xref: /freebsd/sys/dev/iwi/if_iwi.c (revision 7bd6fde3)
1 /*-
2  * Copyright (c) 2004, 2005
3  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*-
33  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
34  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
35  */
36 
37 #include <sys/param.h>
38 #include <sys/sysctl.h>
39 #include <sys/sockio.h>
40 #include <sys/mbuf.h>
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/module.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/namei.h>
53 #include <sys/linker.h>
54 #include <sys/firmware.h>
55 #include <sys/kthread.h>
56 #include <sys/taskqueue.h>
57 
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/rman.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <net/bpf.h>
66 #include <net/if.h>
67 #include <net/if_arp.h>
68 #include <net/ethernet.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_types.h>
72 
73 #include <net80211/ieee80211_var.h>
74 #include <net80211/ieee80211_radiotap.h>
75 
76 #include <netinet/in.h>
77 #include <netinet/in_systm.h>
78 #include <netinet/in_var.h>
79 #include <netinet/ip.h>
80 #include <netinet/if_ether.h>
81 
82 #include <dev/iwi/if_iwireg.h>
83 #include <dev/iwi/if_iwivar.h>
84 
85 #define IWI_DEBUG
86 #ifdef IWI_DEBUG
87 #define DPRINTF(x)	do { if (iwi_debug > 0) printf x; } while (0)
88 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) printf x; } while (0)
89 int iwi_debug = 0;
90 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
91 #else
92 #define DPRINTF(x)
93 #define DPRINTFN(n, x)
94 #endif
95 
96 MODULE_DEPEND(iwi, pci,  1, 1, 1);
97 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
98 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
99 
100 enum {
101 	IWI_LED_TX,
102 	IWI_LED_RX,
103 	IWI_LED_POLL,
104 };
105 
106 struct iwi_ident {
107 	uint16_t	vendor;
108 	uint16_t	device;
109 	const char	*name;
110 };
111 
112 static const struct iwi_ident iwi_ident_table[] = {
113 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
114 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
115 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
116 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
117 
118 	{ 0, 0, NULL }
119 };
120 
121 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
122 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
123 		    int);
124 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
125 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
126 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
127 		    int, bus_addr_t, bus_addr_t);
128 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
129 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
130 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
131 		    int);
132 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
133 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
134 static struct	ieee80211_node *iwi_node_alloc(struct ieee80211_node_table *);
135 static void	iwi_node_free(struct ieee80211_node *);
136 static int	iwi_media_change(struct ifnet *);
137 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
138 static int	iwi_newstate(struct ieee80211com *, enum ieee80211_state, int);
139 static void	iwi_wme_init(struct iwi_softc *);
140 static void	iwi_wme_setparams(void *, int);
141 static int	iwi_wme_update(struct ieee80211com *);
142 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
143 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
144 		    struct iwi_frame *);
145 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
146 static void	iwi_rx_intr(struct iwi_softc *);
147 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
148 static void	iwi_intr(void *);
149 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
150 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
151 static int	iwi_tx_start(struct ifnet *, struct mbuf *,
152 		    struct ieee80211_node *, int);
153 static void	iwi_start(struct ifnet *);
154 static void	iwi_watchdog(struct ifnet *);
155 static int	iwi_ioctl(struct ifnet *, u_long, caddr_t);
156 static void	iwi_stop_master(struct iwi_softc *);
157 static int	iwi_reset(struct iwi_softc *);
158 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
159 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
160 static void	iwi_release_fw_dma(struct iwi_softc *sc);
161 static int	iwi_config(struct iwi_softc *);
162 static int	iwi_get_firmware(struct iwi_softc *);
163 static void	iwi_put_firmware(struct iwi_softc *);
164 static void	iwi_scanabort(void *, int);
165 static void	iwi_scandone(void *, int);
166 static void	iwi_scanstart(void *, int);
167 static void	iwi_scanchan(void *, int);
168 static int	iwi_auth_and_assoc(struct iwi_softc *);
169 static int	iwi_disassociate(struct iwi_softc *, int quiet);
170 static void	iwi_down(void *, int);
171 static void	iwi_init(void *);
172 static void	iwi_init_locked(void *, int);
173 static void	iwi_stop(void *);
174 static void	iwi_restart(void *, int);
175 static int	iwi_getrfkill(struct iwi_softc *);
176 static void	iwi_radio_on(void *, int);
177 static void	iwi_radio_off(void *, int);
178 static void	iwi_sysctlattach(struct iwi_softc *);
179 static void	iwi_led_event(struct iwi_softc *, int);
180 static void	iwi_ledattach(struct iwi_softc *);
181 
182 static int iwi_probe(device_t);
183 static int iwi_attach(device_t);
184 static int iwi_detach(device_t);
185 static int iwi_shutdown(device_t);
186 static int iwi_suspend(device_t);
187 static int iwi_resume(device_t);
188 
189 static device_method_t iwi_methods[] = {
190 	/* Device interface */
191 	DEVMETHOD(device_probe,		iwi_probe),
192 	DEVMETHOD(device_attach,	iwi_attach),
193 	DEVMETHOD(device_detach,	iwi_detach),
194 	DEVMETHOD(device_shutdown,	iwi_shutdown),
195 	DEVMETHOD(device_suspend,	iwi_suspend),
196 	DEVMETHOD(device_resume,	iwi_resume),
197 
198 	{ 0, 0 }
199 };
200 
201 static driver_t iwi_driver = {
202 	"iwi",
203 	iwi_methods,
204 	sizeof (struct iwi_softc)
205 };
206 
207 static devclass_t iwi_devclass;
208 
209 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0);
210 
211 /*
212  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
213  */
214 static const struct ieee80211_rateset iwi_rateset_11a =
215 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
216 
217 static const struct ieee80211_rateset iwi_rateset_11b =
218 	{ 4, { 2, 4, 11, 22 } };
219 
220 static const struct ieee80211_rateset iwi_rateset_11g =
221 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
222 
223 static __inline uint8_t
224 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
225 {
226 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
227 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
228 }
229 
230 static __inline uint32_t
231 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
232 {
233 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
234 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
235 }
236 
237 static int
238 iwi_probe(device_t dev)
239 {
240 	const struct iwi_ident *ident;
241 
242 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
243 		if (pci_get_vendor(dev) == ident->vendor &&
244 		    pci_get_device(dev) == ident->device) {
245 			device_set_desc(dev, ident->name);
246 			return 0;
247 		}
248 	}
249 	return ENXIO;
250 }
251 
252 /* Base Address Register */
253 #define IWI_PCI_BAR0	0x10
254 
255 static int
256 iwi_attach(device_t dev)
257 {
258 	struct iwi_softc *sc = device_get_softc(dev);
259 	struct ifnet *ifp;
260 	struct ieee80211com *ic = &sc->sc_ic;
261 	uint16_t val;
262 	int error, i;
263 
264 	sc->sc_dev = dev;
265 
266 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
267 	    MTX_DEF);
268 
269 	sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
270 
271 #if __FreeBSD_version >= 700000
272 	sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT,
273 		taskqueue_thread_enqueue, &sc->sc_tq);
274 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
275 		device_get_nameunit(dev));
276 #else
277 	sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT,
278 		taskqueue_thread_enqueue, &sc->sc_tq, &sc->sc_tqproc);
279 	kthread_create(taskqueue_thread_loop, &sc->sc_tq, &sc->sc_tqproc,
280 		0, 0, "%s taskq", device_get_nameunit(dev));
281 #endif
282 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
283 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
284 	TASK_INIT(&sc->sc_scanstarttask, 0, iwi_scanstart, sc);
285 	TASK_INIT(&sc->sc_scanaborttask, 0, iwi_scanabort, sc);
286 	TASK_INIT(&sc->sc_scandonetask, 0, iwi_scandone, sc);
287 	TASK_INIT(&sc->sc_scantask, 0, iwi_scanchan, sc);
288 	TASK_INIT(&sc->sc_setwmetask, 0, iwi_wme_setparams, sc);
289 	TASK_INIT(&sc->sc_downtask, 0, iwi_down, sc);
290 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
291 
292 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
293 		device_printf(dev, "chip is in D%d power mode "
294 		    "-- setting to D0\n", pci_get_powerstate(dev));
295 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
296 	}
297 
298 	pci_write_config(dev, 0x41, 0, 1);
299 
300 	/* enable bus-mastering */
301 	pci_enable_busmaster(dev);
302 
303 	sc->mem_rid = IWI_PCI_BAR0;
304 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
305 	    RF_ACTIVE);
306 	if (sc->mem == NULL) {
307 		device_printf(dev, "could not allocate memory resource\n");
308 		goto fail;
309 	}
310 
311 	sc->sc_st = rman_get_bustag(sc->mem);
312 	sc->sc_sh = rman_get_bushandle(sc->mem);
313 
314 	sc->irq_rid = 0;
315 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
316 	    RF_ACTIVE | RF_SHAREABLE);
317 	if (sc->irq == NULL) {
318 		device_printf(dev, "could not allocate interrupt resource\n");
319 		goto fail;
320 	}
321 
322 	if (iwi_reset(sc) != 0) {
323 		device_printf(dev, "could not reset adapter\n");
324 		goto fail;
325 	}
326 
327 	/*
328 	 * Allocate rings.
329 	 */
330 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
331 		device_printf(dev, "could not allocate Cmd ring\n");
332 		goto fail;
333 	}
334 
335 	for (i = 0; i < 4; i++) {
336 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
337 		    IWI_CSR_TX1_RIDX + i * 4,
338 		    IWI_CSR_TX1_WIDX + i * 4);
339 		if (error != 0) {
340 			device_printf(dev, "could not allocate Tx ring %d\n",
341 				i+i);
342 			goto fail;
343 		}
344 	}
345 
346 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
347 		device_printf(dev, "could not allocate Rx ring\n");
348 		goto fail;
349 	}
350 
351 	iwi_wme_init(sc);
352 
353 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
354 	if (ifp == NULL) {
355 		device_printf(dev, "can not if_alloc()\n");
356 		goto fail;
357 	}
358 	ifp->if_softc = sc;
359 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
360 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
361 	ifp->if_init = iwi_init;
362 	ifp->if_ioctl = iwi_ioctl;
363 	ifp->if_start = iwi_start;
364 	ifp->if_watchdog = iwi_watchdog;
365 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
366 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
367 	IFQ_SET_READY(&ifp->if_snd);
368 
369 	ic->ic_ifp = ifp;
370 	ic->ic_wme.wme_update = iwi_wme_update;
371 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
372 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
373 	ic->ic_state = IEEE80211_S_INIT;
374 
375 	/* set device capabilities */
376 	ic->ic_caps =
377 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
378 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
379 	    IEEE80211_C_PMGT |		/* power save supported */
380 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
381 	    IEEE80211_C_WPA |		/* 802.11i */
382 	    IEEE80211_C_WME;		/* 802.11e */
383 
384 	/* read MAC address from EEPROM */
385 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
386 	ic->ic_myaddr[0] = val & 0xff;
387 	ic->ic_myaddr[1] = val >> 8;
388 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
389 	ic->ic_myaddr[2] = val & 0xff;
390 	ic->ic_myaddr[3] = val >> 8;
391 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
392 	ic->ic_myaddr[4] = val & 0xff;
393 	ic->ic_myaddr[5] = val >> 8;
394 
395 	if (pci_get_device(dev) >= 0x4223) {
396 		/* set supported .11a rates (2915ABG only) */
397 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwi_rateset_11a;
398 
399 		/* set supported .11a channels */
400 		for (i = 36; i <= 64; i += 4) {
401 			ic->ic_channels[i].ic_freq =
402 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
403 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
404 		}
405 		for (i = 149; i <= 165; i += 4) {
406 			ic->ic_channels[i].ic_freq =
407 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
408 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
409 		}
410 	}
411 
412 	/* set supported .11b and .11g rates */
413 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwi_rateset_11b;
414 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwi_rateset_11g;
415 
416 	/* set supported .11b and .11g channels (1 through 14) */
417 	for (i = 1; i <= 14; i++) {
418 		ic->ic_channels[i].ic_freq =
419 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
420 		ic->ic_channels[i].ic_flags =
421 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
422 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
423 	}
424 
425 	ieee80211_ifattach(ic);
426 	ic->ic_bmissthreshold = 10;		/* override default */
427 	/* override default methods */
428 	ic->ic_node_alloc = iwi_node_alloc;
429 	sc->sc_node_free = ic->ic_node_free;
430 	ic->ic_node_free = iwi_node_free;
431 	/* override state transition machine */
432 	sc->sc_newstate = ic->ic_newstate;
433 	ic->ic_newstate = iwi_newstate;
434 	ieee80211_media_init(ic, iwi_media_change, iwi_media_status);
435 
436 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
437 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
438 	    &sc->sc_drvbpf);
439 
440 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
441 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
442 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT);
443 
444 	sc->sc_txtap_len = sizeof sc->sc_txtap;
445 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
446 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT);
447 
448 	iwi_sysctlattach(sc);
449 	iwi_ledattach(sc);
450 
451 	/*
452 	 * Hook our interrupt after all initialization is complete.
453 	 */
454 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
455 	    NULL, iwi_intr, sc, &sc->sc_ih);
456 	if (error != 0) {
457 		device_printf(dev, "could not set up interrupt\n");
458 		goto fail;
459 	}
460 
461 	if (bootverbose)
462 		ieee80211_announce(ic);
463 
464 	return 0;
465 
466 fail:	iwi_detach(dev);
467 	return ENXIO;
468 }
469 
470 static int
471 iwi_detach(device_t dev)
472 {
473 	struct iwi_softc *sc = device_get_softc(dev);
474 	struct ieee80211com *ic = &sc->sc_ic;
475 	struct ifnet *ifp = ic->ic_ifp;
476 
477 	if (ifp != NULL) {
478 		iwi_stop(sc);
479 		bpfdetach(ifp);
480 		ieee80211_ifdetach(ic);
481 	}
482 	iwi_put_firmware(sc);
483 	iwi_release_fw_dma(sc);
484 
485 	iwi_free_cmd_ring(sc, &sc->cmdq);
486 	iwi_free_tx_ring(sc, &sc->txq[0]);
487 	iwi_free_tx_ring(sc, &sc->txq[1]);
488 	iwi_free_tx_ring(sc, &sc->txq[2]);
489 	iwi_free_tx_ring(sc, &sc->txq[3]);
490 	iwi_free_rx_ring(sc, &sc->rxq);
491 
492 	if (sc->irq != NULL) {
493 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
494 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
495 	}
496 
497 	if (sc->mem != NULL)
498 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
499 
500 	if (ifp != NULL)
501 		if_free(ifp);
502 
503 	taskqueue_free(sc->sc_tq);
504 
505 	if (sc->sc_unr != NULL)
506 		delete_unrhdr(sc->sc_unr);
507 
508 	mtx_destroy(&sc->sc_mtx);
509 
510 	return 0;
511 }
512 
513 static void
514 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
515 {
516 	if (error != 0)
517 		return;
518 
519 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
520 
521 	*(bus_addr_t *)arg = segs[0].ds_addr;
522 }
523 
524 static int
525 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
526 {
527 	int error;
528 
529 	ring->count = count;
530 	ring->queued = 0;
531 	ring->cur = ring->next = 0;
532 
533 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
534 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
535 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
536 	    NULL, NULL, &ring->desc_dmat);
537 	if (error != 0) {
538 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
539 		goto fail;
540 	}
541 
542 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
543 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
544 	if (error != 0) {
545 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
546 		goto fail;
547 	}
548 
549 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
550 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
551 	if (error != 0) {
552 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
553 		goto fail;
554 	}
555 
556 	return 0;
557 
558 fail:	iwi_free_cmd_ring(sc, ring);
559 	return error;
560 }
561 
562 static void
563 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
564 {
565 	ring->queued = 0;
566 	ring->cur = ring->next = 0;
567 }
568 
569 static void
570 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
571 {
572 	if (ring->desc != NULL) {
573 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
574 		    BUS_DMASYNC_POSTWRITE);
575 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
576 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
577 	}
578 
579 	if (ring->desc_dmat != NULL)
580 		bus_dma_tag_destroy(ring->desc_dmat);
581 }
582 
583 static int
584 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
585     bus_addr_t csr_ridx, bus_addr_t csr_widx)
586 {
587 	int i, error;
588 
589 	ring->count = count;
590 	ring->queued = 0;
591 	ring->cur = ring->next = 0;
592 	ring->csr_ridx = csr_ridx;
593 	ring->csr_widx = csr_widx;
594 
595 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
596 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
597 	    count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
598 	    NULL, &ring->desc_dmat);
599 	if (error != 0) {
600 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
601 		goto fail;
602 	}
603 
604 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
605 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
606 	if (error != 0) {
607 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
608 		goto fail;
609 	}
610 
611 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
612 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
613 	if (error != 0) {
614 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
615 		goto fail;
616 	}
617 
618 	ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
619 	    M_NOWAIT | M_ZERO);
620 	if (ring->data == NULL) {
621 		device_printf(sc->sc_dev, "could not allocate soft data\n");
622 		error = ENOMEM;
623 		goto fail;
624 	}
625 
626 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
627 	BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
628 	IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
629 	if (error != 0) {
630 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
631 		goto fail;
632 	}
633 
634 	for (i = 0; i < count; i++) {
635 		error = bus_dmamap_create(ring->data_dmat, 0,
636 		    &ring->data[i].map);
637 		if (error != 0) {
638 			device_printf(sc->sc_dev, "could not create DMA map\n");
639 			goto fail;
640 		}
641 	}
642 
643 	return 0;
644 
645 fail:	iwi_free_tx_ring(sc, ring);
646 	return error;
647 }
648 
649 static void
650 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
651 {
652 	struct iwi_tx_data *data;
653 	int i;
654 
655 	for (i = 0; i < ring->count; i++) {
656 		data = &ring->data[i];
657 
658 		if (data->m != NULL) {
659 			bus_dmamap_sync(ring->data_dmat, data->map,
660 			    BUS_DMASYNC_POSTWRITE);
661 			bus_dmamap_unload(ring->data_dmat, data->map);
662 			m_freem(data->m);
663 			data->m = NULL;
664 		}
665 
666 		if (data->ni != NULL) {
667 			ieee80211_free_node(data->ni);
668 			data->ni = NULL;
669 		}
670 	}
671 
672 	ring->queued = 0;
673 	ring->cur = ring->next = 0;
674 }
675 
676 static void
677 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
678 {
679 	struct iwi_tx_data *data;
680 	int i;
681 
682 	if (ring->desc != NULL) {
683 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
684 		    BUS_DMASYNC_POSTWRITE);
685 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
686 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
687 	}
688 
689 	if (ring->desc_dmat != NULL)
690 		bus_dma_tag_destroy(ring->desc_dmat);
691 
692 	if (ring->data != NULL) {
693 		for (i = 0; i < ring->count; i++) {
694 			data = &ring->data[i];
695 
696 			if (data->m != NULL) {
697 				bus_dmamap_sync(ring->data_dmat, data->map,
698 				    BUS_DMASYNC_POSTWRITE);
699 				bus_dmamap_unload(ring->data_dmat, data->map);
700 				m_freem(data->m);
701 			}
702 
703 			if (data->ni != NULL)
704 				ieee80211_free_node(data->ni);
705 
706 			if (data->map != NULL)
707 				bus_dmamap_destroy(ring->data_dmat, data->map);
708 		}
709 
710 		free(ring->data, M_DEVBUF);
711 	}
712 
713 	if (ring->data_dmat != NULL)
714 		bus_dma_tag_destroy(ring->data_dmat);
715 }
716 
717 static int
718 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
719 {
720 	struct iwi_rx_data *data;
721 	int i, error;
722 
723 	ring->count = count;
724 	ring->cur = 0;
725 
726 	ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
727 	    M_NOWAIT | M_ZERO);
728 	if (ring->data == NULL) {
729 		device_printf(sc->sc_dev, "could not allocate soft data\n");
730 		error = ENOMEM;
731 		goto fail;
732 	}
733 
734 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
735 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
736 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
737 	if (error != 0) {
738 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
739 		goto fail;
740 	}
741 
742 	for (i = 0; i < count; i++) {
743 		data = &ring->data[i];
744 
745 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
746 		if (error != 0) {
747 			device_printf(sc->sc_dev, "could not create DMA map\n");
748 			goto fail;
749 		}
750 
751 		data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
752 		if (data->m == NULL) {
753 			device_printf(sc->sc_dev,
754 			    "could not allocate rx mbuf\n");
755 			error = ENOMEM;
756 			goto fail;
757 		}
758 
759 		error = bus_dmamap_load(ring->data_dmat, data->map,
760 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
761 		    &data->physaddr, 0);
762 		if (error != 0) {
763 			device_printf(sc->sc_dev,
764 			    "could not load rx buf DMA map");
765 			goto fail;
766 		}
767 
768 		data->reg = IWI_CSR_RX_BASE + i * 4;
769 	}
770 
771 	return 0;
772 
773 fail:	iwi_free_rx_ring(sc, ring);
774 	return error;
775 }
776 
777 static void
778 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
779 {
780 	ring->cur = 0;
781 }
782 
783 static void
784 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
785 {
786 	struct iwi_rx_data *data;
787 	int i;
788 
789 	if (ring->data != NULL) {
790 		for (i = 0; i < ring->count; i++) {
791 			data = &ring->data[i];
792 
793 			if (data->m != NULL) {
794 				bus_dmamap_sync(ring->data_dmat, data->map,
795 				    BUS_DMASYNC_POSTREAD);
796 				bus_dmamap_unload(ring->data_dmat, data->map);
797 				m_freem(data->m);
798 			}
799 
800 			if (data->map != NULL)
801 				bus_dmamap_destroy(ring->data_dmat, data->map);
802 		}
803 
804 		free(ring->data, M_DEVBUF);
805 	}
806 
807 	if (ring->data_dmat != NULL)
808 		bus_dma_tag_destroy(ring->data_dmat);
809 }
810 
811 static int
812 iwi_shutdown(device_t dev)
813 {
814 	struct iwi_softc *sc = device_get_softc(dev);
815 
816 	iwi_stop(sc);
817 	iwi_put_firmware(sc);		/* ??? XXX */
818 
819 	return 0;
820 }
821 
822 static int
823 iwi_suspend(device_t dev)
824 {
825 	struct iwi_softc *sc = device_get_softc(dev);
826 
827 	iwi_stop(sc);
828 
829 	return 0;
830 }
831 
832 static int
833 iwi_resume(device_t dev)
834 {
835 	struct iwi_softc *sc = device_get_softc(dev);
836 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
837 	IWI_LOCK_DECL;
838 
839 	IWI_LOCK(sc);
840 
841 	pci_write_config(dev, 0x41, 0, 1);
842 
843 	if (ifp->if_flags & IFF_UP) {
844 		ifp->if_init(ifp->if_softc);
845 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
846 			ifp->if_start(ifp);
847 	}
848 
849 	IWI_UNLOCK(sc);
850 
851 	return 0;
852 }
853 
854 static struct ieee80211_node *
855 iwi_node_alloc(struct ieee80211_node_table *nt)
856 {
857 	struct iwi_node *in;
858 
859 	in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
860 	if (in == NULL)
861 		return NULL;
862 
863 	in->in_station = -1;
864 
865 	return &in->in_node;
866 }
867 
868 static void
869 iwi_node_free(struct ieee80211_node *ni)
870 {
871 	struct ieee80211com *ic = ni->ni_ic;
872 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
873 	struct iwi_node *in = (struct iwi_node *)ni;
874 
875 	if (in->in_station != -1) {
876 		DPRINTF(("%s mac %6D station %u\n", __func__,
877 		    ni->ni_macaddr, ":", in->in_station));
878 		free_unr(sc->sc_unr, in->in_station);
879 	}
880 
881 	sc->sc_node_free(ni);
882 }
883 
884 static int
885 iwi_media_change(struct ifnet *ifp)
886 {
887 	struct iwi_softc *sc = ifp->if_softc;
888 	int error;
889 	IWI_LOCK_DECL;
890 
891 	IWI_LOCK(sc);
892 
893 	error = ieee80211_media_change(ifp);
894 	if (error == ENETRESET &&
895 	    (ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
896 		iwi_init_locked(sc, 0);
897 
898 	IWI_UNLOCK(sc);
899 
900 	return error;
901 }
902 
903 /*
904  * Convert h/w rate code to IEEE rate code.
905  */
906 static int
907 iwi_cvtrate(int iwirate)
908 {
909 	switch (iwirate) {
910 	case IWI_RATE_DS1:	return 2;
911 	case IWI_RATE_DS2:	return 4;
912 	case IWI_RATE_DS5:	return 11;
913 	case IWI_RATE_DS11:	return 22;
914 	case IWI_RATE_OFDM6:	return 12;
915 	case IWI_RATE_OFDM9:	return 18;
916 	case IWI_RATE_OFDM12:	return 24;
917 	case IWI_RATE_OFDM18:	return 36;
918 	case IWI_RATE_OFDM24:	return 48;
919 	case IWI_RATE_OFDM36:	return 72;
920 	case IWI_RATE_OFDM48:	return 96;
921 	case IWI_RATE_OFDM54:	return 108;
922 	}
923 	return 0;
924 }
925 
926 /*
927  * The firmware automatically adapts the transmit speed.  We report its current
928  * value here.
929  */
930 static void
931 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
932 {
933 	struct iwi_softc *sc = ifp->if_softc;
934 	struct ieee80211com *ic = &sc->sc_ic;
935 	int rate;
936 
937 	imr->ifm_status = IFM_AVALID;
938 	imr->ifm_active = IFM_IEEE80211;
939 	if (ic->ic_state == IEEE80211_S_RUN)
940 		imr->ifm_status |= IFM_ACTIVE;
941 
942 	/* read current transmission rate from adapter */
943 	rate = iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
944 	imr->ifm_active |= ieee80211_rate2media(ic, rate, ic->ic_curmode);
945 
946 	if (ic->ic_opmode == IEEE80211_M_IBSS)
947 		imr->ifm_active |= IFM_IEEE80211_ADHOC;
948 	else if (ic->ic_opmode == IEEE80211_M_MONITOR)
949 		imr->ifm_active |= IFM_IEEE80211_MONITOR;
950 }
951 
952 static int
953 iwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
954 {
955 	struct ifnet *ifp = ic->ic_ifp;
956 	struct iwi_softc *sc = ifp->if_softc;
957 
958 	IWI_LOCK_CHECK(sc);
959 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
960 		ieee80211_state_name[ic->ic_state],
961 		ieee80211_state_name[nstate], sc->flags));
962 
963 	/* XXX state change race with taskqueue */
964 	switch (nstate) {
965 	case IEEE80211_S_SCAN:
966 		if (ic->ic_state == IEEE80211_S_RUN) {
967 			/*
968 			 * Beacon miss, send disassoc and wait for a reply
969 			 * from the card; we'll start a scan then.  Note
970 			 * this only happens with auto roaming; otherwise
971 			 * just notify users and wait to be directed.
972 			 */
973 			/* notify directly as we bypass net80211 */
974 			ieee80211_sta_leave(ic, ic->ic_bss);
975 			if (ic->ic_roaming == IEEE80211_ROAMING_AUTO)
976 				taskqueue_enqueue(sc->sc_tq, &sc->sc_downtask);
977 			break;
978 		}
979 		if ((sc->flags & IWI_FLAG_SCANNING) == 0) {
980 			sc->flags |= IWI_FLAG_SCANNING;
981 			taskqueue_enqueue(sc->sc_tq, &sc->sc_scanstarttask);
982 		}
983 		break;
984 
985 	case IEEE80211_S_AUTH:
986 		iwi_auth_and_assoc(sc);
987 		break;
988 
989 	case IEEE80211_S_RUN:
990 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
991 			/*
992 			 * XXX when joining an ibss network we are called
993 			 * with a SCAN -> RUN transition on scan complete.
994 			 * Use that to call iwi_auth_and_assoc.  On completing
995 			 * the join we are then called again with an
996 			 * AUTH -> RUN transition and we want to do nothing.
997 			 * This is all totally bogus and needs to be redone.
998 			 */
999 			if (ic->ic_state == IEEE80211_S_SCAN)
1000 				iwi_auth_and_assoc(sc);
1001 		} else if (ic->ic_opmode == IEEE80211_M_MONITOR)
1002 			taskqueue_enqueue(sc->sc_tq, &sc->sc_scantask);
1003 
1004 		/* XXX way wrong */
1005 		return sc->sc_newstate(ic, nstate,
1006 		    IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
1007 
1008 	case IEEE80211_S_ASSOC:
1009 		break;
1010 
1011 	case IEEE80211_S_INIT:
1012 		/*
1013 		 * NB: don't try to do this if iwi_stop_master has
1014 		 *     shutdown the firmware and disabled interrupts.
1015 		 */
1016 		if (ic->ic_state == IEEE80211_S_RUN &&
1017 		    (sc->flags & IWI_FLAG_FW_INITED))
1018 			taskqueue_enqueue(sc->sc_tq, &sc->sc_downtask);
1019 		break;
1020 	}
1021 
1022 	ic->ic_state = nstate;
1023 	return 0;
1024 }
1025 
1026 /*
1027  * WME parameters coming from IEEE 802.11e specification.  These values are
1028  * already declared in ieee80211_proto.c, but they are static so they can't
1029  * be reused here.
1030  */
1031 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1032 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1033 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1034 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1035 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1036 };
1037 
1038 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1039 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1040 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1041 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1042 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1043 };
1044 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1045 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1046 
1047 static void
1048 iwi_wme_init(struct iwi_softc *sc)
1049 {
1050 	const struct wmeParams *wmep;
1051 	int ac;
1052 
1053 	memset(sc->wme, 0, sizeof sc->wme);
1054 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1055 		/* set WME values for CCK modulation */
1056 		wmep = &iwi_wme_cck_params[ac];
1057 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1058 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1059 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1060 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1061 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1062 
1063 		/* set WME values for OFDM modulation */
1064 		wmep = &iwi_wme_ofdm_params[ac];
1065 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1066 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1067 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1068 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1069 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1070 	}
1071 }
1072 
1073 static int
1074 iwi_wme_setparams_locked(struct iwi_softc *sc)
1075 {
1076 	struct ieee80211com *ic = &sc->sc_ic;
1077 	const struct wmeParams *wmep;
1078 	int ac;
1079 
1080 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1081 		/* set WME values for current operating mode */
1082 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1083 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1084 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1085 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1086 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1087 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1088 	}
1089 
1090 	DPRINTF(("Setting WME parameters\n"));
1091 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1092 }
1093 
1094 static void
1095 iwi_wme_setparams(void *arg, int npending)
1096 {
1097 	struct iwi_softc *sc = arg;
1098 	IWI_LOCK_DECL;
1099 
1100 	IWI_LOCK(sc);
1101 	(void) iwi_wme_setparams_locked(sc);
1102 	IWI_UNLOCK(sc);
1103 }
1104 #undef IWI_USEC
1105 #undef IWI_EXP2
1106 
1107 static int
1108 iwi_wme_update(struct ieee80211com *ic)
1109 {
1110 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1111 
1112 	/*
1113 	 * We may be called to update the WME parameters in
1114 	 * the adapter at various places.  If we're already
1115 	 * associated then initiate the request immediately
1116 	 * (via the taskqueue); otherwise we assume the params
1117 	 * will get sent down to the adapter as part of the
1118 	 * work iwi_auth_and_assoc does.
1119 	 */
1120 	if (ic->ic_state == IEEE80211_S_RUN)
1121 		taskqueue_enqueue(sc->sc_tq, &sc->sc_setwmetask);
1122 	return 0;
1123 }
1124 
1125 static int
1126 iwi_wme_setie(struct iwi_softc *sc)
1127 {
1128 	struct ieee80211_wme_info wme;
1129 
1130 	memset(&wme, 0, sizeof wme);
1131 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1132 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1133 	wme.wme_oui[0] = 0x00;
1134 	wme.wme_oui[1] = 0x50;
1135 	wme.wme_oui[2] = 0xf2;
1136 	wme.wme_type = WME_OUI_TYPE;
1137 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1138 	wme.wme_version = WME_VERSION;
1139 	wme.wme_info = 0;
1140 
1141 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1142 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1143 }
1144 
1145 /*
1146  * Read 16 bits at address 'addr' from the serial EEPROM.
1147  */
1148 static uint16_t
1149 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1150 {
1151 	uint32_t tmp;
1152 	uint16_t val;
1153 	int n;
1154 
1155 	/* clock C once before the first command */
1156 	IWI_EEPROM_CTL(sc, 0);
1157 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1158 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1159 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1160 
1161 	/* write start bit (1) */
1162 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1163 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1164 
1165 	/* write READ opcode (10) */
1166 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1167 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1168 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1169 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1170 
1171 	/* write address A7-A0 */
1172 	for (n = 7; n >= 0; n--) {
1173 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1174 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1175 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1176 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1177 	}
1178 
1179 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1180 
1181 	/* read data Q15-Q0 */
1182 	val = 0;
1183 	for (n = 15; n >= 0; n--) {
1184 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1185 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1186 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1187 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1188 	}
1189 
1190 	IWI_EEPROM_CTL(sc, 0);
1191 
1192 	/* clear Chip Select and clock C */
1193 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1194 	IWI_EEPROM_CTL(sc, 0);
1195 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1196 
1197 	return val;
1198 }
1199 
1200 static void
1201 iwi_setcurchan(struct iwi_softc *sc, int chan)
1202 {
1203 	struct ieee80211com *ic = &sc->sc_ic;
1204 
1205 	IWI_LOCK_CHECK(sc);
1206 	ic->ic_curchan = &ic->ic_channels[chan];
1207 	sc->curchan = chan;
1208 
1209 	sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
1210 		htole16(ic->ic_curchan->ic_freq);
1211 	sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
1212 		htole16(ic->ic_curchan->ic_flags);
1213 }
1214 
1215 static void
1216 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1217     struct iwi_frame *frame)
1218 {
1219 	struct ieee80211com *ic = &sc->sc_ic;
1220 	struct ifnet *ifp = ic->ic_ifp;
1221 	struct mbuf *mnew, *m;
1222 	struct ieee80211_node *ni;
1223 	int type, error, framelen;
1224 	IWI_LOCK_DECL;
1225 
1226 	framelen = le16toh(frame->len);
1227 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1228 		/*
1229 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1230 		 *     out of bounds; need to figure out how to limit
1231 		 *     frame size in the firmware
1232 		 */
1233 		/* XXX stat */
1234 		DPRINTFN(1,
1235 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1236 		    le16toh(frame->len), frame->chan, frame->rssi,
1237 		    frame->rssi_dbm));
1238 		return;
1239 	}
1240 
1241 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1242 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1243 
1244 	if (frame->chan != sc->curchan)
1245 		iwi_setcurchan(sc, frame->chan);
1246 
1247 	/*
1248 	 * Try to allocate a new mbuf for this ring element and load it before
1249 	 * processing the current mbuf. If the ring element cannot be loaded,
1250 	 * drop the received packet and reuse the old mbuf. In the unlikely
1251 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1252 	 */
1253 	mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1254 	if (mnew == NULL) {
1255 		ifp->if_ierrors++;
1256 		return;
1257 	}
1258 
1259 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1260 
1261 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1262 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1263 	    0);
1264 	if (error != 0) {
1265 		m_freem(mnew);
1266 
1267 		/* try to reload the old mbuf */
1268 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1269 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1270 		    &data->physaddr, 0);
1271 		if (error != 0) {
1272 			/* very unlikely that it will fail... */
1273 			panic("%s: could not load old rx mbuf",
1274 			    device_get_name(sc->sc_dev));
1275 		}
1276 		ifp->if_ierrors++;
1277 		return;
1278 	}
1279 
1280 	/*
1281 	 * New mbuf successfully loaded, update Rx ring and continue
1282 	 * processing.
1283 	 */
1284 	m = data->m;
1285 	data->m = mnew;
1286 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1287 
1288 	/* finalize mbuf */
1289 	m->m_pkthdr.rcvif = ifp;
1290 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1291 	    sizeof (struct iwi_frame) + framelen;
1292 
1293 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1294 
1295 	if (bpf_peers_present(sc->sc_drvbpf)) {
1296 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1297 
1298 		tap->wr_flags = 0;
1299 		tap->wr_rate = iwi_cvtrate(frame->rate);
1300 		tap->wr_antsignal = frame->signal;
1301 		tap->wr_antenna = frame->antenna;
1302 
1303 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1304 	}
1305 	IWI_UNLOCK(sc);
1306 
1307 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1308 
1309 	/* send the frame to the 802.11 layer */
1310 	type = ieee80211_input(ic, m, ni, frame->rssi_dbm, 0);
1311 
1312 	/* node is no longer needed */
1313 	ieee80211_free_node(ni);
1314 
1315 	IWI_LOCK(sc);
1316 	if (sc->sc_softled) {
1317 		/*
1318 		 * Blink for any data frame.  Otherwise do a
1319 		 * heartbeat-style blink when idle.  The latter
1320 		 * is mainly for station mode where we depend on
1321 		 * periodic beacon frames to trigger the poll event.
1322 		 */
1323 		if (type == IEEE80211_FC0_TYPE_DATA) {
1324 			sc->sc_rxrate = frame->rate;
1325 			iwi_led_event(sc, IWI_LED_RX);
1326 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1327 			iwi_led_event(sc, IWI_LED_POLL);
1328 	}
1329 }
1330 
1331 /* unaligned little endian access */
1332 #define LE_READ_2(p)					\
1333 	((u_int16_t)					\
1334 	 ((((const u_int8_t *)(p))[0]      ) |		\
1335 	  (((const u_int8_t *)(p))[1] <<  8)))
1336 #define LE_READ_4(p)					\
1337 	((u_int32_t)					\
1338 	 ((((const u_int8_t *)(p))[0]      ) |		\
1339 	  (((const u_int8_t *)(p))[1] <<  8) |		\
1340 	  (((const u_int8_t *)(p))[2] << 16) |		\
1341 	  (((const u_int8_t *)(p))[3] << 24)))
1342 
1343 #define	IEEE80211_VERIFY_LENGTH(_len, _minlen) do {			\
1344 	if ((_len) < (_minlen)) {					\
1345 		return;							\
1346 	}								\
1347 } while (0)
1348 
1349 static int __inline
1350 iswmeoui(const u_int8_t *frm)
1351 {
1352 	return frm[1] > 3 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI);
1353 }
1354 
1355 /*
1356  * Check for an association response frame to see if QoS
1357  * has been negotiated.  We parse just enough to figure
1358  * out if we're supposed to use QoS.  The proper solution
1359  * is to pass the frame up so ieee80211_input can do the
1360  * work but that's made hard by how things currently are
1361  * done in the driver.
1362  */
1363 static void
1364 iwi_checkforqos(struct iwi_softc *sc, const struct ieee80211_frame *wh, int len)
1365 {
1366 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1367 	const uint8_t *frm, *efrm, *wme;
1368 	struct ieee80211_node *ni;
1369 
1370 	/* NB: +8 for capinfo, status, associd, and first ie */
1371 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1372 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1373 		return;
1374 	/*
1375 	 * asresp frame format
1376 	 *	[2] capability information
1377 	 *	[2] status
1378 	 *	[2] association ID
1379 	 *	[tlv] supported rates
1380 	 *	[tlv] extended supported rates
1381 	 *	[tlv] WME
1382 	 */
1383 	frm = (const uint8_t *)&wh[1];
1384 	efrm = ((const uint8_t *) wh) + len;
1385 	frm += 6;
1386 
1387 	wme = NULL;
1388 	while (frm < efrm) {
1389 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1]);
1390 		switch (*frm) {
1391 		case IEEE80211_ELEMID_VENDOR:
1392 			if (iswmeoui(frm))
1393 				wme = frm;
1394 			break;
1395 		}
1396 		frm += frm[1] + 2;
1397 	}
1398 
1399 	ni = sc->sc_ic.ic_bss;
1400 	if (wme != NULL)
1401 		ni->ni_flags |= IEEE80211_NODE_QOS;
1402 	else
1403 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1404 #undef SUBTYPE
1405 }
1406 
1407 static void
1408 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1409 {
1410 	struct ieee80211com *ic = &sc->sc_ic;
1411 	struct iwi_notif_scan_channel *chan;
1412 	struct iwi_notif_scan_complete *scan;
1413 	struct iwi_notif_authentication *auth;
1414 	struct iwi_notif_association *assoc;
1415 	struct iwi_notif_beacon_state *beacon;
1416 
1417 	switch (notif->type) {
1418 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1419 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1420 
1421 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1422 		    ic->ic_channels[chan->nchan].ic_freq, chan->nchan));
1423 		break;
1424 
1425 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1426 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1427 
1428 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1429 		    scan->status));
1430 
1431 		sc->sc_scan_timer = 0;
1432 
1433 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1434 			/*
1435 			 * Monitor mode works by doing a passive scan to set
1436 			 * the channel and enable rx.  Because we don't want
1437 			 * to abort a scan lest the firmware crash we scan
1438 			 * for a short period of time and automatically restart
1439 			 * the scan when notified the sweep has completed.
1440 			 */
1441 			taskqueue_enqueue(sc->sc_tq, &sc->sc_scantask);
1442 		} else {
1443 			sc->flags &= ~IWI_FLAG_SCANNING;
1444 			taskqueue_enqueue(sc->sc_tq, &sc->sc_scandonetask);
1445 		}
1446 		break;
1447 
1448 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1449 		auth = (struct iwi_notif_authentication *)(notif + 1);
1450 
1451 		switch (auth->state) {
1452 		case IWI_AUTH_SUCCESS:
1453 			DPRINTFN(2, ("Authentication succeeeded\n"));
1454 			ieee80211_node_authorize(ic->ic_bss);
1455 			ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
1456 			break;
1457 
1458 		case IWI_AUTH_FAIL:
1459 			DPRINTFN(2, ("Authentication failed\n"));
1460 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1461 			/* XXX */
1462 			break;
1463 
1464 		case IWI_AUTH_SENT_1:
1465 		case IWI_AUTH_RECV_2:
1466 		case IWI_AUTH_SEQ1_PASS:
1467 			break;
1468 
1469 		case IWI_AUTH_SEQ1_FAIL:
1470 			DPRINTFN(2, ("Initial authentication handshake failed; "
1471 				"you probably need shared key\n"));
1472 			/* XXX retry shared key when in auto */
1473 			break;
1474 
1475 		default:
1476 			device_printf(sc->sc_dev,
1477 			    "unknown authentication state %u\n", auth->state);
1478 		}
1479 		break;
1480 
1481 	case IWI_NOTIF_TYPE_ASSOCIATION:
1482 		assoc = (struct iwi_notif_association *)(notif + 1);
1483 
1484 		switch (assoc->state) {
1485 		case IWI_AUTH_SUCCESS:
1486 			/* re-association, do nothing */
1487 			break;
1488 
1489 		case IWI_ASSOC_SUCCESS:
1490 			DPRINTFN(2, ("Association succeeded\n"));
1491 			sc->flags |= IWI_FLAG_ASSOCIATED;
1492 			iwi_checkforqos(sc,
1493 			    (const struct ieee80211_frame *)(assoc+1),
1494 			    le16toh(notif->len) - sizeof(*assoc));
1495 			ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1496 			break;
1497 
1498 		case IWI_ASSOC_FAIL:
1499 			DPRINTFN(2, ("Association failed\n"));
1500 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1501 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1502 			break;
1503 
1504 		default:
1505 			device_printf(sc->sc_dev,
1506 			    "unknown association state %u\n", assoc->state);
1507 		}
1508 		break;
1509 
1510 	case IWI_NOTIF_TYPE_BEACON:
1511 		/* XXX check struct length */
1512 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1513 
1514 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1515 		    beacon->state, le32toh(beacon->number)));
1516 
1517 		if (beacon->state == IWI_BEACON_MISS) {
1518 #if 0
1519 			if (sc->flags & IWI_FLAG_SCANNING) {
1520 				/* XXX terminate scan, linux driver
1521 				  says fw can get stuck */
1522 				/* XXX should be handled in iwi_newstate */
1523 				taskqueue_enqueue(sc->sc_tq,
1524 					&sc->sc_scanaborttask);
1525 			}
1526 #endif
1527 			/*
1528 			 * The firmware notifies us of every beacon miss
1529 			 * so we need to track the count against the
1530 			 * configured threshold before notifying the
1531 			 * 802.11 layer.
1532 			 * XXX try to roam, drop assoc only on much higher count
1533 			 */
1534 			if (le32toh(beacon->number) >= ic->ic_bmissthreshold) {
1535 				DPRINTF(("Beacon miss: %u >= %u\n",
1536 				    le32toh(beacon->number),
1537 				    ic->ic_bmissthreshold));
1538 				ieee80211_beacon_miss(ic);
1539 			}
1540 		}
1541 		break;
1542 
1543 	case IWI_NOTIF_TYPE_CALIBRATION:
1544 	case IWI_NOTIF_TYPE_NOISE:
1545 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1546 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1547 		break;
1548 
1549 	default:
1550 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1551 		    notif->type, notif->flags, le16toh(notif->len)));
1552 	}
1553 }
1554 
1555 static void
1556 iwi_rx_intr(struct iwi_softc *sc)
1557 {
1558 	struct iwi_rx_data *data;
1559 	struct iwi_hdr *hdr;
1560 	uint32_t hw;
1561 
1562 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1563 
1564 	for (; sc->rxq.cur != hw;) {
1565 		data = &sc->rxq.data[sc->rxq.cur];
1566 
1567 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1568 		    BUS_DMASYNC_POSTREAD);
1569 
1570 		hdr = mtod(data->m, struct iwi_hdr *);
1571 
1572 		switch (hdr->type) {
1573 		case IWI_HDR_TYPE_FRAME:
1574 			iwi_frame_intr(sc, data, sc->rxq.cur,
1575 			    (struct iwi_frame *)(hdr + 1));
1576 			break;
1577 
1578 		case IWI_HDR_TYPE_NOTIF:
1579 			iwi_notification_intr(sc,
1580 			    (struct iwi_notif *)(hdr + 1));
1581 			break;
1582 
1583 		default:
1584 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1585 			    hdr->type);
1586 		}
1587 
1588 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1589 
1590 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1591 	}
1592 
1593 	/* tell the firmware what we have processed */
1594 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1595 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1596 }
1597 
1598 static void
1599 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1600 {
1601 	struct ieee80211com *ic = &sc->sc_ic;
1602 	struct ifnet *ifp = ic->ic_ifp;
1603 	struct iwi_tx_data *data;
1604 	uint32_t hw;
1605 
1606 	hw = CSR_READ_4(sc, txq->csr_ridx);
1607 
1608 	for (; txq->next != hw;) {
1609 		data = &txq->data[txq->next];
1610 
1611 		bus_dmamap_sync(txq->data_dmat, data->map,
1612 		    BUS_DMASYNC_POSTWRITE);
1613 		bus_dmamap_unload(txq->data_dmat, data->map);
1614 		m_freem(data->m);
1615 		data->m = NULL;
1616 		ieee80211_free_node(data->ni);
1617 		data->ni = NULL;
1618 
1619 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1620 
1621 		ifp->if_opackets++;
1622 
1623 		txq->queued--;
1624 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1625 	}
1626 
1627 	sc->sc_tx_timer = 0;
1628 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1629 
1630 	if (sc->sc_softled)
1631 		iwi_led_event(sc, IWI_LED_TX);
1632 
1633 	iwi_start(ifp);
1634 }
1635 
1636 static void
1637 iwi_intr(void *arg)
1638 {
1639 	struct iwi_softc *sc = arg;
1640 	uint32_t r;
1641 	IWI_LOCK_DECL;
1642 
1643 	IWI_LOCK(sc);
1644 
1645 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1646 		IWI_UNLOCK(sc);
1647 		return;
1648 	}
1649 
1650 	/* acknowledge interrupts */
1651 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1652 
1653 	if (r & IWI_INTR_FATAL_ERROR) {
1654 		device_printf(sc->sc_dev, "firmware error\n");
1655 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask);
1656 	}
1657 
1658 	if (r & IWI_INTR_FW_INITED) {
1659 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1660 			wakeup(sc);
1661 	}
1662 
1663 	if (r & IWI_INTR_RADIO_OFF)
1664 		taskqueue_enqueue(sc->sc_tq, &sc->sc_radiofftask);
1665 
1666 	if (r & IWI_INTR_CMD_DONE) {
1667 		sc->flags &= ~IWI_FLAG_BUSY;
1668 		wakeup(sc);
1669 	}
1670 
1671 	if (r & IWI_INTR_TX1_DONE)
1672 		iwi_tx_intr(sc, &sc->txq[0]);
1673 
1674 	if (r & IWI_INTR_TX2_DONE)
1675 		iwi_tx_intr(sc, &sc->txq[1]);
1676 
1677 	if (r & IWI_INTR_TX3_DONE)
1678 		iwi_tx_intr(sc, &sc->txq[2]);
1679 
1680 	if (r & IWI_INTR_TX4_DONE)
1681 		iwi_tx_intr(sc, &sc->txq[3]);
1682 
1683 	if (r & IWI_INTR_RX_DONE)
1684 		iwi_rx_intr(sc);
1685 
1686 	if (r & IWI_INTR_PARITY_ERROR) {
1687 		/* XXX rate-limit */
1688 		device_printf(sc->sc_dev, "parity error\n");
1689 	}
1690 
1691 	IWI_UNLOCK(sc);
1692 }
1693 
1694 static int
1695 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1696 {
1697 	struct iwi_cmd_desc *desc;
1698 
1699 	IWI_LOCK_CHECK(sc);
1700 
1701 	if (sc->flags & IWI_FLAG_BUSY) {
1702 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1703 			__func__, type);
1704 		return EAGAIN;
1705 	}
1706 	sc->flags |= IWI_FLAG_BUSY;
1707 
1708 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1709 
1710 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1711 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1712 	desc->type = type;
1713 	desc->len = len;
1714 	memcpy(desc->data, data, len);
1715 
1716 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1717 	    BUS_DMASYNC_PREWRITE);
1718 
1719 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1720 	    type, len));
1721 
1722 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1723 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1724 
1725 	return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1726 }
1727 
1728 static void
1729 iwi_write_ibssnode(struct iwi_softc *sc,
1730 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1731 {
1732 	struct iwi_ibssnode node;
1733 
1734 	/* write node information into NIC memory */
1735 	memset(&node, 0, sizeof node);
1736 	IEEE80211_ADDR_COPY(node.bssid, addr);
1737 
1738 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1739 
1740 	CSR_WRITE_REGION_1(sc,
1741 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1742 	    (uint8_t *)&node, sizeof node);
1743 }
1744 
1745 static int
1746 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
1747     int ac)
1748 {
1749 	struct iwi_softc *sc = ifp->if_softc;
1750 	struct ieee80211com *ic = &sc->sc_ic;
1751 	struct iwi_node *in = (struct iwi_node *)ni;
1752 	const struct ieee80211_frame *wh;
1753 	struct ieee80211_key *k;
1754 	const struct chanAccParams *cap;
1755 	struct iwi_tx_ring *txq = &sc->txq[ac];
1756 	struct iwi_tx_data *data;
1757 	struct iwi_tx_desc *desc;
1758 	struct mbuf *mnew;
1759 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1760 	int error, nsegs, hdrlen, i;
1761 	int ismcast, flags, xflags, staid;
1762 
1763 	IWI_LOCK_CHECK(sc);
1764 	wh = mtod(m0, const struct ieee80211_frame *);
1765 	/* NB: only data frames use this path */
1766 	hdrlen = ieee80211_hdrsize(wh);
1767 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1768 	flags = xflags = 0;
1769 
1770 	if (!ismcast)
1771 		flags |= IWI_DATA_FLAG_NEED_ACK;
1772 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1773 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1774 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1775 		xflags |= IWI_DATA_XFLAG_QOS;
1776 		cap = &ic->ic_wme.wme_chanParams;
1777 		if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
1778 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1779 	}
1780 
1781 	/*
1782 	 * This is only used in IBSS mode where the firmware expect an index
1783 	 * in a h/w table instead of a destination address.
1784 	 */
1785 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1786 		if (!ismcast) {
1787 			if (in->in_station == -1) {
1788 				in->in_station = alloc_unr(sc->sc_unr);
1789 				if (in->in_station == -1) {
1790 					/* h/w table is full */
1791 					m_freem(m0);
1792 					ieee80211_free_node(ni);
1793 					ifp->if_oerrors++;
1794 					return 0;
1795 				}
1796 				iwi_write_ibssnode(sc,
1797 					ni->ni_macaddr, in->in_station);
1798 			}
1799 			staid = in->in_station;
1800 		} else {
1801 			/*
1802 			 * Multicast addresses have no associated node
1803 			 * so there will be no station entry.  We reserve
1804 			 * entry 0 for one mcast address and use that.
1805 			 * If there are many being used this will be
1806 			 * expensive and we'll need to do a better job
1807 			 * but for now this handles the broadcast case.
1808 			 */
1809 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1810 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1811 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1812 			}
1813 			staid = 0;
1814 		}
1815 	} else
1816 		staid = 0;
1817 
1818 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1819 		k = ieee80211_crypto_encap(ic, ni, m0);
1820 		if (k == NULL) {
1821 			m_freem(m0);
1822 			return ENOBUFS;
1823 		}
1824 
1825 		/* packet header may have moved, reset our local pointer */
1826 		wh = mtod(m0, struct ieee80211_frame *);
1827 	}
1828 
1829 	if (bpf_peers_present(sc->sc_drvbpf)) {
1830 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1831 
1832 		tap->wt_flags = 0;
1833 
1834 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1835 	}
1836 
1837 	data = &txq->data[txq->cur];
1838 	desc = &txq->desc[txq->cur];
1839 
1840 	/* save and trim IEEE802.11 header */
1841 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1842 	m_adj(m0, hdrlen);
1843 
1844 	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1845 	    &nsegs, 0);
1846 	if (error != 0 && error != EFBIG) {
1847 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1848 		    error);
1849 		m_freem(m0);
1850 		return error;
1851 	}
1852 	if (error != 0) {
1853 		mnew = m_defrag(m0, M_DONTWAIT);
1854 		if (mnew == NULL) {
1855 			device_printf(sc->sc_dev,
1856 			    "could not defragment mbuf\n");
1857 			m_freem(m0);
1858 			return ENOBUFS;
1859 		}
1860 		m0 = mnew;
1861 
1862 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1863 		    m0, segs, &nsegs, 0);
1864 		if (error != 0) {
1865 			device_printf(sc->sc_dev,
1866 			    "could not map mbuf (error %d)\n", error);
1867 			m_freem(m0);
1868 			return error;
1869 		}
1870 	}
1871 
1872 	data->m = m0;
1873 	data->ni = ni;
1874 
1875 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1876 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1877 	desc->station = staid;
1878 	desc->cmd = IWI_DATA_CMD_TX;
1879 	desc->len = htole16(m0->m_pkthdr.len);
1880 	desc->flags = flags;
1881 	desc->xflags = xflags;
1882 
1883 #if 0
1884 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1885 		desc->wep_txkey = ic->ic_crypto.cs_def_txkey;
1886 	else
1887 #endif
1888 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1889 
1890 	desc->nseg = htole32(nsegs);
1891 	for (i = 0; i < nsegs; i++) {
1892 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1893 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1894 	}
1895 
1896 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1897 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1898 
1899 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1900 	    ac, txq->cur, le16toh(desc->len), nsegs));
1901 
1902 	txq->queued++;
1903 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1904 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1905 
1906 	return 0;
1907 }
1908 
1909 static void
1910 iwi_start(struct ifnet *ifp)
1911 {
1912 	struct iwi_softc *sc = ifp->if_softc;
1913 	struct ieee80211com *ic = &sc->sc_ic;
1914 	struct mbuf *m0;
1915 	struct ether_header *eh;
1916 	struct ieee80211_node *ni;
1917 	int ac;
1918 	IWI_LOCK_DECL;
1919 
1920 	IWI_LOCK(sc);
1921 
1922 	if (ic->ic_state != IEEE80211_S_RUN) {
1923 		IWI_UNLOCK(sc);
1924 		return;
1925 	}
1926 
1927 	for (;;) {
1928 		IF_DEQUEUE(&ic->ic_mgtq, m0);
1929 		if (m0 == NULL) {
1930 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1931 			if (m0 == NULL)
1932 				break;
1933 
1934 			if (m0->m_len < sizeof (struct ether_header) &&
1935 			    (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL) {
1936 				ifp->if_oerrors++;
1937 				continue;
1938 			}
1939 			eh = mtod(m0, struct ether_header *);
1940 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1941 			if (ni == NULL) {
1942 				m_freem(m0);
1943 				ifp->if_oerrors++;
1944 				continue;
1945 			}
1946 
1947 			/* classify mbuf so we can find which tx ring to use */
1948 			if (ieee80211_classify(ic, m0, ni) != 0) {
1949 				m_freem(m0);
1950 				ieee80211_free_node(ni);
1951 				ifp->if_oerrors++;
1952 				continue;
1953 			}
1954 
1955 			/* XXX does not belong here */
1956 			/* no QoS encapsulation for EAPOL frames */
1957 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1958 			    M_WME_GETAC(m0) : WME_AC_BE;
1959 
1960 			if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1961 				/* there is no place left in this ring */
1962 				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1963 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1964 				break;
1965 			}
1966 
1967 			BPF_MTAP(ifp, m0);
1968 
1969 			m0 = ieee80211_encap(ic, m0, ni);
1970 			if (m0 == NULL) {
1971 				ieee80211_free_node(ni);
1972 				ifp->if_oerrors++;
1973 				continue;
1974 			}
1975 		} else {
1976 			ni = (struct ieee80211_node *) m0->m_pkthdr.rcvif;
1977 			m0->m_pkthdr.rcvif = NULL;
1978 			/* XXX no way to send mgt frames (yet), discard */
1979 			m_freem(m0);
1980 			ieee80211_free_node(ni);
1981 			continue;
1982 		}
1983 
1984 		if (bpf_peers_present(ic->ic_rawbpf))
1985 			bpf_mtap(ic->ic_rawbpf, m0);
1986 
1987 		if (iwi_tx_start(ifp, m0, ni, ac) != 0) {
1988 			ieee80211_free_node(ni);
1989 			ifp->if_oerrors++;
1990 			break;
1991 		}
1992 
1993 		sc->sc_tx_timer = 5;
1994 		ifp->if_timer = 1;
1995 	}
1996 
1997 	IWI_UNLOCK(sc);
1998 }
1999 
2000 static void
2001 iwi_watchdog(struct ifnet *ifp)
2002 {
2003 	struct iwi_softc *sc = ifp->if_softc;
2004 	struct ieee80211com *ic = &sc->sc_ic;
2005 	IWI_LOCK_DECL;
2006 
2007 	IWI_LOCK(sc);
2008 
2009 	if (sc->sc_tx_timer > 0) {
2010 		if (--sc->sc_tx_timer == 0) {
2011 			if_printf(ifp, "device timeout\n");
2012 			ifp->if_oerrors++;
2013 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask);
2014 		}
2015 	}
2016 	if (sc->sc_rfkill_timer > 0) {
2017 		if (--sc->sc_rfkill_timer == 0) {
2018 			/*
2019 			 * Check for a change in rfkill state.  We get an
2020 			 * interrupt when a radio is disabled but not when
2021 			 * it is enabled so we must poll for the latter.
2022 			 */
2023 			if (!iwi_getrfkill(sc))
2024 				taskqueue_enqueue(sc->sc_tq, &sc->sc_radiontask);
2025 			else
2026 				sc->sc_rfkill_timer = 2;
2027 		}
2028 	}
2029 	if (sc->sc_scan_timer > 0) {
2030 		if (--sc->sc_scan_timer == 0) {
2031 			if (sc->flags & IWI_FLAG_SCANNING) {
2032 				if_printf(ifp, "scan stuck\n");
2033 				taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask);
2034 			}
2035 		}
2036 	}
2037 	if (sc->sc_tx_timer || sc->sc_rfkill_timer || sc->sc_scan_timer)
2038 		ifp->if_timer = 1;
2039 	else
2040 		ifp->if_timer = 0;
2041 
2042 	ieee80211_watchdog(ic);
2043 
2044 	IWI_UNLOCK(sc);
2045 }
2046 
2047 static int
2048 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2049 {
2050 	struct iwi_softc *sc = ifp->if_softc;
2051 	struct ieee80211com *ic = &sc->sc_ic;
2052 	int error = 0;
2053 	IWI_LOCK_DECL;
2054 
2055 	IWI_LOCK(sc);
2056 
2057 	/*
2058 	 * wait until pending iwi_cmd() are completed, to avoid races
2059 	 * that could cause problems.
2060 	 */
2061 	while (sc->flags & IWI_FLAG_BUSY)
2062 		msleep(sc, &sc->sc_mtx, 0, "iwiioctl", hz);
2063 
2064 	switch (cmd) {
2065 	case SIOCSIFFLAGS:
2066 		if (ifp->if_flags & IFF_UP) {
2067 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2068 				iwi_init_locked(sc, 0);
2069 		} else {
2070 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2071 				iwi_stop(sc);
2072 			else {
2073 				/*
2074 				 * If device was stopped due to rfkill then
2075 				 * marked down we'll have the polling thread
2076 				 * running; stop it explicitly.
2077 				 */
2078 				sc->sc_rfkill_timer = 0;
2079 			}
2080 		}
2081 		break;
2082 
2083 	default:
2084 		error = ieee80211_ioctl(ic, cmd, data);
2085 	}
2086 
2087 	if (error == ENETRESET) {
2088 		if ((ifp->if_flags & IFF_UP) &&
2089 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
2090 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2091 			iwi_init_locked(sc, 0);
2092 		error = 0;
2093 	}
2094 
2095 	IWI_UNLOCK(sc);
2096 
2097 	return error;
2098 }
2099 
2100 static void
2101 iwi_stop_master(struct iwi_softc *sc)
2102 {
2103 	uint32_t tmp;
2104 	int ntries;
2105 
2106 	IWI_LOCK_CHECK(sc);
2107 
2108 	/* disable interrupts */
2109 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2110 
2111 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2112 	for (ntries = 0; ntries < 5; ntries++) {
2113 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2114 			break;
2115 		DELAY(10);
2116 	}
2117 	if (ntries == 5)
2118 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2119 
2120 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2121 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2122 
2123 	sc->flags &= ~IWI_FLAG_FW_INITED;
2124 }
2125 
2126 static int
2127 iwi_reset(struct iwi_softc *sc)
2128 {
2129 	uint32_t tmp;
2130 	int i, ntries;
2131 
2132 	iwi_stop_master(sc);
2133 
2134 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2135 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2136 
2137 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2138 
2139 	/* wait for clock stabilization */
2140 	for (ntries = 0; ntries < 1000; ntries++) {
2141 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2142 			break;
2143 		DELAY(200);
2144 	}
2145 	if (ntries == 1000) {
2146 		device_printf(sc->sc_dev,
2147 		    "timeout waiting for clock stabilization\n");
2148 		return EIO;
2149 	}
2150 
2151 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2152 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2153 
2154 	DELAY(10);
2155 
2156 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2157 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2158 
2159 	/* clear NIC memory */
2160 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2161 	for (i = 0; i < 0xc000; i++)
2162 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2163 
2164 	return 0;
2165 }
2166 
2167 static const struct iwi_firmware_ohdr *
2168 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2169 {
2170 	const struct firmware *fp = fw->fp;
2171 	const struct iwi_firmware_ohdr *hdr;
2172 
2173 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2174 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2175 		return NULL;
2176 	}
2177 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2178 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2179 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2180 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2181 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2182 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2183 		    IWI_FW_REQ_MINOR);
2184 		return NULL;
2185 	}
2186 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2187 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2188 	fw->name = fp->name;
2189 	return hdr;
2190 }
2191 
2192 static const struct iwi_firmware_ohdr *
2193 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2194 {
2195 	const struct iwi_firmware_ohdr *hdr;
2196 
2197 	hdr = iwi_setup_ofw(sc, fw);
2198 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2199 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2200 		    fw->name);
2201 		hdr = NULL;
2202 	}
2203 	return hdr;
2204 }
2205 
2206 static void
2207 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2208 	  struct iwi_fw *uc, const char *ucname)
2209 {
2210 	if (fw->fp == NULL)
2211 		fw->fp = firmware_get(fwname);
2212 	/* NB: pre-3.0 ucode is packaged separately */
2213 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2214 		uc->fp = firmware_get(ucname);
2215 }
2216 
2217 /*
2218  * Get the required firmware images if not already loaded.
2219  * Note that we hold firmware images so long as the device
2220  * is marked up in case we need to reload them on device init.
2221  * This is necessary because we re-init the device sometimes
2222  * from a context where we cannot read from the filesystem
2223  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2224  * XXX return 0 on success, 1 on error.
2225  *
2226  * NB: the order of get'ing and put'ing images here is
2227  * intentional to support handling firmware images bundled
2228  * by operating mode and/or all together in one file with
2229  * the boot firmware as "master".
2230  */
2231 static int
2232 iwi_get_firmware(struct iwi_softc *sc)
2233 {
2234 	struct ieee80211com *ic = &sc->sc_ic;
2235 	const struct iwi_firmware_hdr *hdr;
2236 	const struct firmware *fp;
2237 
2238 	/* invalidate cached firmware on mode change */
2239 	if (sc->fw_mode != ic->ic_opmode)
2240 		iwi_put_firmware(sc);
2241 
2242 	switch (ic->ic_opmode) {
2243 	case IEEE80211_M_STA:
2244 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2245 		break;
2246 
2247 	case IEEE80211_M_IBSS:
2248 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2249 		break;
2250 
2251 	case IEEE80211_M_MONITOR:
2252 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2253 			  &sc->fw_uc, "iwi_ucode_monitor");
2254 		break;
2255 
2256 	default:
2257 		break;
2258 	}
2259 	fp = sc->fw_fw.fp;
2260 	if (fp == NULL) {
2261 		device_printf(sc->sc_dev, "could not load firmware\n");
2262 		goto bad;
2263 	}
2264 	if (fp->version < 300) {
2265 		/*
2266 		 * Firmware prior to 3.0 was packaged as separate
2267 		 * boot, firmware, and ucode images.  Verify the
2268 		 * ucode image was read in, retrieve the boot image
2269 		 * if needed, and check version stamps for consistency.
2270 		 * The version stamps in the data are also checked
2271 		 * above; this is a bit paranoid but is a cheap
2272 		 * safeguard against mis-packaging.
2273 		 */
2274 		if (sc->fw_uc.fp == NULL) {
2275 			device_printf(sc->sc_dev, "could not load ucode\n");
2276 			goto bad;
2277 		}
2278 		if (sc->fw_boot.fp == NULL) {
2279 			sc->fw_boot.fp = firmware_get("iwi_boot");
2280 			if (sc->fw_boot.fp == NULL) {
2281 				device_printf(sc->sc_dev,
2282 					"could not load boot firmware\n");
2283 				goto bad;
2284 			}
2285 		}
2286 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2287 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2288 			device_printf(sc->sc_dev,
2289 			    "firmware version mismatch: "
2290 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2291 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2292 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2293 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2294 			);
2295 			goto bad;
2296 		}
2297 		/*
2298 		 * Check and setup each image.
2299 		 */
2300 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2301 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2302 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2303 			goto bad;
2304 	} else {
2305 		/*
2306 		 * Check and setup combined image.
2307 		 */
2308 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2309 			device_printf(sc->sc_dev, "image '%s' too small\n",
2310 			    fp->name);
2311 			goto bad;
2312 		}
2313 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2314 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2315 				+ le32toh(hdr->fsize)) {
2316 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2317 			    fp->name);
2318 			goto bad;
2319 		}
2320 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2321 		sc->fw_boot.size = le32toh(hdr->bsize);
2322 		sc->fw_boot.name = fp->name;
2323 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2324 		sc->fw_uc.size = le32toh(hdr->usize);
2325 		sc->fw_uc.name = fp->name;
2326 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2327 		sc->fw_fw.size = le32toh(hdr->fsize);
2328 		sc->fw_fw.name = fp->name;
2329 	}
2330 #if 0
2331 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2332 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2333 #endif
2334 
2335 	sc->fw_mode = ic->ic_opmode;
2336 	return 0;
2337 bad:
2338 	iwi_put_firmware(sc);
2339 	return 1;
2340 }
2341 
2342 static void
2343 iwi_put_fw(struct iwi_fw *fw)
2344 {
2345 	if (fw->fp != NULL) {
2346 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2347 		fw->fp = NULL;
2348 	}
2349 	fw->data = NULL;
2350 	fw->size = 0;
2351 	fw->name = NULL;
2352 }
2353 
2354 /*
2355  * Release any cached firmware images.
2356  */
2357 static void
2358 iwi_put_firmware(struct iwi_softc *sc)
2359 {
2360 	iwi_put_fw(&sc->fw_uc);
2361 	iwi_put_fw(&sc->fw_fw);
2362 	iwi_put_fw(&sc->fw_boot);
2363 }
2364 
2365 static int
2366 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2367 {
2368 	uint32_t tmp;
2369 	const uint16_t *w;
2370 	const char *uc = fw->data;
2371 	size_t size = fw->size;
2372 	int i, ntries, error;
2373 
2374 	IWI_LOCK_CHECK(sc);
2375 	error = 0;
2376 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2377 	    IWI_RST_STOP_MASTER);
2378 	for (ntries = 0; ntries < 5; ntries++) {
2379 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2380 			break;
2381 		DELAY(10);
2382 	}
2383 	if (ntries == 5) {
2384 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2385 		error = EIO;
2386 		goto fail;
2387 	}
2388 
2389 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2390 	DELAY(5000);
2391 
2392 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2393 	tmp &= ~IWI_RST_PRINCETON_RESET;
2394 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2395 
2396 	DELAY(5000);
2397 	MEM_WRITE_4(sc, 0x3000e0, 0);
2398 	DELAY(1000);
2399 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2400 	DELAY(1000);
2401 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2402 	DELAY(1000);
2403 	MEM_WRITE_1(sc, 0x200000, 0x00);
2404 	MEM_WRITE_1(sc, 0x200000, 0x40);
2405 	DELAY(1000);
2406 
2407 	/* write microcode into adapter memory */
2408 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2409 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2410 
2411 	MEM_WRITE_1(sc, 0x200000, 0x00);
2412 	MEM_WRITE_1(sc, 0x200000, 0x80);
2413 
2414 	/* wait until we get an answer */
2415 	for (ntries = 0; ntries < 100; ntries++) {
2416 		if (MEM_READ_1(sc, 0x200000) & 1)
2417 			break;
2418 		DELAY(100);
2419 	}
2420 	if (ntries == 100) {
2421 		device_printf(sc->sc_dev,
2422 		    "timeout waiting for ucode to initialize\n");
2423 		error = EIO;
2424 		goto fail;
2425 	}
2426 
2427 	/* read the answer or the firmware will not initialize properly */
2428 	for (i = 0; i < 7; i++)
2429 		MEM_READ_4(sc, 0x200004);
2430 
2431 	MEM_WRITE_1(sc, 0x200000, 0x00);
2432 
2433 fail:
2434 	return error;
2435 }
2436 
2437 /* macro to handle unaligned little endian data in firmware image */
2438 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2439 
2440 static int
2441 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2442 {
2443 	u_char *p, *end;
2444 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2445 	int ntries, error;
2446 
2447 	IWI_LOCK_CHECK(sc);
2448 	/* copy firmware image to DMA memory */
2449 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2450 
2451 	/* make sure the adapter will get up-to-date values */
2452 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2453 
2454 	/* tell the adapter where the command blocks are stored */
2455 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2456 
2457 	/*
2458 	 * Store command blocks into adapter's internal memory using register
2459 	 * indirections. The adapter will read the firmware image through DMA
2460 	 * using information stored in command blocks.
2461 	 */
2462 	src = sc->fw_physaddr;
2463 	p = sc->fw_virtaddr;
2464 	end = p + fw->size;
2465 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2466 
2467 	while (p < end) {
2468 		dst = GETLE32(p); p += 4; src += 4;
2469 		len = GETLE32(p); p += 4; src += 4;
2470 		p += len;
2471 
2472 		while (len > 0) {
2473 			mlen = min(len, IWI_CB_MAXDATALEN);
2474 
2475 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2476 			sum = ctl ^ src ^ dst;
2477 
2478 			/* write a command block */
2479 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2480 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2481 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2482 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2483 
2484 			src += mlen;
2485 			dst += mlen;
2486 			len -= mlen;
2487 		}
2488 	}
2489 
2490 	/* write a fictive final command block (sentinel) */
2491 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2492 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2493 
2494 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2495 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2496 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2497 
2498 	/* tell the adapter to start processing command blocks */
2499 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2500 
2501 	/* wait until the adapter reaches the sentinel */
2502 	for (ntries = 0; ntries < 400; ntries++) {
2503 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2504 			break;
2505 		DELAY(100);
2506 	}
2507 	/* sync dma, just in case */
2508 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2509 	if (ntries == 400) {
2510 		device_printf(sc->sc_dev,
2511 		    "timeout processing command blocks for %s firmware\n",
2512 		    fw->name);
2513 		return EIO;
2514 	}
2515 
2516 	/* we're done with command blocks processing */
2517 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2518 
2519 	/* allow interrupts so we know when the firmware is ready */
2520 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2521 
2522 	/* tell the adapter to initialize the firmware */
2523 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2524 
2525 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2526 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2527 
2528 	/* wait at most one second for firmware initialization to complete */
2529 	if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2530 		device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2531 		    "initialization to complete\n", fw->name);
2532 	}
2533 
2534 	return error;
2535 }
2536 
2537 static int
2538 iwi_setpowermode(struct iwi_softc *sc)
2539 {
2540 	struct ieee80211com *ic = &sc->sc_ic;
2541 	uint32_t data;
2542 
2543 	if (ic->ic_flags & IEEE80211_F_PMGTON) {
2544 		/* XXX set more fine-grained operation */
2545 		data = htole32(IWI_POWER_MODE_MAX);
2546 	} else
2547 		data = htole32(IWI_POWER_MODE_CAM);
2548 
2549 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2550 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2551 }
2552 
2553 static int
2554 iwi_setwepkeys(struct iwi_softc *sc)
2555 {
2556 	struct ieee80211com *ic = &sc->sc_ic;
2557 	struct iwi_wep_key wepkey;
2558 	struct ieee80211_key *wk;
2559 	int error, i;
2560 
2561 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2562 		wk = &ic->ic_crypto.cs_nw_keys[i];
2563 
2564 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2565 		wepkey.idx = i;
2566 		wepkey.len = wk->wk_keylen;
2567 		memset(wepkey.key, 0, sizeof wepkey.key);
2568 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2569 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2570 		    wepkey.len));
2571 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2572 		    sizeof wepkey);
2573 		if (error != 0)
2574 			return error;
2575 	}
2576 	return 0;
2577 }
2578 
2579 static int
2580 iwi_config(struct iwi_softc *sc)
2581 {
2582 	struct ieee80211com *ic = &sc->sc_ic;
2583 	struct ifnet *ifp = ic->ic_ifp;
2584 	struct iwi_configuration config;
2585 	struct iwi_rateset rs;
2586 	struct iwi_txpower power;
2587 	uint32_t data;
2588 	int error, i;
2589 	IWI_LOCK_CHECK(sc);
2590 
2591 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2592 	DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":"));
2593 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
2594 	    IEEE80211_ADDR_LEN);
2595 	if (error != 0)
2596 		return error;
2597 
2598 	memset(&config, 0, sizeof config);
2599 	config.bluetooth_coexistence = sc->bluetooth;
2600 	config.silence_threshold = 0x1e;
2601 	config.antenna = sc->antenna;
2602 	config.multicast_enabled = 1;
2603 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2604 	config.disable_unicast_decryption = 1;
2605 	config.disable_multicast_decryption = 1;
2606 	DPRINTF(("Configuring adapter\n"));
2607 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2608 	if (error != 0)
2609 		return error;
2610 
2611 	error = iwi_setpowermode(sc);
2612 	if (error != 0)
2613 		return error;
2614 
2615 	data = htole32(ic->ic_rtsthreshold);
2616 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2617 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2618 	if (error != 0)
2619 		return error;
2620 
2621 	data = htole32(ic->ic_fragthreshold);
2622 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2623 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2624 	if (error != 0)
2625 		return error;
2626 
2627 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2628 		power.mode = IWI_MODE_11B;
2629 		power.nchan = 11;
2630 		for (i = 0; i < 11; i++) {
2631 			power.chan[i].chan = i + 1;
2632 			power.chan[i].power = IWI_TXPOWER_MAX;
2633 		}
2634 		DPRINTF(("Setting .11b channels tx power\n"));
2635 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2636 		if (error != 0)
2637 			return error;
2638 
2639 		power.mode = IWI_MODE_11G;
2640 		DPRINTF(("Setting .11g channels tx power\n"));
2641 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2642 		if (error != 0)
2643 			return error;
2644 	}
2645 
2646 	rs.mode = IWI_MODE_11G;
2647 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2648 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2649 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2650 	    rs.nrates);
2651 	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2652 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2653 	if (error != 0)
2654 		return error;
2655 
2656 	rs.mode = IWI_MODE_11A;
2657 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2658 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2659 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2660 	    rs.nrates);
2661 	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2662 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2663 	if (error != 0)
2664 		return error;
2665 
2666 	/* if we have a desired ESSID, set it now */
2667 	if (ic->ic_des_esslen != 0) {
2668 #ifdef IWI_DEBUG
2669 		if (iwi_debug > 0) {
2670 			printf("Setting desired ESSID to ");
2671 			ieee80211_print_essid(ic->ic_des_essid,
2672 			    ic->ic_des_esslen);
2673 			printf("\n");
2674 		}
2675 #endif
2676 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid,
2677 		    ic->ic_des_esslen);
2678 		if (error != 0)
2679 			return error;
2680 	}
2681 
2682 	data = htole32(arc4random());
2683 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2684 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2685 	if (error != 0)
2686 		return error;
2687 
2688 	error = iwi_setwepkeys(sc);
2689 	if (error != 0)
2690 		return error;
2691 
2692 	/* enable adapter */
2693 	DPRINTF(("Enabling adapter\n"));
2694 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2695 }
2696 
2697 static __inline void
2698 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2699 {
2700 	uint8_t *st = &scan->scan_type[ix / 2];
2701 	if (ix % 2)
2702 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2703 	else
2704 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2705 }
2706 
2707 static int
2708 iwi_scan(struct iwi_softc *sc)
2709 {
2710 #define	IEEE80211_MODE_5GHZ	(1<<IEEE80211_MODE_11A)
2711 #define	IEEE80211_MODE_2GHZ	((1<<IEEE80211_MODE_11B)|1<<IEEE80211_MODE_11G)
2712 	struct ieee80211com *ic = &sc->sc_ic;
2713 	const struct ieee80211_channel *c;
2714 	struct iwi_scan_ext scan;
2715 	int i, ix, start, scan_type, error;
2716 
2717 	IWI_LOCK_CHECK(sc);
2718 
2719 	memset(&scan, 0, sizeof scan);
2720 
2721 	/* XXX different dwell times for different scan types */
2722 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(sc->dwelltime);
2723 	scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(sc->dwelltime);
2724 	scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(sc->dwelltime);
2725 
2726 	scan.full_scan_index = htole32(ic->ic_scan.nt_scangen);
2727 
2728 	if (ic->ic_des_esslen != 0) {
2729 		scan_type = IWI_SCAN_TYPE_BDIRECTED;
2730 #ifdef IWI_DEBUG
2731 		if (iwi_debug > 0) {
2732 			printf("Setting desired ESSID to ");
2733 			ieee80211_print_essid(ic->ic_des_essid,
2734 			    ic->ic_des_esslen);
2735 			printf("\n");
2736 		}
2737 #endif
2738 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid,
2739 		    ic->ic_des_esslen);
2740 		if (error != 0)
2741 			return error;
2742 	} else
2743 		scan_type = IWI_SCAN_TYPE_BROADCAST;
2744 
2745 	ix = 0;
2746 	if (ic->ic_modecaps & IEEE80211_MODE_5GHZ) {
2747 		start = ix;
2748 		for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
2749 			c = &ic->ic_channels[i];
2750 			/*
2751 			 * NB: ieee80211_next_scan clears curchan from the
2752 			 * channel list so we must explicitly check; this
2753 			 * will be fixed when the new scanning support arrives.
2754 			 */
2755 			if (!IEEE80211_IS_CHAN_5GHZ(c) ||
2756 			    !(isset(ic->ic_chan_scan,i) || c == ic->ic_curchan))
2757 				continue;
2758 			ix++;
2759 			scan.channels[ix] = i;
2760 			if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
2761 				set_scan_type(&scan, ix, IWI_SCAN_TYPE_PASSIVE);
2762 			else
2763 				set_scan_type(&scan, ix, scan_type);
2764 		}
2765 		if (start != ix) {
2766 			scan.channels[start] = IWI_CHAN_5GHZ | (ix - start);
2767 			ix++;
2768 		}
2769 	}
2770 	if (ic->ic_modecaps & IEEE80211_MODE_2GHZ) {
2771 		start = ix;
2772 		for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
2773 			c = &ic->ic_channels[i];
2774 			/* NB: see above */
2775 			if (!IEEE80211_IS_CHAN_2GHZ(c) ||
2776 			    !(isset(ic->ic_chan_scan,i) || c == ic->ic_curchan))
2777 				continue;
2778 			ix++;
2779 			scan.channels[ix] = i;
2780 			if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
2781 				set_scan_type(&scan, ix, IWI_SCAN_TYPE_PASSIVE);
2782 			else
2783 				set_scan_type(&scan, ix, scan_type);
2784 		}
2785 		if (start != ix)
2786 			scan.channels[start] = IWI_CHAN_2GHZ | (ix - start);
2787 	}
2788 
2789 	DPRINTF(("Start scanning\n"));
2790 	/*
2791 	 * With 100ms/channel dwell time and a max of ~20 channels
2792 	 * 5 seconds may be too tight; leave a bit more slack.
2793 	 */
2794 	sc->sc_scan_timer = 7;			/* seconds to complete */
2795 	sc->sc_ifp->if_timer = 1;
2796 	sc->flags |= IWI_FLAG_SCANNING;
2797 	return iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan);
2798 #undef IEEE80211_MODE_5GHZ
2799 #undef IEEE80211_MODE_2GHZ
2800 }
2801 
2802 static void
2803 iwi_scanabort(void *arg, int npending)
2804 {
2805 	struct iwi_softc *sc = arg;
2806 	IWI_LOCK_DECL;
2807 
2808 	IWI_LOCK(sc);
2809 	/* NB: make sure we're still scanning */
2810 	if (sc->flags & IWI_FLAG_SCANNING)
2811 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
2812 	IWI_UNLOCK(sc);
2813 }
2814 
2815 static void
2816 iwi_scanstart(void *arg, int npending)
2817 {
2818 	struct iwi_softc *sc = arg;
2819 	struct ieee80211com *ic = &sc->sc_ic;
2820 	IWI_LOCK_DECL;
2821 
2822 	IWI_LOCK(sc);
2823 	/*
2824 	 * Tell the card to kick off a scan.  We guard this
2825 	 * by checking IWI_FLAG_SCANNING as otherwise we'll
2826 	 * do this twice because ieee80211_begin_scan will
2827 	 * immediately call us back to scan the first channel
2828 	 * in the list.
2829 	 */
2830 	if (sc->flags & IWI_FLAG_SCANNING) {
2831 		ieee80211_begin_scan(ic, 1);
2832 		if (iwi_scan(sc) != 0) {
2833 			/* XXX should not happen */
2834 			sc->flags &= ~IWI_FLAG_SCANNING;
2835 			ieee80211_new_state(ic, IEEE80211_S_INIT, 0);
2836 		}
2837 	}
2838 	IWI_UNLOCK(sc);
2839 }
2840 
2841 static void
2842 iwi_scandone(void *arg, int npending)
2843 {
2844 	struct iwi_softc *sc = arg;
2845 	struct ieee80211com *ic = &sc->sc_ic;
2846 	IWI_LOCK_DECL;
2847 
2848 	IWI_LOCK(sc);
2849 	if (sc->flags & IWI_FLAG_ASSOCIATED)
2850 		iwi_disassociate(sc, 0);
2851 	ieee80211_end_scan(ic);
2852 	IWI_UNLOCK(sc);
2853 }
2854 
2855 /*
2856  * Set the current channel by doing a passive scan.  Note this
2857  * is explicitly for monitor mode operation; do not use it for
2858  * anything else (sigh).
2859  */
2860 static void
2861 iwi_scanchan(void *arg, int npending)
2862 {
2863 	struct iwi_softc *sc = arg;
2864 	struct ieee80211com *ic;
2865 	struct ieee80211_channel *chan;
2866 	struct iwi_scan_ext scan;
2867 	IWI_LOCK_DECL;
2868 
2869 	IWI_LOCK(sc);
2870 	ic = &sc->sc_ic;
2871 	KASSERT(ic->ic_opmode == IEEE80211_M_MONITOR,
2872 		("opmode %u", ic->ic_opmode));
2873 	chan = ic->ic_ibss_chan;
2874 
2875 	memset(&scan, 0, sizeof scan);
2876 	/*
2877 	 * Set the dwell time to a fairly small value.  The firmware
2878 	 * is prone to crash when aborting a scan so it's better to
2879 	 * let a scan complete before changing channels--such as when
2880 	 * channel hopping in monitor mode.
2881 	 */
2882 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(2000);
2883 	scan.full_scan_index = htole32(ic->ic_scan.nt_scangen);
2884 	if (IEEE80211_IS_CHAN_5GHZ(chan))
2885 		scan.channels[0] = 1 | IWI_CHAN_5GHZ;
2886 	else
2887 		scan.channels[0] = 1 | IWI_CHAN_2GHZ;
2888 	scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2889 	set_scan_type(&scan, 1, IWI_SCAN_TYPE_PASSIVE);
2890 
2891 	DPRINTF(("Setting channel to %u\n", ieee80211_chan2ieee(ic, chan)));
2892 	sc->flags |= IWI_FLAG_SCANNING;
2893 	(void) iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan);
2894 	IWI_UNLOCK(sc);
2895 }
2896 
2897 static int
2898 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2899 {
2900 	struct iwi_sensitivity sens;
2901 
2902 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2903 
2904 	memset(&sens, 0, sizeof sens);
2905 	sens.rssi = htole16(rssi_dbm);
2906 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2907 }
2908 
2909 static int
2910 iwi_auth_and_assoc(struct iwi_softc *sc)
2911 {
2912 	struct ieee80211com *ic = &sc->sc_ic;
2913 	struct ifnet *ifp = ic->ic_ifp;
2914 	struct ieee80211_node *ni = ic->ic_bss;
2915 	struct iwi_configuration config;
2916 	struct iwi_associate *assoc = &sc->assoc;
2917 	struct iwi_rateset rs;
2918 	uint16_t capinfo;
2919 	int error;
2920 
2921 	IWI_LOCK_CHECK(sc);
2922 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2923 		memset(&config, 0, sizeof config);
2924 		config.bluetooth_coexistence = sc->bluetooth;
2925 		config.antenna = sc->antenna;
2926 		config.multicast_enabled = 1;
2927 		config.use_protection = 1;
2928 		config.answer_pbreq =
2929 		    (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2930 		config.disable_unicast_decryption = 1;
2931 		config.disable_multicast_decryption = 1;
2932 		DPRINTF(("Configuring adapter\n"));
2933 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2934 		if (error != 0)
2935 			return error;
2936 	}
2937 
2938 #ifdef IWI_DEBUG
2939 	if (iwi_debug > 0) {
2940 		printf("Setting ESSID to ");
2941 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2942 		printf("\n");
2943 	}
2944 #endif
2945 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2946 	if (error != 0)
2947 		return error;
2948 
2949 	/* the rate set has already been "negotiated" */
2950 	rs.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A :
2951 	    IWI_MODE_11G;
2952 	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2953 	rs.nrates = ni->ni_rates.rs_nrates;
2954 	if (rs.nrates > IWI_RATESET_SIZE) {
2955 		DPRINTF(("Truncating negotiated rate set from %u\n",
2956 		    rs.nrates));
2957 		rs.nrates = IWI_RATESET_SIZE;
2958 	}
2959 	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2960 	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2961 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2962 	if (error != 0)
2963 		return error;
2964 
2965 	memset(assoc, 0, sizeof *assoc);
2966 
2967 	if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) {
2968 		/* NB: don't treat WME setup as failure */
2969 		if (iwi_wme_setparams_locked(sc) == 0 && iwi_wme_setie(sc) == 0)
2970 			assoc->policy |= htole16(IWI_POLICY_WME);
2971 		/* XXX complain on failure? */
2972 	}
2973 
2974 	if (ic->ic_opt_ie != NULL) {
2975 		DPRINTF(("Setting optional IE (len=%u)\n", ic->ic_opt_ie_len));
2976 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ic->ic_opt_ie,
2977 		    ic->ic_opt_ie_len);
2978 		if (error != 0)
2979 			return error;
2980 	}
2981 
2982 	error = iwi_set_sensitivity(sc, ni->ni_rssi);
2983 	if (error != 0)
2984 		return error;
2985 
2986 	if (IEEE80211_IS_CHAN_A(ni->ni_chan))
2987 		assoc->mode = IWI_MODE_11A;
2988 	else if (IEEE80211_IS_CHAN_G(ni->ni_chan))
2989 		assoc->mode = IWI_MODE_11G;
2990 	else if (IEEE80211_IS_CHAN_B(ni->ni_chan))
2991 		assoc->mode = IWI_MODE_11B;
2992 	/* XXX else error */
2993 	assoc->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2994 	/*
2995 	 * NB: do not arrange for shared key auth w/o privacy
2996 	 *     (i.e. a wep key); it causes a firmware error.
2997 	 */
2998 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) &&
2999 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
3000 		assoc->auth = IWI_AUTH_SHARED;
3001 		/*
3002 		 * It's possible to have privacy marked but no default
3003 		 * key setup.  This typically is due to a user app bug
3004 		 * but if we blindly grab the key the firmware will
3005 		 * barf so avoid it for now.
3006 		 */
3007 		if (ic->ic_crypto.cs_def_txkey != IEEE80211_KEYIX_NONE)
3008 			assoc->auth |= ic->ic_crypto.cs_def_txkey << 4;
3009 
3010 		error = iwi_setwepkeys(sc);
3011 		if (error != 0)
3012 			return error;
3013 	}
3014 	if (ic->ic_flags & IEEE80211_F_WPA)
3015 		assoc->policy |= htole16(IWI_POLICY_WPA);
3016 	if (ic->ic_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
3017 		assoc->type = IWI_HC_IBSS_START;
3018 	else
3019 		assoc->type = IWI_HC_ASSOC;
3020 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
3021 
3022 	if (ic->ic_opmode == IEEE80211_M_IBSS)
3023 		capinfo = IEEE80211_CAPINFO_IBSS;
3024 	else
3025 		capinfo = IEEE80211_CAPINFO_ESS;
3026 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
3027 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
3028 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3029 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3030 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
3031 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
3032 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
3033 	assoc->capinfo = htole16(capinfo);
3034 
3035 	assoc->lintval = htole16(ic->ic_lintval);
3036 	assoc->intval = htole16(ni->ni_intval);
3037 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
3038 	if (ic->ic_opmode == IEEE80211_M_IBSS)
3039 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
3040 	else
3041 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
3042 
3043 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
3044 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
3045 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
3046 	    assoc->bssid, ":", assoc->dst, ":",
3047 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
3048 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
3049 	    le16toh(assoc->intval)));
3050 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3051 }
3052 
3053 static int
3054 iwi_disassociate(struct iwi_softc *sc, int quiet)
3055 {
3056 	struct iwi_associate *assoc = &sc->assoc;
3057 
3058 	if (quiet)
3059 		assoc->type = IWI_HC_DISASSOC_QUIET;
3060 	else
3061 		assoc->type = IWI_HC_DISASSOC;
3062 
3063 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
3064 	    assoc->bssid, ":", assoc->chan));
3065 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3066 }
3067 
3068 static void
3069 iwi_down(void *arg, int npending)
3070 {
3071 	struct iwi_softc *sc = arg;
3072 	IWI_LOCK_DECL;
3073 
3074 	IWI_LOCK(sc);
3075 	iwi_disassociate(sc, 0);
3076 	IWI_UNLOCK(sc);
3077 }
3078 
3079 static void
3080 iwi_init(void *priv)
3081 {
3082 	struct iwi_softc *sc = priv;
3083 	IWI_LOCK_DECL;
3084 
3085 	IWI_LOCK(sc);
3086 	iwi_init_locked(sc, 0);
3087 	IWI_UNLOCK(sc);
3088 }
3089 
3090 /*
3091  * release dma resources for the firmware
3092  */
3093 static void
3094 iwi_release_fw_dma(struct iwi_softc *sc)
3095 {
3096 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
3097 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3098 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
3099 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3100 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3101 		bus_dma_tag_destroy(sc->fw_dmat);
3102 
3103 	sc->fw_flags = 0;
3104 	sc->fw_dma_size = 0;
3105 	sc->fw_dmat = NULL;
3106 	sc->fw_map = NULL;
3107 	sc->fw_physaddr = 0;
3108 	sc->fw_virtaddr = NULL;
3109 }
3110 
3111 /*
3112  * allocate the dma descriptor for the firmware.
3113  * Return 0 on success, 1 on error.
3114  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3115  */
3116 static int
3117 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3118 {
3119 	if (sc->fw_dma_size > size)
3120 		return 0;
3121 	if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
3122 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3123 	    size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
3124 		device_printf(sc->sc_dev,
3125 		    "could not create firmware DMA tag\n");
3126 		goto error;
3127 	}
3128 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3129 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3130 	    &sc->fw_map) != 0) {
3131 		device_printf(sc->sc_dev,
3132 		    "could not allocate firmware DMA memory\n");
3133 		goto error;
3134 	}
3135 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3136 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3137 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3138 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3139 		goto error;
3140 	}
3141 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3142 	sc->fw_dma_size = size;
3143 	return 0;
3144 
3145 error:
3146 	iwi_release_fw_dma(sc);
3147 	return 1;
3148 }
3149 
3150 static void
3151 iwi_init_locked(void *priv, int force)
3152 {
3153 	struct iwi_softc *sc = priv;
3154 	struct ieee80211com *ic = &sc->sc_ic;
3155 	struct ifnet *ifp = ic->ic_ifp;
3156 	struct iwi_rx_data *data;
3157 	int i;
3158 	IWI_LOCK_DECL;
3159 
3160 	IWI_LOCK_CHECK(sc);
3161 	if (sc->flags & IWI_FLAG_FW_LOADING) {
3162 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3163 		return;		/* XXX: condvar? */
3164 	}
3165 
3166 	iwi_stop(sc);
3167 
3168 	if (iwi_reset(sc) != 0) {
3169 		device_printf(sc->sc_dev, "could not reset adapter\n");
3170 		goto fail;
3171 	}
3172 
3173 	sc->flags |= IWI_FLAG_FW_LOADING;
3174 
3175 	IWI_UNLOCK(sc);
3176 	if (iwi_get_firmware(sc)) {
3177 		IWI_LOCK(sc);
3178 		goto fail;
3179 	}
3180 
3181 	/* allocate DMA memory for mapping firmware image */
3182 	i = sc->fw_fw.size;
3183 	if (sc->fw_boot.size > i)
3184 		i = sc->fw_boot.size;
3185 	/* XXX do we dma the ucode as well ? */
3186 	if (sc->fw_uc.size > i)
3187 		i = sc->fw_uc.size;
3188 	if (iwi_init_fw_dma(sc, i)) {
3189 		IWI_LOCK(sc);
3190 		goto fail;
3191 	}
3192 	IWI_LOCK(sc);
3193 
3194 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3195 		device_printf(sc->sc_dev,
3196 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3197 		goto fail;
3198 	}
3199 
3200 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3201 		device_printf(sc->sc_dev,
3202 		    "could not load microcode %s\n", sc->fw_uc.name);
3203 		goto fail;
3204 	}
3205 
3206 	iwi_stop_master(sc);
3207 
3208 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3209 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3210 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3211 
3212 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3213 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3214 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3215 
3216 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3217 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3218 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3219 
3220 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3221 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3222 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3223 
3224 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3225 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3226 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3227 
3228 	for (i = 0; i < sc->rxq.count; i++) {
3229 		data = &sc->rxq.data[i];
3230 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3231 	}
3232 
3233 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3234 
3235 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3236 		device_printf(sc->sc_dev,
3237 		    "could not load main firmware %s\n", sc->fw_fw.name);
3238 		goto fail;
3239 	}
3240 	sc->flags |= IWI_FLAG_FW_INITED;
3241 
3242 	if (iwi_config(sc) != 0) {
3243 		device_printf(sc->sc_dev, "device configuration failed\n");
3244 		goto fail;
3245 	}
3246 
3247 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3248 		/*
3249 		 * NB: When restarting the adapter clock the state
3250 		 * machine regardless of the roaming mode; otherwise
3251 		 * we need to notify user apps so they can manually
3252 		 * get us going again.
3253 		 */
3254 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL || force)
3255 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3256 	} else
3257 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3258 
3259 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3260 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3261 
3262 	sc->flags &= ~IWI_FLAG_FW_LOADING;
3263 	return;
3264 
3265 fail:	ifp->if_flags &= ~IFF_UP;
3266 	sc->flags &= ~IWI_FLAG_FW_LOADING;
3267 	iwi_stop(sc);
3268 	iwi_put_firmware(sc);
3269 }
3270 
3271 static void
3272 iwi_stop(void *priv)
3273 {
3274 	struct iwi_softc *sc = priv;
3275 	struct ieee80211com *ic = &sc->sc_ic;
3276 	struct ifnet *ifp = ic->ic_ifp;
3277 
3278 	IWI_LOCK_CHECK(sc);	/* XXX: pretty sure this triggers */
3279 	if (sc->sc_softled) {
3280 		callout_stop(&sc->sc_ledtimer);
3281 		sc->sc_blinking = 0;
3282 	}
3283 
3284 	iwi_stop_master(sc);
3285 
3286 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3287 
3288 	/* reset rings */
3289 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3290 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3291 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3292 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3293 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3294 	iwi_reset_rx_ring(sc, &sc->rxq);
3295 
3296 	ifp->if_timer = 0;
3297 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3298 
3299 	sc->sc_tx_timer = 0;
3300 	sc->sc_rfkill_timer = 0;
3301 	sc->sc_scan_timer = 0;
3302 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_SCANNING | IWI_FLAG_ASSOCIATED);
3303 
3304 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3305 }
3306 
3307 static void
3308 iwi_restart(void *arg, int npending)
3309 {
3310 	struct iwi_softc *sc = arg;
3311 	IWI_LOCK_DECL;
3312 
3313 	IWI_LOCK(sc);
3314 	iwi_init_locked(sc, 1);		/* NB: force state machine */
3315 	IWI_UNLOCK(sc);
3316 }
3317 
3318 /*
3319  * Return whether or not the radio is enabled in hardware
3320  * (i.e. the rfkill switch is "off").
3321  */
3322 static int
3323 iwi_getrfkill(struct iwi_softc *sc)
3324 {
3325 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3326 }
3327 
3328 static void
3329 iwi_radio_on(void *arg, int pending)
3330 {
3331 	struct iwi_softc *sc = arg;
3332 
3333 	device_printf(sc->sc_dev, "radio turned on\n");
3334 	iwi_init(sc);
3335 }
3336 
3337 static void
3338 iwi_radio_off(void *arg, int pending)
3339 {
3340 	struct iwi_softc *sc = arg;
3341 
3342 	device_printf(sc->sc_dev, "radio turned off\n");
3343 	iwi_stop(sc);
3344 	sc->sc_rfkill_timer = 2;
3345 	sc->sc_ifp->if_timer = 1;
3346 }
3347 
3348 static int
3349 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3350 {
3351 	struct iwi_softc *sc = arg1;
3352 	uint32_t size, buf[128];
3353 
3354 	if (!(sc->flags & IWI_FLAG_FW_INITED)) {
3355 		memset(buf, 0, sizeof buf);
3356 		return SYSCTL_OUT(req, buf, sizeof buf);
3357 	}
3358 
3359 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3360 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3361 
3362 	return SYSCTL_OUT(req, buf, sizeof buf);
3363 }
3364 
3365 static int
3366 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3367 {
3368 	struct iwi_softc *sc = arg1;
3369 	int val = !iwi_getrfkill(sc);
3370 
3371 	return SYSCTL_OUT(req, &val, sizeof val);
3372 }
3373 
3374 /*
3375  * Add sysctl knobs.
3376  */
3377 static void
3378 iwi_sysctlattach(struct iwi_softc *sc)
3379 {
3380 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3381 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3382 
3383 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3384 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3385 	    "radio transmitter switch state (0=off, 1=on)");
3386 
3387 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3388 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3389 	    "statistics");
3390 
3391 	sc->dwelltime = 100;
3392 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "dwell",
3393 	    CTLFLAG_RW, &sc->dwelltime, 0,
3394 	    "channel dwell time (ms) for AP/station scanning");
3395 
3396 	sc->bluetooth = 0;
3397 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3398 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3399 
3400 	sc->antenna = IWI_ANTENNA_AUTO;
3401 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3402 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3403 }
3404 
3405 /*
3406  * LED support.
3407  *
3408  * Different cards have different capabilities.  Some have three
3409  * led's while others have only one.  The linux ipw driver defines
3410  * led's for link state (associated or not), band (11a, 11g, 11b),
3411  * and for link activity.  We use one led and vary the blink rate
3412  * according to the tx/rx traffic a la the ath driver.
3413  */
3414 
3415 static __inline uint32_t
3416 iwi_toggle_event(uint32_t r)
3417 {
3418 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3419 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3420 }
3421 
3422 static uint32_t
3423 iwi_read_event(struct iwi_softc *sc)
3424 {
3425 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3426 }
3427 
3428 static void
3429 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3430 {
3431 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3432 }
3433 
3434 static void
3435 iwi_led_done(void *arg)
3436 {
3437 	struct iwi_softc *sc = arg;
3438 
3439 	sc->sc_blinking = 0;
3440 }
3441 
3442 /*
3443  * Turn the activity LED off: flip the pin and then set a timer so no
3444  * update will happen for the specified duration.
3445  */
3446 static void
3447 iwi_led_off(void *arg)
3448 {
3449 	struct iwi_softc *sc = arg;
3450 	uint32_t v;
3451 
3452 	v = iwi_read_event(sc);
3453 	v &= ~sc->sc_ledpin;
3454 	iwi_write_event(sc, iwi_toggle_event(v));
3455 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3456 }
3457 
3458 /*
3459  * Blink the LED according to the specified on/off times.
3460  */
3461 static void
3462 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3463 {
3464 	uint32_t v;
3465 
3466 	v = iwi_read_event(sc);
3467 	v |= sc->sc_ledpin;
3468 	iwi_write_event(sc, iwi_toggle_event(v));
3469 	sc->sc_blinking = 1;
3470 	sc->sc_ledoff = off;
3471 	callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3472 }
3473 
3474 static void
3475 iwi_led_event(struct iwi_softc *sc, int event)
3476 {
3477 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3478 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3479 	static const struct {
3480 		u_int		rate;		/* tx/rx iwi rate */
3481 		u_int16_t	timeOn;		/* LED on time (ms) */
3482 		u_int16_t	timeOff;	/* LED off time (ms) */
3483 	} blinkrates[] = {
3484 		{ IWI_RATE_OFDM54, 40,  10 },
3485 		{ IWI_RATE_OFDM48, 44,  11 },
3486 		{ IWI_RATE_OFDM36, 50,  13 },
3487 		{ IWI_RATE_OFDM24, 57,  14 },
3488 		{ IWI_RATE_OFDM18, 67,  16 },
3489 		{ IWI_RATE_OFDM12, 80,  20 },
3490 		{ IWI_RATE_DS11,  100,  25 },
3491 		{ IWI_RATE_OFDM9, 133,  34 },
3492 		{ IWI_RATE_OFDM6, 160,  40 },
3493 		{ IWI_RATE_DS5,   200,  50 },
3494 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3495 		{ IWI_RATE_DS2,   267,  66 },
3496 		{ IWI_RATE_DS1,   400, 100 },
3497 		{            0,   500, 130 },	/* unknown rate/polling */
3498 	};
3499 	uint32_t txrate;
3500 	int j = 0;			/* XXX silence compiler */
3501 
3502 	sc->sc_ledevent = ticks;	/* time of last event */
3503 	if (sc->sc_blinking)		/* don't interrupt active blink */
3504 		return;
3505 	switch (event) {
3506 	case IWI_LED_POLL:
3507 		j = N(blinkrates)-1;
3508 		break;
3509 	case IWI_LED_TX:
3510 		/* read current transmission rate from adapter */
3511 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3512 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3513 			for (j = 0; j < N(blinkrates)-1; j++)
3514 				if (blinkrates[j].rate == txrate)
3515 					break;
3516 			sc->sc_txrix = j;
3517 		} else
3518 			j = sc->sc_txrix;
3519 		break;
3520 	case IWI_LED_RX:
3521 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3522 			for (j = 0; j < N(blinkrates)-1; j++)
3523 				if (blinkrates[j].rate == sc->sc_rxrate)
3524 					break;
3525 			sc->sc_rxrix = j;
3526 		} else
3527 			j = sc->sc_rxrix;
3528 		break;
3529 	}
3530 	/* XXX beware of overflow */
3531 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3532 		(blinkrates[j].timeOff * hz) / 1000);
3533 #undef N
3534 }
3535 
3536 static int
3537 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3538 {
3539 	struct iwi_softc *sc = arg1;
3540 	int softled = sc->sc_softled;
3541 	int error;
3542 
3543 	error = sysctl_handle_int(oidp, &softled, 0, req);
3544 	if (error || !req->newptr)
3545 		return error;
3546 	softled = (softled != 0);
3547 	if (softled != sc->sc_softled) {
3548 		if (softled) {
3549 			uint32_t v = iwi_read_event(sc);
3550 			v &= ~sc->sc_ledpin;
3551 			iwi_write_event(sc, iwi_toggle_event(v));
3552 		}
3553 		sc->sc_softled = softled;
3554 	}
3555 	return 0;
3556 }
3557 
3558 static void
3559 iwi_ledattach(struct iwi_softc *sc)
3560 {
3561 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3562 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3563 
3564 	sc->sc_blinking = 0;
3565 	sc->sc_ledstate = 1;
3566 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3567 	callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3568 
3569 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3570 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3571 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3572 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3573 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3574 		"pin setting to turn activity LED on");
3575 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3576 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3577 		"idle time for inactivity LED (ticks)");
3578 	/* XXX for debugging */
3579 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3580 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3581 		"NIC type from EEPROM");
3582 
3583 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3584 	sc->sc_softled = 1;
3585 
3586 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3587 	if (sc->sc_nictype == 1) {
3588 		/*
3589 		 * NB: led's are reversed.
3590 		 */
3591 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3592 	}
3593 }
3594