xref: /freebsd/sys/dev/iwn/if_iwn.c (revision d6b92ffa)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/priv.h>
49 #include <sys/queue.h>
50 #include <sys/taskqueue.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <machine/clock.h>
55 
56 #include <dev/pci/pcireg.h>
57 #include <dev/pci/pcivar.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/if_ether.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 #include <dev/iwn/if_iwn_devid.h>
75 #include <dev/iwn/if_iwn_chip_cfg.h>
76 #include <dev/iwn/if_iwn_debug.h>
77 #include <dev/iwn/if_iwn_ioctl.h>
78 
79 struct iwn_ident {
80 	uint16_t	vendor;
81 	uint16_t	device;
82 	const char	*name;
83 };
84 
85 static const struct iwn_ident iwn_ident_table[] = {
86 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
87 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
88 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
89 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
90 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
91 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
92 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
93 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
94 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
95 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
96 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
97 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
98 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
99 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
100 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
101 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
102 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
103 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
104 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
105 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
106 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
107 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
108 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
109 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
110 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
111 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
112 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
113 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
114 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
115 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
116 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
117 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
119 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
120 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
121 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
122 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
123 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
124 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
125 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
126 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
127 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
128 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
129 	{ 0, 0, NULL }
130 };
131 
132 static int	iwn_probe(device_t);
133 static int	iwn_attach(device_t);
134 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
135 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
136 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static void	iwn_sysctlattach(struct iwn_softc *);
139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
140 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141 		    const uint8_t [IEEE80211_ADDR_LEN],
142 		    const uint8_t [IEEE80211_ADDR_LEN]);
143 static void	iwn_vap_delete(struct ieee80211vap *);
144 static int	iwn_detach(device_t);
145 static int	iwn_shutdown(device_t);
146 static int	iwn_suspend(device_t);
147 static int	iwn_resume(device_t);
148 static int	iwn_nic_lock(struct iwn_softc *);
149 static int	iwn_eeprom_lock(struct iwn_softc *);
150 static int	iwn_init_otprom(struct iwn_softc *);
151 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
152 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
153 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
154 		    void **, bus_size_t, bus_size_t);
155 static void	iwn_dma_contig_free(struct iwn_dma_info *);
156 static int	iwn_alloc_sched(struct iwn_softc *);
157 static void	iwn_free_sched(struct iwn_softc *);
158 static int	iwn_alloc_kw(struct iwn_softc *);
159 static void	iwn_free_kw(struct iwn_softc *);
160 static int	iwn_alloc_ict(struct iwn_softc *);
161 static void	iwn_free_ict(struct iwn_softc *);
162 static int	iwn_alloc_fwmem(struct iwn_softc *);
163 static void	iwn_free_fwmem(struct iwn_softc *);
164 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
166 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
168 		    int);
169 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
170 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
171 static void	iwn5000_ict_reset(struct iwn_softc *);
172 static int	iwn_read_eeprom(struct iwn_softc *,
173 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
174 static void	iwn4965_read_eeprom(struct iwn_softc *);
175 #ifdef	IWN_DEBUG
176 static void	iwn4965_print_power_group(struct iwn_softc *, int);
177 #endif
178 static void	iwn5000_read_eeprom(struct iwn_softc *);
179 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
180 static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
181 		    struct ieee80211_channel[]);
182 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
183 		    struct ieee80211_channel[]);
184 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
185 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
186 		    struct ieee80211_channel *);
187 static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
188 		    struct ieee80211_channel[]);
189 static int	iwn_setregdomain(struct ieee80211com *,
190 		    struct ieee80211_regdomain *, int,
191 		    struct ieee80211_channel[]);
192 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
193 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
194 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
195 static void	iwn_newassoc(struct ieee80211_node *, int);
196 static int	iwn_media_change(struct ifnet *);
197 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	iwn_calib_timeout(void *);
199 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *);
200 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
201 		    struct iwn_rx_data *);
202 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *);
203 static void	iwn5000_rx_calib_results(struct iwn_softc *,
204 		    struct iwn_rx_desc *);
205 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
206 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
207 		    struct iwn_rx_data *);
208 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
209 		    struct iwn_rx_data *);
210 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int,
211 		    uint8_t);
212 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, int,
213 		    void *);
214 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
215 static void	iwn_notif_intr(struct iwn_softc *);
216 static void	iwn_wakeup_intr(struct iwn_softc *);
217 static void	iwn_rftoggle_task(void *, int);
218 static void	iwn_fatal_intr(struct iwn_softc *);
219 static void	iwn_intr(void *);
220 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
221 		    uint16_t);
222 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
223 		    uint16_t);
224 #ifdef notyet
225 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
226 #endif
227 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
228 		    struct ieee80211_node *);
229 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
230 		    struct ieee80211_node *,
231 		    const struct ieee80211_bpf_params *params);
232 static int	iwn_tx_cmd(struct iwn_softc *, struct mbuf *,
233 		    struct ieee80211_node *, struct iwn_tx_ring *);
234 static void	iwn_xmit_task(void *arg0, int pending);
235 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
236 		    const struct ieee80211_bpf_params *);
237 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
238 static void	iwn_scan_timeout(void *);
239 static void	iwn_watchdog(void *);
240 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
241 static void	iwn_parent(struct ieee80211com *);
242 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
243 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
244 		    int);
245 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
246 		    int);
247 static int	iwn_set_link_quality(struct iwn_softc *,
248 		    struct ieee80211_node *);
249 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
250 static int	iwn_updateedca(struct ieee80211com *);
251 static void	iwn_set_promisc(struct iwn_softc *);
252 static void	iwn_update_promisc(struct ieee80211com *);
253 static void	iwn_update_mcast(struct ieee80211com *);
254 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
255 static int	iwn_set_critical_temp(struct iwn_softc *);
256 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
257 static void	iwn4965_power_calibration(struct iwn_softc *, int);
258 static int	iwn4965_set_txpower(struct iwn_softc *, int);
259 static int	iwn5000_set_txpower(struct iwn_softc *, int);
260 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
261 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
262 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
263 static int	iwn4965_get_temperature(struct iwn_softc *);
264 static int	iwn5000_get_temperature(struct iwn_softc *);
265 static int	iwn_init_sensitivity(struct iwn_softc *);
266 static void	iwn_collect_noise(struct iwn_softc *,
267 		    const struct iwn_rx_general_stats *);
268 static int	iwn4965_init_gains(struct iwn_softc *);
269 static int	iwn5000_init_gains(struct iwn_softc *);
270 static int	iwn4965_set_gains(struct iwn_softc *);
271 static int	iwn5000_set_gains(struct iwn_softc *);
272 static void	iwn_tune_sensitivity(struct iwn_softc *,
273 		    const struct iwn_rx_stats *);
274 static void	iwn_save_stats_counters(struct iwn_softc *,
275 		    const struct iwn_stats *);
276 static int	iwn_send_sensitivity(struct iwn_softc *);
277 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
278 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
279 static int	iwn_send_btcoex(struct iwn_softc *);
280 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
281 static int	iwn5000_runtime_calib(struct iwn_softc *);
282 static int	iwn_check_bss_filter(struct iwn_softc *);
283 static int	iwn4965_rxon_assoc(struct iwn_softc *, int);
284 static int	iwn5000_rxon_assoc(struct iwn_softc *, int);
285 static int	iwn_send_rxon(struct iwn_softc *, int, int);
286 static int	iwn_config(struct iwn_softc *);
287 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
288 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
289 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
290 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
291 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
292 		    struct ieee80211_rx_ampdu *, int, int, int);
293 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
294 		    struct ieee80211_rx_ampdu *);
295 static int	iwn_addba_request(struct ieee80211_node *,
296 		    struct ieee80211_tx_ampdu *, int, int, int);
297 static int	iwn_addba_response(struct ieee80211_node *,
298 		    struct ieee80211_tx_ampdu *, int, int, int);
299 static int	iwn_ampdu_tx_start(struct ieee80211com *,
300 		    struct ieee80211_node *, uint8_t);
301 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
302 		    struct ieee80211_tx_ampdu *);
303 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
304 		    struct ieee80211_node *, int, uint8_t, uint16_t);
305 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
306 		    uint8_t, uint16_t);
307 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
308 		    struct ieee80211_node *, int, uint8_t, uint16_t);
309 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
310 		    uint8_t, uint16_t);
311 static int	iwn5000_query_calibration(struct iwn_softc *);
312 static int	iwn5000_send_calibration(struct iwn_softc *);
313 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
314 static int	iwn5000_crystal_calib(struct iwn_softc *);
315 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
316 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
317 static int	iwn4965_post_alive(struct iwn_softc *);
318 static int	iwn5000_post_alive(struct iwn_softc *);
319 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
320 		    int);
321 static int	iwn4965_load_firmware(struct iwn_softc *);
322 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
323 		    const uint8_t *, int);
324 static int	iwn5000_load_firmware(struct iwn_softc *);
325 static int	iwn_read_firmware_leg(struct iwn_softc *,
326 		    struct iwn_fw_info *);
327 static int	iwn_read_firmware_tlv(struct iwn_softc *,
328 		    struct iwn_fw_info *, uint16_t);
329 static int	iwn_read_firmware(struct iwn_softc *);
330 static void	iwn_unload_firmware(struct iwn_softc *);
331 static int	iwn_clock_wait(struct iwn_softc *);
332 static int	iwn_apm_init(struct iwn_softc *);
333 static void	iwn_apm_stop_master(struct iwn_softc *);
334 static void	iwn_apm_stop(struct iwn_softc *);
335 static int	iwn4965_nic_config(struct iwn_softc *);
336 static int	iwn5000_nic_config(struct iwn_softc *);
337 static int	iwn_hw_prepare(struct iwn_softc *);
338 static int	iwn_hw_init(struct iwn_softc *);
339 static void	iwn_hw_stop(struct iwn_softc *);
340 static void	iwn_panicked(void *, int);
341 static int	iwn_init_locked(struct iwn_softc *);
342 static int	iwn_init(struct iwn_softc *);
343 static void	iwn_stop_locked(struct iwn_softc *);
344 static void	iwn_stop(struct iwn_softc *);
345 static void	iwn_scan_start(struct ieee80211com *);
346 static void	iwn_scan_end(struct ieee80211com *);
347 static void	iwn_set_channel(struct ieee80211com *);
348 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
349 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
350 #ifdef	IWN_DEBUG
351 static char	*iwn_get_csr_string(int);
352 static void	iwn_debug_register(struct iwn_softc *);
353 #endif
354 
355 static device_method_t iwn_methods[] = {
356 	/* Device interface */
357 	DEVMETHOD(device_probe,		iwn_probe),
358 	DEVMETHOD(device_attach,	iwn_attach),
359 	DEVMETHOD(device_detach,	iwn_detach),
360 	DEVMETHOD(device_shutdown,	iwn_shutdown),
361 	DEVMETHOD(device_suspend,	iwn_suspend),
362 	DEVMETHOD(device_resume,	iwn_resume),
363 
364 	DEVMETHOD_END
365 };
366 
367 static driver_t iwn_driver = {
368 	"iwn",
369 	iwn_methods,
370 	sizeof(struct iwn_softc)
371 };
372 static devclass_t iwn_devclass;
373 
374 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
375 
376 MODULE_VERSION(iwn, 1);
377 
378 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
379 MODULE_DEPEND(iwn, pci, 1, 1, 1);
380 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
381 
382 static d_ioctl_t iwn_cdev_ioctl;
383 static d_open_t iwn_cdev_open;
384 static d_close_t iwn_cdev_close;
385 
386 static struct cdevsw iwn_cdevsw = {
387 	.d_version = D_VERSION,
388 	.d_flags = 0,
389 	.d_open = iwn_cdev_open,
390 	.d_close = iwn_cdev_close,
391 	.d_ioctl = iwn_cdev_ioctl,
392 	.d_name = "iwn",
393 };
394 
395 static int
396 iwn_probe(device_t dev)
397 {
398 	const struct iwn_ident *ident;
399 
400 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
401 		if (pci_get_vendor(dev) == ident->vendor &&
402 		    pci_get_device(dev) == ident->device) {
403 			device_set_desc(dev, ident->name);
404 			return (BUS_PROBE_DEFAULT);
405 		}
406 	}
407 	return ENXIO;
408 }
409 
410 static int
411 iwn_is_3stream_device(struct iwn_softc *sc)
412 {
413 	/* XXX for now only 5300, until the 5350 can be tested */
414 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
415 		return (1);
416 	return (0);
417 }
418 
419 static int
420 iwn_attach(device_t dev)
421 {
422 	struct iwn_softc *sc = device_get_softc(dev);
423 	struct ieee80211com *ic;
424 	int i, error, rid;
425 
426 	sc->sc_dev = dev;
427 
428 #ifdef	IWN_DEBUG
429 	error = resource_int_value(device_get_name(sc->sc_dev),
430 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
431 	if (error != 0)
432 		sc->sc_debug = 0;
433 #else
434 	sc->sc_debug = 0;
435 #endif
436 
437 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
438 
439 	/*
440 	 * Get the offset of the PCI Express Capability Structure in PCI
441 	 * Configuration Space.
442 	 */
443 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
444 	if (error != 0) {
445 		device_printf(dev, "PCIe capability structure not found!\n");
446 		return error;
447 	}
448 
449 	/* Clear device-specific "PCI retry timeout" register (41h). */
450 	pci_write_config(dev, 0x41, 0, 1);
451 
452 	/* Enable bus-mastering. */
453 	pci_enable_busmaster(dev);
454 
455 	rid = PCIR_BAR(0);
456 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
457 	    RF_ACTIVE);
458 	if (sc->mem == NULL) {
459 		device_printf(dev, "can't map mem space\n");
460 		error = ENOMEM;
461 		return error;
462 	}
463 	sc->sc_st = rman_get_bustag(sc->mem);
464 	sc->sc_sh = rman_get_bushandle(sc->mem);
465 
466 	i = 1;
467 	rid = 0;
468 	if (pci_alloc_msi(dev, &i) == 0)
469 		rid = 1;
470 	/* Install interrupt handler. */
471 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
472 	    (rid != 0 ? 0 : RF_SHAREABLE));
473 	if (sc->irq == NULL) {
474 		device_printf(dev, "can't map interrupt\n");
475 		error = ENOMEM;
476 		goto fail;
477 	}
478 
479 	IWN_LOCK_INIT(sc);
480 
481 	/* Read hardware revision and attach. */
482 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
483 	    & IWN_HW_REV_TYPE_MASK;
484 	sc->subdevice_id = pci_get_subdevice(dev);
485 
486 	/*
487 	 * 4965 versus 5000 and later have different methods.
488 	 * Let's set those up first.
489 	 */
490 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
491 		error = iwn4965_attach(sc, pci_get_device(dev));
492 	else
493 		error = iwn5000_attach(sc, pci_get_device(dev));
494 	if (error != 0) {
495 		device_printf(dev, "could not attach device, error %d\n",
496 		    error);
497 		goto fail;
498 	}
499 
500 	/*
501 	 * Next, let's setup the various parameters of each NIC.
502 	 */
503 	error = iwn_config_specific(sc, pci_get_device(dev));
504 	if (error != 0) {
505 		device_printf(dev, "could not attach device, error %d\n",
506 		    error);
507 		goto fail;
508 	}
509 
510 	if ((error = iwn_hw_prepare(sc)) != 0) {
511 		device_printf(dev, "hardware not ready, error %d\n", error);
512 		goto fail;
513 	}
514 
515 	/* Allocate DMA memory for firmware transfers. */
516 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
517 		device_printf(dev,
518 		    "could not allocate memory for firmware, error %d\n",
519 		    error);
520 		goto fail;
521 	}
522 
523 	/* Allocate "Keep Warm" page. */
524 	if ((error = iwn_alloc_kw(sc)) != 0) {
525 		device_printf(dev,
526 		    "could not allocate keep warm page, error %d\n", error);
527 		goto fail;
528 	}
529 
530 	/* Allocate ICT table for 5000 Series. */
531 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
532 	    (error = iwn_alloc_ict(sc)) != 0) {
533 		device_printf(dev, "could not allocate ICT table, error %d\n",
534 		    error);
535 		goto fail;
536 	}
537 
538 	/* Allocate TX scheduler "rings". */
539 	if ((error = iwn_alloc_sched(sc)) != 0) {
540 		device_printf(dev,
541 		    "could not allocate TX scheduler rings, error %d\n", error);
542 		goto fail;
543 	}
544 
545 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
546 	for (i = 0; i < sc->ntxqs; i++) {
547 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
548 			device_printf(dev,
549 			    "could not allocate TX ring %d, error %d\n", i,
550 			    error);
551 			goto fail;
552 		}
553 	}
554 
555 	/* Allocate RX ring. */
556 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
557 		device_printf(dev, "could not allocate RX ring, error %d\n",
558 		    error);
559 		goto fail;
560 	}
561 
562 	/* Clear pending interrupts. */
563 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
564 
565 	ic = &sc->sc_ic;
566 	ic->ic_softc = sc;
567 	ic->ic_name = device_get_nameunit(dev);
568 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
569 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
570 
571 	/* Set device capabilities. */
572 	ic->ic_caps =
573 		  IEEE80211_C_STA		/* station mode supported */
574 		| IEEE80211_C_MONITOR		/* monitor mode supported */
575 #if 0
576 		| IEEE80211_C_BGSCAN		/* background scanning */
577 #endif
578 		| IEEE80211_C_TXPMGT		/* tx power management */
579 		| IEEE80211_C_SHSLOT		/* short slot time supported */
580 		| IEEE80211_C_WPA
581 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
582 #if 0
583 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
584 #endif
585 		| IEEE80211_C_WME		/* WME */
586 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
587 		;
588 
589 	/* Read MAC address, channels, etc from EEPROM. */
590 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
591 		device_printf(dev, "could not read EEPROM, error %d\n",
592 		    error);
593 		goto fail;
594 	}
595 
596 	/* Count the number of available chains. */
597 	sc->ntxchains =
598 	    ((sc->txchainmask >> 2) & 1) +
599 	    ((sc->txchainmask >> 1) & 1) +
600 	    ((sc->txchainmask >> 0) & 1);
601 	sc->nrxchains =
602 	    ((sc->rxchainmask >> 2) & 1) +
603 	    ((sc->rxchainmask >> 1) & 1) +
604 	    ((sc->rxchainmask >> 0) & 1);
605 	if (bootverbose) {
606 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
607 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
608 		    ic->ic_macaddr, ":");
609 	}
610 
611 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
612 		ic->ic_rxstream = sc->nrxchains;
613 		ic->ic_txstream = sc->ntxchains;
614 
615 		/*
616 		 * Some of the 3 antenna devices (ie, the 4965) only supports
617 		 * 2x2 operation.  So correct the number of streams if
618 		 * it's not a 3-stream device.
619 		 */
620 		if (! iwn_is_3stream_device(sc)) {
621 			if (ic->ic_rxstream > 2)
622 				ic->ic_rxstream = 2;
623 			if (ic->ic_txstream > 2)
624 				ic->ic_txstream = 2;
625 		}
626 
627 		ic->ic_htcaps =
628 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
629 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
630 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
631 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
632 #ifdef notyet
633 			| IEEE80211_HTCAP_GREENFIELD
634 #if IWN_RBUF_SIZE == 8192
635 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
636 #else
637 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
638 #endif
639 #endif
640 			/* s/w capabilities */
641 			| IEEE80211_HTC_HT		/* HT operation */
642 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
643 #ifdef notyet
644 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
645 #endif
646 			;
647 	}
648 
649 	ieee80211_ifattach(ic);
650 	ic->ic_vap_create = iwn_vap_create;
651 	ic->ic_ioctl = iwn_ioctl;
652 	ic->ic_parent = iwn_parent;
653 	ic->ic_vap_delete = iwn_vap_delete;
654 	ic->ic_transmit = iwn_transmit;
655 	ic->ic_raw_xmit = iwn_raw_xmit;
656 	ic->ic_node_alloc = iwn_node_alloc;
657 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
658 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
659 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
660 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
661 	sc->sc_addba_request = ic->ic_addba_request;
662 	ic->ic_addba_request = iwn_addba_request;
663 	sc->sc_addba_response = ic->ic_addba_response;
664 	ic->ic_addba_response = iwn_addba_response;
665 	sc->sc_addba_stop = ic->ic_addba_stop;
666 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
667 	ic->ic_newassoc = iwn_newassoc;
668 	ic->ic_wme.wme_update = iwn_updateedca;
669 	ic->ic_update_promisc = iwn_update_promisc;
670 	ic->ic_update_mcast = iwn_update_mcast;
671 	ic->ic_scan_start = iwn_scan_start;
672 	ic->ic_scan_end = iwn_scan_end;
673 	ic->ic_set_channel = iwn_set_channel;
674 	ic->ic_scan_curchan = iwn_scan_curchan;
675 	ic->ic_scan_mindwell = iwn_scan_mindwell;
676 	ic->ic_getradiocaps = iwn_getradiocaps;
677 	ic->ic_setregdomain = iwn_setregdomain;
678 
679 	iwn_radiotap_attach(sc);
680 
681 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
682 	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
683 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
684 	TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc);
685 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
686 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
687 
688 	mbufq_init(&sc->sc_xmit_queue, 1024);
689 
690 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
691 	    taskqueue_thread_enqueue, &sc->sc_tq);
692 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
693 	if (error != 0) {
694 		device_printf(dev, "can't start threads, error %d\n", error);
695 		goto fail;
696 	}
697 
698 	iwn_sysctlattach(sc);
699 
700 	/*
701 	 * Hook our interrupt after all initialization is complete.
702 	 */
703 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
704 	    NULL, iwn_intr, sc, &sc->sc_ih);
705 	if (error != 0) {
706 		device_printf(dev, "can't establish interrupt, error %d\n",
707 		    error);
708 		goto fail;
709 	}
710 
711 #if 0
712 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
713 	    __func__,
714 	    sizeof(struct iwn_stats),
715 	    sizeof(struct iwn_stats_bt));
716 #endif
717 
718 	if (bootverbose)
719 		ieee80211_announce(ic);
720 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
721 
722 	/* Add debug ioctl right at the end */
723 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
724 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
725 	if (sc->sc_cdev == NULL) {
726 		device_printf(dev, "failed to create debug character device\n");
727 	} else {
728 		sc->sc_cdev->si_drv1 = sc;
729 	}
730 	return 0;
731 fail:
732 	iwn_detach(dev);
733 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
734 	return error;
735 }
736 
737 /*
738  * Define specific configuration based on device id and subdevice id
739  * pid : PCI device id
740  */
741 static int
742 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
743 {
744 
745 	switch (pid) {
746 /* 4965 series */
747 	case IWN_DID_4965_1:
748 	case IWN_DID_4965_2:
749 	case IWN_DID_4965_3:
750 	case IWN_DID_4965_4:
751 		sc->base_params = &iwn4965_base_params;
752 		sc->limits = &iwn4965_sensitivity_limits;
753 		sc->fwname = "iwn4965fw";
754 		/* Override chains masks, ROM is known to be broken. */
755 		sc->txchainmask = IWN_ANT_AB;
756 		sc->rxchainmask = IWN_ANT_ABC;
757 		/* Enable normal btcoex */
758 		sc->sc_flags |= IWN_FLAG_BTCOEX;
759 		break;
760 /* 1000 Series */
761 	case IWN_DID_1000_1:
762 	case IWN_DID_1000_2:
763 		switch(sc->subdevice_id) {
764 			case	IWN_SDID_1000_1:
765 			case	IWN_SDID_1000_2:
766 			case	IWN_SDID_1000_3:
767 			case	IWN_SDID_1000_4:
768 			case	IWN_SDID_1000_5:
769 			case	IWN_SDID_1000_6:
770 			case	IWN_SDID_1000_7:
771 			case	IWN_SDID_1000_8:
772 			case	IWN_SDID_1000_9:
773 			case	IWN_SDID_1000_10:
774 			case	IWN_SDID_1000_11:
775 			case	IWN_SDID_1000_12:
776 				sc->limits = &iwn1000_sensitivity_limits;
777 				sc->base_params = &iwn1000_base_params;
778 				sc->fwname = "iwn1000fw";
779 				break;
780 			default:
781 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
782 				    "0x%04x rev %d not supported (subdevice)\n", pid,
783 				    sc->subdevice_id,sc->hw_type);
784 				return ENOTSUP;
785 		}
786 		break;
787 /* 6x00 Series */
788 	case IWN_DID_6x00_2:
789 	case IWN_DID_6x00_4:
790 	case IWN_DID_6x00_1:
791 	case IWN_DID_6x00_3:
792 		sc->fwname = "iwn6000fw";
793 		sc->limits = &iwn6000_sensitivity_limits;
794 		switch(sc->subdevice_id) {
795 			case IWN_SDID_6x00_1:
796 			case IWN_SDID_6x00_2:
797 			case IWN_SDID_6x00_8:
798 				//iwl6000_3agn_cfg
799 				sc->base_params = &iwn_6000_base_params;
800 				break;
801 			case IWN_SDID_6x00_3:
802 			case IWN_SDID_6x00_6:
803 			case IWN_SDID_6x00_9:
804 				////iwl6000i_2agn
805 			case IWN_SDID_6x00_4:
806 			case IWN_SDID_6x00_7:
807 			case IWN_SDID_6x00_10:
808 				//iwl6000i_2abg_cfg
809 			case IWN_SDID_6x00_5:
810 				//iwl6000i_2bg_cfg
811 				sc->base_params = &iwn_6000i_base_params;
812 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
813 				sc->txchainmask = IWN_ANT_BC;
814 				sc->rxchainmask = IWN_ANT_BC;
815 				break;
816 			default:
817 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
818 				    "0x%04x rev %d not supported (subdevice)\n", pid,
819 				    sc->subdevice_id,sc->hw_type);
820 				return ENOTSUP;
821 		}
822 		break;
823 /* 6x05 Series */
824 	case IWN_DID_6x05_1:
825 	case IWN_DID_6x05_2:
826 		switch(sc->subdevice_id) {
827 			case IWN_SDID_6x05_1:
828 			case IWN_SDID_6x05_4:
829 			case IWN_SDID_6x05_6:
830 				//iwl6005_2agn_cfg
831 			case IWN_SDID_6x05_2:
832 			case IWN_SDID_6x05_5:
833 			case IWN_SDID_6x05_7:
834 				//iwl6005_2abg_cfg
835 			case IWN_SDID_6x05_3:
836 				//iwl6005_2bg_cfg
837 			case IWN_SDID_6x05_8:
838 			case IWN_SDID_6x05_9:
839 				//iwl6005_2agn_sff_cfg
840 			case IWN_SDID_6x05_10:
841 				//iwl6005_2agn_d_cfg
842 			case IWN_SDID_6x05_11:
843 				//iwl6005_2agn_mow1_cfg
844 			case IWN_SDID_6x05_12:
845 				//iwl6005_2agn_mow2_cfg
846 				sc->fwname = "iwn6000g2afw";
847 				sc->limits = &iwn6000_sensitivity_limits;
848 				sc->base_params = &iwn_6000g2_base_params;
849 				break;
850 			default:
851 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
852 				    "0x%04x rev %d not supported (subdevice)\n", pid,
853 				    sc->subdevice_id,sc->hw_type);
854 				return ENOTSUP;
855 		}
856 		break;
857 /* 6x35 Series */
858 	case IWN_DID_6035_1:
859 	case IWN_DID_6035_2:
860 		switch(sc->subdevice_id) {
861 			case IWN_SDID_6035_1:
862 			case IWN_SDID_6035_2:
863 			case IWN_SDID_6035_3:
864 			case IWN_SDID_6035_4:
865 				sc->fwname = "iwn6000g2bfw";
866 				sc->limits = &iwn6235_sensitivity_limits;
867 				sc->base_params = &iwn_6235_base_params;
868 				break;
869 			default:
870 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
871 				    "0x%04x rev %d not supported (subdevice)\n", pid,
872 				    sc->subdevice_id,sc->hw_type);
873 				return ENOTSUP;
874 		}
875 		break;
876 /* 6x50 WiFi/WiMax Series */
877 	case IWN_DID_6050_1:
878 	case IWN_DID_6050_2:
879 		switch(sc->subdevice_id) {
880 			case IWN_SDID_6050_1:
881 			case IWN_SDID_6050_3:
882 			case IWN_SDID_6050_5:
883 				//iwl6050_2agn_cfg
884 			case IWN_SDID_6050_2:
885 			case IWN_SDID_6050_4:
886 			case IWN_SDID_6050_6:
887 				//iwl6050_2abg_cfg
888 				sc->fwname = "iwn6050fw";
889 				sc->txchainmask = IWN_ANT_AB;
890 				sc->rxchainmask = IWN_ANT_AB;
891 				sc->limits = &iwn6000_sensitivity_limits;
892 				sc->base_params = &iwn_6050_base_params;
893 				break;
894 			default:
895 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
896 				    "0x%04x rev %d not supported (subdevice)\n", pid,
897 				    sc->subdevice_id,sc->hw_type);
898 				return ENOTSUP;
899 		}
900 		break;
901 /* 6150 WiFi/WiMax Series */
902 	case IWN_DID_6150_1:
903 	case IWN_DID_6150_2:
904 		switch(sc->subdevice_id) {
905 			case IWN_SDID_6150_1:
906 			case IWN_SDID_6150_3:
907 			case IWN_SDID_6150_5:
908 				// iwl6150_bgn_cfg
909 			case IWN_SDID_6150_2:
910 			case IWN_SDID_6150_4:
911 			case IWN_SDID_6150_6:
912 				//iwl6150_bg_cfg
913 				sc->fwname = "iwn6050fw";
914 				sc->limits = &iwn6000_sensitivity_limits;
915 				sc->base_params = &iwn_6150_base_params;
916 				break;
917 			default:
918 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
919 				    "0x%04x rev %d not supported (subdevice)\n", pid,
920 				    sc->subdevice_id,sc->hw_type);
921 				return ENOTSUP;
922 		}
923 		break;
924 /* 6030 Series and 1030 Series */
925 	case IWN_DID_x030_1:
926 	case IWN_DID_x030_2:
927 	case IWN_DID_x030_3:
928 	case IWN_DID_x030_4:
929 		switch(sc->subdevice_id) {
930 			case IWN_SDID_x030_1:
931 			case IWN_SDID_x030_3:
932 			case IWN_SDID_x030_5:
933 			// iwl1030_bgn_cfg
934 			case IWN_SDID_x030_2:
935 			case IWN_SDID_x030_4:
936 			case IWN_SDID_x030_6:
937 			//iwl1030_bg_cfg
938 			case IWN_SDID_x030_7:
939 			case IWN_SDID_x030_10:
940 			case IWN_SDID_x030_14:
941 			//iwl6030_2agn_cfg
942 			case IWN_SDID_x030_8:
943 			case IWN_SDID_x030_11:
944 			case IWN_SDID_x030_15:
945 			// iwl6030_2bgn_cfg
946 			case IWN_SDID_x030_9:
947 			case IWN_SDID_x030_12:
948 			case IWN_SDID_x030_16:
949 			// iwl6030_2abg_cfg
950 			case IWN_SDID_x030_13:
951 			//iwl6030_2bg_cfg
952 				sc->fwname = "iwn6000g2bfw";
953 				sc->limits = &iwn6000_sensitivity_limits;
954 				sc->base_params = &iwn_6000g2b_base_params;
955 				break;
956 			default:
957 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
958 				    "0x%04x rev %d not supported (subdevice)\n", pid,
959 				    sc->subdevice_id,sc->hw_type);
960 				return ENOTSUP;
961 		}
962 		break;
963 /* 130 Series WiFi */
964 /* XXX: This series will need adjustment for rate.
965  * see rx_with_siso_diversity in linux kernel
966  */
967 	case IWN_DID_130_1:
968 	case IWN_DID_130_2:
969 		switch(sc->subdevice_id) {
970 			case IWN_SDID_130_1:
971 			case IWN_SDID_130_3:
972 			case IWN_SDID_130_5:
973 			//iwl130_bgn_cfg
974 			case IWN_SDID_130_2:
975 			case IWN_SDID_130_4:
976 			case IWN_SDID_130_6:
977 			//iwl130_bg_cfg
978 				sc->fwname = "iwn6000g2bfw";
979 				sc->limits = &iwn6000_sensitivity_limits;
980 				sc->base_params = &iwn_6000g2b_base_params;
981 				break;
982 			default:
983 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
984 				    "0x%04x rev %d not supported (subdevice)\n", pid,
985 				    sc->subdevice_id,sc->hw_type);
986 				return ENOTSUP;
987 		}
988 		break;
989 /* 100 Series WiFi */
990 	case IWN_DID_100_1:
991 	case IWN_DID_100_2:
992 		switch(sc->subdevice_id) {
993 			case IWN_SDID_100_1:
994 			case IWN_SDID_100_2:
995 			case IWN_SDID_100_3:
996 			case IWN_SDID_100_4:
997 			case IWN_SDID_100_5:
998 			case IWN_SDID_100_6:
999 				sc->limits = &iwn1000_sensitivity_limits;
1000 				sc->base_params = &iwn1000_base_params;
1001 				sc->fwname = "iwn100fw";
1002 				break;
1003 			default:
1004 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1005 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1006 				    sc->subdevice_id,sc->hw_type);
1007 				return ENOTSUP;
1008 		}
1009 		break;
1010 
1011 /* 105 Series */
1012 /* XXX: This series will need adjustment for rate.
1013  * see rx_with_siso_diversity in linux kernel
1014  */
1015 	case IWN_DID_105_1:
1016 	case IWN_DID_105_2:
1017 		switch(sc->subdevice_id) {
1018 			case IWN_SDID_105_1:
1019 			case IWN_SDID_105_2:
1020 			case IWN_SDID_105_3:
1021 			//iwl105_bgn_cfg
1022 			case IWN_SDID_105_4:
1023 			//iwl105_bgn_d_cfg
1024 				sc->limits = &iwn2030_sensitivity_limits;
1025 				sc->base_params = &iwn2000_base_params;
1026 				sc->fwname = "iwn105fw";
1027 				break;
1028 			default:
1029 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1030 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1031 				    sc->subdevice_id,sc->hw_type);
1032 				return ENOTSUP;
1033 		}
1034 		break;
1035 
1036 /* 135 Series */
1037 /* XXX: This series will need adjustment for rate.
1038  * see rx_with_siso_diversity in linux kernel
1039  */
1040 	case IWN_DID_135_1:
1041 	case IWN_DID_135_2:
1042 		switch(sc->subdevice_id) {
1043 			case IWN_SDID_135_1:
1044 			case IWN_SDID_135_2:
1045 			case IWN_SDID_135_3:
1046 				sc->limits = &iwn2030_sensitivity_limits;
1047 				sc->base_params = &iwn2030_base_params;
1048 				sc->fwname = "iwn135fw";
1049 				break;
1050 			default:
1051 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1052 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1053 				    sc->subdevice_id,sc->hw_type);
1054 				return ENOTSUP;
1055 		}
1056 		break;
1057 
1058 /* 2x00 Series */
1059 	case IWN_DID_2x00_1:
1060 	case IWN_DID_2x00_2:
1061 		switch(sc->subdevice_id) {
1062 			case IWN_SDID_2x00_1:
1063 			case IWN_SDID_2x00_2:
1064 			case IWN_SDID_2x00_3:
1065 			//iwl2000_2bgn_cfg
1066 			case IWN_SDID_2x00_4:
1067 			//iwl2000_2bgn_d_cfg
1068 				sc->limits = &iwn2030_sensitivity_limits;
1069 				sc->base_params = &iwn2000_base_params;
1070 				sc->fwname = "iwn2000fw";
1071 				break;
1072 			default:
1073 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1074 				    "0x%04x rev %d not supported (subdevice) \n",
1075 				    pid, sc->subdevice_id, sc->hw_type);
1076 				return ENOTSUP;
1077 		}
1078 		break;
1079 /* 2x30 Series */
1080 	case IWN_DID_2x30_1:
1081 	case IWN_DID_2x30_2:
1082 		switch(sc->subdevice_id) {
1083 			case IWN_SDID_2x30_1:
1084 			case IWN_SDID_2x30_3:
1085 			case IWN_SDID_2x30_5:
1086 			//iwl100_bgn_cfg
1087 			case IWN_SDID_2x30_2:
1088 			case IWN_SDID_2x30_4:
1089 			case IWN_SDID_2x30_6:
1090 			//iwl100_bg_cfg
1091 				sc->limits = &iwn2030_sensitivity_limits;
1092 				sc->base_params = &iwn2030_base_params;
1093 				sc->fwname = "iwn2030fw";
1094 				break;
1095 			default:
1096 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1097 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1098 				    sc->subdevice_id,sc->hw_type);
1099 				return ENOTSUP;
1100 		}
1101 		break;
1102 /* 5x00 Series */
1103 	case IWN_DID_5x00_1:
1104 	case IWN_DID_5x00_2:
1105 	case IWN_DID_5x00_3:
1106 	case IWN_DID_5x00_4:
1107 		sc->limits = &iwn5000_sensitivity_limits;
1108 		sc->base_params = &iwn5000_base_params;
1109 		sc->fwname = "iwn5000fw";
1110 		switch(sc->subdevice_id) {
1111 			case IWN_SDID_5x00_1:
1112 			case IWN_SDID_5x00_2:
1113 			case IWN_SDID_5x00_3:
1114 			case IWN_SDID_5x00_4:
1115 			case IWN_SDID_5x00_9:
1116 			case IWN_SDID_5x00_10:
1117 			case IWN_SDID_5x00_11:
1118 			case IWN_SDID_5x00_12:
1119 			case IWN_SDID_5x00_17:
1120 			case IWN_SDID_5x00_18:
1121 			case IWN_SDID_5x00_19:
1122 			case IWN_SDID_5x00_20:
1123 			//iwl5100_agn_cfg
1124 				sc->txchainmask = IWN_ANT_B;
1125 				sc->rxchainmask = IWN_ANT_AB;
1126 				break;
1127 			case IWN_SDID_5x00_5:
1128 			case IWN_SDID_5x00_6:
1129 			case IWN_SDID_5x00_13:
1130 			case IWN_SDID_5x00_14:
1131 			case IWN_SDID_5x00_21:
1132 			case IWN_SDID_5x00_22:
1133 			//iwl5100_bgn_cfg
1134 				sc->txchainmask = IWN_ANT_B;
1135 				sc->rxchainmask = IWN_ANT_AB;
1136 				break;
1137 			case IWN_SDID_5x00_7:
1138 			case IWN_SDID_5x00_8:
1139 			case IWN_SDID_5x00_15:
1140 			case IWN_SDID_5x00_16:
1141 			case IWN_SDID_5x00_23:
1142 			case IWN_SDID_5x00_24:
1143 			//iwl5100_abg_cfg
1144 				sc->txchainmask = IWN_ANT_B;
1145 				sc->rxchainmask = IWN_ANT_AB;
1146 				break;
1147 			case IWN_SDID_5x00_25:
1148 			case IWN_SDID_5x00_26:
1149 			case IWN_SDID_5x00_27:
1150 			case IWN_SDID_5x00_28:
1151 			case IWN_SDID_5x00_29:
1152 			case IWN_SDID_5x00_30:
1153 			case IWN_SDID_5x00_31:
1154 			case IWN_SDID_5x00_32:
1155 			case IWN_SDID_5x00_33:
1156 			case IWN_SDID_5x00_34:
1157 			case IWN_SDID_5x00_35:
1158 			case IWN_SDID_5x00_36:
1159 			//iwl5300_agn_cfg
1160 				sc->txchainmask = IWN_ANT_ABC;
1161 				sc->rxchainmask = IWN_ANT_ABC;
1162 				break;
1163 			default:
1164 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1165 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1166 				    sc->subdevice_id,sc->hw_type);
1167 				return ENOTSUP;
1168 		}
1169 		break;
1170 /* 5x50 Series */
1171 	case IWN_DID_5x50_1:
1172 	case IWN_DID_5x50_2:
1173 	case IWN_DID_5x50_3:
1174 	case IWN_DID_5x50_4:
1175 		sc->limits = &iwn5000_sensitivity_limits;
1176 		sc->base_params = &iwn5000_base_params;
1177 		sc->fwname = "iwn5000fw";
1178 		switch(sc->subdevice_id) {
1179 			case IWN_SDID_5x50_1:
1180 			case IWN_SDID_5x50_2:
1181 			case IWN_SDID_5x50_3:
1182 			//iwl5350_agn_cfg
1183 				sc->limits = &iwn5000_sensitivity_limits;
1184 				sc->base_params = &iwn5000_base_params;
1185 				sc->fwname = "iwn5000fw";
1186 				break;
1187 			case IWN_SDID_5x50_4:
1188 			case IWN_SDID_5x50_5:
1189 			case IWN_SDID_5x50_8:
1190 			case IWN_SDID_5x50_9:
1191 			case IWN_SDID_5x50_10:
1192 			case IWN_SDID_5x50_11:
1193 			//iwl5150_agn_cfg
1194 			case IWN_SDID_5x50_6:
1195 			case IWN_SDID_5x50_7:
1196 			case IWN_SDID_5x50_12:
1197 			case IWN_SDID_5x50_13:
1198 			//iwl5150_abg_cfg
1199 				sc->limits = &iwn5000_sensitivity_limits;
1200 				sc->fwname = "iwn5150fw";
1201 				sc->base_params = &iwn_5x50_base_params;
1202 				break;
1203 			default:
1204 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1205 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1206 				    sc->subdevice_id,sc->hw_type);
1207 				return ENOTSUP;
1208 		}
1209 		break;
1210 	default:
1211 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1212 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1213 		     sc->hw_type);
1214 		return ENOTSUP;
1215 	}
1216 	return 0;
1217 }
1218 
1219 static int
1220 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1221 {
1222 	struct iwn_ops *ops = &sc->ops;
1223 
1224 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1225 	ops->load_firmware = iwn4965_load_firmware;
1226 	ops->read_eeprom = iwn4965_read_eeprom;
1227 	ops->post_alive = iwn4965_post_alive;
1228 	ops->nic_config = iwn4965_nic_config;
1229 	ops->update_sched = iwn4965_update_sched;
1230 	ops->get_temperature = iwn4965_get_temperature;
1231 	ops->get_rssi = iwn4965_get_rssi;
1232 	ops->set_txpower = iwn4965_set_txpower;
1233 	ops->init_gains = iwn4965_init_gains;
1234 	ops->set_gains = iwn4965_set_gains;
1235 	ops->rxon_assoc = iwn4965_rxon_assoc;
1236 	ops->add_node = iwn4965_add_node;
1237 	ops->tx_done = iwn4965_tx_done;
1238 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1239 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1240 	sc->ntxqs = IWN4965_NTXQUEUES;
1241 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1242 	sc->ndmachnls = IWN4965_NDMACHNLS;
1243 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1244 	sc->rxonsz = IWN4965_RXONSZ;
1245 	sc->schedsz = IWN4965_SCHEDSZ;
1246 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1247 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1248 	sc->fwsz = IWN4965_FWSZ;
1249 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1250 	sc->limits = &iwn4965_sensitivity_limits;
1251 	sc->fwname = "iwn4965fw";
1252 	/* Override chains masks, ROM is known to be broken. */
1253 	sc->txchainmask = IWN_ANT_AB;
1254 	sc->rxchainmask = IWN_ANT_ABC;
1255 	/* Enable normal btcoex */
1256 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1257 
1258 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1259 
1260 	return 0;
1261 }
1262 
1263 static int
1264 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1265 {
1266 	struct iwn_ops *ops = &sc->ops;
1267 
1268 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1269 
1270 	ops->load_firmware = iwn5000_load_firmware;
1271 	ops->read_eeprom = iwn5000_read_eeprom;
1272 	ops->post_alive = iwn5000_post_alive;
1273 	ops->nic_config = iwn5000_nic_config;
1274 	ops->update_sched = iwn5000_update_sched;
1275 	ops->get_temperature = iwn5000_get_temperature;
1276 	ops->get_rssi = iwn5000_get_rssi;
1277 	ops->set_txpower = iwn5000_set_txpower;
1278 	ops->init_gains = iwn5000_init_gains;
1279 	ops->set_gains = iwn5000_set_gains;
1280 	ops->rxon_assoc = iwn5000_rxon_assoc;
1281 	ops->add_node = iwn5000_add_node;
1282 	ops->tx_done = iwn5000_tx_done;
1283 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1284 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1285 	sc->ntxqs = IWN5000_NTXQUEUES;
1286 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1287 	sc->ndmachnls = IWN5000_NDMACHNLS;
1288 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1289 	sc->rxonsz = IWN5000_RXONSZ;
1290 	sc->schedsz = IWN5000_SCHEDSZ;
1291 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1292 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1293 	sc->fwsz = IWN5000_FWSZ;
1294 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1295 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1296 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1297 
1298 	return 0;
1299 }
1300 
1301 /*
1302  * Attach the interface to 802.11 radiotap.
1303  */
1304 static void
1305 iwn_radiotap_attach(struct iwn_softc *sc)
1306 {
1307 
1308 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1309 	ieee80211_radiotap_attach(&sc->sc_ic,
1310 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1311 		IWN_TX_RADIOTAP_PRESENT,
1312 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1313 		IWN_RX_RADIOTAP_PRESENT);
1314 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1315 }
1316 
1317 static void
1318 iwn_sysctlattach(struct iwn_softc *sc)
1319 {
1320 #ifdef	IWN_DEBUG
1321 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1322 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1323 
1324 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1325 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1326 		"control debugging printfs");
1327 #endif
1328 }
1329 
1330 static struct ieee80211vap *
1331 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1332     enum ieee80211_opmode opmode, int flags,
1333     const uint8_t bssid[IEEE80211_ADDR_LEN],
1334     const uint8_t mac[IEEE80211_ADDR_LEN])
1335 {
1336 	struct iwn_softc *sc = ic->ic_softc;
1337 	struct iwn_vap *ivp;
1338 	struct ieee80211vap *vap;
1339 
1340 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1341 		return NULL;
1342 
1343 	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1344 	vap = &ivp->iv_vap;
1345 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1346 	ivp->ctx = IWN_RXON_BSS_CTX;
1347 	vap->iv_bmissthreshold = 10;		/* override default */
1348 	/* Override with driver methods. */
1349 	ivp->iv_newstate = vap->iv_newstate;
1350 	vap->iv_newstate = iwn_newstate;
1351 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1352 
1353 	ieee80211_ratectl_init(vap);
1354 	/* Complete setup. */
1355 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status,
1356 	    mac);
1357 	ic->ic_opmode = opmode;
1358 	return vap;
1359 }
1360 
1361 static void
1362 iwn_vap_delete(struct ieee80211vap *vap)
1363 {
1364 	struct iwn_vap *ivp = IWN_VAP(vap);
1365 
1366 	ieee80211_ratectl_deinit(vap);
1367 	ieee80211_vap_detach(vap);
1368 	free(ivp, M_80211_VAP);
1369 }
1370 
1371 static void
1372 iwn_xmit_queue_drain(struct iwn_softc *sc)
1373 {
1374 	struct mbuf *m;
1375 	struct ieee80211_node *ni;
1376 
1377 	IWN_LOCK_ASSERT(sc);
1378 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1379 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1380 		ieee80211_free_node(ni);
1381 		m_freem(m);
1382 	}
1383 }
1384 
1385 static int
1386 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1387 {
1388 
1389 	IWN_LOCK_ASSERT(sc);
1390 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1391 }
1392 
1393 static int
1394 iwn_detach(device_t dev)
1395 {
1396 	struct iwn_softc *sc = device_get_softc(dev);
1397 	int qid;
1398 
1399 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1400 
1401 	if (sc->sc_ic.ic_softc != NULL) {
1402 		/* Free the mbuf queue and node references */
1403 		IWN_LOCK(sc);
1404 		iwn_xmit_queue_drain(sc);
1405 		IWN_UNLOCK(sc);
1406 
1407 		iwn_stop(sc);
1408 
1409 		taskqueue_drain_all(sc->sc_tq);
1410 		taskqueue_free(sc->sc_tq);
1411 
1412 		callout_drain(&sc->watchdog_to);
1413 		callout_drain(&sc->scan_timeout);
1414 		callout_drain(&sc->calib_to);
1415 		ieee80211_ifdetach(&sc->sc_ic);
1416 	}
1417 
1418 	/* Uninstall interrupt handler. */
1419 	if (sc->irq != NULL) {
1420 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1421 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1422 		    sc->irq);
1423 		pci_release_msi(dev);
1424 	}
1425 
1426 	/* Free DMA resources. */
1427 	iwn_free_rx_ring(sc, &sc->rxq);
1428 	for (qid = 0; qid < sc->ntxqs; qid++)
1429 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1430 	iwn_free_sched(sc);
1431 	iwn_free_kw(sc);
1432 	if (sc->ict != NULL)
1433 		iwn_free_ict(sc);
1434 	iwn_free_fwmem(sc);
1435 
1436 	if (sc->mem != NULL)
1437 		bus_release_resource(dev, SYS_RES_MEMORY,
1438 		    rman_get_rid(sc->mem), sc->mem);
1439 
1440 	if (sc->sc_cdev) {
1441 		destroy_dev(sc->sc_cdev);
1442 		sc->sc_cdev = NULL;
1443 	}
1444 
1445 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1446 	IWN_LOCK_DESTROY(sc);
1447 	return 0;
1448 }
1449 
1450 static int
1451 iwn_shutdown(device_t dev)
1452 {
1453 	struct iwn_softc *sc = device_get_softc(dev);
1454 
1455 	iwn_stop(sc);
1456 	return 0;
1457 }
1458 
1459 static int
1460 iwn_suspend(device_t dev)
1461 {
1462 	struct iwn_softc *sc = device_get_softc(dev);
1463 
1464 	ieee80211_suspend_all(&sc->sc_ic);
1465 	return 0;
1466 }
1467 
1468 static int
1469 iwn_resume(device_t dev)
1470 {
1471 	struct iwn_softc *sc = device_get_softc(dev);
1472 
1473 	/* Clear device-specific "PCI retry timeout" register (41h). */
1474 	pci_write_config(dev, 0x41, 0, 1);
1475 
1476 	ieee80211_resume_all(&sc->sc_ic);
1477 	return 0;
1478 }
1479 
1480 static int
1481 iwn_nic_lock(struct iwn_softc *sc)
1482 {
1483 	int ntries;
1484 
1485 	/* Request exclusive access to NIC. */
1486 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1487 
1488 	/* Spin until we actually get the lock. */
1489 	for (ntries = 0; ntries < 1000; ntries++) {
1490 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1491 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1492 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1493 			return 0;
1494 		DELAY(10);
1495 	}
1496 	return ETIMEDOUT;
1497 }
1498 
1499 static __inline void
1500 iwn_nic_unlock(struct iwn_softc *sc)
1501 {
1502 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1503 }
1504 
1505 static __inline uint32_t
1506 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1507 {
1508 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1509 	IWN_BARRIER_READ_WRITE(sc);
1510 	return IWN_READ(sc, IWN_PRPH_RDATA);
1511 }
1512 
1513 static __inline void
1514 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1515 {
1516 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1517 	IWN_BARRIER_WRITE(sc);
1518 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1519 }
1520 
1521 static __inline void
1522 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1523 {
1524 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1525 }
1526 
1527 static __inline void
1528 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1529 {
1530 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1531 }
1532 
1533 static __inline void
1534 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1535     const uint32_t *data, int count)
1536 {
1537 	for (; count > 0; count--, data++, addr += 4)
1538 		iwn_prph_write(sc, addr, *data);
1539 }
1540 
1541 static __inline uint32_t
1542 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1543 {
1544 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1545 	IWN_BARRIER_READ_WRITE(sc);
1546 	return IWN_READ(sc, IWN_MEM_RDATA);
1547 }
1548 
1549 static __inline void
1550 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1551 {
1552 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1553 	IWN_BARRIER_WRITE(sc);
1554 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1555 }
1556 
1557 static __inline void
1558 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1559 {
1560 	uint32_t tmp;
1561 
1562 	tmp = iwn_mem_read(sc, addr & ~3);
1563 	if (addr & 3)
1564 		tmp = (tmp & 0x0000ffff) | data << 16;
1565 	else
1566 		tmp = (tmp & 0xffff0000) | data;
1567 	iwn_mem_write(sc, addr & ~3, tmp);
1568 }
1569 
1570 static __inline void
1571 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1572     int count)
1573 {
1574 	for (; count > 0; count--, addr += 4)
1575 		*data++ = iwn_mem_read(sc, addr);
1576 }
1577 
1578 static __inline void
1579 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1580     int count)
1581 {
1582 	for (; count > 0; count--, addr += 4)
1583 		iwn_mem_write(sc, addr, val);
1584 }
1585 
1586 static int
1587 iwn_eeprom_lock(struct iwn_softc *sc)
1588 {
1589 	int i, ntries;
1590 
1591 	for (i = 0; i < 100; i++) {
1592 		/* Request exclusive access to EEPROM. */
1593 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1594 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1595 
1596 		/* Spin until we actually get the lock. */
1597 		for (ntries = 0; ntries < 100; ntries++) {
1598 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1599 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1600 				return 0;
1601 			DELAY(10);
1602 		}
1603 	}
1604 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1605 	return ETIMEDOUT;
1606 }
1607 
1608 static __inline void
1609 iwn_eeprom_unlock(struct iwn_softc *sc)
1610 {
1611 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1612 }
1613 
1614 /*
1615  * Initialize access by host to One Time Programmable ROM.
1616  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1617  */
1618 static int
1619 iwn_init_otprom(struct iwn_softc *sc)
1620 {
1621 	uint16_t prev, base, next;
1622 	int count, error;
1623 
1624 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1625 
1626 	/* Wait for clock stabilization before accessing prph. */
1627 	if ((error = iwn_clock_wait(sc)) != 0)
1628 		return error;
1629 
1630 	if ((error = iwn_nic_lock(sc)) != 0)
1631 		return error;
1632 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1633 	DELAY(5);
1634 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1635 	iwn_nic_unlock(sc);
1636 
1637 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1638 	if (sc->base_params->shadow_ram_support) {
1639 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1640 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1641 	}
1642 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1643 	/* Clear ECC status. */
1644 	IWN_SETBITS(sc, IWN_OTP_GP,
1645 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1646 
1647 	/*
1648 	 * Find the block before last block (contains the EEPROM image)
1649 	 * for HW without OTP shadow RAM.
1650 	 */
1651 	if (! sc->base_params->shadow_ram_support) {
1652 		/* Switch to absolute addressing mode. */
1653 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1654 		base = prev = 0;
1655 		for (count = 0; count < sc->base_params->max_ll_items;
1656 		    count++) {
1657 			error = iwn_read_prom_data(sc, base, &next, 2);
1658 			if (error != 0)
1659 				return error;
1660 			if (next == 0)	/* End of linked-list. */
1661 				break;
1662 			prev = base;
1663 			base = le16toh(next);
1664 		}
1665 		if (count == 0 || count == sc->base_params->max_ll_items)
1666 			return EIO;
1667 		/* Skip "next" word. */
1668 		sc->prom_base = prev + 1;
1669 	}
1670 
1671 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1672 
1673 	return 0;
1674 }
1675 
1676 static int
1677 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1678 {
1679 	uint8_t *out = data;
1680 	uint32_t val, tmp;
1681 	int ntries;
1682 
1683 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1684 
1685 	addr += sc->prom_base;
1686 	for (; count > 0; count -= 2, addr++) {
1687 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1688 		for (ntries = 0; ntries < 10; ntries++) {
1689 			val = IWN_READ(sc, IWN_EEPROM);
1690 			if (val & IWN_EEPROM_READ_VALID)
1691 				break;
1692 			DELAY(5);
1693 		}
1694 		if (ntries == 10) {
1695 			device_printf(sc->sc_dev,
1696 			    "timeout reading ROM at 0x%x\n", addr);
1697 			return ETIMEDOUT;
1698 		}
1699 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1700 			/* OTPROM, check for ECC errors. */
1701 			tmp = IWN_READ(sc, IWN_OTP_GP);
1702 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1703 				device_printf(sc->sc_dev,
1704 				    "OTPROM ECC error at 0x%x\n", addr);
1705 				return EIO;
1706 			}
1707 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1708 				/* Correctable ECC error, clear bit. */
1709 				IWN_SETBITS(sc, IWN_OTP_GP,
1710 				    IWN_OTP_GP_ECC_CORR_STTS);
1711 			}
1712 		}
1713 		*out++ = val >> 16;
1714 		if (count > 1)
1715 			*out++ = val >> 24;
1716 	}
1717 
1718 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1719 
1720 	return 0;
1721 }
1722 
1723 static void
1724 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1725 {
1726 	if (error != 0)
1727 		return;
1728 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1729 	*(bus_addr_t *)arg = segs[0].ds_addr;
1730 }
1731 
1732 static int
1733 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1734     void **kvap, bus_size_t size, bus_size_t alignment)
1735 {
1736 	int error;
1737 
1738 	dma->tag = NULL;
1739 	dma->size = size;
1740 
1741 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1742 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1743 	    1, size, 0, NULL, NULL, &dma->tag);
1744 	if (error != 0)
1745 		goto fail;
1746 
1747 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1748 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1749 	if (error != 0)
1750 		goto fail;
1751 
1752 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1753 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1754 	if (error != 0)
1755 		goto fail;
1756 
1757 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1758 
1759 	if (kvap != NULL)
1760 		*kvap = dma->vaddr;
1761 
1762 	return 0;
1763 
1764 fail:	iwn_dma_contig_free(dma);
1765 	return error;
1766 }
1767 
1768 static void
1769 iwn_dma_contig_free(struct iwn_dma_info *dma)
1770 {
1771 	if (dma->vaddr != NULL) {
1772 		bus_dmamap_sync(dma->tag, dma->map,
1773 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1774 		bus_dmamap_unload(dma->tag, dma->map);
1775 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1776 		dma->vaddr = NULL;
1777 	}
1778 	if (dma->tag != NULL) {
1779 		bus_dma_tag_destroy(dma->tag);
1780 		dma->tag = NULL;
1781 	}
1782 }
1783 
1784 static int
1785 iwn_alloc_sched(struct iwn_softc *sc)
1786 {
1787 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1788 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1789 	    sc->schedsz, 1024);
1790 }
1791 
1792 static void
1793 iwn_free_sched(struct iwn_softc *sc)
1794 {
1795 	iwn_dma_contig_free(&sc->sched_dma);
1796 }
1797 
1798 static int
1799 iwn_alloc_kw(struct iwn_softc *sc)
1800 {
1801 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1802 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1803 }
1804 
1805 static void
1806 iwn_free_kw(struct iwn_softc *sc)
1807 {
1808 	iwn_dma_contig_free(&sc->kw_dma);
1809 }
1810 
1811 static int
1812 iwn_alloc_ict(struct iwn_softc *sc)
1813 {
1814 	/* ICT table must be aligned on a 4KB boundary. */
1815 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1816 	    IWN_ICT_SIZE, 4096);
1817 }
1818 
1819 static void
1820 iwn_free_ict(struct iwn_softc *sc)
1821 {
1822 	iwn_dma_contig_free(&sc->ict_dma);
1823 }
1824 
1825 static int
1826 iwn_alloc_fwmem(struct iwn_softc *sc)
1827 {
1828 	/* Must be aligned on a 16-byte boundary. */
1829 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1830 }
1831 
1832 static void
1833 iwn_free_fwmem(struct iwn_softc *sc)
1834 {
1835 	iwn_dma_contig_free(&sc->fw_dma);
1836 }
1837 
1838 static int
1839 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1840 {
1841 	bus_size_t size;
1842 	int i, error;
1843 
1844 	ring->cur = 0;
1845 
1846 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1847 
1848 	/* Allocate RX descriptors (256-byte aligned). */
1849 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1850 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1851 	    size, 256);
1852 	if (error != 0) {
1853 		device_printf(sc->sc_dev,
1854 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1855 		    __func__, error);
1856 		goto fail;
1857 	}
1858 
1859 	/* Allocate RX status area (16-byte aligned). */
1860 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1861 	    sizeof (struct iwn_rx_status), 16);
1862 	if (error != 0) {
1863 		device_printf(sc->sc_dev,
1864 		    "%s: could not allocate RX status DMA memory, error %d\n",
1865 		    __func__, error);
1866 		goto fail;
1867 	}
1868 
1869 	/* Create RX buffer DMA tag. */
1870 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1871 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1872 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1873 	if (error != 0) {
1874 		device_printf(sc->sc_dev,
1875 		    "%s: could not create RX buf DMA tag, error %d\n",
1876 		    __func__, error);
1877 		goto fail;
1878 	}
1879 
1880 	/*
1881 	 * Allocate and map RX buffers.
1882 	 */
1883 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1884 		struct iwn_rx_data *data = &ring->data[i];
1885 		bus_addr_t paddr;
1886 
1887 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1888 		if (error != 0) {
1889 			device_printf(sc->sc_dev,
1890 			    "%s: could not create RX buf DMA map, error %d\n",
1891 			    __func__, error);
1892 			goto fail;
1893 		}
1894 
1895 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1896 		    IWN_RBUF_SIZE);
1897 		if (data->m == NULL) {
1898 			device_printf(sc->sc_dev,
1899 			    "%s: could not allocate RX mbuf\n", __func__);
1900 			error = ENOBUFS;
1901 			goto fail;
1902 		}
1903 
1904 		error = bus_dmamap_load(ring->data_dmat, data->map,
1905 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1906 		    &paddr, BUS_DMA_NOWAIT);
1907 		if (error != 0 && error != EFBIG) {
1908 			device_printf(sc->sc_dev,
1909 			    "%s: can't map mbuf, error %d\n", __func__,
1910 			    error);
1911 			goto fail;
1912 		}
1913 
1914 		bus_dmamap_sync(ring->data_dmat, data->map,
1915 		    BUS_DMASYNC_PREREAD);
1916 
1917 		/* Set physical address of RX buffer (256-byte aligned). */
1918 		ring->desc[i] = htole32(paddr >> 8);
1919 	}
1920 
1921 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1922 	    BUS_DMASYNC_PREWRITE);
1923 
1924 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1925 
1926 	return 0;
1927 
1928 fail:	iwn_free_rx_ring(sc, ring);
1929 
1930 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1931 
1932 	return error;
1933 }
1934 
1935 static void
1936 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1937 {
1938 	int ntries;
1939 
1940 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1941 
1942 	if (iwn_nic_lock(sc) == 0) {
1943 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1944 		for (ntries = 0; ntries < 1000; ntries++) {
1945 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1946 			    IWN_FH_RX_STATUS_IDLE)
1947 				break;
1948 			DELAY(10);
1949 		}
1950 		iwn_nic_unlock(sc);
1951 	}
1952 	ring->cur = 0;
1953 	sc->last_rx_valid = 0;
1954 }
1955 
1956 static void
1957 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1958 {
1959 	int i;
1960 
1961 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1962 
1963 	iwn_dma_contig_free(&ring->desc_dma);
1964 	iwn_dma_contig_free(&ring->stat_dma);
1965 
1966 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1967 		struct iwn_rx_data *data = &ring->data[i];
1968 
1969 		if (data->m != NULL) {
1970 			bus_dmamap_sync(ring->data_dmat, data->map,
1971 			    BUS_DMASYNC_POSTREAD);
1972 			bus_dmamap_unload(ring->data_dmat, data->map);
1973 			m_freem(data->m);
1974 			data->m = NULL;
1975 		}
1976 		if (data->map != NULL)
1977 			bus_dmamap_destroy(ring->data_dmat, data->map);
1978 	}
1979 	if (ring->data_dmat != NULL) {
1980 		bus_dma_tag_destroy(ring->data_dmat);
1981 		ring->data_dmat = NULL;
1982 	}
1983 }
1984 
1985 static int
1986 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1987 {
1988 	bus_addr_t paddr;
1989 	bus_size_t size;
1990 	int i, error;
1991 
1992 	ring->qid = qid;
1993 	ring->queued = 0;
1994 	ring->cur = 0;
1995 
1996 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1997 
1998 	/* Allocate TX descriptors (256-byte aligned). */
1999 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2000 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2001 	    size, 256);
2002 	if (error != 0) {
2003 		device_printf(sc->sc_dev,
2004 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2005 		    __func__, error);
2006 		goto fail;
2007 	}
2008 
2009 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2010 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2011 	    size, 4);
2012 	if (error != 0) {
2013 		device_printf(sc->sc_dev,
2014 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2015 		    __func__, error);
2016 		goto fail;
2017 	}
2018 
2019 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2020 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2021 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2022 	if (error != 0) {
2023 		device_printf(sc->sc_dev,
2024 		    "%s: could not create TX buf DMA tag, error %d\n",
2025 		    __func__, error);
2026 		goto fail;
2027 	}
2028 
2029 	paddr = ring->cmd_dma.paddr;
2030 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2031 		struct iwn_tx_data *data = &ring->data[i];
2032 
2033 		data->cmd_paddr = paddr;
2034 		data->scratch_paddr = paddr + 12;
2035 		paddr += sizeof (struct iwn_tx_cmd);
2036 
2037 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2038 		if (error != 0) {
2039 			device_printf(sc->sc_dev,
2040 			    "%s: could not create TX buf DMA map, error %d\n",
2041 			    __func__, error);
2042 			goto fail;
2043 		}
2044 	}
2045 
2046 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2047 
2048 	return 0;
2049 
2050 fail:	iwn_free_tx_ring(sc, ring);
2051 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2052 	return error;
2053 }
2054 
2055 static void
2056 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2057 {
2058 	int i;
2059 
2060 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2061 
2062 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2063 		struct iwn_tx_data *data = &ring->data[i];
2064 
2065 		if (data->m != NULL) {
2066 			bus_dmamap_sync(ring->data_dmat, data->map,
2067 			    BUS_DMASYNC_POSTWRITE);
2068 			bus_dmamap_unload(ring->data_dmat, data->map);
2069 			m_freem(data->m);
2070 			data->m = NULL;
2071 		}
2072 		if (data->ni != NULL) {
2073 			ieee80211_free_node(data->ni);
2074 			data->ni = NULL;
2075 		}
2076 	}
2077 	/* Clear TX descriptors. */
2078 	memset(ring->desc, 0, ring->desc_dma.size);
2079 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2080 	    BUS_DMASYNC_PREWRITE);
2081 	sc->qfullmsk &= ~(1 << ring->qid);
2082 	ring->queued = 0;
2083 	ring->cur = 0;
2084 }
2085 
2086 static void
2087 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2088 {
2089 	int i;
2090 
2091 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2092 
2093 	iwn_dma_contig_free(&ring->desc_dma);
2094 	iwn_dma_contig_free(&ring->cmd_dma);
2095 
2096 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2097 		struct iwn_tx_data *data = &ring->data[i];
2098 
2099 		if (data->m != NULL) {
2100 			bus_dmamap_sync(ring->data_dmat, data->map,
2101 			    BUS_DMASYNC_POSTWRITE);
2102 			bus_dmamap_unload(ring->data_dmat, data->map);
2103 			m_freem(data->m);
2104 		}
2105 		if (data->map != NULL)
2106 			bus_dmamap_destroy(ring->data_dmat, data->map);
2107 	}
2108 	if (ring->data_dmat != NULL) {
2109 		bus_dma_tag_destroy(ring->data_dmat);
2110 		ring->data_dmat = NULL;
2111 	}
2112 }
2113 
2114 static void
2115 iwn5000_ict_reset(struct iwn_softc *sc)
2116 {
2117 	/* Disable interrupts. */
2118 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2119 
2120 	/* Reset ICT table. */
2121 	memset(sc->ict, 0, IWN_ICT_SIZE);
2122 	sc->ict_cur = 0;
2123 
2124 	bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
2125 	    BUS_DMASYNC_PREWRITE);
2126 
2127 	/* Set physical address of ICT table (4KB aligned). */
2128 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2129 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2130 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2131 
2132 	/* Enable periodic RX interrupt. */
2133 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2134 	/* Switch to ICT interrupt mode in driver. */
2135 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2136 
2137 	/* Re-enable interrupts. */
2138 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2139 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2140 }
2141 
2142 static int
2143 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2144 {
2145 	struct iwn_ops *ops = &sc->ops;
2146 	uint16_t val;
2147 	int error;
2148 
2149 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2150 
2151 	/* Check whether adapter has an EEPROM or an OTPROM. */
2152 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2153 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2154 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2155 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2156 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2157 
2158 	/* Adapter has to be powered on for EEPROM access to work. */
2159 	if ((error = iwn_apm_init(sc)) != 0) {
2160 		device_printf(sc->sc_dev,
2161 		    "%s: could not power ON adapter, error %d\n", __func__,
2162 		    error);
2163 		return error;
2164 	}
2165 
2166 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2167 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2168 		return EIO;
2169 	}
2170 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2171 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2172 		    __func__, error);
2173 		return error;
2174 	}
2175 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2176 		if ((error = iwn_init_otprom(sc)) != 0) {
2177 			device_printf(sc->sc_dev,
2178 			    "%s: could not initialize OTPROM, error %d\n",
2179 			    __func__, error);
2180 			return error;
2181 		}
2182 	}
2183 
2184 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2185 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2186 	/* Check if HT support is bonded out. */
2187 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2188 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2189 
2190 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2191 	sc->rfcfg = le16toh(val);
2192 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2193 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2194 	if (sc->txchainmask == 0)
2195 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2196 	if (sc->rxchainmask == 0)
2197 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2198 
2199 	/* Read MAC address. */
2200 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2201 
2202 	/* Read adapter-specific information from EEPROM. */
2203 	ops->read_eeprom(sc);
2204 
2205 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2206 
2207 	iwn_eeprom_unlock(sc);
2208 
2209 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2210 
2211 	return 0;
2212 }
2213 
2214 static void
2215 iwn4965_read_eeprom(struct iwn_softc *sc)
2216 {
2217 	uint32_t addr;
2218 	uint16_t val;
2219 	int i;
2220 
2221 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2222 
2223 	/* Read regulatory domain (4 ASCII characters). */
2224 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2225 
2226 	/* Read the list of authorized channels (20MHz & 40MHz). */
2227 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2228 		addr = iwn4965_regulatory_bands[i];
2229 		iwn_read_eeprom_channels(sc, i, addr);
2230 	}
2231 
2232 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2233 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2234 	sc->maxpwr2GHz = val & 0xff;
2235 	sc->maxpwr5GHz = val >> 8;
2236 	/* Check that EEPROM values are within valid range. */
2237 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2238 		sc->maxpwr5GHz = 38;
2239 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2240 		sc->maxpwr2GHz = 38;
2241 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2242 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2243 
2244 	/* Read samples for each TX power group. */
2245 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2246 	    sizeof sc->bands);
2247 
2248 	/* Read voltage at which samples were taken. */
2249 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2250 	sc->eeprom_voltage = (int16_t)le16toh(val);
2251 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2252 	    sc->eeprom_voltage);
2253 
2254 #ifdef IWN_DEBUG
2255 	/* Print samples. */
2256 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2257 		for (i = 0; i < IWN_NBANDS - 1; i++)
2258 			iwn4965_print_power_group(sc, i);
2259 	}
2260 #endif
2261 
2262 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2263 }
2264 
2265 #ifdef IWN_DEBUG
2266 static void
2267 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2268 {
2269 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2270 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2271 	int j, c;
2272 
2273 	printf("===band %d===\n", i);
2274 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2275 	printf("chan1 num=%d\n", chans[0].num);
2276 	for (c = 0; c < 2; c++) {
2277 		for (j = 0; j < IWN_NSAMPLES; j++) {
2278 			printf("chain %d, sample %d: temp=%d gain=%d "
2279 			    "power=%d pa_det=%d\n", c, j,
2280 			    chans[0].samples[c][j].temp,
2281 			    chans[0].samples[c][j].gain,
2282 			    chans[0].samples[c][j].power,
2283 			    chans[0].samples[c][j].pa_det);
2284 		}
2285 	}
2286 	printf("chan2 num=%d\n", chans[1].num);
2287 	for (c = 0; c < 2; c++) {
2288 		for (j = 0; j < IWN_NSAMPLES; j++) {
2289 			printf("chain %d, sample %d: temp=%d gain=%d "
2290 			    "power=%d pa_det=%d\n", c, j,
2291 			    chans[1].samples[c][j].temp,
2292 			    chans[1].samples[c][j].gain,
2293 			    chans[1].samples[c][j].power,
2294 			    chans[1].samples[c][j].pa_det);
2295 		}
2296 	}
2297 }
2298 #endif
2299 
2300 static void
2301 iwn5000_read_eeprom(struct iwn_softc *sc)
2302 {
2303 	struct iwn5000_eeprom_calib_hdr hdr;
2304 	int32_t volt;
2305 	uint32_t base, addr;
2306 	uint16_t val;
2307 	int i;
2308 
2309 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2310 
2311 	/* Read regulatory domain (4 ASCII characters). */
2312 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2313 	base = le16toh(val);
2314 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2315 	    sc->eeprom_domain, 4);
2316 
2317 	/* Read the list of authorized channels (20MHz & 40MHz). */
2318 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2319 		addr =  base + sc->base_params->regulatory_bands[i];
2320 		iwn_read_eeprom_channels(sc, i, addr);
2321 	}
2322 
2323 	/* Read enhanced TX power information for 6000 Series. */
2324 	if (sc->base_params->enhanced_TX_power)
2325 		iwn_read_eeprom_enhinfo(sc);
2326 
2327 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2328 	base = le16toh(val);
2329 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2330 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2331 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2332 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2333 	sc->calib_ver = hdr.version;
2334 
2335 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2336 		sc->eeprom_voltage = le16toh(hdr.volt);
2337 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2338 		sc->eeprom_temp_high=le16toh(val);
2339 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2340 		sc->eeprom_temp = le16toh(val);
2341 	}
2342 
2343 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2344 		/* Compute temperature offset. */
2345 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2346 		sc->eeprom_temp = le16toh(val);
2347 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2348 		volt = le16toh(val);
2349 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2350 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2351 		    sc->eeprom_temp, volt, sc->temp_off);
2352 	} else {
2353 		/* Read crystal calibration. */
2354 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2355 		    &sc->eeprom_crystal, sizeof (uint32_t));
2356 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2357 		    le32toh(sc->eeprom_crystal));
2358 	}
2359 
2360 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2361 
2362 }
2363 
2364 /*
2365  * Translate EEPROM flags to net80211.
2366  */
2367 static uint32_t
2368 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2369 {
2370 	uint32_t nflags;
2371 
2372 	nflags = 0;
2373 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2374 		nflags |= IEEE80211_CHAN_PASSIVE;
2375 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2376 		nflags |= IEEE80211_CHAN_NOADHOC;
2377 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2378 		nflags |= IEEE80211_CHAN_DFS;
2379 		/* XXX apparently IBSS may still be marked */
2380 		nflags |= IEEE80211_CHAN_NOADHOC;
2381 	}
2382 
2383 	return nflags;
2384 }
2385 
2386 static void
2387 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2388     struct ieee80211_channel chans[])
2389 {
2390 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2391 	const struct iwn_chan_band *band = &iwn_bands[n];
2392 	uint8_t bands[IEEE80211_MODE_BYTES];
2393 	uint8_t chan;
2394 	int i, error, nflags;
2395 
2396 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2397 
2398 	memset(bands, 0, sizeof(bands));
2399 	if (n == 0) {
2400 		setbit(bands, IEEE80211_MODE_11B);
2401 		setbit(bands, IEEE80211_MODE_11G);
2402 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2403 			setbit(bands, IEEE80211_MODE_11NG);
2404 	} else {
2405 		setbit(bands, IEEE80211_MODE_11A);
2406 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2407 			setbit(bands, IEEE80211_MODE_11NA);
2408 	}
2409 
2410 	for (i = 0; i < band->nchan; i++) {
2411 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2412 			DPRINTF(sc, IWN_DEBUG_RESET,
2413 			    "skip chan %d flags 0x%x maxpwr %d\n",
2414 			    band->chan[i], channels[i].flags,
2415 			    channels[i].maxpwr);
2416 			continue;
2417 		}
2418 
2419 		chan = band->chan[i];
2420 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2421 		error = ieee80211_add_channel(chans, maxchans, nchans,
2422 		    chan, 0, channels[i].maxpwr, nflags, bands);
2423 		if (error != 0)
2424 			break;
2425 
2426 		/* Save maximum allowed TX power for this channel. */
2427 		/* XXX wrong */
2428 		sc->maxpwr[chan] = channels[i].maxpwr;
2429 
2430 		DPRINTF(sc, IWN_DEBUG_RESET,
2431 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2432 		    channels[i].flags, channels[i].maxpwr);
2433 	}
2434 
2435 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2436 
2437 }
2438 
2439 static void
2440 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2441     struct ieee80211_channel chans[])
2442 {
2443 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2444 	const struct iwn_chan_band *band = &iwn_bands[n];
2445 	uint8_t chan;
2446 	int i, error, nflags;
2447 
2448 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2449 
2450 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2451 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2452 		return;
2453 	}
2454 
2455 	for (i = 0; i < band->nchan; i++) {
2456 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2457 			DPRINTF(sc, IWN_DEBUG_RESET,
2458 			    "skip chan %d flags 0x%x maxpwr %d\n",
2459 			    band->chan[i], channels[i].flags,
2460 			    channels[i].maxpwr);
2461 			continue;
2462 		}
2463 
2464 		chan = band->chan[i];
2465 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2466 		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2467 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2468 		    chan, channels[i].maxpwr, nflags);
2469 		switch (error) {
2470 		case EINVAL:
2471 			device_printf(sc->sc_dev,
2472 			    "%s: no entry for channel %d\n", __func__, chan);
2473 			continue;
2474 		case ENOENT:
2475 			DPRINTF(sc, IWN_DEBUG_RESET,
2476 			    "%s: skip chan %d, extension channel not found\n",
2477 			    __func__, chan);
2478 			continue;
2479 		case ENOBUFS:
2480 			device_printf(sc->sc_dev,
2481 			    "%s: channel table is full!\n", __func__);
2482 			break;
2483 		case 0:
2484 			DPRINTF(sc, IWN_DEBUG_RESET,
2485 			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2486 			    chan, channels[i].flags, channels[i].maxpwr);
2487 			/* FALLTHROUGH */
2488 		default:
2489 			break;
2490 		}
2491 	}
2492 
2493 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2494 
2495 }
2496 
2497 static void
2498 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2499 {
2500 	struct ieee80211com *ic = &sc->sc_ic;
2501 
2502 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2503 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2504 
2505 	if (n < 5) {
2506 		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2507 		    ic->ic_channels);
2508 	} else {
2509 		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2510 		    ic->ic_channels);
2511 	}
2512 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2513 }
2514 
2515 static struct iwn_eeprom_chan *
2516 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2517 {
2518 	int band, chan, i, j;
2519 
2520 	if (IEEE80211_IS_CHAN_HT40(c)) {
2521 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2522 		if (IEEE80211_IS_CHAN_HT40D(c))
2523 			chan = c->ic_extieee;
2524 		else
2525 			chan = c->ic_ieee;
2526 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2527 			if (iwn_bands[band].chan[i] == chan)
2528 				return &sc->eeprom_channels[band][i];
2529 		}
2530 	} else {
2531 		for (j = 0; j < 5; j++) {
2532 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2533 				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2534 				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2535 					return &sc->eeprom_channels[j][i];
2536 			}
2537 		}
2538 	}
2539 	return NULL;
2540 }
2541 
2542 static void
2543 iwn_getradiocaps(struct ieee80211com *ic,
2544     int maxchans, int *nchans, struct ieee80211_channel chans[])
2545 {
2546 	struct iwn_softc *sc = ic->ic_softc;
2547 	int i;
2548 
2549 	/* Parse the list of authorized channels. */
2550 	for (i = 0; i < 5 && *nchans < maxchans; i++)
2551 		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2552 	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2553 		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2554 }
2555 
2556 /*
2557  * Enforce flags read from EEPROM.
2558  */
2559 static int
2560 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2561     int nchan, struct ieee80211_channel chans[])
2562 {
2563 	struct iwn_softc *sc = ic->ic_softc;
2564 	int i;
2565 
2566 	for (i = 0; i < nchan; i++) {
2567 		struct ieee80211_channel *c = &chans[i];
2568 		struct iwn_eeprom_chan *channel;
2569 
2570 		channel = iwn_find_eeprom_channel(sc, c);
2571 		if (channel == NULL) {
2572 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2573 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2574 			return EINVAL;
2575 		}
2576 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2577 	}
2578 
2579 	return 0;
2580 }
2581 
2582 static void
2583 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2584 {
2585 	struct iwn_eeprom_enhinfo enhinfo[35];
2586 	struct ieee80211com *ic = &sc->sc_ic;
2587 	struct ieee80211_channel *c;
2588 	uint16_t val, base;
2589 	int8_t maxpwr;
2590 	uint8_t flags;
2591 	int i, j;
2592 
2593 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2594 
2595 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2596 	base = le16toh(val);
2597 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2598 	    enhinfo, sizeof enhinfo);
2599 
2600 	for (i = 0; i < nitems(enhinfo); i++) {
2601 		flags = enhinfo[i].flags;
2602 		if (!(flags & IWN_ENHINFO_VALID))
2603 			continue;	/* Skip invalid entries. */
2604 
2605 		maxpwr = 0;
2606 		if (sc->txchainmask & IWN_ANT_A)
2607 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2608 		if (sc->txchainmask & IWN_ANT_B)
2609 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2610 		if (sc->txchainmask & IWN_ANT_C)
2611 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2612 		if (sc->ntxchains == 2)
2613 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2614 		else if (sc->ntxchains == 3)
2615 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2616 
2617 		for (j = 0; j < ic->ic_nchans; j++) {
2618 			c = &ic->ic_channels[j];
2619 			if ((flags & IWN_ENHINFO_5GHZ)) {
2620 				if (!IEEE80211_IS_CHAN_A(c))
2621 					continue;
2622 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2623 				if (!IEEE80211_IS_CHAN_G(c))
2624 					continue;
2625 			} else if (!IEEE80211_IS_CHAN_B(c))
2626 				continue;
2627 			if ((flags & IWN_ENHINFO_HT40)) {
2628 				if (!IEEE80211_IS_CHAN_HT40(c))
2629 					continue;
2630 			} else {
2631 				if (IEEE80211_IS_CHAN_HT40(c))
2632 					continue;
2633 			}
2634 			if (enhinfo[i].chan != 0 &&
2635 			    enhinfo[i].chan != c->ic_ieee)
2636 				continue;
2637 
2638 			DPRINTF(sc, IWN_DEBUG_RESET,
2639 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2640 			    c->ic_flags, maxpwr / 2);
2641 			c->ic_maxregpower = maxpwr / 2;
2642 			c->ic_maxpower = maxpwr;
2643 		}
2644 	}
2645 
2646 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2647 
2648 }
2649 
2650 static struct ieee80211_node *
2651 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2652 {
2653 	struct iwn_node *wn;
2654 
2655 	wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
2656 	if (wn == NULL)
2657 		return (NULL);
2658 
2659 	wn->id = IWN_ID_UNDEFINED;
2660 
2661 	return (&wn->ni);
2662 }
2663 
2664 static __inline int
2665 rate2plcp(int rate)
2666 {
2667 	switch (rate & 0xff) {
2668 	case 12:	return 0xd;
2669 	case 18:	return 0xf;
2670 	case 24:	return 0x5;
2671 	case 36:	return 0x7;
2672 	case 48:	return 0x9;
2673 	case 72:	return 0xb;
2674 	case 96:	return 0x1;
2675 	case 108:	return 0x3;
2676 	case 2:		return 10;
2677 	case 4:		return 20;
2678 	case 11:	return 55;
2679 	case 22:	return 110;
2680 	}
2681 	return 0;
2682 }
2683 
2684 static __inline uint8_t
2685 plcp2rate(const uint8_t rate_plcp)
2686 {
2687 	switch (rate_plcp) {
2688 	case 0xd:	return 12;
2689 	case 0xf:	return 18;
2690 	case 0x5:	return 24;
2691 	case 0x7:	return 36;
2692 	case 0x9:	return 48;
2693 	case 0xb:	return 72;
2694 	case 0x1:	return 96;
2695 	case 0x3:	return 108;
2696 	case 10:	return 2;
2697 	case 20:	return 4;
2698 	case 55:	return 11;
2699 	case 110:	return 22;
2700 	default:	return 0;
2701 	}
2702 }
2703 
2704 static int
2705 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2706 {
2707 
2708 	return IWN_LSB(sc->txchainmask);
2709 }
2710 
2711 static int
2712 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2713 {
2714 	int tx;
2715 
2716 	/*
2717 	 * The '2 stream' setup is a bit .. odd.
2718 	 *
2719 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2720 	 * the firmware panics (eg Intel 5100.)
2721 	 *
2722 	 * For NICs that support two antennas, we use ANT_AB.
2723 	 *
2724 	 * For NICs that support three antennas, we use the two that
2725 	 * wasn't the default one.
2726 	 *
2727 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2728 	 * this to only one antenna.
2729 	 */
2730 
2731 	/* Default - transmit on the other antennas */
2732 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2733 
2734 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2735 	if (tx == 0)
2736 		tx = IWN_ANT_AB;
2737 
2738 	/*
2739 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2740 	 * the default chainmask
2741 	 */
2742 	else if (sc->ntxchains == 2)
2743 		tx = sc->txchainmask;
2744 
2745 	return (tx);
2746 }
2747 
2748 
2749 
2750 /*
2751  * Calculate the required PLCP value from the given rate,
2752  * to the given node.
2753  *
2754  * This will take the node configuration (eg 11n, rate table
2755  * setup, etc) into consideration.
2756  */
2757 static uint32_t
2758 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2759     uint8_t rate)
2760 {
2761 	struct ieee80211com *ic = ni->ni_ic;
2762 	uint32_t plcp = 0;
2763 	int ridx;
2764 
2765 	/*
2766 	 * If it's an MCS rate, let's set the plcp correctly
2767 	 * and set the relevant flags based on the node config.
2768 	 */
2769 	if (rate & IEEE80211_RATE_MCS) {
2770 		/*
2771 		 * Set the initial PLCP value to be between 0->31 for
2772 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2773 		 * flag.
2774 		 */
2775 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2776 
2777 		/*
2778 		 * XXX the following should only occur if both
2779 		 * the local configuration _and_ the remote node
2780 		 * advertise these capabilities.  Thus this code
2781 		 * may need fixing!
2782 		 */
2783 
2784 		/*
2785 		 * Set the channel width and guard interval.
2786 		 */
2787 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2788 			plcp |= IWN_RFLAG_HT40;
2789 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2790 				plcp |= IWN_RFLAG_SGI;
2791 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2792 			plcp |= IWN_RFLAG_SGI;
2793 		}
2794 
2795 		/*
2796 		 * Ensure the selected rate matches the link quality
2797 		 * table entries being used.
2798 		 */
2799 		if (rate > 0x8f)
2800 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2801 		else if (rate > 0x87)
2802 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2803 		else
2804 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2805 	} else {
2806 		/*
2807 		 * Set the initial PLCP - fine for both
2808 		 * OFDM and CCK rates.
2809 		 */
2810 		plcp = rate2plcp(rate);
2811 
2812 		/* Set CCK flag if it's CCK */
2813 
2814 		/* XXX It would be nice to have a method
2815 		 * to map the ridx -> phy table entry
2816 		 * so we could just query that, rather than
2817 		 * this hack to check against IWN_RIDX_OFDM6.
2818 		 */
2819 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2820 		    rate & IEEE80211_RATE_VAL);
2821 		if (ridx < IWN_RIDX_OFDM6 &&
2822 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2823 			plcp |= IWN_RFLAG_CCK;
2824 
2825 		/* Set antenna configuration */
2826 		/* XXX TODO: is this the right antenna to use for legacy? */
2827 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2828 	}
2829 
2830 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2831 	    __func__,
2832 	    rate,
2833 	    plcp);
2834 
2835 	return (htole32(plcp));
2836 }
2837 
2838 static void
2839 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2840 {
2841 	/* Doesn't do anything at the moment */
2842 }
2843 
2844 static int
2845 iwn_media_change(struct ifnet *ifp)
2846 {
2847 	int error;
2848 
2849 	error = ieee80211_media_change(ifp);
2850 	/* NB: only the fixed rate can change and that doesn't need a reset */
2851 	return (error == ENETRESET ? 0 : error);
2852 }
2853 
2854 static int
2855 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2856 {
2857 	struct iwn_vap *ivp = IWN_VAP(vap);
2858 	struct ieee80211com *ic = vap->iv_ic;
2859 	struct iwn_softc *sc = ic->ic_softc;
2860 	int error = 0;
2861 
2862 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2863 
2864 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2865 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2866 
2867 	IEEE80211_UNLOCK(ic);
2868 	IWN_LOCK(sc);
2869 	callout_stop(&sc->calib_to);
2870 
2871 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2872 
2873 	switch (nstate) {
2874 	case IEEE80211_S_ASSOC:
2875 		if (vap->iv_state != IEEE80211_S_RUN)
2876 			break;
2877 		/* FALLTHROUGH */
2878 	case IEEE80211_S_AUTH:
2879 		if (vap->iv_state == IEEE80211_S_AUTH)
2880 			break;
2881 
2882 		/*
2883 		 * !AUTH -> AUTH transition requires state reset to handle
2884 		 * reassociations correctly.
2885 		 */
2886 		sc->rxon->associd = 0;
2887 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2888 		sc->calib.state = IWN_CALIB_STATE_INIT;
2889 
2890 		/* Wait until we hear a beacon before we transmit */
2891 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2892 			sc->sc_beacon_wait = 1;
2893 
2894 		if ((error = iwn_auth(sc, vap)) != 0) {
2895 			device_printf(sc->sc_dev,
2896 			    "%s: could not move to auth state\n", __func__);
2897 		}
2898 		break;
2899 
2900 	case IEEE80211_S_RUN:
2901 		/*
2902 		 * RUN -> RUN transition; Just restart the timers.
2903 		 */
2904 		if (vap->iv_state == IEEE80211_S_RUN) {
2905 			sc->calib_cnt = 0;
2906 			break;
2907 		}
2908 
2909 		/* Wait until we hear a beacon before we transmit */
2910 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2911 			sc->sc_beacon_wait = 1;
2912 
2913 		/*
2914 		 * !RUN -> RUN requires setting the association id
2915 		 * which is done with a firmware cmd.  We also defer
2916 		 * starting the timers until that work is done.
2917 		 */
2918 		if ((error = iwn_run(sc, vap)) != 0) {
2919 			device_printf(sc->sc_dev,
2920 			    "%s: could not move to run state\n", __func__);
2921 		}
2922 		break;
2923 
2924 	case IEEE80211_S_INIT:
2925 		sc->calib.state = IWN_CALIB_STATE_INIT;
2926 		/*
2927 		 * Purge the xmit queue so we don't have old frames
2928 		 * during a new association attempt.
2929 		 */
2930 		sc->sc_beacon_wait = 0;
2931 		iwn_xmit_queue_drain(sc);
2932 		break;
2933 
2934 	default:
2935 		break;
2936 	}
2937 	IWN_UNLOCK(sc);
2938 	IEEE80211_LOCK(ic);
2939 	if (error != 0){
2940 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2941 		return error;
2942 	}
2943 
2944 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2945 
2946 	return ivp->iv_newstate(vap, nstate, arg);
2947 }
2948 
2949 static void
2950 iwn_calib_timeout(void *arg)
2951 {
2952 	struct iwn_softc *sc = arg;
2953 
2954 	IWN_LOCK_ASSERT(sc);
2955 
2956 	/* Force automatic TX power calibration every 60 secs. */
2957 	if (++sc->calib_cnt >= 120) {
2958 		uint32_t flags = 0;
2959 
2960 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2961 		    "sending request for statistics");
2962 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2963 		    sizeof flags, 1);
2964 		sc->calib_cnt = 0;
2965 	}
2966 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2967 	    sc);
2968 }
2969 
2970 /*
2971  * Process an RX_PHY firmware notification.  This is usually immediately
2972  * followed by an MPDU_RX_DONE notification.
2973  */
2974 static void
2975 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2976 {
2977 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2978 
2979 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2980 
2981 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2982 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2983 	sc->last_rx_valid = 1;
2984 }
2985 
2986 /*
2987  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2988  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2989  */
2990 static void
2991 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2992     struct iwn_rx_data *data)
2993 {
2994 	struct iwn_ops *ops = &sc->ops;
2995 	struct ieee80211com *ic = &sc->sc_ic;
2996 	struct iwn_rx_ring *ring = &sc->rxq;
2997 	struct ieee80211_frame_min *wh;
2998 	struct ieee80211_node *ni;
2999 	struct mbuf *m, *m1;
3000 	struct iwn_rx_stat *stat;
3001 	caddr_t head;
3002 	bus_addr_t paddr;
3003 	uint32_t flags;
3004 	int error, len, rssi, nf;
3005 
3006 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3007 
3008 	if (desc->type == IWN_MPDU_RX_DONE) {
3009 		/* Check for prior RX_PHY notification. */
3010 		if (!sc->last_rx_valid) {
3011 			DPRINTF(sc, IWN_DEBUG_ANY,
3012 			    "%s: missing RX_PHY\n", __func__);
3013 			return;
3014 		}
3015 		stat = &sc->last_rx_stat;
3016 	} else
3017 		stat = (struct iwn_rx_stat *)(desc + 1);
3018 
3019 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3020 		device_printf(sc->sc_dev,
3021 		    "%s: invalid RX statistic header, len %d\n", __func__,
3022 		    stat->cfg_phy_len);
3023 		return;
3024 	}
3025 	if (desc->type == IWN_MPDU_RX_DONE) {
3026 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3027 		head = (caddr_t)(mpdu + 1);
3028 		len = le16toh(mpdu->len);
3029 	} else {
3030 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3031 		len = le16toh(stat->len);
3032 	}
3033 
3034 	flags = le32toh(*(uint32_t *)(head + len));
3035 
3036 	/* Discard frames with a bad FCS early. */
3037 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3038 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3039 		    __func__, flags);
3040 		counter_u64_add(ic->ic_ierrors, 1);
3041 		return;
3042 	}
3043 	/* Discard frames that are too short. */
3044 	if (len < sizeof (struct ieee80211_frame_ack)) {
3045 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3046 		    __func__, len);
3047 		counter_u64_add(ic->ic_ierrors, 1);
3048 		return;
3049 	}
3050 
3051 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3052 	if (m1 == NULL) {
3053 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3054 		    __func__);
3055 		counter_u64_add(ic->ic_ierrors, 1);
3056 		return;
3057 	}
3058 	bus_dmamap_unload(ring->data_dmat, data->map);
3059 
3060 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3061 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3062 	if (error != 0 && error != EFBIG) {
3063 		device_printf(sc->sc_dev,
3064 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3065 		m_freem(m1);
3066 
3067 		/* Try to reload the old mbuf. */
3068 		error = bus_dmamap_load(ring->data_dmat, data->map,
3069 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3070 		    &paddr, BUS_DMA_NOWAIT);
3071 		if (error != 0 && error != EFBIG) {
3072 			panic("%s: could not load old RX mbuf", __func__);
3073 		}
3074 		bus_dmamap_sync(ring->data_dmat, data->map,
3075 		    BUS_DMASYNC_PREREAD);
3076 		/* Physical address may have changed. */
3077 		ring->desc[ring->cur] = htole32(paddr >> 8);
3078 		bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3079 		    BUS_DMASYNC_PREWRITE);
3080 		counter_u64_add(ic->ic_ierrors, 1);
3081 		return;
3082 	}
3083 
3084 	bus_dmamap_sync(ring->data_dmat, data->map,
3085 	    BUS_DMASYNC_PREREAD);
3086 
3087 	m = data->m;
3088 	data->m = m1;
3089 	/* Update RX descriptor. */
3090 	ring->desc[ring->cur] = htole32(paddr >> 8);
3091 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3092 	    BUS_DMASYNC_PREWRITE);
3093 
3094 	/* Finalize mbuf. */
3095 	m->m_data = head;
3096 	m->m_pkthdr.len = m->m_len = len;
3097 
3098 	/* Grab a reference to the source node. */
3099 	wh = mtod(m, struct ieee80211_frame_min *);
3100 	if (len >= sizeof(struct ieee80211_frame_min))
3101 		ni = ieee80211_find_rxnode(ic, wh);
3102 	else
3103 		ni = NULL;
3104 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3105 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3106 
3107 	rssi = ops->get_rssi(sc, stat);
3108 
3109 	if (ieee80211_radiotap_active(ic)) {
3110 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3111 		uint32_t rate = le32toh(stat->rate);
3112 
3113 		tap->wr_flags = 0;
3114 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3115 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3116 		tap->wr_dbm_antsignal = (int8_t)rssi;
3117 		tap->wr_dbm_antnoise = (int8_t)nf;
3118 		tap->wr_tsft = stat->tstamp;
3119 		if (rate & IWN_RFLAG_MCS) {
3120 			tap->wr_rate = rate & IWN_RFLAG_RATE_MCS;
3121 			tap->wr_rate |= IEEE80211_RATE_MCS;
3122 		} else
3123 			tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE);
3124 	}
3125 
3126 	/*
3127 	 * If it's a beacon and we're waiting, then do the
3128 	 * wakeup.  This should unblock raw_xmit/start.
3129 	 */
3130 	if (sc->sc_beacon_wait) {
3131 		uint8_t type, subtype;
3132 		/* NB: Re-assign wh */
3133 		wh = mtod(m, struct ieee80211_frame_min *);
3134 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3135 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3136 		/*
3137 		 * This assumes at this point we've received our own
3138 		 * beacon.
3139 		 */
3140 		DPRINTF(sc, IWN_DEBUG_TRACE,
3141 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3142 		    __func__, type, subtype);
3143 		if (type == IEEE80211_FC0_TYPE_MGT &&
3144 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3145 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3146 			    "%s: waking things up\n", __func__);
3147 			/* queue taskqueue to transmit! */
3148 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3149 		}
3150 	}
3151 
3152 	IWN_UNLOCK(sc);
3153 
3154 	/* Send the frame to the 802.11 layer. */
3155 	if (ni != NULL) {
3156 		if (ni->ni_flags & IEEE80211_NODE_HT)
3157 			m->m_flags |= M_AMPDU;
3158 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3159 		/* Node is no longer needed. */
3160 		ieee80211_free_node(ni);
3161 	} else
3162 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3163 
3164 	IWN_LOCK(sc);
3165 
3166 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3167 
3168 }
3169 
3170 /* Process an incoming Compressed BlockAck. */
3171 static void
3172 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3173 {
3174 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3175 	struct iwn_ops *ops = &sc->ops;
3176 	struct iwn_node *wn;
3177 	struct ieee80211_node *ni;
3178 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3179 	struct iwn_tx_ring *txq;
3180 	struct iwn_tx_data *txdata;
3181 	struct ieee80211_tx_ampdu *tap;
3182 	struct mbuf *m;
3183 	uint64_t bitmap;
3184 	uint16_t ssn;
3185 	uint8_t tid;
3186 	int i, lastidx, qid, *res, shift;
3187 	int tx_ok = 0, tx_err = 0;
3188 
3189 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__);
3190 
3191 	qid = le16toh(ba->qid);
3192 	txq = &sc->txq[ba->qid];
3193 	tap = sc->qid2tap[ba->qid];
3194 	tid = tap->txa_tid;
3195 	wn = (void *)tap->txa_ni;
3196 
3197 	res = NULL;
3198 	ssn = 0;
3199 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3200 		res = tap->txa_private;
3201 		ssn = tap->txa_start & 0xfff;
3202 	}
3203 
3204 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3205 		txdata = &txq->data[txq->read];
3206 
3207 		/* Unmap and free mbuf. */
3208 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3209 		    BUS_DMASYNC_POSTWRITE);
3210 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3211 		m = txdata->m, txdata->m = NULL;
3212 		ni = txdata->ni, txdata->ni = NULL;
3213 
3214 		KASSERT(ni != NULL, ("no node"));
3215 		KASSERT(m != NULL, ("no mbuf"));
3216 
3217 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3218 		ieee80211_tx_complete(ni, m, 1);
3219 
3220 		txq->queued--;
3221 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3222 	}
3223 
3224 	if (txq->queued == 0 && res != NULL) {
3225 		iwn_nic_lock(sc);
3226 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3227 		iwn_nic_unlock(sc);
3228 		sc->qid2tap[qid] = NULL;
3229 		free(res, M_DEVBUF);
3230 		return;
3231 	}
3232 
3233 	if (wn->agg[tid].bitmap == 0)
3234 		return;
3235 
3236 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3237 	if (shift < 0)
3238 		shift += 0x100;
3239 
3240 	if (wn->agg[tid].nframes > (64 - shift))
3241 		return;
3242 
3243 	/*
3244 	 * Walk the bitmap and calculate how many successful and failed
3245 	 * attempts are made.
3246 	 *
3247 	 * Yes, the rate control code doesn't know these are A-MPDU
3248 	 * subframes and that it's okay to fail some of these.
3249 	 */
3250 	ni = tap->txa_ni;
3251 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3252 	for (i = 0; bitmap; i++) {
3253 		txs->flags = 0;		/* XXX TODO */
3254 		if ((bitmap & 1) == 0) {
3255 			tx_err ++;
3256 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3257 		} else {
3258 			tx_ok ++;
3259 			txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3260 		}
3261 		ieee80211_ratectl_tx_complete(ni, txs);
3262 		bitmap >>= 1;
3263 	}
3264 
3265 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3266 	    "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err);
3267 
3268 }
3269 
3270 /*
3271  * Process a CALIBRATION_RESULT notification sent by the initialization
3272  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3273  */
3274 static void
3275 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3276 {
3277 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3278 	int len, idx = -1;
3279 
3280 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3281 
3282 	/* Runtime firmware should not send such a notification. */
3283 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3284 		DPRINTF(sc, IWN_DEBUG_TRACE,
3285 		    "->%s received after calib done\n", __func__);
3286 		return;
3287 	}
3288 	len = (le32toh(desc->len) & 0x3fff) - 4;
3289 
3290 	switch (calib->code) {
3291 	case IWN5000_PHY_CALIB_DC:
3292 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3293 			idx = 0;
3294 		break;
3295 	case IWN5000_PHY_CALIB_LO:
3296 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3297 			idx = 1;
3298 		break;
3299 	case IWN5000_PHY_CALIB_TX_IQ:
3300 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3301 			idx = 2;
3302 		break;
3303 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3304 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3305 			idx = 3;
3306 		break;
3307 	case IWN5000_PHY_CALIB_BASE_BAND:
3308 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3309 			idx = 4;
3310 		break;
3311 	}
3312 	if (idx == -1)	/* Ignore other results. */
3313 		return;
3314 
3315 	/* Save calibration result. */
3316 	if (sc->calibcmd[idx].buf != NULL)
3317 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3318 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3319 	if (sc->calibcmd[idx].buf == NULL) {
3320 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3321 		    "not enough memory for calibration result %d\n",
3322 		    calib->code);
3323 		return;
3324 	}
3325 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3326 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3327 	sc->calibcmd[idx].len = len;
3328 	memcpy(sc->calibcmd[idx].buf, calib, len);
3329 }
3330 
3331 static void
3332 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3333     struct iwn_stats *stats, int len)
3334 {
3335 	struct iwn_stats_bt *stats_bt;
3336 	struct iwn_stats *lstats;
3337 
3338 	/*
3339 	 * First - check whether the length is the bluetooth or normal.
3340 	 *
3341 	 * If it's normal - just copy it and bump out.
3342 	 * Otherwise we have to convert things.
3343 	 */
3344 
3345 	if (len == sizeof(struct iwn_stats) + 4) {
3346 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3347 		sc->last_stat_valid = 1;
3348 		return;
3349 	}
3350 
3351 	/*
3352 	 * If it's not the bluetooth size - log, then just copy.
3353 	 */
3354 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3355 		DPRINTF(sc, IWN_DEBUG_STATS,
3356 		    "%s: size of rx statistics (%d) not an expected size!\n",
3357 		    __func__,
3358 		    len);
3359 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3360 		sc->last_stat_valid = 1;
3361 		return;
3362 	}
3363 
3364 	/*
3365 	 * Ok. Time to copy.
3366 	 */
3367 	stats_bt = (struct iwn_stats_bt *) stats;
3368 	lstats = &sc->last_stat;
3369 
3370 	/* flags */
3371 	lstats->flags = stats_bt->flags;
3372 	/* rx_bt */
3373 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3374 	    sizeof(struct iwn_rx_phy_stats));
3375 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3376 	    sizeof(struct iwn_rx_phy_stats));
3377 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3378 	    sizeof(struct iwn_rx_general_stats));
3379 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3380 	    sizeof(struct iwn_rx_ht_phy_stats));
3381 	/* tx */
3382 	memcpy(&lstats->tx, &stats_bt->tx,
3383 	    sizeof(struct iwn_tx_stats));
3384 	/* general */
3385 	memcpy(&lstats->general, &stats_bt->general,
3386 	    sizeof(struct iwn_general_stats));
3387 
3388 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3389 	sc->last_stat_valid = 1;
3390 }
3391 
3392 /*
3393  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3394  * The latter is sent by the firmware after each received beacon.
3395  */
3396 static void
3397 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3398 {
3399 	struct iwn_ops *ops = &sc->ops;
3400 	struct ieee80211com *ic = &sc->sc_ic;
3401 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3402 	struct iwn_calib_state *calib = &sc->calib;
3403 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3404 	struct iwn_stats *lstats;
3405 	int temp;
3406 
3407 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3408 
3409 	/* Ignore statistics received during a scan. */
3410 	if (vap->iv_state != IEEE80211_S_RUN ||
3411 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3412 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3413 	    __func__);
3414 		return;
3415 	}
3416 
3417 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3418 	    "%s: received statistics, cmd %d, len %d\n",
3419 	    __func__, desc->type, le16toh(desc->len));
3420 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3421 
3422 	/*
3423 	 * Collect/track general statistics for reporting.
3424 	 *
3425 	 * This takes care of ensuring that the bluetooth sized message
3426 	 * will be correctly converted to the legacy sized message.
3427 	 */
3428 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3429 
3430 	/*
3431 	 * And now, let's take a reference of it to use!
3432 	 */
3433 	lstats = &sc->last_stat;
3434 
3435 	/* Test if temperature has changed. */
3436 	if (lstats->general.temp != sc->rawtemp) {
3437 		/* Convert "raw" temperature to degC. */
3438 		sc->rawtemp = stats->general.temp;
3439 		temp = ops->get_temperature(sc);
3440 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3441 		    __func__, temp);
3442 
3443 		/* Update TX power if need be (4965AGN only). */
3444 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3445 			iwn4965_power_calibration(sc, temp);
3446 	}
3447 
3448 	if (desc->type != IWN_BEACON_STATISTICS)
3449 		return;	/* Reply to a statistics request. */
3450 
3451 	sc->noise = iwn_get_noise(&lstats->rx.general);
3452 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3453 
3454 	/* Test that RSSI and noise are present in stats report. */
3455 	if (le32toh(lstats->rx.general.flags) != 1) {
3456 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3457 		    "received statistics without RSSI");
3458 		return;
3459 	}
3460 
3461 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3462 		iwn_collect_noise(sc, &lstats->rx.general);
3463 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3464 		iwn_tune_sensitivity(sc, &lstats->rx);
3465 		/*
3466 		 * XXX TODO: Only run the RX recovery if we're associated!
3467 		 */
3468 		iwn_check_rx_recovery(sc, lstats);
3469 		iwn_save_stats_counters(sc, lstats);
3470 	}
3471 
3472 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3473 }
3474 
3475 /*
3476  * Save the relevant statistic counters for the next calibration
3477  * pass.
3478  */
3479 static void
3480 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3481 {
3482 	struct iwn_calib_state *calib = &sc->calib;
3483 
3484 	/* Save counters values for next call. */
3485 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3486 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3487 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3488 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3489 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3490 
3491 	/* Last time we received these tick values */
3492 	sc->last_calib_ticks = ticks;
3493 }
3494 
3495 /*
3496  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3497  * and 5000 adapters have different incompatible TX status formats.
3498  */
3499 static void
3500 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3501     struct iwn_rx_data *data)
3502 {
3503 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3504 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3505 
3506 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3507 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3508 	    __func__, desc->qid, desc->idx,
3509 	    stat->rtsfailcnt,
3510 	    stat->ackfailcnt,
3511 	    stat->btkillcnt,
3512 	    stat->rate, le16toh(stat->duration),
3513 	    le32toh(stat->status));
3514 
3515 	if (qid >= sc->firstaggqueue) {
3516 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3517 		    stat->rtsfailcnt, stat->ackfailcnt, &stat->status);
3518 	} else {
3519 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3520 		    le32toh(stat->status) & 0xff);
3521 	}
3522 }
3523 
3524 static void
3525 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3526     struct iwn_rx_data *data)
3527 {
3528 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3529 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3530 
3531 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3532 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3533 	    __func__, desc->qid, desc->idx,
3534 	    stat->rtsfailcnt,
3535 	    stat->ackfailcnt,
3536 	    stat->btkillcnt,
3537 	    stat->rate, le16toh(stat->duration),
3538 	    le32toh(stat->status));
3539 
3540 #ifdef notyet
3541 	/* Reset TX scheduler slot. */
3542 	iwn5000_reset_sched(sc, qid, desc->idx);
3543 #endif
3544 
3545 	if (qid >= sc->firstaggqueue) {
3546 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3547 		    stat->rtsfailcnt, stat->ackfailcnt, &stat->status);
3548 	} else {
3549 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3550 		    le16toh(stat->status) & 0xff);
3551 	}
3552 }
3553 
3554 /*
3555  * Adapter-independent backend for TX_DONE firmware notifications.
3556  */
3557 static void
3558 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt,
3559     int ackfailcnt, uint8_t status)
3560 {
3561 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3562 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & IWN_RX_DESC_QID_MSK];
3563 	struct iwn_tx_data *data = &ring->data[desc->idx];
3564 	struct mbuf *m;
3565 	struct ieee80211_node *ni;
3566 
3567 	KASSERT(data->ni != NULL, ("no node"));
3568 
3569 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3570 
3571 	/* Unmap and free mbuf. */
3572 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3573 	bus_dmamap_unload(ring->data_dmat, data->map);
3574 	m = data->m, data->m = NULL;
3575 	ni = data->ni, data->ni = NULL;
3576 
3577 	/*
3578 	 * Update rate control statistics for the node.
3579 	 */
3580 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3581 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3582 	txs->short_retries = rtsfailcnt;
3583 	txs->long_retries = ackfailcnt;
3584 	if (!(status & IWN_TX_FAIL))
3585 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3586 	else {
3587 		switch (status) {
3588 		case IWN_TX_FAIL_SHORT_LIMIT:
3589 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3590 			break;
3591 		case IWN_TX_FAIL_LONG_LIMIT:
3592 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3593 			break;
3594 		case IWN_TX_STATUS_FAIL_LIFE_EXPIRE:
3595 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3596 			break;
3597 		default:
3598 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3599 			break;
3600 		}
3601 	}
3602 	ieee80211_ratectl_tx_complete(ni, txs);
3603 
3604 	/*
3605 	 * Channels marked for "radar" require traffic to be received
3606 	 * to unlock before we can transmit.  Until traffic is seen
3607 	 * any attempt to transmit is returned immediately with status
3608 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3609 	 * happen on first authenticate after scanning.  To workaround
3610 	 * this we ignore a failure of this sort in AUTH state so the
3611 	 * 802.11 layer will fall back to using a timeout to wait for
3612 	 * the AUTH reply.  This allows the firmware time to see
3613 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3614 	 * unclear why the firmware does not maintain state for
3615 	 * channels recently visited as this would allow immediate
3616 	 * use of the channel after a scan (where we see traffic).
3617 	 */
3618 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3619 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3620 		ieee80211_tx_complete(ni, m, 0);
3621 	else
3622 		ieee80211_tx_complete(ni, m,
3623 		    (status & IWN_TX_FAIL) != 0);
3624 
3625 	sc->sc_tx_timer = 0;
3626 	if (--ring->queued < IWN_TX_RING_LOMARK)
3627 		sc->qfullmsk &= ~(1 << ring->qid);
3628 
3629 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3630 }
3631 
3632 /*
3633  * Process a "command done" firmware notification.  This is where we wakeup
3634  * processes waiting for a synchronous command completion.
3635  */
3636 static void
3637 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3638 {
3639 	struct iwn_tx_ring *ring;
3640 	struct iwn_tx_data *data;
3641 	int cmd_queue_num;
3642 
3643 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3644 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3645 	else
3646 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3647 
3648 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3649 		return;	/* Not a command ack. */
3650 
3651 	ring = &sc->txq[cmd_queue_num];
3652 	data = &ring->data[desc->idx];
3653 
3654 	/* If the command was mapped in an mbuf, free it. */
3655 	if (data->m != NULL) {
3656 		bus_dmamap_sync(ring->data_dmat, data->map,
3657 		    BUS_DMASYNC_POSTWRITE);
3658 		bus_dmamap_unload(ring->data_dmat, data->map);
3659 		m_freem(data->m);
3660 		data->m = NULL;
3661 	}
3662 	wakeup(&ring->desc[desc->idx]);
3663 }
3664 
3665 static void
3666 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3667     int rtsfailcnt, int ackfailcnt, void *stat)
3668 {
3669 	struct iwn_ops *ops = &sc->ops;
3670 	struct iwn_tx_ring *ring = &sc->txq[qid];
3671 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3672 	struct iwn_tx_data *data;
3673 	struct mbuf *m;
3674 	struct iwn_node *wn;
3675 	struct ieee80211_node *ni;
3676 	struct ieee80211_tx_ampdu *tap;
3677 	uint64_t bitmap;
3678 	uint32_t *status = stat;
3679 	uint16_t *aggstatus = stat;
3680 	uint16_t ssn;
3681 	uint8_t tid;
3682 	int bit, i, lastidx, *res, seqno, shift, start;
3683 
3684 	/* XXX TODO: status is le16 field! Grr */
3685 
3686 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3687 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n",
3688 	    __func__,
3689 	    nframes,
3690 	    *status);
3691 
3692 	tap = sc->qid2tap[qid];
3693 	tid = tap->txa_tid;
3694 	wn = (void *)tap->txa_ni;
3695 	ni = tap->txa_ni;
3696 
3697 	/*
3698 	 * XXX TODO: ACK and RTS failures would be nice here!
3699 	 */
3700 
3701 	/*
3702 	 * A-MPDU single frame status - if we failed to transmit it
3703 	 * in A-MPDU, then it may be a permanent failure.
3704 	 *
3705 	 * XXX TODO: check what the Linux iwlwifi driver does here;
3706 	 * there's some permanent and temporary failures that may be
3707 	 * handled differently.
3708 	 */
3709 	if (nframes == 1) {
3710 		txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3711 			     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3712 		txs->short_retries = rtsfailcnt;
3713 		txs->long_retries = ackfailcnt;
3714 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3715 #ifdef	NOT_YET
3716 			printf("ieee80211_send_bar()\n");
3717 #endif
3718 			/*
3719 			 * If we completely fail a transmit, make sure a
3720 			 * notification is pushed up to the rate control
3721 			 * layer.
3722 			 */
3723 			/* XXX */
3724 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3725 		} else {
3726 			/*
3727 			 * If nframes=1, then we won't be getting a BA for
3728 			 * this frame.  Ensure that we correctly update the
3729 			 * rate control code with how many retries were
3730 			 * needed to send it.
3731 			 */
3732 			txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3733 		}
3734 		ieee80211_ratectl_tx_complete(ni, txs);
3735 	}
3736 
3737 	bitmap = 0;
3738 	start = idx;
3739 	for (i = 0; i < nframes; i++) {
3740 		if (le16toh(aggstatus[i * 2]) & 0xc)
3741 			continue;
3742 
3743 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3744 		bit = idx - start;
3745 		shift = 0;
3746 		if (bit >= 64) {
3747 			shift = 0x100 - idx + start;
3748 			bit = 0;
3749 			start = idx;
3750 		} else if (bit <= -64)
3751 			bit = 0x100 - start + idx;
3752 		else if (bit < 0) {
3753 			shift = start - idx;
3754 			start = idx;
3755 			bit = 0;
3756 		}
3757 		bitmap = bitmap << shift;
3758 		bitmap |= 1ULL << bit;
3759 	}
3760 	tap = sc->qid2tap[qid];
3761 	tid = tap->txa_tid;
3762 	wn = (void *)tap->txa_ni;
3763 	wn->agg[tid].bitmap = bitmap;
3764 	wn->agg[tid].startidx = start;
3765 	wn->agg[tid].nframes = nframes;
3766 
3767 	res = NULL;
3768 	ssn = 0;
3769 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3770 		res = tap->txa_private;
3771 		ssn = tap->txa_start & 0xfff;
3772 	}
3773 
3774 	/* This is going nframes DWORDS into the descriptor? */
3775 	seqno = le32toh(*(status + nframes)) & 0xfff;
3776 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3777 		data = &ring->data[ring->read];
3778 
3779 		/* Unmap and free mbuf. */
3780 		bus_dmamap_sync(ring->data_dmat, data->map,
3781 		    BUS_DMASYNC_POSTWRITE);
3782 		bus_dmamap_unload(ring->data_dmat, data->map);
3783 		m = data->m, data->m = NULL;
3784 		ni = data->ni, data->ni = NULL;
3785 
3786 		KASSERT(ni != NULL, ("no node"));
3787 		KASSERT(m != NULL, ("no mbuf"));
3788 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3789 		ieee80211_tx_complete(ni, m, 1);
3790 
3791 		ring->queued--;
3792 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3793 	}
3794 
3795 	if (ring->queued == 0 && res != NULL) {
3796 		iwn_nic_lock(sc);
3797 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3798 		iwn_nic_unlock(sc);
3799 		sc->qid2tap[qid] = NULL;
3800 		free(res, M_DEVBUF);
3801 		return;
3802 	}
3803 
3804 	sc->sc_tx_timer = 0;
3805 	if (ring->queued < IWN_TX_RING_LOMARK)
3806 		sc->qfullmsk &= ~(1 << ring->qid);
3807 
3808 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3809 }
3810 
3811 /*
3812  * Process an INT_FH_RX or INT_SW_RX interrupt.
3813  */
3814 static void
3815 iwn_notif_intr(struct iwn_softc *sc)
3816 {
3817 	struct iwn_ops *ops = &sc->ops;
3818 	struct ieee80211com *ic = &sc->sc_ic;
3819 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3820 	uint16_t hw;
3821 
3822 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3823 	    BUS_DMASYNC_POSTREAD);
3824 
3825 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3826 	while (sc->rxq.cur != hw) {
3827 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3828 		struct iwn_rx_desc *desc;
3829 
3830 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3831 		    BUS_DMASYNC_POSTREAD);
3832 		desc = mtod(data->m, struct iwn_rx_desc *);
3833 
3834 		DPRINTF(sc, IWN_DEBUG_RECV,
3835 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3836 		    __func__, sc->rxq.cur, desc->qid & IWN_RX_DESC_QID_MSK,
3837 		    desc->idx, desc->flags, desc->type,
3838 		    iwn_intr_str(desc->type), le16toh(desc->len));
3839 
3840 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3841 			iwn_cmd_done(sc, desc);
3842 
3843 		switch (desc->type) {
3844 		case IWN_RX_PHY:
3845 			iwn_rx_phy(sc, desc);
3846 			break;
3847 
3848 		case IWN_RX_DONE:		/* 4965AGN only. */
3849 		case IWN_MPDU_RX_DONE:
3850 			/* An 802.11 frame has been received. */
3851 			iwn_rx_done(sc, desc, data);
3852 			break;
3853 
3854 		case IWN_RX_COMPRESSED_BA:
3855 			/* A Compressed BlockAck has been received. */
3856 			iwn_rx_compressed_ba(sc, desc);
3857 			break;
3858 
3859 		case IWN_TX_DONE:
3860 			/* An 802.11 frame has been transmitted. */
3861 			ops->tx_done(sc, desc, data);
3862 			break;
3863 
3864 		case IWN_RX_STATISTICS:
3865 		case IWN_BEACON_STATISTICS:
3866 			iwn_rx_statistics(sc, desc);
3867 			break;
3868 
3869 		case IWN_BEACON_MISSED:
3870 		{
3871 			struct iwn_beacon_missed *miss =
3872 			    (struct iwn_beacon_missed *)(desc + 1);
3873 			int misses;
3874 
3875 			misses = le32toh(miss->consecutive);
3876 
3877 			DPRINTF(sc, IWN_DEBUG_STATE,
3878 			    "%s: beacons missed %d/%d\n", __func__,
3879 			    misses, le32toh(miss->total));
3880 			/*
3881 			 * If more than 5 consecutive beacons are missed,
3882 			 * reinitialize the sensitivity state machine.
3883 			 */
3884 			if (vap->iv_state == IEEE80211_S_RUN &&
3885 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3886 				if (misses > 5)
3887 					(void)iwn_init_sensitivity(sc);
3888 				if (misses >= vap->iv_bmissthreshold) {
3889 					IWN_UNLOCK(sc);
3890 					ieee80211_beacon_miss(ic);
3891 					IWN_LOCK(sc);
3892 				}
3893 			}
3894 			break;
3895 		}
3896 		case IWN_UC_READY:
3897 		{
3898 			struct iwn_ucode_info *uc =
3899 			    (struct iwn_ucode_info *)(desc + 1);
3900 
3901 			/* The microcontroller is ready. */
3902 			DPRINTF(sc, IWN_DEBUG_RESET,
3903 			    "microcode alive notification version=%d.%d "
3904 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3905 			    uc->subtype, le32toh(uc->valid));
3906 
3907 			if (le32toh(uc->valid) != 1) {
3908 				device_printf(sc->sc_dev,
3909 				    "microcontroller initialization failed");
3910 				break;
3911 			}
3912 			if (uc->subtype == IWN_UCODE_INIT) {
3913 				/* Save microcontroller report. */
3914 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3915 			}
3916 			/* Save the address of the error log in SRAM. */
3917 			sc->errptr = le32toh(uc->errptr);
3918 			break;
3919 		}
3920 #ifdef IWN_DEBUG
3921 		case IWN_STATE_CHANGED:
3922 		{
3923 			/*
3924 			 * State change allows hardware switch change to be
3925 			 * noted. However, we handle this in iwn_intr as we
3926 			 * get both the enable/disble intr.
3927 			 */
3928 			uint32_t *status = (uint32_t *)(desc + 1);
3929 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3930 			    "state changed to %x\n",
3931 			    le32toh(*status));
3932 			break;
3933 		}
3934 		case IWN_START_SCAN:
3935 		{
3936 			struct iwn_start_scan *scan =
3937 			    (struct iwn_start_scan *)(desc + 1);
3938 			DPRINTF(sc, IWN_DEBUG_ANY,
3939 			    "%s: scanning channel %d status %x\n",
3940 			    __func__, scan->chan, le32toh(scan->status));
3941 			break;
3942 		}
3943 #endif
3944 		case IWN_STOP_SCAN:
3945 		{
3946 #ifdef	IWN_DEBUG
3947 			struct iwn_stop_scan *scan =
3948 			    (struct iwn_stop_scan *)(desc + 1);
3949 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3950 			    "scan finished nchan=%d status=%d chan=%d\n",
3951 			    scan->nchan, scan->status, scan->chan);
3952 #endif
3953 			sc->sc_is_scanning = 0;
3954 			callout_stop(&sc->scan_timeout);
3955 			IWN_UNLOCK(sc);
3956 			ieee80211_scan_next(vap);
3957 			IWN_LOCK(sc);
3958 			break;
3959 		}
3960 		case IWN5000_CALIBRATION_RESULT:
3961 			iwn5000_rx_calib_results(sc, desc);
3962 			break;
3963 
3964 		case IWN5000_CALIBRATION_DONE:
3965 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3966 			wakeup(sc);
3967 			break;
3968 		}
3969 
3970 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3971 	}
3972 
3973 	/* Tell the firmware what we have processed. */
3974 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3975 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3976 }
3977 
3978 /*
3979  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3980  * from power-down sleep mode.
3981  */
3982 static void
3983 iwn_wakeup_intr(struct iwn_softc *sc)
3984 {
3985 	int qid;
3986 
3987 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3988 	    __func__);
3989 
3990 	/* Wakeup RX and TX rings. */
3991 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3992 	for (qid = 0; qid < sc->ntxqs; qid++) {
3993 		struct iwn_tx_ring *ring = &sc->txq[qid];
3994 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3995 	}
3996 }
3997 
3998 static void
3999 iwn_rftoggle_task(void *arg, int npending)
4000 {
4001 	struct iwn_softc *sc = arg;
4002 	struct ieee80211com *ic = &sc->sc_ic;
4003 	uint32_t tmp;
4004 
4005 	IWN_LOCK(sc);
4006 	tmp = IWN_READ(sc, IWN_GP_CNTRL);
4007 	IWN_UNLOCK(sc);
4008 
4009 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4010 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4011 	if (!(tmp & IWN_GP_CNTRL_RFKILL)) {
4012 		ieee80211_suspend_all(ic);
4013 
4014 		/* Enable interrupts to get RF toggle notification. */
4015 		IWN_LOCK(sc);
4016 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
4017 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4018 		IWN_UNLOCK(sc);
4019 	} else
4020 		ieee80211_resume_all(ic);
4021 }
4022 
4023 /*
4024  * Dump the error log of the firmware when a firmware panic occurs.  Although
4025  * we can't debug the firmware because it is neither open source nor free, it
4026  * can help us to identify certain classes of problems.
4027  */
4028 static void
4029 iwn_fatal_intr(struct iwn_softc *sc)
4030 {
4031 	struct iwn_fw_dump dump;
4032 	int i;
4033 
4034 	IWN_LOCK_ASSERT(sc);
4035 
4036 	/* Force a complete recalibration on next init. */
4037 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4038 
4039 	/* Check that the error log address is valid. */
4040 	if (sc->errptr < IWN_FW_DATA_BASE ||
4041 	    sc->errptr + sizeof (dump) >
4042 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4043 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4044 		    sc->errptr);
4045 		return;
4046 	}
4047 	if (iwn_nic_lock(sc) != 0) {
4048 		printf("%s: could not read firmware error log\n", __func__);
4049 		return;
4050 	}
4051 	/* Read firmware error log from SRAM. */
4052 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4053 	    sizeof (dump) / sizeof (uint32_t));
4054 	iwn_nic_unlock(sc);
4055 
4056 	if (dump.valid == 0) {
4057 		printf("%s: firmware error log is empty\n", __func__);
4058 		return;
4059 	}
4060 	printf("firmware error log:\n");
4061 	printf("  error type      = \"%s\" (0x%08X)\n",
4062 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4063 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4064 	    dump.id);
4065 	printf("  program counter = 0x%08X\n", dump.pc);
4066 	printf("  source line     = 0x%08X\n", dump.src_line);
4067 	printf("  error data      = 0x%08X%08X\n",
4068 	    dump.error_data[0], dump.error_data[1]);
4069 	printf("  branch link     = 0x%08X%08X\n",
4070 	    dump.branch_link[0], dump.branch_link[1]);
4071 	printf("  interrupt link  = 0x%08X%08X\n",
4072 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4073 	printf("  time            = %u\n", dump.time[0]);
4074 
4075 	/* Dump driver status (TX and RX rings) while we're here. */
4076 	printf("driver status:\n");
4077 	for (i = 0; i < sc->ntxqs; i++) {
4078 		struct iwn_tx_ring *ring = &sc->txq[i];
4079 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4080 		    i, ring->qid, ring->cur, ring->queued);
4081 	}
4082 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4083 }
4084 
4085 static void
4086 iwn_intr(void *arg)
4087 {
4088 	struct iwn_softc *sc = arg;
4089 	uint32_t r1, r2, tmp;
4090 
4091 	IWN_LOCK(sc);
4092 
4093 	/* Disable interrupts. */
4094 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4095 
4096 	/* Read interrupts from ICT (fast) or from registers (slow). */
4097 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4098 		bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
4099 		    BUS_DMASYNC_POSTREAD);
4100 		tmp = 0;
4101 		while (sc->ict[sc->ict_cur] != 0) {
4102 			tmp |= sc->ict[sc->ict_cur];
4103 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4104 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4105 		}
4106 		tmp = le32toh(tmp);
4107 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4108 			tmp = 0;
4109 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4110 			tmp |= 0x8000;
4111 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4112 		r2 = 0;	/* Unused. */
4113 	} else {
4114 		r1 = IWN_READ(sc, IWN_INT);
4115 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4116 			IWN_UNLOCK(sc);
4117 			return;	/* Hardware gone! */
4118 		}
4119 		r2 = IWN_READ(sc, IWN_FH_INT);
4120 	}
4121 
4122 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4123     , r1, r2);
4124 
4125 	if (r1 == 0 && r2 == 0)
4126 		goto done;	/* Interrupt not for us. */
4127 
4128 	/* Acknowledge interrupts. */
4129 	IWN_WRITE(sc, IWN_INT, r1);
4130 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4131 		IWN_WRITE(sc, IWN_FH_INT, r2);
4132 
4133 	if (r1 & IWN_INT_RF_TOGGLED) {
4134 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
4135 		goto done;
4136 	}
4137 	if (r1 & IWN_INT_CT_REACHED) {
4138 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4139 		    __func__);
4140 	}
4141 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4142 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4143 		    __func__);
4144 #ifdef	IWN_DEBUG
4145 		iwn_debug_register(sc);
4146 #endif
4147 		/* Dump firmware error log and stop. */
4148 		iwn_fatal_intr(sc);
4149 
4150 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4151 		goto done;
4152 	}
4153 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4154 	    (r2 & IWN_FH_INT_RX)) {
4155 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4156 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4157 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4158 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4159 			    IWN_INT_PERIODIC_DIS);
4160 			iwn_notif_intr(sc);
4161 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4162 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4163 				    IWN_INT_PERIODIC_ENA);
4164 			}
4165 		} else
4166 			iwn_notif_intr(sc);
4167 	}
4168 
4169 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4170 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4171 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4172 		wakeup(sc);	/* FH DMA transfer completed. */
4173 	}
4174 
4175 	if (r1 & IWN_INT_ALIVE)
4176 		wakeup(sc);	/* Firmware is alive. */
4177 
4178 	if (r1 & IWN_INT_WAKEUP)
4179 		iwn_wakeup_intr(sc);
4180 
4181 done:
4182 	/* Re-enable interrupts. */
4183 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4184 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4185 
4186 	IWN_UNLOCK(sc);
4187 }
4188 
4189 /*
4190  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4191  * 5000 adapters use a slightly different format).
4192  */
4193 static void
4194 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4195     uint16_t len)
4196 {
4197 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4198 
4199 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4200 
4201 	*w = htole16(len + 8);
4202 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4203 	    BUS_DMASYNC_PREWRITE);
4204 	if (idx < IWN_SCHED_WINSZ) {
4205 		*(w + IWN_TX_RING_COUNT) = *w;
4206 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4207 		    BUS_DMASYNC_PREWRITE);
4208 	}
4209 }
4210 
4211 static void
4212 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4213     uint16_t len)
4214 {
4215 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4216 
4217 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4218 
4219 	*w = htole16(id << 12 | (len + 8));
4220 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4221 	    BUS_DMASYNC_PREWRITE);
4222 	if (idx < IWN_SCHED_WINSZ) {
4223 		*(w + IWN_TX_RING_COUNT) = *w;
4224 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4225 		    BUS_DMASYNC_PREWRITE);
4226 	}
4227 }
4228 
4229 #ifdef notyet
4230 static void
4231 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4232 {
4233 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4234 
4235 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4236 
4237 	*w = (*w & htole16(0xf000)) | htole16(1);
4238 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4239 	    BUS_DMASYNC_PREWRITE);
4240 	if (idx < IWN_SCHED_WINSZ) {
4241 		*(w + IWN_TX_RING_COUNT) = *w;
4242 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4243 		    BUS_DMASYNC_PREWRITE);
4244 	}
4245 }
4246 #endif
4247 
4248 /*
4249  * Check whether OFDM 11g protection will be enabled for the given rate.
4250  *
4251  * The original driver code only enabled protection for OFDM rates.
4252  * It didn't check to see whether it was operating in 11a or 11bg mode.
4253  */
4254 static int
4255 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4256     struct ieee80211vap *vap, uint8_t rate)
4257 {
4258 	struct ieee80211com *ic = vap->iv_ic;
4259 
4260 	/*
4261 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4262 	 * 11bg protection.
4263 	 */
4264 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4265 		return (0);
4266 	}
4267 
4268 	/*
4269 	 * 11bg protection not enabled? Then don't use it.
4270 	 */
4271 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4272 		return (0);
4273 
4274 	/*
4275 	 * If it's an 11n rate - no protection.
4276 	 * We'll do it via a specific 11n check.
4277 	 */
4278 	if (rate & IEEE80211_RATE_MCS) {
4279 		return (0);
4280 	}
4281 
4282 	/*
4283 	 * Do a rate table lookup.  If the PHY is CCK,
4284 	 * don't do protection.
4285 	 */
4286 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4287 		return (0);
4288 
4289 	/*
4290 	 * Yup, enable protection.
4291 	 */
4292 	return (1);
4293 }
4294 
4295 /*
4296  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4297  * the link quality table that reflects this particular entry.
4298  */
4299 static int
4300 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4301     uint8_t rate)
4302 {
4303 	struct ieee80211_rateset *rs;
4304 	int is_11n;
4305 	int nr;
4306 	int i;
4307 	uint8_t cmp_rate;
4308 
4309 	/*
4310 	 * Figure out if we're using 11n or not here.
4311 	 */
4312 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4313 		is_11n = 1;
4314 	else
4315 		is_11n = 0;
4316 
4317 	/*
4318 	 * Use the correct rate table.
4319 	 */
4320 	if (is_11n) {
4321 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4322 		nr = ni->ni_htrates.rs_nrates;
4323 	} else {
4324 		rs = &ni->ni_rates;
4325 		nr = rs->rs_nrates;
4326 	}
4327 
4328 	/*
4329 	 * Find the relevant link quality entry in the table.
4330 	 */
4331 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4332 		/*
4333 		 * The link quality table index starts at 0 == highest
4334 		 * rate, so we walk the rate table backwards.
4335 		 */
4336 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4337 		if (rate & IEEE80211_RATE_MCS)
4338 			cmp_rate |= IEEE80211_RATE_MCS;
4339 
4340 #if 0
4341 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4342 		    __func__,
4343 		    i,
4344 		    nr,
4345 		    rate,
4346 		    cmp_rate);
4347 #endif
4348 
4349 		if (cmp_rate == rate)
4350 			return (i);
4351 	}
4352 
4353 	/* Failed? Start at the end */
4354 	return (IWN_MAX_TX_RETRIES - 1);
4355 }
4356 
4357 static int
4358 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4359 {
4360 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4361 	struct ieee80211vap *vap = ni->ni_vap;
4362 	struct ieee80211com *ic = ni->ni_ic;
4363 	struct iwn_node *wn = (void *)ni;
4364 	struct iwn_tx_ring *ring;
4365 	struct iwn_tx_cmd *cmd;
4366 	struct iwn_cmd_data *tx;
4367 	struct ieee80211_frame *wh;
4368 	struct ieee80211_key *k = NULL;
4369 	uint32_t flags;
4370 	uint16_t seqno, qos;
4371 	uint8_t tid, type;
4372 	int ac, totlen, rate;
4373 
4374 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4375 
4376 	IWN_LOCK_ASSERT(sc);
4377 
4378 	wh = mtod(m, struct ieee80211_frame *);
4379 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4380 
4381 	/* Select EDCA Access Category and TX ring for this frame. */
4382 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4383 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4384 		tid = qos & IEEE80211_QOS_TID;
4385 	} else {
4386 		qos = 0;
4387 		tid = 0;
4388 	}
4389 
4390 	/* Choose a TX rate index. */
4391 	if (type == IEEE80211_FC0_TYPE_MGT ||
4392 	    type == IEEE80211_FC0_TYPE_CTL ||
4393 	    (m->m_flags & M_EAPOL) != 0)
4394 		rate = tp->mgmtrate;
4395 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4396 		rate = tp->mcastrate;
4397 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4398 		rate = tp->ucastrate;
4399 	else {
4400 		/* XXX pass pktlen */
4401 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4402 		rate = ni->ni_txrate;
4403 	}
4404 
4405 	/*
4406 	 * XXX TODO: Group addressed frames aren't aggregated and must
4407 	 * go to the normal non-aggregation queue, and have a NONQOS TID
4408 	 * assigned from net80211.
4409 	 */
4410 
4411 	ac = M_WME_GETAC(m);
4412 	seqno = ni->ni_txseqs[tid];
4413 	if (m->m_flags & M_AMPDU_MPDU) {
4414 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4415 
4416 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4417 			return (EINVAL);
4418 		}
4419 
4420 		/*
4421 		 * Queue this frame to the hardware ring that we've
4422 		 * negotiated AMPDU TX on.
4423 		 *
4424 		 * Note that the sequence number must match the TX slot
4425 		 * being used!
4426 		 */
4427 		ac = *(int *)tap->txa_private;
4428 		*(uint16_t *)wh->i_seq =
4429 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4430 		ni->ni_txseqs[tid]++;
4431 	}
4432 
4433 	/* Encrypt the frame if need be. */
4434 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4435 		/* Retrieve key for TX. */
4436 		k = ieee80211_crypto_encap(ni, m);
4437 		if (k == NULL) {
4438 			return ENOBUFS;
4439 		}
4440 		/* 802.11 header may have moved. */
4441 		wh = mtod(m, struct ieee80211_frame *);
4442 	}
4443 	totlen = m->m_pkthdr.len;
4444 
4445 	if (ieee80211_radiotap_active_vap(vap)) {
4446 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4447 
4448 		tap->wt_flags = 0;
4449 		tap->wt_rate = rate;
4450 		if (k != NULL)
4451 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4452 
4453 		ieee80211_radiotap_tx(vap, m);
4454 	}
4455 
4456 	flags = 0;
4457 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4458 		/* Unicast frame, check if an ACK is expected. */
4459 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4460 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4461 			flags |= IWN_TX_NEED_ACK;
4462 	}
4463 	if ((wh->i_fc[0] &
4464 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4465 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4466 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4467 
4468 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4469 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4470 
4471 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4472 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4473 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4474 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4475 			flags |= IWN_TX_NEED_RTS;
4476 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4477 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4478 				flags |= IWN_TX_NEED_CTS;
4479 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4480 				flags |= IWN_TX_NEED_RTS;
4481 		} else if ((rate & IEEE80211_RATE_MCS) &&
4482 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4483 			flags |= IWN_TX_NEED_RTS;
4484 		}
4485 
4486 		/* XXX HT protection? */
4487 
4488 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4489 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4490 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4491 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4492 				flags |= IWN_TX_NEED_PROTECTION;
4493 			} else
4494 				flags |= IWN_TX_FULL_TXOP;
4495 		}
4496 	}
4497 
4498 	ring = &sc->txq[ac];
4499 	if ((m->m_flags & M_AMPDU_MPDU) != 0 &&
4500 	    (seqno % 256) != ring->cur) {
4501 		device_printf(sc->sc_dev,
4502 		    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4503 		    __func__,
4504 		    m,
4505 		    seqno,
4506 		    seqno % 256,
4507 		    ring->cur);
4508 	}
4509 
4510 	/* Prepare TX firmware command. */
4511 	cmd = &ring->cmd[ring->cur];
4512 	tx = (struct iwn_cmd_data *)cmd->data;
4513 
4514 	/* NB: No need to clear tx, all fields are reinitialized here. */
4515 	tx->scratch = 0;	/* clear "scratch" area */
4516 
4517 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4518 	    type != IEEE80211_FC0_TYPE_DATA)
4519 		tx->id = sc->broadcast_id;
4520 	else
4521 		tx->id = wn->id;
4522 
4523 	if (type == IEEE80211_FC0_TYPE_MGT) {
4524 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4525 
4526 		/* Tell HW to set timestamp in probe responses. */
4527 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4528 			flags |= IWN_TX_INSERT_TSTAMP;
4529 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4530 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4531 			tx->timeout = htole16(3);
4532 		else
4533 			tx->timeout = htole16(2);
4534 	} else
4535 		tx->timeout = htole16(0);
4536 
4537 	if (tx->id == sc->broadcast_id) {
4538 		/* Group or management frame. */
4539 		tx->linkq = 0;
4540 	} else {
4541 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4542 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4543 	}
4544 
4545 	tx->tid = tid;
4546 	tx->rts_ntries = 60;
4547 	tx->data_ntries = 15;
4548 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4549 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4550 	tx->security = 0;
4551 	tx->flags = htole32(flags);
4552 
4553 	return (iwn_tx_cmd(sc, m, ni, ring));
4554 }
4555 
4556 static int
4557 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4558     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4559 {
4560 	struct ieee80211vap *vap = ni->ni_vap;
4561 	struct iwn_tx_cmd *cmd;
4562 	struct iwn_cmd_data *tx;
4563 	struct ieee80211_frame *wh;
4564 	struct iwn_tx_ring *ring;
4565 	uint32_t flags;
4566 	int ac, rate;
4567 	uint8_t type;
4568 
4569 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4570 
4571 	IWN_LOCK_ASSERT(sc);
4572 
4573 	wh = mtod(m, struct ieee80211_frame *);
4574 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4575 
4576 	ac = params->ibp_pri & 3;
4577 
4578 	/* Choose a TX rate. */
4579 	rate = params->ibp_rate0;
4580 
4581 	flags = 0;
4582 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4583 		flags |= IWN_TX_NEED_ACK;
4584 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4585 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4586 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4587 			flags &= ~IWN_TX_NEED_RTS;
4588 			flags |= IWN_TX_NEED_PROTECTION;
4589 		} else
4590 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4591 	}
4592 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4593 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4594 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4595 			flags &= ~IWN_TX_NEED_CTS;
4596 			flags |= IWN_TX_NEED_PROTECTION;
4597 		} else
4598 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4599 	}
4600 
4601 	if (ieee80211_radiotap_active_vap(vap)) {
4602 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4603 
4604 		tap->wt_flags = 0;
4605 		tap->wt_rate = rate;
4606 
4607 		ieee80211_radiotap_tx(vap, m);
4608 	}
4609 
4610 	ring = &sc->txq[ac];
4611 	cmd = &ring->cmd[ring->cur];
4612 
4613 	tx = (struct iwn_cmd_data *)cmd->data;
4614 	/* NB: No need to clear tx, all fields are reinitialized here. */
4615 	tx->scratch = 0;	/* clear "scratch" area */
4616 
4617 	if (type == IEEE80211_FC0_TYPE_MGT) {
4618 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4619 
4620 		/* Tell HW to set timestamp in probe responses. */
4621 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4622 			flags |= IWN_TX_INSERT_TSTAMP;
4623 
4624 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4625 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4626 			tx->timeout = htole16(3);
4627 		else
4628 			tx->timeout = htole16(2);
4629 	} else
4630 		tx->timeout = htole16(0);
4631 
4632 	tx->tid = 0;
4633 	tx->id = sc->broadcast_id;
4634 	tx->rts_ntries = params->ibp_try1;
4635 	tx->data_ntries = params->ibp_try0;
4636 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4637 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4638 	tx->security = 0;
4639 	tx->flags = htole32(flags);
4640 
4641 	/* Group or management frame. */
4642 	tx->linkq = 0;
4643 
4644 	return (iwn_tx_cmd(sc, m, ni, ring));
4645 }
4646 
4647 static int
4648 iwn_tx_cmd(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
4649     struct iwn_tx_ring *ring)
4650 {
4651 	struct iwn_ops *ops = &sc->ops;
4652 	struct iwn_tx_cmd *cmd;
4653 	struct iwn_cmd_data *tx;
4654 	struct ieee80211_frame *wh;
4655 	struct iwn_tx_desc *desc;
4656 	struct iwn_tx_data *data;
4657 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4658 	struct mbuf *m1;
4659 	u_int hdrlen;
4660 	int totlen, error, pad, nsegs = 0, i;
4661 
4662 	wh = mtod(m, struct ieee80211_frame *);
4663 	hdrlen = ieee80211_anyhdrsize(wh);
4664 	totlen = m->m_pkthdr.len;
4665 
4666 	desc = &ring->desc[ring->cur];
4667 	data = &ring->data[ring->cur];
4668 
4669 	/* Prepare TX firmware command. */
4670 	cmd = &ring->cmd[ring->cur];
4671 	cmd->code = IWN_CMD_TX_DATA;
4672 	cmd->flags = 0;
4673 	cmd->qid = ring->qid;
4674 	cmd->idx = ring->cur;
4675 
4676 	tx = (struct iwn_cmd_data *)cmd->data;
4677 	tx->len = htole16(totlen);
4678 
4679 	/* Set physical address of "scratch area". */
4680 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4681 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4682 	if (hdrlen & 3) {
4683 		/* First segment length must be a multiple of 4. */
4684 		tx->flags |= htole32(IWN_TX_NEED_PADDING);
4685 		pad = 4 - (hdrlen & 3);
4686 	} else
4687 		pad = 0;
4688 
4689 	/* Copy 802.11 header in TX command. */
4690 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4691 
4692 	/* Trim 802.11 header. */
4693 	m_adj(m, hdrlen);
4694 
4695 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4696 	    &nsegs, BUS_DMA_NOWAIT);
4697 	if (error != 0) {
4698 		if (error != EFBIG) {
4699 			device_printf(sc->sc_dev,
4700 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4701 			return error;
4702 		}
4703 		/* Too many DMA segments, linearize mbuf. */
4704 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4705 		if (m1 == NULL) {
4706 			device_printf(sc->sc_dev,
4707 			    "%s: could not defrag mbuf\n", __func__);
4708 			return ENOBUFS;
4709 		}
4710 		m = m1;
4711 
4712 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4713 		    segs, &nsegs, BUS_DMA_NOWAIT);
4714 		if (error != 0) {
4715 			/* XXX fix this */
4716 			/*
4717 			 * NB: Do not return error;
4718 			 * original mbuf does not exist anymore.
4719 			 */
4720 			device_printf(sc->sc_dev,
4721 			    "%s: can't map mbuf (error %d)\n",
4722 			    __func__, error);
4723 			if_inc_counter(ni->ni_vap->iv_ifp,
4724 			    IFCOUNTER_OERRORS, 1);
4725 			ieee80211_free_node(ni);
4726 			m_freem(m);
4727 			return 0;
4728 		}
4729 	}
4730 
4731 	data->m = m;
4732 	data->ni = ni;
4733 
4734 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d "
4735 	    "plcp %d\n",
4736 	    __func__, ring->qid, ring->cur, totlen, nsegs, tx->rate);
4737 
4738 	/* Fill TX descriptor. */
4739 	desc->nsegs = 1;
4740 	if (m->m_len != 0)
4741 		desc->nsegs += nsegs;
4742 	/* First DMA segment is used by the TX command. */
4743 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4744 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4745 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4746 	/* Other DMA segments are for data payload. */
4747 	seg = &segs[0];
4748 	for (i = 1; i <= nsegs; i++) {
4749 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4750 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4751 		    seg->ds_len << 4);
4752 		seg++;
4753 	}
4754 
4755 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4756 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4757 	    BUS_DMASYNC_PREWRITE);
4758 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4759 	    BUS_DMASYNC_PREWRITE);
4760 
4761 	/* Update TX scheduler. */
4762 	if (ring->qid >= sc->firstaggqueue)
4763 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4764 
4765 	/* Kick TX ring. */
4766 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4767 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4768 
4769 	/* Mark TX ring as full if we reach a certain threshold. */
4770 	if (++ring->queued > IWN_TX_RING_HIMARK)
4771 		sc->qfullmsk |= 1 << ring->qid;
4772 
4773 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4774 
4775 	return 0;
4776 }
4777 
4778 static void
4779 iwn_xmit_task(void *arg0, int pending)
4780 {
4781 	struct iwn_softc *sc = arg0;
4782 	struct ieee80211_node *ni;
4783 	struct mbuf *m;
4784 	int error;
4785 	struct ieee80211_bpf_params p;
4786 	int have_p;
4787 
4788 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4789 
4790 	IWN_LOCK(sc);
4791 	/*
4792 	 * Dequeue frames, attempt to transmit,
4793 	 * then disable beaconwait when we're done.
4794 	 */
4795 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4796 		have_p = 0;
4797 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4798 
4799 		/* Get xmit params if appropriate */
4800 		if (ieee80211_get_xmit_params(m, &p) == 0)
4801 			have_p = 1;
4802 
4803 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
4804 		    __func__, m, have_p);
4805 
4806 		/* If we have xmit params, use them */
4807 		if (have_p)
4808 			error = iwn_tx_data_raw(sc, m, ni, &p);
4809 		else
4810 			error = iwn_tx_data(sc, m, ni);
4811 
4812 		if (error != 0) {
4813 			if_inc_counter(ni->ni_vap->iv_ifp,
4814 			    IFCOUNTER_OERRORS, 1);
4815 			ieee80211_free_node(ni);
4816 			m_freem(m);
4817 		}
4818 	}
4819 
4820 	sc->sc_beacon_wait = 0;
4821 	IWN_UNLOCK(sc);
4822 }
4823 
4824 /*
4825  * raw frame xmit - free node/reference if failed.
4826  */
4827 static int
4828 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4829     const struct ieee80211_bpf_params *params)
4830 {
4831 	struct ieee80211com *ic = ni->ni_ic;
4832 	struct iwn_softc *sc = ic->ic_softc;
4833 	int error = 0;
4834 
4835 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4836 
4837 	IWN_LOCK(sc);
4838 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
4839 		m_freem(m);
4840 		IWN_UNLOCK(sc);
4841 		return (ENETDOWN);
4842 	}
4843 
4844 	/* queue frame if we have to */
4845 	if (sc->sc_beacon_wait) {
4846 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
4847 			m_freem(m);
4848 			IWN_UNLOCK(sc);
4849 			return (ENOBUFS);
4850 		}
4851 		/* Queued, so just return OK */
4852 		IWN_UNLOCK(sc);
4853 		return (0);
4854 	}
4855 
4856 	if (params == NULL) {
4857 		/*
4858 		 * Legacy path; interpret frame contents to decide
4859 		 * precisely how to send the frame.
4860 		 */
4861 		error = iwn_tx_data(sc, m, ni);
4862 	} else {
4863 		/*
4864 		 * Caller supplied explicit parameters to use in
4865 		 * sending the frame.
4866 		 */
4867 		error = iwn_tx_data_raw(sc, m, ni, params);
4868 	}
4869 	if (error == 0)
4870 		sc->sc_tx_timer = 5;
4871 	else
4872 		m_freem(m);
4873 
4874 	IWN_UNLOCK(sc);
4875 
4876 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
4877 
4878 	return (error);
4879 }
4880 
4881 /*
4882  * transmit - don't free mbuf if failed; don't free node ref if failed.
4883  */
4884 static int
4885 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
4886 {
4887 	struct iwn_softc *sc = ic->ic_softc;
4888 	struct ieee80211_node *ni;
4889 	int error;
4890 
4891 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4892 
4893 	IWN_LOCK(sc);
4894 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
4895 		IWN_UNLOCK(sc);
4896 		return (ENXIO);
4897 	}
4898 
4899 	if (sc->qfullmsk) {
4900 		IWN_UNLOCK(sc);
4901 		return (ENOBUFS);
4902 	}
4903 
4904 	error = iwn_tx_data(sc, m, ni);
4905 	if (!error)
4906 		sc->sc_tx_timer = 5;
4907 	IWN_UNLOCK(sc);
4908 	return (error);
4909 }
4910 
4911 static void
4912 iwn_scan_timeout(void *arg)
4913 {
4914 	struct iwn_softc *sc = arg;
4915 	struct ieee80211com *ic = &sc->sc_ic;
4916 
4917 	ic_printf(ic, "scan timeout\n");
4918 	ieee80211_restart_all(ic);
4919 }
4920 
4921 static void
4922 iwn_watchdog(void *arg)
4923 {
4924 	struct iwn_softc *sc = arg;
4925 	struct ieee80211com *ic = &sc->sc_ic;
4926 
4927 	IWN_LOCK_ASSERT(sc);
4928 
4929 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
4930 
4931 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4932 
4933 	if (sc->sc_tx_timer > 0) {
4934 		if (--sc->sc_tx_timer == 0) {
4935 			ic_printf(ic, "device timeout\n");
4936 			ieee80211_restart_all(ic);
4937 			return;
4938 		}
4939 	}
4940 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
4941 }
4942 
4943 static int
4944 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
4945 {
4946 
4947 	return (0);
4948 }
4949 
4950 static int
4951 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
4952 {
4953 
4954 	return (0);
4955 }
4956 
4957 static int
4958 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
4959     struct thread *td)
4960 {
4961 	int rc;
4962 	struct iwn_softc *sc = dev->si_drv1;
4963 	struct iwn_ioctl_data *d;
4964 
4965 	rc = priv_check(td, PRIV_DRIVER);
4966 	if (rc != 0)
4967 		return (0);
4968 
4969 	switch (cmd) {
4970 	case SIOCGIWNSTATS:
4971 		d = (struct iwn_ioctl_data *) data;
4972 		IWN_LOCK(sc);
4973 		/* XXX validate permissions/memory/etc? */
4974 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
4975 		IWN_UNLOCK(sc);
4976 		break;
4977 	case SIOCZIWNSTATS:
4978 		IWN_LOCK(sc);
4979 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
4980 		IWN_UNLOCK(sc);
4981 		break;
4982 	default:
4983 		rc = EINVAL;
4984 		break;
4985 	}
4986 	return (rc);
4987 }
4988 
4989 static int
4990 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
4991 {
4992 
4993 	return (ENOTTY);
4994 }
4995 
4996 static void
4997 iwn_parent(struct ieee80211com *ic)
4998 {
4999 	struct iwn_softc *sc = ic->ic_softc;
5000 	struct ieee80211vap *vap;
5001 	int error;
5002 
5003 	if (ic->ic_nrunning > 0) {
5004 		error = iwn_init(sc);
5005 
5006 		switch (error) {
5007 		case 0:
5008 			ieee80211_start_all(ic);
5009 			break;
5010 		case 1:
5011 			/* radio is disabled via RFkill switch */
5012 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
5013 			break;
5014 		default:
5015 			vap = TAILQ_FIRST(&ic->ic_vaps);
5016 			if (vap != NULL)
5017 				ieee80211_stop(vap);
5018 			break;
5019 		}
5020 	} else
5021 		iwn_stop(sc);
5022 }
5023 
5024 /*
5025  * Send a command to the firmware.
5026  */
5027 static int
5028 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5029 {
5030 	struct iwn_tx_ring *ring;
5031 	struct iwn_tx_desc *desc;
5032 	struct iwn_tx_data *data;
5033 	struct iwn_tx_cmd *cmd;
5034 	struct mbuf *m;
5035 	bus_addr_t paddr;
5036 	int totlen, error;
5037 	int cmd_queue_num;
5038 
5039 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5040 
5041 	if (async == 0)
5042 		IWN_LOCK_ASSERT(sc);
5043 
5044 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5045 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5046 	else
5047 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5048 
5049 	ring = &sc->txq[cmd_queue_num];
5050 	desc = &ring->desc[ring->cur];
5051 	data = &ring->data[ring->cur];
5052 	totlen = 4 + size;
5053 
5054 	if (size > sizeof cmd->data) {
5055 		/* Command is too large to fit in a descriptor. */
5056 		if (totlen > MCLBYTES)
5057 			return EINVAL;
5058 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5059 		if (m == NULL)
5060 			return ENOMEM;
5061 		cmd = mtod(m, struct iwn_tx_cmd *);
5062 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5063 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5064 		if (error != 0) {
5065 			m_freem(m);
5066 			return error;
5067 		}
5068 		data->m = m;
5069 	} else {
5070 		cmd = &ring->cmd[ring->cur];
5071 		paddr = data->cmd_paddr;
5072 	}
5073 
5074 	cmd->code = code;
5075 	cmd->flags = 0;
5076 	cmd->qid = ring->qid;
5077 	cmd->idx = ring->cur;
5078 	memcpy(cmd->data, buf, size);
5079 
5080 	desc->nsegs = 1;
5081 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5082 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5083 
5084 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5085 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5086 	    cmd->flags, cmd->qid, cmd->idx);
5087 
5088 	if (size > sizeof cmd->data) {
5089 		bus_dmamap_sync(ring->data_dmat, data->map,
5090 		    BUS_DMASYNC_PREWRITE);
5091 	} else {
5092 		bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
5093 		    BUS_DMASYNC_PREWRITE);
5094 	}
5095 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5096 	    BUS_DMASYNC_PREWRITE);
5097 
5098 	/* Kick command ring. */
5099 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5100 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5101 
5102 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5103 
5104 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5105 }
5106 
5107 static int
5108 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5109 {
5110 	struct iwn4965_node_info hnode;
5111 	caddr_t src, dst;
5112 
5113 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5114 
5115 	/*
5116 	 * We use the node structure for 5000 Series internally (it is
5117 	 * a superset of the one for 4965AGN). We thus copy the common
5118 	 * fields before sending the command.
5119 	 */
5120 	src = (caddr_t)node;
5121 	dst = (caddr_t)&hnode;
5122 	memcpy(dst, src, 48);
5123 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5124 	memcpy(dst + 48, src + 72, 20);
5125 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5126 }
5127 
5128 static int
5129 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5130 {
5131 
5132 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5133 
5134 	/* Direct mapping. */
5135 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5136 }
5137 
5138 static int
5139 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5140 {
5141 	struct iwn_node *wn = (void *)ni;
5142 	struct ieee80211_rateset *rs;
5143 	struct iwn_cmd_link_quality linkq;
5144 	int i, rate, txrate;
5145 	int is_11n;
5146 
5147 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5148 
5149 	memset(&linkq, 0, sizeof linkq);
5150 	linkq.id = wn->id;
5151 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5152 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5153 
5154 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5155 	linkq.ampdu_threshold = 3;
5156 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5157 
5158 	DPRINTF(sc, IWN_DEBUG_XMIT,
5159 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5160 	    __func__,
5161 	    linkq.antmsk_1stream,
5162 	    linkq.antmsk_2stream,
5163 	    sc->ntxchains);
5164 
5165 	/*
5166 	 * Are we using 11n rates? Ensure the channel is
5167 	 * 11n _and_ we have some 11n rates, or don't
5168 	 * try.
5169 	 */
5170 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5171 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5172 		is_11n = 1;
5173 	} else {
5174 		rs = &ni->ni_rates;
5175 		is_11n = 0;
5176 	}
5177 
5178 	/* Start at highest available bit-rate. */
5179 	/*
5180 	 * XXX this is all very dirty!
5181 	 */
5182 	if (is_11n)
5183 		txrate = ni->ni_htrates.rs_nrates - 1;
5184 	else
5185 		txrate = rs->rs_nrates - 1;
5186 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5187 		uint32_t plcp;
5188 
5189 		/*
5190 		 * XXX TODO: ensure the last two slots are the two lowest
5191 		 * rate entries, just for now.
5192 		 */
5193 		if (i == 14 || i == 15)
5194 			txrate = 0;
5195 
5196 		if (is_11n)
5197 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5198 		else
5199 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5200 
5201 		/* Do rate -> PLCP config mapping */
5202 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5203 		linkq.retry[i] = plcp;
5204 		DPRINTF(sc, IWN_DEBUG_XMIT,
5205 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5206 		    __func__,
5207 		    i,
5208 		    txrate,
5209 		    rate,
5210 		    le32toh(plcp));
5211 
5212 		/*
5213 		 * The mimo field is an index into the table which
5214 		 * indicates the first index where it and subsequent entries
5215 		 * will not be using MIMO.
5216 		 *
5217 		 * Since we're filling linkq from 0..15 and we're filling
5218 		 * from the highest MCS rates to the lowest rates, if we
5219 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5220 		 * the next entry.)  That way if the next entry is a non-MIMO
5221 		 * entry, we're already pointing at it.
5222 		 */
5223 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5224 		    IEEE80211_RV(le32toh(plcp)) > 7)
5225 			linkq.mimo = i + 1;
5226 
5227 		/* Next retry at immediate lower bit-rate. */
5228 		if (txrate > 0)
5229 			txrate--;
5230 	}
5231 	/*
5232 	 * If we reached the end of the list and indeed we hit
5233 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5234 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5235 	 */
5236 	if (linkq.mimo > 15)
5237 		linkq.mimo = 15;
5238 
5239 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5240 
5241 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5242 
5243 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5244 }
5245 
5246 /*
5247  * Broadcast node is used to send group-addressed and management frames.
5248  */
5249 static int
5250 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5251 {
5252 	struct iwn_ops *ops = &sc->ops;
5253 	struct ieee80211com *ic = &sc->sc_ic;
5254 	struct iwn_node_info node;
5255 	struct iwn_cmd_link_quality linkq;
5256 	uint8_t txant;
5257 	int i, error;
5258 
5259 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5260 
5261 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5262 
5263 	memset(&node, 0, sizeof node);
5264 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5265 	node.id = sc->broadcast_id;
5266 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5267 	if ((error = ops->add_node(sc, &node, async)) != 0)
5268 		return error;
5269 
5270 	/* Use the first valid TX antenna. */
5271 	txant = IWN_LSB(sc->txchainmask);
5272 
5273 	memset(&linkq, 0, sizeof linkq);
5274 	linkq.id = sc->broadcast_id;
5275 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5276 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5277 	linkq.ampdu_max = 64;
5278 	linkq.ampdu_threshold = 3;
5279 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5280 
5281 	/* Use lowest mandatory bit-rate. */
5282 	/* XXX rate table lookup? */
5283 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5284 		linkq.retry[0] = htole32(0xd);
5285 	else
5286 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5287 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5288 	/* Use same bit-rate for all TX retries. */
5289 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5290 		linkq.retry[i] = linkq.retry[0];
5291 	}
5292 
5293 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5294 
5295 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5296 }
5297 
5298 static int
5299 iwn_updateedca(struct ieee80211com *ic)
5300 {
5301 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5302 	struct iwn_softc *sc = ic->ic_softc;
5303 	struct iwn_edca_params cmd;
5304 	int aci;
5305 
5306 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5307 
5308 	memset(&cmd, 0, sizeof cmd);
5309 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5310 
5311 	IEEE80211_LOCK(ic);
5312 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5313 		const struct wmeParams *ac =
5314 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5315 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5316 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5317 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5318 		cmd.ac[aci].txoplimit =
5319 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5320 	}
5321 	IEEE80211_UNLOCK(ic);
5322 
5323 	IWN_LOCK(sc);
5324 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5325 	IWN_UNLOCK(sc);
5326 
5327 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5328 
5329 	return 0;
5330 #undef IWN_EXP2
5331 }
5332 
5333 static void
5334 iwn_set_promisc(struct iwn_softc *sc)
5335 {
5336 	struct ieee80211com *ic = &sc->sc_ic;
5337 	uint32_t promisc_filter;
5338 
5339 	promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC;
5340 	if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR)
5341 		sc->rxon->filter |= htole32(promisc_filter);
5342 	else
5343 		sc->rxon->filter &= ~htole32(promisc_filter);
5344 }
5345 
5346 static void
5347 iwn_update_promisc(struct ieee80211com *ic)
5348 {
5349 	struct iwn_softc *sc = ic->ic_softc;
5350 	int error;
5351 
5352 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
5353 		return;		/* nothing to do */
5354 
5355 	IWN_LOCK(sc);
5356 	if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5357 		IWN_UNLOCK(sc);
5358 		return;
5359 	}
5360 
5361 	iwn_set_promisc(sc);
5362 	if ((error = iwn_send_rxon(sc, 1, 1)) != 0) {
5363 		device_printf(sc->sc_dev,
5364 		    "%s: could not send RXON, error %d\n",
5365 		    __func__, error);
5366 	}
5367 	IWN_UNLOCK(sc);
5368 }
5369 
5370 static void
5371 iwn_update_mcast(struct ieee80211com *ic)
5372 {
5373 	/* Ignore */
5374 }
5375 
5376 static void
5377 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5378 {
5379 	struct iwn_cmd_led led;
5380 
5381 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5382 
5383 #if 0
5384 	/* XXX don't set LEDs during scan? */
5385 	if (sc->sc_is_scanning)
5386 		return;
5387 #endif
5388 
5389 	/* Clear microcode LED ownership. */
5390 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5391 
5392 	led.which = which;
5393 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5394 	led.off = off;
5395 	led.on = on;
5396 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5397 }
5398 
5399 /*
5400  * Set the critical temperature at which the firmware will stop the radio
5401  * and notify us.
5402  */
5403 static int
5404 iwn_set_critical_temp(struct iwn_softc *sc)
5405 {
5406 	struct iwn_critical_temp crit;
5407 	int32_t temp;
5408 
5409 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5410 
5411 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5412 
5413 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5414 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5415 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5416 		temp = IWN_CTOK(110);
5417 	else
5418 		temp = 110;
5419 	memset(&crit, 0, sizeof crit);
5420 	crit.tempR = htole32(temp);
5421 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5422 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5423 }
5424 
5425 static int
5426 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5427 {
5428 	struct iwn_cmd_timing cmd;
5429 	uint64_t val, mod;
5430 
5431 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5432 
5433 	memset(&cmd, 0, sizeof cmd);
5434 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5435 	cmd.bintval = htole16(ni->ni_intval);
5436 	cmd.lintval = htole16(10);
5437 
5438 	/* Compute remaining time until next beacon. */
5439 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5440 	mod = le64toh(cmd.tstamp) % val;
5441 	cmd.binitval = htole32((uint32_t)(val - mod));
5442 
5443 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5444 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5445 
5446 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5447 }
5448 
5449 static void
5450 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5451 {
5452 
5453 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5454 
5455 	/* Adjust TX power if need be (delta >= 3 degC). */
5456 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5457 	    __func__, sc->temp, temp);
5458 	if (abs(temp - sc->temp) >= 3) {
5459 		/* Record temperature of last calibration. */
5460 		sc->temp = temp;
5461 		(void)iwn4965_set_txpower(sc, 1);
5462 	}
5463 }
5464 
5465 /*
5466  * Set TX power for current channel (each rate has its own power settings).
5467  * This function takes into account the regulatory information from EEPROM,
5468  * the current temperature and the current voltage.
5469  */
5470 static int
5471 iwn4965_set_txpower(struct iwn_softc *sc, int async)
5472 {
5473 /* Fixed-point arithmetic division using a n-bit fractional part. */
5474 #define fdivround(a, b, n)	\
5475 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5476 /* Linear interpolation. */
5477 #define interpolate(x, x1, y1, x2, y2, n)	\
5478 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5479 
5480 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5481 	struct iwn_ucode_info *uc = &sc->ucode_info;
5482 	struct iwn4965_cmd_txpower cmd;
5483 	struct iwn4965_eeprom_chan_samples *chans;
5484 	const uint8_t *rf_gain, *dsp_gain;
5485 	int32_t vdiff, tdiff;
5486 	int i, is_chan_5ghz, c, grp, maxpwr;
5487 	uint8_t chan;
5488 
5489 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5490 	/* Retrieve current channel from last RXON. */
5491 	chan = sc->rxon->chan;
5492 	is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0;
5493 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5494 	    chan);
5495 
5496 	memset(&cmd, 0, sizeof cmd);
5497 	cmd.band = is_chan_5ghz ? 0 : 1;
5498 	cmd.chan = chan;
5499 
5500 	if (is_chan_5ghz) {
5501 		maxpwr   = sc->maxpwr5GHz;
5502 		rf_gain  = iwn4965_rf_gain_5ghz;
5503 		dsp_gain = iwn4965_dsp_gain_5ghz;
5504 	} else {
5505 		maxpwr   = sc->maxpwr2GHz;
5506 		rf_gain  = iwn4965_rf_gain_2ghz;
5507 		dsp_gain = iwn4965_dsp_gain_2ghz;
5508 	}
5509 
5510 	/* Compute voltage compensation. */
5511 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5512 	if (vdiff > 0)
5513 		vdiff *= 2;
5514 	if (abs(vdiff) > 2)
5515 		vdiff = 0;
5516 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5517 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5518 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5519 
5520 	/* Get channel attenuation group. */
5521 	if (chan <= 20)		/* 1-20 */
5522 		grp = 4;
5523 	else if (chan <= 43)	/* 34-43 */
5524 		grp = 0;
5525 	else if (chan <= 70)	/* 44-70 */
5526 		grp = 1;
5527 	else if (chan <= 124)	/* 71-124 */
5528 		grp = 2;
5529 	else			/* 125-200 */
5530 		grp = 3;
5531 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5532 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5533 
5534 	/* Get channel sub-band. */
5535 	for (i = 0; i < IWN_NBANDS; i++)
5536 		if (sc->bands[i].lo != 0 &&
5537 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5538 			break;
5539 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5540 		return EINVAL;
5541 	chans = sc->bands[i].chans;
5542 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5543 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5544 
5545 	for (c = 0; c < 2; c++) {
5546 		uint8_t power, gain, temp;
5547 		int maxchpwr, pwr, ridx, idx;
5548 
5549 		power = interpolate(chan,
5550 		    chans[0].num, chans[0].samples[c][1].power,
5551 		    chans[1].num, chans[1].samples[c][1].power, 1);
5552 		gain  = interpolate(chan,
5553 		    chans[0].num, chans[0].samples[c][1].gain,
5554 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5555 		temp  = interpolate(chan,
5556 		    chans[0].num, chans[0].samples[c][1].temp,
5557 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5558 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5559 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5560 		    __func__, c, power, gain, temp);
5561 
5562 		/* Compute temperature compensation. */
5563 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5564 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5565 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5566 		    __func__, tdiff, sc->temp, temp);
5567 
5568 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5569 			/* Convert dBm to half-dBm. */
5570 			maxchpwr = sc->maxpwr[chan] * 2;
5571 			if ((ridx / 8) & 1)
5572 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5573 
5574 			pwr = maxpwr;
5575 
5576 			/* Adjust TX power based on rate. */
5577 			if ((ridx % 8) == 5)
5578 				pwr -= 15;	/* OFDM48: -7.5dB */
5579 			else if ((ridx % 8) == 6)
5580 				pwr -= 17;	/* OFDM54: -8.5dB */
5581 			else if ((ridx % 8) == 7)
5582 				pwr -= 20;	/* OFDM60: -10dB */
5583 			else
5584 				pwr -= 10;	/* Others: -5dB */
5585 
5586 			/* Do not exceed channel max TX power. */
5587 			if (pwr > maxchpwr)
5588 				pwr = maxchpwr;
5589 
5590 			idx = gain - (pwr - power) - tdiff - vdiff;
5591 			if ((ridx / 8) & 1)	/* MIMO */
5592 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5593 
5594 			if (cmd.band == 0)
5595 				idx += 9;	/* 5GHz */
5596 			if (ridx == IWN_RIDX_MAX)
5597 				idx += 5;	/* CCK */
5598 
5599 			/* Make sure idx stays in a valid range. */
5600 			if (idx < 0)
5601 				idx = 0;
5602 			else if (idx > IWN4965_MAX_PWR_INDEX)
5603 				idx = IWN4965_MAX_PWR_INDEX;
5604 
5605 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5606 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5607 			    __func__, c, ridx, idx);
5608 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5609 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5610 		}
5611 	}
5612 
5613 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5614 	    "%s: set tx power for chan %d\n", __func__, chan);
5615 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5616 
5617 #undef interpolate
5618 #undef fdivround
5619 }
5620 
5621 static int
5622 iwn5000_set_txpower(struct iwn_softc *sc, int async)
5623 {
5624 	struct iwn5000_cmd_txpower cmd;
5625 	int cmdid;
5626 
5627 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5628 
5629 	/*
5630 	 * TX power calibration is handled automatically by the firmware
5631 	 * for 5000 Series.
5632 	 */
5633 	memset(&cmd, 0, sizeof cmd);
5634 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5635 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5636 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5637 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5638 	    "%s: setting TX power; rev=%d\n",
5639 	    __func__,
5640 	    IWN_UCODE_API(sc->ucode_rev));
5641 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5642 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5643 	else
5644 		cmdid = IWN_CMD_TXPOWER_DBM;
5645 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5646 }
5647 
5648 /*
5649  * Retrieve the maximum RSSI (in dBm) among receivers.
5650  */
5651 static int
5652 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5653 {
5654 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5655 	uint8_t mask, agc;
5656 	int rssi;
5657 
5658 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5659 
5660 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5661 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5662 
5663 	rssi = 0;
5664 	if (mask & IWN_ANT_A)
5665 		rssi = MAX(rssi, phy->rssi[0]);
5666 	if (mask & IWN_ANT_B)
5667 		rssi = MAX(rssi, phy->rssi[2]);
5668 	if (mask & IWN_ANT_C)
5669 		rssi = MAX(rssi, phy->rssi[4]);
5670 
5671 	DPRINTF(sc, IWN_DEBUG_RECV,
5672 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5673 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5674 	    rssi - agc - IWN_RSSI_TO_DBM);
5675 	return rssi - agc - IWN_RSSI_TO_DBM;
5676 }
5677 
5678 static int
5679 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5680 {
5681 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5682 	uint8_t agc;
5683 	int rssi;
5684 
5685 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5686 
5687 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5688 
5689 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5690 		   le16toh(phy->rssi[1]) & 0xff);
5691 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5692 
5693 	DPRINTF(sc, IWN_DEBUG_RECV,
5694 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5695 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5696 	    rssi - agc - IWN_RSSI_TO_DBM);
5697 	return rssi - agc - IWN_RSSI_TO_DBM;
5698 }
5699 
5700 /*
5701  * Retrieve the average noise (in dBm) among receivers.
5702  */
5703 static int
5704 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5705 {
5706 	int i, total, nbant, noise;
5707 
5708 	total = nbant = 0;
5709 	for (i = 0; i < 3; i++) {
5710 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5711 			continue;
5712 		total += noise;
5713 		nbant++;
5714 	}
5715 	/* There should be at least one antenna but check anyway. */
5716 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5717 }
5718 
5719 /*
5720  * Compute temperature (in degC) from last received statistics.
5721  */
5722 static int
5723 iwn4965_get_temperature(struct iwn_softc *sc)
5724 {
5725 	struct iwn_ucode_info *uc = &sc->ucode_info;
5726 	int32_t r1, r2, r3, r4, temp;
5727 
5728 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5729 
5730 	r1 = le32toh(uc->temp[0].chan20MHz);
5731 	r2 = le32toh(uc->temp[1].chan20MHz);
5732 	r3 = le32toh(uc->temp[2].chan20MHz);
5733 	r4 = le32toh(sc->rawtemp);
5734 
5735 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5736 		return 0;
5737 
5738 	/* Sign-extend 23-bit R4 value to 32-bit. */
5739 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5740 	/* Compute temperature in Kelvin. */
5741 	temp = (259 * (r4 - r2)) / (r3 - r1);
5742 	temp = (temp * 97) / 100 + 8;
5743 
5744 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5745 	    IWN_KTOC(temp));
5746 	return IWN_KTOC(temp);
5747 }
5748 
5749 static int
5750 iwn5000_get_temperature(struct iwn_softc *sc)
5751 {
5752 	int32_t temp;
5753 
5754 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5755 
5756 	/*
5757 	 * Temperature is not used by the driver for 5000 Series because
5758 	 * TX power calibration is handled by firmware.
5759 	 */
5760 	temp = le32toh(sc->rawtemp);
5761 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5762 		temp = (temp / -5) + sc->temp_off;
5763 		temp = IWN_KTOC(temp);
5764 	}
5765 	return temp;
5766 }
5767 
5768 /*
5769  * Initialize sensitivity calibration state machine.
5770  */
5771 static int
5772 iwn_init_sensitivity(struct iwn_softc *sc)
5773 {
5774 	struct iwn_ops *ops = &sc->ops;
5775 	struct iwn_calib_state *calib = &sc->calib;
5776 	uint32_t flags;
5777 	int error;
5778 
5779 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5780 
5781 	/* Reset calibration state machine. */
5782 	memset(calib, 0, sizeof (*calib));
5783 	calib->state = IWN_CALIB_STATE_INIT;
5784 	calib->cck_state = IWN_CCK_STATE_HIFA;
5785 	/* Set initial correlation values. */
5786 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5787 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5788 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5789 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5790 	calib->cck_x4      = 125;
5791 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5792 	calib->energy_cck  = sc->limits->energy_cck;
5793 
5794 	/* Write initial sensitivity. */
5795 	if ((error = iwn_send_sensitivity(sc)) != 0)
5796 		return error;
5797 
5798 	/* Write initial gains. */
5799 	if ((error = ops->init_gains(sc)) != 0)
5800 		return error;
5801 
5802 	/* Request statistics at each beacon interval. */
5803 	flags = 0;
5804 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5805 	    __func__);
5806 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5807 }
5808 
5809 /*
5810  * Collect noise and RSSI statistics for the first 20 beacons received
5811  * after association and use them to determine connected antennas and
5812  * to set differential gains.
5813  */
5814 static void
5815 iwn_collect_noise(struct iwn_softc *sc,
5816     const struct iwn_rx_general_stats *stats)
5817 {
5818 	struct iwn_ops *ops = &sc->ops;
5819 	struct iwn_calib_state *calib = &sc->calib;
5820 	struct ieee80211com *ic = &sc->sc_ic;
5821 	uint32_t val;
5822 	int i;
5823 
5824 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5825 
5826 	/* Accumulate RSSI and noise for all 3 antennas. */
5827 	for (i = 0; i < 3; i++) {
5828 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5829 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5830 	}
5831 	/* NB: We update differential gains only once after 20 beacons. */
5832 	if (++calib->nbeacons < 20)
5833 		return;
5834 
5835 	/* Determine highest average RSSI. */
5836 	val = MAX(calib->rssi[0], calib->rssi[1]);
5837 	val = MAX(calib->rssi[2], val);
5838 
5839 	/* Determine which antennas are connected. */
5840 	sc->chainmask = sc->rxchainmask;
5841 	for (i = 0; i < 3; i++)
5842 		if (val - calib->rssi[i] > 15 * 20)
5843 			sc->chainmask &= ~(1 << i);
5844 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5845 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5846 	    __func__, sc->rxchainmask, sc->chainmask);
5847 
5848 	/* If none of the TX antennas are connected, keep at least one. */
5849 	if ((sc->chainmask & sc->txchainmask) == 0)
5850 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5851 
5852 	(void)ops->set_gains(sc);
5853 	calib->state = IWN_CALIB_STATE_RUN;
5854 
5855 #ifdef notyet
5856 	/* XXX Disable RX chains with no antennas connected. */
5857 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5858 	if (sc->sc_is_scanning)
5859 		device_printf(sc->sc_dev,
5860 		    "%s: is_scanning set, before RXON\n",
5861 		    __func__);
5862 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5863 #endif
5864 
5865 	/* Enable power-saving mode if requested by user. */
5866 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5867 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5868 
5869 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5870 
5871 }
5872 
5873 static int
5874 iwn4965_init_gains(struct iwn_softc *sc)
5875 {
5876 	struct iwn_phy_calib_gain cmd;
5877 
5878 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5879 
5880 	memset(&cmd, 0, sizeof cmd);
5881 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5882 	/* Differential gains initially set to 0 for all 3 antennas. */
5883 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5884 	    "%s: setting initial differential gains\n", __func__);
5885 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5886 }
5887 
5888 static int
5889 iwn5000_init_gains(struct iwn_softc *sc)
5890 {
5891 	struct iwn_phy_calib cmd;
5892 
5893 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5894 
5895 	memset(&cmd, 0, sizeof cmd);
5896 	cmd.code = sc->reset_noise_gain;
5897 	cmd.ngroups = 1;
5898 	cmd.isvalid = 1;
5899 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5900 	    "%s: setting initial differential gains\n", __func__);
5901 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5902 }
5903 
5904 static int
5905 iwn4965_set_gains(struct iwn_softc *sc)
5906 {
5907 	struct iwn_calib_state *calib = &sc->calib;
5908 	struct iwn_phy_calib_gain cmd;
5909 	int i, delta, noise;
5910 
5911 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5912 
5913 	/* Get minimal noise among connected antennas. */
5914 	noise = INT_MAX;	/* NB: There's at least one antenna. */
5915 	for (i = 0; i < 3; i++)
5916 		if (sc->chainmask & (1 << i))
5917 			noise = MIN(calib->noise[i], noise);
5918 
5919 	memset(&cmd, 0, sizeof cmd);
5920 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5921 	/* Set differential gains for connected antennas. */
5922 	for (i = 0; i < 3; i++) {
5923 		if (sc->chainmask & (1 << i)) {
5924 			/* Compute attenuation (in unit of 1.5dB). */
5925 			delta = (noise - (int32_t)calib->noise[i]) / 30;
5926 			/* NB: delta <= 0 */
5927 			/* Limit to [-4.5dB,0]. */
5928 			cmd.gain[i] = MIN(abs(delta), 3);
5929 			if (delta < 0)
5930 				cmd.gain[i] |= 1 << 2;	/* sign bit */
5931 		}
5932 	}
5933 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5934 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5935 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5936 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5937 }
5938 
5939 static int
5940 iwn5000_set_gains(struct iwn_softc *sc)
5941 {
5942 	struct iwn_calib_state *calib = &sc->calib;
5943 	struct iwn_phy_calib_gain cmd;
5944 	int i, ant, div, delta;
5945 
5946 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5947 
5948 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5949 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5950 
5951 	memset(&cmd, 0, sizeof cmd);
5952 	cmd.code = sc->noise_gain;
5953 	cmd.ngroups = 1;
5954 	cmd.isvalid = 1;
5955 	/* Get first available RX antenna as referential. */
5956 	ant = IWN_LSB(sc->rxchainmask);
5957 	/* Set differential gains for other antennas. */
5958 	for (i = ant + 1; i < 3; i++) {
5959 		if (sc->chainmask & (1 << i)) {
5960 			/* The delta is relative to antenna "ant". */
5961 			delta = ((int32_t)calib->noise[ant] -
5962 			    (int32_t)calib->noise[i]) / div;
5963 			/* Limit to [-4.5dB,+4.5dB]. */
5964 			cmd.gain[i - 1] = MIN(abs(delta), 3);
5965 			if (delta < 0)
5966 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
5967 		}
5968 	}
5969 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5970 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
5971 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
5972 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5973 }
5974 
5975 /*
5976  * Tune RF RX sensitivity based on the number of false alarms detected
5977  * during the last beacon period.
5978  */
5979 static void
5980 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
5981 {
5982 #define inc(val, inc, max)			\
5983 	if ((val) < (max)) {			\
5984 		if ((val) < (max) - (inc))	\
5985 			(val) += (inc);		\
5986 		else				\
5987 			(val) = (max);		\
5988 		needs_update = 1;		\
5989 	}
5990 #define dec(val, dec, min)			\
5991 	if ((val) > (min)) {			\
5992 		if ((val) > (min) + (dec))	\
5993 			(val) -= (dec);		\
5994 		else				\
5995 			(val) = (min);		\
5996 		needs_update = 1;		\
5997 	}
5998 
5999 	const struct iwn_sensitivity_limits *limits = sc->limits;
6000 	struct iwn_calib_state *calib = &sc->calib;
6001 	uint32_t val, rxena, fa;
6002 	uint32_t energy[3], energy_min;
6003 	uint8_t noise[3], noise_ref;
6004 	int i, needs_update = 0;
6005 
6006 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6007 
6008 	/* Check that we've been enabled long enough. */
6009 	if ((rxena = le32toh(stats->general.load)) == 0){
6010 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6011 		return;
6012 	}
6013 
6014 	/* Compute number of false alarms since last call for OFDM. */
6015 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6016 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6017 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6018 
6019 	if (fa > 50 * rxena) {
6020 		/* High false alarm count, decrease sensitivity. */
6021 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6022 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6023 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6024 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6025 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6026 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6027 
6028 	} else if (fa < 5 * rxena) {
6029 		/* Low false alarm count, increase sensitivity. */
6030 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6031 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6032 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6033 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6034 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6035 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6036 	}
6037 
6038 	/* Compute maximum noise among 3 receivers. */
6039 	for (i = 0; i < 3; i++)
6040 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6041 	val = MAX(noise[0], noise[1]);
6042 	val = MAX(noise[2], val);
6043 	/* Insert it into our samples table. */
6044 	calib->noise_samples[calib->cur_noise_sample] = val;
6045 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6046 
6047 	/* Compute maximum noise among last 20 samples. */
6048 	noise_ref = calib->noise_samples[0];
6049 	for (i = 1; i < 20; i++)
6050 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6051 
6052 	/* Compute maximum energy among 3 receivers. */
6053 	for (i = 0; i < 3; i++)
6054 		energy[i] = le32toh(stats->general.energy[i]);
6055 	val = MIN(energy[0], energy[1]);
6056 	val = MIN(energy[2], val);
6057 	/* Insert it into our samples table. */
6058 	calib->energy_samples[calib->cur_energy_sample] = val;
6059 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6060 
6061 	/* Compute minimum energy among last 10 samples. */
6062 	energy_min = calib->energy_samples[0];
6063 	for (i = 1; i < 10; i++)
6064 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6065 	energy_min += 6;
6066 
6067 	/* Compute number of false alarms since last call for CCK. */
6068 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6069 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6070 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6071 
6072 	if (fa > 50 * rxena) {
6073 		/* High false alarm count, decrease sensitivity. */
6074 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6075 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6076 		calib->cck_state = IWN_CCK_STATE_HIFA;
6077 		calib->low_fa = 0;
6078 
6079 		if (calib->cck_x4 > 160) {
6080 			calib->noise_ref = noise_ref;
6081 			if (calib->energy_cck > 2)
6082 				dec(calib->energy_cck, 2, energy_min);
6083 		}
6084 		if (calib->cck_x4 < 160) {
6085 			calib->cck_x4 = 161;
6086 			needs_update = 1;
6087 		} else
6088 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6089 
6090 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6091 
6092 	} else if (fa < 5 * rxena) {
6093 		/* Low false alarm count, increase sensitivity. */
6094 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6095 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6096 		calib->cck_state = IWN_CCK_STATE_LOFA;
6097 		calib->low_fa++;
6098 
6099 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6100 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6101 		     calib->low_fa > 100)) {
6102 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6103 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6104 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6105 		}
6106 	} else {
6107 		/* Not worth to increase or decrease sensitivity. */
6108 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6109 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6110 		calib->low_fa = 0;
6111 		calib->noise_ref = noise_ref;
6112 
6113 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6114 			/* Previous interval had many false alarms. */
6115 			dec(calib->energy_cck, 8, energy_min);
6116 		}
6117 		calib->cck_state = IWN_CCK_STATE_INIT;
6118 	}
6119 
6120 	if (needs_update)
6121 		(void)iwn_send_sensitivity(sc);
6122 
6123 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6124 
6125 #undef dec
6126 #undef inc
6127 }
6128 
6129 static int
6130 iwn_send_sensitivity(struct iwn_softc *sc)
6131 {
6132 	struct iwn_calib_state *calib = &sc->calib;
6133 	struct iwn_enhanced_sensitivity_cmd cmd;
6134 	int len;
6135 
6136 	memset(&cmd, 0, sizeof cmd);
6137 	len = sizeof (struct iwn_sensitivity_cmd);
6138 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6139 	/* OFDM modulation. */
6140 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6141 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6142 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6143 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6144 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6145 	cmd.energy_ofdm_th     = htole16(62);
6146 	/* CCK modulation. */
6147 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6148 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6149 	cmd.energy_cck         = htole16(calib->energy_cck);
6150 	/* Barker modulation: use default values. */
6151 	cmd.corr_barker        = htole16(190);
6152 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6153 
6154 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6155 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6156 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6157 	    calib->ofdm_mrc_x4, calib->cck_x4,
6158 	    calib->cck_mrc_x4, calib->energy_cck);
6159 
6160 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6161 		goto send;
6162 	/* Enhanced sensitivity settings. */
6163 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6164 	cmd.ofdm_det_slope_mrc = htole16(668);
6165 	cmd.ofdm_det_icept_mrc = htole16(4);
6166 	cmd.ofdm_det_slope     = htole16(486);
6167 	cmd.ofdm_det_icept     = htole16(37);
6168 	cmd.cck_det_slope_mrc  = htole16(853);
6169 	cmd.cck_det_icept_mrc  = htole16(4);
6170 	cmd.cck_det_slope      = htole16(476);
6171 	cmd.cck_det_icept      = htole16(99);
6172 send:
6173 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6174 }
6175 
6176 /*
6177  * Look at the increase of PLCP errors over time; if it exceeds
6178  * a programmed threshold then trigger an RF retune.
6179  */
6180 static void
6181 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6182 {
6183 	int32_t delta_ofdm, delta_ht, delta_cck;
6184 	struct iwn_calib_state *calib = &sc->calib;
6185 	int delta_ticks, cur_ticks;
6186 	int delta_msec;
6187 	int thresh;
6188 
6189 	/*
6190 	 * Calculate the difference between the current and
6191 	 * previous statistics.
6192 	 */
6193 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6194 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6195 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6196 
6197 	/*
6198 	 * Calculate the delta in time between successive statistics
6199 	 * messages.  Yes, it can roll over; so we make sure that
6200 	 * this doesn't happen.
6201 	 *
6202 	 * XXX go figure out what to do about rollover
6203 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6204 	 * XXX go stab signed integer overflow undefined-ness in the face.
6205 	 */
6206 	cur_ticks = ticks;
6207 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6208 
6209 	/*
6210 	 * If any are negative, then the firmware likely reset; so just
6211 	 * bail.  We'll pick this up next time.
6212 	 */
6213 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6214 		return;
6215 
6216 	/*
6217 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6218 	 * so we can do some useful math with it.
6219 	 */
6220 	delta_msec = ticks_to_msecs(delta_ticks);
6221 
6222 	/*
6223 	 * Calculate what our threshold is given the current delta_msec.
6224 	 */
6225 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6226 
6227 	DPRINTF(sc, IWN_DEBUG_STATE,
6228 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6229 	    __func__,
6230 	    delta_msec,
6231 	    delta_cck,
6232 	    delta_ofdm,
6233 	    delta_ht,
6234 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6235 	    thresh);
6236 
6237 	/*
6238 	 * If we need a retune, then schedule a single channel scan
6239 	 * to a channel that isn't the currently active one!
6240 	 *
6241 	 * The math from linux iwlwifi:
6242 	 *
6243 	 * if ((delta * 100 / msecs) > threshold)
6244 	 */
6245 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6246 		DPRINTF(sc, IWN_DEBUG_ANY,
6247 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6248 		    "over limit (%d); retune!\n",
6249 		    __func__,
6250 		    (delta_cck + delta_ofdm + delta_ht),
6251 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6252 		    thresh);
6253 	}
6254 }
6255 
6256 /*
6257  * Set STA mode power saving level (between 0 and 5).
6258  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6259  */
6260 static int
6261 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6262 {
6263 	struct iwn_pmgt_cmd cmd;
6264 	const struct iwn_pmgt *pmgt;
6265 	uint32_t max, skip_dtim;
6266 	uint32_t reg;
6267 	int i;
6268 
6269 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6270 	    "%s: dtim=%d, level=%d, async=%d\n",
6271 	    __func__,
6272 	    dtim,
6273 	    level,
6274 	    async);
6275 
6276 	/* Select which PS parameters to use. */
6277 	if (dtim <= 2)
6278 		pmgt = &iwn_pmgt[0][level];
6279 	else if (dtim <= 10)
6280 		pmgt = &iwn_pmgt[1][level];
6281 	else
6282 		pmgt = &iwn_pmgt[2][level];
6283 
6284 	memset(&cmd, 0, sizeof cmd);
6285 	if (level != 0)	/* not CAM */
6286 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6287 	if (level == 5)
6288 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6289 	/* Retrieve PCIe Active State Power Management (ASPM). */
6290 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6291 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6292 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6293 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6294 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6295 
6296 	if (dtim == 0) {
6297 		dtim = 1;
6298 		skip_dtim = 0;
6299 	} else
6300 		skip_dtim = pmgt->skip_dtim;
6301 	if (skip_dtim != 0) {
6302 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6303 		max = pmgt->intval[4];
6304 		if (max == (uint32_t)-1)
6305 			max = dtim * (skip_dtim + 1);
6306 		else if (max > dtim)
6307 			max = rounddown(max, dtim);
6308 	} else
6309 		max = dtim;
6310 	for (i = 0; i < 5; i++)
6311 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6312 
6313 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6314 	    level);
6315 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6316 }
6317 
6318 static int
6319 iwn_send_btcoex(struct iwn_softc *sc)
6320 {
6321 	struct iwn_bluetooth cmd;
6322 
6323 	memset(&cmd, 0, sizeof cmd);
6324 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6325 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6326 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6327 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6328 	    __func__);
6329 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6330 }
6331 
6332 static int
6333 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6334 {
6335 	static const uint32_t btcoex_3wire[12] = {
6336 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6337 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6338 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6339 	};
6340 	struct iwn6000_btcoex_config btconfig;
6341 	struct iwn2000_btcoex_config btconfig2k;
6342 	struct iwn_btcoex_priotable btprio;
6343 	struct iwn_btcoex_prot btprot;
6344 	int error, i;
6345 	uint8_t flags;
6346 
6347 	memset(&btconfig, 0, sizeof btconfig);
6348 	memset(&btconfig2k, 0, sizeof btconfig2k);
6349 
6350 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6351 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6352 
6353 	if (sc->base_params->bt_sco_disable)
6354 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6355 	else
6356 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6357 
6358 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6359 
6360 	/* Default flags result is 145 as old value */
6361 
6362 	/*
6363 	 * Flags value has to be review. Values must change if we
6364 	 * which to disable it
6365 	 */
6366 	if (sc->base_params->bt_session_2) {
6367 		btconfig2k.flags = flags;
6368 		btconfig2k.max_kill = 5;
6369 		btconfig2k.bt3_t7_timer = 1;
6370 		btconfig2k.kill_ack = htole32(0xffff0000);
6371 		btconfig2k.kill_cts = htole32(0xffff0000);
6372 		btconfig2k.sample_time = 2;
6373 		btconfig2k.bt3_t2_timer = 0xc;
6374 
6375 		for (i = 0; i < 12; i++)
6376 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6377 		btconfig2k.valid = htole16(0xff);
6378 		btconfig2k.prio_boost = htole32(0xf0);
6379 		DPRINTF(sc, IWN_DEBUG_RESET,
6380 		    "%s: configuring advanced bluetooth coexistence"
6381 		    " session 2, flags : 0x%x\n",
6382 		    __func__,
6383 		    flags);
6384 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6385 		    sizeof(btconfig2k), 1);
6386 	} else {
6387 		btconfig.flags = flags;
6388 		btconfig.max_kill = 5;
6389 		btconfig.bt3_t7_timer = 1;
6390 		btconfig.kill_ack = htole32(0xffff0000);
6391 		btconfig.kill_cts = htole32(0xffff0000);
6392 		btconfig.sample_time = 2;
6393 		btconfig.bt3_t2_timer = 0xc;
6394 
6395 		for (i = 0; i < 12; i++)
6396 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6397 		btconfig.valid = htole16(0xff);
6398 		btconfig.prio_boost = 0xf0;
6399 		DPRINTF(sc, IWN_DEBUG_RESET,
6400 		    "%s: configuring advanced bluetooth coexistence,"
6401 		    " flags : 0x%x\n",
6402 		    __func__,
6403 		    flags);
6404 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6405 		    sizeof(btconfig), 1);
6406 	}
6407 
6408 	if (error != 0)
6409 		return error;
6410 
6411 	memset(&btprio, 0, sizeof btprio);
6412 	btprio.calib_init1 = 0x6;
6413 	btprio.calib_init2 = 0x7;
6414 	btprio.calib_periodic_low1 = 0x2;
6415 	btprio.calib_periodic_low2 = 0x3;
6416 	btprio.calib_periodic_high1 = 0x4;
6417 	btprio.calib_periodic_high2 = 0x5;
6418 	btprio.dtim = 0x6;
6419 	btprio.scan52 = 0x8;
6420 	btprio.scan24 = 0xa;
6421 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6422 	    1);
6423 	if (error != 0)
6424 		return error;
6425 
6426 	/* Force BT state machine change. */
6427 	memset(&btprot, 0, sizeof btprot);
6428 	btprot.open = 1;
6429 	btprot.type = 1;
6430 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6431 	if (error != 0)
6432 		return error;
6433 	btprot.open = 0;
6434 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6435 }
6436 
6437 static int
6438 iwn5000_runtime_calib(struct iwn_softc *sc)
6439 {
6440 	struct iwn5000_calib_config cmd;
6441 
6442 	memset(&cmd, 0, sizeof cmd);
6443 	cmd.ucode.once.enable = 0xffffffff;
6444 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6445 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6446 	    "%s: configuring runtime calibration\n", __func__);
6447 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6448 }
6449 
6450 static uint32_t
6451 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c)
6452 {
6453 	struct ieee80211com *ic = &sc->sc_ic;
6454 	uint32_t htflags = 0;
6455 
6456 	if (! IEEE80211_IS_CHAN_HT(c))
6457 		return (0);
6458 
6459 	htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6460 
6461 	if (IEEE80211_IS_CHAN_HT40(c)) {
6462 		switch (ic->ic_curhtprotmode) {
6463 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6464 			htflags |= IWN_RXON_HT_MODEPURE40;
6465 			break;
6466 		default:
6467 			htflags |= IWN_RXON_HT_MODEMIXED;
6468 			break;
6469 		}
6470 	}
6471 	if (IEEE80211_IS_CHAN_HT40D(c))
6472 		htflags |= IWN_RXON_HT_HT40MINUS;
6473 
6474 	return (htflags);
6475 }
6476 
6477 static int
6478 iwn_check_bss_filter(struct iwn_softc *sc)
6479 {
6480 	return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0);
6481 }
6482 
6483 static int
6484 iwn4965_rxon_assoc(struct iwn_softc *sc, int async)
6485 {
6486 	struct iwn4965_rxon_assoc cmd;
6487 	struct iwn_rxon *rxon = sc->rxon;
6488 
6489 	cmd.flags = rxon->flags;
6490 	cmd.filter = rxon->filter;
6491 	cmd.ofdm_mask = rxon->ofdm_mask;
6492 	cmd.cck_mask = rxon->cck_mask;
6493 	cmd.ht_single_mask = rxon->ht_single_mask;
6494 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6495 	cmd.rxchain = rxon->rxchain;
6496 	cmd.reserved = 0;
6497 
6498 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6499 }
6500 
6501 static int
6502 iwn5000_rxon_assoc(struct iwn_softc *sc, int async)
6503 {
6504 	struct iwn5000_rxon_assoc cmd;
6505 	struct iwn_rxon *rxon = sc->rxon;
6506 
6507 	cmd.flags = rxon->flags;
6508 	cmd.filter = rxon->filter;
6509 	cmd.ofdm_mask = rxon->ofdm_mask;
6510 	cmd.cck_mask = rxon->cck_mask;
6511 	cmd.reserved1 = 0;
6512 	cmd.ht_single_mask = rxon->ht_single_mask;
6513 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6514 	cmd.ht_triple_mask = rxon->ht_triple_mask;
6515 	cmd.reserved2 = 0;
6516 	cmd.rxchain = rxon->rxchain;
6517 	cmd.acquisition = rxon->acquisition;
6518 	cmd.reserved3 = 0;
6519 
6520 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6521 }
6522 
6523 static int
6524 iwn_send_rxon(struct iwn_softc *sc, int assoc, int async)
6525 {
6526 	struct iwn_ops *ops = &sc->ops;
6527 	int error;
6528 
6529 	IWN_LOCK_ASSERT(sc);
6530 
6531 	if (assoc && iwn_check_bss_filter(sc) != 0) {
6532 		error = ops->rxon_assoc(sc, async);
6533 		if (error != 0) {
6534 			device_printf(sc->sc_dev,
6535 			    "%s: RXON_ASSOC command failed, error %d\n",
6536 			    __func__, error);
6537 			return (error);
6538 		}
6539 	} else {
6540 		if (sc->sc_is_scanning)
6541 			device_printf(sc->sc_dev,
6542 			    "%s: is_scanning set, before RXON\n",
6543 			    __func__);
6544 
6545 		error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async);
6546 		if (error != 0) {
6547 			device_printf(sc->sc_dev,
6548 			    "%s: RXON command failed, error %d\n",
6549 			    __func__, error);
6550 			return (error);
6551 		}
6552 
6553 		/*
6554 		 * Reconfiguring RXON clears the firmware nodes table so
6555 		 * we must add the broadcast node again.
6556 		 */
6557 		if (iwn_check_bss_filter(sc) == 0 &&
6558 		    (error = iwn_add_broadcast_node(sc, async)) != 0) {
6559 			device_printf(sc->sc_dev,
6560 			    "%s: could not add broadcast node, error %d\n",
6561 			    __func__, error);
6562 			return (error);
6563 		}
6564 	}
6565 
6566 	/* Configuration has changed, set TX power accordingly. */
6567 	if ((error = ops->set_txpower(sc, async)) != 0) {
6568 		device_printf(sc->sc_dev,
6569 		    "%s: could not set TX power, error %d\n",
6570 		    __func__, error);
6571 		return (error);
6572 	}
6573 
6574 	return (0);
6575 }
6576 
6577 static int
6578 iwn_config(struct iwn_softc *sc)
6579 {
6580 	struct ieee80211com *ic = &sc->sc_ic;
6581 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6582 	const uint8_t *macaddr;
6583 	uint32_t txmask;
6584 	uint16_t rxchain;
6585 	int error;
6586 
6587 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6588 
6589 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6590 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6591 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6592 		    " exclusive each together. Review NIC config file. Conf"
6593 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6594 		    sc->base_params->calib_need,
6595 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6596 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6597 		return (EINVAL);
6598 	}
6599 
6600 	/* Compute temperature calib if needed. Will be send by send calib */
6601 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6602 		error = iwn5000_temp_offset_calib(sc);
6603 		if (error != 0) {
6604 			device_printf(sc->sc_dev,
6605 			    "%s: could not set temperature offset\n", __func__);
6606 			return (error);
6607 		}
6608 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6609 		error = iwn5000_temp_offset_calibv2(sc);
6610 		if (error != 0) {
6611 			device_printf(sc->sc_dev,
6612 			    "%s: could not compute temperature offset v2\n",
6613 			    __func__);
6614 			return (error);
6615 		}
6616 	}
6617 
6618 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6619 		/* Configure runtime DC calibration. */
6620 		error = iwn5000_runtime_calib(sc);
6621 		if (error != 0) {
6622 			device_printf(sc->sc_dev,
6623 			    "%s: could not configure runtime calibration\n",
6624 			    __func__);
6625 			return error;
6626 		}
6627 	}
6628 
6629 	/* Configure valid TX chains for >=5000 Series. */
6630 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6631 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6632 		txmask = htole32(sc->txchainmask);
6633 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6634 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6635 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6636 		    sizeof txmask, 0);
6637 		if (error != 0) {
6638 			device_printf(sc->sc_dev,
6639 			    "%s: could not configure valid TX chains, "
6640 			    "error %d\n", __func__, error);
6641 			return error;
6642 		}
6643 	}
6644 
6645 	/* Configure bluetooth coexistence. */
6646 	error = 0;
6647 
6648 	/* Configure bluetooth coexistence if needed. */
6649 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6650 		error = iwn_send_advanced_btcoex(sc);
6651 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6652 		error = iwn_send_btcoex(sc);
6653 
6654 	if (error != 0) {
6655 		device_printf(sc->sc_dev,
6656 		    "%s: could not configure bluetooth coexistence, error %d\n",
6657 		    __func__, error);
6658 		return error;
6659 	}
6660 
6661 	/* Set mode, channel, RX filter and enable RX. */
6662 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6663 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6664 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6665 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6666 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6667 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6668 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6669 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6670 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6671 
6672 	sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6673 	switch (ic->ic_opmode) {
6674 	case IEEE80211_M_STA:
6675 		sc->rxon->mode = IWN_MODE_STA;
6676 		break;
6677 	case IEEE80211_M_MONITOR:
6678 		sc->rxon->mode = IWN_MODE_MONITOR;
6679 		break;
6680 	default:
6681 		/* Should not get there. */
6682 		break;
6683 	}
6684 	iwn_set_promisc(sc);
6685 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6686 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6687 	sc->rxon->ht_single_mask = 0xff;
6688 	sc->rxon->ht_dual_mask = 0xff;
6689 	sc->rxon->ht_triple_mask = 0xff;
6690 	/*
6691 	 * In active association mode, ensure that
6692 	 * all the receive chains are enabled.
6693 	 *
6694 	 * Since we're not yet doing SMPS, don't allow the
6695 	 * number of idle RX chains to be less than the active
6696 	 * number.
6697 	 */
6698 	rxchain =
6699 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6700 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6701 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6702 	sc->rxon->rxchain = htole16(rxchain);
6703 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6704 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6705 	    __func__,
6706 	    sc->rxchainmask,
6707 	    sc->nrxchains);
6708 
6709 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
6710 
6711 	DPRINTF(sc, IWN_DEBUG_RESET,
6712 	    "%s: setting configuration; flags=0x%08x\n",
6713 	    __func__, le32toh(sc->rxon->flags));
6714 	if ((error = iwn_send_rxon(sc, 0, 0)) != 0) {
6715 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
6716 		    __func__);
6717 		return error;
6718 	}
6719 
6720 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6721 		device_printf(sc->sc_dev,
6722 		    "%s: could not set critical temperature\n", __func__);
6723 		return error;
6724 	}
6725 
6726 	/* Set power saving level to CAM during initialization. */
6727 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6728 		device_printf(sc->sc_dev,
6729 		    "%s: could not set power saving level\n", __func__);
6730 		return error;
6731 	}
6732 
6733 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6734 
6735 	return 0;
6736 }
6737 
6738 static uint16_t
6739 iwn_get_active_dwell_time(struct iwn_softc *sc,
6740     struct ieee80211_channel *c, uint8_t n_probes)
6741 {
6742 	/* No channel? Default to 2GHz settings */
6743 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6744 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6745 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6746 	}
6747 
6748 	/* 5GHz dwell time */
6749 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6750 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6751 }
6752 
6753 /*
6754  * Limit the total dwell time to 85% of the beacon interval.
6755  *
6756  * Returns the dwell time in milliseconds.
6757  */
6758 static uint16_t
6759 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6760 {
6761 	struct ieee80211com *ic = &sc->sc_ic;
6762 	struct ieee80211vap *vap = NULL;
6763 	int bintval = 0;
6764 
6765 	/* bintval is in TU (1.024mS) */
6766 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6767 		vap = TAILQ_FIRST(&ic->ic_vaps);
6768 		bintval = vap->iv_bss->ni_intval;
6769 	}
6770 
6771 	/*
6772 	 * If it's non-zero, we should calculate the minimum of
6773 	 * it and the DWELL_BASE.
6774 	 *
6775 	 * XXX Yes, the math should take into account that bintval
6776 	 * is 1.024mS, not 1mS..
6777 	 */
6778 	if (bintval > 0) {
6779 		DPRINTF(sc, IWN_DEBUG_SCAN,
6780 		    "%s: bintval=%d\n",
6781 		    __func__,
6782 		    bintval);
6783 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6784 	}
6785 
6786 	/* No association context? Default */
6787 	return (IWN_PASSIVE_DWELL_BASE);
6788 }
6789 
6790 static uint16_t
6791 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6792 {
6793 	uint16_t passive;
6794 
6795 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6796 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6797 	} else {
6798 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6799 	}
6800 
6801 	/* Clamp to the beacon interval if we're associated */
6802 	return (iwn_limit_dwell(sc, passive));
6803 }
6804 
6805 static int
6806 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6807     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6808 {
6809 	struct ieee80211com *ic = &sc->sc_ic;
6810 	struct ieee80211_node *ni = vap->iv_bss;
6811 	struct iwn_scan_hdr *hdr;
6812 	struct iwn_cmd_data *tx;
6813 	struct iwn_scan_essid *essid;
6814 	struct iwn_scan_chan *chan;
6815 	struct ieee80211_frame *wh;
6816 	struct ieee80211_rateset *rs;
6817 	uint8_t *buf, *frm;
6818 	uint16_t rxchain;
6819 	uint8_t txant;
6820 	int buflen, error;
6821 	int is_active;
6822 	uint16_t dwell_active, dwell_passive;
6823 	uint32_t extra, scan_service_time;
6824 
6825 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6826 
6827 	/*
6828 	 * We are absolutely not allowed to send a scan command when another
6829 	 * scan command is pending.
6830 	 */
6831 	if (sc->sc_is_scanning) {
6832 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6833 		    __func__);
6834 		return (EAGAIN);
6835 	}
6836 
6837 	/* Assign the scan channel */
6838 	c = ic->ic_curchan;
6839 
6840 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6841 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
6842 	if (buf == NULL) {
6843 		device_printf(sc->sc_dev,
6844 		    "%s: could not allocate buffer for scan command\n",
6845 		    __func__);
6846 		return ENOMEM;
6847 	}
6848 	hdr = (struct iwn_scan_hdr *)buf;
6849 	/*
6850 	 * Move to the next channel if no frames are received within 10ms
6851 	 * after sending the probe request.
6852 	 */
6853 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6854 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6855 	/*
6856 	 * Max needs to be greater than active and passive and quiet!
6857 	 * It's also in microseconds!
6858 	 */
6859 	hdr->max_svc = htole32(250 * 1024);
6860 
6861 	/*
6862 	 * Reset scan: interval=100
6863 	 * Normal scan: interval=becaon interval
6864 	 * suspend_time: 100 (TU)
6865 	 *
6866 	 */
6867 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6868 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6869 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6870 	hdr->pause_svc = htole32(scan_service_time);
6871 
6872 	/* Select antennas for scanning. */
6873 	rxchain =
6874 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6875 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6876 	    IWN_RXCHAIN_DRIVER_FORCE;
6877 	if (IEEE80211_IS_CHAN_A(c) &&
6878 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6879 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6880 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6881 	} else	/* Use all available RX antennas. */
6882 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6883 	hdr->rxchain = htole16(rxchain);
6884 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6885 
6886 	tx = (struct iwn_cmd_data *)(hdr + 1);
6887 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6888 	tx->id = sc->broadcast_id;
6889 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6890 
6891 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6892 		/* Send probe requests at 6Mbps. */
6893 		tx->rate = htole32(0xd);
6894 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6895 	} else {
6896 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6897 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6898 		    sc->rxon->associd && sc->rxon->chan > 14)
6899 			tx->rate = htole32(0xd);
6900 		else {
6901 			/* Send probe requests at 1Mbps. */
6902 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6903 		}
6904 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6905 	}
6906 	/* Use the first valid TX antenna. */
6907 	txant = IWN_LSB(sc->txchainmask);
6908 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6909 
6910 	/*
6911 	 * Only do active scanning if we're announcing a probe request
6912 	 * for a given SSID (or more, if we ever add it to the driver.)
6913 	 */
6914 	is_active = 0;
6915 
6916 	/*
6917 	 * If we're scanning for a specific SSID, add it to the command.
6918 	 *
6919 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6920 	 */
6921 	essid = (struct iwn_scan_essid *)(tx + 1);
6922 	if (ss != NULL) {
6923 		if (ss->ss_ssid[0].len != 0) {
6924 			essid[0].id = IEEE80211_ELEMID_SSID;
6925 			essid[0].len = ss->ss_ssid[0].len;
6926 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6927 		}
6928 
6929 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6930 		    __func__,
6931 		    ss->ss_ssid[0].len,
6932 		    ss->ss_ssid[0].len,
6933 		    ss->ss_ssid[0].ssid);
6934 
6935 		if (ss->ss_nssid > 0)
6936 			is_active = 1;
6937 	}
6938 
6939 	/*
6940 	 * Build a probe request frame.  Most of the following code is a
6941 	 * copy & paste of what is done in net80211.
6942 	 */
6943 	wh = (struct ieee80211_frame *)(essid + 20);
6944 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6945 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6946 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6947 	IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
6948 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
6949 	IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
6950 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6951 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6952 
6953 	frm = (uint8_t *)(wh + 1);
6954 	frm = ieee80211_add_ssid(frm, NULL, 0);
6955 	frm = ieee80211_add_rates(frm, rs);
6956 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6957 		frm = ieee80211_add_xrates(frm, rs);
6958 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6959 		frm = ieee80211_add_htcap(frm, ni);
6960 
6961 	/* Set length of probe request. */
6962 	tx->len = htole16(frm - (uint8_t *)wh);
6963 
6964 	/*
6965 	 * If active scanning is requested but a certain channel is
6966 	 * marked passive, we can do active scanning if we detect
6967 	 * transmissions.
6968 	 *
6969 	 * There is an issue with some firmware versions that triggers
6970 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6971 	 * on a radar channel even though this means that we should NOT
6972 	 * send probes.
6973 	 *
6974 	 * The "good CRC threshold" is the number of frames that we
6975 	 * need to receive during our dwell time on a channel before
6976 	 * sending out probes -- setting this to a huge value will
6977 	 * mean we never reach it, but at the same time work around
6978 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6979 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6980 	 *
6981 	 * This was fixed in later versions along with some other
6982 	 * scan changes, and the threshold behaves as a flag in those
6983 	 * versions.
6984 	 */
6985 
6986 	/*
6987 	 * If we're doing active scanning, set the crc_threshold
6988 	 * to a suitable value.  This is different to active veruss
6989 	 * passive scanning depending upon the channel flags; the
6990 	 * firmware will obey that particular check for us.
6991 	 */
6992 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6993 		hdr->crc_threshold = is_active ?
6994 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6995 	else
6996 		hdr->crc_threshold = is_active ?
6997 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
6998 
6999 	chan = (struct iwn_scan_chan *)frm;
7000 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7001 	chan->flags = 0;
7002 	if (ss->ss_nssid > 0)
7003 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7004 	chan->dsp_gain = 0x6e;
7005 
7006 	/*
7007 	 * Set the passive/active flag depending upon the channel mode.
7008 	 * XXX TODO: take the is_active flag into account as well?
7009 	 */
7010 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7011 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
7012 	else
7013 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
7014 
7015 	/*
7016 	 * Calculate the active/passive dwell times.
7017 	 */
7018 
7019 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7020 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
7021 
7022 	/* Make sure they're valid */
7023 	if (dwell_passive <= dwell_active)
7024 		dwell_passive = dwell_active + 1;
7025 
7026 	chan->active = htole16(dwell_active);
7027 	chan->passive = htole16(dwell_passive);
7028 
7029 	if (IEEE80211_IS_CHAN_5GHZ(c))
7030 		chan->rf_gain = 0x3b;
7031 	else
7032 		chan->rf_gain = 0x28;
7033 
7034 	DPRINTF(sc, IWN_DEBUG_STATE,
7035 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7036 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7037 	    "isactive=%d numssid=%d\n", __func__,
7038 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7039 	    dwell_active, dwell_passive, scan_service_time,
7040 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7041 
7042 	hdr->nchan++;
7043 	chan++;
7044 	buflen = (uint8_t *)chan - buf;
7045 	hdr->len = htole16(buflen);
7046 
7047 	if (sc->sc_is_scanning) {
7048 		device_printf(sc->sc_dev,
7049 		    "%s: called with is_scanning set!\n",
7050 		    __func__);
7051 	}
7052 	sc->sc_is_scanning = 1;
7053 
7054 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7055 	    hdr->nchan);
7056 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7057 	free(buf, M_DEVBUF);
7058 	if (error == 0)
7059 		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7060 
7061 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7062 
7063 	return error;
7064 }
7065 
7066 static int
7067 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7068 {
7069 	struct ieee80211com *ic = &sc->sc_ic;
7070 	struct ieee80211_node *ni = vap->iv_bss;
7071 	int error;
7072 
7073 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7074 
7075 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7076 	/* Update adapter configuration. */
7077 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7078 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7079 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7080 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7081 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7082 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7083 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7084 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7085 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7086 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7087 		sc->rxon->cck_mask  = 0;
7088 		sc->rxon->ofdm_mask = 0x15;
7089 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7090 		sc->rxon->cck_mask  = 0x03;
7091 		sc->rxon->ofdm_mask = 0;
7092 	} else {
7093 		/* Assume 802.11b/g. */
7094 		sc->rxon->cck_mask  = 0x03;
7095 		sc->rxon->ofdm_mask = 0x15;
7096 	}
7097 
7098 	/* try HT */
7099 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
7100 
7101 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7102 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7103 	    sc->rxon->ofdm_mask);
7104 
7105 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7106 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7107 		    __func__);
7108 		return (error);
7109 	}
7110 
7111 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7112 
7113 	return (0);
7114 }
7115 
7116 static int
7117 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7118 {
7119 	struct iwn_ops *ops = &sc->ops;
7120 	struct ieee80211com *ic = &sc->sc_ic;
7121 	struct ieee80211_node *ni = vap->iv_bss;
7122 	struct iwn_node_info node;
7123 	int error;
7124 
7125 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7126 
7127 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7128 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7129 		/* Link LED blinks while monitoring. */
7130 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7131 		return 0;
7132 	}
7133 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7134 		device_printf(sc->sc_dev,
7135 		    "%s: could not set timing, error %d\n", __func__, error);
7136 		return error;
7137 	}
7138 
7139 	/* Update adapter configuration. */
7140 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7141 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7142 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7143 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7144 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7145 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7146 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7147 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7148 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7149 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7150 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7151 		sc->rxon->cck_mask  = 0;
7152 		sc->rxon->ofdm_mask = 0x15;
7153 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7154 		sc->rxon->cck_mask  = 0x03;
7155 		sc->rxon->ofdm_mask = 0;
7156 	} else {
7157 		/* Assume 802.11b/g. */
7158 		sc->rxon->cck_mask  = 0x0f;
7159 		sc->rxon->ofdm_mask = 0x15;
7160 	}
7161 	/* try HT */
7162 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan));
7163 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7164 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7165 	    sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode);
7166 
7167 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7168 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7169 		    __func__);
7170 		return error;
7171 	}
7172 
7173 	/* Fake a join to initialize the TX rate. */
7174 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7175 	iwn_newassoc(ni, 1);
7176 
7177 	/* Add BSS node. */
7178 	memset(&node, 0, sizeof node);
7179 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7180 	node.id = IWN_ID_BSS;
7181 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7182 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7183 		case IEEE80211_HTCAP_SMPS_ENA:
7184 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7185 			break;
7186 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7187 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7188 			break;
7189 		}
7190 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7191 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7192 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7193 			node.htflags |= htole32(IWN_NODE_HT40);
7194 	}
7195 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7196 	error = ops->add_node(sc, &node, 1);
7197 	if (error != 0) {
7198 		device_printf(sc->sc_dev,
7199 		    "%s: could not add BSS node, error %d\n", __func__, error);
7200 		return error;
7201 	}
7202 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7203 	    __func__, node.id);
7204 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7205 		device_printf(sc->sc_dev,
7206 		    "%s: could not setup link quality for node %d, error %d\n",
7207 		    __func__, node.id, error);
7208 		return error;
7209 	}
7210 
7211 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7212 		device_printf(sc->sc_dev,
7213 		    "%s: could not set sensitivity, error %d\n", __func__,
7214 		    error);
7215 		return error;
7216 	}
7217 	/* Start periodic calibration timer. */
7218 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7219 	sc->calib_cnt = 0;
7220 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7221 	    sc);
7222 
7223 	/* Link LED always on while associated. */
7224 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7225 
7226 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7227 
7228 	return 0;
7229 }
7230 
7231 /*
7232  * This function is called by upper layer when an ADDBA request is received
7233  * from another STA and before the ADDBA response is sent.
7234  */
7235 static int
7236 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7237     int baparamset, int batimeout, int baseqctl)
7238 {
7239 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7240 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7241 	struct iwn_ops *ops = &sc->ops;
7242 	struct iwn_node *wn = (void *)ni;
7243 	struct iwn_node_info node;
7244 	uint16_t ssn;
7245 	uint8_t tid;
7246 	int error;
7247 
7248 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7249 
7250 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7251 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7252 
7253 	if (wn->id == IWN_ID_UNDEFINED)
7254 		return (ENOENT);
7255 
7256 	memset(&node, 0, sizeof node);
7257 	node.id = wn->id;
7258 	node.control = IWN_NODE_UPDATE;
7259 	node.flags = IWN_FLAG_SET_ADDBA;
7260 	node.addba_tid = tid;
7261 	node.addba_ssn = htole16(ssn);
7262 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7263 	    wn->id, tid, ssn);
7264 	error = ops->add_node(sc, &node, 1);
7265 	if (error != 0)
7266 		return error;
7267 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7268 #undef MS
7269 }
7270 
7271 /*
7272  * This function is called by upper layer on teardown of an HT-immediate
7273  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7274  */
7275 static void
7276 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7277 {
7278 	struct ieee80211com *ic = ni->ni_ic;
7279 	struct iwn_softc *sc = ic->ic_softc;
7280 	struct iwn_ops *ops = &sc->ops;
7281 	struct iwn_node *wn = (void *)ni;
7282 	struct iwn_node_info node;
7283 	uint8_t tid;
7284 
7285 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7286 
7287 	if (wn->id == IWN_ID_UNDEFINED)
7288 		goto end;
7289 
7290 	/* XXX: tid as an argument */
7291 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7292 		if (&ni->ni_rx_ampdu[tid] == rap)
7293 			break;
7294 	}
7295 
7296 	memset(&node, 0, sizeof node);
7297 	node.id = wn->id;
7298 	node.control = IWN_NODE_UPDATE;
7299 	node.flags = IWN_FLAG_SET_DELBA;
7300 	node.delba_tid = tid;
7301 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7302 	(void)ops->add_node(sc, &node, 1);
7303 end:
7304 	sc->sc_ampdu_rx_stop(ni, rap);
7305 }
7306 
7307 static int
7308 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7309     int dialogtoken, int baparamset, int batimeout)
7310 {
7311 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7312 	int qid;
7313 
7314 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7315 
7316 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7317 		if (sc->qid2tap[qid] == NULL)
7318 			break;
7319 	}
7320 	if (qid == sc->ntxqs) {
7321 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7322 		    __func__);
7323 		return 0;
7324 	}
7325 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7326 	if (tap->txa_private == NULL) {
7327 		device_printf(sc->sc_dev,
7328 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7329 		return 0;
7330 	}
7331 	sc->qid2tap[qid] = tap;
7332 	*(int *)tap->txa_private = qid;
7333 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7334 	    batimeout);
7335 }
7336 
7337 static int
7338 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7339     int code, int baparamset, int batimeout)
7340 {
7341 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7342 	int qid = *(int *)tap->txa_private;
7343 	uint8_t tid = tap->txa_tid;
7344 	int ret;
7345 
7346 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7347 
7348 	if (code == IEEE80211_STATUS_SUCCESS) {
7349 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7350 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7351 		if (ret != 1)
7352 			return ret;
7353 	} else {
7354 		sc->qid2tap[qid] = NULL;
7355 		free(tap->txa_private, M_DEVBUF);
7356 		tap->txa_private = NULL;
7357 	}
7358 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7359 }
7360 
7361 /*
7362  * This function is called by upper layer when an ADDBA response is received
7363  * from another STA.
7364  */
7365 static int
7366 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7367     uint8_t tid)
7368 {
7369 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7370 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7371 	struct iwn_ops *ops = &sc->ops;
7372 	struct iwn_node *wn = (void *)ni;
7373 	struct iwn_node_info node;
7374 	int error, qid;
7375 
7376 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7377 
7378 	if (wn->id == IWN_ID_UNDEFINED)
7379 		return (0);
7380 
7381 	/* Enable TX for the specified RA/TID. */
7382 	wn->disable_tid &= ~(1 << tid);
7383 	memset(&node, 0, sizeof node);
7384 	node.id = wn->id;
7385 	node.control = IWN_NODE_UPDATE;
7386 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7387 	node.disable_tid = htole16(wn->disable_tid);
7388 	error = ops->add_node(sc, &node, 1);
7389 	if (error != 0)
7390 		return 0;
7391 
7392 	if ((error = iwn_nic_lock(sc)) != 0)
7393 		return 0;
7394 	qid = *(int *)tap->txa_private;
7395 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7396 	    __func__, wn->id, tid, tap->txa_start, qid);
7397 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7398 	iwn_nic_unlock(sc);
7399 
7400 	iwn_set_link_quality(sc, ni);
7401 	return 1;
7402 }
7403 
7404 static void
7405 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7406 {
7407 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7408 	struct iwn_ops *ops = &sc->ops;
7409 	uint8_t tid = tap->txa_tid;
7410 	int qid;
7411 
7412 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7413 
7414 	sc->sc_addba_stop(ni, tap);
7415 
7416 	if (tap->txa_private == NULL)
7417 		return;
7418 
7419 	qid = *(int *)tap->txa_private;
7420 	if (sc->txq[qid].queued != 0)
7421 		return;
7422 	if (iwn_nic_lock(sc) != 0)
7423 		return;
7424 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7425 	iwn_nic_unlock(sc);
7426 	sc->qid2tap[qid] = NULL;
7427 	free(tap->txa_private, M_DEVBUF);
7428 	tap->txa_private = NULL;
7429 }
7430 
7431 static void
7432 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7433     int qid, uint8_t tid, uint16_t ssn)
7434 {
7435 	struct iwn_node *wn = (void *)ni;
7436 
7437 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7438 
7439 	/* Stop TX scheduler while we're changing its configuration. */
7440 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7441 	    IWN4965_TXQ_STATUS_CHGACT);
7442 
7443 	/* Assign RA/TID translation to the queue. */
7444 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7445 	    wn->id << 4 | tid);
7446 
7447 	/* Enable chain-building mode for the queue. */
7448 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7449 
7450 	/* Set starting sequence number from the ADDBA request. */
7451 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7452 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7453 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7454 
7455 	/* Set scheduler window size. */
7456 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7457 	    IWN_SCHED_WINSZ);
7458 	/* Set scheduler frame limit. */
7459 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7460 	    IWN_SCHED_LIMIT << 16);
7461 
7462 	/* Enable interrupts for the queue. */
7463 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7464 
7465 	/* Mark the queue as active. */
7466 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7467 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7468 	    iwn_tid2fifo[tid] << 1);
7469 }
7470 
7471 static void
7472 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7473 {
7474 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7475 
7476 	/* Stop TX scheduler while we're changing its configuration. */
7477 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7478 	    IWN4965_TXQ_STATUS_CHGACT);
7479 
7480 	/* Set starting sequence number from the ADDBA request. */
7481 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7482 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7483 
7484 	/* Disable interrupts for the queue. */
7485 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7486 
7487 	/* Mark the queue as inactive. */
7488 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7489 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7490 }
7491 
7492 static void
7493 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7494     int qid, uint8_t tid, uint16_t ssn)
7495 {
7496 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7497 
7498 	struct iwn_node *wn = (void *)ni;
7499 
7500 	/* Stop TX scheduler while we're changing its configuration. */
7501 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7502 	    IWN5000_TXQ_STATUS_CHGACT);
7503 
7504 	/* Assign RA/TID translation to the queue. */
7505 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7506 	    wn->id << 4 | tid);
7507 
7508 	/* Enable chain-building mode for the queue. */
7509 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7510 
7511 	/* Enable aggregation for the queue. */
7512 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7513 
7514 	/* Set starting sequence number from the ADDBA request. */
7515 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7516 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7517 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7518 
7519 	/* Set scheduler window size and frame limit. */
7520 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7521 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7522 
7523 	/* Enable interrupts for the queue. */
7524 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7525 
7526 	/* Mark the queue as active. */
7527 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7528 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7529 }
7530 
7531 static void
7532 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7533 {
7534 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7535 
7536 	/* Stop TX scheduler while we're changing its configuration. */
7537 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7538 	    IWN5000_TXQ_STATUS_CHGACT);
7539 
7540 	/* Disable aggregation for the queue. */
7541 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7542 
7543 	/* Set starting sequence number from the ADDBA request. */
7544 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7545 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7546 
7547 	/* Disable interrupts for the queue. */
7548 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7549 
7550 	/* Mark the queue as inactive. */
7551 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7552 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7553 }
7554 
7555 /*
7556  * Query calibration tables from the initialization firmware.  We do this
7557  * only once at first boot.  Called from a process context.
7558  */
7559 static int
7560 iwn5000_query_calibration(struct iwn_softc *sc)
7561 {
7562 	struct iwn5000_calib_config cmd;
7563 	int error;
7564 
7565 	memset(&cmd, 0, sizeof cmd);
7566 	cmd.ucode.once.enable = htole32(0xffffffff);
7567 	cmd.ucode.once.start  = htole32(0xffffffff);
7568 	cmd.ucode.once.send   = htole32(0xffffffff);
7569 	cmd.ucode.flags       = htole32(0xffffffff);
7570 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7571 	    __func__);
7572 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7573 	if (error != 0)
7574 		return error;
7575 
7576 	/* Wait at most two seconds for calibration to complete. */
7577 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7578 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7579 	return error;
7580 }
7581 
7582 /*
7583  * Send calibration results to the runtime firmware.  These results were
7584  * obtained on first boot from the initialization firmware.
7585  */
7586 static int
7587 iwn5000_send_calibration(struct iwn_softc *sc)
7588 {
7589 	int idx, error;
7590 
7591 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7592 		if (!(sc->base_params->calib_need & (1<<idx))) {
7593 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7594 			    "No need of calib %d\n",
7595 			    idx);
7596 			continue; /* no need for this calib */
7597 		}
7598 		if (sc->calibcmd[idx].buf == NULL) {
7599 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7600 			    "Need calib idx : %d but no available data\n",
7601 			    idx);
7602 			continue;
7603 		}
7604 
7605 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7606 		    "send calibration result idx=%d len=%d\n", idx,
7607 		    sc->calibcmd[idx].len);
7608 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7609 		    sc->calibcmd[idx].len, 0);
7610 		if (error != 0) {
7611 			device_printf(sc->sc_dev,
7612 			    "%s: could not send calibration result, error %d\n",
7613 			    __func__, error);
7614 			return error;
7615 		}
7616 	}
7617 	return 0;
7618 }
7619 
7620 static int
7621 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7622 {
7623 	struct iwn5000_wimax_coex wimax;
7624 
7625 #if 0
7626 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7627 		/* Enable WiMAX coexistence for combo adapters. */
7628 		wimax.flags =
7629 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7630 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7631 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7632 		    IWN_WIMAX_COEX_ENABLE;
7633 		memcpy(wimax.events, iwn6050_wimax_events,
7634 		    sizeof iwn6050_wimax_events);
7635 	} else
7636 #endif
7637 	{
7638 		/* Disable WiMAX coexistence. */
7639 		wimax.flags = 0;
7640 		memset(wimax.events, 0, sizeof wimax.events);
7641 	}
7642 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7643 	    __func__);
7644 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7645 }
7646 
7647 static int
7648 iwn5000_crystal_calib(struct iwn_softc *sc)
7649 {
7650 	struct iwn5000_phy_calib_crystal cmd;
7651 
7652 	memset(&cmd, 0, sizeof cmd);
7653 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7654 	cmd.ngroups = 1;
7655 	cmd.isvalid = 1;
7656 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7657 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7658 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7659 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7660 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7661 }
7662 
7663 static int
7664 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7665 {
7666 	struct iwn5000_phy_calib_temp_offset cmd;
7667 
7668 	memset(&cmd, 0, sizeof cmd);
7669 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7670 	cmd.ngroups = 1;
7671 	cmd.isvalid = 1;
7672 	if (sc->eeprom_temp != 0)
7673 		cmd.offset = htole16(sc->eeprom_temp);
7674 	else
7675 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7676 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7677 	    le16toh(cmd.offset));
7678 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7679 }
7680 
7681 static int
7682 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7683 {
7684 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7685 
7686 	memset(&cmd, 0, sizeof cmd);
7687 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7688 	cmd.ngroups = 1;
7689 	cmd.isvalid = 1;
7690 	if (sc->eeprom_temp != 0) {
7691 		cmd.offset_low = htole16(sc->eeprom_temp);
7692 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7693 	} else {
7694 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7695 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7696 	}
7697 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7698 
7699 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7700 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7701 	    le16toh(cmd.offset_low),
7702 	    le16toh(cmd.offset_high),
7703 	    le16toh(cmd.burnt_voltage_ref));
7704 
7705 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7706 }
7707 
7708 /*
7709  * This function is called after the runtime firmware notifies us of its
7710  * readiness (called in a process context).
7711  */
7712 static int
7713 iwn4965_post_alive(struct iwn_softc *sc)
7714 {
7715 	int error, qid;
7716 
7717 	if ((error = iwn_nic_lock(sc)) != 0)
7718 		return error;
7719 
7720 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7721 
7722 	/* Clear TX scheduler state in SRAM. */
7723 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7724 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7725 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7726 
7727 	/* Set physical address of TX scheduler rings (1KB aligned). */
7728 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7729 
7730 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7731 
7732 	/* Disable chain mode for all our 16 queues. */
7733 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7734 
7735 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7736 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7737 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7738 
7739 		/* Set scheduler window size. */
7740 		iwn_mem_write(sc, sc->sched_base +
7741 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7742 		/* Set scheduler frame limit. */
7743 		iwn_mem_write(sc, sc->sched_base +
7744 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7745 		    IWN_SCHED_LIMIT << 16);
7746 	}
7747 
7748 	/* Enable interrupts for all our 16 queues. */
7749 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7750 	/* Identify TX FIFO rings (0-7). */
7751 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7752 
7753 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7754 	for (qid = 0; qid < 7; qid++) {
7755 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7756 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7757 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7758 	}
7759 	iwn_nic_unlock(sc);
7760 	return 0;
7761 }
7762 
7763 /*
7764  * This function is called after the initialization or runtime firmware
7765  * notifies us of its readiness (called in a process context).
7766  */
7767 static int
7768 iwn5000_post_alive(struct iwn_softc *sc)
7769 {
7770 	int error, qid;
7771 
7772 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7773 
7774 	/* Switch to using ICT interrupt mode. */
7775 	iwn5000_ict_reset(sc);
7776 
7777 	if ((error = iwn_nic_lock(sc)) != 0){
7778 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7779 		return error;
7780 	}
7781 
7782 	/* Clear TX scheduler state in SRAM. */
7783 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7784 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7785 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7786 
7787 	/* Set physical address of TX scheduler rings (1KB aligned). */
7788 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7789 
7790 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7791 
7792 	/* Enable chain mode for all queues, except command queue. */
7793 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7794 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7795 	else
7796 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7797 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7798 
7799 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7800 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7801 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7802 
7803 		iwn_mem_write(sc, sc->sched_base +
7804 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7805 		/* Set scheduler window size and frame limit. */
7806 		iwn_mem_write(sc, sc->sched_base +
7807 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7808 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7809 	}
7810 
7811 	/* Enable interrupts for all our 20 queues. */
7812 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7813 	/* Identify TX FIFO rings (0-7). */
7814 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7815 
7816 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7817 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7818 		/* Mark TX rings as active. */
7819 		for (qid = 0; qid < 11; qid++) {
7820 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7821 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7822 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7823 		}
7824 	} else {
7825 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7826 		for (qid = 0; qid < 7; qid++) {
7827 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7828 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7829 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7830 		}
7831 	}
7832 	iwn_nic_unlock(sc);
7833 
7834 	/* Configure WiMAX coexistence for combo adapters. */
7835 	error = iwn5000_send_wimax_coex(sc);
7836 	if (error != 0) {
7837 		device_printf(sc->sc_dev,
7838 		    "%s: could not configure WiMAX coexistence, error %d\n",
7839 		    __func__, error);
7840 		return error;
7841 	}
7842 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7843 		/* Perform crystal calibration. */
7844 		error = iwn5000_crystal_calib(sc);
7845 		if (error != 0) {
7846 			device_printf(sc->sc_dev,
7847 			    "%s: crystal calibration failed, error %d\n",
7848 			    __func__, error);
7849 			return error;
7850 		}
7851 	}
7852 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7853 		/* Query calibration from the initialization firmware. */
7854 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7855 			device_printf(sc->sc_dev,
7856 			    "%s: could not query calibration, error %d\n",
7857 			    __func__, error);
7858 			return error;
7859 		}
7860 		/*
7861 		 * We have the calibration results now, reboot with the
7862 		 * runtime firmware (call ourselves recursively!)
7863 		 */
7864 		iwn_hw_stop(sc);
7865 		error = iwn_hw_init(sc);
7866 	} else {
7867 		/* Send calibration results to runtime firmware. */
7868 		error = iwn5000_send_calibration(sc);
7869 	}
7870 
7871 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7872 
7873 	return error;
7874 }
7875 
7876 /*
7877  * The firmware boot code is small and is intended to be copied directly into
7878  * the NIC internal memory (no DMA transfer).
7879  */
7880 static int
7881 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7882 {
7883 	int error, ntries;
7884 
7885 	size /= sizeof (uint32_t);
7886 
7887 	if ((error = iwn_nic_lock(sc)) != 0)
7888 		return error;
7889 
7890 	/* Copy microcode image into NIC memory. */
7891 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7892 	    (const uint32_t *)ucode, size);
7893 
7894 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7895 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7896 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7897 
7898 	/* Start boot load now. */
7899 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7900 
7901 	/* Wait for transfer to complete. */
7902 	for (ntries = 0; ntries < 1000; ntries++) {
7903 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7904 		    IWN_BSM_WR_CTRL_START))
7905 			break;
7906 		DELAY(10);
7907 	}
7908 	if (ntries == 1000) {
7909 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7910 		    __func__);
7911 		iwn_nic_unlock(sc);
7912 		return ETIMEDOUT;
7913 	}
7914 
7915 	/* Enable boot after power up. */
7916 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7917 
7918 	iwn_nic_unlock(sc);
7919 	return 0;
7920 }
7921 
7922 static int
7923 iwn4965_load_firmware(struct iwn_softc *sc)
7924 {
7925 	struct iwn_fw_info *fw = &sc->fw;
7926 	struct iwn_dma_info *dma = &sc->fw_dma;
7927 	int error;
7928 
7929 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7930 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7931 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7932 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7933 	    fw->init.text, fw->init.textsz);
7934 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7935 
7936 	/* Tell adapter where to find initialization sections. */
7937 	if ((error = iwn_nic_lock(sc)) != 0)
7938 		return error;
7939 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7940 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7941 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7942 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7943 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7944 	iwn_nic_unlock(sc);
7945 
7946 	/* Load firmware boot code. */
7947 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7948 	if (error != 0) {
7949 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7950 		    __func__);
7951 		return error;
7952 	}
7953 	/* Now press "execute". */
7954 	IWN_WRITE(sc, IWN_RESET, 0);
7955 
7956 	/* Wait at most one second for first alive notification. */
7957 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
7958 		device_printf(sc->sc_dev,
7959 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7960 		    __func__, error);
7961 		return error;
7962 	}
7963 
7964 	/* Retrieve current temperature for initial TX power calibration. */
7965 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7966 	sc->temp = iwn4965_get_temperature(sc);
7967 
7968 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7969 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7970 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7971 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7972 	    fw->main.text, fw->main.textsz);
7973 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7974 
7975 	/* Tell adapter where to find runtime sections. */
7976 	if ((error = iwn_nic_lock(sc)) != 0)
7977 		return error;
7978 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7979 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7980 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7981 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7982 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7983 	    IWN_FW_UPDATED | fw->main.textsz);
7984 	iwn_nic_unlock(sc);
7985 
7986 	return 0;
7987 }
7988 
7989 static int
7990 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7991     const uint8_t *section, int size)
7992 {
7993 	struct iwn_dma_info *dma = &sc->fw_dma;
7994 	int error;
7995 
7996 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7997 
7998 	/* Copy firmware section into pre-allocated DMA-safe memory. */
7999 	memcpy(dma->vaddr, section, size);
8000 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8001 
8002 	if ((error = iwn_nic_lock(sc)) != 0)
8003 		return error;
8004 
8005 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8006 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8007 
8008 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8009 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8010 	    IWN_LOADDR(dma->paddr));
8011 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8012 	    IWN_HIADDR(dma->paddr) << 28 | size);
8013 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8014 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8015 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8016 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8017 
8018 	/* Kick Flow Handler to start DMA transfer. */
8019 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8020 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8021 
8022 	iwn_nic_unlock(sc);
8023 
8024 	/* Wait at most five seconds for FH DMA transfer to complete. */
8025 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
8026 }
8027 
8028 static int
8029 iwn5000_load_firmware(struct iwn_softc *sc)
8030 {
8031 	struct iwn_fw_part *fw;
8032 	int error;
8033 
8034 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8035 
8036 	/* Load the initialization firmware on first boot only. */
8037 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8038 	    &sc->fw.main : &sc->fw.init;
8039 
8040 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8041 	    fw->text, fw->textsz);
8042 	if (error != 0) {
8043 		device_printf(sc->sc_dev,
8044 		    "%s: could not load firmware %s section, error %d\n",
8045 		    __func__, ".text", error);
8046 		return error;
8047 	}
8048 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8049 	    fw->data, fw->datasz);
8050 	if (error != 0) {
8051 		device_printf(sc->sc_dev,
8052 		    "%s: could not load firmware %s section, error %d\n",
8053 		    __func__, ".data", error);
8054 		return error;
8055 	}
8056 
8057 	/* Now press "execute". */
8058 	IWN_WRITE(sc, IWN_RESET, 0);
8059 	return 0;
8060 }
8061 
8062 /*
8063  * Extract text and data sections from a legacy firmware image.
8064  */
8065 static int
8066 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8067 {
8068 	const uint32_t *ptr;
8069 	size_t hdrlen = 24;
8070 	uint32_t rev;
8071 
8072 	ptr = (const uint32_t *)fw->data;
8073 	rev = le32toh(*ptr++);
8074 
8075 	sc->ucode_rev = rev;
8076 
8077 	/* Check firmware API version. */
8078 	if (IWN_FW_API(rev) <= 1) {
8079 		device_printf(sc->sc_dev,
8080 		    "%s: bad firmware, need API version >=2\n", __func__);
8081 		return EINVAL;
8082 	}
8083 	if (IWN_FW_API(rev) >= 3) {
8084 		/* Skip build number (version 2 header). */
8085 		hdrlen += 4;
8086 		ptr++;
8087 	}
8088 	if (fw->size < hdrlen) {
8089 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8090 		    __func__, fw->size);
8091 		return EINVAL;
8092 	}
8093 	fw->main.textsz = le32toh(*ptr++);
8094 	fw->main.datasz = le32toh(*ptr++);
8095 	fw->init.textsz = le32toh(*ptr++);
8096 	fw->init.datasz = le32toh(*ptr++);
8097 	fw->boot.textsz = le32toh(*ptr++);
8098 
8099 	/* Check that all firmware sections fit. */
8100 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8101 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8102 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8103 		    __func__, fw->size);
8104 		return EINVAL;
8105 	}
8106 
8107 	/* Get pointers to firmware sections. */
8108 	fw->main.text = (const uint8_t *)ptr;
8109 	fw->main.data = fw->main.text + fw->main.textsz;
8110 	fw->init.text = fw->main.data + fw->main.datasz;
8111 	fw->init.data = fw->init.text + fw->init.textsz;
8112 	fw->boot.text = fw->init.data + fw->init.datasz;
8113 	return 0;
8114 }
8115 
8116 /*
8117  * Extract text and data sections from a TLV firmware image.
8118  */
8119 static int
8120 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8121     uint16_t alt)
8122 {
8123 	const struct iwn_fw_tlv_hdr *hdr;
8124 	const struct iwn_fw_tlv *tlv;
8125 	const uint8_t *ptr, *end;
8126 	uint64_t altmask;
8127 	uint32_t len, tmp;
8128 
8129 	if (fw->size < sizeof (*hdr)) {
8130 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8131 		    __func__, fw->size);
8132 		return EINVAL;
8133 	}
8134 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8135 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8136 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8137 		    __func__, le32toh(hdr->signature));
8138 		return EINVAL;
8139 	}
8140 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8141 	    le32toh(hdr->build));
8142 	sc->ucode_rev = le32toh(hdr->rev);
8143 
8144 	/*
8145 	 * Select the closest supported alternative that is less than
8146 	 * or equal to the specified one.
8147 	 */
8148 	altmask = le64toh(hdr->altmask);
8149 	while (alt > 0 && !(altmask & (1ULL << alt)))
8150 		alt--;	/* Downgrade. */
8151 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8152 
8153 	ptr = (const uint8_t *)(hdr + 1);
8154 	end = (const uint8_t *)(fw->data + fw->size);
8155 
8156 	/* Parse type-length-value fields. */
8157 	while (ptr + sizeof (*tlv) <= end) {
8158 		tlv = (const struct iwn_fw_tlv *)ptr;
8159 		len = le32toh(tlv->len);
8160 
8161 		ptr += sizeof (*tlv);
8162 		if (ptr + len > end) {
8163 			device_printf(sc->sc_dev,
8164 			    "%s: firmware too short: %zu bytes\n", __func__,
8165 			    fw->size);
8166 			return EINVAL;
8167 		}
8168 		/* Skip other alternatives. */
8169 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8170 			goto next;
8171 
8172 		switch (le16toh(tlv->type)) {
8173 		case IWN_FW_TLV_MAIN_TEXT:
8174 			fw->main.text = ptr;
8175 			fw->main.textsz = len;
8176 			break;
8177 		case IWN_FW_TLV_MAIN_DATA:
8178 			fw->main.data = ptr;
8179 			fw->main.datasz = len;
8180 			break;
8181 		case IWN_FW_TLV_INIT_TEXT:
8182 			fw->init.text = ptr;
8183 			fw->init.textsz = len;
8184 			break;
8185 		case IWN_FW_TLV_INIT_DATA:
8186 			fw->init.data = ptr;
8187 			fw->init.datasz = len;
8188 			break;
8189 		case IWN_FW_TLV_BOOT_TEXT:
8190 			fw->boot.text = ptr;
8191 			fw->boot.textsz = len;
8192 			break;
8193 		case IWN_FW_TLV_ENH_SENS:
8194 			if (!len)
8195 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8196 			break;
8197 		case IWN_FW_TLV_PHY_CALIB:
8198 			tmp = le32toh(*ptr);
8199 			if (tmp < 253) {
8200 				sc->reset_noise_gain = tmp;
8201 				sc->noise_gain = tmp + 1;
8202 			}
8203 			break;
8204 		case IWN_FW_TLV_PAN:
8205 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8206 			DPRINTF(sc, IWN_DEBUG_RESET,
8207 			    "PAN Support found: %d\n", 1);
8208 			break;
8209 		case IWN_FW_TLV_FLAGS:
8210 			if (len < sizeof(uint32_t))
8211 				break;
8212 			if (len % sizeof(uint32_t))
8213 				break;
8214 			sc->tlv_feature_flags = le32toh(*ptr);
8215 			DPRINTF(sc, IWN_DEBUG_RESET,
8216 			    "%s: feature: 0x%08x\n",
8217 			    __func__,
8218 			    sc->tlv_feature_flags);
8219 			break;
8220 		case IWN_FW_TLV_PBREQ_MAXLEN:
8221 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8222 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8223 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8224 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8225 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8226 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8227 		case IWN_FW_TLV_WOWLAN_INST:
8228 		case IWN_FW_TLV_WOWLAN_DATA:
8229 			DPRINTF(sc, IWN_DEBUG_RESET,
8230 			    "TLV type %d recognized but not handled\n",
8231 			    le16toh(tlv->type));
8232 			break;
8233 		default:
8234 			DPRINTF(sc, IWN_DEBUG_RESET,
8235 			    "TLV type %d not handled\n", le16toh(tlv->type));
8236 			break;
8237 		}
8238  next:		/* TLV fields are 32-bit aligned. */
8239 		ptr += (len + 3) & ~3;
8240 	}
8241 	return 0;
8242 }
8243 
8244 static int
8245 iwn_read_firmware(struct iwn_softc *sc)
8246 {
8247 	struct iwn_fw_info *fw = &sc->fw;
8248 	int error;
8249 
8250 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8251 
8252 	IWN_UNLOCK(sc);
8253 
8254 	memset(fw, 0, sizeof (*fw));
8255 
8256 	/* Read firmware image from filesystem. */
8257 	sc->fw_fp = firmware_get(sc->fwname);
8258 	if (sc->fw_fp == NULL) {
8259 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8260 		    __func__, sc->fwname);
8261 		IWN_LOCK(sc);
8262 		return EINVAL;
8263 	}
8264 	IWN_LOCK(sc);
8265 
8266 	fw->size = sc->fw_fp->datasize;
8267 	fw->data = (const uint8_t *)sc->fw_fp->data;
8268 	if (fw->size < sizeof (uint32_t)) {
8269 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8270 		    __func__, fw->size);
8271 		error = EINVAL;
8272 		goto fail;
8273 	}
8274 
8275 	/* Retrieve text and data sections. */
8276 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8277 		error = iwn_read_firmware_leg(sc, fw);
8278 	else
8279 		error = iwn_read_firmware_tlv(sc, fw, 1);
8280 	if (error != 0) {
8281 		device_printf(sc->sc_dev,
8282 		    "%s: could not read firmware sections, error %d\n",
8283 		    __func__, error);
8284 		goto fail;
8285 	}
8286 
8287 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8288 
8289 	/* Make sure text and data sections fit in hardware memory. */
8290 	if (fw->main.textsz > sc->fw_text_maxsz ||
8291 	    fw->main.datasz > sc->fw_data_maxsz ||
8292 	    fw->init.textsz > sc->fw_text_maxsz ||
8293 	    fw->init.datasz > sc->fw_data_maxsz ||
8294 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8295 	    (fw->boot.textsz & 3) != 0) {
8296 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8297 		    __func__);
8298 		error = EINVAL;
8299 		goto fail;
8300 	}
8301 
8302 	/* We can proceed with loading the firmware. */
8303 	return 0;
8304 
8305 fail:	iwn_unload_firmware(sc);
8306 	return error;
8307 }
8308 
8309 static void
8310 iwn_unload_firmware(struct iwn_softc *sc)
8311 {
8312 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8313 	sc->fw_fp = NULL;
8314 }
8315 
8316 static int
8317 iwn_clock_wait(struct iwn_softc *sc)
8318 {
8319 	int ntries;
8320 
8321 	/* Set "initialization complete" bit. */
8322 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8323 
8324 	/* Wait for clock stabilization. */
8325 	for (ntries = 0; ntries < 2500; ntries++) {
8326 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8327 			return 0;
8328 		DELAY(10);
8329 	}
8330 	device_printf(sc->sc_dev,
8331 	    "%s: timeout waiting for clock stabilization\n", __func__);
8332 	return ETIMEDOUT;
8333 }
8334 
8335 static int
8336 iwn_apm_init(struct iwn_softc *sc)
8337 {
8338 	uint32_t reg;
8339 	int error;
8340 
8341 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8342 
8343 	/* Disable L0s exit timer (NMI bug workaround). */
8344 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8345 	/* Don't wait for ICH L0s (ICH bug workaround). */
8346 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8347 
8348 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8349 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8350 
8351 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8352 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8353 
8354 	/* Retrieve PCIe Active State Power Management (ASPM). */
8355 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8356 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8357 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8358 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8359 	else
8360 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8361 
8362 	if (sc->base_params->pll_cfg_val)
8363 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8364 
8365 	/* Wait for clock stabilization before accessing prph. */
8366 	if ((error = iwn_clock_wait(sc)) != 0)
8367 		return error;
8368 
8369 	if ((error = iwn_nic_lock(sc)) != 0)
8370 		return error;
8371 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8372 		/* Enable DMA and BSM (Bootstrap State Machine). */
8373 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8374 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8375 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8376 	} else {
8377 		/* Enable DMA. */
8378 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8379 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8380 	}
8381 	DELAY(20);
8382 	/* Disable L1-Active. */
8383 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8384 	iwn_nic_unlock(sc);
8385 
8386 	return 0;
8387 }
8388 
8389 static void
8390 iwn_apm_stop_master(struct iwn_softc *sc)
8391 {
8392 	int ntries;
8393 
8394 	/* Stop busmaster DMA activity. */
8395 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8396 	for (ntries = 0; ntries < 100; ntries++) {
8397 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8398 			return;
8399 		DELAY(10);
8400 	}
8401 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8402 }
8403 
8404 static void
8405 iwn_apm_stop(struct iwn_softc *sc)
8406 {
8407 	iwn_apm_stop_master(sc);
8408 
8409 	/* Reset the entire device. */
8410 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8411 	DELAY(10);
8412 	/* Clear "initialization complete" bit. */
8413 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8414 }
8415 
8416 static int
8417 iwn4965_nic_config(struct iwn_softc *sc)
8418 {
8419 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8420 
8421 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8422 		/*
8423 		 * I don't believe this to be correct but this is what the
8424 		 * vendor driver is doing. Probably the bits should not be
8425 		 * shifted in IWN_RFCFG_*.
8426 		 */
8427 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8428 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8429 		    IWN_RFCFG_STEP(sc->rfcfg) |
8430 		    IWN_RFCFG_DASH(sc->rfcfg));
8431 	}
8432 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8433 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8434 	return 0;
8435 }
8436 
8437 static int
8438 iwn5000_nic_config(struct iwn_softc *sc)
8439 {
8440 	uint32_t tmp;
8441 	int error;
8442 
8443 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8444 
8445 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8446 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8447 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8448 		    IWN_RFCFG_STEP(sc->rfcfg) |
8449 		    IWN_RFCFG_DASH(sc->rfcfg));
8450 	}
8451 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8452 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8453 
8454 	if ((error = iwn_nic_lock(sc)) != 0)
8455 		return error;
8456 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8457 
8458 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8459 		/*
8460 		 * Select first Switching Voltage Regulator (1.32V) to
8461 		 * solve a stability issue related to noisy DC2DC line
8462 		 * in the silicon of 1000 Series.
8463 		 */
8464 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8465 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8466 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8467 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8468 	}
8469 	iwn_nic_unlock(sc);
8470 
8471 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8472 		/* Use internal power amplifier only. */
8473 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8474 	}
8475 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8476 		/* Indicate that ROM calibration version is >=6. */
8477 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8478 	}
8479 	if (sc->base_params->additional_gp_drv_bit)
8480 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8481 		    sc->base_params->additional_gp_drv_bit);
8482 	return 0;
8483 }
8484 
8485 /*
8486  * Take NIC ownership over Intel Active Management Technology (AMT).
8487  */
8488 static int
8489 iwn_hw_prepare(struct iwn_softc *sc)
8490 {
8491 	int ntries;
8492 
8493 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8494 
8495 	/* Check if hardware is ready. */
8496 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8497 	for (ntries = 0; ntries < 5; ntries++) {
8498 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8499 		    IWN_HW_IF_CONFIG_NIC_READY)
8500 			return 0;
8501 		DELAY(10);
8502 	}
8503 
8504 	/* Hardware not ready, force into ready state. */
8505 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8506 	for (ntries = 0; ntries < 15000; ntries++) {
8507 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8508 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8509 			break;
8510 		DELAY(10);
8511 	}
8512 	if (ntries == 15000)
8513 		return ETIMEDOUT;
8514 
8515 	/* Hardware should be ready now. */
8516 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8517 	for (ntries = 0; ntries < 5; ntries++) {
8518 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8519 		    IWN_HW_IF_CONFIG_NIC_READY)
8520 			return 0;
8521 		DELAY(10);
8522 	}
8523 	return ETIMEDOUT;
8524 }
8525 
8526 static int
8527 iwn_hw_init(struct iwn_softc *sc)
8528 {
8529 	struct iwn_ops *ops = &sc->ops;
8530 	int error, chnl, qid;
8531 
8532 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8533 
8534 	/* Clear pending interrupts. */
8535 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8536 
8537 	if ((error = iwn_apm_init(sc)) != 0) {
8538 		device_printf(sc->sc_dev,
8539 		    "%s: could not power ON adapter, error %d\n", __func__,
8540 		    error);
8541 		return error;
8542 	}
8543 
8544 	/* Select VMAIN power source. */
8545 	if ((error = iwn_nic_lock(sc)) != 0)
8546 		return error;
8547 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8548 	iwn_nic_unlock(sc);
8549 
8550 	/* Perform adapter-specific initialization. */
8551 	if ((error = ops->nic_config(sc)) != 0)
8552 		return error;
8553 
8554 	/* Initialize RX ring. */
8555 	if ((error = iwn_nic_lock(sc)) != 0)
8556 		return error;
8557 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8558 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8559 	/* Set physical address of RX ring (256-byte aligned). */
8560 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8561 	/* Set physical address of RX status (16-byte aligned). */
8562 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8563 	/* Enable RX. */
8564 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8565 	    IWN_FH_RX_CONFIG_ENA           |
8566 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8567 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8568 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8569 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8570 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8571 	iwn_nic_unlock(sc);
8572 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8573 
8574 	if ((error = iwn_nic_lock(sc)) != 0)
8575 		return error;
8576 
8577 	/* Initialize TX scheduler. */
8578 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8579 
8580 	/* Set physical address of "keep warm" page (16-byte aligned). */
8581 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8582 
8583 	/* Initialize TX rings. */
8584 	for (qid = 0; qid < sc->ntxqs; qid++) {
8585 		struct iwn_tx_ring *txq = &sc->txq[qid];
8586 
8587 		/* Set physical address of TX ring (256-byte aligned). */
8588 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8589 		    txq->desc_dma.paddr >> 8);
8590 	}
8591 	iwn_nic_unlock(sc);
8592 
8593 	/* Enable DMA channels. */
8594 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8595 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8596 		    IWN_FH_TX_CONFIG_DMA_ENA |
8597 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8598 	}
8599 
8600 	/* Clear "radio off" and "commands blocked" bits. */
8601 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8602 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8603 
8604 	/* Clear pending interrupts. */
8605 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8606 	/* Enable interrupt coalescing. */
8607 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8608 	/* Enable interrupts. */
8609 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8610 
8611 	/* _Really_ make sure "radio off" bit is cleared! */
8612 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8613 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8614 
8615 	/* Enable shadow registers. */
8616 	if (sc->base_params->shadow_reg_enable)
8617 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8618 
8619 	if ((error = ops->load_firmware(sc)) != 0) {
8620 		device_printf(sc->sc_dev,
8621 		    "%s: could not load firmware, error %d\n", __func__,
8622 		    error);
8623 		return error;
8624 	}
8625 	/* Wait at most one second for firmware alive notification. */
8626 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8627 		device_printf(sc->sc_dev,
8628 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8629 		    __func__, error);
8630 		return error;
8631 	}
8632 	/* Do post-firmware initialization. */
8633 
8634 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8635 
8636 	return ops->post_alive(sc);
8637 }
8638 
8639 static void
8640 iwn_hw_stop(struct iwn_softc *sc)
8641 {
8642 	int chnl, qid, ntries;
8643 
8644 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8645 
8646 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8647 
8648 	/* Disable interrupts. */
8649 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8650 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8651 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8652 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8653 
8654 	/* Make sure we no longer hold the NIC lock. */
8655 	iwn_nic_unlock(sc);
8656 
8657 	/* Stop TX scheduler. */
8658 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8659 
8660 	/* Stop all DMA channels. */
8661 	if (iwn_nic_lock(sc) == 0) {
8662 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8663 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8664 			for (ntries = 0; ntries < 200; ntries++) {
8665 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8666 				    IWN_FH_TX_STATUS_IDLE(chnl))
8667 					break;
8668 				DELAY(10);
8669 			}
8670 		}
8671 		iwn_nic_unlock(sc);
8672 	}
8673 
8674 	/* Stop RX ring. */
8675 	iwn_reset_rx_ring(sc, &sc->rxq);
8676 
8677 	/* Reset all TX rings. */
8678 	for (qid = 0; qid < sc->ntxqs; qid++)
8679 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8680 
8681 	if (iwn_nic_lock(sc) == 0) {
8682 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8683 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8684 		iwn_nic_unlock(sc);
8685 	}
8686 	DELAY(5);
8687 	/* Power OFF adapter. */
8688 	iwn_apm_stop(sc);
8689 }
8690 
8691 static void
8692 iwn_panicked(void *arg0, int pending)
8693 {
8694 	struct iwn_softc *sc = arg0;
8695 	struct ieee80211com *ic = &sc->sc_ic;
8696 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8697 #if 0
8698 	int error;
8699 #endif
8700 
8701 	if (vap == NULL) {
8702 		printf("%s: null vap\n", __func__);
8703 		return;
8704 	}
8705 
8706 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8707 	    "restarting\n", __func__, vap->iv_state);
8708 
8709 	/*
8710 	 * This is not enough work. We need to also reinitialise
8711 	 * the correct transmit state for aggregation enabled queues,
8712 	 * which has a very specific requirement of
8713 	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8714 	 * we definitely don't!) then the firmware will just panic again.
8715 	 */
8716 #if 1
8717 	ieee80211_restart_all(ic);
8718 #else
8719 	IWN_LOCK(sc);
8720 
8721 	iwn_stop_locked(sc);
8722 	if ((error = iwn_init_locked(sc)) != 0) {
8723 		device_printf(sc->sc_dev,
8724 		    "%s: could not init hardware\n", __func__);
8725 		goto unlock;
8726 	}
8727 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8728 	    (error = iwn_auth(sc, vap)) != 0) {
8729 		device_printf(sc->sc_dev,
8730 		    "%s: could not move to auth state\n", __func__);
8731 	}
8732 	if (vap->iv_state >= IEEE80211_S_RUN &&
8733 	    (error = iwn_run(sc, vap)) != 0) {
8734 		device_printf(sc->sc_dev,
8735 		    "%s: could not move to run state\n", __func__);
8736 	}
8737 
8738 unlock:
8739 	IWN_UNLOCK(sc);
8740 #endif
8741 }
8742 
8743 static int
8744 iwn_init_locked(struct iwn_softc *sc)
8745 {
8746 	int error;
8747 
8748 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8749 
8750 	IWN_LOCK_ASSERT(sc);
8751 
8752 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8753 		goto end;
8754 
8755 	sc->sc_flags |= IWN_FLAG_RUNNING;
8756 
8757 	if ((error = iwn_hw_prepare(sc)) != 0) {
8758 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8759 		    __func__, error);
8760 		goto fail;
8761 	}
8762 
8763 	/* Initialize interrupt mask to default value. */
8764 	sc->int_mask = IWN_INT_MASK_DEF;
8765 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8766 
8767 	/* Check that the radio is not disabled by hardware switch. */
8768 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8769 		iwn_stop_locked(sc);
8770 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8771 
8772 		return (1);
8773 	}
8774 
8775 	/* Read firmware images from the filesystem. */
8776 	if ((error = iwn_read_firmware(sc)) != 0) {
8777 		device_printf(sc->sc_dev,
8778 		    "%s: could not read firmware, error %d\n", __func__,
8779 		    error);
8780 		goto fail;
8781 	}
8782 
8783 	/* Initialize hardware and upload firmware. */
8784 	error = iwn_hw_init(sc);
8785 	iwn_unload_firmware(sc);
8786 	if (error != 0) {
8787 		device_printf(sc->sc_dev,
8788 		    "%s: could not initialize hardware, error %d\n", __func__,
8789 		    error);
8790 		goto fail;
8791 	}
8792 
8793 	/* Configure adapter now that it is ready. */
8794 	if ((error = iwn_config(sc)) != 0) {
8795 		device_printf(sc->sc_dev,
8796 		    "%s: could not configure device, error %d\n", __func__,
8797 		    error);
8798 		goto fail;
8799 	}
8800 
8801 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8802 
8803 end:
8804 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8805 
8806 	return (0);
8807 
8808 fail:
8809 	iwn_stop_locked(sc);
8810 
8811 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8812 
8813 	return (-1);
8814 }
8815 
8816 static int
8817 iwn_init(struct iwn_softc *sc)
8818 {
8819 	int error;
8820 
8821 	IWN_LOCK(sc);
8822 	error = iwn_init_locked(sc);
8823 	IWN_UNLOCK(sc);
8824 
8825 	return (error);
8826 }
8827 
8828 static void
8829 iwn_stop_locked(struct iwn_softc *sc)
8830 {
8831 
8832 	IWN_LOCK_ASSERT(sc);
8833 
8834 	if (!(sc->sc_flags & IWN_FLAG_RUNNING))
8835 		return;
8836 
8837 	sc->sc_is_scanning = 0;
8838 	sc->sc_tx_timer = 0;
8839 	callout_stop(&sc->watchdog_to);
8840 	callout_stop(&sc->scan_timeout);
8841 	callout_stop(&sc->calib_to);
8842 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8843 
8844 	/* Power OFF hardware. */
8845 	iwn_hw_stop(sc);
8846 }
8847 
8848 static void
8849 iwn_stop(struct iwn_softc *sc)
8850 {
8851 	IWN_LOCK(sc);
8852 	iwn_stop_locked(sc);
8853 	IWN_UNLOCK(sc);
8854 }
8855 
8856 /*
8857  * Callback from net80211 to start a scan.
8858  */
8859 static void
8860 iwn_scan_start(struct ieee80211com *ic)
8861 {
8862 	struct iwn_softc *sc = ic->ic_softc;
8863 
8864 	IWN_LOCK(sc);
8865 	/* make the link LED blink while we're scanning */
8866 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8867 	IWN_UNLOCK(sc);
8868 }
8869 
8870 /*
8871  * Callback from net80211 to terminate a scan.
8872  */
8873 static void
8874 iwn_scan_end(struct ieee80211com *ic)
8875 {
8876 	struct iwn_softc *sc = ic->ic_softc;
8877 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8878 
8879 	IWN_LOCK(sc);
8880 	if (vap->iv_state == IEEE80211_S_RUN) {
8881 		/* Set link LED to ON status if we are associated */
8882 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8883 	}
8884 	IWN_UNLOCK(sc);
8885 }
8886 
8887 /*
8888  * Callback from net80211 to force a channel change.
8889  */
8890 static void
8891 iwn_set_channel(struct ieee80211com *ic)
8892 {
8893 	const struct ieee80211_channel *c = ic->ic_curchan;
8894 	struct iwn_softc *sc = ic->ic_softc;
8895 	int error;
8896 
8897 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8898 
8899 	IWN_LOCK(sc);
8900 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8901 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8902 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8903 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8904 
8905 	/*
8906 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8907 	 * are already taken care of by their respective firmware commands.
8908 	 */
8909 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8910 		error = iwn_config(sc);
8911 		if (error != 0)
8912 		device_printf(sc->sc_dev,
8913 		    "%s: error %d settting channel\n", __func__, error);
8914 	}
8915 	IWN_UNLOCK(sc);
8916 }
8917 
8918 /*
8919  * Callback from net80211 to start scanning of the current channel.
8920  */
8921 static void
8922 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8923 {
8924 	struct ieee80211vap *vap = ss->ss_vap;
8925 	struct ieee80211com *ic = vap->iv_ic;
8926 	struct iwn_softc *sc = ic->ic_softc;
8927 	int error;
8928 
8929 	IWN_LOCK(sc);
8930 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
8931 	IWN_UNLOCK(sc);
8932 	if (error != 0)
8933 		ieee80211_cancel_scan(vap);
8934 }
8935 
8936 /*
8937  * Callback from net80211 to handle the minimum dwell time being met.
8938  * The intent is to terminate the scan but we just let the firmware
8939  * notify us when it's finished as we have no safe way to abort it.
8940  */
8941 static void
8942 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8943 {
8944 	/* NB: don't try to abort scan; wait for firmware to finish */
8945 }
8946 #ifdef	IWN_DEBUG
8947 #define	IWN_DESC(x) case x:	return #x
8948 
8949 /*
8950  * Translate CSR code to string
8951  */
8952 static char *iwn_get_csr_string(int csr)
8953 {
8954 	switch (csr) {
8955 		IWN_DESC(IWN_HW_IF_CONFIG);
8956 		IWN_DESC(IWN_INT_COALESCING);
8957 		IWN_DESC(IWN_INT);
8958 		IWN_DESC(IWN_INT_MASK);
8959 		IWN_DESC(IWN_FH_INT);
8960 		IWN_DESC(IWN_GPIO_IN);
8961 		IWN_DESC(IWN_RESET);
8962 		IWN_DESC(IWN_GP_CNTRL);
8963 		IWN_DESC(IWN_HW_REV);
8964 		IWN_DESC(IWN_EEPROM);
8965 		IWN_DESC(IWN_EEPROM_GP);
8966 		IWN_DESC(IWN_OTP_GP);
8967 		IWN_DESC(IWN_GIO);
8968 		IWN_DESC(IWN_GP_UCODE);
8969 		IWN_DESC(IWN_GP_DRIVER);
8970 		IWN_DESC(IWN_UCODE_GP1);
8971 		IWN_DESC(IWN_UCODE_GP2);
8972 		IWN_DESC(IWN_LED);
8973 		IWN_DESC(IWN_DRAM_INT_TBL);
8974 		IWN_DESC(IWN_GIO_CHICKEN);
8975 		IWN_DESC(IWN_ANA_PLL);
8976 		IWN_DESC(IWN_HW_REV_WA);
8977 		IWN_DESC(IWN_DBG_HPET_MEM);
8978 	default:
8979 		return "UNKNOWN CSR";
8980 	}
8981 }
8982 
8983 /*
8984  * This function print firmware register
8985  */
8986 static void
8987 iwn_debug_register(struct iwn_softc *sc)
8988 {
8989 	int i;
8990 	static const uint32_t csr_tbl[] = {
8991 		IWN_HW_IF_CONFIG,
8992 		IWN_INT_COALESCING,
8993 		IWN_INT,
8994 		IWN_INT_MASK,
8995 		IWN_FH_INT,
8996 		IWN_GPIO_IN,
8997 		IWN_RESET,
8998 		IWN_GP_CNTRL,
8999 		IWN_HW_REV,
9000 		IWN_EEPROM,
9001 		IWN_EEPROM_GP,
9002 		IWN_OTP_GP,
9003 		IWN_GIO,
9004 		IWN_GP_UCODE,
9005 		IWN_GP_DRIVER,
9006 		IWN_UCODE_GP1,
9007 		IWN_UCODE_GP2,
9008 		IWN_LED,
9009 		IWN_DRAM_INT_TBL,
9010 		IWN_GIO_CHICKEN,
9011 		IWN_ANA_PLL,
9012 		IWN_HW_REV_WA,
9013 		IWN_DBG_HPET_MEM,
9014 	};
9015 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9016 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9017 	    "\n");
9018 	for (i = 0; i <  nitems(csr_tbl); i++){
9019 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9020 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9021 		if ((i+1) % 3 == 0)
9022 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9023 	}
9024 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9025 }
9026 #endif
9027 
9028 
9029