for a leaf node */
2152 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2153 }
2154 
2155 /**
2156  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2157  * @pi: port information structure
2158  * @vsi_handle: software VSI handle
2159  * @owner: LAN or RDMA
2160  *
2161  * This function removes the VSI and its LAN or RDMA children nodes from the
2162  * scheduler tree.
2163  */
2164 static enum ice_status
2165 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2166 {
2167 	enum ice_status status = ICE_ERR_PARAM;
2168 	struct ice_vsi_ctx *vsi_ctx;
2169 	u8 i;
2170 
2171 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2172 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2173 		return status;
2174 	ice_acquire_lock(&pi->sched_lock);
2175 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2176 	if (!vsi_ctx)
2177 		goto exit_sched_rm_vsi_cfg;
2178 
2179 	ice_for_each_traffic_class(i) {
2180 		struct ice_sched_node *vsi_node, *tc_node;
2181 		u8 j = 0;
2182 
2183 		tc_node = ice_sched_get_tc_node(pi, i);
2184 		if (!tc_node)
2185 			continue;
2186 
2187 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2188 		if (!vsi_node)
2189 			continue;
2190 
2191 		if (ice_sched_is_leaf_node_present(vsi_node)) {
2192 			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2193 			status = ICE_ERR_IN_USE;
2194 			goto exit_sched_rm_vsi_cfg;
2195 		}
2196 		while (j < vsi_node->num_children) {
2197 			if (vsi_node->children[j]->owner == owner) {
2198 				ice_free_sched_node(pi, vsi_node->children[j]);
2199 
2200 				/* reset the counter again since the num
2201 				 * children will be updated after node removal
2202 				 */
2203 				j = 0;
2204 			} else {
2205 				j++;
2206 			}
2207 		}
2208 		/* remove the VSI if it has no children */
2209 		if (!vsi_node->num_children) {
2210 			ice_free_sched_node(pi, vsi_node);
2211 			vsi_ctx->sched.vsi_node[i] = NULL;
2212 
2213 			/* clean up aggregator related VSI info if any */
2214 			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2215 		}
2216 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2217 			vsi_ctx->sched.max_lanq[i] = 0;
2218 		else
2219 			vsi_ctx->sched.max_rdmaq[i] = 0;
2220 	}
2221 	status = ICE_SUCCESS;
2222 
2223 exit_sched_rm_vsi_cfg:
2224 	ice_release_lock(&pi->sched_lock);
2225 	return status;
2226 }
2227 
2228 /**
2229  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2230  * @pi: port information structure
2231  * @vsi_handle: software VSI handle
2232  *
2233  * This function clears the VSI and its LAN children nodes from scheduler tree
2234  * for all TCs.
2235  */
2236 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2237 {
2238 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2239 }
2240 
2241 /**
2242  * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2243  * @pi: port information structure
2244  * @vsi_handle: software VSI handle
2245  *
2246  * This function clears the VSI and its RDMA children nodes from scheduler tree
2247  * for all TCs.
2248  */
2249 enum ice_status ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2250 {
2251 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2252 }
2253 
2254 /**
2255  * ice_sched_is_tree_balanced - Check tree nodes are identical or not
2256  * @hw: pointer to the HW struct
2257  * @node: pointer to the ice_sched_node struct
2258  *
2259  * This function compares all the nodes for a given tree against HW DB nodes
2260  * This function needs to be called with the port_info->sched_lock held
2261  */
2262 bool ice_sched_is_tree_balanced(struct ice_hw *hw, struct ice_sched_node *node)
2263 {
2264 	u8 i;
2265 
2266 	/* start from the leaf node */
2267 	for (i = 0; i < node->num_children; i++)
2268 		/* Fail if node doesn't match with the SW DB
2269 		 * this recursion is intentional, and wouldn't
2270 		 * go more than 9 calls
2271 		 */
2272 		if (!ice_sched_is_tree_balanced(hw, node->children[i]))
2273 			return false;
2274 
2275 	return ice_sched_check_node(hw, node);
2276 }
2277 
2278 /**
2279  * ice_aq_query_node_to_root - retrieve the tree topology for a given node TEID
2280  * @hw: pointer to the HW struct
2281  * @node_teid: node TEID
2282  * @buf: pointer to buffer
2283  * @buf_size: buffer size in bytes
2284  * @cd: pointer to command details structure or NULL
2285  *
2286  * This function retrieves the tree topology from the firmware for a given
2287  * node TEID to the root node.
2288  */
2289 enum ice_status
2290 ice_aq_query_node_to_root(struct ice_hw *hw, u32 node_teid,
2291 			  struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
2292 			  struct ice_sq_cd *cd)
2293 {
2294 	struct ice_aqc_query_node_to_root *cmd;
2295 	struct ice_aq_desc desc;
2296 
2297 	cmd = &desc.params.query_node_to_root;
2298 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_node_to_root);
2299 	cmd->teid = CPU_TO_LE32(node_teid);
2300 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2301 }
2302 
2303 /**
2304  * ice_get_agg_info - get the aggregator ID
2305  * @hw: pointer to the hardware structure
2306  * @agg_id: aggregator ID
2307  *
2308  * This function validates aggregator ID. The function returns info if
2309  * aggregator ID is present in list otherwise it returns null.
2310  */
2311 static struct ice_sched_agg_info *
2312 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2313 {
2314 	struct ice_sched_agg_info *agg_info;
2315 
2316 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
2317 			    list_entry)
2318 		if (agg_info->agg_id == agg_id)
2319 			return agg_info;
2320 
2321 	return NULL;
2322 }
2323 
2324 /**
2325  * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2326  * @hw: pointer to the HW struct
2327  * @node: pointer to a child node
2328  * @num_nodes: num nodes count array
2329  *
2330  * This function walks through the aggregator subtree to find a free parent
2331  * node
2332  */
2333 static struct ice_sched_node *
2334 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2335 			      u16 *num_nodes)
2336 {
2337 	u8 l = node->tx_sched_layer;
2338 	u8 vsil, i;
2339 
2340 	vsil = ice_sched_get_vsi_layer(hw);
2341 
2342 	/* Is it VSI parent layer ? */
2343 	if (l == vsil - 1)
2344 		return (node->num_children < hw->max_children[l]) ? node : NULL;
2345 
2346 	/* We have intermediate nodes. Let's walk through the subtree. If the
2347 	 * intermediate node has space to add a new node then clear the count
2348 	 */
2349 	if (node->num_children < hw->max_children[l])
2350 		num_nodes[l] = 0;
2351 	/* The below recursive call is intentional and wouldn't go more than
2352 	 * 2 or 3 iterations.
2353 	 */
2354 
2355 	for (i = 0; i < node->num_children; i++) {
2356 		struct ice_sched_node *parent;
2357 
2358 		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2359 						       num_nodes);
2360 		if (parent)
2361 			return parent;
2362 	}
2363 
2364 	return NULL;
2365 }
2366 
2367 /**
2368  * ice_sched_update_parent - update the new parent in SW DB
2369  * @new_parent: pointer to a new parent node
2370  * @node: pointer to a child node
2371  *
2372  * This function removes the child from the old parent and adds it to a new
2373  * parent
2374  */
2375 void
2376 ice_sched_update_parent(struct ice_sched_node *new_parent,
2377 			struct ice_sched_node *node)
2378 {
2379 	struct ice_sched_node *old_parent;
2380 	u8 i, j;
2381 
2382 	old_parent = node->parent;
2383 
2384 	/* update the old parent children */
2385 	for (i = 0; i < old_parent->num_children; i++)
2386 		if (old_parent->children[i] == node) {
2387 			for (j = i + 1; j < old_parent->num_children; j++)
2388 				old_parent->children[j - 1] =
2389 					old_parent->children[j];
2390 			old_parent->num_children--;
2391 			break;
2392 		}
2393 
2394 	/* now move the node to a new parent */
2395 	new_parent->children[new_parent->num_children++] = node;
2396 	node->parent = new_parent;
2397 	node->info.parent_teid = new_parent->info.node_teid;
2398 }
2399 
2400 /**
2401  * ice_sched_move_nodes - move child nodes to a given parent
2402  * @pi: port information structure
2403  * @parent: pointer to parent node
2404  * @num_items: number of child nodes to be moved
2405  * @list: pointer to child node teids
2406  *
2407  * This function move the child nodes to a given parent.
2408  */
2409 enum ice_status
2410 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2411 		     u16 num_items, u32 *list)
2412 {
2413 	struct ice_aqc_move_elem *buf;
2414 	struct ice_sched_node *node;
2415 	enum ice_status status = ICE_SUCCESS;
2416 	u16 i, grps_movd = 0;
2417 	struct ice_hw *hw;
2418 	u16 buf_len;
2419 
2420 	hw = pi->hw;
2421 
2422 	if (!parent || !num_items)
2423 		return ICE_ERR_PARAM;
2424 
2425 	/* Does parent have enough space */
2426 	if (parent->num_children + num_items >
2427 	    hw->max_children[parent->tx_sched_layer])
2428 		return ICE_ERR_AQ_FULL;
2429 
2430 	buf_len = ice_struct_size(buf, teid, 1);
2431 	buf = (struct ice_aqc_move_elem *)ice_malloc(hw, buf_len);
2432 	if (!buf)
2433 		return ICE_ERR_NO_MEMORY;
2434 
2435 	for (i = 0; i < num_items; i++) {
2436 		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2437 		if (!node) {
2438 			status = ICE_ERR_PARAM;
2439 			goto move_err_exit;
2440 		}
2441 
2442 		buf->hdr.src_parent_teid = node->info.parent_teid;
2443 		buf->hdr.dest_parent_teid = parent->info.node_teid;
2444 		buf->teid[0] = node->info.node_teid;
2445 		buf->hdr.num_elems = CPU_TO_LE16(1);
2446 		status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
2447 						 &grps_movd, NULL);
2448 		if (status && grps_movd != 1) {
2449 			status = ICE_ERR_CFG;
2450 			goto move_err_exit;
2451 		}
2452 
2453 		/* update the SW DB */
2454 		ice_sched_update_parent(parent, node);
2455 	}
2456 
2457 move_err_exit:
2458 	ice_free(hw, buf);
2459 	return status;
2460 }
2461 
2462 /**
2463  * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2464  * @pi: port information structure
2465  * @vsi_handle: software VSI handle
2466  * @agg_id: aggregator ID
2467  * @tc: TC number
2468  *
2469  * This function moves a VSI to an aggregator node or its subtree.
2470  * Intermediate nodes may be created if required.
2471  */
2472 static enum ice_status
2473 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2474 			  u8 tc)
2475 {
2476 	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2477 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2478 	u32 first_node_teid, vsi_teid;
2479 	enum ice_status status;
2480 	u16 num_nodes_added;
2481 	u8 aggl, vsil, i;
2482 
2483 	tc_node = ice_sched_get_tc_node(pi, tc);
2484 	if (!tc_node)
2485 		return ICE_ERR_CFG;
2486 
2487 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2488 	if (!agg_node)
2489 		return ICE_ERR_DOES_NOT_EXIST;
2490 
2491 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2492 	if (!vsi_node)
2493 		return ICE_ERR_DOES_NOT_EXIST;
2494 
2495 	/* Is this VSI already part of given aggregator? */
2496 	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2497 		return ICE_SUCCESS;
2498 
2499 	aggl = ice_sched_get_agg_layer(pi->hw);
2500 	vsil = ice_sched_get_vsi_layer(pi->hw);
2501 
2502 	/* set intermediate node count to 1 between aggregator and VSI layers */
2503 	for (i = aggl + 1; i < vsil; i++)
2504 		num_nodes[i] = 1;
2505 
2506 	/* Check if the aggregator subtree has any free node to add the VSI */
2507 	for (i = 0; i < agg_node->num_children; i++) {
2508 		parent = ice_sched_get_free_vsi_parent(pi->hw,
2509 						       agg_node->children[i],
2510 						       num_nodes);
2511 		if (parent)
2512 			goto move_nodes;
2513 	}
2514 
2515 	/* add new nodes */
2516 	parent = agg_node;
2517 	for (i = aggl + 1; i < vsil; i++) {
2518 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2519 						      num_nodes[i],
2520 						      &first_node_teid,
2521 						      &num_nodes_added);
2522 		if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
2523 			return ICE_ERR_CFG;
2524 
2525 		/* The newly added node can be a new parent for the next
2526 		 * layer nodes
2527 		 */
2528 		if (num_nodes_added)
2529 			parent = ice_sched_find_node_by_teid(tc_node,
2530 							     first_node_teid);
2531 		else
2532 			parent = parent->children[0];
2533 
2534 		if (!parent)
2535 			return ICE_ERR_CFG;
2536 	}
2537 
2538 move_nodes:
2539 	vsi_teid = LE32_TO_CPU(vsi_node->info.node_teid);
2540 	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2541 }
2542 
2543 /**
2544  * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2545  * @pi: port information structure
2546  * @agg_info: aggregator info
2547  * @tc: traffic class number
2548  * @rm_vsi_info: true or false
2549  *
2550  * This function move all the VSI(s) to the default aggregator and delete
2551  * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2552  * caller holds the scheduler lock.
2553  */
2554 static enum ice_status
2555 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2556 			     struct ice_sched_agg_info *agg_info, u8 tc,
2557 			     bool rm_vsi_info)
2558 {
2559 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2560 	struct ice_sched_agg_vsi_info *tmp;
2561 	enum ice_status status = ICE_SUCCESS;
2562 
2563 	LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2564 				 ice_sched_agg_vsi_info, list_entry) {
2565 		u16 vsi_handle = agg_vsi_info->vsi_handle;
2566 
2567 		/* Move VSI to default aggregator */
2568 		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2569 			continue;
2570 
2571 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2572 						   ICE_DFLT_AGG_ID, tc);
2573 		if (status)
2574 			break;
2575 
2576 		ice_clear_bit(tc, agg_vsi_info->tc_bitmap);
2577 		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2578 			LIST_DEL(&agg_vsi_info->list_entry);
2579 			ice_free(pi->hw, agg_vsi_info);
2580 		}
2581 	}
2582 
2583 	return status;
2584 }
2585 
2586 /**
2587  * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2588  * @pi: port information structure
2589  * @node: node pointer
2590  *
2591  * This function checks whether the aggregator is attached with any VSI or not.
2592  */
2593 static bool
2594 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2595 {
2596 	u8 vsil, i;
2597 
2598 	vsil = ice_sched_get_vsi_layer(pi->hw);
2599 	if (node->tx_sched_layer < vsil - 1) {
2600 		for (i = 0; i < node->num_children; i++)
2601 			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2602 				return true;
2603 		return false;
2604 	} else {
2605 		return node->num_children ? true : false;
2606 	}
2607 }
2608 
2609 /**
2610  * ice_sched_rm_agg_cfg - remove the aggregator node
2611  * @pi: port information structure
2612  * @agg_id: aggregator ID
2613  * @tc: TC number
2614  *
2615  * This function removes the aggregator node and intermediate nodes if any
2616  * from the given TC
2617  */
2618 static enum ice_status
2619 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2620 {
2621 	struct ice_sched_node *tc_node, *agg_node;
2622 	struct ice_hw *hw = pi->hw;
2623 
2624 	tc_node = ice_sched_get_tc_node(pi, tc);
2625 	if (!tc_node)
2626 		return ICE_ERR_CFG;
2627 
2628 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2629 	if (!agg_node)
2630 		return ICE_ERR_DOES_NOT_EXIST;
2631 
2632 	/* Can't remove the aggregator node if it has children */
2633 	if (ice_sched_is_agg_inuse(pi, agg_node))
2634 		return ICE_ERR_IN_USE;
2635 
2636 	/* need to remove the whole subtree if aggregator node is the
2637 	 * only child.
2638 	 */
2639 	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2640 		struct ice_sched_node *parent = agg_node->parent;
2641 
2642 		if (!parent)
2643 			return ICE_ERR_CFG;
2644 
2645 		if (parent->num_children > 1)
2646 			break;
2647 
2648 		agg_node = parent;
2649 	}
2650 
2651 	ice_free_sched_node(pi, agg_node);
2652 	return ICE_SUCCESS;
2653 }
2654 
2655 /**
2656  * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2657  * @pi: port information structure
2658  * @agg_info: aggregator ID
2659  * @tc: TC number
2660  * @rm_vsi_info: bool value true or false
2661  *
2662  * This function removes aggregator reference to VSI of given TC. It removes
2663  * the aggregator configuration completely for requested TC. The caller needs
2664  * to hold the scheduler lock.
2665  */
2666 static enum ice_status
2667 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2668 		  u8 tc, bool rm_vsi_info)
2669 {
2670 	enum ice_status status = ICE_SUCCESS;
2671 
2672 	/* If nothing to remove - return success */
2673 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2674 		goto exit_rm_agg_cfg_tc;
2675 
2676 	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2677 	if (status)
2678 		goto exit_rm_agg_cfg_tc;
2679 
2680 	/* Delete aggregator node(s) */
2681 	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2682 	if (status)
2683 		goto exit_rm_agg_cfg_tc;
2684 
2685 	ice_clear_bit(tc, agg_info->tc_bitmap);
2686 exit_rm_agg_cfg_tc:
2687 	return status;
2688 }
2689 
2690 /**
2691  * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2692  * @pi: port information structure
2693  * @agg_id: aggregator ID
2694  * @tc_bitmap: 8 bits TC bitmap
2695  *
2696  * Save aggregator TC bitmap. This function needs to be called with scheduler
2697  * lock held.
2698  */
2699 static enum ice_status
2700 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2701 		       ice_bitmap_t *tc_bitmap)
2702 {
2703 	struct ice_sched_agg_info *agg_info;
2704 
2705 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2706 	if (!agg_info)
2707 		return ICE_ERR_PARAM;
2708 	ice_cp_bitmap(agg_info->replay_tc_bitmap, tc_bitmap,
2709 		      ICE_MAX_TRAFFIC_CLASS);
2710 	return ICE_SUCCESS;
2711 }
2712 
2713 /**
2714  * ice_sched_add_agg_cfg - create an aggregator node
2715  * @pi: port information structure
2716  * @agg_id: aggregator ID
2717  * @tc: TC number
2718  *
2719  * This function creates an aggregator node and intermediate nodes if required
2720  * for the given TC
2721  */
2722 static enum ice_status
2723 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2724 {
2725 	struct ice_sched_node *parent, *agg_node, *tc_node;
2726 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2727 	enum ice_status status = ICE_SUCCESS;
2728 	struct ice_hw *hw = pi->hw;
2729 	u32 first_node_teid;
2730 	u16 num_nodes_added;
2731 	u8 i, aggl;
2732 
2733 	tc_node = ice_sched_get_tc_node(pi, tc);
2734 	if (!tc_node)
2735 		return ICE_ERR_CFG;
2736 
2737 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2738 	/* Does Agg node already exist ? */
2739 	if (agg_node)
2740 		return status;
2741 
2742 	aggl = ice_sched_get_agg_layer(hw);
2743 
2744 	/* need one node in Agg layer */
2745 	num_nodes[aggl] = 1;
2746 
2747 	/* Check whether the intermediate nodes have space to add the
2748 	 * new aggregator. If they are full, then SW needs to allocate a new
2749 	 * intermediate node on those layers
2750 	 */
2751 	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2752 		parent = ice_sched_get_first_node(pi, tc_node, i);
2753 
2754 		/* scan all the siblings */
2755 		while (parent) {
2756 			if (parent->num_children < hw->max_children[i])
2757 				break;
2758 			parent = parent->sibling;
2759 		}
2760 
2761 		/* all the nodes are full, reserve one for this layer */
2762 		if (!parent)
2763 			num_nodes[i]++;
2764 	}
2765 
2766 	/* add the aggregator node */
2767 	parent = tc_node;
2768 	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2769 		if (!parent)
2770 			return ICE_ERR_CFG;
2771 
2772 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2773 						      num_nodes[i],
2774 						      &first_node_teid,
2775 						      &num_nodes_added);
2776 		if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
2777 			return ICE_ERR_CFG;
2778 
2779 		/* The newly added node can be a new parent for the next
2780 		 * layer nodes
2781 		 */
2782 		if (num_nodes_added) {
2783 			parent = ice_sched_find_node_by_teid(tc_node,
2784 							     first_node_teid);
2785 			/* register aggregator ID with the aggregator node */
2786 			if (parent && i == aggl)
2787 				parent->agg_id = agg_id;
2788 		} else {
2789 			parent = parent->children[0];
2790 		}
2791 	}
2792 
2793 	return ICE_SUCCESS;
2794 }
2795 
2796 /**
2797  * ice_sched_cfg_agg - configure aggregator node
2798  * @pi: port information structure
2799  * @agg_id: aggregator ID
2800  * @agg_type: aggregator type queue, VSI, or aggregator group
2801  * @tc_bitmap: bits TC bitmap
2802  *
2803  * It registers a unique aggregator node into scheduler services. It
2804  * allows a user to register with a unique ID to track it's resources.
2805  * The aggregator type determines if this is a queue group, VSI group
2806  * or aggregator group. It then creates the aggregator node(s) for requested
2807  * TC(s) or removes an existing aggregator node including its configuration
2808  * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2809  * resources and remove aggregator ID.
2810  * This function needs to be called with scheduler lock held.
2811  */
2812 static enum ice_status
2813 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2814 		  enum ice_agg_type agg_type, ice_bitmap_t *tc_bitmap)
2815 {
2816 	struct ice_sched_agg_info *agg_info;
2817 	enum ice_status status = ICE_SUCCESS;
2818 	struct ice_hw *hw = pi->hw;
2819 	u8 tc;
2820 
2821 	agg_info = ice_get_agg_info(hw, agg_id);
2822 	if (!agg_info) {
2823 		/* Create new entry for new aggregator ID */
2824 		agg_info = (struct ice_sched_agg_info *)
2825 			ice_malloc(hw, sizeof(*agg_info));
2826 		if (!agg_info)
2827 			return ICE_ERR_NO_MEMORY;
2828 
2829 		agg_info->agg_id = agg_id;
2830 		agg_info->agg_type = agg_type;
2831 		agg_info->tc_bitmap[0] = 0;
2832 
2833 		/* Initialize the aggregator VSI list head */
2834 		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2835 
2836 		/* Add new entry in aggregator list */
2837 		LIST_ADD(&agg_info->list_entry, &hw->agg_list);
2838 	}
2839 	/* Create aggregator node(s) for requested TC(s) */
2840 	ice_for_each_traffic_class(tc) {
2841 		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2842 			/* Delete aggregator cfg TC if it exists previously */
2843 			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2844 			if (status)
2845 				break;
2846 			continue;
2847 		}
2848 
2849 		/* Check if aggregator node for TC already exists */
2850 		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2851 			continue;
2852 
2853 		/* Create new aggregator node for TC */
2854 		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2855 		if (status)
2856 			break;
2857 
2858 		/* Save aggregator node's TC information */
2859 		ice_set_bit(tc, agg_info->tc_bitmap);
2860 	}
2861 
2862 	return status;
2863 }
2864 
2865 /**
2866  * ice_cfg_agg - config aggregator node
2867  * @pi: port information structure
2868  * @agg_id: aggregator ID
2869  * @agg_type: aggregator type queue, VSI, or aggregator group
2870  * @tc_bitmap: bits TC bitmap
2871  *
2872  * This function configures aggregator node(s).
2873  */
2874 enum ice_status
2875 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2876 	    u8 tc_bitmap)
2877 {
2878 	ice_bitmap_t bitmap = tc_bitmap;
2879 	enum ice_status status;
2880 
2881 	ice_acquire_lock(&pi->sched_lock);
2882 	status = ice_sched_cfg_agg(pi, agg_id, agg_type,
2883 				   (ice_bitmap_t *)&bitmap);
2884 	if (!status)
2885 		status = ice_save_agg_tc_bitmap(pi, agg_id,
2886 						(ice_bitmap_t *)&bitmap);
2887 	ice_release_lock(&pi->sched_lock);
2888 	return status;
2889 }
2890 
2891 /**
2892  * ice_get_agg_vsi_info - get the aggregator ID
2893  * @agg_info: aggregator info
2894  * @vsi_handle: software VSI handle
2895  *
2896  * The function returns aggregator VSI info based on VSI handle. This function
2897  * needs to be called with scheduler lock held.
2898  */
2899 static struct ice_sched_agg_vsi_info *
2900 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2901 {
2902 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2903 
2904 	LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
2905 			    ice_sched_agg_vsi_info, list_entry)
2906 		if (agg_vsi_info->vsi_handle == vsi_handle)
2907 			return agg_vsi_info;
2908 
2909 	return NULL;
2910 }
2911 
2912 /**
2913  * ice_get_vsi_agg_info - get the aggregator info of VSI
2914  * @hw: pointer to the hardware structure
2915  * @vsi_handle: Sw VSI handle
2916  *
2917  * The function returns aggregator info of VSI represented via vsi_handle. The
2918  * VSI has in this case a different aggregator than the default one. This
2919  * function needs to be called with scheduler lock held.
2920  */
2921 static struct ice_sched_agg_info *
2922 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2923 {
2924 	struct ice_sched_agg_info *agg_info;
2925 
2926 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
2927 			    list_entry) {
2928 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2929 
2930 		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2931 		if (agg_vsi_info)
2932 			return agg_info;
2933 	}
2934 	return NULL;
2935 }
2936 
2937 /**
2938  * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2939  * @pi: port information structure
2940  * @agg_id: aggregator ID
2941  * @vsi_handle: software VSI handle
2942  * @tc_bitmap: TC bitmap of enabled TC(s)
2943  *
2944  * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2945  * lock held.
2946  */
2947 static enum ice_status
2948 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2949 			   ice_bitmap_t *tc_bitmap)
2950 {
2951 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2952 	struct ice_sched_agg_info *agg_info;
2953 
2954 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2955 	if (!agg_info)
2956 		return ICE_ERR_PARAM;
2957 	/* check if entry already exist */
2958 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2959 	if (!agg_vsi_info)
2960 		return ICE_ERR_PARAM;
2961 	ice_cp_bitmap(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2962 		      ICE_MAX_TRAFFIC_CLASS);
2963 	return ICE_SUCCESS;
2964 }
2965 
2966 /**
2967  * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2968  * @pi: port information structure
2969  * @agg_id: aggregator ID
2970  * @vsi_handle: software VSI handle
2971  * @tc_bitmap: TC bitmap of enabled TC(s)
2972  *
2973  * This function moves VSI to a new or default aggregator node. If VSI is
2974  * already associated to the aggregator node then no operation is performed on
2975  * the tree. This function needs to be called with scheduler lock held.
2976  */
2977 static enum ice_status
2978 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2979 			   u16 vsi_handle, ice_bitmap_t *tc_bitmap)
2980 {
2981 	struct ice_sched_agg_vsi_info *agg_vsi_info, *old_agg_vsi_info = NULL;
2982 	struct ice_sched_agg_info *agg_info, *old_agg_info;
2983 	enum ice_status status = ICE_SUCCESS;
2984 	struct ice_hw *hw = pi->hw;
2985 	u8 tc;
2986 
2987 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2988 		return ICE_ERR_PARAM;
2989 	agg_info = ice_get_agg_info(hw, agg_id);
2990 	if (!agg_info)
2991 		return ICE_ERR_PARAM;
2992 	/* If the vsi is already part of another aggregator then update
2993 	 * its vsi info list
2994 	 */
2995 	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2996 	if (old_agg_info && old_agg_info != agg_info) {
2997 		struct ice_sched_agg_vsi_info *vtmp;
2998 
2999 		LIST_FOR_EACH_ENTRY_SAFE(old_agg_vsi_info, vtmp,
3000 					 &old_agg_info->agg_vsi_list,
3001 					 ice_sched_agg_vsi_info, list_entry)
3002 			if (old_agg_vsi_info->vsi_handle == vsi_handle)
3003 				break;
3004 	}
3005 
3006 	/* check if entry already exist */
3007 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
3008 	if (!agg_vsi_info) {
3009 		/* Create new entry for VSI under aggregator list */
3010 		agg_vsi_info = (struct ice_sched_agg_vsi_info *)
3011 			ice_malloc(hw, sizeof(*agg_vsi_info));
3012 		if (!agg_vsi_info)
3013 			return ICE_ERR_PARAM;
3014 
3015 		/* add VSI ID into the aggregator list */
3016 		agg_vsi_info->vsi_handle = vsi_handle;
3017 		LIST_ADD(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
3018 	}
3019 	/* Move VSI node to new aggregator node for requested TC(s) */
3020 	ice_for_each_traffic_class(tc) {
3021 		if (!ice_is_tc_ena(*tc_bitmap, tc))
3022 			continue;
3023 
3024 		/* Move VSI to new aggregator */
3025 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
3026 		if (status)
3027 			break;
3028 
3029 		ice_set_bit(tc, agg_vsi_info->tc_bitmap);
3030 		if (old_agg_vsi_info)
3031 			ice_clear_bit(tc, old_agg_vsi_info->tc_bitmap);
3032 	}
3033 	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
3034 		LIST_DEL(&old_agg_vsi_info->list_entry);
3035 		ice_free(pi->hw, old_agg_vsi_info);
3036 	}
3037 	return status;
3038 }
3039 
3040 /**
3041  * ice_sched_rm_unused_rl_prof - remove unused RL profile
3042  * @hw: pointer to the hardware structure
3043  *
3044  * This function removes unused rate limit profiles from the HW and
3045  * SW DB. The caller needs to hold scheduler lock.
3046  */
3047 static void ice_sched_rm_unused_rl_prof(struct ice_hw *hw)
3048 {
3049 	u16 ln;
3050 
3051 	for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
3052 		struct ice_aqc_rl_profile_info *rl_prof_elem;
3053 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
3054 
3055 		LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
3056 					 &hw->rl_prof_list[ln],
3057 					 ice_aqc_rl_profile_info, list_entry) {
3058 			if (!ice_sched_del_rl_profile(hw, rl_prof_elem))
3059 				ice_debug(hw, ICE_DBG_SCHED, "Removed rl profile\n");
3060 		}
3061 	}
3062 }
3063 
3064 /**
3065  * ice_sched_update_elem - update element
3066  * @hw: pointer to the HW struct
3067  * @node: pointer to node
3068  * @info: node info to update
3069  *
3070  * Update the HW DB, and local SW DB of node. Update the scheduling
3071  * parameters of node from argument info data buffer (Info->data buf) and
3072  * returns success or error on config sched element failure. The caller
3073  * needs to hold scheduler lock.
3074  */
3075 static enum ice_status
3076 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
3077 		      struct ice_aqc_txsched_elem_data *info)
3078 {
3079 	struct ice_aqc_txsched_elem_data buf;
3080 	enum ice_status status;
3081 	u16 elem_cfgd = 0;
3082 	u16 num_elems = 1;
3083 
3084 	buf = *info;
3085 	/* For TC nodes, CIR config is not supported */
3086 	if (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_TC)
3087 		buf.data.valid_sections &= ~ICE_AQC_ELEM_VALID_CIR;
3088 	/* Parent TEID is reserved field in this aq call */
3089 	buf.parent_teid = 0;
3090 	/* Element type is reserved field in this aq call */
3091 	buf.data.elem_type = 0;
3092 	/* Flags is reserved field in this aq call */
3093 	buf.data.flags = 0;
3094 
3095 	/* Update HW DB */
3096 	/* Configure element node */
3097 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
3098 					&elem_cfgd, NULL);
3099 	if (status || elem_cfgd != num_elems) {
3100 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
3101 		return ICE_ERR_CFG;
3102 	}
3103 
3104 	/* Config success case */
3105 	/* Now update local SW DB */
3106 	/* Only copy the data portion of info buffer */
3107 	node->info.data = info->data;
3108 	return status;
3109 }
3110 
3111 /**
3112  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
3113  * @hw: pointer to the HW struct
3114  * @node: sched node to configure
3115  * @rl_type: rate limit type CIR, EIR, or shared
3116  * @bw_alloc: BW weight/allocation
3117  *
3118  * This function configures node element's BW allocation.
3119  */
3120 static enum ice_status
3121 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
3122 			    enum ice_rl_type rl_type, u16 bw_alloc)
3123 {
3124 	struct ice_aqc_txsched_elem_data buf;
3125 	struct ice_aqc_txsched_elem *data;
3126 	enum ice_status status;
3127 
3128 	buf = node->info;
3129 	data = &buf.data;
3130 	if (rl_type == ICE_MIN_BW) {
3131 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3132 		data->cir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
3133 	} else if (rl_type == ICE_MAX_BW) {
3134 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3135 		data->eir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
3136 	} else {
3137 		return ICE_ERR_PARAM;
3138 	}
3139 
3140 	/* Configure element */
3141 	status = ice_sched_update_elem(hw, node, &buf);
3142 	return status;
3143 }
3144 
3145 /**
3146  * ice_move_vsi_to_agg - moves VSI to new or default aggregator
3147  * @pi: port information structure
3148  * @agg_id: aggregator ID
3149  * @vsi_handle: software VSI handle
3150  * @tc_bitmap: TC bitmap of enabled TC(s)
3151  *
3152  * Move or associate VSI to a new or default aggregator node.
3153  */
3154 enum ice_status
3155 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
3156 		    u8 tc_bitmap)
3157 {
3158 	ice_bitmap_t bitmap = tc_bitmap;
3159 	enum ice_status status;
3160 
3161 	ice_acquire_lock(&pi->sched_lock);
3162 	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
3163 					    (ice_bitmap_t *)&bitmap);
3164 	if (!status)
3165 		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
3166 						    (ice_bitmap_t *)&bitmap);
3167 	ice_release_lock(&pi->sched_lock);
3168 	return status;
3169 }
3170 
3171 /**
3172  * ice_rm_agg_cfg - remove aggregator configuration
3173  * @pi: port information structure
3174  * @agg_id: aggregator ID
3175  *
3176  * This function removes aggregator reference to VSI and delete aggregator ID
3177  * info. It removes the aggregator configuration completely.
3178  */
3179 enum ice_status ice_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id)
3180 {
3181 	struct ice_sched_agg_info *agg_info;
3182 	enum ice_status status = ICE_SUCCESS;
3183 	u8 tc;
3184 
3185 	ice_acquire_lock(&pi->sched_lock);
3186 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3187 	if (!agg_info) {
3188 		status = ICE_ERR_DOES_NOT_EXIST;
3189 		goto exit_ice_rm_agg_cfg;
3190 	}
3191 
3192 	ice_for_each_traffic_class(tc) {
3193 		status = ice_rm_agg_cfg_tc(pi, agg_info, tc, true);
3194 		if (status)
3195 			goto exit_ice_rm_agg_cfg;
3196 	}
3197 
3198 	if (ice_is_any_bit_set(agg_info->tc_bitmap, ICE_MAX_TRAFFIC_CLASS)) {
3199 		status = ICE_ERR_IN_USE;
3200 		goto exit_ice_rm_agg_cfg;
3201 	}
3202 
3203 	/* Safe to delete entry now */
3204 	LIST_DEL(&agg_info->list_entry);
3205 	ice_free(pi->hw, agg_info);
3206 
3207 	/* Remove unused RL profile IDs from HW and SW DB */
3208 	ice_sched_rm_unused_rl_prof(pi->hw);
3209 
3210 exit_ice_rm_agg_cfg:
3211 	ice_release_lock(&pi->sched_lock);
3212 	return status;
3213 }
3214 
3215 /**
3216  * ice_set_clear_cir_bw_alloc - set or clear CIR BW alloc information
3217  * @bw_t_info: bandwidth type information structure
3218  * @bw_alloc: Bandwidth allocation information
3219  *
3220  * Save or clear CIR BW alloc information (bw_alloc) in the passed param
3221  * bw_t_info.
3222  */
3223 static void
3224 ice_set_clear_cir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
3225 {
3226 	bw_t_info->cir_bw.bw_alloc = bw_alloc;
3227 	if (bw_t_info->cir_bw.bw_alloc)
3228 		ice_set_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
3229 	else
3230 		ice_clear_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
3231 }
3232 
3233 /**
3234  * ice_set_clear_eir_bw_alloc - set or clear EIR BW alloc information
3235  * @bw_t_info: bandwidth type information structure
3236  * @bw_alloc: Bandwidth allocation information
3237  *
3238  * Save or clear EIR BW alloc information (bw_alloc) in the passed param
3239  * bw_t_info.
3240  */
3241 static void
3242 ice_set_clear_eir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
3243 {
3244 	bw_t_info->eir_bw.bw_alloc = bw_alloc;
3245 	if (bw_t_info->eir_bw.bw_alloc)
3246 		ice_set_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
3247 	else
3248 		ice_clear_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
3249 }
3250 
3251 /**
3252  * ice_sched_save_vsi_bw_alloc - save VSI node's BW alloc information
3253  * @pi: port information structure
3254  * @vsi_handle: sw VSI handle
3255  * @tc: traffic class
3256  * @rl_type: rate limit type min or max
3257  * @bw_alloc: Bandwidth allocation information
3258  *
3259  * Save BW alloc information of VSI type node for post replay use.
3260  */
3261 static enum ice_status
3262 ice_sched_save_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3263 			    enum ice_rl_type rl_type, u16 bw_alloc)
3264 {
3265 	struct ice_vsi_ctx *vsi_ctx;
3266 
3267 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3268 		return ICE_ERR_PARAM;
3269 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3270 	if (!vsi_ctx)
3271 		return ICE_ERR_PARAM;
3272 	switch (rl_type) {
3273 	case ICE_MIN_BW:
3274 		ice_set_clear_cir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
3275 					   bw_alloc);
3276 		break;
3277 	case ICE_MAX_BW:
3278 		ice_set_clear_eir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
3279 					   bw_alloc);
3280 		break;
3281 	default:
3282 		return ICE_ERR_PARAM;
3283 	}
3284 	return ICE_SUCCESS;
3285 }
3286 
3287 /**
3288  * ice_set_clear_cir_bw - set or clear CIR BW
3289  * @bw_t_info: bandwidth type information structure
3290  * @bw: bandwidth in Kbps - Kilo bits per sec
3291  *
3292  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
3293  */
3294 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3295 {
3296 	if (bw == ICE_SCHED_DFLT_BW) {
3297 		ice_clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3298 		bw_t_info->cir_bw.bw = 0;
3299 	} else {
3300 		/* Save type of BW information */
3301 		ice_set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3302 		bw_t_info->cir_bw.bw = bw;
3303 	}
3304 }
3305 
3306 /**
3307  * ice_set_clear_eir_bw - set or clear EIR BW
3308  * @bw_t_info: bandwidth type information structure
3309  * @bw: bandwidth in Kbps - Kilo bits per sec
3310  *
3311  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
3312  */
3313 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3314 {
3315 	if (bw == ICE_SCHED_DFLT_BW) {
3316 		ice_clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3317 		bw_t_info->eir_bw.bw = 0;
3318 	} else {
3319 		/* save EIR BW information */
3320 		ice_set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3321 		bw_t_info->eir_bw.bw = bw;
3322 	}
3323 }
3324 
3325 /**
3326  * ice_set_clear_shared_bw - set or clear shared BW
3327  * @bw_t_info: bandwidth type information structure
3328  * @bw: bandwidth in Kbps - Kilo bits per sec
3329  *
3330  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3331  */
3332 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3333 {
3334 	if (bw == ICE_SCHED_DFLT_BW) {
3335 		ice_clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3336 		bw_t_info->shared_bw = 0;
3337 	} else {
3338 		/* save shared BW information */
3339 		ice_set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3340 		bw_t_info->shared_bw = bw;
3341 	}
3342 }
3343 
3344 /**
3345  * ice_sched_save_vsi_bw - save VSI node's BW information
3346  * @pi: port information structure
3347  * @vsi_handle: sw VSI handle
3348  * @tc: traffic class
3349  * @rl_type: rate limit type min, max, or shared
3350  * @bw: bandwidth in Kbps - Kilo bits per sec
3351  *
3352  * Save BW information of VSI type node for post replay use.
3353  */
3354 static enum ice_status
3355 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3356 		      enum ice_rl_type rl_type, u32 bw)
3357 {
3358 	struct ice_vsi_ctx *vsi_ctx;
3359 
3360 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3361 		return ICE_ERR_PARAM;
3362 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3363 	if (!vsi_ctx)
3364 		return ICE_ERR_PARAM;
3365 	switch (rl_type) {
3366 	case ICE_MIN_BW:
3367 		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3368 		break;
3369 	case ICE_MAX_BW:
3370 		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3371 		break;
3372 	case ICE_SHARED_BW:
3373 		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3374 		break;
3375 	default:
3376 		return ICE_ERR_PARAM;
3377 	}
3378 	return ICE_SUCCESS;
3379 }
3380 
3381 /**
3382  * ice_set_clear_prio - set or clear priority information
3383  * @bw_t_info: bandwidth type information structure
3384  * @prio: priority to save
3385  *
3386  * Save or clear priority (prio) in the passed param bw_t_info.
3387  */
3388 static void ice_set_clear_prio(struct ice_bw_type_info *bw_t_info, u8 prio)
3389 {
3390 	bw_t_info->generic = prio;
3391 	if (bw_t_info->generic)
3392 		ice_set_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
3393 	else
3394 		ice_clear_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
3395 }
3396 
3397 /**
3398  * ice_sched_save_vsi_prio - save VSI node's priority information
3399  * @pi: port information structure
3400  * @vsi_handle: Software VSI handle
3401  * @tc: traffic class
3402  * @prio: priority to save
3403  *
3404  * Save priority information of VSI type node for post replay use.
3405  */
3406 static enum ice_status
3407 ice_sched_save_vsi_prio(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3408 			u8 prio)
3409 {
3410 	struct ice_vsi_ctx *vsi_ctx;
3411 
3412 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3413 		return ICE_ERR_PARAM;
3414 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3415 	if (!vsi_ctx)
3416 		return ICE_ERR_PARAM;
3417 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
3418 		return ICE_ERR_PARAM;
3419 	ice_set_clear_prio(&vsi_ctx->sched.bw_t_info[tc], prio);
3420 	return ICE_SUCCESS;
3421 }
3422 
3423 /**
3424  * ice_sched_save_agg_bw_alloc - save aggregator node's BW alloc information
3425  * @pi: port information structure
3426  * @agg_id: node aggregator ID
3427  * @tc: traffic class
3428  * @rl_type: rate limit type min or max
3429  * @bw_alloc: bandwidth alloc information
3430  *
3431  * Save BW alloc information of AGG type node for post replay use.
3432  */
3433 static enum ice_status
3434 ice_sched_save_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3435 			    enum ice_rl_type rl_type, u16 bw_alloc)
3436 {
3437 	struct ice_sched_agg_info *agg_info;
3438 
3439 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3440 	if (!agg_info)
3441 		return ICE_ERR_PARAM;
3442 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
3443 		return ICE_ERR_PARAM;
3444 	switch (rl_type) {
3445 	case ICE_MIN_BW:
3446 		ice_set_clear_cir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
3447 		break;
3448 	case ICE_MAX_BW:
3449 		ice_set_clear_eir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
3450 		break;
3451 	default:
3452 		return ICE_ERR_PARAM;
3453 	}
3454 	return ICE_SUCCESS;
3455 }
3456 
3457 /**
3458  * ice_sched_save_agg_bw - save aggregator node's BW information
3459  * @pi: port information structure
3460  * @agg_id: node aggregator ID
3461  * @tc: traffic class
3462  * @rl_type: rate limit type min, max, or shared
3463  * @bw: bandwidth in Kbps - Kilo bits per sec
3464  *
3465  * Save BW information of AGG type node for post replay use.
3466  */
3467 static enum ice_status
3468 ice_sched_save_agg_bw(struct ice_port_info *pi, u32 agg_id, u8 tc,
3469 		      enum ice_rl_type rl_type, u32 bw)
3470 {
3471 	struct ice_sched_agg_info *agg_info;
3472 
3473 	agg_info = ice_get_agg_info(pi->hw, agg_id);
3474 	if (!agg_info)
3475 		return ICE_ERR_PARAM;
3476 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
3477 		return ICE_ERR_PARAM;
3478 	switch (rl_type) {
3479 	case ICE_MIN_BW:
3480 		ice_set_clear_cir_bw(&agg_info->bw_t_info[tc], bw);
3481 		break;
3482 	case ICE_MAX_BW:
3483 		ice_set_clear_eir_bw(&agg_info->bw_t_info[tc], bw);
3484 		break;
3485 	case ICE_SHARED_BW:
3486 		ice_set_clear_shared_bw(&agg_info->bw_t_info[tc], bw);
3487 		break;
3488 	default:
3489 		return ICE_ERR_PARAM;
3490 	}
3491 	return ICE_SUCCESS;
3492 }
3493 
3494 /**
3495  * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3496  * @pi: port information structure
3497  * @vsi_handle: software VSI handle
3498  * @tc: traffic class
3499  * @rl_type: min or max
3500  * @bw: bandwidth in Kbps
3501  *
3502  * This function configures BW limit of VSI scheduling node based on TC
3503  * information.
3504  */
3505 enum ice_status
3506 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3507 			  enum ice_rl_type rl_type, u32 bw)
3508 {
3509 	enum ice_status status;
3510 
3511 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3512 						  ICE_AGG_TYPE_VSI,
3513 						  tc, rl_type, bw);
3514 	if (!status) {
3515 		ice_acquire_lock(&pi->sched_lock);
3516 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
3517 		ice_release_lock(&pi->sched_lock);
3518 	}
3519 	return status;
3520 }
3521 
3522 /**
3523  * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
3524  * @pi: port information structure
3525  * @vsi_handle: software VSI handle
3526  * @tc: traffic class
3527  * @rl_type: min or max
3528  *
3529  * This function configures default BW limit of VSI scheduling node based on TC
3530  * information.
3531  */
3532 enum ice_status
3533 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3534 			       enum ice_rl_type rl_type)
3535 {
3536 	enum ice_status status;
3537 
3538 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3539 						  ICE_AGG_TYPE_VSI,
3540 						  tc, rl_type,
3541 						  ICE_SCHED_DFLT_BW);
3542 	if (!status) {
3543 		ice_acquire_lock(&pi->sched_lock);
3544 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
3545 					       ICE_SCHED_DFLT_BW);
3546 		ice_release_lock(&pi->sched_lock);
3547 	}
3548 	return status;
3549 }
3550 
3551 /**
3552  * ice_cfg_agg_bw_lmt_per_tc - configure aggregator BW limit per TC
3553  * @pi: port information structure
3554  * @agg_id: aggregator ID
3555  * @tc: traffic class
3556  * @rl_type: min or max
3557  * @bw: bandwidth in Kbps
3558  *
3559  * This function applies BW limit to aggregator scheduling node based on TC
3560  * information.
3561  */
3562 enum ice_status
3563 ice_cfg_agg_bw_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3564 			  enum ice_rl_type rl_type, u32 bw)
3565 {
3566 	enum ice_status status;
3567 
3568 	status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
3569 						  tc, rl_type, bw);
3570 	if (!status) {
3571 		ice_acquire_lock(&pi->sched_lock);
3572 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
3573 		ice_release_lock(&pi->sched_lock);
3574 	}
3575 	return status;
3576 }
3577 
3578 /**
3579  * ice_cfg_agg_bw_dflt_lmt_per_tc - configure aggregator BW default limit per TC
3580  * @pi: port information structure
3581  * @agg_id: aggregator ID
3582  * @tc: traffic class
3583  * @rl_type: min or max
3584  *
3585  * This function applies default BW limit to aggregator scheduling node based
3586  * on TC information.
3587  */
3588 enum ice_status
3589 ice_cfg_agg_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3590 			       enum ice_rl_type rl_type)
3591 {
3592 	enum ice_status status;
3593 
3594 	status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
3595 						  tc, rl_type,
3596 						  ICE_SCHED_DFLT_BW);
3597 	if (!status) {
3598 		ice_acquire_lock(&pi->sched_lock);
3599 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type,
3600 					       ICE_SCHED_DFLT_BW);
3601 		ice_release_lock(&pi->sched_lock);
3602 	}
3603 	return status;
3604 }
3605 
3606 /**
3607  * ice_cfg_vsi_bw_shared_lmt - configure VSI BW shared limit
3608  * @pi: port information structure
3609  * @vsi_handle: software VSI handle
3610  * @min_bw: minimum bandwidth in Kbps
3611  * @max_bw: maximum bandwidth in Kbps
3612  * @shared_bw: shared bandwidth in Kbps
3613  *
3614  * Configure shared rate limiter(SRL) of all VSI type nodes across all traffic
3615  * classes for VSI matching handle.
3616  */
3617 enum ice_status
3618 ice_cfg_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle, u32 min_bw,
3619 			  u32 max_bw, u32 shared_bw)
3620 {
3621 	return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle, min_bw, max_bw,
3622 					       shared_bw);
3623 }
3624 
3625 /**
3626  * ice_cfg_vsi_bw_no_shared_lmt - configure VSI BW for no shared limiter
3627  * @pi: port information structure
3628  * @vsi_handle: software VSI handle
3629  *
3630  * This function removes the shared rate limiter(SRL) of all VSI type nodes
3631  * across all traffic classes for VSI matching handle.
3632  */
3633 enum ice_status
3634 ice_cfg_vsi_bw_no_shared_lmt(struct ice_port_info *pi, u16 vsi_handle)
3635 {
3636 	return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle,
3637 					       ICE_SCHED_DFLT_BW,
3638 					       ICE_SCHED_DFLT_BW,
3639 					       ICE_SCHED_DFLT_BW);
3640 }
3641 
3642 /**
3643  * ice_cfg_agg_bw_shared_lmt - configure aggregator BW shared limit
3644  * @pi: port information structure
3645  * @agg_id: aggregator ID
3646  * @min_bw: minimum bandwidth in Kbps
3647  * @max_bw: maximum bandwidth in Kbps
3648  * @shared_bw: shared bandwidth in Kbps
3649  *
3650  * This function configures the shared rate limiter(SRL) of all aggregator type
3651  * nodes across all traffic classes for aggregator matching agg_id.
3652  */
3653 enum ice_status
3654 ice_cfg_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id, u32 min_bw,
3655 			  u32 max_bw, u32 shared_bw)
3656 {
3657 	return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, min_bw, max_bw,
3658 					       shared_bw);
3659 }
3660 
3661 /**
3662  * ice_cfg_agg_bw_no_shared_lmt - configure aggregator BW for no shared limiter
3663  * @pi: port information structure
3664  * @agg_id: aggregator ID
3665  *
3666  * This function removes the shared rate limiter(SRL) of all aggregator type
3667  * nodes across all traffic classes for aggregator matching agg_id.
3668  */
3669 enum ice_status
3670 ice_cfg_agg_bw_no_shared_lmt(struct ice_port_info *pi, u32 agg_id)
3671 {
3672 	return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, ICE_SCHED_DFLT_BW,
3673 					       ICE_SCHED_DFLT_BW,
3674 					       ICE_SCHED_DFLT_BW);
3675 }
3676 
3677 /**
3678  * ice_cfg_agg_bw_shared_lmt_per_tc - config aggregator BW shared limit per tc
3679  * @pi: port information structure
3680  * @agg_id: aggregator ID
3681  * @tc: traffic class
3682  * @min_bw: minimum bandwidth in Kbps
3683  * @max_bw: maximum bandwidth in Kbps
3684  * @shared_bw: shared bandwidth in Kbps
3685  *
3686  * This function configures the shared rate limiter(SRL) of all aggregator type
3687  * nodes across all traffic classes for aggregator matching agg_id.
3688  */
3689 enum ice_status
3690 ice_cfg_agg_bw_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3691 				 u32 min_bw, u32 max_bw, u32 shared_bw)
3692 {
3693 	return ice_sched_set_agg_bw_shared_lmt_per_tc(pi, agg_id, tc, min_bw,
3694 						      max_bw, shared_bw);
3695 }
3696 
3697 /**
3698  * ice_cfg_agg_bw_no_shared_lmt_per_tc - cfg aggregator BW shared limit per tc
3699  * @pi: port information structure
3700  * @agg_id: aggregator ID
3701  * @tc: traffic class
3702  *
3703  * This function configures the shared rate limiter(SRL) of all aggregator type
3704  * nodes across all traffic classes for aggregator matching agg_id.
3705  */
3706 enum ice_status
3707 ice_cfg_agg_bw_no_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc)
3708 {
3709 	return ice_sched_set_agg_bw_shared_lmt_per_tc(pi, agg_id, tc,
3710 						      ICE_SCHED_DFLT_BW,
3711 						      ICE_SCHED_DFLT_BW,
3712 						      ICE_SCHED_DFLT_BW);
3713 }
3714 
3715 /**
3716  * ice_cfg_vsi_q_priority - config VSI queue priority of node
3717  * @pi: port information structure
3718  * @num_qs: number of VSI queues
3719  * @q_ids: queue IDs array
3720  * @q_prio: queue priority array
3721  *
3722  * This function configures the queue node priority (Sibling Priority) of the
3723  * passed in VSI's queue(s) for a given traffic class (TC).
3724  */
3725 enum ice_status
3726 ice_cfg_vsi_q_priority(struct ice_port_info *pi, u16 num_qs, u32 *q_ids,
3727 		       u8 *q_prio)
3728 {
3729 	enum ice_status status = ICE_ERR_PARAM;
3730 	u16 i;
3731 
3732 	ice_acquire_lock(&pi->sched_lock);
3733 
3734 	for (i = 0; i < num_qs; i++) {
3735 		struct ice_sched_node *node;
3736 
3737 		node = ice_sched_find_node_by_teid(pi->root, q_ids[i]);
3738 		if (!node || node->info.data.elem_type !=
3739 		    ICE_AQC_ELEM_TYPE_LEAF) {
3740 			status = ICE_ERR_PARAM;
3741 			break;
3742 		}
3743 		/* Configure Priority */
3744 		status = ice_sched_cfg_sibl_node_prio(pi, node, q_prio[i]);
3745 		if (status)
3746 			break;
3747 	}
3748 
3749 	ice_release_lock(&pi->sched_lock);
3750 	return status;
3751 }
3752 
3753 /**
3754  * ice_cfg_agg_vsi_priority_per_tc - config aggregator's VSI priority per TC
3755  * @pi: port information structure
3756  * @agg_id: Aggregator ID
3757  * @num_vsis: number of VSI(s)
3758  * @vsi_handle_arr: array of software VSI handles
3759  * @node_prio: pointer to node priority
3760  * @tc: traffic class
3761  *
3762  * This function configures the node priority (Sibling Priority) of the
3763  * passed in VSI's for a given traffic class (TC) of an Aggregator ID.
3764  */
3765 enum ice_status
3766 ice_cfg_agg_vsi_priority_per_tc(struct ice_port_info *pi, u32 agg_id,
3767 				u16 num_vsis, u16 *vsi_handle_arr,
3768 				u8 *node_prio, u8 tc)
3769 {
3770 	struct ice_sched_agg_vsi_info *agg_vsi_info;
3771 	struct ice_sched_node *tc_node, *agg_node;
3772 	enum ice_status status = ICE_ERR_PARAM;
3773 	struct ice_sched_agg_info *agg_info;
3774 	bool agg_id_present = false;
3775 	struct ice_hw *hw = pi->hw;
3776 	u16 i;
3777 
3778 	ice_acquire_lock(&pi->sched_lock);
3779 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
3780 			    list_entry)
3781 		if (agg_info->agg_id == agg_id) {
3782 			agg_id_present = true;
3783 			break;
3784 		}
3785 	if (!agg_id_present)
3786 		goto exit_agg_priority_per_tc;
3787 
3788 	tc_node = ice_sched_get_tc_node(pi, tc);
3789 	if (!tc_node)
3790 		goto exit_agg_priority_per_tc;
3791 
3792 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
3793 	if (!agg_node)
3794 		goto exit_agg_priority_per_tc;
3795 
3796 	if (num_vsis > hw->max_children[agg_node->tx_sched_layer])
3797 		goto exit_agg_priority_per_tc;
3798 
3799 	for (i = 0; i < num_vsis; i++) {
3800 		struct ice_sched_node *vsi_node;
3801 		bool vsi_handle_valid = false;
3802 		u16 vsi_handle;
3803 
3804 		status = ICE_ERR_PARAM;
3805 		vsi_handle = vsi_handle_arr[i];
3806 		if (!ice_is_vsi_valid(hw, vsi_handle))
3807 			goto exit_agg_priority_per_tc;
3808 		/* Verify child nodes before applying settings */
3809 		LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
3810 				    ice_sched_agg_vsi_info, list_entry)
3811 			if (agg_vsi_info->vsi_handle == vsi_handle) {
3812 				vsi_handle_valid = true;
3813 				break;
3814 			}
3815 
3816 		if (!vsi_handle_valid)
3817 			goto exit_agg_priority_per_tc;
3818 
3819 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
3820 		if (!vsi_node)
3821 			goto exit_agg_priority_per_tc;
3822 
3823 		if (ice_sched_find_node_in_subtree(hw, agg_node, vsi_node)) {
3824 			/* Configure Priority */
3825 			status = ice_sched_cfg_sibl_node_prio(pi, vsi_node,
3826 							      node_prio[i]);
3827 			if (status)
3828 				break;
3829 			status = ice_sched_save_vsi_prio(pi, vsi_handle, tc,
3830 							 node_prio[i]);
3831 			if (status)
3832 				break;
3833 		}
3834 	}
3835 
3836 exit_agg_priority_per_tc:
3837 	ice_release_lock(&pi->sched_lock);
3838 	return status;
3839 }
3840 
3841 /**
3842  * ice_cfg_vsi_bw_alloc - config VSI BW alloc per TC
3843  * @pi: port information structure
3844  * @vsi_handle: software VSI handle
3845  * @ena_tcmap: enabled TC map
3846  * @rl_type: Rate limit type CIR/EIR
3847  * @bw_alloc: Array of BW alloc
3848  *
3849  * This function configures the BW allocation of the passed in VSI's
3850  * node(s) for enabled traffic class.
3851  */
3852 enum ice_status
3853 ice_cfg_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 ena_tcmap,
3854 		     enum ice_rl_type rl_type, u8 *bw_alloc)
3855 {
3856 	enum ice_status status = ICE_SUCCESS;
3857 	u8 tc;
3858 
3859 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3860 		return ICE_ERR_PARAM;
3861 
3862 	ice_acquire_lock(&pi->sched_lock);
3863 
3864 	/* Return success if no nodes are present across TC */
3865 	ice_for_each_traffic_class(tc) {
3866 		struct ice_sched_node *tc_node, *vsi_node;
3867 
3868 		if (!ice_is_tc_ena(ena_tcmap, tc))
3869 			continue;
3870 
3871 		tc_node = ice_sched_get_tc_node(pi, tc);
3872 		if (!tc_node)
3873 			continue;
3874 
3875 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
3876 		if (!vsi_node)
3877 			continue;
3878 
3879 		status = ice_sched_cfg_node_bw_alloc(pi->hw, vsi_node, rl_type,
3880 						     bw_alloc[tc]);
3881 		if (status)
3882 			break;
3883 		status = ice_sched_save_vsi_bw_alloc(pi, vsi_handle, tc,
3884 						     rl_type, bw_alloc[tc]);
3885 		if (status)
3886 			break;
3887 	}
3888 
3889 	ice_release_lock(&pi->sched_lock);
3890 	return status;
3891 }
3892 
3893 /**
3894  * ice_cfg_agg_bw_alloc - config aggregator BW alloc
3895  * @pi: port information structure
3896  * @agg_id: aggregator ID
3897  * @ena_tcmap: enabled TC map
3898  * @rl_type: rate limit type CIR/EIR
3899  * @bw_alloc: array of BW alloc
3900  *
3901  * This function configures the BW allocation of passed in aggregator for
3902  * enabled traffic class(s).
3903  */
3904 enum ice_status
3905 ice_cfg_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 ena_tcmap,
3906 		     enum ice_rl_type rl_type, u8 *bw_alloc)
3907 {
3908 	struct ice_sched_agg_info *agg_info;
3909 	bool agg_id_present = false;
3910 	enum ice_status status = ICE_SUCCESS;
3911 	struct ice_hw *hw = pi->hw;
3912 	u8 tc;
3913 
3914 	ice_acquire_lock(&pi->sched_lock);
3915 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
3916 			    list_entry)
3917 		if (agg_info->agg_id == agg_id) {
3918 			agg_id_present = true;
3919 			break;
3920 		}
3921 	if (!agg_id_present) {
3922 		status = ICE_ERR_PARAM;
3923 		goto exit_cfg_agg_bw_alloc;
3924 	}
3925 
3926 	/* Return success if no nodes are present across TC */
3927 	ice_for_each_traffic_class(tc) {
3928 		struct ice_sched_node *tc_node, *agg_node;
3929 
3930 		if (!ice_is_tc_ena(ena_tcmap, tc))
3931 			continue;
3932 
3933 		tc_node = ice_sched_get_tc_node(pi, tc);
3934 		if (!tc_node)
3935 			continue;
3936 
3937 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
3938 		if (!agg_node)
3939 			continue;
3940 
3941 		status = ice_sched_cfg_node_bw_alloc(hw, agg_node, rl_type,
3942 						     bw_alloc[tc]);
3943 		if (status)
3944 			break;
3945 		status = ice_sched_save_agg_bw_alloc(pi, agg_id, tc, rl_type,
3946 						     bw_alloc[tc]);
3947 		if (status)
3948 			break;
3949 	}
3950 
3951 exit_cfg_agg_bw_alloc:
3952 	ice_release_lock(&pi->sched_lock);
3953 	return status;
3954 }
3955 
3956 /**
3957  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3958  * @hw: pointer to the HW struct
3959  * @bw: bandwidth in Kbps
3960  *
3961  * This function calculates the wakeup parameter of RL profile.
3962  */
3963 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3964 {
3965 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3966 	s32 wakeup_f_int;
3967 	u16 wakeup = 0;
3968 
3969 	/* Get the wakeup integer value */
3970 	bytes_per_sec = DIV_S64((s64)bw * 1000, BITS_PER_BYTE);
3971 	wakeup_int = DIV_S64(hw->psm_clk_freq, bytes_per_sec);
3972 	if (wakeup_int > 63) {
3973 		wakeup = (u16)((1 << 15) | wakeup_int);
3974 	} else {
3975 		/* Calculate fraction value up to 4 decimals
3976 		 * Convert Integer value to a constant multiplier
3977 		 */
3978 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3979 		wakeup_a = DIV_S64((s64)ICE_RL_PROF_MULTIPLIER *
3980 				   hw->psm_clk_freq, bytes_per_sec);
3981 
3982 		/* Get Fraction value */
3983 		wakeup_f = wakeup_a - wakeup_b;
3984 
3985 		/* Round up the Fractional value via Ceil(Fractional value) */
3986 		if (wakeup_f > DIV_S64(ICE_RL_PROF_MULTIPLIER, 2))
3987 			wakeup_f += 1;
3988 
3989 		wakeup_f_int = (s32)DIV_S64(wakeup_f * ICE_RL_PROF_FRACTION,
3990 					    ICE_RL_PROF_MULTIPLIER);
3991 		wakeup |= (u16)(wakeup_int << 9);
3992 		wakeup |= (u16)(0x1ff & wakeup_f_int);
3993 	}
3994 
3995 	return wakeup;
3996 }
3997 
3998 /**
3999  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
4000  * @hw: pointer to the HW struct
4001  * @bw: bandwidth in Kbps
4002  * @profile: profile parameters to return
4003  *
4004  * This function converts the BW to profile structure format.
4005  */
4006 static enum ice_status
4007 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
4008 			   struct ice_aqc_rl_profile_elem *profile)
4009 {
4010 	enum ice_status status = ICE_ERR_PARAM;
4011 	s64 bytes_per_sec, ts_rate, mv_tmp;
4012 	bool found = false;
4013 	s32 encode = 0;
4014 	s64 mv = 0;
4015 	s32 i;
4016 
4017 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
4018 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
4019 		return status;
4020 
4021 	/* Bytes per second from Kbps */
4022 	bytes_per_sec = DIV_S64((s64)bw * 1000, BITS_PER_BYTE);
4023 
4024 	/* encode is 6 bits but really useful are 5 bits */
4025 	for (i = 0; i < 64; i++) {
4026 		u64 pow_result = BIT_ULL(i);
4027 
4028 		ts_rate = DIV_S64((s64)hw->psm_clk_freq,
4029 				  pow_result * ICE_RL_PROF_TS_MULTIPLIER);
4030 		if (ts_rate <= 0)
4031 			continue;
4032 
4033 		/* Multiplier value */
4034 		mv_tmp = DIV_S64(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
4035 				 ts_rate);
4036 
4037 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
4038 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
4039 
4040 		/* First multiplier value greater than the given
4041 		 * accuracy bytes
4042 		 */
4043 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
4044 			encode = i;
4045 			found = true;
4046 			break;
4047 		}
4048 	}
4049 	if (found) {
4050 		u16 wm;
4051 
4052 		wm = ice_sched_calc_wakeup(hw, bw);
4053 		profile->rl_multiply = CPU_TO_LE16(mv);
4054 		profile->wake_up_calc = CPU_TO_LE16(wm);
4055 		profile->rl_encode = CPU_TO_LE16(encode);
4056 		status = ICE_SUCCESS;
4057 	} else {
4058 		status = ICE_ERR_DOES_NOT_EXIST;
4059 	}
4060 
4061 	return status;
4062 }
4063 
4064 /**
4065  * ice_sched_add_rl_profile - add RL profile
4066  * @hw: pointer to the hardware structure
4067  * @rl_type: type of rate limit BW - min, max, or shared
4068  * @bw: bandwidth in Kbps - Kilo bits per sec
4069  * @layer_num: specifies in which layer to create profile
4070  *
4071  * This function first checks the existing list for corresponding BW
4072  * parameter. If it exists, it returns the associated profile otherwise
4073  * it creates a new rate limit profile for requested BW, and adds it to
4074  * the HW DB and local list. It returns the new profile or null on error.
4075  * The caller needs to hold the scheduler lock.
4076  */
4077 static struct ice_aqc_rl_profile_info *
4078 ice_sched_add_rl_profile(struct ice_hw *hw, enum ice_rl_type rl_type,
4079 			 u32 bw, u8 layer_num)
4080 {
4081 	struct ice_aqc_rl_profile_info *rl_prof_elem;
4082 	u16 profiles_added = 0, num_profiles = 1;
4083 	struct ice_aqc_rl_profile_elem *buf;
4084 	enum ice_status status;
4085 	u8 profile_type;
4086 
4087 	if (!hw || layer_num >= hw->num_tx_sched_layers)
4088 		return NULL;
4089 	switch (rl_type) {
4090 	case ICE_MIN_BW:
4091 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
4092 		break;
4093 	case ICE_MAX_BW:
4094 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
4095 		break;
4096 	case ICE_SHARED_BW:
4097 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
4098 		break;
4099 	default:
4100 		return NULL;
4101 	}
4102 
4103 	LIST_FOR_EACH_ENTRY(rl_prof_elem, &hw->rl_prof_list[layer_num],
4104 			    ice_aqc_rl_profile_info, list_entry)
4105 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
4106 		    profile_type && rl_prof_elem->bw == bw)
4107 			/* Return existing profile ID info */
4108 			return rl_prof_elem;
4109 
4110 	/* Create new profile ID */
4111 	rl_prof_elem = (struct ice_aqc_rl_profile_info *)
4112 		ice_malloc(hw, sizeof(*rl_prof_elem));
4113 
4114 	if (!rl_prof_elem)
4115 		return NULL;
4116 
4117 	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
4118 	if (status != ICE_SUCCESS)
4119 		goto exit_add_rl_prof;
4120 
4121 	rl_prof_elem->bw = bw;
4122 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
4123 	rl_prof_elem->profile.level = layer_num + 1;
4124 	rl_prof_elem->profile.flags = profile_type;
4125 	rl_prof_elem->profile.max_burst_size = CPU_TO_LE16(hw->max_burst_size);
4126 
4127 	/* Create new entry in HW DB */
4128 	buf = &rl_prof_elem->profile;
4129 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
4130 				       &profiles_added, NULL);
4131 	if (status || profiles_added != num_profiles)
4132 		goto exit_add_rl_prof;
4133 
4134 	/* Good entry - add in the list */
4135 	rl_prof_elem->prof_id_ref = 0;
4136 	LIST_ADD(&rl_prof_elem->list_entry, &hw->rl_prof_list[layer_num]);
4137 	return rl_prof_elem;
4138 
4139 exit_add_rl_prof:
4140 	ice_free(hw, rl_prof_elem);
4141 	return NULL;
4142 }
4143 
4144 /**
4145  * ice_sched_cfg_node_bw_lmt - configure node sched params
4146  * @hw: pointer to the HW struct
4147  * @node: sched node to configure
4148  * @rl_type: rate limit type CIR, EIR, or shared
4149  * @rl_prof_id: rate limit profile ID
4150  *
4151  * This function configures node element's BW limit.
4152  */
4153 static enum ice_status
4154 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
4155 			  enum ice_rl_type rl_type, u16 rl_prof_id)
4156 {
4157 	struct ice_aqc_txsched_elem_data buf;
4158 	struct ice_aqc_txsched_elem *data;
4159 
4160 	buf = node->info;
4161 	data = &buf.data;
4162 	switch (rl_type) {
4163 	case ICE_MIN_BW:
4164 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
4165 		data->cir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
4166 		break;
4167 	case ICE_MAX_BW:
4168 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
4169 		data->eir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
4170 		break;
4171 	case ICE_SHARED_BW:
4172 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
4173 		data->srl_id = CPU_TO_LE16(rl_prof_id);
4174 		break;
4175 	default:
4176 		/* Unknown rate limit type */
4177 		return ICE_ERR_PARAM;
4178 	}
4179 
4180 	/* Configure element */
4181 	return ice_sched_update_elem(hw, node, &buf);
4182 }
4183 
4184 /**
4185  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
4186  * @node: sched node
4187  * @rl_type: rate limit type
4188  *
4189  * If existing profile matches, it returns the corresponding rate
4190  * limit profile ID, otherwise it returns an invalid ID as error.
4191  */
4192 static u16
4193 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
4194 			      enum ice_rl_type rl_type)
4195 {
4196 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
4197 	struct ice_aqc_txsched_elem *data;
4198 
4199 	data = &node->info.data;
4200 	switch (rl_type) {
4201 	case ICE_MIN_BW:
4202 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
4203 			rl_prof_id = LE16_TO_CPU(data->cir_bw.bw_profile_idx);
4204 		break;
4205 	case ICE_MAX_BW:
4206 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
4207 			rl_prof_id = LE16_TO_CPU(data->eir_bw.bw_profile_idx);
4208 		break;
4209 	case ICE_SHARED_BW:
4210 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
4211 			rl_prof_id = LE16_TO_CPU(data->srl_id);
4212 		break;
4213 	default:
4214 		break;
4215 	}
4216 
4217 	return rl_prof_id;
4218 }
4219 
4220 /**
4221  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
4222  * @pi: port information structure
4223  * @rl_type: type of rate limit BW - min, max, or shared
4224  * @layer_index: layer index
4225  *
4226  * This function returns requested profile creation layer.
4227  */
4228 static u8
4229 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
4230 			    u8 layer_index)
4231 {
4232 	struct ice_hw *hw = pi->hw;
4233 
4234 	if (layer_index >= hw->num_tx_sched_layers)
4235 		return ICE_SCHED_INVAL_LAYER_NUM;
4236 	switch (rl_type) {
4237 	case ICE_MIN_BW:
4238 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
4239 			return layer_index;
4240 		break;
4241 	case ICE_MAX_BW:
4242 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
4243 			return layer_index;
4244 		break;
4245 	case ICE_SHARED_BW:
4246 		/* if current layer doesn't support SRL profile creation
4247 		 * then try a layer up or down.
4248 		 */
4249 		if (hw->layer_info[layer_index].max_srl_profiles)
4250 			return layer_index;
4251 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
4252 			 hw->layer_info[layer_index + 1].max_srl_profiles)
4253 			return layer_index + 1;
4254 		else if (layer_index > 0 &&
4255 			 hw->layer_info[layer_index - 1].max_srl_profiles)
4256 			return layer_index - 1;
4257 		break;
4258 	default:
4259 		break;
4260 	}
4261 	return ICE_SCHED_INVAL_LAYER_NUM;
4262 }
4263 
4264 /**
4265  * ice_sched_get_srl_node - get shared rate limit node
4266  * @node: tree node
4267  * @srl_layer: shared rate limit layer
4268  *
4269  * This function returns SRL node to be used for shared rate limit purpose.
4270  * The caller needs to hold scheduler lock.
4271  */
4272 static struct ice_sched_node *
4273 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
4274 {
4275 	if (srl_layer > node->tx_sched_layer)
4276 		return node->children[0];
4277 	else if (srl_layer < node->tx_sched_layer)
4278 		/* Node can't be created without a parent. It will always
4279 		 * have a valid parent except root node.
4280 		 */
4281 		return node->parent;
4282 	else
4283 		return node;
4284 }
4285 
4286 /**
4287  * ice_sched_rm_rl_profile - remove RL profile ID
4288  * @hw: pointer to the hardware structure
4289  * @layer_num: layer number where profiles are saved
4290  * @profile_type: profile type like EIR, CIR, or SRL
4291  * @profile_id: profile ID to remove
4292  *
4293  * This function removes rate limit profile from layer 'layer_num' of type
4294  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
4295  * scheduler lock.
4296  */
4297 static enum ice_status
4298 ice_sched_rm_rl_profile(struct ice_hw *hw, u8 layer_num, u8 profile_type,
4299 			u16 profile_id)
4300 {
4301 	struct ice_aqc_rl_profile_info *rl_prof_elem;
4302 	enum ice_status status = ICE_SUCCESS;
4303 
4304 	if (!hw || layer_num >= hw->num_tx_sched_layers)
4305 		return ICE_ERR_PARAM;
4306 	/* Check the existing list for RL profile */
4307 	LIST_FOR_EACH_ENTRY(rl_prof_elem, &hw->rl_prof_list[layer_num],
4308 			    ice_aqc_rl_profile_info, list_entry)
4309 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
4310 		    profile_type &&
4311 		    LE16_TO_CPU(rl_prof_elem->profile.profile_id) ==
4312 		    profile_id) {
4313 			if (rl_prof_elem->prof_id_ref)
4314 				rl_prof_elem->prof_id_ref--;
4315 
4316 			/* Remove old profile ID from database */
4317 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
4318 			if (status && status != ICE_ERR_IN_USE)
4319 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
4320 			break;
4321 		}
4322 	if (status == ICE_ERR_IN_USE)
4323 		status = ICE_SUCCESS;
4324 	return status;
4325 }
4326 
4327 /**
4328  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
4329  * @pi: port information structure
4330  * @node: pointer to node structure
4331  * @rl_type: rate limit type min, max, or shared
4332  * @layer_num: layer number where RL profiles are saved
4333  *
4334  * This function configures node element's BW rate limit profile ID of
4335  * type CIR, EIR, or SRL to default. This function needs to be called
4336  * with the scheduler lock held.
4337  */
4338 static enum ice_status
4339 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
4340 			   struct ice_sched_node *node,
4341 			   enum ice_rl_type rl_type, u8 layer_num)
4342 {
4343 	enum ice_status status;
4344 	struct ice_hw *hw;
4345 	u8 profile_type;
4346 	u16 rl_prof_id;
4347 	u16 old_id;
4348 
4349 	hw = pi->hw;
4350 	switch (rl_type) {
4351 	case ICE_MIN_BW:
4352 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
4353 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
4354 		break;
4355 	case ICE_MAX_BW:
4356 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
4357 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
4358 		break;
4359 	case ICE_SHARED_BW:
4360 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
4361 		/* No SRL is configured for default case */
4362 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
4363 		break;
4364 	default:
4365 		return ICE_ERR_PARAM;
4366 	}
4367 	/* Save existing RL prof ID for later clean up */
4368 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
4369 	/* Configure BW scheduling parameters */
4370 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
4371 	if (status)
4372 		return status;
4373 
4374 	/* Remove stale RL profile ID */
4375 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
4376 	    old_id == ICE_SCHED_INVAL_PROF_ID)
4377 		return ICE_SUCCESS;
4378 
4379 	return ice_sched_rm_rl_profile(hw, layer_num, profile_type, old_id);
4380 }
4381 
4382 /**
4383  * ice_sched_set_node_bw - set node's bandwidth
4384  * @pi: port information structure
4385  * @node: tree node
4386  * @rl_type: rate limit type min, max, or shared
4387  * @bw: bandwidth in Kbps - Kilo bits per sec
4388  * @layer_num: layer number
4389  *
4390  * This function adds new profile corresponding to requested BW, configures
4391  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
4392  * ID from local database. The caller needs to hold scheduler lock.
4393  */
4394 enum ice_status
4395 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
4396 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
4397 {
4398 	struct ice_aqc_rl_profile_info *rl_prof_info;
4399 	enum ice_status status = ICE_ERR_PARAM;
4400 	struct ice_hw *hw = pi->hw;
4401 	u16 old_id, rl_prof_id;
4402 
4403 	rl_prof_info = ice_sched_add_rl_profile(hw, rl_type, bw, layer_num);
4404 	if (!rl_prof_info)
4405 		return status;
4406 
4407 	rl_prof_id = LE16_TO_CPU(rl_prof_info->profile.profile_id);
4408 
4409 	/* Save existing RL prof ID for later clean up */
4410 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
4411 	/* Configure BW scheduling parameters */
4412 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
4413 	if (status)
4414 		return status;
4415 
4416 	/* New changes has been applied */
4417 	/* Increment the profile ID reference count */
4418 	rl_prof_info->prof_id_ref++;
4419 
4420 	/* Check for old ID removal */
4421 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
4422 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
4423 		return ICE_SUCCESS;
4424 
4425 	return ice_sched_rm_rl_profile(hw, layer_num,
4426 				       rl_prof_info->profile.flags &
4427 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
4428 }
4429 
4430 /**
4431  * ice_sched_set_node_priority - set node's priority
4432  * @pi: port information structure
4433  * @node: tree node
4434  * @priority: number 0-7 representing priority among siblings
4435  *
4436  * This function sets priority of a node among it's siblings.
4437  */
4438 enum ice_status
4439 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
4440 			    u16 priority)
4441 {
4442 	struct ice_aqc_txsched_elem_data buf;
4443 	struct ice_aqc_txsched_elem *data;
4444 
4445 	buf = node->info;
4446 	data = &buf.data;
4447 
4448 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4449 	data->generic |= ICE_AQC_ELEM_GENERIC_PRIO_M &
4450 			 (priority << ICE_AQC_ELEM_GENERIC_PRIO_S);
4451 
4452 	return ice_sched_update_elem(pi->hw, node, &buf);
4453 }
4454 
4455 /**
4456  * ice_sched_set_node_weight - set node's weight
4457  * @pi: port information structure
4458  * @node: tree node
4459  * @weight: number 1-200 representing weight for WFQ
4460  *
4461  * This function sets weight of the node for WFQ algorithm.
4462  */
4463 enum ice_status
4464 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
4465 {
4466 	struct ice_aqc_txsched_elem_data buf;
4467 	struct ice_aqc_txsched_elem *data;
4468 
4469 	buf = node->info;
4470 	data = &buf.data;
4471 
4472 	data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
4473 			       ICE_AQC_ELEM_VALID_GENERIC;
4474 	data->cir_bw.bw_alloc = CPU_TO_LE16(weight);
4475 	data->eir_bw.bw_alloc = CPU_TO_LE16(weight);
4476 	data->generic |= ICE_AQC_ELEM_GENERIC_SP_M &
4477 			 (0x0 << ICE_AQC_ELEM_GENERIC_SP_S);
4478 
4479 	return ice_sched_update_elem(pi->hw, node, &buf);
4480 }
4481 
4482 /**
4483  * ice_sched_set_node_bw_lmt - set node's BW limit
4484  * @pi: port information structure
4485  * @node: tree node
4486  * @rl_type: rate limit type min, max, or shared
4487  * @bw: bandwidth in Kbps - Kilo bits per sec
4488  *
4489  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
4490  * EIR, or SRL. The caller needs to hold scheduler lock.
4491  *
4492  * NOTE: Caller provides the correct SRL node in case of shared profile
4493  * settings.
4494  */
4495 enum ice_status
4496 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
4497 			  enum ice_rl_type rl_type, u32 bw)
4498 {
4499 	struct ice_hw *hw;
4500 	u8 layer_num;
4501 
4502 	if (!pi)
4503 		return ICE_ERR_PARAM;
4504 	hw = pi->hw;
4505 	/* Remove unused RL profile IDs from HW and SW DB */
4506 	ice_sched_rm_unused_rl_prof(hw);
4507 
4508 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
4509 						node->tx_sched_layer);
4510 	if (layer_num >= hw->num_tx_sched_layers)
4511 		return ICE_ERR_PARAM;
4512 
4513 	if (bw == ICE_SCHED_DFLT_BW)
4514 		return ice_sched_set_node_bw_dflt(pi, node, rl_type, layer_num);
4515 	return ice_sched_set_node_bw(pi, node, rl_type, bw, layer_num);
4516 }
4517 
4518 /**
4519  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
4520  * @pi: port information structure
4521  * @node: pointer to node structure
4522  * @rl_type: rate limit type min, max, or shared
4523  *
4524  * This function configures node element's BW rate limit profile ID of
4525  * type CIR, EIR, or SRL to default. This function needs to be called
4526  * with the scheduler lock held.
4527  */
4528 static enum ice_status
4529 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
4530 			       struct ice_sched_node *node,
4531 			       enum ice_rl_type rl_type)
4532 {
4533 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
4534 					 ICE_SCHED_DFLT_BW);
4535 }
4536 
4537 /**
4538  * ice_sched_validate_srl_node - Check node for SRL applicability
4539  * @node: sched node to configure
4540  * @sel_layer: selected SRL layer
4541  *
4542  * This function checks if the SRL can be applied to a selceted layer node on
4543  * behalf of the requested node (first argument). This function needs to be
4544  * called with scheduler lock held.
4545  */
4546 static enum ice_status
4547 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
4548 {
4549 	/* SRL profiles are not available on all layers. Check if the
4550 	 * SRL profile can be applied to a node above or below the
4551 	 * requested node. SRL configuration is possible only if the
4552 	 * selected layer's node has single child.
4553 	 */
4554 	if (sel_layer == node->tx_sched_layer ||
4555 	    ((sel_layer == node->tx_sched_layer + 1) &&
4556 	    node->num_children == 1) ||
4557 	    ((sel_layer == node->tx_sched_layer - 1) &&
4558 	    (node->parent && node->parent->num_children == 1)))
4559 		return ICE_SUCCESS;
4560 
4561 	return ICE_ERR_CFG;
4562 }
4563 
4564 /**
4565  * ice_sched_save_q_bw - save queue node's BW information
4566  * @q_ctx: queue context structure
4567  * @rl_type: rate limit type min, max, or shared
4568  * @bw: bandwidth in Kbps - Kilo bits per sec
4569  *
4570  * Save BW information of queue type node for post replay use.
4571  */
4572 static enum ice_status
4573 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
4574 {
4575 	switch (rl_type) {
4576 	case ICE_MIN_BW:
4577 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
4578 		break;
4579 	case ICE_MAX_BW:
4580 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
4581 		break;
4582 	case ICE_SHARED_BW:
4583 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
4584 		break;
4585 	default:
4586 		return ICE_ERR_PARAM;
4587 	}
4588 	return ICE_SUCCESS;
4589 }
4590 
4591 /**
4592  * ice_sched_set_q_bw_lmt - sets queue BW limit
4593  * @pi: port information structure
4594  * @vsi_handle: sw VSI handle
4595  * @tc: traffic class
4596  * @q_handle: software queue handle
4597  * @rl_type: min, max, or shared
4598  * @bw: bandwidth in Kbps
4599  *
4600  * This function sets BW limit of queue scheduling node.
4601  */
4602 static enum ice_status
4603 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4604 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
4605 {
4606 	enum ice_status status = ICE_ERR_PARAM;
4607 	struct ice_sched_node *node;
4608 	struct ice_q_ctx *q_ctx;
4609 
4610 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4611 		return ICE_ERR_PARAM;
4612 	ice_acquire_lock(&pi->sched_lock);
4613 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
4614 	if (!q_ctx)
4615 		goto exit_q_bw_lmt;
4616 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4617 	if (!node) {
4618 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
4619 		goto exit_q_bw_lmt;
4620 	}
4621 
4622 	/* Return error if it is not a leaf node */
4623 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
4624 		goto exit_q_bw_lmt;
4625 
4626 	/* SRL bandwidth layer selection */
4627 	if (rl_type == ICE_SHARED_BW) {
4628 		u8 sel_layer; /* selected layer */
4629 
4630 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
4631 							node->tx_sched_layer);
4632 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
4633 			status = ICE_ERR_PARAM;
4634 			goto exit_q_bw_lmt;
4635 		}
4636 		status = ice_sched_validate_srl_node(node, sel_layer);
4637 		if (status)
4638 			goto exit_q_bw_lmt;
4639 	}
4640 
4641 	if (bw == ICE_SCHED_DFLT_BW)
4642 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
4643 	else
4644 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
4645 
4646 	if (!status)
4647 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
4648 
4649 exit_q_bw_lmt:
4650 	ice_release_lock(&pi->sched_lock);
4651 	return status;
4652 }
4653 
4654 /**
4655  * ice_cfg_q_bw_lmt - configure queue BW limit
4656  * @pi: port information structure
4657  * @vsi_handle: sw VSI handle
4658  * @tc: traffic class
4659  * @q_handle: software queue handle
4660  * @rl_type: min, max, or shared
4661  * @bw: bandwidth in Kbps
4662  *
4663  * This function configures BW limit of queue scheduling node.
4664  */
4665 enum ice_status
4666 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4667 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
4668 {
4669 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4670 				      bw);
4671 }
4672 
4673 /**
4674  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
4675  * @pi: port information structure
4676  * @vsi_handle: sw VSI handle
4677  * @tc: traffic class
4678  * @q_handle: software queue handle
4679  * @rl_type: min, max, or shared
4680  *
4681  * This function configures BW default limit of queue scheduling node.
4682  */
4683 enum ice_status
4684 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4685 		      u16 q_handle, enum ice_rl_type rl_type)
4686 {
4687 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4688 				      ICE_SCHED_DFLT_BW);
4689 }
4690 
4691 /**
4692  * ice_sched_save_tc_node_bw - save TC node BW limit
4693  * @pi: port information structure
4694  * @tc: TC number
4695  * @rl_type: min or max
4696  * @bw: bandwidth in Kbps
4697  *
4698  * This function saves the modified values of bandwidth settings for later
4699  * replay purpose (restore) after reset.
4700  */
4701 static enum ice_status
4702 ice_sched_save_tc_node_bw(struct ice_port_info *pi, u8 tc,
4703 			  enum ice_rl_type rl_type, u32 bw)
4704 {
4705 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4706 		return ICE_ERR_PARAM;
4707 	switch (rl_type) {
4708 	case ICE_MIN_BW:
4709 		ice_set_clear_cir_bw(&pi->tc_node_bw_t_info[tc], bw);
4710 		break;
4711 	case ICE_MAX_BW:
4712 		ice_set_clear_eir_bw(&pi->tc_node_bw_t_info[tc], bw);
4713 		break;
4714 	case ICE_SHARED_BW:
4715 		ice_set_clear_shared_bw(&pi->tc_node_bw_t_info[tc], bw);
4716 		break;
4717 	default:
4718 		return ICE_ERR_PARAM;
4719 	}
4720 	return ICE_SUCCESS;
4721 }
4722 
4723 /**
4724  * ice_sched_set_tc_node_bw_lmt - sets TC node BW limit
4725  * @pi: port information structure
4726  * @tc: TC number
4727  * @rl_type: min or max
4728  * @bw: bandwidth in Kbps
4729  *
4730  * This function configures bandwidth limit of TC node.
4731  */
4732 static enum ice_status
4733 ice_sched_set_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
4734 			     enum ice_rl_type rl_type, u32 bw)
4735 {
4736 	enum ice_status status = ICE_ERR_PARAM;
4737 	struct ice_sched_node *tc_node;
4738 
4739 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4740 		return status;
4741 	ice_acquire_lock(&pi->sched_lock);
4742 	tc_node = ice_sched_get_tc_node(pi, tc);
4743 	if (!tc_node)
4744 		goto exit_set_tc_node_bw;
4745 	if (bw == ICE_SCHED_DFLT_BW)
4746 		status = ice_sched_set_node_bw_dflt_lmt(pi, tc_node, rl_type);
4747 	else
4748 		status = ice_sched_set_node_bw_lmt(pi, tc_node, rl_type, bw);
4749 	if (!status)
4750 		status = ice_sched_save_tc_node_bw(pi, tc, rl_type, bw);
4751 
4752 exit_set_tc_node_bw:
4753 	ice_release_lock(&pi->sched_lock);
4754 	return status;
4755 }
4756 
4757 /**
4758  * ice_cfg_tc_node_bw_lmt - configure TC node BW limit
4759  * @pi: port information structure
4760  * @tc: TC number
4761  * @rl_type: min or max
4762  * @bw: bandwidth in Kbps
4763  *
4764  * This function configures BW limit of TC node.
4765  * Note: The minimum guaranteed reservation is done via DCBX.
4766  */
4767 enum ice_status
4768 ice_cfg_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
4769 		       enum ice_rl_type rl_type, u32 bw)
4770 {
4771 	return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, bw);
4772 }
4773 
4774 /**
4775  * ice_cfg_tc_node_bw_dflt_lmt - configure TC node BW default limit
4776  * @pi: port information structure
4777  * @tc: TC number
4778  * @rl_type: min or max
4779  *
4780  * This function configures BW default limit of TC node.
4781  */
4782 enum ice_status
4783 ice_cfg_tc_node_bw_dflt_lmt(struct ice_port_info *pi, u8 tc,
4784 			    enum ice_rl_type rl_type)
4785 {
4786 	return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, ICE_SCHED_DFLT_BW);
4787 }
4788 
4789 /**
4790  * ice_sched_save_tc_node_bw_alloc - save TC node's BW alloc information
4791  * @pi: port information structure
4792  * @tc: traffic class
4793  * @rl_type: rate limit type min or max
4794  * @bw_alloc: Bandwidth allocation information
4795  *
4796  * Save BW alloc information of VSI type node for post replay use.
4797  */
4798 static enum ice_status
4799 ice_sched_save_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4800 				enum ice_rl_type rl_type, u16 bw_alloc)
4801 {
4802 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4803 		return ICE_ERR_PARAM;
4804 	switch (rl_type) {
4805 	case ICE_MIN_BW:
4806 		ice_set_clear_cir_bw_alloc(&pi->tc_node_bw_t_info[tc],
4807 					   bw_alloc);
4808 		break;
4809 	case ICE_MAX_BW:
4810 		ice_set_clear_eir_bw_alloc(&pi->tc_node_bw_t_info[tc],
4811 					   bw_alloc);
4812 		break;
4813 	default:
4814 		return ICE_ERR_PARAM;
4815 	}
4816 	return ICE_SUCCESS;
4817 }
4818 
4819 /**
4820  * ice_sched_set_tc_node_bw_alloc - set TC node BW alloc
4821  * @pi: port information structure
4822  * @tc: TC number
4823  * @rl_type: min or max
4824  * @bw_alloc: bandwidth alloc
4825  *
4826  * This function configures bandwidth alloc of TC node, also saves the
4827  * changed settings for replay purpose, and return success if it succeeds
4828  * in modifying bandwidth alloc setting.
4829  */
4830 static enum ice_status
4831 ice_sched_set_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4832 			       enum ice_rl_type rl_type, u8 bw_alloc)
4833 {
4834 	enum ice_status status = ICE_ERR_PARAM;
4835 	struct ice_sched_node *tc_node;
4836 
4837 	if (tc >= ICE_MAX_TRAFFIC_CLASS)
4838 		return status;
4839 	ice_acquire_lock(&pi->sched_lock);
4840 	tc_node = ice_sched_get_tc_node(pi, tc);
4841 	if (!tc_node)
4842 		goto exit_set_tc_node_bw_alloc;
4843 	status = ice_sched_cfg_node_bw_alloc(pi->hw, tc_node, rl_type,
4844 					     bw_alloc);
4845 	if (status)
4846 		goto exit_set_tc_node_bw_alloc;
4847 	status = ice_sched_save_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
4848 
4849 exit_set_tc_node_bw_alloc:
4850 	ice_release_lock(&pi->sched_lock);
4851 	return status;
4852 }
4853 
4854 /**
4855  * ice_cfg_tc_node_bw_alloc - configure TC node BW alloc
4856  * @pi: port information structure
4857  * @tc: TC number
4858  * @rl_type: min or max
4859  * @bw_alloc: bandwidth alloc
4860  *
4861  * This function configures BW limit of TC node.
4862  * Note: The minimum guaranteed reservation is done via DCBX.
4863  */
4864 enum ice_status
4865 ice_cfg_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4866 			 enum ice_rl_type rl_type, u8 bw_alloc)
4867 {
4868 	return ice_sched_set_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
4869 }
4870 
4871 /**
4872  * ice_sched_set_agg_bw_dflt_lmt - set aggregator node's BW limit to default
4873  * @pi: port information structure
4874  * @vsi_handle: software VSI handle
4875  *
4876  * This function retrieves the aggregator ID based on VSI ID and TC,
4877  * and sets node's BW limit to default. This function needs to be
4878  * called with the scheduler lock held.
4879  */
4880 enum ice_status
4881 ice_sched_set_agg_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle)
4882 {
4883 	struct ice_vsi_ctx *vsi_ctx;
4884 	enum ice_status status = ICE_SUCCESS;
4885 	u8 tc;
4886 
4887 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4888 		return ICE_ERR_PARAM;
4889 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4890 	if (!vsi_ctx)
4891 		return ICE_ERR_PARAM;
4892 
4893 	ice_for_each_traffic_class(tc) {
4894 		struct ice_sched_node *node;
4895 
4896 		node = vsi_ctx->sched.ag_node[tc];
4897 		if (!node)
4898 			continue;
4899 
4900 		/* Set min profile to default */
4901 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MIN_BW);
4902 		if (status)
4903 			break;
4904 
4905 		/* Set max profile to default */
4906 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MAX_BW);
4907 		if (status)
4908 			break;
4909 
4910 		/* Remove shared profile, if there is one */
4911 		status = ice_sched_set_node_bw_dflt_lmt(pi, node,
4912 							ICE_SHARED_BW);
4913 		if (status)
4914 			break;
4915 	}
4916 
4917 	return status;
4918 }
4919 
4920 /**
4921  * ice_sched_get_node_by_id_type - get node from ID type
4922  * @pi: port information structure
4923  * @id: identifier
4924  * @agg_type: type of aggregator
4925  * @tc: traffic class
4926  *
4927  * This function returns node identified by ID of type aggregator, and
4928  * based on traffic class (TC). This function needs to be called with
4929  * the scheduler lock held.
4930  */
4931 static struct ice_sched_node *
4932 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
4933 			      enum ice_agg_type agg_type, u8 tc)
4934 {
4935 	struct ice_sched_node *node = NULL;
4936 
4937 	switch (agg_type) {
4938 	case ICE_AGG_TYPE_VSI: {
4939 		struct ice_vsi_ctx *vsi_ctx;
4940 		u16 vsi_handle = (u16)id;
4941 
4942 		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4943 			break;
4944 		/* Get sched_vsi_info */
4945 		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4946 		if (!vsi_ctx)
4947 			break;
4948 		node = vsi_ctx->sched.vsi_node[tc];
4949 		break;
4950 	}
4951 
4952 	case ICE_AGG_TYPE_AGG: {
4953 		struct ice_sched_node *tc_node;
4954 
4955 		tc_node = ice_sched_get_tc_node(pi, tc);
4956 		if (tc_node)
4957 			node = ice_sched_get_agg_node(pi, tc_node, id);
4958 		break;
4959 	}
4960 
4961 	case ICE_AGG_TYPE_Q:
4962 		/* The current implementation allows single queue to modify */
4963 		node = ice_sched_find_node_by_teid(pi->root, id);
4964 		break;
4965 
4966 	case ICE_AGG_TYPE_QG: {
4967 		struct ice_sched_node *child_node;
4968 
4969 		/* The current implementation allows single qg to modify */
4970 		child_node = ice_sched_find_node_by_teid(pi->root, id);
4971 		if (!child_node)
4972 			break;
4973 		node = child_node->parent;
4974 		break;
4975 	}
4976 
4977 	default:
4978 		break;
4979 	}
4980 
4981 	return node;
4982 }
4983 
4984 /**
4985  * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
4986  * @pi: port information structure
4987  * @id: ID (software VSI handle or AGG ID)
4988  * @agg_type: aggregator type (VSI or AGG type node)
4989  * @tc: traffic class
4990  * @rl_type: min or max
4991  * @bw: bandwidth in Kbps
4992  *
4993  * This function sets BW limit of VSI or Aggregator scheduling node
4994  * based on TC information from passed in argument BW.
4995  */
4996 enum ice_status
4997 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
4998 				 enum ice_agg_type agg_type, u8 tc,
4999 				 enum ice_rl_type rl_type, u32 bw)
5000 {
5001 	enum ice_status status = ICE_ERR_PARAM;
5002 	struct ice_sched_node *node;
5003 
5004 	if (!pi)
5005 		return status;
5006 
5007 	if (rl_type == ICE_UNKNOWN_BW)
5008 		return status;
5009 
5010 	ice_acquire_lock(&pi->sched_lock);
5011 	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
5012 	if (!node) {
5013 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
5014 		goto exit_set_node_bw_lmt_per_tc;
5015 	}
5016 	if (bw == ICE_SCHED_DFLT_BW)
5017 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
5018 	else
5019 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
5020 
5021 exit_set_node_bw_lmt_per_tc:
5022 	ice_release_lock(&pi->sched_lock);
5023 	return status;
5024 }
5025 
5026 /**
5027  * ice_sched_validate_vsi_srl_node - validate VSI SRL node
5028  * @pi: port information structure
5029  * @vsi_handle: software VSI handle
5030  *
5031  * This function validates SRL node of the VSI node if available SRL layer is
5032  * different than the VSI node layer on all TC(s).This function needs to be
5033  * called with scheduler lock held.
5034  */
5035 static enum ice_status
5036 ice_sched_validate_vsi_srl_node(struct ice_port_info *pi, u16 vsi_handle)
5037 {
5038 	u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
5039 	u8 tc;
5040 
5041 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5042 		return ICE_ERR_PARAM;
5043 
5044 	/* Return success if no nodes are present across TC */
5045 	ice_for_each_traffic_class(tc) {
5046 		struct ice_sched_node *tc_node, *vsi_node;
5047 		enum ice_rl_type rl_type = ICE_SHARED_BW;
5048 		enum ice_status status;
5049 
5050 		tc_node = ice_sched_get_tc_node(pi, tc);
5051 		if (!tc_node)
5052 			continue;
5053 
5054 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5055 		if (!vsi_node)
5056 			continue;
5057 
5058 		/* SRL bandwidth layer selection */
5059 		if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
5060 			u8 node_layer = vsi_node->tx_sched_layer;
5061 			u8 layer_num;
5062 
5063 			layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5064 								node_layer);
5065 			if (layer_num >= pi->hw->num_tx_sched_layers)
5066 				return ICE_ERR_PARAM;
5067 			sel_layer = layer_num;
5068 		}
5069 
5070 		status = ice_sched_validate_srl_node(vsi_node, sel_layer);
5071 		if (status)
5072 			return status;
5073 	}
5074 	return ICE_SUCCESS;
5075 }
5076 
5077 /**
5078  * ice_sched_set_save_vsi_srl_node_bw - set VSI shared limit values
5079  * @pi: port information structure
5080  * @vsi_handle: software VSI handle
5081  * @tc: traffic class
5082  * @srl_node: sched node to configure
5083  * @rl_type: rate limit type minimum, maximum, or shared
5084  * @bw: minimum, maximum, or shared bandwidth in Kbps
5085  *
5086  * Configure shared rate limiter(SRL) of VSI type nodes across given traffic
5087  * class, and saves those value for later use for replaying purposes. The
5088  * caller holds the scheduler lock.
5089  */
5090 static enum ice_status
5091 ice_sched_set_save_vsi_srl_node_bw(struct ice_port_info *pi, u16 vsi_handle,
5092 				   u8 tc, struct ice_sched_node *srl_node,
5093 				   enum ice_rl_type rl_type, u32 bw)
5094 {
5095 	enum ice_status status;
5096 
5097 	if (bw == ICE_SCHED_DFLT_BW) {
5098 		status = ice_sched_set_node_bw_dflt_lmt(pi, srl_node, rl_type);
5099 	} else {
5100 		status = ice_sched_set_node_bw_lmt(pi, srl_node, rl_type, bw);
5101 		if (status)
5102 			return status;
5103 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
5104 	}
5105 	return status;
5106 }
5107 
5108 /**
5109  * ice_sched_set_vsi_node_srl_per_tc - set VSI node BW shared limit for tc
5110  * @pi: port information structure
5111  * @vsi_handle: software VSI handle
5112  * @tc: traffic class
5113  * @min_bw: minimum bandwidth in Kbps
5114  * @max_bw: maximum bandwidth in Kbps
5115  * @shared_bw: shared bandwidth in Kbps
5116  *
5117  * Configure shared rate limiter(SRL) of  VSI type nodes across requested
5118  * traffic class for VSI matching handle. When BW value of ICE_SCHED_DFLT_BW
5119  * is passed, it removes the corresponding bw from the node. The caller
5120  * holds scheduler lock.
5121  */
5122 static enum ice_status
5123 ice_sched_set_vsi_node_srl_per_tc(struct ice_port_info *pi, u16 vsi_handle,
5124 				  u8 tc, u32 min_bw, u32 max_bw, u32 shared_bw)
5125 {
5126 	struct ice_sched_node *tc_node, *vsi_node, *cfg_node;
5127 	enum ice_status status;
5128 	u8 layer_num;
5129 
5130 	tc_node = ice_sched_get_tc_node(pi, tc);
5131 	if (!tc_node)
5132 		return ICE_ERR_CFG;
5133 
5134 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5135 	if (!vsi_node)
5136 		return ICE_ERR_CFG;
5137 
5138 	layer_num = ice_sched_get_rl_prof_layer(pi, ICE_SHARED_BW,
5139 						vsi_node->tx_sched_layer);
5140 	if (layer_num >= pi->hw->num_tx_sched_layers)
5141 		return ICE_ERR_PARAM;
5142 
5143 	/* SRL node may be different */
5144 	cfg_node = ice_sched_get_srl_node(vsi_node, layer_num);
5145 	if (!cfg_node)
5146 		return ICE_ERR_CFG;
5147 
5148 	status = ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc,
5149 						    cfg_node, ICE_MIN_BW,
5150 						    min_bw);
5151 	if (status)
5152 		return status;
5153 
5154 	status = ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc,
5155 						    cfg_node, ICE_MAX_BW,
5156 						    max_bw);
5157 	if (status)
5158 		return status;
5159 
5160 	return ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc, cfg_node,
5161 						  ICE_SHARED_BW, shared_bw);
5162 }
5163 
5164 /**
5165  * ice_sched_set_vsi_bw_shared_lmt - set VSI BW shared limit
5166  * @pi: port information structure
5167  * @vsi_handle: software VSI handle
5168  * @min_bw: minimum bandwidth in Kbps
5169  * @max_bw: maximum bandwidth in Kbps
5170  * @shared_bw: shared bandwidth in Kbps
5171  *
5172  * Configure shared rate limiter(SRL) of all VSI type nodes across all traffic
5173  * classes for VSI matching handle. When BW value of ICE_SCHED_DFLT_BW is
5174  * passed, it removes those value(s) from the node.
5175  */
5176 enum ice_status
5177 ice_sched_set_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle,
5178 				u32 min_bw, u32 max_bw, u32 shared_bw)
5179 {
5180 	enum ice_status status = ICE_SUCCESS;
5181 	u8 tc;
5182 
5183 	if (!pi)
5184 		return ICE_ERR_PARAM;
5185 
5186 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5187 		return ICE_ERR_PARAM;
5188 
5189 	ice_acquire_lock(&pi->sched_lock);
5190 	status = ice_sched_validate_vsi_srl_node(pi, vsi_handle);
5191 	if (status)
5192 		goto exit_set_vsi_bw_shared_lmt;
5193 	/* Return success if no nodes are present across TC */
5194 	ice_for_each_traffic_class(tc) {
5195 		struct ice_sched_node *tc_node, *vsi_node;
5196 
5197 		tc_node = ice_sched_get_tc_node(pi, tc);
5198 		if (!tc_node)
5199 			continue;
5200 
5201 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5202 		if (!vsi_node)
5203 			continue;
5204 
5205 		status = ice_sched_set_vsi_node_srl_per_tc(pi, vsi_handle, tc,
5206 							   min_bw, max_bw,
5207 							   shared_bw);
5208 		if (status)
5209 			break;
5210 	}
5211 
5212 exit_set_vsi_bw_shared_lmt:
5213 	ice_release_lock(&pi->sched_lock);
5214 	return status;
5215 }
5216 
5217 /**
5218  * ice_sched_validate_agg_srl_node - validate AGG SRL node
5219  * @pi: port information structure
5220  * @agg_id: aggregator ID
5221  *
5222  * This function validates SRL node of the AGG node if available SRL layer is
5223  * different than the AGG node layer on all TC(s).This function needs to be
5224  * called with scheduler lock held.
5225  */
5226 static enum ice_status
5227 ice_sched_validate_agg_srl_node(struct ice_port_info *pi, u32 agg_id)
5228 {
5229 	u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
5230 	struct ice_sched_agg_info *agg_info;
5231 	bool agg_id_present = false;
5232 	enum ice_status status = ICE_SUCCESS;
5233 	u8 tc;
5234 
5235 	LIST_FOR_EACH_ENTRY(agg_info, &pi->hw->agg_list, ice_sched_agg_info,
5236 			    list_entry)
5237 		if (agg_info->agg_id == agg_id) {
5238 			agg_id_present = true;
5239 			break;
5240 		}
5241 	if (!agg_id_present)
5242 		return ICE_ERR_PARAM;
5243 	/* Return success if no nodes are present across TC */
5244 	ice_for_each_traffic_class(tc) {
5245 		struct ice_sched_node *tc_node, *agg_node;
5246 		enum ice_rl_type rl_type = ICE_SHARED_BW;
5247 
5248 		tc_node = ice_sched_get_tc_node(pi, tc);
5249 		if (!tc_node)
5250 			continue;
5251 
5252 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5253 		if (!agg_node)
5254 			continue;
5255 		/* SRL bandwidth layer selection */
5256 		if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
5257 			u8 node_layer = agg_node->tx_sched_layer;
5258 			u8 layer_num;
5259 
5260 			layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5261 								node_layer);
5262 			if (layer_num >= pi->hw->num_tx_sched_layers)
5263 				return ICE_ERR_PARAM;
5264 			sel_layer = layer_num;
5265 		}
5266 
5267 		status = ice_sched_validate_srl_node(agg_node, sel_layer);
5268 		if (status)
5269 			break;
5270 	}
5271 	return status;
5272 }
5273 
5274 /**
5275  * ice_sched_validate_agg_id - Validate aggregator id
5276  * @pi: port information structure
5277  * @agg_id: aggregator ID
5278  *
5279  * This function validates aggregator id. Caller holds the scheduler lock.
5280  */
5281 static enum ice_status
5282 ice_sched_validate_agg_id(struct ice_port_info *pi, u32 agg_id)
5283 {
5284 	struct ice_sched_agg_info *agg_info;
5285 	struct ice_sched_agg_info *tmp;
5286 	bool agg_id_present = false;
5287 	enum ice_status status;
5288 
5289 	status = ice_sched_validate_agg_srl_node(pi, agg_id);
5290 	if (status)
5291 		return status;
5292 
5293 	LIST_FOR_EACH_ENTRY_SAFE(agg_info, tmp, &pi->hw->agg_list,
5294 				 ice_sched_agg_info, list_entry)
5295 		if (agg_info->agg_id == agg_id) {
5296 			agg_id_present = true;
5297 			break;
5298 		}
5299 
5300 	if (!agg_id_present)
5301 		return ICE_ERR_PARAM;
5302 
5303 	return ICE_SUCCESS;
5304 }
5305 
5306 /**
5307  * ice_sched_set_save_agg_srl_node_bw - set aggregator shared limit values
5308  * @pi: port information structure
5309  * @agg_id: aggregator ID
5310  * @tc: traffic class
5311  * @srl_node: sched node to configure
5312  * @rl_type: rate limit type minimum, maximum, or shared
5313  * @bw: minimum, maximum, or shared bandwidth in Kbps
5314  *
5315  * Configure shared rate limiter(SRL) of aggregator type nodes across
5316  * requested traffic class, and saves those value for later use for
5317  * replaying purposes. The caller holds the scheduler lock.
5318  */
5319 static enum ice_status
5320 ice_sched_set_save_agg_srl_node_bw(struct ice_port_info *pi, u32 agg_id, u8 tc,
5321 				   struct ice_sched_node *srl_node,
5322 				   enum ice_rl_type rl_type, u32 bw)
5323 {
5324 	enum ice_status status;
5325 
5326 	if (bw == ICE_SCHED_DFLT_BW) {
5327 		status = ice_sched_set_node_bw_dflt_lmt(pi, srl_node, rl_type);
5328 	} else {
5329 		status = ice_sched_set_node_bw_lmt(pi, srl_node, rl_type, bw);
5330 		if (status)
5331 			return status;
5332 		status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
5333 	}
5334 	return status;
5335 }
5336 
5337 /**
5338  * ice_sched_set_agg_node_srl_per_tc - set aggregator SRL per tc
5339  * @pi: port information structure
5340  * @agg_id: aggregator ID
5341  * @tc: traffic class
5342  * @min_bw: minimum bandwidth in Kbps
5343  * @max_bw: maximum bandwidth in Kbps
5344  * @shared_bw: shared bandwidth in Kbps
5345  *
5346  * This function configures the shared rate limiter(SRL) of aggregator type
5347  * node for a given traffic class for aggregator matching agg_id. When BW
5348  * value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the node. Caller
5349  * holds the scheduler lock.
5350  */
5351 static enum ice_status
5352 ice_sched_set_agg_node_srl_per_tc(struct ice_port_info *pi, u32 agg_id,
5353 				  u8 tc, u32 min_bw, u32 max_bw, u32 shared_bw)
5354 {
5355 	struct ice_sched_node *tc_node, *agg_node, *cfg_node;
5356 	enum ice_rl_type rl_type = ICE_SHARED_BW;
5357 	enum ice_status status = ICE_ERR_CFG;
5358 	u8 layer_num;
5359 
5360 	tc_node = ice_sched_get_tc_node(pi, tc);
5361 	if (!tc_node)
5362 		return ICE_ERR_CFG;
5363 
5364 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5365 	if (!agg_node)
5366 		return ICE_ERR_CFG;
5367 
5368 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5369 						agg_node->tx_sched_layer);
5370 	if (layer_num >= pi->hw->num_tx_sched_layers)
5371 		return ICE_ERR_PARAM;
5372 
5373 	/* SRL node may be different */
5374 	cfg_node = ice_sched_get_srl_node(agg_node, layer_num);
5375 	if (!cfg_node)
5376 		return ICE_ERR_CFG;
5377 
5378 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5379 						    ICE_MIN_BW, min_bw);
5380 	if (status)
5381 		return status;
5382 
5383 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5384 						    ICE_MAX_BW, max_bw);
5385 	if (status)
5386 		return status;
5387 
5388 	status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5389 						    ICE_SHARED_BW, shared_bw);
5390 	return status;
5391 }
5392 
5393 /**
5394  * ice_sched_set_agg_bw_shared_lmt - set aggregator BW shared limit
5395  * @pi: port information structure
5396  * @agg_id: aggregator ID
5397  * @min_bw: minimum bandwidth in Kbps
5398  * @max_bw: maximum bandwidth in Kbps
5399  * @shared_bw: shared bandwidth in Kbps
5400  *
5401  * This function configures the shared rate limiter(SRL) of all aggregator type
5402  * nodes across all traffic classes for aggregator matching agg_id. When
5403  * BW value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the
5404  * node(s).
5405  */
5406 enum ice_status
5407 ice_sched_set_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id,
5408 				u32 min_bw, u32 max_bw, u32 shared_bw)
5409 {
5410 	enum ice_status status;
5411 	u8 tc;
5412 
5413 	if (!pi)
5414 		return ICE_ERR_PARAM;
5415 
5416 	ice_acquire_lock(&pi->sched_lock);
5417 	status = ice_sched_validate_agg_id(pi, agg_id);
5418 	if (status)
5419 		goto exit_agg_bw_shared_lmt;
5420 
5421 	/* Return success if no nodes are present across TC */
5422 	ice_for_each_traffic_class(tc) {
5423 		struct ice_sched_node *tc_node, *agg_node;
5424 
5425 		tc_node = ice_sched_get_tc_node(pi, tc);
5426 		if (!tc_node)
5427 			continue;
5428 
5429 		agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5430 		if (!agg_node)
5431 			continue;
5432 
5433 		status = ice_sched_set_agg_node_srl_per_tc(pi, agg_id, tc,
5434 							   min_bw, max_bw,
5435 							   shared_bw);
5436 		if (status)
5437 			break;
5438 	}
5439 
5440 exit_agg_bw_shared_lmt:
5441 	ice_release_lock(&pi->sched_lock);
5442 	return status;
5443 }
5444 
5445 /**
5446  * ice_sched_set_agg_bw_shared_lmt_per_tc - set aggregator BW shared lmt per tc
5447  * @pi: port information structure
5448  * @agg_id: aggregator ID
5449  * @tc: traffic class
5450  * @min_bw: minimum bandwidth in Kbps
5451  * @max_bw: maximum bandwidth in Kbps
5452  * @shared_bw: shared bandwidth in Kbps
5453  *
5454  * This function configures the shared rate limiter(SRL) of aggregator type
5455  * node for a given traffic class for aggregator matching agg_id. When BW
5456  * value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the node.
5457  */
5458 enum ice_status
5459 ice_sched_set_agg_bw_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id,
5460 				       u8 tc, u32 min_bw, u32 max_bw,
5461 				       u32 shared_bw)
5462 {
5463 	enum ice_status status;
5464 
5465 	if (!pi)
5466 		return ICE_ERR_PARAM;
5467 	ice_acquire_lock(&pi->sched_lock);
5468 	status = ice_sched_validate_agg_id(pi, agg_id);
5469 	if (status)
5470 		goto exit_agg_bw_shared_lmt_per_tc;
5471 
5472 	status = ice_sched_set_agg_node_srl_per_tc(pi, agg_id, tc, min_bw,
5473 						   max_bw, shared_bw);
5474 
5475 exit_agg_bw_shared_lmt_per_tc:
5476 	ice_release_lock(&pi->sched_lock);
5477 	return status;
5478 }
5479 
5480 /**
5481  * ice_sched_cfg_sibl_node_prio - configure node sibling priority
5482  * @pi: port information structure
5483  * @node: sched node to configure
5484  * @priority: sibling priority
5485  *
5486  * This function configures node element's sibling priority only. This
5487  * function needs to be called with scheduler lock held.
5488  */
5489 enum ice_status
5490 ice_sched_cfg_sibl_node_prio(struct ice_port_info *pi,
5491 			     struct ice_sched_node *node, u8 priority)
5492 {
5493 	struct ice_aqc_txsched_elem_data buf;
5494 	struct ice_aqc_txsched_elem *data;
5495 	struct ice_hw *hw = pi->hw;
5496 	enum ice_status status;
5497 
5498 	if (!hw)
5499 		return ICE_ERR_PARAM;
5500 	buf = node->info;
5501 	data = &buf.data;
5502 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
5503 	priority = (priority << ICE_AQC_ELEM_GENERIC_PRIO_S) &
5504 		   ICE_AQC_ELEM_GENERIC_PRIO_M;
5505 	data->generic &= ~ICE_AQC_ELEM_GENERIC_PRIO_M;
5506 	data->generic |= priority;
5507 
5508 	/* Configure element */
5509 	status = ice_sched_update_elem(hw, node, &buf);
5510 	return status;
5511 }
5512 
5513 /**
5514  * ice_cfg_rl_burst_size - Set burst size value
5515  * @hw: pointer to the HW struct
5516  * @bytes: burst size in bytes
5517  *
5518  * This function configures/set the burst size to requested new value. The new
5519  * burst size value is used for future rate limit calls. It doesn't change the
5520  * existing or previously created RL profiles.
5521  */
5522 enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
5523 {
5524 	u16 burst_size_to_prog;
5525 
5526 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
5527 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
5528 		return ICE_ERR_PARAM;
5529 	if (ice_round_to_num(bytes, 64) <=
5530 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
5531 		/* 64 byte granularity case */
5532 		/* Disable MSB granularity bit */
5533 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
5534 		/* round number to nearest 64 byte granularity */
5535 		bytes = ice_round_to_num(bytes, 64);
5536 		/* The value is in 64 byte chunks */
5537 		burst_size_to_prog |= (u16)(bytes / 64);
5538 	} else {
5539 		/* k bytes granularity case */
5540 		/* Enable MSB granularity bit */
5541 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
5542 		/* round number to nearest 1024 granularity */
5543 		bytes = ice_round_to_num(bytes, 1024);
5544 		/* check rounding doesn't go beyond allowed */
5545 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
5546 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
5547 		/* The value is in k bytes */
5548 		burst_size_to_prog |= (u16)(bytes / 1024);
5549 	}
5550 	hw->max_burst_size = burst_size_to_prog;
5551 	return ICE_SUCCESS;
5552 }
5553 
5554 /**
5555  * ice_sched_replay_node_prio - re-configure node priority
5556  * @hw: pointer to the HW struct
5557  * @node: sched node to configure
5558  * @priority: priority value
5559  *
5560  * This function configures node element's priority value. It
5561  * needs to be called with scheduler lock held.
5562  */
5563 static enum ice_status
5564 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
5565 			   u8 priority)
5566 {
5567 	struct ice_aqc_txsched_elem_data buf;
5568 	struct ice_aqc_txsched_elem *data;
5569 	enum ice_status status;
5570 
5571 	buf = node->info;
5572 	data = &buf.data;
5573 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
5574 	data->generic = priority;
5575 
5576 	/* Configure element */
5577 	status = ice_sched_update_elem(hw, node, &buf);
5578 	return status;
5579 }
5580 
5581 /**
5582  * ice_sched_replay_node_bw - replay node(s) BW
5583  * @hw: pointer to the HW struct
5584  * @node: sched node to configure
5585  * @bw_t_info: BW type information
5586  *
5587  * This function restores node's BW from bw_t_info. The caller needs
5588  * to hold the scheduler lock.
5589  */
5590 static enum ice_status
5591 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
5592 			 struct ice_bw_type_info *bw_t_info)
5593 {
5594 	struct ice_port_info *pi = hw->port_info;
5595 	enum ice_status status = ICE_ERR_PARAM;
5596 	u16 bw_alloc;
5597 
5598 	if (!node)
5599 		return status;
5600 	if (!ice_is_any_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
5601 		return ICE_SUCCESS;
5602 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_PRIO)) {
5603 		status = ice_sched_replay_node_prio(hw, node,
5604 						    bw_t_info->generic);
5605 		if (status)
5606 			return status;
5607 	}
5608 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR)) {
5609 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
5610 						   bw_t_info->cir_bw.bw);
5611 		if (status)
5612 			return status;
5613 	}
5614 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR_WT)) {
5615 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
5616 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
5617 						     bw_alloc);
5618 		if (status)
5619 			return status;
5620 	}
5621 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR)) {
5622 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
5623 						   bw_t_info->eir_bw.bw);
5624 		if (status)
5625 			return status;
5626 	}
5627 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR_WT)) {
5628 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
5629 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
5630 						     bw_alloc);
5631 		if (status)
5632 			return status;
5633 	}
5634 	if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_SHARED))
5635 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
5636 						   bw_t_info->shared_bw);
5637 	return status;
5638 }
5639 
5640 /**
5641  * ice_sched_replay_agg_bw - replay aggregator node(s) BW
5642  * @hw: pointer to the HW struct
5643  * @agg_info: aggregator data structure
5644  *
5645  * This function re-creates aggregator type nodes. The caller needs to hold
5646  * the scheduler lock.
5647  */
5648 static enum ice_status
5649 ice_sched_replay_agg_bw(struct ice_hw *hw, struct ice_sched_agg_info *agg_info)
5650 {
5651 	struct ice_sched_node *tc_node, *agg_node;
5652 	enum ice_status status = ICE_SUCCESS;
5653 	u8 tc;
5654 
5655 	if (!agg_info)
5656 		return ICE_ERR_PARAM;
5657 	ice_for_each_traffic_class(tc) {
5658 		if (!ice_is_any_bit_set(agg_info->bw_t_info[tc].bw_t_bitmap,
5659 					ICE_BW_TYPE_CNT))
5660 			continue;
5661 		tc_node = ice_sched_get_tc_node(hw->port_info, tc);
5662 		if (!tc_node) {
5663 			status = ICE_ERR_PARAM;
5664 			break;
5665 		}
5666 		agg_node = ice_sched_get_agg_node(hw->port_info, tc_node,
5667 						  agg_info->agg_id);
5668 		if (!agg_node) {
5669 			status = ICE_ERR_PARAM;
5670 			break;
5671 		}
5672 		status = ice_sched_replay_node_bw(hw, agg_node,
5673 						  &agg_info->bw_t_info[tc]);
5674 		if (status)
5675 			break;
5676 	}
5677 	return status;
5678 }
5679 
5680 /**
5681  * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
5682  * @pi: port info struct
5683  * @tc_bitmap: 8 bits TC bitmap to check
5684  * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
5685  *
5686  * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
5687  * may be missing, it returns enabled TCs. This function needs to be called with
5688  * scheduler lock held.
5689  */
5690 static void
5691 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, ice_bitmap_t *tc_bitmap,
5692 			    ice_bitmap_t *ena_tc_bitmap)
5693 {
5694 	u8 tc;
5695 
5696 	/* Some TC(s) may be missing after reset, adjust for replay */
5697 	ice_for_each_traffic_class(tc)
5698 		if (ice_is_tc_ena(*tc_bitmap, tc) &&
5699 		    (ice_sched_get_tc_node(pi, tc)))
5700 			ice_set_bit(tc, ena_tc_bitmap);
5701 }
5702 
5703 /**
5704  * ice_sched_replay_agg - recreate aggregator node(s)
5705  * @hw: pointer to the HW struct
5706  *
5707  * This function recreate aggregator type nodes which are not replayed earlier.
5708  * It also replay aggregator BW information. These aggregator nodes are not
5709  * associated with VSI type node yet.
5710  */
5711 void ice_sched_replay_agg(struct ice_hw *hw)
5712 {
5713 	struct ice_port_info *pi = hw->port_info;
5714 	struct ice_sched_agg_info *agg_info;
5715 
5716 	ice_acquire_lock(&pi->sched_lock);
5717 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
5718 			    list_entry)
5719 		/* replay aggregator (re-create aggregator node) */
5720 		if (!ice_cmp_bitmap(agg_info->tc_bitmap,
5721 				    agg_info->replay_tc_bitmap,
5722 				    ICE_MAX_TRAFFIC_CLASS)) {
5723 			ice_declare_bitmap(replay_bitmap,
5724 					   ICE_MAX_TRAFFIC_CLASS);
5725 			enum ice_status status;
5726 
5727 			ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5728 			ice_sched_get_ena_tc_bitmap(pi,
5729 						    agg_info->replay_tc_bitmap,
5730 						    replay_bitmap);
5731 			status = ice_sched_cfg_agg(hw->port_info,
5732 						   agg_info->agg_id,
5733 						   ICE_AGG_TYPE_AGG,
5734 						   replay_bitmap);
5735 			if (status) {
5736 				ice_info(hw, "Replay agg id[%d] failed\n",
5737 					 agg_info->agg_id);
5738 				/* Move on to next one */
5739 				continue;
5740 			}
5741 			/* Replay aggregator node BW (restore aggregator BW) */
5742 			status = ice_sched_replay_agg_bw(hw, agg_info);
5743 			if (status)
5744 				ice_info(hw, "Replay agg bw [id=%d] failed\n",
5745 					 agg_info->agg_id);
5746 		}
5747 	ice_release_lock(&pi->sched_lock);
5748 }
5749 
5750 /**
5751  * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
5752  * @hw: pointer to the HW struct
5753  *
5754  * This function initialize aggregator(s) TC bitmap to zero. A required
5755  * preinit step for replaying aggregators.
5756  */
5757 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
5758 {
5759 	struct ice_port_info *pi = hw->port_info;
5760 	struct ice_sched_agg_info *agg_info;
5761 
5762 	ice_acquire_lock(&pi->sched_lock);
5763 	LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
5764 			    list_entry) {
5765 		struct ice_sched_agg_vsi_info *agg_vsi_info;
5766 
5767 		agg_info->tc_bitmap[0] = 0;
5768 		LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
5769 				    ice_sched_agg_vsi_info, list_entry)
5770 			agg_vsi_info->tc_bitmap[0] = 0;
5771 	}
5772 	ice_release_lock(&pi->sched_lock);
5773 }
5774 
5775 /**
5776  * ice_sched_replay_root_node_bw - replay root node BW
5777  * @pi: port information structure
5778  *
5779  * Replay root node BW settings.
5780  */
5781 enum ice_status ice_sched_replay_root_node_bw(struct ice_port_info *pi)
5782 {
5783 	enum ice_status status = ICE_SUCCESS;
5784 
5785 	if (!pi->hw)
5786 		return ICE_ERR_PARAM;
5787 	ice_acquire_lock(&pi->sched_lock);
5788 
5789 	status = ice_sched_replay_node_bw(pi->hw, pi->root,
5790 					  &pi->root_node_bw_t_info);
5791 	ice_release_lock(&pi->sched_lock);
5792 	return status;
5793 }
5794 
5795 /**
5796  * ice_sched_replay_tc_node_bw - replay TC node(s) BW
5797  * @pi: port information structure
5798  *
5799  * This function replay TC nodes.
5800  */
5801 enum ice_status ice_sched_replay_tc_node_bw(struct ice_port_info *pi)
5802 {
5803 	enum ice_status status = ICE_SUCCESS;
5804 	u8 tc;
5805 
5806 	if (!pi->hw)
5807 		return ICE_ERR_PARAM;
5808 	ice_acquire_lock(&pi->sched_lock);
5809 	ice_for_each_traffic_class(tc) {
5810 		struct ice_sched_node *tc_node;
5811 
5812 		tc_node = ice_sched_get_tc_node(pi, tc);
5813 		if (!tc_node)
5814 			continue; /* TC not present */
5815 		status = ice_sched_replay_node_bw(pi->hw, tc_node,
5816 						  &pi->tc_node_bw_t_info[tc]);
5817 		if (status)
5818 			break;
5819 	}
5820 	ice_release_lock(&pi->sched_lock);
5821 	return status;
5822 }
5823 
5824 /**
5825  * ice_sched_replay_vsi_bw - replay VSI type node(s) BW
5826  * @hw: pointer to the HW struct
5827  * @vsi_handle: software VSI handle
5828  * @tc_bitmap: 8 bits TC bitmap
5829  *
5830  * This function replays VSI type nodes bandwidth. This function needs to be
5831  * called with scheduler lock held.
5832  */
5833 static enum ice_status
5834 ice_sched_replay_vsi_bw(struct ice_hw *hw, u16 vsi_handle,
5835 			ice_bitmap_t *tc_bitmap)
5836 {
5837 	struct ice_sched_node *vsi_node, *tc_node;
5838 	struct ice_port_info *pi = hw->port_info;
5839 	struct ice_bw_type_info *bw_t_info;
5840 	struct ice_vsi_ctx *vsi_ctx;
5841 	enum ice_status status = ICE_SUCCESS;
5842 	u8 tc;
5843 
5844 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
5845 	if (!vsi_ctx)
5846 		return ICE_ERR_PARAM;
5847 	ice_for_each_traffic_class(tc) {
5848 		if (!ice_is_tc_ena(*tc_bitmap, tc))
5849 			continue;
5850 		tc_node = ice_sched_get_tc_node(pi, tc);
5851 		if (!tc_node)
5852 			continue;
5853 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5854 		if (!vsi_node)
5855 			continue;
5856 		bw_t_info = &vsi_ctx->sched.bw_t_info[tc];
5857 		status = ice_sched_replay_node_bw(hw, vsi_node, bw_t_info);
5858 		if (status)
5859 			break;
5860 	}
5861 	return status;
5862 }
5863 
5864 /**
5865  * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
5866  * @hw: pointer to the HW struct
5867  * @vsi_handle: software VSI handle
5868  *
5869  * This function replays aggregator node, VSI to aggregator type nodes, and
5870  * their node bandwidth information. This function needs to be called with
5871  * scheduler lock held.
5872  */
5873 static enum ice_status
5874 ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
5875 {
5876 	ice_declare_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5877 	struct ice_sched_agg_vsi_info *agg_vsi_info;
5878 	struct ice_port_info *pi = hw->port_info;
5879 	struct ice_sched_agg_info *agg_info;
5880 	enum ice_status status;
5881 
5882 	ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5883 	if (!ice_is_vsi_valid(hw, vsi_handle))
5884 		return ICE_ERR_PARAM;
5885 	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
5886 	if (!agg_info)
5887 		return ICE_SUCCESS; /* Not present in list - default Agg case */
5888 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
5889 	if (!agg_vsi_info)
5890 		return ICE_SUCCESS; /* Not present in list - default Agg case */
5891 	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
5892 				    replay_bitmap);
5893 	/* Replay aggregator node associated to vsi_handle */
5894 	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
5895 				   ICE_AGG_TYPE_AGG, replay_bitmap);
5896 	if (status)
5897 		return status;
5898 	/* Replay aggregator node BW (restore aggregator BW) */
5899 	status = ice_sched_replay_agg_bw(hw, agg_info);
5900 	if (status)
5901 		return status;
5902 
5903 	ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5904 	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
5905 				    replay_bitmap);
5906 	/* Move this VSI (vsi_handle) to above aggregator */
5907 	status = ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
5908 					    replay_bitmap);
5909 	if (status)
5910 		return status;
5911 	/* Replay VSI BW (restore VSI BW) */
5912 	return ice_sched_replay_vsi_bw(hw, vsi_handle,
5913 				       agg_vsi_info->tc_bitmap);
5914 }
5915 
5916 /**
5917  * ice_replay_vsi_agg - replay VSI to aggregator node
5918  * @hw: pointer to the HW struct
5919  * @vsi_handle: software VSI handle
5920  *
5921  * This function replays association of VSI to aggregator type nodes, and
5922  * node bandwidth information.
5923  */
5924 enum ice_status ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
5925 {
5926 	struct ice_port_info *pi = hw->port_info;
5927 	enum ice_status status;
5928 
5929 	ice_acquire_lock(&pi->sched_lock);
5930 	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
5931 	ice_release_lock(&pi->sched_lock);
5932 	return status;
5933 }
5934 
5935 /**
5936  * ice_sched_replay_q_bw - replay queue type node BW
5937  * @pi: port information structure
5938  * @q_ctx: queue context structure
5939  *
5940  * This function replays queue type node bandwidth. This function needs to be
5941  * called with scheduler lock held.
5942  */
5943 enum ice_status
5944 ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
5945 {
5946 	struct ice_sched_node *q_node;
5947 
5948 	/* Following also checks the presence of node in tree */
5949 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
5950 	if (!q_node)
5951 		return ICE_ERR_PARAM;
5952 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
5953 }
5954