xref: /freebsd/sys/dev/iwi/if_iwi.c (revision 0957b409)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004, 2005
5  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
6  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
7  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /*-
36  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
37  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
38  */
39 
40 #include <sys/param.h>
41 #include <sys/sysctl.h>
42 #include <sys/sockio.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/socket.h>
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/module.h>
51 #include <sys/bus.h>
52 #include <sys/endian.h>
53 #include <sys/proc.h>
54 #include <sys/mount.h>
55 #include <sys/namei.h>
56 #include <sys/linker.h>
57 #include <sys/firmware.h>
58 #include <sys/taskqueue.h>
59 
60 #include <machine/bus.h>
61 #include <machine/resource.h>
62 #include <sys/rman.h>
63 
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <net/bpf.h>
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/if_arp.h>
71 #include <net/ethernet.h>
72 #include <net/if_dl.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 
76 #include <net80211/ieee80211_var.h>
77 #include <net80211/ieee80211_radiotap.h>
78 #include <net80211/ieee80211_input.h>
79 #include <net80211/ieee80211_regdomain.h>
80 
81 #include <netinet/in.h>
82 #include <netinet/in_systm.h>
83 #include <netinet/in_var.h>
84 #include <netinet/ip.h>
85 #include <netinet/if_ether.h>
86 
87 #include <dev/iwi/if_iwireg.h>
88 #include <dev/iwi/if_iwivar.h>
89 #include <dev/iwi/if_iwi_ioctl.h>
90 
91 #define IWI_DEBUG
92 #ifdef IWI_DEBUG
93 #define DPRINTF(x)	do { if (iwi_debug > 0) printf x; } while (0)
94 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) printf x; } while (0)
95 int iwi_debug = 0;
96 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
97 
98 static const char *iwi_fw_states[] = {
99 	"IDLE", 		/* IWI_FW_IDLE */
100 	"LOADING",		/* IWI_FW_LOADING */
101 	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
102 	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
103 	"SCANNING",		/* IWI_FW_SCANNING */
104 };
105 #else
106 #define DPRINTF(x)
107 #define DPRINTFN(n, x)
108 #endif
109 
110 MODULE_DEPEND(iwi, pci,  1, 1, 1);
111 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
112 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
113 
114 enum {
115 	IWI_LED_TX,
116 	IWI_LED_RX,
117 	IWI_LED_POLL,
118 };
119 
120 struct iwi_ident {
121 	uint16_t	vendor;
122 	uint16_t	device;
123 	const char	*name;
124 };
125 
126 static const struct iwi_ident iwi_ident_table[] = {
127 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
128 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
129 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
130 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
131 
132 	{ 0, 0, NULL }
133 };
134 
135 static const uint8_t def_chan_5ghz_band1[] =
136 	{ 36, 40, 44, 48, 52, 56, 60, 64 };
137 static const uint8_t def_chan_5ghz_band2[] =
138 	{ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 };
139 static const uint8_t def_chan_5ghz_band3[] =
140 	{ 149, 153, 157, 161, 165 };
141 
142 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
143 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
144 		    const uint8_t [IEEE80211_ADDR_LEN],
145 		    const uint8_t [IEEE80211_ADDR_LEN]);
146 static void	iwi_vap_delete(struct ieee80211vap *);
147 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
148 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
149 		    int);
150 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
151 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
152 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
153 		    int, bus_addr_t, bus_addr_t);
154 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
155 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
156 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
157 		    int);
158 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
159 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
160 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
161 		    const uint8_t [IEEE80211_ADDR_LEN]);
162 static void	iwi_node_free(struct ieee80211_node *);
163 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
164 static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
165 static void	iwi_wme_init(struct iwi_softc *);
166 static int	iwi_wme_setparams(struct iwi_softc *);
167 static int	iwi_wme_update(struct ieee80211com *);
168 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
169 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
170 		    struct iwi_frame *);
171 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
172 static void	iwi_rx_intr(struct iwi_softc *);
173 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
174 static void	iwi_intr(void *);
175 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
176 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
177 static int	iwi_tx_start(struct iwi_softc *, struct mbuf *,
178 		    struct ieee80211_node *, int);
179 static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
180 		    const struct ieee80211_bpf_params *);
181 static void	iwi_start(struct iwi_softc *);
182 static int	iwi_transmit(struct ieee80211com *, struct mbuf *);
183 static void	iwi_watchdog(void *);
184 static int	iwi_ioctl(struct ieee80211com *, u_long, void *);
185 static void	iwi_parent(struct ieee80211com *);
186 static void	iwi_stop_master(struct iwi_softc *);
187 static int	iwi_reset(struct iwi_softc *);
188 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
189 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
190 static void	iwi_release_fw_dma(struct iwi_softc *sc);
191 static int	iwi_config(struct iwi_softc *);
192 static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
193 static void	iwi_put_firmware(struct iwi_softc *);
194 static void	iwi_monitor_scan(void *, int);
195 static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
196 static void	iwi_scan_start(struct ieee80211com *);
197 static void	iwi_scan_end(struct ieee80211com *);
198 static void	iwi_set_channel(struct ieee80211com *);
199 static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
200 static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
201 static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
202 static void	iwi_disassoc(void *, int);
203 static int	iwi_disassociate(struct iwi_softc *, int quiet);
204 static void	iwi_init_locked(struct iwi_softc *);
205 static void	iwi_init(void *);
206 static int	iwi_init_fw_dma(struct iwi_softc *, int);
207 static void	iwi_stop_locked(void *);
208 static void	iwi_stop(struct iwi_softc *);
209 static void	iwi_restart(void *, int);
210 static int	iwi_getrfkill(struct iwi_softc *);
211 static void	iwi_radio_on(void *, int);
212 static void	iwi_radio_off(void *, int);
213 static void	iwi_sysctlattach(struct iwi_softc *);
214 static void	iwi_led_event(struct iwi_softc *, int);
215 static void	iwi_ledattach(struct iwi_softc *);
216 static void	iwi_collect_bands(struct ieee80211com *, uint8_t [], size_t);
217 static void	iwi_getradiocaps(struct ieee80211com *, int, int *,
218 		    struct ieee80211_channel []);
219 
220 static int iwi_probe(device_t);
221 static int iwi_attach(device_t);
222 static int iwi_detach(device_t);
223 static int iwi_shutdown(device_t);
224 static int iwi_suspend(device_t);
225 static int iwi_resume(device_t);
226 
227 static device_method_t iwi_methods[] = {
228 	/* Device interface */
229 	DEVMETHOD(device_probe,		iwi_probe),
230 	DEVMETHOD(device_attach,	iwi_attach),
231 	DEVMETHOD(device_detach,	iwi_detach),
232 	DEVMETHOD(device_shutdown,	iwi_shutdown),
233 	DEVMETHOD(device_suspend,	iwi_suspend),
234 	DEVMETHOD(device_resume,	iwi_resume),
235 
236 	DEVMETHOD_END
237 };
238 
239 static driver_t iwi_driver = {
240 	"iwi",
241 	iwi_methods,
242 	sizeof (struct iwi_softc)
243 };
244 
245 static devclass_t iwi_devclass;
246 
247 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL);
248 
249 MODULE_VERSION(iwi, 1);
250 
251 static __inline uint8_t
252 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
253 {
254 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
255 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
256 }
257 
258 static __inline uint32_t
259 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
260 {
261 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
262 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
263 }
264 
265 static int
266 iwi_probe(device_t dev)
267 {
268 	const struct iwi_ident *ident;
269 
270 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
271 		if (pci_get_vendor(dev) == ident->vendor &&
272 		    pci_get_device(dev) == ident->device) {
273 			device_set_desc(dev, ident->name);
274 			return (BUS_PROBE_DEFAULT);
275 		}
276 	}
277 	return ENXIO;
278 }
279 
280 static int
281 iwi_attach(device_t dev)
282 {
283 	struct iwi_softc *sc = device_get_softc(dev);
284 	struct ieee80211com *ic = &sc->sc_ic;
285 	uint16_t val;
286 	int i, error;
287 
288 	sc->sc_dev = dev;
289 	sc->sc_ledevent = ticks;
290 
291 	IWI_LOCK_INIT(sc);
292 	mbufq_init(&sc->sc_snd, ifqmaxlen);
293 
294 	sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
295 
296 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
297 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
298 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
299 	TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc);
300 	TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc);
301 
302 	callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
303 	callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0);
304 
305 	pci_write_config(dev, 0x41, 0, 1);
306 
307 	/* enable bus-mastering */
308 	pci_enable_busmaster(dev);
309 
310 	i = PCIR_BAR(0);
311 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE);
312 	if (sc->mem == NULL) {
313 		device_printf(dev, "could not allocate memory resource\n");
314 		goto fail;
315 	}
316 
317 	sc->sc_st = rman_get_bustag(sc->mem);
318 	sc->sc_sh = rman_get_bushandle(sc->mem);
319 
320 	i = 0;
321 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
322 	    RF_ACTIVE | RF_SHAREABLE);
323 	if (sc->irq == NULL) {
324 		device_printf(dev, "could not allocate interrupt resource\n");
325 		goto fail;
326 	}
327 
328 	if (iwi_reset(sc) != 0) {
329 		device_printf(dev, "could not reset adapter\n");
330 		goto fail;
331 	}
332 
333 	/*
334 	 * Allocate rings.
335 	 */
336 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
337 		device_printf(dev, "could not allocate Cmd ring\n");
338 		goto fail;
339 	}
340 
341 	for (i = 0; i < 4; i++) {
342 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
343 		    IWI_CSR_TX1_RIDX + i * 4,
344 		    IWI_CSR_TX1_WIDX + i * 4);
345 		if (error != 0) {
346 			device_printf(dev, "could not allocate Tx ring %d\n",
347 				i+i);
348 			goto fail;
349 		}
350 	}
351 
352 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
353 		device_printf(dev, "could not allocate Rx ring\n");
354 		goto fail;
355 	}
356 
357 	iwi_wme_init(sc);
358 
359 	ic->ic_softc = sc;
360 	ic->ic_name = device_get_nameunit(dev);
361 	ic->ic_opmode = IEEE80211_M_STA;
362 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
363 
364 	/* set device capabilities */
365 	ic->ic_caps =
366 	      IEEE80211_C_STA		/* station mode supported */
367 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
368 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
369 	    | IEEE80211_C_PMGT		/* power save supported */
370 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
371 	    | IEEE80211_C_WPA		/* 802.11i */
372 	    | IEEE80211_C_WME		/* 802.11e */
373 #if 0
374 	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
375 #endif
376 	    ;
377 
378 	/* read MAC address from EEPROM */
379 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
380 	ic->ic_macaddr[0] = val & 0xff;
381 	ic->ic_macaddr[1] = val >> 8;
382 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
383 	ic->ic_macaddr[2] = val & 0xff;
384 	ic->ic_macaddr[3] = val >> 8;
385 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
386 	ic->ic_macaddr[4] = val & 0xff;
387 	ic->ic_macaddr[5] = val >> 8;
388 
389 	iwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
390 	    ic->ic_channels);
391 
392 	ieee80211_ifattach(ic);
393 	/* override default methods */
394 	ic->ic_node_alloc = iwi_node_alloc;
395 	sc->sc_node_free = ic->ic_node_free;
396 	ic->ic_node_free = iwi_node_free;
397 	ic->ic_raw_xmit = iwi_raw_xmit;
398 	ic->ic_scan_start = iwi_scan_start;
399 	ic->ic_scan_end = iwi_scan_end;
400 	ic->ic_set_channel = iwi_set_channel;
401 	ic->ic_scan_curchan = iwi_scan_curchan;
402 	ic->ic_scan_mindwell = iwi_scan_mindwell;
403 	ic->ic_wme.wme_update = iwi_wme_update;
404 
405 	ic->ic_vap_create = iwi_vap_create;
406 	ic->ic_vap_delete = iwi_vap_delete;
407 	ic->ic_ioctl = iwi_ioctl;
408 	ic->ic_transmit = iwi_transmit;
409 	ic->ic_parent = iwi_parent;
410 	ic->ic_getradiocaps = iwi_getradiocaps;
411 
412 	ieee80211_radiotap_attach(ic,
413 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
414 		IWI_TX_RADIOTAP_PRESENT,
415 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
416 		IWI_RX_RADIOTAP_PRESENT);
417 
418 	iwi_sysctlattach(sc);
419 	iwi_ledattach(sc);
420 
421 	/*
422 	 * Hook our interrupt after all initialization is complete.
423 	 */
424 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
425 	    NULL, iwi_intr, sc, &sc->sc_ih);
426 	if (error != 0) {
427 		device_printf(dev, "could not set up interrupt\n");
428 		goto fail;
429 	}
430 
431 	if (bootverbose)
432 		ieee80211_announce(ic);
433 
434 	return 0;
435 fail:
436 	/* XXX fix */
437 	iwi_detach(dev);
438 	return ENXIO;
439 }
440 
441 static int
442 iwi_detach(device_t dev)
443 {
444 	struct iwi_softc *sc = device_get_softc(dev);
445 	struct ieee80211com *ic = &sc->sc_ic;
446 
447 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
448 
449 	/* NB: do early to drain any pending tasks */
450 	ieee80211_draintask(ic, &sc->sc_radiontask);
451 	ieee80211_draintask(ic, &sc->sc_radiofftask);
452 	ieee80211_draintask(ic, &sc->sc_restarttask);
453 	ieee80211_draintask(ic, &sc->sc_disassoctask);
454 	ieee80211_draintask(ic, &sc->sc_monitortask);
455 
456 	iwi_stop(sc);
457 
458 	ieee80211_ifdetach(ic);
459 
460 	iwi_put_firmware(sc);
461 	iwi_release_fw_dma(sc);
462 
463 	iwi_free_cmd_ring(sc, &sc->cmdq);
464 	iwi_free_tx_ring(sc, &sc->txq[0]);
465 	iwi_free_tx_ring(sc, &sc->txq[1]);
466 	iwi_free_tx_ring(sc, &sc->txq[2]);
467 	iwi_free_tx_ring(sc, &sc->txq[3]);
468 	iwi_free_rx_ring(sc, &sc->rxq);
469 
470 	bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq);
471 
472 	bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem),
473 	    sc->mem);
474 
475 	delete_unrhdr(sc->sc_unr);
476 	mbufq_drain(&sc->sc_snd);
477 
478 	IWI_LOCK_DESTROY(sc);
479 
480 	return 0;
481 }
482 
483 static struct ieee80211vap *
484 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
485     enum ieee80211_opmode opmode, int flags,
486     const uint8_t bssid[IEEE80211_ADDR_LEN],
487     const uint8_t mac[IEEE80211_ADDR_LEN])
488 {
489 	struct iwi_softc *sc = ic->ic_softc;
490 	struct iwi_vap *ivp;
491 	struct ieee80211vap *vap;
492 	int i;
493 
494 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
495 		return NULL;
496 	/*
497 	 * Get firmware image (and possibly dma memory) on mode change.
498 	 */
499 	if (iwi_get_firmware(sc, opmode))
500 		return NULL;
501 	/* allocate DMA memory for mapping firmware image */
502 	i = sc->fw_fw.size;
503 	if (sc->fw_boot.size > i)
504 		i = sc->fw_boot.size;
505 	/* XXX do we dma the ucode as well ? */
506 	if (sc->fw_uc.size > i)
507 		i = sc->fw_uc.size;
508 	if (iwi_init_fw_dma(sc, i))
509 		return NULL;
510 
511 	ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
512 	vap = &ivp->iwi_vap;
513 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
514 	/* override the default, the setting comes from the linux driver */
515 	vap->iv_bmissthreshold = 24;
516 	/* override with driver methods */
517 	ivp->iwi_newstate = vap->iv_newstate;
518 	vap->iv_newstate = iwi_newstate;
519 
520 	/* complete setup */
521 	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status,
522 	    mac);
523 	ic->ic_opmode = opmode;
524 	return vap;
525 }
526 
527 static void
528 iwi_vap_delete(struct ieee80211vap *vap)
529 {
530 	struct iwi_vap *ivp = IWI_VAP(vap);
531 
532 	ieee80211_vap_detach(vap);
533 	free(ivp, M_80211_VAP);
534 }
535 
536 static void
537 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
538 {
539 	if (error != 0)
540 		return;
541 
542 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
543 
544 	*(bus_addr_t *)arg = segs[0].ds_addr;
545 }
546 
547 static int
548 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
549 {
550 	int error;
551 
552 	ring->count = count;
553 	ring->queued = 0;
554 	ring->cur = ring->next = 0;
555 
556 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
557 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
558 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
559 	    NULL, NULL, &ring->desc_dmat);
560 	if (error != 0) {
561 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
562 		goto fail;
563 	}
564 
565 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
566 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
567 	if (error != 0) {
568 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
569 		goto fail;
570 	}
571 
572 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
573 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
574 	if (error != 0) {
575 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
576 		goto fail;
577 	}
578 
579 	return 0;
580 
581 fail:	iwi_free_cmd_ring(sc, ring);
582 	return error;
583 }
584 
585 static void
586 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
587 {
588 	ring->queued = 0;
589 	ring->cur = ring->next = 0;
590 }
591 
592 static void
593 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
594 {
595 	if (ring->desc != NULL) {
596 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
597 		    BUS_DMASYNC_POSTWRITE);
598 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
599 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
600 	}
601 
602 	if (ring->desc_dmat != NULL)
603 		bus_dma_tag_destroy(ring->desc_dmat);
604 }
605 
606 static int
607 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
608     bus_addr_t csr_ridx, bus_addr_t csr_widx)
609 {
610 	int i, error;
611 
612 	ring->count = count;
613 	ring->queued = 0;
614 	ring->cur = ring->next = 0;
615 	ring->csr_ridx = csr_ridx;
616 	ring->csr_widx = csr_widx;
617 
618 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
619 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
620 	    count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
621 	    NULL, &ring->desc_dmat);
622 	if (error != 0) {
623 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
624 		goto fail;
625 	}
626 
627 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
628 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
629 	if (error != 0) {
630 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
631 		goto fail;
632 	}
633 
634 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
635 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
636 	if (error != 0) {
637 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
638 		goto fail;
639 	}
640 
641 	ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
642 	    M_NOWAIT | M_ZERO);
643 	if (ring->data == NULL) {
644 		device_printf(sc->sc_dev, "could not allocate soft data\n");
645 		error = ENOMEM;
646 		goto fail;
647 	}
648 
649 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
650 	BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
651 	IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
652 	if (error != 0) {
653 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
654 		goto fail;
655 	}
656 
657 	for (i = 0; i < count; i++) {
658 		error = bus_dmamap_create(ring->data_dmat, 0,
659 		    &ring->data[i].map);
660 		if (error != 0) {
661 			device_printf(sc->sc_dev, "could not create DMA map\n");
662 			goto fail;
663 		}
664 	}
665 
666 	return 0;
667 
668 fail:	iwi_free_tx_ring(sc, ring);
669 	return error;
670 }
671 
672 static void
673 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
674 {
675 	struct iwi_tx_data *data;
676 	int i;
677 
678 	for (i = 0; i < ring->count; i++) {
679 		data = &ring->data[i];
680 
681 		if (data->m != NULL) {
682 			bus_dmamap_sync(ring->data_dmat, data->map,
683 			    BUS_DMASYNC_POSTWRITE);
684 			bus_dmamap_unload(ring->data_dmat, data->map);
685 			m_freem(data->m);
686 			data->m = NULL;
687 		}
688 
689 		if (data->ni != NULL) {
690 			ieee80211_free_node(data->ni);
691 			data->ni = NULL;
692 		}
693 	}
694 
695 	ring->queued = 0;
696 	ring->cur = ring->next = 0;
697 }
698 
699 static void
700 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
701 {
702 	struct iwi_tx_data *data;
703 	int i;
704 
705 	if (ring->desc != NULL) {
706 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
707 		    BUS_DMASYNC_POSTWRITE);
708 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
709 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
710 	}
711 
712 	if (ring->desc_dmat != NULL)
713 		bus_dma_tag_destroy(ring->desc_dmat);
714 
715 	if (ring->data != NULL) {
716 		for (i = 0; i < ring->count; i++) {
717 			data = &ring->data[i];
718 
719 			if (data->m != NULL) {
720 				bus_dmamap_sync(ring->data_dmat, data->map,
721 				    BUS_DMASYNC_POSTWRITE);
722 				bus_dmamap_unload(ring->data_dmat, data->map);
723 				m_freem(data->m);
724 			}
725 
726 			if (data->ni != NULL)
727 				ieee80211_free_node(data->ni);
728 
729 			if (data->map != NULL)
730 				bus_dmamap_destroy(ring->data_dmat, data->map);
731 		}
732 
733 		free(ring->data, M_DEVBUF);
734 	}
735 
736 	if (ring->data_dmat != NULL)
737 		bus_dma_tag_destroy(ring->data_dmat);
738 }
739 
740 static int
741 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
742 {
743 	struct iwi_rx_data *data;
744 	int i, error;
745 
746 	ring->count = count;
747 	ring->cur = 0;
748 
749 	ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
750 	    M_NOWAIT | M_ZERO);
751 	if (ring->data == NULL) {
752 		device_printf(sc->sc_dev, "could not allocate soft data\n");
753 		error = ENOMEM;
754 		goto fail;
755 	}
756 
757 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
758 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
759 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
760 	if (error != 0) {
761 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
762 		goto fail;
763 	}
764 
765 	for (i = 0; i < count; i++) {
766 		data = &ring->data[i];
767 
768 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
769 		if (error != 0) {
770 			device_printf(sc->sc_dev, "could not create DMA map\n");
771 			goto fail;
772 		}
773 
774 		data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
775 		if (data->m == NULL) {
776 			device_printf(sc->sc_dev,
777 			    "could not allocate rx mbuf\n");
778 			error = ENOMEM;
779 			goto fail;
780 		}
781 
782 		error = bus_dmamap_load(ring->data_dmat, data->map,
783 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
784 		    &data->physaddr, 0);
785 		if (error != 0) {
786 			device_printf(sc->sc_dev,
787 			    "could not load rx buf DMA map");
788 			goto fail;
789 		}
790 
791 		data->reg = IWI_CSR_RX_BASE + i * 4;
792 	}
793 
794 	return 0;
795 
796 fail:	iwi_free_rx_ring(sc, ring);
797 	return error;
798 }
799 
800 static void
801 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
802 {
803 	ring->cur = 0;
804 }
805 
806 static void
807 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
808 {
809 	struct iwi_rx_data *data;
810 	int i;
811 
812 	if (ring->data != NULL) {
813 		for (i = 0; i < ring->count; i++) {
814 			data = &ring->data[i];
815 
816 			if (data->m != NULL) {
817 				bus_dmamap_sync(ring->data_dmat, data->map,
818 				    BUS_DMASYNC_POSTREAD);
819 				bus_dmamap_unload(ring->data_dmat, data->map);
820 				m_freem(data->m);
821 			}
822 
823 			if (data->map != NULL)
824 				bus_dmamap_destroy(ring->data_dmat, data->map);
825 		}
826 
827 		free(ring->data, M_DEVBUF);
828 	}
829 
830 	if (ring->data_dmat != NULL)
831 		bus_dma_tag_destroy(ring->data_dmat);
832 }
833 
834 static int
835 iwi_shutdown(device_t dev)
836 {
837 	struct iwi_softc *sc = device_get_softc(dev);
838 
839 	iwi_stop(sc);
840 	iwi_put_firmware(sc);		/* ??? XXX */
841 
842 	return 0;
843 }
844 
845 static int
846 iwi_suspend(device_t dev)
847 {
848 	struct iwi_softc *sc = device_get_softc(dev);
849 	struct ieee80211com *ic = &sc->sc_ic;
850 
851 	ieee80211_suspend_all(ic);
852 	return 0;
853 }
854 
855 static int
856 iwi_resume(device_t dev)
857 {
858 	struct iwi_softc *sc = device_get_softc(dev);
859 	struct ieee80211com *ic = &sc->sc_ic;
860 
861 	pci_write_config(dev, 0x41, 0, 1);
862 
863 	ieee80211_resume_all(ic);
864 	return 0;
865 }
866 
867 static struct ieee80211_node *
868 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
869 {
870 	struct iwi_node *in;
871 
872 	in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
873 	if (in == NULL)
874 		return NULL;
875 	/* XXX assign sta table entry for adhoc */
876 	in->in_station = -1;
877 
878 	return &in->in_node;
879 }
880 
881 static void
882 iwi_node_free(struct ieee80211_node *ni)
883 {
884 	struct ieee80211com *ic = ni->ni_ic;
885 	struct iwi_softc *sc = ic->ic_softc;
886 	struct iwi_node *in = (struct iwi_node *)ni;
887 
888 	if (in->in_station != -1) {
889 		DPRINTF(("%s mac %6D station %u\n", __func__,
890 		    ni->ni_macaddr, ":", in->in_station));
891 		free_unr(sc->sc_unr, in->in_station);
892 	}
893 
894 	sc->sc_node_free(ni);
895 }
896 
897 /*
898  * Convert h/w rate code to IEEE rate code.
899  */
900 static int
901 iwi_cvtrate(int iwirate)
902 {
903 	switch (iwirate) {
904 	case IWI_RATE_DS1:	return 2;
905 	case IWI_RATE_DS2:	return 4;
906 	case IWI_RATE_DS5:	return 11;
907 	case IWI_RATE_DS11:	return 22;
908 	case IWI_RATE_OFDM6:	return 12;
909 	case IWI_RATE_OFDM9:	return 18;
910 	case IWI_RATE_OFDM12:	return 24;
911 	case IWI_RATE_OFDM18:	return 36;
912 	case IWI_RATE_OFDM24:	return 48;
913 	case IWI_RATE_OFDM36:	return 72;
914 	case IWI_RATE_OFDM48:	return 96;
915 	case IWI_RATE_OFDM54:	return 108;
916 	}
917 	return 0;
918 }
919 
920 /*
921  * The firmware automatically adapts the transmit speed.  We report its current
922  * value here.
923  */
924 static void
925 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
926 {
927 	struct ieee80211vap *vap = ifp->if_softc;
928 	struct ieee80211com *ic = vap->iv_ic;
929 	struct iwi_softc *sc = ic->ic_softc;
930 	struct ieee80211_node *ni;
931 
932 	/* read current transmission rate from adapter */
933 	ni = ieee80211_ref_node(vap->iv_bss);
934 	ni->ni_txrate =
935 	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
936 	ieee80211_free_node(ni);
937 	ieee80211_media_status(ifp, imr);
938 }
939 
940 static int
941 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
942 {
943 	struct iwi_vap *ivp = IWI_VAP(vap);
944 	struct ieee80211com *ic = vap->iv_ic;
945 	struct iwi_softc *sc = ic->ic_softc;
946 	IWI_LOCK_DECL;
947 
948 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
949 		ieee80211_state_name[vap->iv_state],
950 		ieee80211_state_name[nstate], sc->flags));
951 
952 	IEEE80211_UNLOCK(ic);
953 	IWI_LOCK(sc);
954 	switch (nstate) {
955 	case IEEE80211_S_INIT:
956 		/*
957 		 * NB: don't try to do this if iwi_stop_master has
958 		 *     shutdown the firmware and disabled interrupts.
959 		 */
960 		if (vap->iv_state == IEEE80211_S_RUN &&
961 		    (sc->flags & IWI_FLAG_FW_INITED))
962 			iwi_disassociate(sc, 0);
963 		break;
964 	case IEEE80211_S_AUTH:
965 		iwi_auth_and_assoc(sc, vap);
966 		break;
967 	case IEEE80211_S_RUN:
968 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
969 		    vap->iv_state == IEEE80211_S_SCAN) {
970 			/*
971 			 * XXX when joining an ibss network we are called
972 			 * with a SCAN -> RUN transition on scan complete.
973 			 * Use that to call iwi_auth_and_assoc.  On completing
974 			 * the join we are then called again with an
975 			 * AUTH -> RUN transition and we want to do nothing.
976 			 * This is all totally bogus and needs to be redone.
977 			 */
978 			iwi_auth_and_assoc(sc, vap);
979 		} else if (vap->iv_opmode == IEEE80211_M_MONITOR)
980 			ieee80211_runtask(ic, &sc->sc_monitortask);
981 		break;
982 	case IEEE80211_S_ASSOC:
983 		/*
984 		 * If we are transitioning from AUTH then just wait
985 		 * for the ASSOC status to come back from the firmware.
986 		 * Otherwise we need to issue the association request.
987 		 */
988 		if (vap->iv_state == IEEE80211_S_AUTH)
989 			break;
990 		iwi_auth_and_assoc(sc, vap);
991 		break;
992 	default:
993 		break;
994 	}
995 	IWI_UNLOCK(sc);
996 	IEEE80211_LOCK(ic);
997 	return ivp->iwi_newstate(vap, nstate, arg);
998 }
999 
1000 /*
1001  * WME parameters coming from IEEE 802.11e specification.  These values are
1002  * already declared in ieee80211_proto.c, but they are static so they can't
1003  * be reused here.
1004  */
1005 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1006 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1007 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1008 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1009 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1010 };
1011 
1012 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1013 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1014 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1015 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1016 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1017 };
1018 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1019 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1020 
1021 static void
1022 iwi_wme_init(struct iwi_softc *sc)
1023 {
1024 	const struct wmeParams *wmep;
1025 	int ac;
1026 
1027 	memset(sc->wme, 0, sizeof sc->wme);
1028 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1029 		/* set WME values for CCK modulation */
1030 		wmep = &iwi_wme_cck_params[ac];
1031 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1032 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1033 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1034 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1035 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1036 
1037 		/* set WME values for OFDM modulation */
1038 		wmep = &iwi_wme_ofdm_params[ac];
1039 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1040 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1041 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1042 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1043 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1044 	}
1045 }
1046 
1047 static int
1048 iwi_wme_setparams(struct iwi_softc *sc)
1049 {
1050 	struct ieee80211com *ic = &sc->sc_ic;
1051 	struct chanAccParams chp;
1052 	const struct wmeParams *wmep;
1053 	int ac;
1054 
1055 	ieee80211_wme_ic_getparams(ic, &chp);
1056 
1057 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1058 		/* set WME values for current operating mode */
1059 		wmep = &chp.cap_wmeParams[ac];
1060 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1061 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1062 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1063 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1064 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1065 	}
1066 
1067 	DPRINTF(("Setting WME parameters\n"));
1068 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1069 }
1070 #undef IWI_USEC
1071 #undef IWI_EXP2
1072 
1073 static int
1074 iwi_wme_update(struct ieee80211com *ic)
1075 {
1076 	struct iwi_softc *sc = ic->ic_softc;
1077 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1078 	IWI_LOCK_DECL;
1079 
1080 	/*
1081 	 * We may be called to update the WME parameters in
1082 	 * the adapter at various places.  If we're already
1083 	 * associated then initiate the request immediately;
1084 	 * otherwise we assume the params will get sent down
1085 	 * to the adapter as part of the work iwi_auth_and_assoc
1086 	 * does.
1087 	 */
1088 	if (vap->iv_state == IEEE80211_S_RUN) {
1089 		IWI_LOCK(sc);
1090 		iwi_wme_setparams(sc);
1091 		IWI_UNLOCK(sc);
1092 	}
1093 	return (0);
1094 }
1095 
1096 static int
1097 iwi_wme_setie(struct iwi_softc *sc)
1098 {
1099 	struct ieee80211_wme_info wme;
1100 
1101 	memset(&wme, 0, sizeof wme);
1102 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1103 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1104 	wme.wme_oui[0] = 0x00;
1105 	wme.wme_oui[1] = 0x50;
1106 	wme.wme_oui[2] = 0xf2;
1107 	wme.wme_type = WME_OUI_TYPE;
1108 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1109 	wme.wme_version = WME_VERSION;
1110 	wme.wme_info = 0;
1111 
1112 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1113 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1114 }
1115 
1116 /*
1117  * Read 16 bits at address 'addr' from the serial EEPROM.
1118  */
1119 static uint16_t
1120 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1121 {
1122 	uint32_t tmp;
1123 	uint16_t val;
1124 	int n;
1125 
1126 	/* clock C once before the first command */
1127 	IWI_EEPROM_CTL(sc, 0);
1128 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1129 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1130 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1131 
1132 	/* write start bit (1) */
1133 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1134 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1135 
1136 	/* write READ opcode (10) */
1137 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1138 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1139 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1140 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1141 
1142 	/* write address A7-A0 */
1143 	for (n = 7; n >= 0; n--) {
1144 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1145 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1146 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1147 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1148 	}
1149 
1150 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1151 
1152 	/* read data Q15-Q0 */
1153 	val = 0;
1154 	for (n = 15; n >= 0; n--) {
1155 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1156 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1157 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1158 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1159 	}
1160 
1161 	IWI_EEPROM_CTL(sc, 0);
1162 
1163 	/* clear Chip Select and clock C */
1164 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1165 	IWI_EEPROM_CTL(sc, 0);
1166 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1167 
1168 	return val;
1169 }
1170 
1171 static void
1172 iwi_setcurchan(struct iwi_softc *sc, int chan)
1173 {
1174 	struct ieee80211com *ic = &sc->sc_ic;
1175 
1176 	sc->curchan = chan;
1177 	ieee80211_radiotap_chan_change(ic);
1178 }
1179 
1180 static void
1181 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1182     struct iwi_frame *frame)
1183 {
1184 	struct ieee80211com *ic = &sc->sc_ic;
1185 	struct mbuf *mnew, *m;
1186 	struct ieee80211_node *ni;
1187 	int type, error, framelen;
1188 	int8_t rssi, nf;
1189 	IWI_LOCK_DECL;
1190 
1191 	framelen = le16toh(frame->len);
1192 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1193 		/*
1194 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1195 		 *     out of bounds; need to figure out how to limit
1196 		 *     frame size in the firmware
1197 		 */
1198 		/* XXX stat */
1199 		DPRINTFN(1,
1200 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1201 		    le16toh(frame->len), frame->chan, frame->rssi,
1202 		    frame->rssi_dbm));
1203 		return;
1204 	}
1205 
1206 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1207 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1208 
1209 	if (frame->chan != sc->curchan)
1210 		iwi_setcurchan(sc, frame->chan);
1211 
1212 	/*
1213 	 * Try to allocate a new mbuf for this ring element and load it before
1214 	 * processing the current mbuf. If the ring element cannot be loaded,
1215 	 * drop the received packet and reuse the old mbuf. In the unlikely
1216 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1217 	 */
1218 	mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1219 	if (mnew == NULL) {
1220 		counter_u64_add(ic->ic_ierrors, 1);
1221 		return;
1222 	}
1223 
1224 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1225 
1226 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1227 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1228 	    0);
1229 	if (error != 0) {
1230 		m_freem(mnew);
1231 
1232 		/* try to reload the old mbuf */
1233 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1234 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1235 		    &data->physaddr, 0);
1236 		if (error != 0) {
1237 			/* very unlikely that it will fail... */
1238 			panic("%s: could not load old rx mbuf",
1239 			    device_get_name(sc->sc_dev));
1240 		}
1241 		counter_u64_add(ic->ic_ierrors, 1);
1242 		return;
1243 	}
1244 
1245 	/*
1246 	 * New mbuf successfully loaded, update Rx ring and continue
1247 	 * processing.
1248 	 */
1249 	m = data->m;
1250 	data->m = mnew;
1251 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1252 
1253 	/* finalize mbuf */
1254 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1255 	    sizeof (struct iwi_frame) + framelen;
1256 
1257 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1258 
1259 	rssi = frame->rssi_dbm;
1260 	nf = -95;
1261 	if (ieee80211_radiotap_active(ic)) {
1262 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1263 
1264 		tap->wr_flags = 0;
1265 		tap->wr_antsignal = rssi;
1266 		tap->wr_antnoise = nf;
1267 		tap->wr_rate = iwi_cvtrate(frame->rate);
1268 		tap->wr_antenna = frame->antenna;
1269 	}
1270 	IWI_UNLOCK(sc);
1271 
1272 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1273 	if (ni != NULL) {
1274 		type = ieee80211_input(ni, m, rssi, nf);
1275 		ieee80211_free_node(ni);
1276 	} else
1277 		type = ieee80211_input_all(ic, m, rssi, nf);
1278 
1279 	IWI_LOCK(sc);
1280 	if (sc->sc_softled) {
1281 		/*
1282 		 * Blink for any data frame.  Otherwise do a
1283 		 * heartbeat-style blink when idle.  The latter
1284 		 * is mainly for station mode where we depend on
1285 		 * periodic beacon frames to trigger the poll event.
1286 		 */
1287 		if (type == IEEE80211_FC0_TYPE_DATA) {
1288 			sc->sc_rxrate = frame->rate;
1289 			iwi_led_event(sc, IWI_LED_RX);
1290 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1291 			iwi_led_event(sc, IWI_LED_POLL);
1292 	}
1293 }
1294 
1295 /*
1296  * Check for an association response frame to see if QoS
1297  * has been negotiated.  We parse just enough to figure
1298  * out if we're supposed to use QoS.  The proper solution
1299  * is to pass the frame up so ieee80211_input can do the
1300  * work but that's made hard by how things currently are
1301  * done in the driver.
1302  */
1303 static void
1304 iwi_checkforqos(struct ieee80211vap *vap,
1305 	const struct ieee80211_frame *wh, int len)
1306 {
1307 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1308 	const uint8_t *frm, *efrm, *wme;
1309 	struct ieee80211_node *ni;
1310 	uint16_t capinfo, status, associd;
1311 
1312 	/* NB: +8 for capinfo, status, associd, and first ie */
1313 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1314 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1315 		return;
1316 	/*
1317 	 * asresp frame format
1318 	 *	[2] capability information
1319 	 *	[2] status
1320 	 *	[2] association ID
1321 	 *	[tlv] supported rates
1322 	 *	[tlv] extended supported rates
1323 	 *	[tlv] WME
1324 	 */
1325 	frm = (const uint8_t *)&wh[1];
1326 	efrm = ((const uint8_t *) wh) + len;
1327 
1328 	capinfo = le16toh(*(const uint16_t *)frm);
1329 	frm += 2;
1330 	status = le16toh(*(const uint16_t *)frm);
1331 	frm += 2;
1332 	associd = le16toh(*(const uint16_t *)frm);
1333 	frm += 2;
1334 
1335 	wme = NULL;
1336 	while (efrm - frm > 1) {
1337 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
1338 		switch (*frm) {
1339 		case IEEE80211_ELEMID_VENDOR:
1340 			if (iswmeoui(frm))
1341 				wme = frm;
1342 			break;
1343 		}
1344 		frm += frm[1] + 2;
1345 	}
1346 
1347 	ni = ieee80211_ref_node(vap->iv_bss);
1348 	ni->ni_capinfo = capinfo;
1349 	ni->ni_associd = associd & 0x3fff;
1350 	if (wme != NULL)
1351 		ni->ni_flags |= IEEE80211_NODE_QOS;
1352 	else
1353 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1354 	ieee80211_free_node(ni);
1355 #undef SUBTYPE
1356 }
1357 
1358 static void
1359 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif)
1360 {
1361 	struct iwi_notif_link_quality *lq;
1362 	int len;
1363 
1364 	len = le16toh(notif->len);
1365 
1366 	DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n",
1367 	    notif->type,
1368 	    len,
1369 	    sizeof(struct iwi_notif_link_quality)
1370 	    ));
1371 
1372 	/* enforce length */
1373 	if (len != sizeof(struct iwi_notif_link_quality)) {
1374 		DPRINTFN(5, ("Notification: (%u) too short (%d)\n",
1375 		    notif->type,
1376 		    len));
1377 		return;
1378 	}
1379 
1380 	lq = (struct iwi_notif_link_quality *)(notif + 1);
1381 	memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual));
1382 	sc->sc_linkqual_valid = 1;
1383 }
1384 
1385 /*
1386  * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1387  */
1388 
1389 static void
1390 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1391 {
1392 	struct ieee80211com *ic = &sc->sc_ic;
1393 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1394 	struct iwi_notif_scan_channel *chan;
1395 	struct iwi_notif_scan_complete *scan;
1396 	struct iwi_notif_authentication *auth;
1397 	struct iwi_notif_association *assoc;
1398 	struct iwi_notif_beacon_state *beacon;
1399 
1400 	switch (notif->type) {
1401 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1402 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1403 
1404 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1405 		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1406 
1407 		/* Reset the timer, the scan is still going */
1408 		sc->sc_state_timer = 3;
1409 		break;
1410 
1411 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1412 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1413 
1414 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1415 		    scan->status));
1416 
1417 		IWI_STATE_END(sc, IWI_FW_SCANNING);
1418 
1419 		/*
1420 		 * Monitor mode works by doing a passive scan to set
1421 		 * the channel and enable rx.  Because we don't want
1422 		 * to abort a scan lest the firmware crash we scan
1423 		 * for a short period of time and automatically restart
1424 		 * the scan when notified the sweep has completed.
1425 		 */
1426 		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1427 			ieee80211_runtask(ic, &sc->sc_monitortask);
1428 			break;
1429 		}
1430 
1431 		if (scan->status == IWI_SCAN_COMPLETED) {
1432 			/* NB: don't need to defer, net80211 does it for us */
1433 			ieee80211_scan_next(vap);
1434 		}
1435 		break;
1436 
1437 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1438 		auth = (struct iwi_notif_authentication *)(notif + 1);
1439 		switch (auth->state) {
1440 		case IWI_AUTH_SUCCESS:
1441 			DPRINTFN(2, ("Authentication succeeeded\n"));
1442 			ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1443 			break;
1444 		case IWI_AUTH_FAIL:
1445 			/*
1446 			 * These are delivered as an unsolicited deauth
1447 			 * (e.g. due to inactivity) or in response to an
1448 			 * associate request.
1449 			 */
1450 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1451 			if (vap->iv_state != IEEE80211_S_RUN) {
1452 				DPRINTFN(2, ("Authentication failed\n"));
1453 				vap->iv_stats.is_rx_auth_fail++;
1454 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1455 			} else {
1456 				DPRINTFN(2, ("Deauthenticated\n"));
1457 				vap->iv_stats.is_rx_deauth++;
1458 			}
1459 			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1460 			break;
1461 		case IWI_AUTH_SENT_1:
1462 		case IWI_AUTH_RECV_2:
1463 		case IWI_AUTH_SEQ1_PASS:
1464 			break;
1465 		case IWI_AUTH_SEQ1_FAIL:
1466 			DPRINTFN(2, ("Initial authentication handshake failed; "
1467 				"you probably need shared key\n"));
1468 			vap->iv_stats.is_rx_auth_fail++;
1469 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1470 			/* XXX retry shared key when in auto */
1471 			break;
1472 		default:
1473 			device_printf(sc->sc_dev,
1474 			    "unknown authentication state %u\n", auth->state);
1475 			break;
1476 		}
1477 		break;
1478 
1479 	case IWI_NOTIF_TYPE_ASSOCIATION:
1480 		assoc = (struct iwi_notif_association *)(notif + 1);
1481 		switch (assoc->state) {
1482 		case IWI_AUTH_SUCCESS:
1483 			/* re-association, do nothing */
1484 			break;
1485 		case IWI_ASSOC_SUCCESS:
1486 			DPRINTFN(2, ("Association succeeded\n"));
1487 			sc->flags |= IWI_FLAG_ASSOCIATED;
1488 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1489 			iwi_checkforqos(vap,
1490 			    (const struct ieee80211_frame *)(assoc+1),
1491 			    le16toh(notif->len) - sizeof(*assoc) - 1);
1492 			ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1493 			break;
1494 		case IWI_ASSOC_INIT:
1495 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1496 			switch (sc->fw_state) {
1497 			case IWI_FW_ASSOCIATING:
1498 				DPRINTFN(2, ("Association failed\n"));
1499 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1500 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1501 				break;
1502 
1503 			case IWI_FW_DISASSOCIATING:
1504 				DPRINTFN(2, ("Dissassociated\n"));
1505 				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1506 				vap->iv_stats.is_rx_disassoc++;
1507 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1508 				break;
1509 			}
1510 			break;
1511 		default:
1512 			device_printf(sc->sc_dev,
1513 			    "unknown association state %u\n", assoc->state);
1514 			break;
1515 		}
1516 		break;
1517 
1518 	case IWI_NOTIF_TYPE_BEACON:
1519 		/* XXX check struct length */
1520 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1521 
1522 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1523 		    beacon->state, le32toh(beacon->number)));
1524 
1525 		if (beacon->state == IWI_BEACON_MISS) {
1526 			/*
1527 			 * The firmware notifies us of every beacon miss
1528 			 * so we need to track the count against the
1529 			 * configured threshold before notifying the
1530 			 * 802.11 layer.
1531 			 * XXX try to roam, drop assoc only on much higher count
1532 			 */
1533 			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1534 				DPRINTF(("Beacon miss: %u >= %u\n",
1535 				    le32toh(beacon->number),
1536 				    vap->iv_bmissthreshold));
1537 				vap->iv_stats.is_beacon_miss++;
1538 				/*
1539 				 * It's pointless to notify the 802.11 layer
1540 				 * as it'll try to send a probe request (which
1541 				 * we'll discard) and then timeout and drop us
1542 				 * into scan state.  Instead tell the firmware
1543 				 * to disassociate and then on completion we'll
1544 				 * kick the state machine to scan.
1545 				 */
1546 				ieee80211_runtask(ic, &sc->sc_disassoctask);
1547 			}
1548 		}
1549 		break;
1550 
1551 	case IWI_NOTIF_TYPE_CALIBRATION:
1552 	case IWI_NOTIF_TYPE_NOISE:
1553 		/* XXX handle? */
1554 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1555 		break;
1556 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1557 		iwi_notif_link_quality(sc, notif);
1558 		break;
1559 
1560 	default:
1561 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1562 		    notif->type, notif->flags, le16toh(notif->len)));
1563 		break;
1564 	}
1565 }
1566 
1567 static void
1568 iwi_rx_intr(struct iwi_softc *sc)
1569 {
1570 	struct iwi_rx_data *data;
1571 	struct iwi_hdr *hdr;
1572 	uint32_t hw;
1573 
1574 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1575 
1576 	for (; sc->rxq.cur != hw;) {
1577 		data = &sc->rxq.data[sc->rxq.cur];
1578 
1579 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1580 		    BUS_DMASYNC_POSTREAD);
1581 
1582 		hdr = mtod(data->m, struct iwi_hdr *);
1583 
1584 		switch (hdr->type) {
1585 		case IWI_HDR_TYPE_FRAME:
1586 			iwi_frame_intr(sc, data, sc->rxq.cur,
1587 			    (struct iwi_frame *)(hdr + 1));
1588 			break;
1589 
1590 		case IWI_HDR_TYPE_NOTIF:
1591 			iwi_notification_intr(sc,
1592 			    (struct iwi_notif *)(hdr + 1));
1593 			break;
1594 
1595 		default:
1596 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1597 			    hdr->type);
1598 		}
1599 
1600 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1601 
1602 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1603 	}
1604 
1605 	/* tell the firmware what we have processed */
1606 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1607 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1608 }
1609 
1610 static void
1611 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1612 {
1613 	struct iwi_tx_data *data;
1614 	uint32_t hw;
1615 
1616 	hw = CSR_READ_4(sc, txq->csr_ridx);
1617 
1618 	while (txq->next != hw) {
1619 		data = &txq->data[txq->next];
1620 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1621 		bus_dmamap_sync(txq->data_dmat, data->map,
1622 		    BUS_DMASYNC_POSTWRITE);
1623 		bus_dmamap_unload(txq->data_dmat, data->map);
1624 		ieee80211_tx_complete(data->ni, data->m, 0);
1625 		data->ni = NULL;
1626 		data->m = NULL;
1627 		txq->queued--;
1628 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1629 	}
1630 	sc->sc_tx_timer = 0;
1631 	if (sc->sc_softled)
1632 		iwi_led_event(sc, IWI_LED_TX);
1633 	iwi_start(sc);
1634 }
1635 
1636 static void
1637 iwi_fatal_error_intr(struct iwi_softc *sc)
1638 {
1639 	struct ieee80211com *ic = &sc->sc_ic;
1640 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1641 
1642 	device_printf(sc->sc_dev, "firmware error\n");
1643 	if (vap != NULL)
1644 		ieee80211_cancel_scan(vap);
1645 	ieee80211_runtask(ic, &sc->sc_restarttask);
1646 
1647 	sc->flags &= ~IWI_FLAG_BUSY;
1648 	sc->sc_busy_timer = 0;
1649 	wakeup(sc);
1650 }
1651 
1652 static void
1653 iwi_radio_off_intr(struct iwi_softc *sc)
1654 {
1655 
1656 	ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask);
1657 }
1658 
1659 static void
1660 iwi_intr(void *arg)
1661 {
1662 	struct iwi_softc *sc = arg;
1663 	uint32_t r;
1664 	IWI_LOCK_DECL;
1665 
1666 	IWI_LOCK(sc);
1667 
1668 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1669 		IWI_UNLOCK(sc);
1670 		return;
1671 	}
1672 
1673 	/* acknowledge interrupts */
1674 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1675 
1676 	if (r & IWI_INTR_FATAL_ERROR) {
1677 		iwi_fatal_error_intr(sc);
1678 		goto done;
1679 	}
1680 
1681 	if (r & IWI_INTR_FW_INITED) {
1682 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1683 			wakeup(sc);
1684 	}
1685 
1686 	if (r & IWI_INTR_RADIO_OFF)
1687 		iwi_radio_off_intr(sc);
1688 
1689 	if (r & IWI_INTR_CMD_DONE) {
1690 		sc->flags &= ~IWI_FLAG_BUSY;
1691 		sc->sc_busy_timer = 0;
1692 		wakeup(sc);
1693 	}
1694 
1695 	if (r & IWI_INTR_TX1_DONE)
1696 		iwi_tx_intr(sc, &sc->txq[0]);
1697 
1698 	if (r & IWI_INTR_TX2_DONE)
1699 		iwi_tx_intr(sc, &sc->txq[1]);
1700 
1701 	if (r & IWI_INTR_TX3_DONE)
1702 		iwi_tx_intr(sc, &sc->txq[2]);
1703 
1704 	if (r & IWI_INTR_TX4_DONE)
1705 		iwi_tx_intr(sc, &sc->txq[3]);
1706 
1707 	if (r & IWI_INTR_RX_DONE)
1708 		iwi_rx_intr(sc);
1709 
1710 	if (r & IWI_INTR_PARITY_ERROR) {
1711 		/* XXX rate-limit */
1712 		device_printf(sc->sc_dev, "parity error\n");
1713 	}
1714 done:
1715 	IWI_UNLOCK(sc);
1716 }
1717 
1718 static int
1719 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1720 {
1721 	struct iwi_cmd_desc *desc;
1722 
1723 	IWI_LOCK_ASSERT(sc);
1724 
1725 	if (sc->flags & IWI_FLAG_BUSY) {
1726 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1727 			__func__, type);
1728 		return EAGAIN;
1729 	}
1730 	sc->flags |= IWI_FLAG_BUSY;
1731 	sc->sc_busy_timer = 2;
1732 
1733 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1734 
1735 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1736 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1737 	desc->type = type;
1738 	desc->len = len;
1739 	memcpy(desc->data, data, len);
1740 
1741 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1742 	    BUS_DMASYNC_PREWRITE);
1743 
1744 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1745 	    type, len));
1746 
1747 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1748 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1749 
1750 	return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1751 }
1752 
1753 static void
1754 iwi_write_ibssnode(struct iwi_softc *sc,
1755 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1756 {
1757 	struct iwi_ibssnode node;
1758 
1759 	/* write node information into NIC memory */
1760 	memset(&node, 0, sizeof node);
1761 	IEEE80211_ADDR_COPY(node.bssid, addr);
1762 
1763 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1764 
1765 	CSR_WRITE_REGION_1(sc,
1766 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1767 	    (uint8_t *)&node, sizeof node);
1768 }
1769 
1770 static int
1771 iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1772     int ac)
1773 {
1774 	struct ieee80211vap *vap = ni->ni_vap;
1775 	struct iwi_node *in = (struct iwi_node *)ni;
1776 	const struct ieee80211_frame *wh;
1777 	struct ieee80211_key *k;
1778 	struct iwi_tx_ring *txq = &sc->txq[ac];
1779 	struct iwi_tx_data *data;
1780 	struct iwi_tx_desc *desc;
1781 	struct mbuf *mnew;
1782 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1783 	int error, nsegs, hdrlen, i;
1784 	int ismcast, flags, xflags, staid;
1785 
1786 	IWI_LOCK_ASSERT(sc);
1787 	wh = mtod(m0, const struct ieee80211_frame *);
1788 	/* NB: only data frames use this path */
1789 	hdrlen = ieee80211_hdrsize(wh);
1790 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1791 	flags = xflags = 0;
1792 
1793 	if (!ismcast)
1794 		flags |= IWI_DATA_FLAG_NEED_ACK;
1795 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1796 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1797 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1798 		xflags |= IWI_DATA_XFLAG_QOS;
1799 		if (ieee80211_wme_vap_ac_is_noack(vap, ac))
1800 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1801 	}
1802 
1803 	/*
1804 	 * This is only used in IBSS mode where the firmware expect an index
1805 	 * in a h/w table instead of a destination address.
1806 	 */
1807 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1808 		if (!ismcast) {
1809 			if (in->in_station == -1) {
1810 				in->in_station = alloc_unr(sc->sc_unr);
1811 				if (in->in_station == -1) {
1812 					/* h/w table is full */
1813 					if_inc_counter(ni->ni_vap->iv_ifp,
1814 					    IFCOUNTER_OERRORS, 1);
1815 					m_freem(m0);
1816 					ieee80211_free_node(ni);
1817 					return 0;
1818 				}
1819 				iwi_write_ibssnode(sc,
1820 					ni->ni_macaddr, in->in_station);
1821 			}
1822 			staid = in->in_station;
1823 		} else {
1824 			/*
1825 			 * Multicast addresses have no associated node
1826 			 * so there will be no station entry.  We reserve
1827 			 * entry 0 for one mcast address and use that.
1828 			 * If there are many being used this will be
1829 			 * expensive and we'll need to do a better job
1830 			 * but for now this handles the broadcast case.
1831 			 */
1832 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1833 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1834 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1835 			}
1836 			staid = 0;
1837 		}
1838 	} else
1839 		staid = 0;
1840 
1841 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1842 		k = ieee80211_crypto_encap(ni, m0);
1843 		if (k == NULL) {
1844 			m_freem(m0);
1845 			return ENOBUFS;
1846 		}
1847 
1848 		/* packet header may have moved, reset our local pointer */
1849 		wh = mtod(m0, struct ieee80211_frame *);
1850 	}
1851 
1852 	if (ieee80211_radiotap_active_vap(vap)) {
1853 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1854 
1855 		tap->wt_flags = 0;
1856 
1857 		ieee80211_radiotap_tx(vap, m0);
1858 	}
1859 
1860 	data = &txq->data[txq->cur];
1861 	desc = &txq->desc[txq->cur];
1862 
1863 	/* save and trim IEEE802.11 header */
1864 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1865 	m_adj(m0, hdrlen);
1866 
1867 	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1868 	    &nsegs, 0);
1869 	if (error != 0 && error != EFBIG) {
1870 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1871 		    error);
1872 		m_freem(m0);
1873 		return error;
1874 	}
1875 	if (error != 0) {
1876 		mnew = m_defrag(m0, M_NOWAIT);
1877 		if (mnew == NULL) {
1878 			device_printf(sc->sc_dev,
1879 			    "could not defragment mbuf\n");
1880 			m_freem(m0);
1881 			return ENOBUFS;
1882 		}
1883 		m0 = mnew;
1884 
1885 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1886 		    m0, segs, &nsegs, 0);
1887 		if (error != 0) {
1888 			device_printf(sc->sc_dev,
1889 			    "could not map mbuf (error %d)\n", error);
1890 			m_freem(m0);
1891 			return error;
1892 		}
1893 	}
1894 
1895 	data->m = m0;
1896 	data->ni = ni;
1897 
1898 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1899 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1900 	desc->station = staid;
1901 	desc->cmd = IWI_DATA_CMD_TX;
1902 	desc->len = htole16(m0->m_pkthdr.len);
1903 	desc->flags = flags;
1904 	desc->xflags = xflags;
1905 
1906 #if 0
1907 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1908 		desc->wep_txkey = vap->iv_def_txkey;
1909 	else
1910 #endif
1911 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1912 
1913 	desc->nseg = htole32(nsegs);
1914 	for (i = 0; i < nsegs; i++) {
1915 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1916 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1917 	}
1918 
1919 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1920 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1921 
1922 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1923 	    ac, txq->cur, le16toh(desc->len), nsegs));
1924 
1925 	txq->queued++;
1926 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1927 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1928 
1929 	return 0;
1930 }
1931 
1932 static int
1933 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1934 	const struct ieee80211_bpf_params *params)
1935 {
1936 	/* no support; just discard */
1937 	m_freem(m);
1938 	ieee80211_free_node(ni);
1939 	return 0;
1940 }
1941 
1942 static int
1943 iwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1944 {
1945 	struct iwi_softc *sc = ic->ic_softc;
1946 	int error;
1947 	IWI_LOCK_DECL;
1948 
1949 	IWI_LOCK(sc);
1950 	if (!sc->sc_running) {
1951 		IWI_UNLOCK(sc);
1952 		return (ENXIO);
1953 	}
1954 	error = mbufq_enqueue(&sc->sc_snd, m);
1955 	if (error) {
1956 		IWI_UNLOCK(sc);
1957 		return (error);
1958 	}
1959 	iwi_start(sc);
1960 	IWI_UNLOCK(sc);
1961 	return (0);
1962 }
1963 
1964 static void
1965 iwi_start(struct iwi_softc *sc)
1966 {
1967 	struct mbuf *m;
1968 	struct ieee80211_node *ni;
1969 	int ac;
1970 
1971 	IWI_LOCK_ASSERT(sc);
1972 
1973 	while ((m =  mbufq_dequeue(&sc->sc_snd)) != NULL) {
1974 		ac = M_WME_GETAC(m);
1975 		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1976 			/* there is no place left in this ring; tail drop */
1977 			/* XXX tail drop */
1978 			mbufq_prepend(&sc->sc_snd, m);
1979 			break;
1980 		}
1981 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1982 		if (iwi_tx_start(sc, m, ni, ac) != 0) {
1983 			if_inc_counter(ni->ni_vap->iv_ifp,
1984 			    IFCOUNTER_OERRORS, 1);
1985 			ieee80211_free_node(ni);
1986 			break;
1987 		}
1988 		sc->sc_tx_timer = 5;
1989 	}
1990 }
1991 
1992 static void
1993 iwi_watchdog(void *arg)
1994 {
1995 	struct iwi_softc *sc = arg;
1996 	struct ieee80211com *ic = &sc->sc_ic;
1997 
1998 	IWI_LOCK_ASSERT(sc);
1999 
2000 	if (sc->sc_tx_timer > 0) {
2001 		if (--sc->sc_tx_timer == 0) {
2002 			device_printf(sc->sc_dev, "device timeout\n");
2003 			counter_u64_add(ic->ic_oerrors, 1);
2004 			ieee80211_runtask(ic, &sc->sc_restarttask);
2005 		}
2006 	}
2007 	if (sc->sc_state_timer > 0) {
2008 		if (--sc->sc_state_timer == 0) {
2009 			device_printf(sc->sc_dev,
2010 			    "firmware stuck in state %d, resetting\n",
2011 			    sc->fw_state);
2012 			if (sc->fw_state == IWI_FW_SCANNING)
2013 				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
2014 			ieee80211_runtask(ic, &sc->sc_restarttask);
2015 			sc->sc_state_timer = 3;
2016 		}
2017 	}
2018 	if (sc->sc_busy_timer > 0) {
2019 		if (--sc->sc_busy_timer == 0) {
2020 			device_printf(sc->sc_dev,
2021 			    "firmware command timeout, resetting\n");
2022 			ieee80211_runtask(ic, &sc->sc_restarttask);
2023 		}
2024 	}
2025 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
2026 }
2027 
2028 static void
2029 iwi_parent(struct ieee80211com *ic)
2030 {
2031 	struct iwi_softc *sc = ic->ic_softc;
2032 	int startall = 0;
2033 	IWI_LOCK_DECL;
2034 
2035 	IWI_LOCK(sc);
2036 	if (ic->ic_nrunning > 0) {
2037 		if (!sc->sc_running) {
2038 			iwi_init_locked(sc);
2039 			startall = 1;
2040 		}
2041 	} else if (sc->sc_running)
2042 		iwi_stop_locked(sc);
2043 	IWI_UNLOCK(sc);
2044 	if (startall)
2045 		ieee80211_start_all(ic);
2046 }
2047 
2048 static int
2049 iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
2050 {
2051 	struct ifreq *ifr = data;
2052 	struct iwi_softc *sc = ic->ic_softc;
2053 	int error;
2054 	IWI_LOCK_DECL;
2055 
2056 	IWI_LOCK(sc);
2057 	switch (cmd) {
2058 	case SIOCGIWISTATS:
2059 		/* XXX validate permissions/memory/etc? */
2060 		error = copyout(&sc->sc_linkqual, ifr_data_get_ptr(ifr),
2061 		    sizeof(struct iwi_notif_link_quality));
2062 		break;
2063 	case SIOCZIWISTATS:
2064 		memset(&sc->sc_linkqual, 0,
2065 		    sizeof(struct iwi_notif_link_quality));
2066 		error = 0;
2067 		break;
2068 	default:
2069 		error = ENOTTY;
2070 		break;
2071 	}
2072 	IWI_UNLOCK(sc);
2073 
2074 	return (error);
2075 }
2076 
2077 static void
2078 iwi_stop_master(struct iwi_softc *sc)
2079 {
2080 	uint32_t tmp;
2081 	int ntries;
2082 
2083 	/* disable interrupts */
2084 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2085 
2086 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2087 	for (ntries = 0; ntries < 5; ntries++) {
2088 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2089 			break;
2090 		DELAY(10);
2091 	}
2092 	if (ntries == 5)
2093 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2094 
2095 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2096 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2097 
2098 	sc->flags &= ~IWI_FLAG_FW_INITED;
2099 }
2100 
2101 static int
2102 iwi_reset(struct iwi_softc *sc)
2103 {
2104 	uint32_t tmp;
2105 	int i, ntries;
2106 
2107 	iwi_stop_master(sc);
2108 
2109 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2110 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2111 
2112 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2113 
2114 	/* wait for clock stabilization */
2115 	for (ntries = 0; ntries < 1000; ntries++) {
2116 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2117 			break;
2118 		DELAY(200);
2119 	}
2120 	if (ntries == 1000) {
2121 		device_printf(sc->sc_dev,
2122 		    "timeout waiting for clock stabilization\n");
2123 		return EIO;
2124 	}
2125 
2126 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2127 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2128 
2129 	DELAY(10);
2130 
2131 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2132 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2133 
2134 	/* clear NIC memory */
2135 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2136 	for (i = 0; i < 0xc000; i++)
2137 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2138 
2139 	return 0;
2140 }
2141 
2142 static const struct iwi_firmware_ohdr *
2143 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2144 {
2145 	const struct firmware *fp = fw->fp;
2146 	const struct iwi_firmware_ohdr *hdr;
2147 
2148 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2149 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2150 		return NULL;
2151 	}
2152 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2153 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2154 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2155 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2156 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2157 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2158 		    IWI_FW_REQ_MINOR);
2159 		return NULL;
2160 	}
2161 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2162 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2163 	fw->name = fp->name;
2164 	return hdr;
2165 }
2166 
2167 static const struct iwi_firmware_ohdr *
2168 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2169 {
2170 	const struct iwi_firmware_ohdr *hdr;
2171 
2172 	hdr = iwi_setup_ofw(sc, fw);
2173 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2174 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2175 		    fw->name);
2176 		hdr = NULL;
2177 	}
2178 	return hdr;
2179 }
2180 
2181 static void
2182 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2183 	  struct iwi_fw *uc, const char *ucname)
2184 {
2185 	if (fw->fp == NULL)
2186 		fw->fp = firmware_get(fwname);
2187 	/* NB: pre-3.0 ucode is packaged separately */
2188 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2189 		uc->fp = firmware_get(ucname);
2190 }
2191 
2192 /*
2193  * Get the required firmware images if not already loaded.
2194  * Note that we hold firmware images so long as the device
2195  * is marked up in case we need to reload them on device init.
2196  * This is necessary because we re-init the device sometimes
2197  * from a context where we cannot read from the filesystem
2198  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2199  * XXX return 0 on success, 1 on error.
2200  *
2201  * NB: the order of get'ing and put'ing images here is
2202  * intentional to support handling firmware images bundled
2203  * by operating mode and/or all together in one file with
2204  * the boot firmware as "master".
2205  */
2206 static int
2207 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2208 {
2209 	const struct iwi_firmware_hdr *hdr;
2210 	const struct firmware *fp;
2211 
2212 	/* invalidate cached firmware on mode change */
2213 	if (sc->fw_mode != opmode)
2214 		iwi_put_firmware(sc);
2215 
2216 	switch (opmode) {
2217 	case IEEE80211_M_STA:
2218 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2219 		break;
2220 	case IEEE80211_M_IBSS:
2221 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2222 		break;
2223 	case IEEE80211_M_MONITOR:
2224 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2225 			  &sc->fw_uc, "iwi_ucode_monitor");
2226 		break;
2227 	default:
2228 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2229 		return EINVAL;
2230 	}
2231 	fp = sc->fw_fw.fp;
2232 	if (fp == NULL) {
2233 		device_printf(sc->sc_dev, "could not load firmware\n");
2234 		goto bad;
2235 	}
2236 	if (fp->version < 300) {
2237 		/*
2238 		 * Firmware prior to 3.0 was packaged as separate
2239 		 * boot, firmware, and ucode images.  Verify the
2240 		 * ucode image was read in, retrieve the boot image
2241 		 * if needed, and check version stamps for consistency.
2242 		 * The version stamps in the data are also checked
2243 		 * above; this is a bit paranoid but is a cheap
2244 		 * safeguard against mis-packaging.
2245 		 */
2246 		if (sc->fw_uc.fp == NULL) {
2247 			device_printf(sc->sc_dev, "could not load ucode\n");
2248 			goto bad;
2249 		}
2250 		if (sc->fw_boot.fp == NULL) {
2251 			sc->fw_boot.fp = firmware_get("iwi_boot");
2252 			if (sc->fw_boot.fp == NULL) {
2253 				device_printf(sc->sc_dev,
2254 					"could not load boot firmware\n");
2255 				goto bad;
2256 			}
2257 		}
2258 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2259 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2260 			device_printf(sc->sc_dev,
2261 			    "firmware version mismatch: "
2262 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2263 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2264 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2265 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2266 			);
2267 			goto bad;
2268 		}
2269 		/*
2270 		 * Check and setup each image.
2271 		 */
2272 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2273 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2274 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2275 			goto bad;
2276 	} else {
2277 		/*
2278 		 * Check and setup combined image.
2279 		 */
2280 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2281 			device_printf(sc->sc_dev, "image '%s' too small\n",
2282 			    fp->name);
2283 			goto bad;
2284 		}
2285 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2286 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2287 				+ le32toh(hdr->fsize)) {
2288 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2289 			    fp->name);
2290 			goto bad;
2291 		}
2292 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2293 		sc->fw_boot.size = le32toh(hdr->bsize);
2294 		sc->fw_boot.name = fp->name;
2295 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2296 		sc->fw_uc.size = le32toh(hdr->usize);
2297 		sc->fw_uc.name = fp->name;
2298 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2299 		sc->fw_fw.size = le32toh(hdr->fsize);
2300 		sc->fw_fw.name = fp->name;
2301 	}
2302 #if 0
2303 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2304 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2305 #endif
2306 
2307 	sc->fw_mode = opmode;
2308 	return 0;
2309 bad:
2310 	iwi_put_firmware(sc);
2311 	return 1;
2312 }
2313 
2314 static void
2315 iwi_put_fw(struct iwi_fw *fw)
2316 {
2317 	if (fw->fp != NULL) {
2318 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2319 		fw->fp = NULL;
2320 	}
2321 	fw->data = NULL;
2322 	fw->size = 0;
2323 	fw->name = NULL;
2324 }
2325 
2326 /*
2327  * Release any cached firmware images.
2328  */
2329 static void
2330 iwi_put_firmware(struct iwi_softc *sc)
2331 {
2332 	iwi_put_fw(&sc->fw_uc);
2333 	iwi_put_fw(&sc->fw_fw);
2334 	iwi_put_fw(&sc->fw_boot);
2335 }
2336 
2337 static int
2338 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2339 {
2340 	uint32_t tmp;
2341 	const uint16_t *w;
2342 	const char *uc = fw->data;
2343 	size_t size = fw->size;
2344 	int i, ntries, error;
2345 
2346 	IWI_LOCK_ASSERT(sc);
2347 	error = 0;
2348 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2349 	    IWI_RST_STOP_MASTER);
2350 	for (ntries = 0; ntries < 5; ntries++) {
2351 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2352 			break;
2353 		DELAY(10);
2354 	}
2355 	if (ntries == 5) {
2356 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2357 		error = EIO;
2358 		goto fail;
2359 	}
2360 
2361 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2362 	DELAY(5000);
2363 
2364 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2365 	tmp &= ~IWI_RST_PRINCETON_RESET;
2366 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2367 
2368 	DELAY(5000);
2369 	MEM_WRITE_4(sc, 0x3000e0, 0);
2370 	DELAY(1000);
2371 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2372 	DELAY(1000);
2373 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2374 	DELAY(1000);
2375 	MEM_WRITE_1(sc, 0x200000, 0x00);
2376 	MEM_WRITE_1(sc, 0x200000, 0x40);
2377 	DELAY(1000);
2378 
2379 	/* write microcode into adapter memory */
2380 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2381 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2382 
2383 	MEM_WRITE_1(sc, 0x200000, 0x00);
2384 	MEM_WRITE_1(sc, 0x200000, 0x80);
2385 
2386 	/* wait until we get an answer */
2387 	for (ntries = 0; ntries < 100; ntries++) {
2388 		if (MEM_READ_1(sc, 0x200000) & 1)
2389 			break;
2390 		DELAY(100);
2391 	}
2392 	if (ntries == 100) {
2393 		device_printf(sc->sc_dev,
2394 		    "timeout waiting for ucode to initialize\n");
2395 		error = EIO;
2396 		goto fail;
2397 	}
2398 
2399 	/* read the answer or the firmware will not initialize properly */
2400 	for (i = 0; i < 7; i++)
2401 		MEM_READ_4(sc, 0x200004);
2402 
2403 	MEM_WRITE_1(sc, 0x200000, 0x00);
2404 
2405 fail:
2406 	return error;
2407 }
2408 
2409 /* macro to handle unaligned little endian data in firmware image */
2410 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2411 
2412 static int
2413 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2414 {
2415 	u_char *p, *end;
2416 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2417 	int ntries, error;
2418 
2419 	IWI_LOCK_ASSERT(sc);
2420 
2421 	/* copy firmware image to DMA memory */
2422 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2423 
2424 	/* make sure the adapter will get up-to-date values */
2425 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2426 
2427 	/* tell the adapter where the command blocks are stored */
2428 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2429 
2430 	/*
2431 	 * Store command blocks into adapter's internal memory using register
2432 	 * indirections. The adapter will read the firmware image through DMA
2433 	 * using information stored in command blocks.
2434 	 */
2435 	src = sc->fw_physaddr;
2436 	p = sc->fw_virtaddr;
2437 	end = p + fw->size;
2438 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2439 
2440 	while (p < end) {
2441 		dst = GETLE32(p); p += 4; src += 4;
2442 		len = GETLE32(p); p += 4; src += 4;
2443 		p += len;
2444 
2445 		while (len > 0) {
2446 			mlen = min(len, IWI_CB_MAXDATALEN);
2447 
2448 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2449 			sum = ctl ^ src ^ dst;
2450 
2451 			/* write a command block */
2452 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2453 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2454 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2455 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2456 
2457 			src += mlen;
2458 			dst += mlen;
2459 			len -= mlen;
2460 		}
2461 	}
2462 
2463 	/* write a fictive final command block (sentinel) */
2464 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2465 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2466 
2467 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2468 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2469 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2470 
2471 	/* tell the adapter to start processing command blocks */
2472 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2473 
2474 	/* wait until the adapter reaches the sentinel */
2475 	for (ntries = 0; ntries < 400; ntries++) {
2476 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2477 			break;
2478 		DELAY(100);
2479 	}
2480 	/* sync dma, just in case */
2481 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2482 	if (ntries == 400) {
2483 		device_printf(sc->sc_dev,
2484 		    "timeout processing command blocks for %s firmware\n",
2485 		    fw->name);
2486 		return EIO;
2487 	}
2488 
2489 	/* we're done with command blocks processing */
2490 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2491 
2492 	/* allow interrupts so we know when the firmware is ready */
2493 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2494 
2495 	/* tell the adapter to initialize the firmware */
2496 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2497 
2498 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2499 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2500 
2501 	/* wait at most one second for firmware initialization to complete */
2502 	if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2503 		device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2504 		    "initialization to complete\n", fw->name);
2505 	}
2506 
2507 	return error;
2508 }
2509 
2510 static int
2511 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2512 {
2513 	uint32_t data;
2514 
2515 	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2516 		/* XXX set more fine-grained operation */
2517 		data = htole32(IWI_POWER_MODE_MAX);
2518 	} else
2519 		data = htole32(IWI_POWER_MODE_CAM);
2520 
2521 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2522 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2523 }
2524 
2525 static int
2526 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2527 {
2528 	struct iwi_wep_key wepkey;
2529 	struct ieee80211_key *wk;
2530 	int error, i;
2531 
2532 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2533 		wk = &vap->iv_nw_keys[i];
2534 
2535 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2536 		wepkey.idx = i;
2537 		wepkey.len = wk->wk_keylen;
2538 		memset(wepkey.key, 0, sizeof wepkey.key);
2539 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2540 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2541 		    wepkey.len));
2542 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2543 		    sizeof wepkey);
2544 		if (error != 0)
2545 			return error;
2546 	}
2547 	return 0;
2548 }
2549 
2550 static int
2551 iwi_set_rateset(struct iwi_softc *sc, const struct ieee80211_rateset *net_rs,
2552     int mode, int type)
2553 {
2554 	struct iwi_rateset rs;
2555 
2556 	memset(&rs, 0, sizeof(rs));
2557 	rs.mode = mode;
2558 	rs.type = type;
2559 	rs.nrates = net_rs->rs_nrates;
2560 	if (rs.nrates > nitems(rs.rates)) {
2561 		DPRINTF(("Truncating negotiated rate set from %u\n",
2562 		    rs.nrates));
2563 		rs.nrates = nitems(rs.rates);
2564 	}
2565 	memcpy(rs.rates, net_rs->rs_rates, rs.nrates);
2566 	DPRINTF(("Setting .11%c%s %s rates (%u)\n",
2567 	    mode == IWI_MODE_11A ? 'a' : 'b',
2568 	    mode == IWI_MODE_11G ? "g" : "",
2569 	    type == IWI_RATESET_TYPE_SUPPORTED ? "supported" : "negotiated",
2570 	    rs.nrates));
2571 
2572 	return (iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof(rs)));
2573 }
2574 
2575 static int
2576 iwi_config(struct iwi_softc *sc)
2577 {
2578 	struct ieee80211com *ic = &sc->sc_ic;
2579 	struct iwi_configuration config;
2580 	struct iwi_txpower power;
2581 	uint32_t data;
2582 	int error, i;
2583 
2584 	IWI_LOCK_ASSERT(sc);
2585 
2586 	DPRINTF(("Setting MAC address to %6D\n", ic->ic_macaddr, ":"));
2587 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_macaddr,
2588 	    IEEE80211_ADDR_LEN);
2589 	if (error != 0)
2590 		return error;
2591 
2592 	memset(&config, 0, sizeof config);
2593 	config.bluetooth_coexistence = sc->bluetooth;
2594 	config.silence_threshold = 0x1e;
2595 	config.antenna = sc->antenna;
2596 	config.multicast_enabled = 1;
2597 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2598 	config.disable_unicast_decryption = 1;
2599 	config.disable_multicast_decryption = 1;
2600 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2601 		config.allow_invalid_frames = 1;
2602 		config.allow_beacon_and_probe_resp = 1;
2603 		config.allow_mgt = 1;
2604 	}
2605 	DPRINTF(("Configuring adapter\n"));
2606 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2607 	if (error != 0)
2608 		return error;
2609 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2610 		power.mode = IWI_MODE_11B;
2611 		power.nchan = 11;
2612 		for (i = 0; i < 11; i++) {
2613 			power.chan[i].chan = i + 1;
2614 			power.chan[i].power = IWI_TXPOWER_MAX;
2615 		}
2616 		DPRINTF(("Setting .11b channels tx power\n"));
2617 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2618 		if (error != 0)
2619 			return error;
2620 
2621 		power.mode = IWI_MODE_11G;
2622 		DPRINTF(("Setting .11g channels tx power\n"));
2623 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2624 		if (error != 0)
2625 			return error;
2626 	}
2627 
2628 	error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11G],
2629 	    IWI_MODE_11G, IWI_RATESET_TYPE_SUPPORTED);
2630 	if (error != 0)
2631 		return error;
2632 
2633 	error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11A],
2634 	    IWI_MODE_11A, IWI_RATESET_TYPE_SUPPORTED);
2635 	if (error != 0)
2636 		return error;
2637 
2638 	data = htole32(arc4random());
2639 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2640 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2641 	if (error != 0)
2642 		return error;
2643 
2644 	/* enable adapter */
2645 	DPRINTF(("Enabling adapter\n"));
2646 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2647 }
2648 
2649 static __inline void
2650 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2651 {
2652 	uint8_t *st = &scan->scan_type[ix / 2];
2653 	if (ix % 2)
2654 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2655 	else
2656 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2657 }
2658 
2659 static int
2660 scan_type(const struct ieee80211_scan_state *ss,
2661 	const struct ieee80211_channel *chan)
2662 {
2663 	/* We can only set one essid for a directed scan */
2664 	if (ss->ss_nssid != 0)
2665 		return IWI_SCAN_TYPE_BDIRECTED;
2666 	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2667 	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2668 		return IWI_SCAN_TYPE_BROADCAST;
2669 	return IWI_SCAN_TYPE_PASSIVE;
2670 }
2671 
2672 static __inline int
2673 scan_band(const struct ieee80211_channel *c)
2674 {
2675 	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2676 }
2677 
2678 static void
2679 iwi_monitor_scan(void *arg, int npending)
2680 {
2681 	struct iwi_softc *sc = arg;
2682 	IWI_LOCK_DECL;
2683 
2684 	IWI_LOCK(sc);
2685 	(void) iwi_scanchan(sc, 2000, 0);
2686 	IWI_UNLOCK(sc);
2687 }
2688 
2689 /*
2690  * Start a scan on the current channel or all channels.
2691  */
2692 static int
2693 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2694 {
2695 	struct ieee80211com *ic = &sc->sc_ic;
2696 	struct ieee80211_channel *chan;
2697 	struct ieee80211_scan_state *ss;
2698 	struct iwi_scan_ext scan;
2699 	int error = 0;
2700 
2701 	IWI_LOCK_ASSERT(sc);
2702 	if (sc->fw_state == IWI_FW_SCANNING) {
2703 		/*
2704 		 * This should not happen as we only trigger scan_next after
2705 		 * completion
2706 		 */
2707 		DPRINTF(("%s: called too early - still scanning\n", __func__));
2708 		return (EBUSY);
2709 	}
2710 	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2711 
2712 	ss = ic->ic_scan;
2713 
2714 	memset(&scan, 0, sizeof scan);
2715 	scan.full_scan_index = htole32(++sc->sc_scangen);
2716 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2717 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2718 		/*
2719 		 * Use very short dwell times for when we send probe request
2720 		 * frames.  Without this bg scans hang.  Ideally this should
2721 		 * be handled with early-termination as done by net80211 but
2722 		 * that's not feasible (aborting a scan is problematic).
2723 		 */
2724 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2725 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2726 	} else {
2727 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2728 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2729 	}
2730 
2731 	/* We can only set one essid for a directed scan */
2732 	if (ss->ss_nssid != 0) {
2733 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2734 		    ss->ss_ssid[0].len);
2735 		if (error)
2736 			return (error);
2737 	}
2738 
2739 	if (allchan) {
2740 		int i, next, band, b, bstart;
2741 		/*
2742 		 * Convert scan list to run-length encoded channel list
2743 		 * the firmware requires (preserving the order setup by
2744 		 * net80211).  The first entry in each run specifies the
2745 		 * band and the count of items in the run.
2746 		 */
2747 		next = 0;		/* next open slot */
2748 		bstart = 0;		/* NB: not needed, silence compiler */
2749 		band = -1;		/* NB: impossible value */
2750 		KASSERT(ss->ss_last > 0, ("no channels"));
2751 		for (i = 0; i < ss->ss_last; i++) {
2752 			chan = ss->ss_chans[i];
2753 			b = scan_band(chan);
2754 			if (b != band) {
2755 				if (band != -1)
2756 					scan.channels[bstart] =
2757 					    (next - bstart) | band;
2758 				/* NB: this allocates a slot for the run-len */
2759 				band = b, bstart = next++;
2760 			}
2761 			if (next >= IWI_SCAN_CHANNELS) {
2762 				DPRINTF(("truncating scan list\n"));
2763 				break;
2764 			}
2765 			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2766 			set_scan_type(&scan, next, scan_type(ss, chan));
2767 			next++;
2768 		}
2769 		scan.channels[bstart] = (next - bstart) | band;
2770 	} else {
2771 		/* Scan the current channel only */
2772 		chan = ic->ic_curchan;
2773 		scan.channels[0] = 1 | scan_band(chan);
2774 		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2775 		set_scan_type(&scan, 1, scan_type(ss, chan));
2776 	}
2777 #ifdef IWI_DEBUG
2778 	if (iwi_debug > 0) {
2779 		static const char *scantype[8] =
2780 		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2781 		int i;
2782 		printf("Scan request: index %u dwell %d/%d/%d\n"
2783 		    , le32toh(scan.full_scan_index)
2784 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2785 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2786 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2787 		);
2788 		i = 0;
2789 		do {
2790 			int run = scan.channels[i];
2791 			if (run == 0)
2792 				break;
2793 			printf("Scan %d %s channels:", run & 0x3f,
2794 			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2795 			for (run &= 0x3f, i++; run > 0; run--, i++) {
2796 				uint8_t type = scan.scan_type[i/2];
2797 				printf(" %u/%s", scan.channels[i],
2798 				    scantype[(i & 1 ? type : type>>4) & 7]);
2799 			}
2800 			printf("\n");
2801 		} while (i < IWI_SCAN_CHANNELS);
2802 	}
2803 #endif
2804 
2805 	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2806 }
2807 
2808 static int
2809 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2810 {
2811 	struct iwi_sensitivity sens;
2812 
2813 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2814 
2815 	memset(&sens, 0, sizeof sens);
2816 	sens.rssi = htole16(rssi_dbm);
2817 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2818 }
2819 
2820 static int
2821 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2822 {
2823 	struct ieee80211com *ic = vap->iv_ic;
2824 	struct ifnet *ifp = vap->iv_ifp;
2825 	struct ieee80211_node *ni;
2826 	struct iwi_configuration config;
2827 	struct iwi_associate *assoc = &sc->assoc;
2828 	uint16_t capinfo;
2829 	uint32_t data;
2830 	int error, mode;
2831 
2832 	IWI_LOCK_ASSERT(sc);
2833 
2834 	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2835 		DPRINTF(("Already associated\n"));
2836 		return (-1);
2837 	}
2838 
2839 	ni = ieee80211_ref_node(vap->iv_bss);
2840 
2841 	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2842 	error = 0;
2843 	mode = 0;
2844 
2845 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2846 		mode = IWI_MODE_11A;
2847 	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2848 		mode = IWI_MODE_11G;
2849 	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2850 		mode = IWI_MODE_11B;
2851 
2852 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2853 		memset(&config, 0, sizeof config);
2854 		config.bluetooth_coexistence = sc->bluetooth;
2855 		config.antenna = sc->antenna;
2856 		config.multicast_enabled = 1;
2857 		if (mode == IWI_MODE_11G)
2858 			config.use_protection = 1;
2859 		config.answer_pbreq =
2860 		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2861 		config.disable_unicast_decryption = 1;
2862 		config.disable_multicast_decryption = 1;
2863 		DPRINTF(("Configuring adapter\n"));
2864 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2865 		if (error != 0)
2866 			goto done;
2867 	}
2868 
2869 #ifdef IWI_DEBUG
2870 	if (iwi_debug > 0) {
2871 		printf("Setting ESSID to ");
2872 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2873 		printf("\n");
2874 	}
2875 #endif
2876 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2877 	if (error != 0)
2878 		goto done;
2879 
2880 	error = iwi_setpowermode(sc, vap);
2881 	if (error != 0)
2882 		goto done;
2883 
2884 	data = htole32(vap->iv_rtsthreshold);
2885 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2886 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2887 	if (error != 0)
2888 		goto done;
2889 
2890 	data = htole32(vap->iv_fragthreshold);
2891 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2892 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2893 	if (error != 0)
2894 		goto done;
2895 
2896 	/* the rate set has already been "negotiated" */
2897 	error = iwi_set_rateset(sc, &ni->ni_rates, mode,
2898 	    IWI_RATESET_TYPE_NEGOTIATED);
2899 	if (error != 0)
2900 		goto done;
2901 
2902 	memset(assoc, 0, sizeof *assoc);
2903 
2904 	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2905 		/* NB: don't treat WME setup as failure */
2906 		if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0)
2907 			assoc->policy |= htole16(IWI_POLICY_WME);
2908 		/* XXX complain on failure? */
2909 	}
2910 
2911 	if (vap->iv_appie_wpa != NULL) {
2912 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2913 
2914 		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2915 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2916 		if (error != 0)
2917 			goto done;
2918 	}
2919 
2920 	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2921 	if (error != 0)
2922 		goto done;
2923 
2924 	assoc->mode = mode;
2925 	assoc->chan = ic->ic_curchan->ic_ieee;
2926 	/*
2927 	 * NB: do not arrange for shared key auth w/o privacy
2928 	 *     (i.e. a wep key); it causes a firmware error.
2929 	 */
2930 	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2931 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2932 		assoc->auth = IWI_AUTH_SHARED;
2933 		/*
2934 		 * It's possible to have privacy marked but no default
2935 		 * key setup.  This typically is due to a user app bug
2936 		 * but if we blindly grab the key the firmware will
2937 		 * barf so avoid it for now.
2938 		 */
2939 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2940 			assoc->auth |= vap->iv_def_txkey << 4;
2941 
2942 		error = iwi_setwepkeys(sc, vap);
2943 		if (error != 0)
2944 			goto done;
2945 	}
2946 	if (vap->iv_flags & IEEE80211_F_WPA)
2947 		assoc->policy |= htole16(IWI_POLICY_WPA);
2948 	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2949 		assoc->type = IWI_HC_IBSS_START;
2950 	else
2951 		assoc->type = IWI_HC_ASSOC;
2952 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2953 
2954 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2955 		capinfo = IEEE80211_CAPINFO_IBSS;
2956 	else
2957 		capinfo = IEEE80211_CAPINFO_ESS;
2958 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2959 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2960 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2961 	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2962 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2963 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2964 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2965 	assoc->capinfo = htole16(capinfo);
2966 
2967 	assoc->lintval = htole16(ic->ic_lintval);
2968 	assoc->intval = htole16(ni->ni_intval);
2969 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2970 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2971 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
2972 	else
2973 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2974 
2975 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
2976 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
2977 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2978 	    assoc->bssid, ":", assoc->dst, ":",
2979 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
2980 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
2981 	    le16toh(assoc->intval)));
2982 	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2983 done:
2984 	ieee80211_free_node(ni);
2985 	if (error)
2986 		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2987 
2988 	return (error);
2989 }
2990 
2991 static void
2992 iwi_disassoc(void *arg, int pending)
2993 {
2994 	struct iwi_softc *sc = arg;
2995 	IWI_LOCK_DECL;
2996 
2997 	IWI_LOCK(sc);
2998 	iwi_disassociate(sc, 0);
2999 	IWI_UNLOCK(sc);
3000 }
3001 
3002 static int
3003 iwi_disassociate(struct iwi_softc *sc, int quiet)
3004 {
3005 	struct iwi_associate *assoc = &sc->assoc;
3006 
3007 	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
3008 		DPRINTF(("Not associated\n"));
3009 		return (-1);
3010 	}
3011 
3012 	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
3013 
3014 	if (quiet)
3015 		assoc->type = IWI_HC_DISASSOC_QUIET;
3016 	else
3017 		assoc->type = IWI_HC_DISASSOC;
3018 
3019 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
3020 	    assoc->bssid, ":", assoc->chan));
3021 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3022 }
3023 
3024 /*
3025  * release dma resources for the firmware
3026  */
3027 static void
3028 iwi_release_fw_dma(struct iwi_softc *sc)
3029 {
3030 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
3031 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3032 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
3033 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3034 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3035 		bus_dma_tag_destroy(sc->fw_dmat);
3036 
3037 	sc->fw_flags = 0;
3038 	sc->fw_dma_size = 0;
3039 	sc->fw_dmat = NULL;
3040 	sc->fw_map = NULL;
3041 	sc->fw_physaddr = 0;
3042 	sc->fw_virtaddr = NULL;
3043 }
3044 
3045 /*
3046  * allocate the dma descriptor for the firmware.
3047  * Return 0 on success, 1 on error.
3048  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3049  */
3050 static int
3051 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3052 {
3053 	if (sc->fw_dma_size >= size)
3054 		return 0;
3055 	if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
3056 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3057 	    size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
3058 		device_printf(sc->sc_dev,
3059 		    "could not create firmware DMA tag\n");
3060 		goto error;
3061 	}
3062 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3063 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3064 	    &sc->fw_map) != 0) {
3065 		device_printf(sc->sc_dev,
3066 		    "could not allocate firmware DMA memory\n");
3067 		goto error;
3068 	}
3069 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3070 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3071 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3072 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3073 		goto error;
3074 	}
3075 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3076 	sc->fw_dma_size = size;
3077 	return 0;
3078 
3079 error:
3080 	iwi_release_fw_dma(sc);
3081 	return 1;
3082 }
3083 
3084 static void
3085 iwi_init_locked(struct iwi_softc *sc)
3086 {
3087 	struct iwi_rx_data *data;
3088 	int i;
3089 
3090 	IWI_LOCK_ASSERT(sc);
3091 
3092 	if (sc->fw_state == IWI_FW_LOADING) {
3093 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3094 		return;		/* XXX: condvar? */
3095 	}
3096 
3097 	iwi_stop_locked(sc);
3098 
3099 	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3100 
3101 	if (iwi_reset(sc) != 0) {
3102 		device_printf(sc->sc_dev, "could not reset adapter\n");
3103 		goto fail;
3104 	}
3105 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3106 		device_printf(sc->sc_dev,
3107 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3108 		goto fail;
3109 	}
3110 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3111 		device_printf(sc->sc_dev,
3112 		    "could not load microcode %s\n", sc->fw_uc.name);
3113 		goto fail;
3114 	}
3115 
3116 	iwi_stop_master(sc);
3117 
3118 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3119 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3120 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3121 
3122 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3123 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3124 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3125 
3126 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3127 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3128 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3129 
3130 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3131 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3132 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3133 
3134 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3135 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3136 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3137 
3138 	for (i = 0; i < sc->rxq.count; i++) {
3139 		data = &sc->rxq.data[i];
3140 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3141 	}
3142 
3143 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3144 
3145 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3146 		device_printf(sc->sc_dev,
3147 		    "could not load main firmware %s\n", sc->fw_fw.name);
3148 		goto fail;
3149 	}
3150 	sc->flags |= IWI_FLAG_FW_INITED;
3151 
3152 	IWI_STATE_END(sc, IWI_FW_LOADING);
3153 
3154 	if (iwi_config(sc) != 0) {
3155 		device_printf(sc->sc_dev, "unable to enable adapter\n");
3156 		goto fail2;
3157 	}
3158 
3159 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
3160 	sc->sc_running = 1;
3161 	return;
3162 fail:
3163 	IWI_STATE_END(sc, IWI_FW_LOADING);
3164 fail2:
3165 	iwi_stop_locked(sc);
3166 }
3167 
3168 static void
3169 iwi_init(void *priv)
3170 {
3171 	struct iwi_softc *sc = priv;
3172 	struct ieee80211com *ic = &sc->sc_ic;
3173 	IWI_LOCK_DECL;
3174 
3175 	IWI_LOCK(sc);
3176 	iwi_init_locked(sc);
3177 	IWI_UNLOCK(sc);
3178 
3179 	if (sc->sc_running)
3180 		ieee80211_start_all(ic);
3181 }
3182 
3183 static void
3184 iwi_stop_locked(void *priv)
3185 {
3186 	struct iwi_softc *sc = priv;
3187 
3188 	IWI_LOCK_ASSERT(sc);
3189 
3190 	sc->sc_running = 0;
3191 
3192 	if (sc->sc_softled) {
3193 		callout_stop(&sc->sc_ledtimer);
3194 		sc->sc_blinking = 0;
3195 	}
3196 	callout_stop(&sc->sc_wdtimer);
3197 	callout_stop(&sc->sc_rftimer);
3198 
3199 	iwi_stop_master(sc);
3200 
3201 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3202 
3203 	/* reset rings */
3204 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3205 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3206 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3207 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3208 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3209 	iwi_reset_rx_ring(sc, &sc->rxq);
3210 
3211 	sc->sc_tx_timer = 0;
3212 	sc->sc_state_timer = 0;
3213 	sc->sc_busy_timer = 0;
3214 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3215 	sc->fw_state = IWI_FW_IDLE;
3216 	wakeup(sc);
3217 }
3218 
3219 static void
3220 iwi_stop(struct iwi_softc *sc)
3221 {
3222 	IWI_LOCK_DECL;
3223 
3224 	IWI_LOCK(sc);
3225 	iwi_stop_locked(sc);
3226 	IWI_UNLOCK(sc);
3227 }
3228 
3229 static void
3230 iwi_restart(void *arg, int npending)
3231 {
3232 	struct iwi_softc *sc = arg;
3233 
3234 	iwi_init(sc);
3235 }
3236 
3237 /*
3238  * Return whether or not the radio is enabled in hardware
3239  * (i.e. the rfkill switch is "off").
3240  */
3241 static int
3242 iwi_getrfkill(struct iwi_softc *sc)
3243 {
3244 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3245 }
3246 
3247 static void
3248 iwi_radio_on(void *arg, int pending)
3249 {
3250 	struct iwi_softc *sc = arg;
3251 	struct ieee80211com *ic = &sc->sc_ic;
3252 
3253 	device_printf(sc->sc_dev, "radio turned on\n");
3254 
3255 	iwi_init(sc);
3256 	ieee80211_notify_radio(ic, 1);
3257 }
3258 
3259 static void
3260 iwi_rfkill_poll(void *arg)
3261 {
3262 	struct iwi_softc *sc = arg;
3263 
3264 	IWI_LOCK_ASSERT(sc);
3265 
3266 	/*
3267 	 * Check for a change in rfkill state.  We get an
3268 	 * interrupt when a radio is disabled but not when
3269 	 * it is enabled so we must poll for the latter.
3270 	 */
3271 	if (!iwi_getrfkill(sc)) {
3272 		ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask);
3273 		return;
3274 	}
3275 	callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc);
3276 }
3277 
3278 static void
3279 iwi_radio_off(void *arg, int pending)
3280 {
3281 	struct iwi_softc *sc = arg;
3282 	struct ieee80211com *ic = &sc->sc_ic;
3283 	IWI_LOCK_DECL;
3284 
3285 	device_printf(sc->sc_dev, "radio turned off\n");
3286 
3287 	ieee80211_notify_radio(ic, 0);
3288 
3289 	IWI_LOCK(sc);
3290 	iwi_stop_locked(sc);
3291 	iwi_rfkill_poll(sc);
3292 	IWI_UNLOCK(sc);
3293 }
3294 
3295 static int
3296 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3297 {
3298 	struct iwi_softc *sc = arg1;
3299 	uint32_t size, buf[128];
3300 
3301 	memset(buf, 0, sizeof buf);
3302 
3303 	if (!(sc->flags & IWI_FLAG_FW_INITED))
3304 		return SYSCTL_OUT(req, buf, sizeof buf);
3305 
3306 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3307 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3308 
3309 	return SYSCTL_OUT(req, buf, size);
3310 }
3311 
3312 static int
3313 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3314 {
3315 	struct iwi_softc *sc = arg1;
3316 	int val = !iwi_getrfkill(sc);
3317 
3318 	return SYSCTL_OUT(req, &val, sizeof val);
3319 }
3320 
3321 /*
3322  * Add sysctl knobs.
3323  */
3324 static void
3325 iwi_sysctlattach(struct iwi_softc *sc)
3326 {
3327 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3328 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3329 
3330 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3331 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3332 	    "radio transmitter switch state (0=off, 1=on)");
3333 
3334 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3335 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3336 	    "statistics");
3337 
3338 	sc->bluetooth = 0;
3339 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3340 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3341 
3342 	sc->antenna = IWI_ANTENNA_AUTO;
3343 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3344 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3345 }
3346 
3347 /*
3348  * LED support.
3349  *
3350  * Different cards have different capabilities.  Some have three
3351  * led's while others have only one.  The linux ipw driver defines
3352  * led's for link state (associated or not), band (11a, 11g, 11b),
3353  * and for link activity.  We use one led and vary the blink rate
3354  * according to the tx/rx traffic a la the ath driver.
3355  */
3356 
3357 static __inline uint32_t
3358 iwi_toggle_event(uint32_t r)
3359 {
3360 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3361 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3362 }
3363 
3364 static uint32_t
3365 iwi_read_event(struct iwi_softc *sc)
3366 {
3367 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3368 }
3369 
3370 static void
3371 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3372 {
3373 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3374 }
3375 
3376 static void
3377 iwi_led_done(void *arg)
3378 {
3379 	struct iwi_softc *sc = arg;
3380 
3381 	sc->sc_blinking = 0;
3382 }
3383 
3384 /*
3385  * Turn the activity LED off: flip the pin and then set a timer so no
3386  * update will happen for the specified duration.
3387  */
3388 static void
3389 iwi_led_off(void *arg)
3390 {
3391 	struct iwi_softc *sc = arg;
3392 	uint32_t v;
3393 
3394 	v = iwi_read_event(sc);
3395 	v &= ~sc->sc_ledpin;
3396 	iwi_write_event(sc, iwi_toggle_event(v));
3397 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3398 }
3399 
3400 /*
3401  * Blink the LED according to the specified on/off times.
3402  */
3403 static void
3404 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3405 {
3406 	uint32_t v;
3407 
3408 	v = iwi_read_event(sc);
3409 	v |= sc->sc_ledpin;
3410 	iwi_write_event(sc, iwi_toggle_event(v));
3411 	sc->sc_blinking = 1;
3412 	sc->sc_ledoff = off;
3413 	callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3414 }
3415 
3416 static void
3417 iwi_led_event(struct iwi_softc *sc, int event)
3418 {
3419 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3420 	static const struct {
3421 		u_int		rate;		/* tx/rx iwi rate */
3422 		u_int16_t	timeOn;		/* LED on time (ms) */
3423 		u_int16_t	timeOff;	/* LED off time (ms) */
3424 	} blinkrates[] = {
3425 		{ IWI_RATE_OFDM54, 40,  10 },
3426 		{ IWI_RATE_OFDM48, 44,  11 },
3427 		{ IWI_RATE_OFDM36, 50,  13 },
3428 		{ IWI_RATE_OFDM24, 57,  14 },
3429 		{ IWI_RATE_OFDM18, 67,  16 },
3430 		{ IWI_RATE_OFDM12, 80,  20 },
3431 		{ IWI_RATE_DS11,  100,  25 },
3432 		{ IWI_RATE_OFDM9, 133,  34 },
3433 		{ IWI_RATE_OFDM6, 160,  40 },
3434 		{ IWI_RATE_DS5,   200,  50 },
3435 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3436 		{ IWI_RATE_DS2,   267,  66 },
3437 		{ IWI_RATE_DS1,   400, 100 },
3438 		{            0,   500, 130 },	/* unknown rate/polling */
3439 	};
3440 	uint32_t txrate;
3441 	int j = 0;			/* XXX silence compiler */
3442 
3443 	sc->sc_ledevent = ticks;	/* time of last event */
3444 	if (sc->sc_blinking)		/* don't interrupt active blink */
3445 		return;
3446 	switch (event) {
3447 	case IWI_LED_POLL:
3448 		j = nitems(blinkrates)-1;
3449 		break;
3450 	case IWI_LED_TX:
3451 		/* read current transmission rate from adapter */
3452 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3453 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3454 			for (j = 0; j < nitems(blinkrates)-1; j++)
3455 				if (blinkrates[j].rate == txrate)
3456 					break;
3457 			sc->sc_txrix = j;
3458 		} else
3459 			j = sc->sc_txrix;
3460 		break;
3461 	case IWI_LED_RX:
3462 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3463 			for (j = 0; j < nitems(blinkrates)-1; j++)
3464 				if (blinkrates[j].rate == sc->sc_rxrate)
3465 					break;
3466 			sc->sc_rxrix = j;
3467 		} else
3468 			j = sc->sc_rxrix;
3469 		break;
3470 	}
3471 	/* XXX beware of overflow */
3472 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3473 		(blinkrates[j].timeOff * hz) / 1000);
3474 }
3475 
3476 static int
3477 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3478 {
3479 	struct iwi_softc *sc = arg1;
3480 	int softled = sc->sc_softled;
3481 	int error;
3482 
3483 	error = sysctl_handle_int(oidp, &softled, 0, req);
3484 	if (error || !req->newptr)
3485 		return error;
3486 	softled = (softled != 0);
3487 	if (softled != sc->sc_softled) {
3488 		if (softled) {
3489 			uint32_t v = iwi_read_event(sc);
3490 			v &= ~sc->sc_ledpin;
3491 			iwi_write_event(sc, iwi_toggle_event(v));
3492 		}
3493 		sc->sc_softled = softled;
3494 	}
3495 	return 0;
3496 }
3497 
3498 static void
3499 iwi_ledattach(struct iwi_softc *sc)
3500 {
3501 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3502 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3503 
3504 	sc->sc_blinking = 0;
3505 	sc->sc_ledstate = 1;
3506 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3507 	callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3508 
3509 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3510 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3511 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3512 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3513 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3514 		"pin setting to turn activity LED on");
3515 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3516 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3517 		"idle time for inactivity LED (ticks)");
3518 	/* XXX for debugging */
3519 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3520 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3521 		"NIC type from EEPROM");
3522 
3523 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3524 	sc->sc_softled = 1;
3525 
3526 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3527 	if (sc->sc_nictype == 1) {
3528 		/*
3529 		 * NB: led's are reversed.
3530 		 */
3531 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3532 	}
3533 }
3534 
3535 static void
3536 iwi_scan_start(struct ieee80211com *ic)
3537 {
3538 	/* ignore */
3539 }
3540 
3541 static void
3542 iwi_set_channel(struct ieee80211com *ic)
3543 {
3544 	struct iwi_softc *sc = ic->ic_softc;
3545 
3546 	if (sc->fw_state == IWI_FW_IDLE)
3547 		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3548 }
3549 
3550 static void
3551 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3552 {
3553 	struct ieee80211vap *vap = ss->ss_vap;
3554 	struct iwi_softc *sc = vap->iv_ic->ic_softc;
3555 	IWI_LOCK_DECL;
3556 
3557 	IWI_LOCK(sc);
3558 	if (iwi_scanchan(sc, maxdwell, 0))
3559 		ieee80211_cancel_scan(vap);
3560 	IWI_UNLOCK(sc);
3561 }
3562 
3563 static void
3564 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3565 {
3566 	/* NB: don't try to abort scan; wait for firmware to finish */
3567 }
3568 
3569 static void
3570 iwi_scan_end(struct ieee80211com *ic)
3571 {
3572 	struct iwi_softc *sc = ic->ic_softc;
3573 	IWI_LOCK_DECL;
3574 
3575 	IWI_LOCK(sc);
3576 	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3577 	/* NB: make sure we're still scanning */
3578 	if (sc->fw_state == IWI_FW_SCANNING)
3579 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3580 	IWI_UNLOCK(sc);
3581 }
3582 
3583 static void
3584 iwi_collect_bands(struct ieee80211com *ic, uint8_t bands[], size_t bands_sz)
3585 {
3586 	struct iwi_softc *sc = ic->ic_softc;
3587 	device_t dev = sc->sc_dev;
3588 
3589 	memset(bands, 0, bands_sz);
3590 	setbit(bands, IEEE80211_MODE_11B);
3591 	setbit(bands, IEEE80211_MODE_11G);
3592 	if (pci_get_device(dev) >= 0x4223)
3593 		setbit(bands, IEEE80211_MODE_11A);
3594 }
3595 
3596 static void
3597 iwi_getradiocaps(struct ieee80211com *ic,
3598     int maxchans, int *nchans, struct ieee80211_channel chans[])
3599 {
3600 	uint8_t bands[IEEE80211_MODE_BYTES];
3601 
3602 	iwi_collect_bands(ic, bands, sizeof(bands));
3603 	*nchans = 0;
3604 	if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G))
3605 		ieee80211_add_channels_default_2ghz(chans, maxchans, nchans,
3606 		    bands, 0);
3607 	if (isset(bands, IEEE80211_MODE_11A)) {
3608 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3609 		    def_chan_5ghz_band1, nitems(def_chan_5ghz_band1),
3610 		    bands, 0);
3611 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3612 		    def_chan_5ghz_band2, nitems(def_chan_5ghz_band2),
3613 		    bands, 0);
3614 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3615 		    def_chan_5ghz_band3, nitems(def_chan_5ghz_band3),
3616 		    bands, 0);
3617 	}
3618 }
3619